Science.gov

Sample records for active closed conformation

  1. The closed/open model for lipase activation. Addressing intermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments.

    PubMed

    González-Navarro, H; Bañó, M C; Abad, C

    2001-03-13

    The behavior of prototypic fungal lipases in a water-restricted environment has been investigated by exploiting the reported experimental strategy that allows the trapping (freeze-drying) of the enzyme in the conformation present in aqueous solution and to subsequently assay it in nonaqueous media [Mingarro, I., Abad, C., and Braco, L. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 3308-3312]. We now report, using simple esterification as well as acidolysis (triglycerides as substrates) as nonaqueous model reactions, that the presence of a detergent (n-octyl-beta-glucopyranoside) in the freeze-drying buffer, at concentrations below the critical micellar concentration, generates different catalytically active (kinetically trapped) conformational states of the enzyme. These activated forms exquisitely discriminate between short- and long-chain fatty acids, suggesting that they can be correlated with intermediate conformations of the protein sufficiently open to permit the access of relatively small but not large substrates. Additional data obtained from aqueous solution activity measurements in the presence of detergent revealed that the fungal lipase retains an active conformation induced by high detergent concentration (30 mM) for a long period of time, a 'memory effect', which is stabilized in the absence of a well-defined interface by few detergent molecules. Together these results provide support to a model of lipase action involving several equilibrium states (closed, intermediate, and open), which can be modulated by the composition of the microenvironment, i.e., by the detergent concentration.

  2. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity

    PubMed Central

    Nguyen, Hien Anh; Durden, Donald L.; Lavie, Arnon

    2017-01-01

    Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity. PMID:28139703

  3. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity.

    PubMed

    Nguyen, Hien Anh; Durden, Donald L; Lavie, Arnon

    2017-01-31

    Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity.

  4. Conformational activation of ADAMTS13.

    PubMed

    South, Kieron; Luken, Brenda M; Crawley, James T B; Phillips, Rebecca; Thomas, Mari; Collins, Richard F; Deforche, Louis; Vanhoorelbeke, Karen; Lane, David A

    2014-12-30

    A disintegrin and metalloprotease with thrombospondin motifs 13 (ADAMTS13) is a metalloprotease that regulates von Willebrand factor (VWF) function. ADAMTS13-mediated proteolysis is determined by conformational changes in VWF, but also may depend on its own conformational activation. Kinetic analysis of WT ADAMTS13 revealed ∼ 2.5-fold reduced activity compared with ADAMTS13 lacking its C-terminal tail (MDTCS) or its CUB1-2 domains (WTΔCUB1-2), suggesting that the CUB domains naturally limit ADAMTS13 function. Consistent with this suggestion, WT ADAMTS13 activity was enhanced ∼ 2.5-fold by preincubation with either an anti-CUB mAb (20E9) or VWF D4CK (the natural binding partner for the CUB domains). Furthermore, the isolated CUB1-2 domains not only bound MDTCS, but also inhibited activity by up to 2.5-fold. Interestingly, a gain-of-function (GoF) ADAMTS13 spacer domain variant (R568K/F592Y/R660K/Y661F/Y665F) was ∼ 2.5-fold more active than WT ADAMTS13, but could not be further activated by 20E9 mAb or VWF D4CK and was unable to bind or to be inhibited by the CUB1-2 domains, suggesting that the inhibitory effects of the CUB domains involve an interaction with the spacer domain that is disrupted in GoF ADAMTS13. Electron microscopy demonstrated a "closed" conformation of WT ADAMTS13 and suggested a more "open" conformation for GoF ADAMTS13. The cryptic spacer domain epitope revealed by conformational unfolding also represents the core antigenic target for autoantibodies in thrombotic thrombocytopenic purpura. We propose that ADAMTS13 circulates in a closed conformation, which is maintained by a CUB-spacer domain binding interaction. ADAMTS13 becomes conformationally activated on demand through interaction of its C-terminal CUB domains with VWF, making it susceptible to immune recognition.

  5. Leu85 in the beta1-beta2 linker of ASIC1 slows activation and decreases the apparent proton affinity by stabilizing a closed conformation.

    PubMed

    Li, Tianbo; Yang, Youshan; Canessa, Cecilia M

    2010-07-16

    Acid-sensing ion channels (ASICs) are proton-activated channels expressed in neurons of the central and peripheral nervous systems where they modulate neuronal activity in response to external increases in proton concentration. The size of ASIC1 currents evoked by a given local acidification is determined by the number of channels in the plasma membrane and by the apparent proton affinities for activation and steady-state desensitization of the channel. Thus, the magnitude of the pH drop and the value of the baseline pH both are functionally important. Recent characterization of ASIC1s from an increasing number of species has made evident that proton affinities of these channels vary across vertebrates. We found that in species with high baseline plasma pH, e.g. frog, shark, and fish, ASIC1 has high proton affinity compared with the mammalian channel. The beta1-beta2 linker in the extracellular domain, specifically by the substitution M85L, determines the interspecies differences in proton affinities and also the time course of ASIC1 macroscopic currents. The mechanism underlying these observations is a delay in channel opening after application of protons, most likely by stabilizing a closed conformation that decreases the apparent affinity to protons and also slows the rise and decay phases of the current. Together, the results suggest evolutionary adaptation of ASIC1 to match the value of the species-specific plasma pH. At the molecular level, adaptation is achieved by substitutions of nonionizable residues rather than by modification of the channel proton sensor.

  6. Close identity between alternatively folded state N2 of ubiquitin and the conformation of the protein bound to the ubiquitin-activating enzyme.

    PubMed

    Kitazawa, Soichiro; Kameda, Tomoshi; Kumo, Ayumi; Yagi-Utsumi, Maho; Baxter, Nicola J; Kato, Koichi; Williamson, Mike P; Kitahara, Ryo

    2014-01-28

    We present the nuclear Overhauser effect-based structure determination of the Q41N variant of ubiquitin at 2500 bar, where the alternatively folded N2 state is 97% populated. This allows us to characterize the structure of the "pure" N2 state of ubiquitin. The N2 state shows a substantial change in the orientation of strand β5 compared to that of the normal folded N1 state, which matches the changes seen upon binding of ubiquitin to ubiquitin-activating enzyme E1. The recognition of E1 by ubiquitin is therefore best explained by conformational selection rather than induced-fit motion.

  7. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    PubMed

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  8. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2014-12-01

    Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.

  9. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Pilot non-conformance to alerting system commands has been noted in general and to a TCAS-like collision avoidance system in a previous experiment. This paper details two experiments studying collision avoidance during closely-spaced parallel approaches in instrument meteorological conditions (IMC), and specifically examining possible causal factors of, and design solutions to, pilot non-conformance.

  10. Active conformation of an insect neuropeptide family.

    PubMed Central

    Nachman, R J; Roberts, V A; Dyson, H J; Holman, G M; Tainer, J A

    1991-01-01

    To understand the structural and chemical basis for insect neuropeptide activity, we have designed, synthesized, and determined the conformation of a biologically active cyclic analog of the pyrokinins, an insect neuropeptide family that mediates myotropic (visceral muscle contractile) activity. Members of this insect neuropeptide family share the common C-terminal pentapeptide sequence Phe-Xaa-Pro-Arg-Leu-NH2 (Xaa = Ser, Thr, or Val). Circular dichroic, nuclear magnetic resonance, and molecular dynamics analyses of the conformationally restricted cyclic pyrokinin analog cyclo(-Asn-Thr-Ser-Phe-Thr-Pro-Arg-Leu-) indicated the presence of a beta-turn in the active core region encompassing residues Thr-Pro-Arg-Leu. The rigid cyclic analog retains biological activity, suggesting that its C-terminal beta-turn is the active pyrokinin conformation recognized by the myotropic receptor. As individual pyrokinins and pyrokinin-like neuropeptides demonstrate both oviduct-contractile and pheromone-biosynthesis activities in various insects, the biologically active beta-turn structure reported here holds broad significance for many biological processes. Images PMID:2034692

  11. Conformational equilibria and intrinsic affinities define integrin activation.

    PubMed

    Li, Jing; Su, Yang; Xia, Wei; Qin, Yan; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2017-03-01

    We show that the three conformational states of integrin α5β1 have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000-fold higher affinity of the extended-open state than the bent-closed and extended-closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α5β1 On the surface of K562 cells, α5β1 is 99.8% bent-closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N-glycans and leg domains in each subunit that connect the ligand-binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single-span transmembrane domains.

  12. Conformation-activity relationships of opiate analgesics

    NASA Astrophysics Data System (ADS)

    Martin, Jennifer; Andrews, Peter

    1987-04-01

    Extensive conformational calculations were performed on the potent opiate analgesics etorphine, PET, R30490 and etonitazene to determine all of their many low-energy conformations. The results were used to characterize four possible models for binding of a simple pharmacophore, comprising two phenyl rings plus a protonated nitrogen, to opiate analgesic receptors. These four models may define the necessary three-dimensional features leading to particular opiate actions. The model favoured for μ receptor activity can accommodate a protonated nitrogen, an aromatic ring (which may be substituted with an electronegative group) and a second lipophilic group. These structural features must be presented in a precise three-dimensional arrangement. It appears likely that a hydrophilic substituent in a certain region of the analgesic pharmacophore may also interact with the receptor as a secondary binding group.

  13. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation

    NASA Astrophysics Data System (ADS)

    Lupyan, Dmitry; Abramov, Yuriy A.; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  14. Close intramolecular sulfur-oxygen contacts: modified force field parameters for improved conformation generation.

    PubMed

    Lupyan, Dmitry; Abramov, Yuriy A; Sherman, Woody

    2012-11-01

    The Cambridge Structural Database (CSD) offers an excellent data source to study small molecule conformations and molecular interactions. We have analyzed 130 small molecules from the CSD containing an intramolecular sulfur-oxygen distance less than the sum of their van der Waals (vdW) radii. Close S···O distances are observed in several important medicinal chemistry motifs (e.g. a carbonyl oxygen connected by a carbon or nitrogen linker to a sulfur) and are not treated well with existing parameters in the MMFFs or OPLS_2005 force fields, resulting in suboptimal geometries and energetics. In this work, we develop modified parameters for the OPLS_2005 force field to better treat this specific interaction in order to generate conformations close to those found in the CSD structures. We use a combination of refitting a force field torsional parameter, adding a specific atom pair vdW term, and attenuating the electrostatic interactions to obtain an improvement in the accuracy of geometry minimizations and conformational searches for these molecules. Specifically, in a conformational search 58 % of the cases produced a conformation less than 0.25 Å from the CSD crystal conformation with the modified OPLS force field parameters developed in this work. In contrast, 25 and 37 % produced a conformation less than 0.25 Å with the MMFFs and OPLS_2005 force fields, respectively. As an application of the new parameters, we generated conformations for the tyrosine kinase inhibitor axitinib (trade name Inlyta) that could be correctly repacked into three observed polymorphic structures, which was not possible with conformations generated using MMFFs or OPLS_2005. The improved parameters can be mapped directly onto physical characteristics of the systems that are treated inadequately with the molecular mechanics force fields used in this study and potentially other force fields as well.

  15. A closed conformation of the Caenorhabditis elegans separase–securin complex

    PubMed Central

    Bachmann, Gudrun; Richards, Mark W.; Winter, Anja; Beuron, Fabienne; Morris, Edward

    2016-01-01

    The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase–securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21–24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase–securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change. PMID:27249343

  16. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are

  17. The Crystal Structures of the Open and Catalytically Competent Closed Conformation of Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Jia, Xiaofei; Yep, Alejandra; Preiss, Jack; Geiger, James H.

    2009-07-06

    Escherichia coli glycogen synthase (EcGS, EC 2.4.1.21) is a retaining glycosyltransferase (GT) that transfers glucose from adenosine diphosphate glucose to a glucan chain acceptor with retention of configuration at the anomeric carbon. EcGS belongs to the GT-B structural superfamily. Here we report several EcGS x-ray structures that together shed considerable light on the structure and function of these enzymes. The structure of the wild-type enzyme bound to ADP and glucose revealed a 15.2 degrees overall domain-domain closure and provided for the first time the structure of the catalytically active, closed conformation of a glycogen synthase. The main chain carbonyl group of His-161, Arg-300, and Lys-305 are suggested by the structure to act as critical catalytic residues in the transglycosylation. Glu-377, previously thought to be catalytic is found on the alpha-face of the glucose and plays an electrostatic role in the active site and as a glucose ring locator. This is also consistent with the structure of the EcGS(E377A)-ADP-HEPPSO complex where the glucose moiety is either absent or disordered in the active site

  18. Stu2p binds tubulin and undergoes an open-to-closed conformational change

    PubMed Central

    Al-Bassam, Jawdat; van Breugel, Mark; Harrison, Stephen C.; Hyman, Anthony

    2006-01-01

    Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs. PMID:16567500

  19. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex

    PubMed Central

    Llácer, Jose L.; Hussain, Tanweer; Marler, Laura; Aitken, Colin Echeverría; Thakur, Anil; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2015-01-01

    Summary Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5′ end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2β as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition. PMID:26212456

  20. The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation.

    PubMed

    Pierdominici-Sottile, Gustavo; Moffatt, Luciano; Palma, Juliana

    2016-12-20

    We present the results of a detailed molecular dynamics study of the closed form of the P2X4 receptor. The fluctuations observed in the simulations were compared with the changes that occur in the transition from the closed to the open structure. To get further insight on the opening mechanism, the actual displacements were decomposed into interchain motions and intrachain deformations. This analysis revealed that the iris-like expansion of the transmembrane helices mainly results from interchain motions that already take place in the closed conformation. However, these movements cannot reach the amplitude required for the opening of the channel because they are impeded by interactions occurring around the ATP binding pocket. This suggests that the union of ATP produces distortions in the chains that eliminate the restrictions on the interchain displacements, leading to the opening of the pore.

  1. Energetics of the Cleft Closing Transition and the Role of Electrostatic Interactions in Conformational Rearrangements of the Glutamate Receptor Ligand Binding Domain

    PubMed Central

    Mamonova, Tatyana; Yonkunas, Michael J.; Kurnikova, Maria G.

    2009-01-01

    The ionotropic glutamate receptors are localized in the pre- and postsynaptic membrane of neurons in the brain. Activation by the principal excitatory neurotransmitter glutamate allows the ligand binding domain to change conformation, communicating opening of the channel for ion conduction. The free energy of the GluR2 S1S2 ligand binding domain (S1S2) closure transition was computed using a combination of thermodynamic integration and umbrella sampling modeling methods. A path that involves lowering the charge on E705 was chosen to clarify the role of this binding site residue. A continuum electrostatic approach in S1S2 is used to show E705, located in the ligand binding cleft, stabilizes the closed conformation of S1S2. In the closed conformation, in the absence of a ligand, S1S2 is somewhat more closed than reported from X-ray structures. A semi-open conformation has been identified which is characterized by disruption of a single cross-cleft interaction and differs only slightly in energy from the fully closed S1S2. The fully open S1S2 conformation exhibits a wide energy well and shares structural similarity to the apo S1S2 crystal structure. Hybrid continuum electrostatics/MD calculations along the chosen closure transition pathway reveal solvation energies, as well as electrostatic interaction energies between two lobes of the protein increase the relative energetic difference between the open and the closed conformational states. By analyzing the role of several cross-cleft contacts as well as other binding site residues we demonstrate how S1S2 interactions facilitate formation of the closed conformation of the ligand binding domain. PMID:18823129

  2. Modulation of a pre-existing conformational equilibrium tunes adenylate kinase activity.

    PubMed

    Ådén, Jörgen; Verma, Abhinav; Schug, Alexander; Wolf-Watz, Magnus

    2012-10-10

    Structural plasticity is often required for distinct microscopic steps during enzymatic reaction cycles. Adenylate kinase from Escherichia coli (AK(eco)) populates two major conformations in solution; the open (inactive) and closed (active) state, and the overall turnover rate is inversely proportional to the lifetime of the active conformation. Therefore, structural plasticity is intimately coupled to enzymatic turnover in AK(eco). Here, we probe the open to closed conformational equilibrium in the absence of bound substrate with NMR spectroscopy and molecular dynamics simulations. The conformational equilibrium in absence of substrate and, in turn, the turnover number can be modulated with mutational- and osmolyte-driven perturbations. Removal of one hydrogen bond between the ATP and AMP binding subdomains results in a population shift toward the open conformation and a resulting increase of k(cat). Addition of the osmolyte TMAO to AK(eco) results in population shift toward the closed conformation and a significant reduction of k(cat). The Michaelis constants (K(M)) scale with the change in k(cat), which follows from the influence of the population of the closed conformation for substrate binding affinity. Hence, k(cat) and K(M) are mutually dependent, and in the case of AK(eco), any perturbation that modulates k(cat) is mirrored with a proportional response in K(M). Thus, our results demonstrate that the equilibrium constant of a pre-existing conformational equilibrium directly affects enzymatic catalysis. From an evolutionary perspective, our findings suggest that, for AK(eco), there exists ample flexibility to obtain a specificity constant (k(cat)/K(M)) that commensurate with the exerted cellular selective pressure.

  3. Three Dimensional Architecture of Membrane-Embedded MscS in the Closed Conformation

    PubMed Central

    Vásquez, Valeria; Sotomayor, Marcos; Cortes, D. Marien; Roux, Benoît; Schulten, Klaus; Perozo, Eduardo

    2009-01-01

    The mechanosensitive channel of small conductance (MscS) is part of a coordinated response to osmotic challenges in E. coli. MscS opens as a result of membrane tension changes, thereby releasing small solutes and effectively acting as an osmotic safety valve. Both, the functional state depicted by its crystal structure and its gating mechanism remain unclear. Here, we combine site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy, and molecular dynamics simulations with novel energy restraints based on experimental EPR data to investigate the native transmembrane and periplasmic molecular architecture of closed MscS in a lipid bilayer. In the closed conformation, MscS shows a more compact transmembrane domain than in the crystal structure, characterized by a realignment of the transmembrane segments towards the normal of the membrane. The previously unresolved NH2-terminus forms a short helical hairpin capping the extracellular ends of TM1 and TM2 and in close interaction with the bilayer interface. The present three-dimensional model of membrane-embedded MscS in the closed state represents a key step in determining the molecular mechanism of MscS gating. PMID:18343404

  4. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  5. β-Glucans: Relationships between Modification, Conformation and Functional Activities.

    PubMed

    Wang, Qiang; Sheng, Xiaojing; Shi, Aimin; Hu, Hui; Yang, Ying; Liu, Li; Fei, Ling; Liu, Hongzhi

    2017-02-09

    β-glucan is a type of polysaccharide which widely exists in bacteria, fungi, algae, and plants, and has been well known for its biological activities such as enhancing immunity, antitumor, antibacterial, antiviral, and wound healing activities. The conformation of β-glucan plays a crucial role on its biological activities. Therefore, β-glucans obtained from different sources, while sharing the same basic structures, often show different bioactivities. The basic structure and inter-molecular forces of polysaccharides can be changed by modification, which leads to the conformational transformation in solution that can directly affect bioactivity. In this review, we will first determine different ways to modify β-glucan molecules including physical methods, chemical methods, and biological methods, and then reveal the relationship of the flexible helix form of the molecule chain and the helix conformation to their bioactivities. Last, we summarize the scientific challenges to modifying β-glucan's conformation and functional activity, and discuss its potential future development.

  6. Outdoor Education: Opening and Closing Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter, Comp.

    Opening activites (to create an atmosphere of cooperation and a desire to work, explore, and learn together) and closing activities (to summarize what has happened or been learned) for outdoor education programs are described. All activities are intended to incite enthusiasm to learn and make the learning activity a desired, joyful experience.…

  7. Structural Differences between Active Forms of Plasminogen Activator Inhibitor Type 1 Revealed by Conformationally Sensitive Ligands*

    PubMed Central

    Li, Shih-Hon; Gorlatova, Natalia V.; Lawrence, Daniel A.; Schwartz, Bradford S.

    2008-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (serpin) in which the reactive center loop (RCL) spontaneously inserts into a central β-sheet, β-sheet A, resulting in inactive inhibitor. Available x-ray crystallographic studies of PAI-1 in an active conformation relied on the use of stabilizing mutations. Recently it has become evident that these structural models do not adequately explain the behavior of wild-type PAI-1 (wtPAI-1) in solution. To probe the structure of native wtPAI-1, we used three conformationally sensitive ligands: the physiologic cofactor, vitronectin; a monoclonal antibody, 33B8, that binds preferentially to RCL-inserted forms of PAI-1; and RCL-mimicking peptides that insert into β-sheet A. From patterns of interaction with wtPAI-1 and the stable mutant, 14-1B, we propose a model of the native conformation of wtPAI-1 in which the bottom of the central sheet is closed, whereas the top of the β-sheet A is open to allow partial insertion of the RCL. Because the incorporation of RCL-mimicking peptides into wtPAI-1 is accelerated by vitronectin, we further propose that vitronectin alters the conformation of the RCL to allow increased accessibility to β-sheet A, yielding a structural hypothesis that is contradictory to the current structural model of PAI-1 in solution and its interaction with vitronectin. PMID:18436534

  8. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles

    PubMed Central

    Kim, Dorothy M.; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J.

    2016-01-01

    The process of ion channel gating—opening and closing—involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  9. Mutations that alter the equilibrium between open and closed conformations of Escherichia coli maltose-binding protein impede its ability to enhance the solubility of passenger proteins

    SciTech Connect

    Nallamsetty, Sreedevi; Waugh, David S.

    2007-12-21

    Certain highly soluble proteins, such as Escherichia coli maltose-binding protein (MBP), have the ability to enhance the solubility of their fusion partners, making them attractive vehicles for the production of recombinant proteins, yet the mechanism of solubility enhancement remains poorly understood. Here, we report that the solubility-enhancing properties of MBP are dramatically affected by amino acid substitutions that alter the equilibrium between its 'open' and 'closed' conformations. Our findings indicate that the solubility-enhancing activity of MBP is mediated by its open conformation and point to a likely role for the ligand-binding cleft in the mechanism of solubility enhancement.

  10. Transitions between Closed and Open Conformations of TolC: The Effects of Ions in Simulations

    PubMed Central

    Schulz, Robert; Kleinekathöfer, Ulrich

    2009-01-01

    Abstract Bacteria, such as Escherichia coli, use multidrug efflux pumps to export toxic substrates through their cell membranes. Upon formation of an efflux pump, the aperture of its outer membrane protein TolC opens and thereby enables the extrusion of substrate molecules. The specialty of TolC is its ability to dock to different transporters, making it a highly versatile export protein. Within this study, the transition between two conformations of TolC that are both available as crystal structures was investigated using all-atom molecular dynamics simulations. To create a partially open conformation from a closed one, the stability of the periplasmic aperture was weakened by a double point mutation at the constricting ring, which removes some salt bridges and hydrogen bonds. These mutants, which showed partial opening in previous experiments, did not spontaneously open during a 20-ns equilibration at physiological values of the KCl solution. Detailed analysis of the constricting ring revealed that the cations of the solvent were able to constitute ionic bonds in place of the removed salt bridges, which inhibited the opening of the aperture in simulations. To remove the ions from these binding positions within the available simulation time, an extra force was applied onto the ions. To keep the effect of this additional force rather flexible, it was applied in form of an artificial external electric field perpendicular to the membrane. Depending on the field direction and the ion concentration, these simulations led to a partial opening. In experiments, this energy barrier for the ions can be overcome by thermal fluctuations on a longer timescale. PMID:19383457

  11. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Cheng, Jingdong; Wang, Jiaolong; Zhang, Qiao; Liu, Mengjie; Gong, Rui; Wang, Ping; Zhang, Xiaodan; Feng, Yangyang; Lan, Wenxian; Gong, Zhou; Tang, Chun; Wong, Jiemin; Yang, Huirong; Cao, Chunyang; Xu, Yanhui

    2016-04-01

    UHRF1 is an important epigenetic regulator for maintenance DNA methylation. UHRF1 recognizes hemi-methylated DNA (hm-DNA) and trimethylation of histone H3K9 (H3K9me3), but the regulatory mechanism remains unknown. Here we show that UHRF1 adopts a closed conformation, in which a C-terminal region (Spacer) binds to the tandem Tudor domain (TTD) and inhibits H3K9me3 recognition, whereas the SET-and-RING-associated (SRA) domain binds to the plant homeodomain (PHD) and inhibits H3R2 recognition. Hm-DNA impairs the intramolecular interactions and promotes H3K9me3 recognition by TTD-PHD. The Spacer also facilitates UHRF1-DNMT1 interaction and enhances hm-DNA-binding affinity of the SRA. When TTD-PHD binds to H3K9me3, SRA-Spacer may exist in a dynamic equilibrium: either recognizes hm-DNA or recruits DNMT1 to chromatin. Our study reveals the mechanism for regulation of H3K9me3 and hm-DNA recognition by URHF1.

  12. Investigation on the low energy conformational surface of tabun to probe the role of its different conformers on biological activity

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Michalkova, Andrea; Majumdar, D.; Leszczynski, Jerzy

    2006-05-01

    Conformational studies have been carried out on the two different enantiomers of tabun at the density functional and second order Møller-Plesset perturbation levels of theory to generate low energy potential energy surfaces in the gas phase as well as in aqueous environment. The structures of the low energy conformers together with their molecular electrostatic potential surfaces have been compared with those of the non-aged acetylcholinesterase-tabun complex to locate the active conformer of this molecule.

  13. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures?

    PubMed

    Chen, Shu-Hua; Russell, David H

    2015-09-01

    Here, we critically evaluate the effects of changes in the ion internal energy (E(int)) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H](6+) ion of ubiquitin (ubq(6+)), the [M + 5H](5+) ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT](5+) ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on E(int). Collisional activation is used to increase E(int) prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The E(int)-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the E(int) is increased, these structurally labile conformers unfold to an elongated conformation.

  14. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures?

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hua; Russell, David H.

    2015-09-01

    Here, we critically evaluate the effects of changes in the ion internal energy (Eint) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H]6+ ion of ubiquitin (ubq6+), the [M + 5H]5+ ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT]5+ ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on Eint. Collisional activation is used to increase Eint prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The Eint-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the Eint is increased, these structurally labile conformers unfold to an elongated conformation.

  15. Morpheus: a conformation-activity relationships and receptor modeling package.

    PubMed

    Andrews, P R; Quint, G; Winkler, D A; Richardson, D; Sadek, M; Spurling, T H

    1989-09-01

    Our molecular modeling software package, MORPHEUS, allows the study of the interactions between biologically active molecules and their receptors. The package is capable of exploring the multidimensional conformational space accessible to each molecule of the data set under study. By specifying distance constraints or hypothetical receptor binding points, the package is able to filter the biologically accessible conformations of each active compound and deduce a three-dimensional model of the binding sites consistent with the properties of the agonists (or antagonists) under scrutiny. The electrostatic potentials in the environment of a putative binding site can also be investigated using the MORPHEUS package. The molecular modeling module CRYS-X, which is written in FORTRAN 77 for IBM PC machines, is capable of building, displaying and manipulating molecules.

  16. Closed-loop active optical system control

    NASA Astrophysics Data System (ADS)

    Sparks, T. E.

    1980-01-01

    A control system, based on a real-time lateral shear interferometer has been developed for use in control during thermal tests and static error compensation experiments. The minicomputer which controls the interferometer and provides its service functions also controls the active system, thereby giving flexibility to the algorithm. The minicomputer system contains 288 K bytes of memory and 15 M bytes of disk storage. The interferometer system employed is composed of the measuring head and its support electronics, a video display on which wavefront contour maps are generated, and a DECwriter operator console. The versatility provided by the use of a general purpose interferometer system allows for interactive control of the closed-loop process. Various arithmetic capabilities such as the addition of wavefronts, division by a constant, and fitting of wavefront data with Zernike polynomials, allow for measurements to be averaged and for removal of alignment errors before correction is performed.

  17. Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH.

    PubMed

    Suno, Ryoji; Shimoyama, Masakazu; Abe, Akiko; Shimamura, Tatsuro; Shimodate, Natsuka; Watanabe, Yo-hei; Akiyama, Yoshinori; Yoshida, Masasuke

    2012-09-21

    When bound to ADP, ATP-dependent protease FtsH subunits adopt either an "open" or "closed" conformation. In the open state, the protease catalytic site is located in a narrow space covered by a lidlike helix. This space disappears in the closed form because the lid helix bends at Gly448. Here, we replaced Gly448 with various residues that stabilize helices. Most mutants retained low ATPase activity and bound to the substrate protein, but lost protease activity. However, a mutant proline substitution lost both activities. Our study shows that the conformational transition of the lid helix is essential for the function of FtsH.

  18. The crystal structure of the actin binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alpha-actinin.

    PubMed

    Franzot, Giacomo; Sjöblom, Björn; Gautel, Mathias; Djinović Carugo, Kristina

    2005-04-22

    Alpha-actinin is the major F-actin crosslinking protein in both muscle and non-muscle cells. We report the crystal structure of the actin binding domain of human muscle alpha-actinin-3, which is formed by two consecutive calponin homology domains arranged in a "closed" conformation. Structural studies and available biochemical data on actin binding domains suggest that two calponin homology domains come in a closed conformation in the native apo-form, and that conformational changes involving the relative orientation of the two calponin homology domains are required for efficient binding to actin filaments. The actin binding activity of muscle isoforms is supposed to be regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which binds to the second calponin homology domain. On the basis of structural analysis we propose a distinct binding site for PtdIns(4,5)P2, where the fatty acid moiety would be oriented in a direction that allows it to interact with the linker sequence between the actin binding domain and the first spectrin-like repeat, regulating thereby the binding of the C-terminal calmodulin-like domain to this linker.

  19. Cyclic AMP Analog Blocks Kinase Activation by Stabilizing Inactive Conformation: Conformational Selection Highlights a New Concept in Allosteric Inhibitor Design*

    PubMed Central

    Badireddy, Suguna; Yunfeng, Gao; Ritchie, Mark; Akamine, Pearl; Wu, Jian; Kim, Choel W.; Taylor, Susan S.; Qingsong, Lin; Swaminathan, Kunchithapadam; Anand, Ganesh S.

    2011-01-01

    The regulatory (R) subunit of protein kinase A serves to modulate the activity of protein kinase A in a cAMP-dependent manner and exists in two distinct and structurally dissimilar, end point cAMP-bound “B” and C-subunit-bound “H”-conformations. Here we report mechanistic details of cAMP action as yet unknown through a unique approach combining x-ray crystallography with structural proteomics approaches, amide hydrogen/deuterium exchange and ion mobility mass spectrometry, applied to the study of a stereospecific cAMP phosphorothioate analog and antagonist((Rp)-cAMPS). X-ray crystallography shows cAMP-bound R-subunit in the B form but surprisingly the antagonist Rp-cAMPS-bound R-subunit crystallized in the H conformation, which was previously assumed to be induced only by C-subunit-binding. Apo R-subunit crystallized in the B form as well but amide exchange mass spectrometry showed large differences between apo, agonist and antagonist-bound states of the R-subunit. Further ion mobility reveals the apo R-subunit as an ensemble of multiple conformations with collisional cross-sectional areas spanning both the agonist and antagonist-bound states. Thus contrary to earlier studies that explained the basis for cAMP action through “induced fit” alone, we report evidence for conformational selection, where the ligand-free apo form of the R-subunit exists as an ensemble of both B and H conformations. Although cAMP preferentially binds the B conformation, Rp-cAMPS interestingly binds the H conformation. This reveals the unique importance of the equatorial oxygen of the cyclic phosphate in mediating conformational transitions from H to B forms highlighting a novel approach for rational structure-based drug design. Ideal inhibitors such as Rp-cAMPS are those that preferentially “select” inactive conformations of target proteins by satisfying all “binding” constraints alone without inducing conformational changes necessary for activation. PMID:21081668

  20. Protein Conformational Gating of Enzymatic Activity in Xanthine Oxidoreductase

    SciTech Connect

    Ishikita, Hiroshi; Eger, Bryan T.; Okamoto, Ken; Nishino, Takeshi; Pai, Emil F.

    2012-05-24

    In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E{sub sq/hq}) is {approx}170 mV, a striking difference. The former greatly prefers NAD{sup +} as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD{sup +}), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 {angstrom} resolution crystal structures for XDH, XO, the NAD{sup +}- and NADH-complexed XDH, E{sub sq/hq} were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E{sub sq/hq} difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD{sup +} binding at XDH. Instead, the positive charge of the NAD{sup +} ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD{sup +} molecule all contribute to altering E{sub sq/hq} upon NAD{sup +} binding to XDH.

  1. Conformation and activity of recombinant human fibroblast interferon-beta.

    PubMed

    Boublik, M; Moschera, J A; Wei, C; Kung, H F

    1990-04-01

    Conformation of highly purified recombinant human fibroblast interferon-beta (rHuIFN-beta) was correlated with its biological activity. The extent of ordered secondary structure was determined by circular dichroic (CD) spectroscopy in various buffer conditions to establish conditions of protein stability and its potential for helix formation. The highest "helicity" (about 50 +/- 5% of alpha-helices) and the highest antiviral activities (4-10 x 10(7) units/mg) were found in 50% ethylene glycol, 1 M NaCl and 0.05 M Na3PO4, pH 7.2 (Buffer I); 80 mM citric acid, 20 mM Na2HPO4, pH 2.9 (Buffer II); and 25 mM NH4OAc, 125 mM NaCl, pH 5.1 (Buffer III). Both helicity and antiviral activity of the IFN-beta decrease in parallel with denaturation by urea, heat, and/or by repeated cycles of freezing and thawing. Low pH (pH 2.9 Buffer II) exhibits a distinct stabilizing effect on the structure and antiviral activity of IFN-beta against heat denaturation.

  2. The histamine H1-receptor antagonist binding site. Part I: Active conformation of cyproheptadine

    NASA Astrophysics Data System (ADS)

    van Drooge, Marc J.; Donné-op den Kelder, Gabriëlle M.; Timmerman, Hendrik

    1991-08-01

    The active conformation of several histamine H1-antagonists is investigated. As a template molecule we used the antagonist cyproheptadine, which consists of a piperidylene ring connected to a tricyclic system. The piperidylene moiety is shown to be flexible. The global minimum is a chair conformation but, additionally, a second chair and various boat conformations have to be considered, as their energies are less than 5 kcal/mol above the energy of the global minimum. Two semi-rigid histamine H1-antagonists, phenindamine and triprolidine, were fitted onto the various conformations of cyproheptadine in order to derive the pharmacologically active conformation of cyproheptadine. At the same time, the active conformation of both phenindamine and triprolidine was derived. It is demonstrated that, within the receptor-bound conformation of cyproheptadine, the piperidylene ring most probably exists in a boat form.

  3. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  4. Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers

    PubMed Central

    Vilar, Marçal; Charalampopoulos, Ioannis; Kenchappa, Rajappa S.; Simi, Anastasia; Karaca, Esra; Reversi, Alessandra; Choi, Soyoung; Bothwell, Mark; Mingarro, Ismael; Friedman, Wilma J.; Schiavo, Giampietro; Bastiaens, Philippe I. H.; Verveer, Peter J.; Carter, Bruce D.; Ibáñez, Carlos F.

    2010-01-01

    SUMMARY Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Recent structural studies have shown that neurotrophins interact with dimers of the p75 neurotrophin receptor (p75NTR), but the actual mechanism of receptor activation has remained elusive. Here we show that p75NTR forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys257 in its transmembrane domain. Mutation of Cys257 abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75NTR/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75NTR. FRET experiments revealed a close association of p75NTR intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys257 did not alter the oligomeric state of p75NTR, the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding. We propose that neurotrophins activate p75NTR by a novel mechanism involving rearrangement of disulphide-linked receptor subunits. PMID:19376068

  5. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2.

    PubMed

    Weng, Jingwei; Gu, Shuo; Gao, Xin; Huang, Xuhui; Wang, Wenning

    2017-04-05

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called "pretranslocation" ("pre-T") state with a partially closed conformation suggest that the formation of this MalE-stabilized intermediate state is a key step leading to the outward-facing catalytic state. On the contrary, crosslinking and fluorescence studies suggest that ATP binding alone is sufficient to promote the outward-facing catalytic state, thereby doubting the role of MalE binding. To clarify the role of MalE binding and to gain deeper understanding of the molecular mechanisms of MalFGK2, we calculated the free energy surfaces (FESs) related to the lateral motion in the presence and absence of MalE using atomistic metadynamics simulations. The results showed that, in the absence of MalE, laterally closing motion was energetically forbidden but, upon MalE binding, more closed conformations similar to the pre-T state become more stable. The significant effect of MalE binding on the free energy landscapes was in agreement with crystallographic studies and confirmed the important role of MalE in stabilizing the pre-T state. Our simulations also revealed that the allosteric effect of MalE stimulation originates from the MalE-binding-promoted vertical motion between MalF and MalG cores, which was further supported by MD simulation of the MalE-independent mutant MalF500.

  6. 12 CFR 225.123 - Activities closely related to banking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Activities closely related to banking. 225.123 Section 225.123 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL... Holding Companies Interpretations § 225.123 Activities closely related to banking. (a) Effective June...

  7. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  8. Hunting the human DPP III active conformation: combined thermodynamic and QM/MM calculations.

    PubMed

    Tomić, Antonija; Tomić, Sanja

    2014-11-07

    Multiple choices of the protein active conformations in flexible metalloenzymes complicate study of their catalytic mechanism. We used three different conformations of human dipeptidyl-peptidase III (DPP III) to investigate the influence of the protein environment on ligand binding and the Zn(2+) coordination. MD simulations followed by calculations of binding free energy components accomplished for a series of DPP III substrates, both synthetic and natural, revealed that binding of the β-strand shaped substrate to the five-stranded β-core of the compact DPP III form (in antiparallel fashion) is the preferred binding mode, in agreement with the experimentally determined structure of the DPP III inactive mutant-tynorphin complex (Bezerra et al., Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 6525). Previously it was proposed that the catalytic mechanism of DPP III is similar to that of thermolysin, which assumes exchange of five and four coordinated Zn(2+), and activation of Zn-bound water by a nearby Glu. Our QM/MM calculations, performed for a total of 18 protein structures with different zinc ion environments, revealed that the 5-coordinated metal ion is more favourable than the 6-coordinated one in only the most compact DPP III form. Besides, in this structure E451 is H-bonded to the metal ion coordinating water. Also, our study revealed two constraints for the broad substrate specificity of DPP III. One is the possibility of the substrate adopting the β-strand shape and the other is its charged N-terminus. Altogether, we assume that the human DPP III active conformation would be the most compact form, similar to the "closed X-ray" DPP III structure.

  9. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins

    PubMed Central

    Kurkcuoglu, Zeynep; Doruker, Pemra

    2016-01-01

    Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7–15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4–3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its “parents” up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5–2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions. PMID:27348230

  10. Closed and open conformations of the lid domain induce different patterns of human pancreatic lipase antigenicity and immunogenicity.

    PubMed

    Halimi, Hubert; De Caro, Josiane; Carrière, Frédéric; De Caro, Alain

    2005-12-01

    Epitope mapping was performed on human pancreatic lipase (HPL) using the SPOTscan method. A set of 146 short (12 amino acid residues) synthetic overlapping peptides covering the entire amino acid sequence of HPL were used to systematically assess the immunoreactivity of antisera raised in rabbits against native HPL, HPL without a lid (HPL(-lid)) and HPL covalently inhibited by diethyl p-nitrophenyl phosphate (DP-HPL). In the latter form of HPL, the lid domain controlling the access to the active site was assumed to exist in the open conformation. All the anti-lipase sera were tested in a direct ELISA, anti-HPL serum showing the greatest antibody titer. Although from the structural point of view, the differences between the various forms of HPL were restricted to the lid domain, differences in the antigenic properties of HPL were observed with the SPOTscan method, and the anti-DP-HPL antibodies showed the strongest reactivity. Most of the peptide stretches recognized included amino acid residues which are accessible at the surface of the lipase, except for those located near the active site. Two small peptides (T173-P180, V199-A207) were identified in the vicinity of the active site, their antipeptide antibodies were produced and their reactivity towards the various forms of HPL was tested in a double sandwich ELISA. No reactivity was observed under these conditions. Two antipeptide antibodies directed against two other selected peptides, P208-V221 (belonging to the beta9 loop) and I245-F258 (belonging to the lid domain) were prepared and found to react much more strongly with DP-HPL than with HPL or HPL(-lid) in a double sandwich ELISA. These antibodies should provide useful tools for monitoring the conformational changes taking place during the opening of the HPL lid domain.

  11. Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin.

    PubMed

    Richard, Benjamin; Swanson, Richard; Schedin-Weiss, Sophia; Ramirez, Ben; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2008-05-23

    A conformationally altered prelatent form of antithrombin that possesses both anticoagulant and antiangiogenic activities is produced during the conversion of native to latent antithrombin (Larsson, H., Akerud, P., Nordling, K., Raub-Segall, E., Claesson-Welsh, L., and Björk, I. (2001) J. Biol. Chem. 276, 11996-12002). Here, we show that the previously characterized prelatent antithrombin is a mixture of native antithrombin and a modified, true prelatent antithrombin that are resolvable by heparin-agarose chromatography. Kinetic analyses revealed that prelatent antithrombin is an intermediate in the conversion of native to latent antithrombin whose formation is favored by stabilizing anions of the Hofmeister series. Purified prelatent antithrombin had reduced anticoagulant function compared with native antithrombin, due to a reduced heparin affinity and consequent impaired ability of heparin to either bridge prelatent antithrombin and coagulation proteases in a ternary complex or to induce full conformational activation of the serpin. Significantly, prelatent antithrombin possessed an antiangiogenic activity more potent than that of latent antithrombin, based on the relative abilities of the two forms to inhibit endothelial cell growth. The prelatent form was conformationally altered from native antithrombin as judged from an attenuation of tryptophan fluorescence changes following heparin activation and a reduced thermal stability. The alterations are consistent with the limited structural changes involving strand 1C observed in a prelatent form of plasminogen activator inhibitor-1 (Dupont, D. M., Blouse, G. E., Hansen, M., Mathiasen, L., Kjelgaard, S., Jensen, J. K., Christensen, A., Gils, A., Declerck, P. J., Andreasen, P. A., and Wind, T. (2006) J. Biol. Chem. 281, 36071-36081), since the (1)H NMR spectrum, electrophoretic mobility, and proteolytic susceptibility of prelatent antithrombin most resemble those of native rather than those of latent antithrombin

  12. Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation1

    PubMed Central

    Stauch, Benjamin; Fisher, Stuart J.; Cianci, Michele

    2015-01-01

    Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or “interfacial activation,” with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases. PMID:26447231

  13. 12 CFR 225.129 - Activities closely related to banking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Board's amendment of § 225.4(a), which adds courier services to the list of closely related activities... generally in the provision of transportation services. During the course of the Board's proceedings pertaining to courier services, objections were made that courier activities were not a proper incident...

  14. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism.

    PubMed

    Guo, H; Cui, Q; Lipscomb, W N; Karplus, M

    2001-07-31

    Chorismate mutase acts at the first branch-point of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. The results of molecular dynamics simulations of the substrate in solution and in the active site of chorismate mutase are reported. Two nonreactive conformers of chorismate are found to be more stable than the reactive pseudodiaxial chair conformer in solution. It is shown by QM/MM molecular dynamics simulations, which take into account the motions of the enzyme, that when these inactive conformers are bound to the active site, they are rapidly converted to the reactive chair conformer. This result suggests that one contribution of the enzyme is to bind the more prevalent nonreactive conformers and transform them into the active form in a step before the chemical reaction. The motion of the reactive chair conformer in the active site calculated by using the QM/MM potential generates transient structures that are closer to the transition state than is the stable CHAIR conformer.

  15. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    SciTech Connect

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  16. Design, synthesis, and antibacterial activities of conformationally constrained kanamycin A derivatives.

    PubMed

    Zhang, Wenxuan; Chen, Ying; Liang, Qingzhao; Li, Hui; Jin, Hongwei; Zhang, Liangren; Meng, Xiangbao; Li, Zhongjun

    2013-01-18

    A series of conformationally constrained kanamycin A derivatives with a 2'-hydroxyl group in ring I and a 5-hydroxyl group in ring II tethered by carbon chains were designed and synthesized. Pivotal 5,2'-hydroxyl groups were exposed, and the kanamycin A intermediate was synthesized from 5, 2', 4″, 6″-di-O-benzylidene-protected tetraazidokanamycin A. Cyclic kanamycin A derivatives with intramolecular 8-, 9-, 10-, and 11-membered ethers were then prepared by cesium carbonate mediated Williamson ether synthesis or a ring-closing metathesis reaction. The kanamycin A derivatives were assayed against both susceptible and resistant bacterial strains. Although no derivative showed better antibacterial activities than kanamycin A, the antibacterial activities of these cyclic kanamycin A derivatives indeed varied with the length of the bridge. Moreover, different variations of activities were observed between the susceptible and resistant bacterial strains. More tightly constrained derivative 2 with a one-carbon bridge showed better activity than the others against susceptible strains, but it was much less effective for resistant bacterial strains than derivative 3 with a two-carbon bridge and derivative 6 with an unsaturated four-carbon bridge.

  17. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  18. Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation

    DOE PAGES

    Colbert, Karen N.; Hattendorf, Douglas A.; Weiss, Thomas M.; ...

    2013-07-15

    In neurons, soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1–24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Inmore » addition, we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a–Syx1a complex.« less

  19. Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation

    SciTech Connect

    Colbert, Karen N.; Hattendorf, Douglas A.; Weiss, Thomas M.; Burkhardt, Pawel; Fasshauer, Dirk; Weis, William I.

    2013-07-15

    In neurons, soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1–24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. In addition, we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a–Syx1a complex.

  20. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  1. Novel monoclonal antibodies recognizing the active conformation of epidermal growth factor receptor.

    PubMed

    Ise, Nobuyuki; Omi, Kazuya; Miwa, Kyoko; Honda, Hideo; Higashiyama, Shigeki; Goishi, Katsutoshi

    2010-04-09

    The precise regulation of epidermal growth factor receptor (EGFR) is crucial for its function in cellular growth control. Although many antibodies against EGFR have been developed and used to analyze its regulation and function, it is not yet easy to analyze activated EGFR specifically. Activated EGFR has been mainly detected by its phosphorylation state using anti-phospho-EGFR and anti-phosphotyrosine antibodies. In the present study, we have established novel monoclonal antibodies which recognize the activated EGFR independently of its phosphorylation. Our antibodies detected active state of EGFR in immunoprecipitation and immunofluorescence, by recognizing the epitopes which are exposed through the conformational change induced by ligand-binding. Furthermore, we found that our antibodies preferentially detected the conformation of constitutively active EGFR mutants found in lung cancer cell lines. These results indicate that our antibodies may become novel research and diagnostic tools for detecting and analyzing the conformation of active EGFR in various cells and tissues.

  2. Summary of Closed Circuit Television Activities in Medical Education.

    ERIC Educational Resources Information Center

    London Univ. (England). Inst. of Education.

    This 1967 summary of closed circuit television (CCTV) activities in medical education presents descriptive information on 35 different medical institutions in Great Britain. Specific data on CCTV are offered by institution, equipment, and uses under each medical field: anatomy, anaesthetics, geriatrics, medicine, obstretrics and gynaecology,…

  3. 12 CFR 225.131 - Activities closely related to banking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Activities closely related to banking. 225.131 Section 225.131 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED) BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y)...

  4. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    PubMed Central

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  5. The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation.

    PubMed Central

    Bassi, G S; Murchie, A I; Lilley, D M

    1996-01-01

    The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086

  6. Autophosphorylation Activity of a Soluble Hexameric Histidine Kinase Correlates with the Shift in Protein Conformational Equilibrium

    PubMed Central

    Wojnowska, Marta; Yan, Jun; Sivalingam, Ganesh N.; Cryar, Adam; Gor, Jayesh; Thalassinos, Konstantinos; Djordjevic, Snezana

    2013-01-01

    Summary In a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal “receiver domain” that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the “compact” form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG. PMID:24210218

  7. Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation

    PubMed Central

    Duc, Nguyen Minh; Kim, Hee Ryung; Chung, Ka Young

    2017-01-01

    Heterotrimeric G proteins are key intracellular coordinators that receive signals from cells through activation of cognate G protein-coupled receptors (GPCRs). The details of their atomic interactions and structural mechanisms have been described by many biochemical and biophysical studies. Specifically, a framework for understanding conformational changes in the receptor upon ligand binding and associated G protein activation was provided by description of the crystal structure of the β2-adrenoceptor-Gs complex in 2011. This review focused on recent findings in the conformational dynamics of G proteins and GPCRs during activation processes. PMID:28035078

  8. Conformational change path between closed and open forms of C2 domain of coagulation factor V on a two-dimensional free-energy surface.

    PubMed

    Wu, Sangwook; Lee, Chang Jun; Pedersen, Lee G

    2009-04-01

    We test a hypothesis that the closed form of the C2 domain of coagulation factor V is more stable than the open form in an aqueous environment using a two-dimensional free-energy calculation with a simple dielectric solvent model. Our result shows that while the free-energy difference between two forms is small, favoring the closed form, a two-dimensional free-energy surface (FES) reveals that a transition state (1.53 kcal/mol) exists between the two conformations. By mapping the one-dimensional order parameter DeltaQ onto the two-dimensional FES, we search the conformational change path with the highest Boltzmann weighting factor between the closed and open form of the factor V C2 domain. The predicted transition path from the closed to open form is not that of simple side chain movements, but instead concerted movements of several loops. We also present a one-dimensional free-energy profile using a collective order parameter, which in a coarse manner locates the energy barriers found on the two-dimensional FES.

  9. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  10. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation

    PubMed Central

    Lee, Tai-Sung; Giambaşu, George M.; Sosa, Carlos P.; Martick, Monika; Scott, William G.; York, Darrin M.

    2009-01-01

    The relationship between formation of active in-line attack conformations and monovalent (Na+) and divalent (Mg2+) metal ion binding in the hammerhead ribozyme has been explored with molecular dynamics simulations. To stabilize repulsions between negatively charged groups, different requirements of threshold occupancy of metal ions were observed in the reactant and activated precursor states both in the presence or absence of a Mg2+ in the active site. Specific bridging coordination patterns of the ions are correlated with the formation of active in-line attack conformations and can be accommodated in both cases. Furthermore, simulation results suggest that the hammerhead ribozyme folds to form an electronegative recruiting pocket that attracts high local concentrations of positive charge. The present simulations help to reconcile experiments that probe the metal ion sensitivity of hammerhead ribozyme catalysis and support the supposition that Mg2+, in addition to stabilizing active conformations, plays a specific chemical role in catalysis. PMID:19265710

  11. Halting of Caspase Activity Protects Tau from MC1-Conformational Change and Aggregation.

    PubMed

    Mead, Emma; Kestoras, Dimitra; Gibson, Yolanda; Hamilton, Lucy; Goodson, Ross; Jones, Sophie; Eversden, Sarah; Davies, Peter; O'Neill, Michael; Hutton, Michael; Szekeres, Philip; Wolak, Joanna

    2016-10-18

    Intracellular neurofibrillary tangles (NFTs) are the hallmark of Alzheimer's disease and other tauopathies in which tau, a microtubule-associated protein, loses its ability to stabilize microtubules. Several post-translational modifications including phosphorylation and truncation increase tau's propensity to aggregate thus forming NFTs; however, the mechanisms underlying tau conformational change and aggregation still remain to be defined. Caspase activation and subsequent proteolytic cleavage of tau is thought to be a potential trigger of this disease-related pathological conformation. The aim of this work was to investigate the link between caspase activation and a disease-related conformational change of tau in a neuroblastoma cell-based model of spontaneous tau aggregation. We demonstrated that caspase induction initiates proteolytic cleavage of tau and generation of conformationally altered and aggregated tau recognized by the MC1 conformational antibody. Most importantly, these events were shown to be attenuated with caspase inhibitors. This implies that therapeutics aimed at inhibiting caspase-mediated tau cleavage may prove beneficial in slowing cleavage and aggregation, thus potentially halting tau pathology and disease progression.

  12. Halting of Caspase Activity Protects Tau from MC1-Conformational Change and Aggregation

    PubMed Central

    Mead, Emma; Kestoras, Dimitra; Gibson, Yolanda; Hamilton, Lucy; Goodson, Ross; Jones, Sophie; Eversden, Sarah; Davies, Peter; O’Neill, Michael; Hutton, Michael; Szekeres, Philip; Wolak, Joanna

    2016-01-01

    Intracellular neurofibrillary tangles (NFTs) are the hallmark of Alzheimer’s disease and other tauopathies in which tau, a microtubule-associated protein, loses its ability to stabilize microtubules. Several post-translational modifications including phosphorylation and truncation increase tau’s propensity to aggregate thus forming NFTs; however, the mechanisms underlying tau conformational change and aggregation still remain to be defined. Caspase activation and subsequent proteolytic cleavage of tau is thought to be a potential trigger of this disease-related pathological conformation. The aim of this work was to investigate the link between caspase activation and a disease-related conformational change of tau in a neuroblastoma cell-based model of spontaneous tau aggregation. We demonstrated that caspase induction initiates proteolytic cleavage of tau and generation of conformationally altered and aggregated tau recognized by the MC1 conformational antibody. Most importantly, these events were shown to be attenuated with caspase inhibitors. This implies that therapeutics aimed at inhibiting caspase-mediated tau cleavage may prove beneficial in slowing cleavage and aggregation, thus potentially halting tau pathology and disease progression. PMID:27589517

  13. Molecular dynamics simulation and conformational analysis of some catalytically active peptides.

    PubMed

    Honarparvar, Bahareh; Skelton, Adam A

    2015-04-01

    The design of stable and inexpensive artificial enzymes with potent catalytic activity is a growing field in peptide science. The first step in this design process is to understand the key factors that can affect the conformational preference of an enzyme and correlate them with its catalytic activity. In this work, molecular dynamics simulations in explicit water of two catalytically active peptides (peptide 1: Fmoc-Phe1-Phe2-His-CONH2; peptide 2: Fmoc-Phe1-Phe2-Arg-CONH2) were performed at temperatures of 300, 400, and 500 K. Conformational analysis of these peptides using Ramachandran plots identified the secondary structures of the amino acid residues involved (Phe1, Phe2, His, Arg) and confirmed their conformational flexibility in solution. Furthermore, Ramachandran maps revealed the intrinsic preference of the constituent residues of these compounds for a helical conformation. Long-range interaction distances and radius of gyration (R g) values obtained during 20 ns MD simulations confirmed their tendency to form folded conformations. Results showed a decrease in side-chain (Phe1, Phe2, His ring, and Arg) contacts as the temperature was raised from 300 to 400 K and then to 500 K. Finally, the radial distribution functions (RDF) of the water molecules around the nitrogen atoms in the catalytically active His and Arg residues of peptide 1 and peptide 2 revealed that the strongest water-peptide interaction occurred with the arginine nitrogen atoms in peptide 2. Our results highlight differences in the secondary structures of the two peptides that can be explained by the different arrangement of water molecules around the nitrogen atoms of Arg in peptide 2 as compared to the arrangement of water molecules around the nitrogen atoms of His in peptide 1. The results of this work thus provide detailed insight into peptide conformations which can be exploited in the future design of peptide analogs.

  14. The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase.

    PubMed

    Liu, Wei; Zou, Li-qiang; Liu, Jun-ping; Zhang, Zhao-qin; Liu, Cheng-mei; Liang, Rui-hong

    2013-09-01

    Few reports have focused on the effect of citric acid on thermodynamics and conformation of polyphenoloxidase (PPO). In this study, variations on activity, thermodynamics and conformation of mushroom PPO induced by citric acid (1-60mM) and relationships among these were investigated. It showed that with the increasing concentration of citric acid, the activity of PPO decreased gradually to an inactivity condition; inactivation rate constant (k) of PPO increased and the activation energy (Ea) as well as thermodynamic parameters (ΔG, ΔH, ΔS) decreased, which indicated that the thermosensitivity, stability and number of non-covalent bonds of PPO decreased. The conformation was gradually unfolded, which was reflected in the decrease of α-helix contents, increase of β-sheet and exposure of aromatic amino acid residuals. Moreover, two linear relationships of relative activities, enthalpies (ΔH) against α-helix contents were obtained. It indicated that changes of activity and thermodynamics might correlate to the unfolding of conformation.

  15. The uncoupled ATPase activity of the ABC transporter BtuC2D2 leads to a hysteretic conformational change, conformational memory, and improved activity

    PubMed Central

    Livnat-Levanon, Nurit; I. Gilson, Amy; Ben-Tal, Nir; Lewinson, Oded

    2016-01-01

    ABC transporters comprise a large and ubiquitous family of proteins. From bacteria to man they translocate solutes at the expense of ATP hydrolysis. Unlike other enzymes that use ATP as an energy source, ABC transporters are notorious for having high levels of basal ATPase activity: they hydrolyze ATP also in the absence of their substrate. It is unknown what are the effects of such prolonged and constant activity on the stability and function of ABC transporters or any other enzyme. Here we report that prolonged ATP hydrolysis is beneficial to the ABC transporter BtuC2D2. Using ATPase assays, surface plasmon resonance interaction experiments, and transport assays we observe that the constantly active transporter remains stable and functional for much longer than the idle one. Remarkably, during extended activity the transporter undergoes a slow conformational change (hysteresis) and gradually attains a hyperactive state in which it is more active than it was to begin with. This phenomenon is different from stabilization of enzymes by ligand binding: the hyperactive state is only reached through ATP hydrolysis, and not ATP binding. BtuC2D2 displays a strong conformational memory for this excited state, and takes hours to return to its basal state after catalysis terminates. PMID:26905293

  16. Reorganization of substrate waters between the closed and open cubane conformers during the S2 to S3 transition in the oxygen evolving complex.

    PubMed

    Capone, Matteo; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-10-27

    A crucial step in the mechanism for oxygen evolution in the Photosystem II complex resides in the transition from the S2 state to the S3 state of Kok–Joliot’s cycle, in which an additional water molecule binds to the cluster. On the basis of computational chemistry calculations on Photosystem II models, we propose a reorganization mechanism involving a hydroxyl (W2) and a μ2-oxo bridge (O5) that is able to link the closed cubane S2B intermediate conformer to the S3 open cubane structure. This mechanism can reconcile the apparent conflict between recently reported water exchange and electron paramagnetic resonance experiments, and theoretical studies.

  17. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A1

    PubMed Central

    Scaloni, Andrea; Dalla Serra, Mauro; Amodeo, Pietro; Mannina, Luisa; Vitale, Rosa Maria; Segre, Anna Laura; Cruciani, Oscar; Lodovichetti, Francesca; Greco, Maria Luigia; Fiore, Alberto; Gallo, Monica; D'Ambrosio, Chiara; Coraiola, Manuela; Menestrina, Gianfranco; Graniti, Antonio; Fogliano, Vincenzo

    2004-01-01

    Cationic lipodepsipeptides from Pseudomonas spp. have been characterized for their structural and antimicrobial properties. In the present study, the structure of a novel lipodepsipeptide, cormycin A, produced in culture by the tomato pathogen Pseudomonas corrugata was elucidated by combined protein chemistry, mass spectrometry and two-dimensional NMR procedures. Its peptide moiety corresponds to L-Ser-D-Orn-L-Asn-D-Hse-L-His-L-aThr-Z-Dhb-L-Asp(3-OH)-L-Thr(4-Cl) [where Orn represents ornithine, Hse is homoserine, aThr is allo-threonine, Z-Dhb is 2,3-dehydro-2-aminobutanoic acid, Asp(3-OH) is 3-hydroxyaspartic acid and Thr(4-Cl) is 4-chlorothreonine], with the terminal carboxy group closing a macrocyclic ring with the hydroxy group of the N-terminal serine residue. This is, in turn, N-acylated by 3,4-dihydroxy-esadecanoate. In aqueous solution, cormycin A showed a rather compact structure, being derived from an inward orientation of some amino acid side chains and from the ‘hairpin-bent’ conformation of the lipid, due to inter-residue interactions involving its terminal part. Cormycin was significantly more active than the other lipodepsipeptides from Pseudomonas spp., as demonstrated by phytotoxicity and antibiosis assays, as well as by red-blood-cell lysis. Differences in biological activity were putatively ascribed to its weak positive net charge at neutral pH. Planar lipid membrane experiments showed step-like current transitions, suggesting that cormycin is able to form pores. This ability was strongly influenced by the phospholipid composition of the membrane and, in particular, by the presence of sterols. All of these findings suggest that cormycin derivatives could find promising applications, either as antifungal compounds for topical use or as post-harvest biocontrol agents. PMID:15196052

  18. Exploring the Role of Conformational Heterogeneity in cis-Autoproteolytic Activation of ThnT

    PubMed Central

    2015-01-01

    In the past decade, there have been major achievements in understanding the relationship between enzyme catalysis and protein structural plasticity. In autoprocessing systems, however, there is a sparsity of direct evidence of the role of conformational dynamics, which are complicated by their intrinsic chemical reactivity. ThnT is an autoproteolytically activated enzyme involved in the biosynthesis of the β-lactam antibiotic thienamycin. Conservative mutation of ThnT results in multiple conformational states that can be observed via X-ray crystallography, establishing ThnT as a representative and revealing system for studing how conformational dynamics control autoactivation at a molecular level. Removal of the nucleophile by mutation to Ala disrupts the population of a reactive state and causes widespread structural changes from a conformation that promotes autoproteolysis to one associated with substrate catalysis. Finer probing of the active site polysterism was achieved by EtHg derivatization of the nucleophile, which indicates the active site and a neighboring loop have coupled dynamics. Disruption of these interactions by mutagenesis precludes the ability to observe a reactive state through X-ray crystallography, and application of this insight to other autoproteolytically activated enzymes offers an explanation for the widespread crystallization of inactive states. We suggest that the N → O(S) acyl shift in cis-autoproteolysis might occur through a si-face attack, thereby unifying the fundamental chemistry of these enzymes through a common mechanism. PMID:24933323

  19. Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation.

    PubMed

    Ferris, Hedda U; Coles, Murray; Lupas, Andrei N; Hartmann, Marcus D

    2014-06-01

    Sensor histidine kinases are important sensors of the extracellular environment and relay signals via conformational changes that trigger autophosphorylation of the kinase and subsequent phosphorylation of a response regulator. The exact mechanism and the regulation of this protein family are a matter of ongoing investigation. Here we present a crystal structure of a functional chimeric protein encompassing the entire catalytic part of the Escherichia coli EnvZ histidine kinase, fused to the HAMP domain of the Archaeoglobus fulgidus Af1503 receptor. The construct is thus equivalent to the full cytosolic part of EnvZ. The structure shows a putatively active conformation of the catalytic domain and gives insight into how this conformation could be brought about in response to sensory input. Our analysis suggests a sequential flip-flop autokinase mechanism.

  20. Conformational study of chiral penicillamine ligand on optically active silver nanoclusters with IR and VCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Yao, Hiroshi; Nishida, Naoki; Kimura, Keisaku

    2010-02-01

    The conformation of chiral D-/ L-penicillamine ( D-/ L-Pen) adsorbed on optically active silver nanoclusters with a mean core diameter of about 1.1 nm was investigated by infrared (IR) and vibrational circular dichroism (VCD) spectroscopy. IR spectra of the D-/ L-Pen-protected nanoclusters in D 2O/CD 3OD solution are essentially identical, but the VCD exhibits a mirror image relationship indicating that these species have enantiomeric relationship. The experimental IR and VCD spectra are compared with the calculated ones for different model conformers at the DFT/B3PW91 level. The analysis in the spectral region of ν asym(COO -) and δ sym(NH 2) modes reveals significant shortcomings when comparing with vacuum calculations. We then take a bulk solvent effect into account in the theoretical calculations to obtain better agreement, resulting in the establishment of a preferential conformation of chiral penicillamine on the silver nanocluster surface.

  1. Red deer synchronise their activity with close neighbours

    PubMed Central

    2014-01-01

    Models of collective animal behaviour frequently make assumptions about the effects of neighbours on the behaviour of focal individuals, but these assumptions are rarely tested. One such set of assumptions is that the switch between active and inactive behaviour seen in herding animals is influenced by the activity of close neighbours, where neighbouring animals show a higher degree of behavioural synchrony than would be expected by chance. We tested this assumption by observing the simultaneous behaviour of paired individuals within a herd of red deer Cervus elaphus. Focal individuals were more synchronised with their two closest neighbours than with the third closest or randomly selected individuals from the herd. Our results suggest that the behaviour of individual deer is influenced by immediate neighbours. Even if we assume that there are no social relationships between individuals, this suggests that the assumptions made in models about the influence of neighbours may be appropriate. PMID:24765578

  2. The structure of cardiac troponin C regulatory domain with bound Cd2+ reveals a closed conformation and unique ion coordination.

    PubMed

    Zhang, Xiaolu Linda; Tibbits, Glen F; Paetzel, Mark

    2013-05-01

    The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is a vestigial site that has lost its function in binding Ca(2+) owing to amino-acid sequence changes during evolution. Proteins with EF-hand motifs are capable of binding divalent cations other than calcium. Here, the crystal structure of wild-type (WT) human cNTnC in complex with Cd(2+) is presented. The structure of Cd(2+)-bound cNTnC with the disease-related mutation L29Q, as well as a structure with the residue differences D2N, V28I, L29Q and G30D (NIQD), which have been shown to have functional importance in Ca(2+) sensing at lower temperatures in ectothermic species, have also been determined. The structures resemble the overall conformation of NMR structures of Ca(2+)-bound cNTnC, but differ significantly from a previous crystal structure of Cd(2+)-bound cNTnC in complex with deoxycholic acid. The subtle structural changes observed in the region near the mutations may play a role in the increased Ca(2+) affinity. The 1.4 Å resolution WT cNTnC structure, which is the highest resolution structure yet obtained for cardiac troponin C, reveals a Cd(2+) ion coordinated in the canonical pentagonal bipyramidal geometry in EF2 despite three residues in the loop being disordered. A Cd(2+) ion found in the vestigial ion-binding site of EF1 is coordinated in a noncanonical `distorted' octahedral geometry. A comparison of the ion coordination observed within EF-hand-containing proteins for which structures have been solved in the presence of Cd(2+) is presented. A refolded WT cNTnC structure is also presented.

  3. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-07

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.

  4. Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities

    PubMed Central

    West, Graham M.; Pascal, Bruce D.; Ng, Ley-Moy; Soon, Fen-Fen; Melcher, Karsten; Xu, H. Eric; Chalmers, Michael J.; Griffin, Patrick R.

    2012-01-01

    Summary Plants regulate growth and respond to environmental stress through abscisic acid (ABA) regulated pathways, and as such these pathways are of primary interest for biological and agricultural research. The ABA response is first perceived by the PYR/PYL/RCAR class of START protein receptors. These ABA activated receptors disrupt phosphatase inhibition of Snf1-related kinases (SnRKs) enabling kinase signaling. Here, insights into the structural mechanism of proteins in the ABA signaling pathway (the ABA receptor PYL2, HAB1 phosphatase, and two kinases, SnRK2.3 and 2.6) are discerned through hydrogen/deuterium exchange (HDX) mass spectrometry. HDX on the phosphatase in the presence of binding partners provides evidence for receptor-specific conformations involving the Trp385 ‘lock’ that is necessary for signaling. Furthermore, kinase activity is linked to a more stable closed conformation. These solution-based studies complement the static crystal structures and provide a more detailed understanding of the ABA signaling pathway. PMID:23290725

  5. Non-enzymatic Glycation of Almond Cystatin Leads to Conformational Changes and Altered Activity.

    PubMed

    Siddiqui, Azad A; Sohail, Aamir; Bhat, Sheraz A; Rehman, Md T; Bano, Bilqees

    2015-01-01

    The non-enzymatic reaction between proteins and reducing sugars, known as glycation, leads to the formation of inter and intramolecular cross-links of proteins. Stable end products called as advanced Maillard products or advanced glycation end products (AGEs) have received tremendous attention since last decades. It was suggested that the formation of AGEs not only modify the conformation of proteins but also induces altered biological activity. In this study, cystatin purified from almond was incubated with three different sugars namely D-ribose, fructose and lactose to monitor the glycation process. Structural changes induced in cystatin on glycation were studied using UV-visible spectroscopy, fluorescence spectroscopy, CD and FTIR techniques. Glycated cystatin was found to migrate slower on electrophoresis as compared to control cystatin. Biological activity data of glycated cystatin showed that D-ribose was most effective in inducing conformational changes with maximum altered activity.

  6. RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110

    SciTech Connect

    Abbuhl, E.; Mutel, R. L.; Lynch, C.; Güedel, M.

    2015-09-20

    The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.

  7. Influence of graphene oxide and reduced graphene oxide on the activity and conformation of lysozyme.

    PubMed

    Bai, Yitong; Ming, Zhu; Cao, Yuye; Feng, Shicheng; Yang, Hua; Chen, Lingyun; Yang, Sheng-Tao

    2017-03-08

    The dramatically different bio-effects of graphene and graphene oxide (GO) have been widely observed in diverse biological systems, which determine the applications and toxicity of graphene materials. To elucidate the mechanism at molecular level, it is urgent to investigate the enzyme-graphene interaction and its consequences. In this study, we comparatively studied the influence of GO and reduced GO (RGO) on the activity and conformation of lysozyme to provide better understandings of their different bio-effects. Both GO and RGO adsorbed large quantities of lysozyme after incubation. GO inhibited lysozyme activity seriously, while RGO nearly had no influence on the enzyme activity. The different inhibitions of enzyme activity could be explained by the lysozyme conformational changes, where GO induced more changes to the protein conformation according to UV-vis absorbance, far-UV circular dichroism spectra, intrinsic fluorescence quenching, and infrared spectra. Based on the spectroscopic changes of lysozyme, GO induced the loss of secondary structure and exposed the active site of lysozyme more to the aqueous environment. In addition, neither GO nor RGO induced the fibrillation of lysozyme after 12d incubation. The results collectively indicated that the oxidation degree significantly impacted the enzyme-graphene interaction. The implications to the designs of enzyme-graphene system for bio-related applications and the toxicological effects of graphene materials are discussed.

  8. Small-angle neutron and X-ray scattering reveal conformational changes in rhodopsin activation

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Perera, Suchitrhanga M. C. D.; Chawla, Udeep; Struts, Andrey V.; Graziono, Vito; Pingali, Sai Venkatesh; Heller, William T.; Qian, Shuo; Brown, Michael F.; Chu, Xiang-Qiang

    2015-03-01

    Understanding G-protein-coupled receptor (GPCR) activation plays a crucial role in the development of novel improved molecular drugs. During photo-activation, the retinal chromophore of the visual GPCR rhodopsin isomerizes from 11-cis to all-trans conformation, yielding an equilibrium between inactive Meta-I and active Meta-II states. The principal goals of this work are to address whether the activation of rhodopsin leads to a single state or a conformational ensemble, and how protein organizational structure changes with detergent environment in solution. We use both small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) techniques to answer the above questions. For the first time we observe the change in protein conformational ensemble upon photo-activation by SANS with contrast variation, which enables the separate study of the protein structure within the detergent assembly. In addition, SAXS study of protein structure within detergent assembly suggests that the detergent molecules form a belt of monolayer (micelle) around protein with different geometrical shapes to keep the protein in folded state.

  9. Structure- and conformation-activity studies of nociceptin/orphanin FQ receptor dimeric ligands

    PubMed Central

    Pacifico, Salvatore; Carotenuto, Alfonso; Brancaccio, Diego; Novellino, Ettore; Marzola, Erika; Ferrari, Federica; Cerlesi, Maria Camilla; Trapella, Claudio; Preti, Delia; Salvadori, Severo; Calò, Girolamo; Guerrini, Remo

    2017-01-01

    The peptide nociceptin/orphanin FQ (N/OFQ) and the N/OFQ receptor (NOP) constitute a neuropeptidergic system that modulates various biological functions and is currently targeted for the generation of innovative drugs. In the present study dimeric NOP receptor ligands with spacers of different lengths were generated using both peptide and non-peptide pharmacophores. The novel compounds (12 peptide and 7 nonpeptide ligands) were pharmacologically investigated in a calcium mobilization assay and in the mouse vas deferens bioassay. Both structure- and conformation-activity studies were performed. Results demonstrated that dimerization did not modify the pharmacological activity of both peptide and non-peptide pharmacophores. Moreover, when dimeric compounds were obtained with low potency peptide pharmacophores, dimerization recovered ligand potency. This effect depends on the doubling of the C-terminal address sequence rather than the presence of an additional N-terminal message sequence or modifications of peptide conformation. PMID:28383520

  10. Structures of native and complexed complement factor D: implications of the atypical His57 conformation and self-inhibitory loop in the regulation of specific serine protease activity.

    PubMed

    Jing, H; Babu, Y S; Moore, D; Kilpatrick, J M; Liu, X Y; Volanakis, J E; Narayana, S V

    1998-10-09

    Factor D is a serine protease essential for the activation of the alternative pathway of complement. The structures of native factor D and a complex formed with isatoic anhydride inhibitor were determined at resolution of 2.3 and 1.5 A, respectively, in an isomorphous monoclinic crystal form containing one molecule per asymmetric unit. The native structure was compared with structures determined previously in a triclinic cell containing two molecules with different active site conformations. The current structure shows greater similarity with molecule B in the triclinic cell, suggesting that this may be the dominant factor D conformation in solution. The major conformational differences with molecule A in the triclinic cell are located in four regions, three of which are close to the active site and include some of the residues shown to be critical for factor D catalytic activity. The conformational flexibility associated with these regions is proposed to provide a structural basis for the previously proposed substrate-induced reversible conformational changes in factor D. The high-resolution structure of the factor D/isatoic anhydride complex reveals the binding mode of the mechanism-based inhibitor. The higher specificity towards factor D over trypsin and thrombin is based on hydrophobic interactions between the inhibitor benzyl ring and the aliphatic side-chain of Arg218 that is salt bridged with Asp189 at the bottom of the primary specificity (S1) pocket. Comparison of factor D structural variants with other serine protease structures revealed the presence of a unique "self-inhibitory loop". This loop (214-218) dictates the resting-state conformation of factor D by (1) preventing His57 from adopting active tautomer conformation, (2) preventing the P1 to P3 residues of the substrate from forming anti-parallel beta-sheets with the non-specific substrate binding loop, and (3) blocking the accessibility of Asp189 to the positive1y charged P1 residue of the

  11. Open and closed conformations of two SpoIIAA-like proteins (YP_749275.1 and YP_001095227.1) provide insights into membrane association and ligand binding

    PubMed Central

    Kumar, Abhinav; Lomize, Andrei; Jin, Kevin K.; Carlton, Dennis; Miller, Mitchell D.; Jaroszewski, Lukasz; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of the proteins encoded by the YP_749275.1 and YP_001095227.1 genes from Shewanella frigidimarina and S. loihica, respectively, have been determined at 1.8 and 2.25 Å resolution, respectively. These proteins are members of a novel family of bacterial proteins that adopt the α/β SpoIIAA-like fold found in STAS and CRAL-TRIO domains. Despite sharing 54% sequence identity, these two proteins adopt distinct conformations arising from different dispositions of their α2 and α3 helices. In the ‘open’ conformation (YP_001095227.1), these helices are 15 Å apart, leading to the creation of a deep nonpolar cavity. In the ‘closed’ structure (YP_749275.1), the helices partially unfold and rearrange, occluding the cavity and decreasing the solvent-exposed hydrophobic surface. These two complementary structures are reminiscent of the conformational switch in CRAL-TRIO carriers of hydrophobic compounds. It is suggested that both proteins may associate with the lipid bilayer in their ‘open’ monomeric state by inserting their amphiphilic helices, α2 and α3, into the lipid bilayer. These bacterial proteins may function as carriers of nonpolar substances or as interfacially activated enzymes. PMID:20944218

  12. Structure of a Specialized Acyl Carrier Protein Essential for Lipid A Biosynthesis with Very Long-chain Fatty Acids in Open and Closed Conformations

    SciTech Connect

    Ramelot, Theresa A.; Rossi, Paolo M.; Forouhar, Farhad; Lee, Hsiau-Wei; Yang, Yunhuang; Ni, Shuisong; Unser, Sarah; Lew, Scott; Seetharaman, Jayaraman; Xiao, Rong; Acton, Thomas; Everett, John K.; Prestegard, James H.; Hunt, John F.; Montelione, Gaetano; Kennedy, Michael A.

    2012-09-18

    The solution nuclear magnetic resonance (NMR) structures and backbone (15)N dynamics of the specialized acyl carrier protein (ACP), RpAcpXL, from Rhodopseudomonas palustris, in both the apo form and holo form modified by covalent attachment of 4'-phosphopantetheine at S37, are virtually identical, monomeric, and correspond to the closed conformation. The structures have an extra α-helix compared to the archetypical ACP from Escherichia coli, which has four helices, resulting in a larger opening to the hydrophobic cavity. Chemical shift differences between apo- and holo-RpAcpXL indicated some differences in the hinge region between α2 and α3 and in the hydrophobic cavity environment, but corresponding changes in nuclear Overhauser effect cross-peak patterns were not detected. In contrast to the NMR structures, apo-RpAcpXL was observed in an open conformation in crystals that diffracted to 2.0 Å resolution, which resulted from movement of α3. On the basis of the crystal structure, the predicted biological assembly is a homodimer. Although the possible biological significance of dimerization is unknown, there is potential that the resulting large shared hydrophobic cavity could accommodate the very long-chain fatty acid (28-30 carbons) that this specialized ACP is known to synthesize and transfer to lipid A. These structures are the first representatives of the AcpXL family and the first to indicate that dimerization may be important for the function of these specialized ACPs.

  13. pH-induced conformational changes in human ABO(H) blood group glycosyltransferases confirm the importance of electrostatic interactions in the formation of the semi-closed state.

    PubMed

    Johal, Asha R; Blackler, Ryan J; Alfaro, Javier A; Schuman, Brock; Borisova, Svetlana; Evans, Stephen V

    2014-03-01

    The homologous human ABO(H) A and B blood group glycosyltransferases GTA and GTB have two mobile polypeptide loops surrounding their active sites that serve to allow substrate access and product egress and to recognize and sequester substrates for catalysis. Previous studies have established that these enzymes can move from the "open" state to the "semi-closed" then "closed" states in response to addition of a substrate. The contribution of electrostatic interactions to these conformational changes has now been demonstrated by the determination at various pH of the structures of GTA, GTB and the chimeric enzyme ABBA. At near-neutral pH, GTA displays the closed state in which both mobile loops order around the active site, whereas ABBA and GTB display the open state. At low pH, the apparent protonation of the DXD motif in GTA leads to the expulsion of the donor analog to yield the open state, whereas at high pH, both ABBA and GTB form the semi-closed state in which the first mobile loop becomes an ordered α-helix. Step-wise deprotonation of GTB in increments of 0.5 between pH 6.5 and 10.0 shows that helix ordering is gradual, which indicates that the formation of the semi-closed state is dependent on electrostatic forces consistent with the binding of substrate. Spectropolarimetric studies of the corresponding stand-alone peptide in solution reveal no tendency toward helix formation from pH 7.0 to 10.0, which shows that pH-dependent stability is a product of the larger protein environment and underlines the importance of substrate in active site ordering.

  14. Trehalose induces functionally active conformation in the intrinsically disordered N-terminal domain of glucocorticoid receptor.

    PubMed

    Khan, Shagufta H; Jasuja, Ravi; Kumar, Raj

    2016-08-05

    Glucocorticoid receptor (GR) is a classic member of the nuclear receptor superfamily and plays pivotal roles in human physiology at the level of gene regulation. Various constellations of cellular cofactors are required to associate with GR to activate/repress genes. The effects of specific ligands on the AF2 structure and consequent preferential binding of co-activators or co-repressors have helped our understanding of the mechanisms involved. But the data so far fall short of fully explaining GR actions. We believe that this is because work so far has largely avoided detailed examination of the contributions of AF1 to overall GR actions. It has been shown that the GR containing only the N-terminal domain (NTD) and the DNA-binding domain (GR500) is constitutively quite active in stimulating transcription from simple promoters. However, we are only beginning to understand structure and functions of GR500 in spite of the fact that AF1 located within the NTD serves as major transactivation domain for GR. Lack of this information has hampered our complete understanding of how GR regulates its target gene(s). The major obstacle in determining GR500 structure has been due to its intrinsically disordered NTD conformation, frequently found in transcription factors. In this study, we tested whether a naturally occurring osmolyte, trehalose, can promote functionally ordered conformation in GR500. Our data show that in the presence of trehalose, GR500 is capable of formation of a native-like functionally folded conformation.

  15. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH.

    PubMed

    Grasso, Giuseppe; Satriano, Cristina; Milardi, Danilo

    2015-01-01

    Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.

  16. Long-Range Inhibitor-Induced Conformational Regulation of Human IRE1α Endoribonuclease Activity.

    PubMed

    Concha, Nestor O; Smallwood, Angela; Bonnette, William; Totoritis, Rachel; Zhang, Guofeng; Federowicz, Kelly; Yang, Jingsong; Qi, Hongwei; Chen, Stephanie; Campobasso, Nino; Choudhry, Anthony E; Shuster, Leanna E; Evans, Karen A; Ralph, Jeff; Sweitzer, Sharon; Heerding, Dirk A; Buser, Carolyn A; Su, Dai-Shi; DeYoung, M Phillip

    2015-12-01

    Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor. (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide inhibits both the kinase and RNase activities of IRE1α. The inhibitor interacts with the catalytic residues Lys599 and Glu612 and displaces the kinase activation loop to the DFG-out conformation. Inactivation of IRE1α RNase activity appears to be caused by a conformational change, whereby the αC helix is displaced, resulting in the rearrangement of the kinase domain-dimer interface and a rotation of the RNase domains away from each other. In contrast, staurosporine binds at the ATP-binding site of IRE1α, resulting in a dimer consistent with RNase active yeast Ire1 dimers. Activation of IRE1α RNase activity appears to be promoted by a network of hydrogen bond interactions between highly conserved residues across the RNase dimer interface that place key catalytic residues poised for reaction. These data implicate that the intermolecular interactions between conserved residues in the RNase domain are required for activity, and that the disruption of these interactions can be achieved pharmacologically by small molecule kinase domain inhibitors.

  17. An active thermal compensator for closed-cycle helium refrigerators

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J.

    1977-01-01

    A technique was developed for reducing the amplitude of the temperature oscillation in He closed-cyle refrigerators. The device uses a semiconductor diode as a heating element to actively supply a small oscillating input of heat at a point between the laser and the cold-tip to cancel the heat oscillations due to the refrigerator. It was found that the heater diode could drive the temperature of the heat sink more effectively, i.e., with lower current and therefore less heat, if the heat sink was insulated slightly from the rest of the mount. A sine-wave generator was used to drive the programmable supply which provided the offset current to the heater diode. By matching the frequency and phase of the oscillator to that of the refrigerator cycle, and by adjusting the amplitude of the oscillator signal, the temperature fluctuations at the laser could be minimized. Residual fluctuations were about 0.003K peak-to-peak, at an operating temperature of 9.5K.

  18. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  19. Conformational changes accompany activation of reovirus RNA-dependent RNA transcription

    PubMed Central

    Mendez, Israel I.; Weiner, Scott G.; She, Yi-Min; Yeager, Mark; Coombs, Kevin M.

    2009-01-01

    Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known 3-dimensional structures of major core proteins. PMID:18321727

  20. 12 CFR 225.126 - Activities not closely related to banking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Financial Holding Companies Interpretations § 225.126 Activities not closely related to banking. Pursuant to... determined that the following activities are not so closely related to banking or managing or...

  1. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Activity kinetics, conformation, and energetics.

    PubMed

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2016-05-01

    This study seeks to examine the ability of non-ionic/non-polar Colloidial Liquid Aphrons (CLAs) to preserve enzyme functionality upon immobilization and release. CLAs consisting of micron-sized oil droplets surrounded by a thin aqueous layer stabilized by a mixture of surfactants, were formulated by direct addition (pre-manufacture addition) using 1% Tween 80/mineral oil and 1% Tween 20 and the enzymes lipase, aprotinin and α-chymotrypsin. The results of activity assays for both lipase and α-chymotrypsin showed that kinetic activity increased upon immobilization by factors of 7 and 5.5, respectively, while aprotinin retained approximately 85% of its native activity. The conformation of the enzymes released through desorption showed no significant alterations compared to their native state. Changes in pH and temperature showed that optimum conditions did not change after immobilization, while analysis of activation energy for the immobilized enzyme showed an increase in activity at higher temperatures. Furthermore, the effect of bound water within the aphron structure allowed for some degree of enzyme hydration, and this hydration was needed for an active conformation with results showing a decrease in ΔH* for the immobilized system compared to its native counterpart.

  2. Conformal optical elements for correcting wavefront distortions in YAG : Nd{sup 3+} active elements

    SciTech Connect

    Korolkov, V P; Nasyrov, R K; Poleshchuk, A G; Arapov, Yu D; Ivanov, A F

    2013-02-28

    Correction of the wavefront is studied for the light beam passing wide-aperture YAG : Nd3+ single-crystal rods, which are used as active elements in high-power solid-state lasers. A nonideal character of the crystal structure is responsible for the deformation of the wavefront of passing radiation. By using the halftone technology we have developed conformal aberration correctors capable of compensating rod nonuniformities and reducing the laser radiation divergence by an order of magnitude. The results obtained make it possible to employ optically nonuniform active elements in laser constructions. (laser optics 2012)

  3. Magnesium impacts myosin V motor activity by altering key conformational changes in the mechanochemical cycle.

    PubMed

    Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M; Thomas, David D; Yengo, Christopher M

    2013-07-09

    We investigated how magnesium (Mg) impacts key conformational changes during the ADP binding/release steps in myosin V and how these alterations impact the actomyosin mechanochemical cycle. The conformation of the nucleotide binding pocket was examined with our established FRET system in which myosin V labeled with FlAsH in the upper 50 kDa domain participates in energy transfer with mant labeled nucleotides. We examined the maximum actin-activated ATPase activity of MV FlAsH at a range of free Mg concentrations (0.1-9 mM) and found that the highest activity occurs at low Mg (0.1-0.3 mM), while there is a 50-60% reduction in activity at high Mg (3-9 mM). The motor activity examined with the in vitro motility assay followed a similar Mg-dependence, and the trend was similar with dimeric myosin V. Transient kinetic FRET studies of mantdADP binding/release from actomyosin V FlAsH demonstrate that the transition between the weak and strong actomyosin.ADP states is coupled to movement of the upper 50 kDa domain and is dependent on Mg with the strong state stabilized by Mg. We find that the kinetics of the upper 50 kDa conformational change monitored by FRET correlates well with the ATPase and motility results over a wide range of Mg concentrations. Our results suggest the conformation of the upper 50 kDa domain is highly dynamic in the Mg free actomyosin.ADP state, which is in agreement with ADP binding being entropy driven in the absence of Mg. Overall, our results demonstrate that Mg is a key factor in coupling the nucleotide- and actin-binding regions. In addition, Mg concentrations in the physiological range can alter the structural transition that limits ADP dissociation from actomyosin V, which explains the impact of Mg on actin-activated ATPase activity and in vitro motility.

  4. Conformational Lability in Serine Protease Active Sites: Structures of Hepatocyte Growth Factor Activator (HGFA) Alone and with the Inhibitory Domain from HGFA Inhibitor-1B

    SciTech Connect

    Shia, Steven; Stamos, Jennifer; Kirchhofer, Daniel; Fan, Bin; Wu, Judy; Corpuz, Raquel T.; Santell, Lydia; Lazarus, Robert A.; Eigenbrot, Charles

    2010-07-20

    Hepatocyte growth factor activator (HGFA) is a serine protease that converts hepatocyte growth factor (HGF) into its active form. When activated HGF binds its cognate receptor Met, cellular signals lead to cell growth, differentiation, and migration, activities which promote tissue regeneration in liver, kidney and skin. Intervention in the conversion of HGF to its active form has the potential to provide therapeutic benefit where HGF/Met activity is associated with tumorigenesis. To help identify ways to moderate HGF/Met effects, we have determined the molecular structure of the protease domain of HGFA. The structure we determined, at 2.7 {angstrom} resolution, with no pseudo-substrate or inhibitor bound is characterized by an unconventional conformation of key residues in the enzyme active site. In order to find whether this apparently non-enzymatically competent arrangement would persist in the presence of a strongly-interacting inhibitor, we also have determined, at 2.6 {angstrom} resolution, the X-ray structure of HGFA complexed with the first Kunitz domain (KD1) from the physiological inhibitor hepatocyte growth factor activator inhibitor 1B (HAI-1B). In this complex we observe a rearranged substrate binding cleft that closely mirrors the cleft of other serine proteases, suggesting an extreme conformational dynamism. We also characterize the inhibition of 16 serine proteases by KD1, finding that the previously reported enzyme specificity of the intact extracellular region of HAI-1B resides in KD1 alone. We find that HGFA, matriptase, hepsin, plasma kallikrein and trypsin are potently inhibited, and use the complex structure to rationalize the structural basis of these results.

  5. Quillaja Saponin Variants with Central Glycosidic Linkage Modifications Exhibit Distinct Conformations and Adjuvant Activities

    PubMed Central

    Walkowicz, William E.; Fernández-Tejada, Alberto; George, Constantine; Corzana, Francisco; Jiménez-Barbero, Jesús; Gin, David Y.

    2016-01-01

    Immunological adjuvants such as the saponin natural product QS-21 help stimulate the immune response to co-administered antigens and have become increasingly important in the development of prophylactic and therapeutic vaccines. However, clinical use of QS21 is encumbered by chemical instability, dose-limiting toxicity, and low-yielding purification from the natural source. Previous studies of structure–activity relationships in the four structural domains of QS-21 have led to simplified, chemically stable variants that retain potent adjuvant activity and low toxicity in mouse vaccination models. However, modification of the central glycosyl ester linkage has not yet been explored. Herein, we describe the design, synthesis, immunologic evaluation, and molecular dynamics analysis of a series of novel QS-21 variants with different linker lengths, stereochemistry, and flexibility to investigate the role of this linkage in saponin adjuvant activity and conformation. Despite relatively conservative structural modifications, these variants exhibit striking differences in in vivo adjuvant activity that correlate with specific conformational preferences. These results highlight the junction of the triterpene and linear oligosaccharide domains as playing a critical role in the immunoadjuvant activity of the Quillaja saponins and also suggest a mechanism of action involving interaction with a discrete macromolecular target, in contrast to the non-specific mechanisms of emulsion-based adjuvants. PMID:27014435

  6. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation

    PubMed Central

    Lee, Tai-Sung; Radak, Brian K.; Harris, Michael E.; York, Darrin M.

    2016-01-01

    RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested. PMID:27774349

  7. A conformational change within the WAVE2 complex regulates its degradation following cellular activation

    PubMed Central

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-01-01

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566

  8. Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center.

    PubMed

    Ruiz-Carrillo, David; Koch, Birgit; Parthier, Christoph; Wermann, Michael; Dambe, Tresfore; Buchholz, Mirko; Ludwig, Hans-Henning; Heiser, Ulrich; Rahfeld, Jens-Ulrich; Stubbs, Milton T; Schilling, Stephan; Demuth, Hans-Ulrich

    2011-07-19

    Formation of N-terminal pyroglutamate (pGlu or pE) from glutaminyl or glutamyl precursors is catalyzed by glutaminyl cyclases (QC). As the formation of pGlu-amyloid has been linked with Alzheimer's disease, inhibitors of QCs are currently the subject of intense development. Here, we report three crystal structures of N-glycosylated mammalian QC from humans (hQC) and mice (mQC). Whereas the overall structures of the enzymes are similar to those reported previously, two surface loops in the neighborhood of the active center exhibit conformational variability. Furthermore, two conserved cysteine residues form a disulfide bond at the base of the active center that was not present in previous reports of hQC structure. Site-directed mutagenesis suggests a structure-stabilizing role of the disulfide bond. At the entrance to the active center, the conserved tryptophan residue, W(207), which displayed multiple orientations in previous structure, shows a single conformation in both glycosylated human and murine QCs. Although mutagenesis of W(207) into leucine or glutamine altered substrate conversion significantly, the binding constants of inhibitors such as the highly potent PQ50 (PBD150) were minimally affected. The crystal structure of PQ50 bound to the active center of murine QC reveals principal binding determinants provided by the catalytic zinc ion and a hydrophobic funnel. This study presents a first comparison of two mammalian QCs containing typical, conserved post-translational modifications.

  9. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin.

    PubMed

    Iwai, Sosuke; Chaen, Shigeru

    2007-05-25

    The SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain. Recently, we showed that a mutation within the SH1 helix in Dictyostelium myosin II (R689H) reduced the elasticity and thermal stability of the protein. To reveal the involvement of the SH1 helix in ATP-dependent conformational changes of the motor domain, we have investigated the effects of the R689H mutation on the conformational changes of the converter, using a GFP-based fluorescence resonance energy transfer method. Although the mutation does not seem to strongly affect conformations, we found that it significantly reduced the activation energy required for the ATP-induced conformational transition corresponding to the recovery stroke. Given the effects of the mutation on the mechanical properties of myosin, we propose that the SH1 helix plays an important role in the mechanochemical energy conversion underlying the conformational change of the myosin motor domain.

  10. Hemagglutinating activity and conformation of a lactose-binding lectin from mushroom Agrocybe cylindracea.

    PubMed

    Liu, Chao; Zhao, Xi; Xu, Xiao-Chao; Li, Ling-Rui; Liu, Yan-Hong; Zhong, Shao-Dong; Bao, Jin-Ku

    2008-03-01

    A lactose-binding lectin (Agrocybe cylindracea Lectin, ACL) purified from fruiting bodies of the mushroom A. cylindracea was investigated to determine the hemagglutinating activity and conformation changes after chemical modification, removal of metal ion and treatment at different temperatures and pH. ACL agglutinated both rabbit and human erythrocytes and its hemagglutinating activity could be inhibited by lactose. This lectin was stable in the pH range of 6-9 and temperature up to 60 degrees C. Fluorescence quenching and modification of tryptophan residues indicated that there were about two tryptophan residues in ACL molecule and one of them might be located on the surface, while the other was buried in the hydrophobic shallow groove near the surface. Chemical modification of serine/threonine and histidine showed that the partial necessity of these residues for the hemagglutinating activity of ACL. However, modifications of arginine, tyrosine and cysteine residues had no effect on its agglutinating activity.

  11. Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2013-03-01

    The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF’s crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.

  12. Recent advances in the investigation of the bioactive conformation of peptides active at the micro-opioid receptor. conformational analysis of endomorphins.

    PubMed

    Gentilucci, Luca; Tolomelli, Alessandra

    2004-01-01

    Despite of the recent advances in the structural investigation of complex molecules, the comprehension of the 3D features responsible for the interaction between opioid peptides and micro-opioid receptors still remains an elusive task. This has to be attributed to the intrinsic nature of opioid peptides, which can assume a number of different conformations of similar energy, and to the flexibility of the receptorial cavity, which can modify its inner shape to host different ligands. Due to this inherent mobility of the ligand-receptor system, massive efforts devoted to the definition of a rigid bioactive conformation to be used as a template for the design of new pharmacologically active compounds might be overstressed. The future goal might be the design of peptide or nonpeptide ligands capable of maximizing specific hydrophobic interactions. This review covers the recent opinions emerged on the nature of the ligand-receptor interaction, and the development of suitable models for the determination of the bioactive conformation of peptide ligands active towards micro-opioid receptors.

  13. Influence of conformationally restricted pyrimidines on the activity of 10-23 DNAzymes.

    PubMed

    Robaldo, Laura; Izzo, Franco; Dellafiore, María; Proietti, Cecilia; Elizalde, Patricia V; Montserrat, Javier M; Iribarren, Adolfo M

    2012-04-15

    The catalytic core of a 10-23 DNAzyme was modified introducing conformationally restricted nucleosides such as (2'R)-, (2'S)-2'-deoxy-2'-C-methyluridine, (2'R)-, (2'S)-2'-deoxy-2'-C-methylcytidine, 2,2'-anhydrouridine and LNA-C, in one, two or three positions. Catalytic activities under pseudo first order conditions were compared at different Mg(2+) concentrations using a short RNA substrate. At low Mg(2+) concentrations, triple modified DNAzymes with similar kinetic performance to that displayed by the non-modified control were identified. In the search for a partial explanation of the obtained results, in silico studies were carried out in order to explore the conformational behavior of 2'-deoxy-2'-C-methylpyrimidines in the context of a loop structure, suggesting that at least partial flexibility is needed for the maintenance of activity. Finally, the modified 2'-C-methyl DNAzyme activity was tested assessing the inhibition of Stat3 expression and the decrease in cell proliferation using the human breast cancer cell line T47D.

  14. Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.

    PubMed Central

    Garcia-Quintana, D; Francesch, A; Garriga, P; de Lera, A R; Padrós, E; Manyosa, J

    1995-01-01

    The study of the structural differences between rhodopsin and its active form (metarhodopsin II) has been carried out by means of deconvolution analysis of infrared spectra. Deconvolution techniques allow the direct identification of the spectral changes that have occurred, which results in a significantly different view of the conformational changes occurring after activation of the receptor as compared with previous difference spectroscopy analysis. Thus, a number of changes in the bands assigned to solvent-exposed domains of the receptor are detected, indicating significant decreases in extended (beta) sequences and in reverse turns, and increases in irregular/aperiodic sequences and in helices with a non-alpha geometry, whereas there is no decrease in alpha-helices. In addition to secondary structure conversions, qualitative alterations within a given secondary structure type are detected. These are seen to occur in both reverse turns and helices. The nature of this spectral change is of great importance, since a clear alteration in the helices bundle core is detected. All these changes indicate that the rhodopsin --> metarhodopsin II transition involves not a minor but a major conformational rearrangement, reconciling the infrared data with the energetics of the activation process. PMID:8519961

  15. Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change.

    PubMed

    Shu, Zhanyong; Vijayakumar, Sangeetha; Chen, Chi-Fen; Chen, Phang-Lang; Lee, Wen-Hwa

    2004-04-27

    Suv3 of Saccharomyces cerevisiae has been classified as a mitochondrial RNA helicase. However, the helicase domain in both yeast and human SUV3 varies considerably from the typical RNA helicase motifs. To investigate its enzymatic activities, a homogeneously purified preparation of SUV3 is required. Expression of a processed form of human SUV3 carrying an N-terminal deletion of 46 amino acids (SUV3DeltaN46) in a yeast suv3 null mutant, which otherwise fails to grow in a nonfermentable carbon source and forms petite colonies in glucose medium, rescues the null phenotype. Through a five-step chromatographic procedure, an 83 kDa SUV3DeltaN46 protein (SUV3-83) and a partially degraded 70 kDa product (SUV3-70) containing amino acids 68-685 were purified to homogeneity. Single- or double-stranded DNA and RNA stimulated ATPase activity of both proteins. SUV3-70, which retains core catalytic domains, can bind and unwind multiple duplex substrates of RNA and DNA with a 5'-3' directionality over a wide range of pH, while SUV3-83 has helicase activity at only acidic pH. ATP, but not nonhydrolyzable ATP, is essential for the unwinding activity, suggesting the requirement of the energy derived from ATP hydrolysis. Consistent with this notion, suv3 mutants containing alanine (A) or arginine (R) substitutions at the conserved lysine residue in the ATP binding site (K213) lost ATPase activity and also failed to unwind the substrates. Importantly, circular dichroism (CD) spectral analysis showed that SUV3-83, at pH 5.0, adopts a conformation similar to that of SUV3-70, suggesting a conformational change in SUV3-83 is required for its helicase activity. The physiological relevance of the multiple-substrate helicase activity of human SUV3 is discussed.

  16. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2016-10-28

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  17. tBid Undergoes Multiple Conformational Changes at the Membrane Required for Bax Activation*

    PubMed Central

    Shamas-Din, Aisha; Bindner, Scott; Zhu, Weijia; Zaltsman, Yehudit; Campbell, Clinton; Gross, Atan; Leber, Brian; Andrews, David W.; Fradin, Cécile

    2013-01-01

    Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death. PMID:23744079

  18. Allosteric regulation of SecA: magnesium-mediated control of conformation and activity.

    PubMed

    Gold, Vicki A M; Robson, Alice; Clarke, Anthony R; Collinson, Ian

    2007-06-15

    In bacteria, the SecA protein associates with a ubiquitous protein channel SecYEG where it drives the post-translational secretion of pre-proteins across the plasma membrane. The high-resolution structures of both proteins have been determined in their resting states; however, the mechanism that couples ATP hydrolysis to active transport of substrate proteins through the membrane is not well understood. An analysis of the steady-state ATPase activity of the enzyme reveals that there is an allosteric binding site for magnesium distinct from that associated with hydrolysis of ATP. We have demonstrated that this regulation involves a large conformational change to the SecA dimer, which exerts a strong influence on the turnover and affinity for ATP, as well as the affinity for ADP. The strong inhibitory influence of magnesium on the ATPase activity can be countered by cardiolipin and conditions that promote protein translocation.

  19. Effects of chemical modification on the conformation and biological activity of peanut agglutinin.

    PubMed

    Nonnenmacher, D; Brossmer, R

    1981-03-27

    The effect of chemical modifications on the biological properties of peanut agglutinin was investigated. The free amino groups were modified with succinic anhydride and 1-isothiocyanato-4-benzenesulfonic acid. Though the extent of modification was 95 and 85%, respectively, these derivatives did not lose their sugar binding capacity. The agglutinating activity with neuraminidase-treated human erythrocytes and various tumor cells was reduced. The mitogenic activity tested with neuraminidase-treated human lymphocytes was also diminished The tyrosine residues were modified with tetranitromethane and further with 4-aminophenyl-alpha-D-glucopyranoside and the negatively charged 2-(4-amino-benzyl)-alpha-D-neuraminic acid. The extent of modification was 30, 28 and 6%, respectively. The agglutinating and mitogenic activities were in this case not severely changed. The influence of all these modifications on the conformation was investigated by means of CD studies in the far and near ultraviolet regions.

  20. The VPS-20 subunit of the endosomal sorting complex ESCRT-III exhibits an open conformation in the absence of upstream activation.

    PubMed

    Schuh, Amber L; Hanna, Michael; Quinney, Kyle; Wang, Lei; Sarkeshik, Ali; Yates, John R; Audhya, Anjon

    2015-03-15

    Members of the endosomal sorting complex required for transport (ESCRT) machinery function in membrane remodelling processes during multivesicular endosome (MVE) biogenesis, cytokinesis, retroviral budding and plasma membrane repair. During luminal vesicle formation at endosomes, the ESCRT-II complex and the ESCRT-III subunit vacuolar protein sorting (VPS)-20 play a specific role in regulating assembly of ESCRT-III filaments, which promote vesicle scission. Previous work suggests that Vps20 isoforms, like other ESCRT-III subunits, exhibits an auto-inhibited closed conformation in solution and its activation depends on an association with ESCRT-II specifically at membranes [1]. However, we show in the present study that Caenorhabditis elegans ESCRT-II and VPS-20 interact directly in solution, both in cytosolic cell extracts and in using recombinant proteins in vitro. Moreover, we demonstrate that purified VPS-20 exhibits an open extended conformation, irrespective of ESCRT-II binding, in contrast with the closed auto-inhibited architecture of another ESCRT-III subunit, VPS-24. Our data argue that individual ESCRT-III subunits adopt distinct conformations, which are tailored for their specific functions during ESCRT-mediated membrane reorganization events.

  1. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation.

    PubMed

    Harper, Sandra L; Sriswasdi, Sira; Tang, Hsin-Yao; Gaetani, Massimiliano; Gallagher, Patrick G; Speicher, David W

    2013-10-24

    Hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are common disorders of erythrocyte shape primarily because of mutations in spectrin. The most common HE/HPP mutations are located distant from the critical αβ-spectrin tetramerization site, yet still interfere with formation of spectrin tetramers and destabilize the membrane by unknown mechanisms. To address this question, we studied the common HE-associated mutation, αL260P, in the context of a fully functional mini-spectrin. The mutation exhibited wild-type tetramer binding in univalent binding assays, but reduced binding affinity in bivalent-binding assays. Biophysical analyses demonstrated the mutation-containing domain was only modestly structurally destabilized and helical content was not significantly changed. Gel filtration analysis of the αL260P mini-spectrin indicated more compact structures for dimers and tetramers compared with wild-type. Chemical crosslinking showed structural changes in the mutant mini-spectrin dimer were primarily restricted to the vicinity of the αL260P mutation and indicated large conformational rearrangements of this region. These data indicate the mutation increased the stability of the closed dimer state, thereby reducing tetramer assembly and resulting in membrane destabilization. These results reveal a novel mechanism of erythrocyte membrane destabilization that could contribute to development of therapeutic interventions for mutations in membrane proteins containing spectrin-type domains associated with inherited disease.

  2. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Solution conformation and antioxidant activities in vitro.

    PubMed

    Wang, Junlong; Yang, Wen; Tang, YinYing; Xu, Qing; Huang, Shengli; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2016-01-20

    Regioselective modification is an effective approach to synthesize polysaccharides with different structure features and improved properties. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharide (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. The decrease in fractal dimension (df) values (1.56-2.04) of SRSASP was observed in size-exclusion chromatography combined with multi angle laser light scattering (SEC-MALLS) analysis. Compared to sample substituted at C-6, SRSASP showed a more expanded conformation of random coil, which was attributed to the breakup of hydrogen bonds and elastic contributions. Circular dichroism (CD), methylene blue (MB) and congo red (CR) spectrophotometric method and atomic force microscopy (AFM) results confirmed the conformational transition and stiffness of the chains after sulfation. SRSASP exhibited enhanced antioxidant activities in the DPPH, superoxide and hydroxyl radical scavenging assay. Sulfation at C-2 or C-3 was favorable for the chelation which might prevent the generation of hydroxyl radicals. It concluded that the degree of substitution and substitution position were the factors influencing biological activities of sulfated polysaccharides.

  3. Conformational analysis of a quinolonic ribonucleoside with anti-HSV-1 activity

    NASA Astrophysics Data System (ADS)

    Yoneda, Julliane D.; Velloso, Marcia Helena R.; Leal, Kátia Z.; Azeredo, Rodrigo B. de V.; Sugiura, Makiko; Albuquerque, Magaly G.; Santos, Fernanda da C.; Souza, Maria Cecília B. V. de; Cunha, Anna Claudia; Seidl, Peter R.; Alencastro, Ricardo B. de; Ferreira, Vitor F.

    2011-01-01

    The infections caused by the Herpes Simplex Virus are one of the most common sources of diseases in adults and several natural nucleoside analogues are currently used in the treatment of these infections. In vitro tests of a series of quinolonic ribonucleosides derivatives synthesized by part of our group indicated that some of them have antiviral activity against HSV-1. The conformational analysis of bioactive compounds is extremely important in order to better understand their chemical structures and biological activity. In this work, we have carried out a nuclear relaxation NMR study of 6-Me ribonucleoside derivative in order to determine if the syn or anti conformation is preferential. The NMR analysis permits the determination of inter-atomic distances by using techniques which are based on nuclear relaxation and related phenomena. Those techniques are non-selective longitudinal or spin-lattice relaxation rates and NULL pulse sequence, which allow the determination of distances between pairs of hydrogen atoms. The results of NMR studies were compared with those obtained by molecular modeling.

  4. The membrane protein Pannexin1 forms two open channel conformations depending on the mode of activation

    PubMed Central

    Wang, Junjie; Ambrosi, Cinzia; Qiu, Feng; Jackson, David G.; Sosinsky, Gina; Dahl, Gerhard

    2014-01-01

    Pannexin1 (Panx1) participates in several signaling events that involve ATP release, including the innate immune response, ciliary beat in airway epithelia and oxygen supply in the vasculature. The view that Panx1 forms a large ATP-release channel has been challenged by the association of a low conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes. When stimulated by potassium ions (K+), Panx1 formed a high conductance channel of ~500 pS that was permeable to ATP. Various physiological stimuli can induce this ATP-permeable conformation of the channel in several cell types. In contrast, the channel had a low conductance (~50 pS) with no detectable ATP permeability when activated by voltage in the absence of K+. The two channel states were associated with different reactivities of the terminal cysteine of Panx1 to thiol reagents, suggesting different conformations. Single particle electron microscopic analysis revealed that K+ stimulated the formation of channels with a larger pore diameter than those formed in the absence of K+. These data suggest that different stimuli lead to distinct channel structures with distinct biophysical properties. PMID:25056878

  5. Interactions of a designed peptide with lipopolysaccharide: Bound conformation and anti-endotoxic activity

    SciTech Connect

    Bhunia, Anirban; Chua, Geok Lin; Domadia, Prerna N.; Warshakoon, Hemamali; Cromer, Jens R.; David, Sunil A.; Bhattacharjya, Surajit

    2008-05-09

    Designed peptides that would selectively interact with lipopolysaccharide (LPS) or endotoxin and fold into specific conformations could serve as important scaffolds toward the development of antisepsis compounds. Here, we describe solution structure of a designed amphipathic peptide, H{sub 2}N-YVKLWRMIKFIR-CONH{sub 2} (YW12D) in complex with endotoxin as determined by transferred nuclear Overhauser effect spectroscopy. The conformation of the isolated peptide is highly flexible, but undergoes a dramatic structural stabilization in the presence of LPS. Structure calculations reveal that the peptide presents two amphipathic surfaces in its bound state to LPS whereby each surface is characterized by two positive charges and a number of aromatic and/or aliphatic residues. ITC data suggests that peptide interacts with two molecules of lipid A. In activity assays, YW12D exhibits neutralization of LPS toxicity with very little hemolysis of red blood cells. Structural and functional properties of YW12D would be applicable in designing low molecular weight non-toxic antisepsis molecules.

  6. A Model for the Conformational Activation of the Structurally Quiescent Metalloprotease ADAMTS13 by Von Willebrand Factor.

    PubMed

    South, Kieron; Freitas, Marta O; Lane, David A

    2017-02-16

    Blood loss is prevented by the multi-domain glycoprotein von Willebrand factor (VWF), which binds exposed collagen at damaged vessels and captures platelets. VWF is regulated by the metalloprotease ADAMTS13, which, in turn, is conformationally activated by VWF. To delineate the structural requirements for VWF-mediated conformational activation of ADAMTS13, we performed binding and functional studies with a panel of truncated ADAMTS13 variants. We demonstrate that both the isolated CUB1 and CUB2 domains in ADAMTS13 bind to the spacer domain exosite of a truncated ADAMTS13 variant, MDTCS (KD of 135 ± 10.1 nM and 86.9 ± 9.0 nM, respectively). However, only the CUB1 domain inhibited proteolytic activity of MDTCS. Moreover, ADAMTS13∆CUB2, unlike ADAMTS13∆CUB1-2, exhibited activity similar to wild-type ADAMTS13 and could be activated by VWF D4-CK. The CUB2 domain is therefore not essential for maintaining the inactive conformation of ADAMTS13. Both CUB domains could bind to the VWF D4-CK domain fragment (KD of 53.7± 2.1 nM and 84.3 ± 2.0 nM, respectively). However, deletion of both CUB domains did not prevent VWF D4-CK binding, suggesting that competition for CUB-domain binding to the spacer domain is not the dominant mechanism behind the conformational activation. ADAMTS13∆TSP8-CUB2 could no longer bind to VWF D4-CK, and deletion of TSP8 abrogated ADAMTS13 conformational activation. These findings support an ADAMTS13-activation model in which VWF D4-CK engages the TSP8-CUB2 domains, inducing the conformational change that disrupts the CUB1-spacer domain interaction and thereby activates ADAMTS13.

  7. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    NASA Astrophysics Data System (ADS)

    Tang, K.; Choy, V.; Chopra, R.; Bronskill, M. J.

    2007-05-01

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 °C isotherm generated during heating with an average distance error of 0.9 mm ± 0.4 mm (n = 6) in turkey breasts, 1.4 mm ± 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm ± 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 × 3 × 10 mm for the control point, and a temperature uncertainty of approximately 1 °C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment

  8. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.

    PubMed

    Tang, K; Choy, V; Chopra, R; Bronskill, M J

    2007-05-21

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 degrees C isotherm generated during heating with an average distance error of 0.9 mm +/- 0.4 mm (n = 6) in turkey breasts, 1.4 mm +/- 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm +/- 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 x 3 x 10 mm for the control point, and a temperature uncertainty of approximately 1 degrees C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method

  9. Investigating the in Vitro Thermal Stability and Conformational Flexibility of Estrogen Receptors as Potential Key Factors of Their in Vivo Activity.

    PubMed

    Le Grand, Adélaïde; André-Leroux, Gwenaëlle; Marteil, Gaëlle; Duval, Hélène; Sire, Olivier; Le Tilly, Véronique

    2015-06-30

    Among hormone-inducible transcription factors, estrogen receptors (ERs) play important roles in tissue growth and differentiation, via either direct or indirect binding, in the nucleus, to specific DNA targets called estrogen responsive elements (EREs), or through nongenomic pathways. In humans, two estrogen receptor isoforms (hERs), designated hERα and hERβ, have been identified. These two hERs, encoded by genes located on distinct chromosomes, exhibit divergent tissue-specific functions and different subcellular distributions depending on their binding status, free or complexed to their cognate ligands. Because it is hypothesized that such distinct behaviors may arise from various conformational stabilities and flexibilities, the effect of salt concentration and temperature was studied on the free and estrogen-activated hERα and hERβ. Our results show that the conformational stability of hERβ is weakly modulated by salt concentration as opposed to hERα. In addition, we show that the estrogen-bound hERs exhibit a more constrained structure than the unliganded ones and that their conformational flexibility is more affected by diethylstilbestrol binding than that of estradiol, 4-hydroxytamoxifen, or raloxifen. In line with these results, conformational analysis and computational docking were performed on hERα and hERβ, which confer molecular support of a diethylstilbestrol-induced restrained flexibility as compared to other ligands. We found that Trp383 in hERα and Trp335 in hERβ can closely interact with the NR-box motif of the H12 helix and act as a gatekeeper of the agonist-bound versus antagonist-bound conformations. Altogether, our study contributes to an improved knowledge of the diverse physicochemical properties of full-length hERs, which will help in our understanding of their distinct cellular roles in various cellular contexts.

  10. Effects of Pulsed Electric Field (PEF) Treatment on Enhancing Activity and Conformation of α-Amylase.

    PubMed

    Tian, Mei-ling; Fang, Ting; Du, Mu-ying; Zhang, Fu-sheng

    2016-04-01

    To explore an efficient, safe, and speedy application of pulsed electric field (PEF) technology for enzymatic modification, effects of PEF treatment on the enzymatic activity, property and kinetic parameters of α-amylase were investigated. Conformational transitions were also studied with the aid of circular dichroism (CD) and fluorescence spectra. The maximum enzymatic activity of α-amylase was obtained under 15 kV/cm electric field intensity and 100 mL/min flow velocity PEF treatment, in which the enzymatic activity increased by 22.13 ± 1.14% compared with control. The activation effect could last for 18 h at 4 °C. PEF treatment could widen the range of optimum temperature for α-amylase, however, it barely exerted any effect on the optimum pH. On the other hand, α-amylase treated by PEF showed an increase of Vmax, t1/2 and ΔG, whereas a decrease of Km and k were observed. Furthermore, it can be observed from fluorescence and CD spectra that PEF treatment had increased the number of amino acid residues, especially that of tryptophan, on α-amylase surface with enhanced α-helices by 34.76% and decreased random coil by 12.04% on α-amylase when compared with that of untreated. These changes in structure had positive effect on enhancing α-amylase activity and property.

  11. Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin.

    PubMed

    Yu, Zhi-Long; Zeng, Wei-Cai; Zhang, Wen-Hua; Liao, Xue-Pin; Shi, Bi

    2014-05-01

    The effect of ultrasound on the activity of α-amylase, papain and pepsin was investigated and the mechanism of the effect was explored by determining their conformational changes. With the irradiation of power ultrasound, the activity of α-amylase and papain was inhibited, while the activity of pepsin was activated. According to the analysis of circular dichroism, Fourier transform infrared and fluorescence spectroscopy, the πo → π(∗) amide transitions and secondary structural components, especially β-sheet, of these three enzymes were significantly influenced by ultrasound. The tryptophan fluorescence intensity of the three enzymes was also observed to be affected by sonication. Furthermore, it was found that the pepsin molecule might gradually be resistant to prolonged ultrasonic treatment and recover from the ultrasound-induced damage to its original structure. The results suggested that the activity of α-amylase, papain and pepsin could be modified by ultrasonic treatment mainly due to the variation of their secondary and tertiary structures.

  12. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  13. HTS-compatible FRET-based conformational sensors clarify membrane receptor activation.

    PubMed

    Scholler, Pauline; Moreno-Delgado, David; Lecat-Guillet, Nathalie; Doumazane, Etienne; Monnier, Carine; Charrier-Savournin, Fabienne; Fabre, Ludovic; Chouvet, Cédric; Soldevila, Stéphanie; Lamarque, Laurent; Donsimoni, Geoffrey; Roux, Thomas; Zwier, Jurriaan M; Trinquet, Eric; Rondard, Philippe; Pin, Jean-Philippe

    2017-01-30

    Cell surface receptors represent a vast majority of drug targets. Efforts have been conducted to develop biosensors reporting their conformational changes in live cells for pharmacological and functional studies. Although Förster resonance energy transfer (FRET) appears to be an ideal approach, its use is limited by the low signal-to-noise ratio. Here we report a toolbox composed of a combination of labeling technologies, specific fluorophores compatible with time-resolved FRET and a novel method to quantify signals. This approach enables the development of receptor biosensors with a large signal-to-noise ratio. We illustrate the usefulness of this toolbox through the development of biosensors for various G-protein-coupled receptors and receptor tyrosine kinases. These receptors include mGlu, GABAB, LH, PTH, EGF and insulin receptors among others. These biosensors can be used for high-throughput studies and also revealed new information on the activation process of these receptors in their cellular environment.

  14. Conformational study reveals amino acid residues essential for hemagglutinating and anti-proliferative activities of Clematis montana lectin.

    PubMed

    Lu, Bangmin; Zhang, Bin; Qi, Wei; Zhu, Yanan; Zhao, Yan; Zhou, Nan; Sun, Rong; Bao, Jinku; Wu, Chuanfang

    2014-11-01

    Clematis montana lectin (CML), a novel mannose-binding lectin purified from C. montana Buch.-Ham stem (Ranunculaceae), has been proved to have hemagglutinating activity in rabbit erythrocytes and apoptosis-inducing activity in tumor cells. However, the biochemical properties of CML have not revealed and its structural information still needs to be elucidated. In this study, it was found that CML possessed quite good thermostability and alkaline resistance, and its hemagglutinating activity was bivalent metal cation dependent. In addition, hemagglutination test and fluorescence spectroscopy proved that GuHCl, urea, and sodium dodecyl sulfate could change the conformation of CML and further caused the loss of hemagglutination activity. Moreover, the changes of fluorescence spectrum indicated that the tryptophan (Trp) microenvironment conversion might be related to the conformation and bioactivities of CML. In addition, it was also found that Trp residues, arginine (Arg) residues, and sulfhydryl were important for the hemagglutinating activity of CML, but only Trp was proved to be crucial for the CML conformation. Furthermore, the Trp, Arg, and sulfhydryl-modified CML exhibited 97.17%, 76.99%, and 49.64% loss of its anti-proliferative activity, respectively, which was consistent with the alterations of its hemagglutinating activity. Given these findings, Trp residues on the surface of CML are essential for the active center to form substrate-accessible conformation and suitable environment for carbohydrate binding.

  15. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase.

    PubMed

    Mercaldi, Gustavo F; Pereira, Humberto M; Cordeiro, Artur T; Michels, Paul A M; Thiemann, Otavio H

    2012-06-01

    Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzyme's function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches. Database Structural data for the Trypanosoma brucei 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been deposited with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank under code 3NVL.

  16. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  17. 29 CFR 1620.4 - “Closely related” and “directly essential” activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false âClosely relatedâ and âdirectly essentialâ activities. 1620.4 Section 1620.4 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION THE EQUAL PAY ACT § 1620.4 “Closely related” and “directly essential” activities. An employee...

  18. Conformational Changes in Orotidine 5’-Monophosphate Decarboxylase: A Structure-Based Explanation for How the 5’-Phosphate Group Activates the Enzyme†

    PubMed Central

    Desai, Bijoy J.; Wood, McKay; Fedorov, Alexander A.; Fedorov, Elena V.; Goryanova, Bogdana; Amyes, Tina L.; Richard, John P.; Almo, Steven C.; Gerlt, John A.

    2012-01-01

    The binding of a ligand to orotidine 5’-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (Eo) to a closed, active conformation (Ec). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions are enforced that destabilize the carboxylate group of the substrate as well as stabilize the intermediate (in the Ec•S‡ complex). Focusing on the OMPDC from Methanothermobacter thermautotrophicus, the “remote” 5’-phosphate group of the substrate activates the enzyme 2.4 × 108-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that 1) directly contact the 5’-phosphate group; 2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from solvent; and 3) form hydrogen-bonding interactions across the interface between the “mobile” and “fixed” half-barrel domains of the (β/α8-barrel structure. Our data support a model in which the IBE provided by the 5’-phosphate group is used to enable interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the Ec•S and Ec•S‡ complexes relative to the Eo•S complex. The conclusion that the IBE of the 5’-phosphate group provides stabilization of both the Ec•S and Ec•S‡ complexes, not just the Ec•S‡ complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions. PMID:23030629

  19. Effects of perfluorooctane sulfonate on the conformation and activity of bovine serum albumin.

    PubMed

    Wang, Yanqing; Zhang, Hongmei; Kang, Yijun; Cao, Jian

    2016-06-01

    Perfluorooctane sulfonate (PFOS) is among the most prominent contaminates in human serum and has been reported to possess potential toxicity to the human body. In this study, the effects of PFOS on the conformation and activity of bovine serum albumin (BSA) were investigated in vitro. The results indicated that the binding interaction of PFOS with BSA destroyed the tertiary and secondary structures of protein with the loss of α-helix structure and the increasing of hydrophobic microenvironment of the Trp or Tyr residues. During the thermal denaturation protein, PFOS increases the protein stability of BSA. The proportion of α-helix decreased on increasing the PFOS concentration and the microenvironment of the Trp or Tyr residues becomes more hydrophobic. The results from molecular modeling indicated that BSA had not only one possible binding site to bind with PFOS by the polar interaction, hydrogen bonds and hydrophobic forces. In addition, the BSA relative activities were decreased with the increase of PFOS concentration. Such loss of BSA activity in the presence of PFOS indicated that one of the binding sites in BSA is located in subdomain IIIA, which is in good agreement with the fluorescence spectroscopic experiments and molecular modeling results. This study offers a comprehensive picture of the interactions of PFOS with serum albumin and provides insights into the toxicological effect of perfluoroalkylated substances.

  20. Conformational and activity changes during guanidine denaturation of D-glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Xie, G F; Tsou, C L

    1987-01-05

    Changes in intrinsic protein fluorescence of lobster muscle D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been compared with inactivation of the enzyme during denaturation in guanidine solutions. The holoenzyme is completely inactivated at guanidine concentrations less than 0.5 M and this is accompanied by a red shift of the emission maximum at 335 nm and a marked decrease in intensity of the intrinsic fluorescence. At 0.5 M guanidine, the inactivation is a slow process, with a first-order rate constant of 2.4 X 10(-3) s-1. A further red shift in the emission maximum and a decrease in intensity occur at guanidine concentrations higher than 1.5 M. The emission peak at 410 nm of the fluorescent NAD derivative introduced at the active site of this enzyme (Tsou, C.L. et al. (1983) Biochem. Soc. Trans. 11, 425-429) shows both a red shift and a marked decrease in intensity at the same guanidine concentration required to bring about the inactivation and the initial changes in the intrinsic fluorescence of the holoenzyme. It appears that treatment by low guanidine concentrations leads to both complete inactivation and perturbation of the active site conformation and that a tryptophan residue is situated at or near the active site.

  1. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  2. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains.

    PubMed

    Lu, Xiaohui; Gross, Alec W; Lodish, Harvey F

    2006-03-17

    In the absence of erythropoietin (Epo) cell surface Epo receptors (EpoR) are dimeric; dimerization is mediated mainly by the transmembrane domain. Binding of Epo changes the orientation of the two receptor subunits. This conformational change is transmitted through the juxtamembrane and transmembrane domains, leading to activation of JAK2 kinase and induction of proliferation and survival signals. To define the active EpoR conformation(s) we screened libraries of EpoRs with random mutations in the transmembrane domain and identified several point mutations that activate the EpoR in the absence of ligand, including changes of either of the first two transmembrane domain residues (Leu(226) and Ile(227)) to cysteine. Following this discovery, we performed cysteine-scanning mutagenesis in the EpoR juxtamembrane and transmembrane domains. Many mutants formed disulfide-linked receptor dimers, but only EpoR dimers linked by cysteines at positions 223, 226, or 227 activated EpoR signal transduction pathways and supported proliferation of Ba/F3 cells in the absence of cytokines. These data suggest that activation of dimeric EpoR by Epo binding is achieved by reorienting the EpoR transmembrane and the connected cytosolic domains and that certain disulfide-bonded dimers represent the activated dimeric conformation of the EpoR, constitutively activating downstream signaling. Based on our data and the previously determined structure of Epo bound to a dimer of the EpoR extracellular domain, we present a model of the active and inactive conformations of the Epo receptor.

  3. The Chromospherically Active Low-Mass Close Binary KIC 9761199

    NASA Astrophysics Data System (ADS)

    Yoldaş, E.; Dal, H. A.

    2017-04-01

    We present the results obtained from the analyses of KIC 9761199's light variation acquired by the Kepler Mission. The temperature of the secondary component was found to be 3891±1 K, and the mass ratio was found to be 0.69±0.01 with an orbital inclination of 77°.4± 0°.1. Stellar spots separated by about 180° longitudinally were found around the latitudes of +47° and +30°. In addition, the OPEA model was derived for 94 detected flares. The plateau value was found to be 1.951±0.069 s, while the half-life value was found to be 1014 s. The flare frequency N1 was 0.01351 h-1, while the flare frequency N2 was 0.00006. Maximum flare rise time was 1118.098 s, while maximum flare total time was 6767.72 s. The chromospheric activity level of KIC 9761199 is at the expected level according to a B-V of 1m.303.

  4. Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies.

    PubMed

    Wu, Haiyan; Luo, Yi; Feng, Chunliang

    2016-12-01

    People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others.

  5. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    PubMed Central

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-01-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations. PMID:26879383

  6. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  7. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    SciTech Connect

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  8. The effect of methyl-donated hydrogen bonding on active site conformations of hyaluronate lyase

    NASA Astrophysics Data System (ADS)

    Migues, Angela N.; Vergenz, Robert A.; Moore, Kevin B.

    2010-03-01

    Geometric evidence shows a val-A252 methyl-donated (MD) hydrogen bond (HB) in hyaluronate lyase (Streptococcus pneumoniae) interacts with nearby NH--O and OH--O HBs, distorting active-site helical structure. Results for model fragment A248-254 are based on experimental heavy atom positions with ab initio hydrogen atoms. The MDHB, with (H-O distance, donor-H-O angle) = (2.3å; 174^o), exhibits more favorable geometry than thr-A253 OH--O HB (1.8å; 170^o) to the same ala-249 C=O. Consequently, thr-253 N-H--O interaction is forced closer to lys-250 C=O than ala-249 C=O(2.6 versus 2.7å). A novel method has been developed to quantify the effects of atomic diplacements on motions of neighboring helices. A coordinate system was established to track the movement of specific residues and to ascertain the effect of such motions on active site conformations.

  9. Relating conformation to function in integrin α5β1.

    PubMed

    Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2016-07-05

    Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.

  10. Conformation-dependent QSAR approach for the prediction of inhibitory activity of bromodomain modulators.

    PubMed

    García-Jacas, C R; Martinez-Mayorga, K; Marrero-Ponce, Y; Medina-Franco, J L

    2017-01-01

    Epigenetic drug discovery is a promising research field with growing interest in the scientific community, as evidenced by the number of publications and the large amount of structure-epigenetic activity information currently available in the public domain. Computational methods are valuable tools to analyse and understand the activity of large compound collections from their structural information. In this manuscript, QSAR models to predict the inhibitory activity of a diverse and heterogeneous set of 88 organic molecules against the bromodomains BRD2, BRD3 and BRD4 are presented. A conformation-dependent representation of the chemical structures was established using the RDKit software and a training and test set division was performed. Several two-linear and three-linear QuBiLS-MIDAS molecular descriptors ( www.tomocomd.com ) were computed to extract the geometric structural features of the compounds studied. QuBiLS-MIDAS-based features sets, to be used in the modelling, were selected using dimensionality reduction strategies. The multiple linear regression procedure coupled with a genetic algorithm were employed to build the predictive models. Regression models containing between 6 to 9 variables were developed and assessed according to several internal and external validation methods. Analyses of outlier compounds and the applicability domain for each model were performed. As a result, the models against BRD2 and BRD3 with 8 variables and the model with 9 variables against BRD4 were those with the best overall performance according to the criteria accounted for. The results obtained suggest that the models proposed will be a good tool for studying the inhibitory activities of drug candidates against the bromodomains considered during epigenetic drug discovery.

  11. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases.

    PubMed

    Hari, Sanjay B; Merritt, Ethan A; Maly, Dustin J

    2014-05-22

    Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.

  12. Conformation of epicinchonine and cinchonine in view of their antimalarial activity: x-ray and theoretical studies.

    PubMed

    Kowalik, J T; Lipińska, T; Oleksyn, B J; Sliwiński, J

    1999-01-01

    X-ray structure analysis was carried out for a single crystal of 9-epi-10,11-dihydrocinchonine in the form of free base obtained by stereoselective interconversion of cinchonine via 9-O-tosylcinchonine. An intramolecular hydrogen bond was found between the carbinol hydroxyl group, -O12-H12, and the quinuclidine nitrogen atom, N1, with the parameters: O12...N1=2.688(3)A, O12-H12=0.84(4)A, N1...H12=2.11(4)A and O12-H12...N1=126(3) degrees. Theoretical calculations for isolated molecules of epicinchonine and cinchonine with the use of AM1 semiempirical method and comparative studies of the crystal structures have shown that the conformation of the alkaloid molecules with respect to the C8-C9 bond depends on the absolute configuration at C9. The conformation with respect to the C9-C16 bond depends on the protonation of N1 for threo but not for erythro alkaloids. It was established that the ability to form inter- or intramolecular hydrogen bonds is determined by the energetically preferred conformations of erythro and threo alkaloids, respectively. In most cases the conformations preferred for erythro alkaloids are energetically forbidden for their threo epimers and vice versa. The differences in conformation and capability to form intramolecular hydrogen bonds may explain why their antimalarial activities are incomparable.

  13. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  14. Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme

    SciTech Connect

    Berezniak, Tomasz; Zahran, Mai; Imhof, Petra; Jaeschke, Andres; Smith, Jeremy C

    2010-10-01

    The Diels-Alderase ribozyme, an in vitro-evolved ribonucleic acid enzyme, accelerates the formation of carbon-carbon bonds between an anthracene diene and a maleimide dienophile in a [4 + 2] cycloaddition, a reaction with broad application in organic chemistry. Here, the Diels-Alderase ribozyme is examined via molecular dynamics (MD) simulations in both crystalline and aqueous solution environments. The simulations indicate that the catalytic pocket is highly dynamic. At low Mg(2+) ion concentrations, inactive states with the catalytic pocket closed dominate. Stabilization of the enzymatically active, open state of the catalytic pocket requires a high concentration of Mg(2+) ions (e.g., 54 mM), with cations binding to specific phosphate sites on the backbone of the residues bridging the opposite strands of the pocket. The free energy profile for pocket opening at high Mg(2+) cation concentration exhibits a double minimum, with a barrier to opening of approximately 5.5 kJ/mol and the closed state approximately 3 kJ/mol lower than the open state. Selection of the open state on substrate binding leads to the catalytic activity of the ribozyme. The simulation results explain structurally the experimental observation that full catalytic activity depends on the Mg(2+) ion concentration

  15. Conformational Adaptation of Asian Macaque TRIMCyp Directs Lineage Specific Antiviral Activity

    PubMed Central

    Rasaiyaah, Jane; Hué, Stéphane; Rose, Nicola J.; Marzetta, Flavia; James, Leo C.; Towers, Greg J.

    2010-01-01

    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations. PMID:20808866

  16. Conformational flexibility of a scorpion toxin active on mammals and insects: a circular dichroism study.

    PubMed

    Loret, E P; Sampieri, F; Roussel, A; Granier, C; Rochat, H

    1990-01-01

    Three scorpion toxins have been analyzed by circular dichroism in water and in 2,2,2-trifluoroethanol (TFE) solutions. These toxins were chosen because they are representative of three kinds of pharmacological activities: (1) toxin AaH IT2, an antiinsect toxin purified from the venom of Androctonus australis Hector, which is able to bind to insect nervous system preparation, (2) toxin Css II, from the venom of Centruroides suffusus suffusus, which is a beta-type antimammal toxin capable of binding to mammal nervous system preparation, and (3) the toxin Ts VII from the venom of Tityus serrulatus, which is able to bind to both types of nervous systems. In order to minimize bias, CD data were analyzed by a predictive algorithm to assess secondary structure content. Among the three molecules, Ts VII presented the most unordered secondary structure in water, but it gained in ordered forms when solubilized in TFE. These results indicated that the Ts VII backbone is the most flexible, which might result in a more pronounced tendency for this toxin molecule to undergo conformational changes. This is consistent with the fact that it competes with both antiinsect and beta-type antimammal toxins for the binding to the sodium channel.

  17. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator.

    PubMed Central

    Giraldo, R; Andreu, J M; Díaz-Orejas, R

    1998-01-01

    RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria. PMID:9687517

  18. Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein

    PubMed Central

    2015-01-01

    GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419

  19. The Redox State Regulates the Conformation of Rv2466c to Activate the Antitubercular Prodrug TP053*

    PubMed Central

    Albesa-Jové, David; Comino, Natalia; Tersa, Montse; Mohorko, Elisabeth; Urresti, Saioa; Dainese, Elisa; Chiarelli, Laurent R.; Pasca, Maria Rosalia; Manganelli, Riccardo; Makarov, Vadim; Riccardi, Giovanna; Svergun, Dmitri I.; Glockshuber, Rudi; Guerin, Marcelo E.

    2015-01-01

    Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys19-Pro20-Trp21-Cys22 motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a “closed” compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an “open” conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily. PMID:26546681

  20. 78 FR 44622 - Agency Information Collection; Activity Under OMB Review; Confidential Close Call Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Research and Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Confidential Close Call Reporting System AGENCY: Research & Innovative Technology Administration (RITA), Bureau...: Demetra V. Collia, Bureau of Transportation Statistics, Research and Innovative Technology...

  1. Regulation of nuclear pore complex conformation by IP(3) receptor activation.

    PubMed Central

    Moore-Nichols, David; Arnott, Anne; Dunn, Robert C

    2002-01-01

    In recent years, both the molecular architecture and functional dynamics of nuclear pore complexes (NPCs) have been revealed with increasing detail. These large, supramolecular assemblages of proteins form channels that span the nuclear envelope of cells, acting as crucial regulators of nuclear import and export. From the cytoplasmic face of the nuclear envelope, nuclear pore complexes exhibit an eightfold symmetric ring structure encompassing a central lumen. The lumen often appears occupied by an additional structure alternatively referred to as the central granule, nuclear transport complex, or nuclear plug. Previous studies have suggested that the central granule may play a role in mediating calcium-dependent regulation of diffusion across the nuclear envelope for intermediate sized molecules (10-40 kDa). Using atomic force microscopy to measure the surface topography of chemically fixed Xenopus laevis oocyte nuclear envelopes, we present measurements of the relative position of the central granule within the NPC lumen under a variety of conditions known to modify nuclear Ca(2+) stores. These measurements reveal a large, approximately 9-nm displacement of the central granule toward the cytoplasmic face of the nuclear envelope under calcium depleting conditions. Additionally, activation of nuclear inositol triphosphate (IP(3)) receptors by the specific agonist, adenophostin A, results in a concentration-dependent displacement of central granule position with an EC(50) of ~1.2 nM. The displacement of the central granule within the NPC is observed on both the cytoplasmic and nucleoplasmic faces of the nuclear envelope. The displacement is blocked upon treatment with xestospongin C, a specific inhibitor of IP(3) receptor activation. These results extend previous models of NPC conformational dynamics linking central granule position to depletion of IP(3) sensitive nuclear envelope calcium stores. PMID:12202368

  2. Detection of Ligand‐induced Conformational Changes in the Activation Loop of Aurora‐A Kinase by PELDOR Spectroscopy

    PubMed Central

    Burgess, Selena G.; Grazia Concilio, Maria

    2016-01-01

    Abstract The structure of protein kinases has been extensively studied by protein crystallography. Conformational movement of the kinase activation loop is thought to be crucial for regulation of activity; however, in many cases the position of the activation loop in solution is unknown. Protein kinases are an important class of therapeutic target and kinase inhibitors are classified by their effect on the activation loop. Here, we report the use of pulsed electron double resonance (PELDOR) and site‐directed spin labeling to monitor conformational changes through the insertion of MTSL [S‐(1‐oxyl‐2,2,5,5‐tetramethyl‐2,5‐dihydro‐1 H‐pyrrol‐3‐yl)methyl methanesulfonothioate] on the dynamic activation loop and a stable site on the outer surface of the enzyme. The action of different ligands such as microtubule‐associated protein (TPX2) and inhibitors could be discriminated as well as their ability to lock the activation loop in a fixed conformation. This study provides evidence for structural adaptations that could be used for drug design and a methodological approach that has potential to characterize inhibitors in development. PMID:28032021

  3. Conformational Dynamics in DNA Replication Selectivity

    NASA Astrophysics Data System (ADS)

    Brieba, Luis G.

    2007-11-01

    Replicative DNA polymerases are remarkable molecular machines that carry out DNA synthesis accordingly to the Watson and Crick rules (Guanine pairs with Cytosine and Adenine with Thymidine) with high specificity or fidelity. The biochemical mechanism that dictates polymerase fidelity has its fundaments in the tight active site of replicative polymerases and the shape and size of the Watson-Crick base pairs. Pre-steady state kinetic analysis have shown that during polymerase nucleotide addition, the chemical reaction is not the rate limiting step and it was postulated that DNA polymerases suffer a conformational change from an "open" to a "closed" conformation before chemistry which is also the step responsible for their high fidelity. Crystal structures of replicative DNA polymerases demonstrated that the fingers subdomain suffers a large conformational change during catalysis and that this conformational transition aligns the polymerase active site in a proper conformation for catalysis. Recent studies using single molecule techniques and Fluorescence Resonance Energy Transfer analysis also shown that at least in the case of T7 DNA polymerase, the closure of the fingers subdomain is in part the rate limiting step associated with the high fidelity of DNA polymerases, although the overall fidelity of the reaction maybe involves an assemble of chemical steps and several conformational changes. Our current knowledge indicates that the mechanisms of enzyme specificity in DNA replication involve several energy landscapes that maybe correlated with conformational changes and active site assemblies.

  4. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  5. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  6. The R163K Mutant of Human Thymidylate Synthase Is Stabilized in an Active Conformation: Structural Asymmetry and Reactivity of Cysteine 195

    SciTech Connect

    Gibson, Lydia M.; Lovelace, Leslie L.; Lebioda, Lukasz

    2008-06-16

    Loop 181-197 of human thymidylate synthase (hTS) populates two conformational states. In the first state, Cys195, a residue crucial for catalytic activity, is in the active site (active conformer); in the other conformation, it is about 10 {angstrom} away, outside the active site (inactive conformer). We have designed and expressed an hTS variant, R163K, in which the inactive conformation is destabilized. The activity of this mutant is 33% higher than that of wt hTS, suggesting that at least one-third of hTS populates the inactive conformer. Crystal structures of R163K in two different crystal forms, with six and two subunits per asymmetric part of the unit cells, have been determined. All subunits of this mutant are in the active conformation while wt hTS crystallizes as the inactive conformer in similar mother liquors. The structures show differences in the environment of catalytic Cys195, which correlate with Cys195 thiol reactivity, as judged by its oxidation state. Calculations show that the molecular electrostatic potential at Cys195 differs between the subunits of the dimer. One of the dimers is asymmetric with a phosphate ion bound in only one of the subunits. In the absence of the phosphate ion, that is in the inhibitor-free enzyme, the tip of loop 47-53 is about 11 {angstrom} away from the active site.

  7. Synthesis, conformational analysis, and biological activity of C-thioribonucleosides related to tiazofurin.

    PubMed

    Franchetti, P; Marchetti, S; Cappellacci, L; Jayaram, H N; Yalowitz, J A; Goldstein, B M; Barascut, J L; Dukhan, D; Imbach, J L; Grifantini, M

    2000-04-06

    The syntheses of furanthiofurin [5beta-D-(4'-thioribofuranosyl)furan-3-carboxamide, 1] and thiophenthiofurin [5beta-D-(4'-thioribofuranosyl)thiophene-3-carboxamide, 2], two C-thioribonucleoside analogues of tiazofurin, are described. Direct trifluoroacetic acid-catalyzed C-glycosylation of ethyl furan-3-carboxylate with 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-D-ribofuranose gave 2- and 5-glycosylated regioisomers, as a mixture of alpha and beta anomers. Ethyl 5-(2,3,5-tri-O-benzyl)-beta-D-(4'-thioribofuranosyl)furan-3-carboxylate (6beta) was debenzylated and then converted into the corresponding amide (furanthiofurin) by reaction with ammonium hydroxide. A similar C-glycosylation of ethyl thiophene-3-carboxylate with 1,2,3,5-tetra-O-acetyl-4-thio-D-ribofuranose catalyzed by stannic chloride afforded an anomeric mixture of 2- and 5-glycosylated regioisomers. Deacetylation of ethyl 5-(2,3,5-tri-O-acetyl)-beta-D-(4'-thioribofuranosyl)thiophene-3-carboxylate (13beta) with methanolic ammonia and treatment of the ethyl ester with ammonium hydroxide gave thiophenthiofurin. The glycosylation site and anomeric configuration were established by (1)H NMR spectroscopy. Thiophenthiofurin was found to be cytotoxic in vitro toward human myelogenous leukemia K562, albeit 39-fold less than thiophenfurin, while furanthiofurin proved to be inactive. K562 cells incubated with thiophenthiofurin resulted in inhibition of inosine 5'-monophosphate dehydrogenase (IMPDH) and an increase in IMP pools with a concurrent decrease in GTP levels. From computational studies it was deduced that, among the C-nucleoside analogues of tiazofurin, activity requires an electrophilic sulfur adjacent to the C-glycosidic bond and an energetically favorable conformer around chi = 0 degrees. Among these, the more constrained (least flexible) compounds (tiazofurin and thiophenfurin) are more active than the less constrained thiophenthiofurin. Those compounds which contain a nucleophilic oxygen in place of the

  8. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  9. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.

    PubMed

    St-Pierre, Jean-François; Mousseau, Normand

    2012-07-01

    We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.

  10. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  11. Synthesis, conformation, and dopaminergic activity of 5,6-ethano-bridged derivatives of selective dopaminergic 3-benzazepines.

    PubMed

    Weinstock, J; Oh, H J; DeBrosse, C W; Eggleston, D S; Wise, M; Flaim, K E; Gessner, G W; Sawyer, J L; Kaiser, C

    1987-08-01

    To probe the suggestion that D-1 (DA1) dopamine receptors might possess an accessory pi-binding site in a location complementary to a suitably oriented aromatic ring (i.e., in an axial orientation approximately orthogonal to the catechol nucleus) in agonists such as 2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine-7,8-diol (1) and 3',4'-dihydroxynomifensine (2) that are selective for this subtype, cis- and trans-2,3,4,8,9,9a-hexahydro-4-phenyl-1H-indeno[1,7-cd]azepine-6,7-diol were prepared. These compounds are 5,6-ethano-bridged derivatives of the D-1 selective dopamine receptor agonist 1. Introduction of the bridge reduces the conformational mobility of the parent molecule. Comprehensive conformational analyses by molecular mechanical methods indicated that both the cis and trans isomers could attain a conformation that places the phenyl substituent in an axial orientation. X-ray analysis of the trans isomer showed an axial disposition of the phenyl ring; however, NMR studies suggest that this conformation is fixed in the trans isomer, but not in the cis. The dopamine receptor binding affinity and intrinsic activity of the cis isomer were considerably greater than those of its trans counterpart; the cis isomer also demonstrated a high degree of selectivity for the D-1 subtypes. One possible explanation of these results, suggested by the molecular modeling studies, is that both the axial orientation of the phenyl postulated to be required for binding to the receptor and a putatively requisite location of the nitrogen in approximately the plane of the catechol ring can be attained only by the cis isomer in which the tetrahydroazepine ring is in a twist conformation. Conversely, these results might simply suggest a preference of the D-1 receptors for benzazepine agonists having the phenyl group in an equatorial orientation. Still another possibility is that the D-1 receptor binding site is in a sterically hindered area accessible only to compounds that are relatively

  12. THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS

    SciTech Connect

    Morgan, Dylan P.; West, Andrew A.; Dhital, Saurav; Fuchs, Miriam; Garces, Ane; Catalan, Silvia; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the H{alpha} emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types {<=} M7. Our results show that early-type M dwarfs ({<=}M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  13. The Effects of Close Companions (and Rotation) on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Garcés, Ane; Catalán, Silvia; Dhital, Saurav; Fuchs, Miriam; Silvestri, Nicole M.

    2012-10-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems and examine the effect that a close companion has on the magnetic field generation in M dwarfs. We use a base sample of 1602 white dwarf main-sequence binaries from Rebassa-Mansergas et al. to develop a set of color cuts in GALEX, SDSS, UKIDSS, and 2MASS color space. Then using the SDSS Data Release 8 spectroscopic database, we construct a sample of 1756 WD+dM high-quality pairs from our color cuts and previous catalogs. We separate the individual WD and dM from each spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigate the age-activity relation for our sample for spectral types <= M7. Our results show that early-type M dwarfs (<=M4) in close binary systems are more likely to be active and have longer activity lifetimes compared to their field counterparts. However, at a spectral type of M5 (just past the onset of full convection in M dwarfs), the activity fraction and lifetimes of WD+dM binary systems become more comparable to that of the field M dwarfs. One of the implications of having a close binary companion is presumed to be increased stellar rotation through disk disruption, tidal effects, or angular momentum exchange. Thus, we interpret the similarity in activity behavior between late-type dMs in WD+dM pairs and late-type field dMs to be due to a decrease in sensitivity in close binary companions (or stellar rotation), which has implications for the nature of magnetic activity in fully convective stars. Using the WD components of the pairs, we find WD cooling ages to use as an additional constraint on the age-activity relation for our sample. We find that, on average, active early-type dMs tend to be younger and that active late-type dMs span a much broader age regime making them

  14. Quantitative Conformationally Sampled Pharmacophore (CSP) for δ Opioid Ligands: Reevaluation of hydrophobic moieties essential for biological activity

    PubMed Central

    Bernard, Denzil; Coop, Andrew; MacKerell, Alexander D.

    2008-01-01

    Recent studies have indicated several therapeutic applications for δ opioid agonists and antagonists. To exploit the therapeutic potential of δ opioids developing a structural basis for the activity of ligands at the δ opioid receptor is essential. The conformationally sampled pharmacophore (CSP) method (Bernard et al., JACS, 125: 3103–3107, 2003) is extended here to obtain quantitative models of δ opioid ligand efficacy and affinity. Quantification is performed via overlap integrals of the conformational space sampled by ligands with respect to a reference compound. Iterative refinement of the CSP model identified hydrophobic groups other than the traditional phenylalanine residues as important for efficacy and affinity in DSLET and ICI 174,864. The obtained models for a structurally diverse set of peptidic and non-peptidic δ opioid ligands offer good predictions with R2 values > 0.9 and the predicted efficacy for a set of test compounds was consistent with the experimental value. PMID:17367120

  15. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme.

    PubMed

    Roy, Susmita; Jana, Biman; Bagchi, Biman

    2012-03-21

    Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.

  16. Fluorescence Resonance Energy Transfer Analysis of Merlin Conformational Changes ▿

    PubMed Central

    Hennigan, Robert F.; Foster, Lauren A.; Chaiken, Mary F.; Mani, Timmy; Gomes, Michelle M.; Herr, Andrew B.; Ip, Wallace

    2010-01-01

    Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central α-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD. PMID:19884346

  17. Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues.

    PubMed

    Tömböly, Csaba; Kövér, Katalin E; Péter, Antal; Tourwé, Dirk; Biyashev, Dauren; Benyhe, Sándor; Borsodi, Anna; Al-Khrasani, Mahmoud; Rónai, András Z; Tóth, Géza

    2004-01-29

    Endomorphins-1 and -2 were substituted with all the beta-MePhe stereoisomers in their Phe residues to generate a conformationally constrained peptide set. This series of molecules was subjected to biological assays, and for beta-MePhe(4)-endomorphins-2, a conformational analysis was performed. Incorporation of (2S,3S)-beta-MePhe(4) resulted in the most potent analogues of both endomorphins with enhanced enzymatic stability. Their micro opioid affinities were 4-times higher than the parent peptides, they stimulated [(35)S]GTPgammaS binding, and they were found to be full agonists. NMR experiments revealed that C-terminal (2S,3S)-beta-MePhe in endomorphin-2 strongly favored the gauche (-) spatial orientation which implies the presence of the chi(1) = -60 degrees rotamer of Phe(4) in the binding conformer of endomorphins. Our results emphasize that the appropriate orientation of the C-terminal aromatic side chain of endomorphins is substantial for binding to the micro opioid receptor.

  18. Synthesis and appetite suppressant activity of 1-aryloxy-2-substituted aminomethyltetrahydronaphthalenes as conformationally rigid analogues of fluoxetine.

    PubMed

    Bhandari, Kalpana; Srivastava, Shipra; Shankar, Girija; Nath, Chandishwar

    2006-04-15

    Several 1-aryloxy-2-substituted aminomethyltetrahydronaphthalenes (7-21) as conformationally rigid analogues of fluoxetine were synthesized and evaluated for their anorexigenic and antidepressant activities. For SAR studies the related acyclic analogues (22-27) were also prepared. Out of the 21 synthesized compounds, 10 compounds (9, 10, 11, 15, 16, 18, 21, 22, 23 and 27) exhibited significant anorexigenic activity (at 75 micromol/kg). Interestingly, all the compounds (7-20, 22-26) were devoid of antidepressant effect, except for compounds 21 and 27 in which the antidepressant activity was retained. Compound 16 emerged as the most active compound of the series with better anorexigenic activity (97.92%) compared to fluoxetine (76.25%) and even with a clinically used drug sibutramine, thus providing a new structural lead for appetite suppressants.

  19. An evolutionary vaccination game in the modified activity driven network by considering the closeness

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei

    2016-02-01

    In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ / μ. However, when vaccination is allowed the final density of recovered individual first increases and then decreases with the value of λ / μ. Two variables are designed to identify the relation between the individuals' activities and their states. The results draw that both recovered and vaccinated frequency increase with the increase of the individuals' activities. Meanwhile, the immune fee has less impact on the individuals' vaccination than the closeness. While the λ / μ is in a certain range, with the increase of the value of λ / μ, the recovered frequency of the whole crowds reduces. Our results, therefore, reveal the fact that the best of intentions may lead to backfire.

  20. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release.

    PubMed

    Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H

    2017-02-27

    Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.

  1. Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?

    PubMed

    van der Leeden, Mieke C

    2005-11-22

    The mussel adhesive protein Mefp-1, under physiological conditions, presumably has a self-avoiding random walk conformation with helix-like or turned deca-peptide segments. Such a conformation may coil up under osmotic pressure induced by surrounding macromolecules. As a consequence, the orientation of the 3,4-dihydroxy-phenylalanine groups (dopa), essential for the adhesive strength as well as the cohesive strength in Mefp-1, will be altered. Changing the concentration of the protein itself or of different-type surrounding macromolecules may therefore be a tool to control the protein's adhesive activity. The effect of osmotic pressure on the conformation and dopa reactivity of Mefp-1 is studied by the addition of (poly)ethylene oxide (PEO) as a model macromolecule (Mw = 100 kD). From UV-spectroscopy measurements, it can be concluded that dopa reactivity in Mefp-1 changes with increasing PEO concentration. Fitting of the measured absorbance intensity data of the oxidation product dopaquinone versus time with a kinetic model points to the decreased accessibility of dopa groups in the Mefp-1 structure, a faster oxidation, and diminished cross linking under the influence of increasing PEO concentration up to 2.4 g/L, corresponding to an osmotic pressure of approximately 73 Pa. At higher PEO concentrations, the accessibility of the dopa groups for oxidation as well as cross-link formation decreases until about 20% of the dopa groups are oxidized at a PEO concentration of 3.8 g/L, corresponding to an osmotic pressure of approximately 113 Pa. FTIR measurements on the basis of amide I shifts qualitatively point to a transition to a more continuously turned structure of Mefp-1 in the presence of PEO. Therefore, it seems that conformational changes caused by variations of osmotic pressure determine the extent of steric hindrance of the dopa groups and hence the adhesive reactivity of Mefp-1.

  2. Small angle neutron scattering reveals pH-dependent conformational changes in Trichoderma reesei cellobiohydrolase I: implications for enzymatic activity.

    PubMed

    Pingali, Sai Venkatesh; O'Neill, Hugh M; McGaughey, Joseph; Urban, Volker S; Rempe, Caroline S; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-09-16

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4-5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  3. The Effects of Close Companions on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, D. P.; West, A. A.; Silvestri, N. M.

    2011-12-01

    We present a study of close white dwarf and M dwarf (WD+dM) binary systems that examines the effects that close companions have on magnetic field generation in M dwarfs. We used a base sample of 1602 white dwarf -- main seqeuence (WDMS) binaries from Rebassa-Mansergas et al. to determine a set of color cuts in u, g, r, i, and z. Then using the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) we constructed a sample of 2292 WD+dM pairs. We separated the dM and WD from each combined spectrum using an iterative technique that compared the WD and dM components to best-fit templates. Using the absolute height above the Galactic Plane as a proxy for age, and the Hα emission line as an indicator for magnetic activity, we investigated the age-activity relation for our sample; spectral types ≤M5. Our results show that early-type M dwarfs in close binary systems have increased magnetic activity in both magnitude and duration compared to their field counterparts. However, we begin to see a transition at spectral type M5 (just past the onset of full convection in M dwarfs), where the magnitude and duration in close WD+dM binary systems become more comparable to that of the field M dwarfs.

  4. Discovery of antiglioma activity of biaryl 1,2,3,4-tetrahydroisoquinoline derivatives and conformationally flexible analogues.

    PubMed

    Mohler, Michael L; Kang, Gyong-Suk; Hong, Seoung-Soo; Patil, Renukadevi; Kirichenko, Oleg V; Li, Wei; Rakov, Igor M; Geisert, Eldon E; Miller, Duane D

    2006-09-21

    Cultured rat astrocytes and C6 rat glioma were used as a differential screen for a variety of 1,2,3,4-tetrahydroisoquinoline (THI) derivatives. Compound 1 [1-(biphenyl-4-ylmethyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol hydrochloride] selectively blocked the growth of C6 glioma leaving normal astrocytes relatively unaffected. The potential for clinical utility of 1 was further substantiated in human gliomas and other tumor cell lines. Preliminary SAR of this activity was characterized by synthesis and testing of several THI and conformationally flexible variants.

  5. Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models

    PubMed Central

    Larsson, Per; Kasson, Peter M.

    2013-01-01

    Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations. PMID:23505359

  6. Structure-function relationships and conformational properties of alpha-MSH(6-13) analogues with candidacidal activity.

    PubMed

    Carotenuto, Alfonso; Saviello, Maria Rosaria; Auriemma, Luigia; Campiglia, Pietro; Catania, Anna; Novellino, Ettore; Grieco, Paolo

    2007-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) is an endogenous linear tridecapeptide with potent anti-inflammatory effects. We firstly demonstrated that alpha-MSH and its C-terminal sequence Lys-Pro-Val [alpha-MSH(11-13)] have antimicrobial effects against two major and representative pathogens: Staphylococcus aureus and Candida albicans. Successively, in an attempt to improve the candidacidal activity of alpha-MSH and to better understand the peptide structure-antifungal activity relations, we have recently designed and synthesized novel peptide analogues. We focused on the sequence alpha-MSH(6-13), which contains the invariant melanocortin core sequence His-Phe-Arg-Trp (6-9) and also contains the sequence Lys-Pro-Val (11-13) important for antimicrobial activity. In that structure-activity study, we discovered several compounds that have greater candidacidal activity than alpha-MSH, among which the peptide [d-Nal-7,Phe-12]-alpha-MSH(6-13) was the most potent. Here, we report a detailed conformational analysis by spectroscopic and computational methods of three peptides, alpha-MSH(6-13) (1), [d-Nal-7,Phe-12]-alpha-MSH(6-13) (2) and [d-Nal-7,Asp-12]-alpha-MSH(6-13) (3). Peptides were chosen on the basis of their candidacidal activities and were studied in membrane mimetic environment (SDS micelles). Different turn structures were observed for the three peptides and a conformation-activity model was developed based on these results. This study offers a structural basis for the design of novel peptide and non-peptide analogues to be used as new antimicrobial agents.

  7. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    PubMed

    Molkov, Yaroslav I; Shevtsova, Natalia A; Park, Choongseok; Ben-Tal, Alona; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2014-01-01

    Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2) exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient ventilation. The model

  8. Transportation Conformity

    EPA Pesticide Factsheets

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  9. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation.

    PubMed

    Dalton, James; Kalid, Ori; Schushan, Maya; Ben-Tal, Nir; Villà-Freixa, Jordi

    2012-07-23

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter, functioning as a chloride channel critical for fluid homeostasis in multiple organs. Disruption of CFTR function is associated with cystic fibrosis making it an attractive therapeutic target. In addition, CFTR blockers are being developed as potential antidiarrheals. CFTR drug discovery is hampered by the lack of high resolution structural data, and considerable efforts have been invested in modeling the channel structure. Although previously published CFTR models that have been made publicly available mostly agree with experimental data relating to the overall structure, they present the channel in an outward-facing conformation that does not agree with expected properties of a "channel-like" structure. Here, we make available a model of CFTR in such a "channel-like" conformation, derived by a unique modeling approach combining restrained homology modeling and ROSETTA refinement. In contrast to others, the present model is in agreement with expected channel properties such as pore shape, dimensions, solvent accessibility, and experimentally derived distances. We have used the model to explore the interaction of open channel blockers within the pore, revealing a common binding mode and ionic interaction with K95, in agreement with experimental data. The binding-site was further validated using a virtual screening enrichment experiment, suggesting the model might be suitable for drug discovery. In addition, we subjected the model to a molecular dynamics simulation, revealing previously unaddressed salt-bridge interactions that may be important for structure stability and pore-lining residues that may take part in Cl(-) conductance.

  10. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated

  11. Self-objectification, feminist activism and conformity to feminine norms among female vegetarians, semi-vegetarians, and non-vegetarians.

    PubMed

    Brinkman, Britney G; Khan, Aliya; Edner, Benjamin; Rosén, Lee A

    2014-01-01

    Recent research has suggested that vegetarians may be at an increased risk for developing disordered eating or body image issues when compared to non-vegetarians. However, the results of such studies are mixed, and no research has explored potential connections between vegetarianism and self-objectification. In the current study, the authors examine factors that predicted body surveillance, body shame, and appearance control beliefs; three aspects of self-objectification. Surveys were completed by 386 women from the United States who were categorized as vegetarian, semi-vegetarian, or non-vegetarian. The three groups differed regarding dietary motivations, levels of feminist activism, and body shame, but did not differ on their conformity to feminine norms. While conformity to feminine norms predicted body surveillance and body shame levels among all three groups of women, feminist activism predicted appearance control beliefs among non-vegetarians only. These findings suggest that it is important for researchers and clinicians to distinguish among these three groups when examining the relationship between vegetarianism and self-objectification.

  12. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation

    PubMed Central

    Carpenter, Byron; Tate, Christopher G.

    2016-01-01

    G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs. Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation. PMID:27672048

  13. Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase.

    PubMed

    Zhou, Lei; Liu, Wei; Xiong, Zhiqiang; Zou, Liqiang; Liu, Junping; Zhong, Junzhen; Chen, Jun

    2016-08-01

    Polyphenoloxidase (PPO) plays an important role in the browning of vegetables, fruits and edible fungi. The effects of ultrasound, malic acid, and their combination on the activity and conformation of mushroom (Agaricus bisporus) PPO were studied. The activity of PPO decreased gradually with the increasing of malic acid concentrations (5-60mM). Neither medium concentrations (10, 20, 30mM) malic acid nor individual ultrasound (25kHz, 55.48W/cm(2)) treatment could remarkably inactivate PPO. However, the inactivation during their combination was more significant than the sum of ultrasound inactivation and malic acid inactivation. The inactivation kinetics of PPO followed a first-order kinetics under the combination of ultrasound and malic acid. The conformation of combination treated PPO was changed, which was reflected in the decrease of α-helix, increase of β-sheet contents and disruption of the tertiary structure. Results of molecular microstructure showed that ultrasound broke large molecular groups of PPO into small ones. Moreover, combined treatment disrupted the microstructure of PPO and molecules were connected together.

  14. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation.

    PubMed

    Carpenter, Byron; Tate, Christopher G

    2016-12-01

    G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation.

  15. The Effect of Close Companions on the Magnetic Activity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan; West, A. A.; Silvestri, N. M.

    2011-05-01

    We used close white dwarf and M dwarf (WD+dM) binary systems as a method to understand the effect that close companions have on magnetic field generation in M dwarfs. We used a base sample of 1602 white dwarf - main sequence (WDMS) binaries from Rebassa-Mansergas et al. (2010) to aid in determining a set of color cuts using GALEX, SDSS, 2MASS, and UKIDSS colors. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) we constructed a sample of 1800 WD+dM pairs. We separated the dM and WD from each combined spectrum using an iterative technique that compares the WD and dM components to best-fit templates. Using the absolute height above the Galactic plane as a proxy for age and the Hα emission line as an indicator for magnetic activity, we investigated the age-activity relation for our sample. Our results show that M dwarfs in close binary systems have increased magnetic activity in both magnitude and duration compared to their field counterparts.

  16. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    PubMed Central

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  17. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    NASA Astrophysics Data System (ADS)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  18. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Silva, Daniel-Adriano; Zhang, Houdao; Yue, Alexander; Yan, Yijing; Huang, Xuhui

    2014-06-01

    One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is that only one of the two symmetric branches in its reaction centre is active in electron transfer. To investigate the effect of the photosystem II environment on the preferential selection of the energy transfer pathway (a prerequisite for electron transfer), we have constructed an exciton model via extensive molecular dynamics simulations and quantum mechanics/molecular mechanics calculations based on a recent X-ray structure. Our results suggest that it is essential to take into account an ensemble of protein conformations to accurately compute the site energies. We identify the cofactor CLA606 of active chain as the most probable site for the energy excitation. We further pinpoint a number of charged protein residues that collectively lower the CLA606 site energy. Our work provides insights into the understanding of molecular mechanisms of the core machinery of the green-plant photosynthesis.

  19. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre.

    PubMed

    Zhang, Lu; Silva, Daniel-Adriano; Zhang, Houdao; Yue, Alexander; Yan, YiJing; Huang, Xuhui

    2014-06-23

    One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is that only one of the two symmetric branches in its reaction centre is active in electron transfer. To investigate the effect of the photosystem II environment on the preferential selection of the energy transfer pathway (a prerequisite for electron transfer), we have constructed an exciton model via extensive molecular dynamics simulations and quantum mechanics/molecular mechanics calculations based on a recent X-ray structure. Our results suggest that it is essential to take into account an ensemble of protein conformations to accurately compute the site energies. We identify the cofactor CLA606 of active chain as the most probable site for the energy excitation. We further pinpoint a number of charged protein residues that collectively lower the CLA606 site energy. Our work provides insights into the understanding of molecular mechanisms of the core machinery of the green-plant photosynthesis.

  20. Dynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre

    PubMed Central

    Zhang, Lu; Silva, Daniel-Adriano; Zhang, Houdao; Yue, Alexander; Yan, YiJing; Huang, Xuhui

    2014-01-01

    One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is that only one of the two symmetric branches in its reaction centre is active in electron transfer. To investigate the effect of the photosystem II environment on the preferential selection of the energy transfer pathway (a prerequisite for electron transfer), we have constructed an exciton model via extensive molecular dynamics simulations and quantum mechanics/molecular mechanics calculations based on a recent X-ray structure. Our results suggest that it is essential to take into account an ensemble of protein conformations to accurately compute the site energies. We identify the cofactor CLA606 of active chain as the most probable site for the energy excitation. We further pinpoint a number of charged protein residues that collectively lower the CLA606 site energy. Our work provides insights into the understanding of molecular mechanisms of the core machinery of the green-plant photosynthesis. PMID:24954746

  1. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe.

    PubMed Central

    Schleich, H G; Wintermeyer, W; Zachau, H G

    1978-01-01

    The highly modified base wybutine (YWye) next to the anticodon of yeast tRNAPhe has been replaced by different hydrazine derivatives. The effect of the replacement on the activity of the tRNA has been studied in the heterologous aminoacylation with synthetase from E. coli and in the poly(U) directed binding to ribosomes from both yeast and E. coli. It was found that starting from tRNA-PheYWye the activity increased with increasing size, aromaticity, and stacking tendency of the substituent replacing YWye. It is concluded that YWye by the size of its aromatic system and by its stacking properties is particularly well suited for stabilizing the native conformation of tRNAPhe. PMID:351568

  2. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes

    NASA Astrophysics Data System (ADS)

    Someya, Takao; Kato, Yusaku; Sekitani, Tsuyoshi; Iba, Shingo; Noguchi, Yoshiaki; Murase, Yousuke; Kawaguchi, Hiroshi; Sakurai, Takayasu

    2005-08-01

    Skin-like sensitivity, or the capability to recognize tactile information, will be an essential feature of future generations of robots, enabling them to operate in unstructured environments. Recently developed large-area pressure sensors made with organic transistors have been proposed for electronic artificial skin (E-skin) applications. These sensors are bendable down to a 2-mm radius, a size that is sufficiently small for the fabrication of human-sized robot fingers. Natural human skin, however, is far more complex than the transistor-based imitations demonstrated so far. It performs other functions, including thermal sensing. Furthermore, without conformability, the application of E-skin on three-dimensional surfaces is impossible. In this work, we have successfully developed conformable, flexible, large-area networks of thermal and pressure sensors based on an organic semiconductor. A plastic film with organic transistor-based electronic circuits is processed to form a net-shaped structure, which allows the E-skin films to be extended by 25%. The net-shaped pressure sensor matrix was attached to the surface of an egg, and pressure images were successfully obtained in this configuration. Then, a similar network of thermal sensors was developed with organic semiconductors. Next, the possible implementation of both pressure and thermal sensors on the surfaces is presented, and, by means of laminated sensor networks, the distributions of pressure and temperature are simultaneously obtained. Author contributions: T. Someya designed research; T. Someya, Y.K., T. Sekitani, S.I., Y.N., Y.M., H.K., and T. Sakurai performed research; and T. Someya wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Freely available online through the PNAS open access option.Abbreviations: E-skin, electronic artificial skin; IDS, source-drain current; PTCDI, 3,4,9,10-perylene-tetracarboxylic-diimide; parylene, polychloro-para-xylylene; CuPc, copper

  3. A maximum entropy approach to detect close-in giant planets around active stars

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Hébrard, E.; Morin, J.; Folsom, C. P.; Böhm, T.; Boisse, I.; Borgniet, S.; Bouvier, J.; Delfosse, X.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Barnes, J. R.

    2015-12-01

    Context. The high spot coverage of young active stars is responsible for distortions of spectral lines that hamper the detection of close-in planets through radial velocity methods. Aims: We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler imaging in radial velocity measurements. Methods: We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Results: Using a simulated time series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km s-1, in most cases we are able to recover the radial velocity amplitude, orbital phase, and orbital period of an artificial planet down to a radial velocity semi-amplitude of the order of the radial velocity scatter due to the photon noise alone (about 50 m s-1 in our case). One noticeable exception occurs when the planetary orbit is close to co-rotation, in which case significant biases are observed in the reconstructed radial velocity amplitude, while the orbital period and phase remain robustly recovered. Conclusions: The present method constitutes a very simple way to extract orbital parameters from heavily distorted line profiles of active stars, when more classical radial velocity detection methods generally fail. It is easily adaptable to most existing Doppler imaging codes, paving the way towards a systematic search for close-in planets orbiting young, rapidly

  4. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  5. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-01-04

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  6. Direct electrical control of IgG conformation and functional activity at surfaces

    NASA Astrophysics Data System (ADS)

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-11-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.

  7. Direct electrical control of IgG conformation and functional activity at surfaces

    PubMed Central

    Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo

    2016-01-01

    We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics. PMID:27883075

  8. Influence of Active Site Conformations on the Hydride Transfer step of the Thymidylate Synthase Reaction Mechanism

    PubMed Central

    Świderek, Katarzyna; Kohen, Amnon; Moliner, Vicent

    2015-01-01

    The hydride transfer from C6 of tetrahydrofolate to the reaction’s exocyclic methylene-dUMP intermediate is the rate limiting step in thymidylate synthase (TSase) catalysis. This step has been studied by means of QM/MM Molecular Dynamics simulations to generate the corresponding free energy surfaces. The use of two different initial X-ray structures has allowed exploring different conformational spaces and exploring the existence of chemical paths with not only different reactivities, but also different reaction mechanisms. The results confirm that this chemical conversion takes place preferentially via a concerted mechanism where the hydride transfer is conjugated to thiol-elimination from the product. The findings also confirm the labile character of the substrate-enzyme covalent bond established between the C6 of the nucleotide substrate and a conserved cysteine residue. The calculations also reproduce and rationalize a normal H/T 2° kinetic isotope effect measured for that step. From a computational point of view, the results demonstrate that the use of an incomplete number of coordinates to describe the real reaction coordinate can render biased results. PMID:25868526

  9. When your friends make you cringe: social closeness modulates vicarious embarrassment-related neural activity

    PubMed Central

    Müller-Pinzler, Laura; Rademacher, Lena; Paulus, Frieder M.

    2016-01-01

    Social closeness is a potent moderator of vicarious affect and specifically vicarious embarrassment. The neural pathways of how social closeness to another person affects our experience of vicarious embarrassment for the other’s public flaws, failures and norm violations are yet unknown. To bridge this gap, we examined the neural response of participants while witnessing threats to either a friend’s or a stranger’s social integrity. The results show consistent responses of the anterior insula (AI) and anterior cingulate cortex (ACC), shared circuits of the aversive quality of affect, as well as the medial prefrontal cortex and temporal pole, central structures of the mentalizing network. However, the ACC/AI network activation was increased during vicarious embarrassment in response to a friend’s failures. At the same time, the precuneus, a brain region associated with self-related thoughts, showed a specific activation and an increase in functional connectivity with the shared circuits in the frontal lobe while observing friends. This might indicate a neural systems mechanism for greater affective sharing and self-involvement while people interact with close others that are relevant to oneself. PMID:26516170

  10. Euphorbia dendroides Latex as a Source of Jatrophane Esters: Isolation, Structural Analysis, Conformational Study, and Anti-CHIKV Activity.

    PubMed

    Esposito, Mélissa; Nothias, Louis-Félix; Nedev, Hirsto; Gallard, Jean-François; Leyssen, Pieter; Retailleau, Pascal; Costa, Jean; Roussi, Fanny; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2016-11-23

    An efficient process was used to isolate six new jatrophane esters, euphodendroidins J (3), K (5), L (6), M, (8), N (10), and O (11), along with seven known diterpenoid esters, namely, euphodendroidins A (4), B (9), E (1), and F (2), jatrophane ester (7), and 3α-hydroxyterracinolides G and B (12 and 13), and terracinolides J and C (14 and 15) from the latex of Euphorbia dendroides. Their 2D structures and relative configurations were established by extensive NMR spectroscopic analysis. The absolute configurations of compounds 1, 11, and 15 were determined by X-ray diffraction analysis. Euphodendroidin F (2) was obtained in 18% yield from the diterpenoid ester-enriched extract after two consecutive flash chromatography steps, making it an interesting starting material for chemical synthesis. Euphodendroidins K and L (5 and 6) showed an unprecedented NMR spectroscopic behavior, which was investigated by variable-temperature NMR experiments and molecular modeling. The structure-conformation relationships study of compounds 1, 5, and 6, using DFT-NMR calculations, indicated the prominent role of the acylation pattern in governing the conformational behavior of these jatrophane esters. The antiviral activity of compounds 1-15 was evaluated against Chikungunya virus (CHIKV) replication.

  11. Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities

    PubMed Central

    Moroni, Elisabetta; Zhao, Huiping; Blagg, Brian S.J.; Colombo, Giorgio

    2014-01-01

    The interaction that occurs between molecules is a dynamic process that impacts both structural and conformational properties of the ligand and the ligand binding site. Herein, we investigate the dynamic cross-talk between a protein and the ligand as a source for new opportunities in ligand design. Analysis of the formation/disappearance of protein pockets produced in response to a first-generation inhibitor assisted in the identification of functional groups that could be introduced onto scaffolds to facilitate optimal binding, which allowed for increased binding with previously uncharacterized regions. MD simulations were used to elucidate primary changes that occur in the Hsp90 C-terminal binding pocket in the presence of first-generation ligands. This data was then used to design ligands that adapt to these receptor conformations, which provides access to an energy landscape that is not visible in a static model. The newly synthesized compounds demonstrated anti-proliferative activity at ~150 nanomolar concentration. The method identified herein may be used to design chemical probes that provide additional information on structural variations of Hsp90 C-terminal binding site. PMID:24397468

  12. Synthesis, absolute configuration and conformation of optically active 1,2-homoheptafulvalene.

    PubMed

    Ito, Shunji; Kurita, Mitsuhiro; Kikuchi, Sigeru; Asao, Toyonobu; Ito, Yoshitora; Oda, Masaji; Sotokawa, Hideo; Tajiri, Akio; Morita, Noboru

    2003-02-07

    An optically active 1,2-homoheptafulvalene was successfully synthesized and subjected to spectroscopic investigation. The cycloaddition of the optically active hydrocarbon with tetracyanoethylene (TCNE) and 4-phenyl-1,2,4-triazoline-3,5-dione(PTAD) gave a [4 + 2] cycloadduct and a mixture of [8 + 2] cycloadducts, respectively, which are both optically active.

  13. Small high-speed dynamic target at close range laser active imaging system

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Wang, Du-yue; Zhang, Zheng; Zhang, Yue; Dai, Qin

    2016-11-01

    In the shooting range measuring, all-weather, high speed, unattended, the new concepts such as the remote control is gradually applied. In this paper, a new type of low cost range measurement system, using FPGA + MCU as electronic control system of laser active illumination and high-speed CMOS camera, data to the rear zone by using optical fiber communications, transmission and realizes the remote control of unmanned, due to the low cost of front-end equipment, can be used as consumables replacement at any time, combined with distributed layout principle, can maximum limit close to the measured with mutilate ability goal, thus to achieve the goal of small high-speed dynamic imaging from close range.

  14. Novel sensors to enable closed-loop active clearance control in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan; Holst, Tom

    2014-06-01

    Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.

  15. Actively Closing the Gap? Social Class, Organized Activities, and Academic Achievement in High School

    ERIC Educational Resources Information Center

    Morris, David S.

    2015-01-01

    Participation in Organized Activities (OA) is associated with positive behavioral and developmental outcomes in children. However, less is known about how particular aspects of participation affect the academic achievement of high school students from different social class positions. Using the Education Longitudinal Study of 2002, this study…

  16. Characterization and restoration of performance of {open_quotes}aged{close_quotes} radioiodine removing activated carbons

    SciTech Connect

    Freeman, W.P.

    1997-08-01

    The degradation of radioiodine removal performance for impregnated activated carbons because of ageing is well established. However, the causes for this degradation remain unclear. One theory is that this reduction in performance from the ageing process results from an oxidation of the surface of the carbon. Radioiodine removing activated carbons that failed radioiodine removal tests showed an oxidized surface that had become hydrophilic compared with new carbons. We attempted to restore the performance of these {open_quotes}failed{close_quotes} carbons with a combination of thermal and chemical treatment. The results of these investigations are presented and discussed with the view of extending the life of radioiodine removing activated carbons. 4 refs., 2 tabs.

  17. Thermal Dihydrogen Activation by a Closed-Shell AuCeO2(+) Cluster.

    PubMed

    Meng, Jing-Heng; He, Sheng-Gui

    2014-11-06

    Laser-ablation-generated AuCeO2(+) and CeO2(+) oxide clusters were mass-selected using a quadrupole mass filter and reacted with H2 in an ion trap reactor at ambient conditions. The reactions were characterized by mass spectrometry and density functional theory calculations. The gold-cerium bimetallic oxide cluster AuCeO2(+) is more reactive in H2 activation than the pure cerium oxide cluster CeO2(+). The gold atom is the active adsorption site and facilitates the heterolytic cleavage of H2 in collaboration with the separated O(2-) ion of the CeO2 support. To the best of our knowledge, this is the first example of thermal H2 activation by a closed-shell atomic cluster, which provides molecular-level insights into the single gold atom catalysis over metal oxide supports.

  18. Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment.

    PubMed

    Ooi, Beng Guat; Branning, Sharon Alyssa

    2016-12-13

    Chlorine dioxide (ClO2) is a potent oxidizing agent used for the treatment of drinking water and decontamination of facilities and equipment. The purpose of this research is to elucidate the manner in which ClO2 destroys proteins by studying the effects of ClO2 on lysozyme. The degree of enzyme activity lost can be correlated to the treatment time and levels of the ClO2 used. Lysozyme activity was drastically reduced to 45.3% of original enzyme activity when exposed to 4.3 mM ClO2 in the sample after 3 h. Almost all activities were lost in 3 h after exposure to higher ClO2 concentrations of up to 16.8 and 21.9 mM. Changes in protein conformation and amount as a result of ClO2 treatment were determined using the Raman spectroscopy and gel electrophoresis. Raman shifts and the alteration of spectral features observed in the ClO2-treated lysozyme samples are associated with loss of the α-helix secondary structure, tertiary structure, and disulfide bond. Progressive degradation of the denatured lysozyme by increasing levels of chlorine dioxide was also observed in gel electrophoresis. Hence, ClO2 can effectively cause protein denaturation and degradation resulting in loss of enzyme activity.

  19. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor

    NASA Astrophysics Data System (ADS)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis

    2014-03-01

    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  20. General Conformity

    EPA Pesticide Factsheets

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  1. Conformal Infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  2. Mapping the conformational space accessible to catechol-O-methyltransferase

    PubMed Central

    Ehler, Andreas; Benz, Jörg; Schlatter, Daniel; Rudolph, Markus G.

    2014-01-01

    Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson’s disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors. PMID:25084335

  3. The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation.

    PubMed

    Kanade, Santosh R; Paul, Beena; Rao, A G Appu; Gowda, Lalitha R

    2006-05-01

    Field bean (Dolichos lablab) contains a single isoform of PPO (polyphenol oxidase)--a type III copper protein that catalyses the o-hydroxylation of monophenols and oxidation of o-diphenols using molecular oxygen--and is a homotetramer with a molecular mass of 120 kDa. The enzyme is activated manyfold either in the presence of the anionic detergent SDS below its critical micellar concentration or on exposure to acid-pH. The enhancement of kcat upon activation is accompanied by a marked shift in the pH optimum for the oxidation of t-butyl catechol from 4.5 to 6.0, an increased sensitivity to tropolone, altered susceptibility to proteolytic degradation and decreased thermostability. The Stokes radius of the native enzyme is found to increase from 49.1+/-2 to 75.9+/-0.6 A (1 A=0.1 nm). The activation by SDS and acid-pH results in a localized conformational change that is anchored around the catalytic site of PPO that alters the microenvironment of an essential glutamic residue. Chemical modification of field bean and sweet potato PPO with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide followed by kinetic analysis leads to the conclusion that both the enzymes possess a core carboxylate essential to activity. This enhanced catalytic efficiency of PPO, considered as an inducible defence oxidative enzyme, is vital to the physiological defence strategy adapted by plants to insect herbivory and pathogen attack.

  4. Conformational change results in loss of enzymatic activity of jack bean urease on its interaction with silver nanoparticle.

    PubMed

    Ponnuvel, Shobana; Subramanian, Balakumar; Ponnuraj, Karthe

    2015-10-01

    Urease is an enzyme produced by microbes such as bacteria, yeast and fungi. Plants also produce this enzyme. Urease action splits urea into ammonia and carbamate. This action is having important implications in agro-chemical, medicinal and environment. Therefore there is always a constant search for new and novel compounds which could inhibit this enzyme. Here we have studied the interaction of jack bean urease (JBU) with silver nanoparticle to analyze the influence of the resultant protein corona formation on the catalytic property of JBU. Several techniques like UV-Vis, gel shift assay and CD spectroscopy have been used to characterize this interaction. Urease activity assay suggests that the protein corona formation inhibits the enzymatic action of JBU. The loss of enzymatic action could be either due to the nanoparticle blocking the active site of JBU or a conformational change in the protein. The CD spectra of JBU-AgNP complexes clearly revealed significant changes in the secondary structural composition of the JBU and this could be the reason for the loss of enzymatic activity of JBU. This study revealed an interesting observation, where the interaction of AgNP with JBU resulted destabilization of hexameric nature of JBU which is otherwise highly stable. The results of the present study could be useful in the development of nanoparticle based material for inhibiting the ureolytic activity of ureases in different fields.

  5. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus

    PubMed Central

    Miletti, Teresa; Di Trani, Justin; Jr Levros, Louis-Charles; Mittermaier, Anthony

    2015-01-01

    Biotechnological applications of enzymes can involve the use of these molecules under nonphysiological conditions. Thus, it is of interest to understand how environmental variables affect protein structure and dynamics and how this ultimately modulates enzyme function. NADH oxidase (NOX) from Thermus thermophilus exemplifies how enzyme activity can be tuned by reaction conditions, such as temperature, cofactor substitution, and the addition of cosolutes. This enzyme catalyzes the oxidation of reduced NAD(P)H to NAD(P)+ with the concurrent reduction of O2 to H2O2, with relevance to biosensing applications. It is thermophilic, with an optimum temperature of approximately 65°C and sevenfold lower activity at 25°C. Moderate concentrations (≈1M) of urea and other chaotropes increase NOX activity by up to a factor of 2.5 at room temperature. Furthermore, it is a flavoprotein that accepts either FMN or the much larger FAD as cofactor. We have used nuclear magnetic resonance (NMR) titration and 15N spin relaxation experiments together with isothermal titration calorimetry to study how NOX structure and dynamics are affected by changes in temperature, the addition of urea and the substitution of the FMN cofactor with FAD. The majority of signals from NOX are quite insensitive to changes in temperature, cosolute addition, and cofactor substitution. However, a small cluster of residues surrounding the active site shows significant changes. These residues are implicated in coupling changes in the solution conditions of the enzyme to changes in catalytic activity. PMID:25970557

  6. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  7. The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase.

    PubMed

    Alam, Parvez; Rabbani, Gulam; Badr, Gamal; Badr, Badr Mohamed; Khan, Rizwan Hasan

    2015-03-01

    In this study, we have reported the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and structural stability of Rhizopus niveus lipase. Secondary structural changes were monitored by Far-UV CD which shows that surfactant induces helicity in the Rhizopus niveus lipase protein which was maximum in case of CTAB followed by SDS, CHAPS, and Brij-35. Similarly, tertiary structural changes were monitored by tryptophan fluorescence. We also carried out enzyme kinetics assays which showed that activity was enhanced by 1.5- and 1.1-fold in the presence of CHAPS and Brij-35, respectively. Furthermore, there was a decline in activity by 20 and 30 % in case of SDS and CTAB, respectively. These studies may be helpful in understanding detergent-lipase interaction in greater detail as lipases are used in many industrial processes.

  8. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site

    SciTech Connect

    Carra,J.; McHugh, C.; Mulligan, S.; Machiesky, L.; Soares, A.; Millard, C.

    2007-01-01

    We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding to a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.

  9. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.

  10. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    PubMed

    de Oliveira, Leandro C; da Silva, Viviam M; Colussi, Francieli; Cabral, Aline D; de Oliveira Neto, Mario; Squina, Fabio M; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.

  11. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  12. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    NASA Astrophysics Data System (ADS)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  13. Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase.

    PubMed

    Srivastava, Sandeep Kumar; Rajasree, Kalagiri; Gopal, B

    2011-10-01

    Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.

  14. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    PubMed Central

    Volkov, Oleg A; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R; Chen, Zhe; Phillips, Margaret A

    2016-01-01

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of Trypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomeric TbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving a cis-to-trans proline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved. DOI: http://dx.doi.org/10.7554/eLife.20198.001 PMID:27977001

  15. Conformational studies of peptides corresponding to the coeliac-activating regions of wheat alpha-gliadin.

    PubMed Central

    Tatham, A S; Marsh, M N; Wieser, H; Shewry, P R

    1990-01-01

    The structures of four peptides corresponding to parts of the coeliac-activating protein A-gliadin were studied by structure prediction and c.d. spectroscopy. Three of the peptides corresponded to parts of the coeliac-activating N-terminal region (residues 3-55, 3-19 and 39-45) and contained two tetrapeptide motifs common to all coeliac-active regions (Pro-Ser-Gln-Gln and Gln-Gln-Gln-Pro). The Pro-Ser-Gln-Gln sequence was also present in the fourth peptide, on the basis of the C-terminal part of the molecule (211-217). These studies showed that beta-reverse turns were the predominant structural feature in all peptides and were predominantly of type I/III in two of the N-terminal peptides and type II in the C-terminal peptide. These turns form when the peptide is dissolved in solvents of low dielectric constant (trifluoroethanol) and high dielectric constant (water and iso-osmotic saline), although their presence in the N-terminal peptides may be masked in the latter solvents due to equilibrium with a poly-L-proline II structure favoured at lower temperatures. PMID:2400392

  16. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    SciTech Connect

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  17. Effects of citalopram on jaw-closing muscle activity during sleep and wakefulness in mice.

    PubMed

    Ikawa, Yasuha; Mochizuki, Ayako; Katayama, Keisuke; Kato, Takafumi; Ikeda, Minako; Abe, Yuka; Nakamura, Shiro; Nakayama, Kiyomi; Wakabayashi, Noriyuki; Baba, Kazuyoshi; Inoue, Tomio

    2016-12-01

    In this study, we investigated the effects of chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram on sleep/wake cycles and masseter (jaw-closing) muscle electromyogram (EMG) activity over a 24-h period. From the dark to the light period, the times of wakefulness decreased, while those of non-rapid eye movement (NREM) and REM sleep increased. Citalopram did not induce major alterations in the temporal changes of sleep-wake distributions, except for leading to a decrease in the time of NREM sleep during the light period and an increase in the durations of REM sleep episodes. Moreover, citalopram did not modify mean masseter EMG activity during any of the vigilance states and did not affect the temporal changes related to the shifts between dark/light periods. However, citalopram increased the time engaged in masseter EMG activation during NREM sleep in the second and the first halves of the dark and light periods, respectively. These results suggest that chronic citalopram treatment does not affect the temporal changes of sleep-wake distributions, but has a limited facilitatory influence that fails to increase the number of epochs of high levels of masseter muscle activation.

  18. Effect of sympathetic nervous system activation on the tonic vibration reflex in rabbit jaw closing muscles.

    PubMed Central

    Grassi, C; Deriu, F; Passatore, M

    1993-01-01

    1. In precollicular decerebrate rabbits we investigated the effect of sympathetic stimulation, at frequencies within the physiological range, on the tonic vibration reflex (TVR) elicited in jaw closing muscles by small amplitude vibrations applied to the mandible (15-50 microns, 150-180 Hz). The EMG activity was recorded bilaterally from masseter muscle and the force developed by the reflex was measured through an isometric transducer connected with the mandibular symphysis. 2. Unilateral stimulation of the peripheral stump of the cervical sympathetic by the TVR, and a marked decrease or disappearance of the ipsilateral EMG activity. No significant changes were detected in the EMG contralateral to the stimulated nerve. Bilateral CSN stimulation reduced by 60-90% the force reflexly produced by the jaw closing muscles and strongly decreased or suppressed EMG activity on both sides. This effect was often preceded by a transient TVR enhancement, very variable in amplitude and duration, which was concomitant with the modest increase in pulmonary ventilation induced by the sympathetic stimulation. 3. During bilateral CSN stimulation, an increase in the vibration amplitude by a factor of 1.5-2.5 was sufficient to restore the TVR reduced by sympathetic stimulation. 4. The depressant action exerted by sympathetic activation on the TVR is mediated by alpha-adrenergic receptors, since it was almost completely abolished by the I.V. administration of either phentolamine or prazosin, this last drug being a selective antagonist of alpha 1-adrenoceptors. The sympathetically induced decrease in the TVR was not mimicked by manoeuvres producing a large and sudden reduction or abolition of the blood flow to jaw muscles, such as unilateral or bilateral occlusion of the common carotid artery. 5. The effect of sympathetic stimulation was not significantly modified after denervation of the inferior dental arch and/or anaesthesia of the temporomandibular joint, i.e. after having reduced

  19. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch.

    PubMed

    Talapatra, Sandeep K; Harker, Bethany; Welburn, Julie P I

    2015-04-27

    The precise regulation of microtubule dynamics is essential during cell division. The kinesin-13 motor protein MCAK is a potent microtubule depolymerase. The divergent non-motor regions flanking the ATPase domain are critical in regulating its targeting and activity. However, the molecular basis for the function of the non-motor regions within the context of full-length MCAK is unknown. Here, we determine the structure of MCAK motor domain bound to its regulatory C-terminus. Our analysis reveals that the MCAK C-terminus binds to two motor domains in solution and is displaced allosterically upon microtubule binding, which allows its robust accumulation at microtubule ends. These results demonstrate that MCAK undergoes long-range conformational changes involving its C-terminus during the soluble to microtubule-bound transition and that the C-terminus-motor interaction represents a structural intermediate in the MCAK catalytic cycle. Together, our work reveals intrinsic molecular mechanisms underlying the regulation of kinesin-13 activity.

  20. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases.

    PubMed

    Kowalinski, Eva; Schuller, Anthony; Green, Rachel; Conti, Elena

    2015-07-07

    Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.

  1. Role of Methoxypolyethylene Glycol on the Hydration, Activity, Conformation and Dynamic Properties of a Lipase in a Dry Film

    PubMed Central

    Secundo, Francesco; Barletta, Gabriel; Mazzola, Giorgio

    2009-01-01

    A combined approach based on the use of ATR-FT/IR and steady-state fluorescence spectroscopy allowed to shed light on the effects of the additive methoxypolyethylene glycol (MePEG) on the hydration, conformation and dynamic properties of lipase from Burkholderia cepacia dehydrated to form a film. Spectroscopic data show that the additive has little effect on the structure of the protein; however, H/D exchange kinetic and fluorescence anisotropy suggest a more flexible enzyme molecule when in the presence of MePEG. By infrared spectroscopy, we estimated that, after conditioning the films at water activity of 1, the water content in the lipase dehydrated with MePEG is 5.4-and 4.7-fold higher than in the absence of the additive and the additive alone, respectively. Additionally, our infrared data suggest that MePEG acts by hindering intermolecular protein–protein interactions and contributing to increase the accessibility and flexibility of the lipase in the dehydrated solid film. These factors also explain the enhancement of the enzyme catalytic activity (i.e., up to 3.7-fold in neat organic solvent) when in the presence of MePEG. The method and results presented might better address the use of additives for the preparation of enzymes employed in non-aqueous media or of proteins used in a dry form in different fields of biotechnology. PMID:18727030

  2. Correlation of moth sex pheromone activities with molecular characteristics involved in conformers of bombykol and its derivatives.

    PubMed

    Kikuchi, T

    1975-09-01

    Molecular characteristics of bombykol and its 11 derivatives, which reveal significant correlations with biological activities for single sex pheromone receptor cells of four moth species, Bombyx mori, Aglia tau, Endromis versicolora, and Deilephila euphorbiae, were examined on the assumption of the "bifunctional unit model." Probabilities of bifunctional unit formations of those 12 compounds were assessed with frequency distribution patterns of distances between the proton acceptor, the proton donor, and the methyl group involved in a total of 1,200 conformers. A highly significant correlation exists between biological activity for each species and the probability of a particular bifunctional unit formation: a proton acceptor (A)--a methyl group (Me) unit (A--Me distances: about 6 A) for Deilephila (r = 0.94); a proton acceptor (A)--a proton donor (D)(A--D: about 11 A) for Aglia (r = 0.83); two antagonistic proton donor--methyl units (D--Me: about 14 and 5 A for favorable and adverse unit, respectively) for Bombyx (r = 0.94) and Endromis (r = 0.92).

  3. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  4. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  5. Implementation of Active Noise Control in a Closed-Circuit Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew; White, Edward

    2010-11-01

    Closed return wind tunnels, such as the Klebanoff--Saric Wind Tunnel (KSWT) at Texas A&M University, can provide relatively low freestream turbulence levels but include noise sources that do not exist in flight. This background noise, such as fan and motor noise, can adversely affect boundary-layer transition experiments if the frequencies are in the range of unstable Tollmien-- Schlicting waves. Passive acoustic treatments eliminate most noise propagating downstream from the fan to test section in the KSWT, but measurements showed upstream-traveling tonal noise propagating from the fan into the test section. To eliminate this, an active noise control system utilizing an adaptive filter algorithm was implemented targeting frequencies in the TS band below the planar duct mode cut off. Multiple microphones are used to detect and cancel upstream traveling sound without affecting downstream traveling sound. Microphone measurements are used to document the noise reduction at multiple locations in the test section.

  6. Conformational Restriction Leading to a Selective CB2 Cannabinoid Receptor Agonist Orally Active Against Colitis

    PubMed Central

    2014-01-01

    The CB2 cannabinoid receptor has been implicated in the regulation of intestinal inflammation. Following on from the promising activity of a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide, we developed constrained analogues based on a 2H-pyrazolo[4,3-c]quinolin-3(5H)-one scaffold, with improved affinity for the hCB2 receptor and had very high selectivity over the hCB1 receptor. Importantly, the lead of this series (26, hCB2: Ki = 0.39 nM, hCB1: Ki > 3000 nM) was found to protect mice against experimental colitis after oral administration. PMID:25699149

  7. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.

    PubMed

    Jinek, Martin; Jiang, Fuguo; Taylor, David W; Sternberg, Samuel H; Kaya, Emine; Ma, Enbo; Anders, Carolin; Hauer, Michael; Zhou, Kaihong; Lin, Steven; Kaplan, Matias; Iavarone, Anthony T; Charpentier, Emmanuelle; Nogales, Eva; Doudna, Jennifer A

    2014-03-14

    Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.

  8. Evaluating the performance of close-range 3D active vision systems for industrial design applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Gaiani, Marco

    2004-12-01

    In recent years, active three-dimensional (3D) active vision systems or range cameras for short have come out of research laboratories to find niche markets in application fields as diverse as industrial design, automotive manufacturing, geomatics, space exploration and cultural heritage to name a few. Many publications address different issues link to 3D sensing and processing but currently these technologies pose a number of challenges to many recent users, i.e., "what are they, how good are they and how do they compare?". The need to understand, test and integrate those range cameras with other technologies, e.g. photogrammetry, CAD, etc. is driven by the quest for optimal resolution, accuracy, speed and cost. Before investing, users want to be certain that a given range camera satisfy their operational requirements. The understanding of the basic theory and best practices associated with those cameras are in fact fundamental to fulfilling the requirements listed above in an optimal way. This paper addresses the evaluation of active 3D range cameras as part of a study to better understand and select one or a number of them to fulfill the needs of industrial design applications. In particular, object material and surface features effect, calibration and performance evaluation are discussed. Results are given for six different range cameras for close range applications.

  9. Evaluating the performance of close-range 3D active vision systems for industrial design applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Gaiani, Marco

    2005-01-01

    In recent years, active three-dimensional (3D) active vision systems or range cameras for short have come out of research laboratories to find niche markets in application fields as diverse as industrial design, automotive manufacturing, geomatics, space exploration and cultural heritage to name a few. Many publications address different issues link to 3D sensing and processing but currently these technologies pose a number of challenges to many recent users, i.e., "what are they, how good are they and how do they compare?". The need to understand, test and integrate those range cameras with other technologies, e.g. photogrammetry, CAD, etc. is driven by the quest for optimal resolution, accuracy, speed and cost. Before investing, users want to be certain that a given range camera satisfy their operational requirements. The understanding of the basic theory and best practices associated with those cameras are in fact fundamental to fulfilling the requirements listed above in an optimal way. This paper addresses the evaluation of active 3D range cameras as part of a study to better understand and select one or a number of them to fulfill the needs of industrial design applications. In particular, object material and surface features effect, calibration and performance evaluation are discussed. Results are given for six different range cameras for close range applications.

  10. Modulation of arginine decarboxylase activity from Mycobacterium smegmatis. Evidence for pyridoxal-5'-phosphate-mediated conformational changes in the enzyme.

    PubMed

    Balasundaram, D; Tyagi, A K

    1989-08-01

    Arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19) from Mycobacterium smegmatis, TMC 1546 has been purified to homogeneity. The enzyme has a molecular mass of 232 kDa and a subunit mass of 58.9 kDa. The enzyme from mycobacteria is totally dependent on pyridoxal 5'-phosphate for its activity at its optimal pH and, unlike that from Escherichia coli, Mg2+ does not play an active role in the enzyme conformation. The enzyme is specific for arginine (Km = 1.6 mM). The holoenzyme is completely resolved in dialysis against hydroxylamine. Reconstitution of the apoenzyme with pyridoxal 5'-phosphate shows sigmoidal binding characteristics at pH 8.4 with a Hill coefficient of 2.77, whereas at pH 6.2 the binding is hyperbolic in nature. The kinetics of reconstitution at pH 8.4 are apparently sigmoidal, indicating the occurrence of two binding types of differing strengths. A low-affinity (Kd = 22.5 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations and a high-affinity (Kd = 3.0 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations. The restoration of full activity occurred in parallel with the tight binding (high affinity) of pyridoxal 5'-phosphate to the apoenzyme. Along with these characteristics, spectral analyses of holoenzyme and apoenzyme at pH 8.4 and pH 6.2 indicate a pH-dependent modulation of coenzyme function. Based on the pH-dependent changes in the polarity of the active-site environment, pyridoxal 5'-phosphate forms different Schiff-base tautomers at pH 8.4 and pH 6.2 with absorption maxima at 415 nm and 333 nm, respectively. These separate forms of Schiff-base confer different catalytic efficiencies to the enzyme.

  11. Evidence That GH115 α-Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility*

    PubMed Central

    Rogowski, Artur; Baslé, Arnaud; Farinas, Cristiane S.; Solovyova, Alexandra; Mortimer, Jennifer C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2014-01-01

    The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan. PMID:24214982

  12. Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation.

    PubMed

    Liu, Wei; Wang, Hong; Yu, Juping; Liu, Yameng; Lu, Weisheng; Chai, Yin; Liu, Chao; Pan, Chun; Yao, Wenbing; Gao, Xiangdong

    2016-10-05

    A polysaccharide, coded as BDP, purified from the injection powder of Bacillus Calmette Guerin (BCG) polysaccharide and nucleic acid, was composed mainly of α-D-(1→4)-linked glucan with (1→6)-linked branches and trace amounts of fucose and mannose from the results of FT-IR, HPAEC-PAD and NMR spectrum. The Mw, Mn, Mz, and [Formula: see text] were determined to be 1.320×10(5)g/mol, 1.012×10(5)g/mol, 2.139×10(5)g/mol, and 21.8±3.2%nm by using HPSEC-MALLS, respectively. The ν value from [Formula: see text] was calculated to be 0.52±0.01, which firstly clarified that BDP existed as random coils in 0.9% NaCl aqueous solution. AFM and SEM combined with Congo-red test also revealed that the polysaccharide was irregular globular like or curly structure. Furthermore, in vitro tests on RAW264.7 murine macrophages cells revealed that BDP exhibited significant immunomodulatory activity.

  13. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers

    PubMed Central

    Woo, J A; Zhao, X; Khan, H; Penn, C; Wang, X; Joly-Amado, A; Weeber, E; Morgan, D; Kang, D E

    2015-01-01

    The accumulation of amyloid-β protein (Aβ) is an early event associated with synaptic and mitochondrial damage in Alzheimer's disease (AD). Recent studies have implicated the filamentous actin (F-actin) severing protein, Cofilin, in synaptic remodeling, mitochondrial dysfunction, and AD pathogenesis. However, whether Cofilin is an essential component of the AD pathogenic process and how Aβ impinges its signals to Cofilin from the neuronal surface are unknown. In this study, we found that Aβ42 oligomers (Aβ42O, amyloid-β protein 1–42 oligomers) bind with high affinity to low or intermediate activation conformers of β1-integrin, resulting in the loss of surface β1-integrin and activation of Cofilin via Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of β1-integrin prevented Aβ42O-induced Cofilin activation, and allosteric modulation or activation of β1-integrin significantly reduced Aβ42O binding to neurons while blocking Aβ42O-induced reactive oxygen species (ROS) production, mitochondrial dysfunction, depletion of F-actin/focal Vinculin, and apoptosis. Cofilin, in turn, was required for Aβ42O-induced loss of cell surface β1-integrin, disruption of F-actin/focal Talin–Vinculin, and depletion of F-actin-associated postsynaptic proteins. SSH1 reduction, which mitigated Cofilin activation, prevented Aβ42O-induced mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, AD mouse model (APP (amyloid precursor protein)/PS1) brains contained increased SSH1/Cofilin and decreased SSH1/14-3-3 complexes, indicative of SSH1–Cofilin activation via release of SSH1 from 14-3-3. Finally, genetic reduction in Cofilin rescued APP/Aβ-induced synaptic protein loss and gliosis in vivo as well as deficits in long-term potentiation (LTP) and contextual memory in APP/PS1 mice. These novel findings therefore implicate the essential

  14. Multivariable Adaptive Closed-Loop Control of an Artificial Pancreas Without Meal and Activity Announcement

    PubMed Central

    Turksoy, Kamuran; Bayrak, Elif Seyma; Quinn, Lauretta; Littlejohn, Elizabeth

    2013-01-01

    Abstract Background Accurate closed-loop control is essential for developing artificial pancreas (AP) systems that adjust insulin infusion rates from insulin pumps. Glucose concentration information from continuous glucose monitoring (CGM) systems is the most important information for the control system. Additional physiological measurements can provide valuable information that can enhance the accuracy of the control system. Proportional-integral-derivative control and model predictive control have been popular in AP development. Their implementations to date rely on meal announcements (e.g., bolus insulin dose based on insulin:carbohydrate ratios) by the user. Adaptive control techniques provide a powerful alternative that do not necessitate any meal or activity announcements. Materials and Methods Adaptive control systems based on the generalized predictive control framework are developed by extending the recursive modeling techniques. Physiological signals such as energy expenditure and galvanic skin response are used along with glucose measurements to generate a multiple-input–single-output model for predicting future glucose concentrations used by the controller. Insulin-on-board (IOB) is also estimated and used in control decisions. The controllers were tested with clinical studies that include seven cases with three different patients with type 1 diabetes for 32 or 60 h without any meal or activity announcements. Results The adaptive control system kept glucose concentration in the normal preprandial and postprandial range (70–180 mg/dL) without any meal or activity announcements during the test period. After IOB estimation was added to the control system, mild hypoglycemic episodes were observed only in one of the four experiments. This was reflected in a plasma glucose value of 56 mg/dL (YSI 2300 STAT; Yellow Springs Instrument, Yellow Springs, OH) and a CGM value of 63 mg/dL). Conclusions Regulation of blood glucose concentration with an AP

  15. The Extremely Low Activity Comet 209P/LINEAR During Its Extraordinary Close Approach in 2014

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; knight, Matthew m.

    2016-10-01

    We present results from our observing campaign of Comet 209P/LINEAR during its exceptionally close approach to Earth during 2014 May, the third smallest perigee of any comet in two centuries. These circumstances permitted us to pursue several studies of this intrinsically faint object, including measurements of gas and dust production rates, searching for coma morphology, and direct detection of the nucleus to measure its properties. Indeed, we successfully measured the lowest water production rates of an intact comet in over 35 years and a corresponding smallest active area, ∼0.007 km2. When combined with the nucleus size found from radar, this also yields the smallest active fraction for any comet, ∼0.024%. In all, this strongly suggests that 209P/LINEAR is on its way to becoming an inert object. The nucleus was detected but could not easily be disentangled from the inner coma due to seeing variations and changing spatial scales. Even so, we were able to measure a double-peaked lightcurve consistent with the shorter of two viable rotational periods found by Hergenrother. Radial profiles of the dust coma are quite steep, similar to that observed for some other very anemic comets, and suggest that vaporizing icy grains are present.

  16. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  17. Crystal structure of Plasmodium vivax FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity.

    PubMed

    Rajan, Sreekanth; Austin, David; Harikishore, Amaravadhi; Nguyen, Quoc Toan; Baek, Kwanghee; Yoon, Ho Sup

    2014-07-01

    The malarial parasites currently remain one of the most dreadful parasites, which show increasing trend of drug resistance to the currently available antimalarial drugs. Thus, the need to identify and characterize new protein targets in these parasites can aid to design novel therapeutic strategies to combat malaria. Recently, the conserved FK506-binding protein family members with molecular weight of 35 kDa from Plasmodium falciparum and Plasmodium vivax (referred to as PfFKBP35 and PvFKBP35, respectively) were identified for drug targeting. Further data mining revealed a 25-kDa FKBP (FKBP25) family member present in the parasites. FKBP25 belongs to a unique class of FKBP, because it is a nuclear FKBP with multiple protein-binding partners. Apart from immune regulation, it is also known for its chaperoning role in various cellular processes such as transcription regulation and trafficking. Here, we present the biochemical characterization and 1.9-Å crystal structure of an N-terminal truncated FKBP25 from P. vivax (PvFKBP25(72-209)). The protein reveals the noncanonical nature with unique structural changes observed in the loops flanking the active site, concealing the binding pocket. Further, a potential calmodulin-binding domain, which is absent in human FKBP25, is observed in this protein. Although the functional implication of Plasmodium FKBP25 in malaria still remains elusive, we speculate that the notable conformational changes in its structure might serve as an overture in understanding its molecular mechanism.

  18. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways

    PubMed Central

    Lee, Ho-Jin; Shi, De-Li; Zheng, Jie J

    2015-01-01

    The intracellular signaling molecule Dishevelled (Dvl) mediates canonical and non-canonical Wnt signaling via its PDZ domain. Different pathways diverge at this point by a mechanism that remains unclear. Here we show that the peptide-binding pocket of the Dvl PDZ domain can be occupied by Dvl's own highly conserved C-terminus, inducing a closed conformation. In Xenopus, Wnt-regulated convergent extension (CE) is readily affected by Dvl mutants unable to form the closed conformation than by wild-type Dvl. We also demonstrate that while Dvl cooperates with other Wnt pathway elements to activate canonical Wnt signaling, the open conformation of Dvl more effectively activates Jun N-terminal kinase (JNK). These results suggest that together with other players in the Wnt signaling pathway, the conformational change of Dvl regulates Wnt stimulated JNK activity in the non-canonical Wnt signaling. DOI: http://dx.doi.org/10.7554/eLife.08142.001 PMID:26297804

  19. Mass Spectrometry Reveals Differences in Stability and Subunit Interactions between Activated and Nonactivated Conformers of the (αβγδ)4 Phosphorylase Kinase Complex*

    PubMed Central

    Lane, Laura A.; Nadeau, Owen W.; Carlson, Gerald M.; Robinson, Carol V.

    2012-01-01

    Phosphorylase kinase (PhK), a 1.3 MDa enzyme complex that regulates glycogenolysis, is composed of four copies each of four distinct subunits (α, β, γ, and δ). The catalytic protein kinase subunit within this complex is γ, and its activity is regulated by the three remaining subunits, which are targeted by allosteric activators from neuronal, metabolic, and hormonal signaling pathways. The regulation of activity of the PhK complex from skeletal muscle has been studied extensively; however, considerably less is known about the interactions among its subunits, particularly within the non-activated versus activated forms of the complex. Here, nanoelectrospray mass spectrometry and partial denaturation were used to disrupt PhK, and subunit dissociation patterns of non-activated and phospho-activated (autophosphorylation) conformers were compared. In so doing, we have established a network of subunit contacts that complements and extends prior evidence of subunit interactions obtained from chemical crosslinking, and these subunit interactions have been modeled for both conformers within the context of a known three-dimensional structure of PhK solved by cryoelectron microscopy. Our analyses show that the network of contacts among subunits differs significantly between the nonactivated and phospho-activated conformers of PhK, with the latter revealing new interprotomeric contact patterns for the β subunit, the predominant subunit responsible for PhK's activation by phosphorylation. Partial disruption of the phosphorylated conformer yields several novel subcomplexes containing multiple β subunits, arguing for their self-association within the activated complex. Evidence for the theoretical αβγδ protomeric subcomplex, which has been sought but not previously observed, was also derived from the phospho-activated complex. In addition to changes in subunit interaction patterns upon phospho-activation, mass spectrometry revealed a large change in the overall

  20. Effects of PRE and POST Therapy Drug-Pressure Selected Mutations on HIV-1 Protease Conformational Sampling

    PubMed Central

    Carter, Jeffrey D.; Gonzales, Estrella G.; Huang, Xi; Smith, Adam N.; deVera, Ian Mitchelle S.; D’Amore, Peter W.; Rocca, James R.; Goodenow, Maureen; Dunn, Ben M.; Fanucci, Gail E.

    2015-01-01

    Conformational sampling of pre- and post-therapy subtype B HIV-1 protease sequences derived from a pediatric subject infected via maternal transmission with HIV-1 were characterized by double electron-electron resonance spectroscopy. The conformational ensemble of the PRE construct resembles native-like inhibitor bound states. In contrast, the POST construct, which contains accumulated drug-pressure selected mutations, has a predominantly semi-open conformational ensemble, with increased populations of open-like states. The single point mutant L63P, which is contained in PRE and POST, has decreased dynamics, particularly in the flap region, and also displays a closed-like conformation of inhibitor-bound states. These findings support our hypothesis that secondary mutations accumulate in HIV-1 protease to shift conformational sampling to stabilize open-like conformations, while maintaining the predominant semi-open conformation for activity. PMID:24983495

  1. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop.

    PubMed

    Mokrosiński, Jacek; Frimurer, Thomas M; Sivertsen, Bjørn; Schwartz, Thue W; Holst, Birgitte

    2012-09-28

    Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.

  2. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.

    PubMed

    Jafari Azad, Vida; Kasravi, Shahab; Alizadeh Zeinabad, Hojjat; Memar Bashi Aval, Mehri; Saboury, Ali Akbar; Rahimi, Arash; Falahati, Mojtaba

    2016-09-15

    Herein, the interaction of iron nanoparticle (Fe-NP) with cytochrome c (Cyt c) was investigated, and a range of techniques such as dynamic light scattering (DLS), zeta potential measurements, static and synchronous fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy were used to analyze the interaction between Cyt c and Fe-NP. DLS and zeta potential measurements showed that the values of hydrodynamic radius and charge distribution of Fe-NP are 83.95 ± 3.7 nm and 4.5 ± .8 mV, respectively. The fluorescence spectroscopy results demonstrated that the binding of Fe-NP with Cyt c is mediated by hydrogen bonds and van der Waals interactions. Also Fe-NP induced conformational changes in Cyt c and reduced the melting temperature value of Cyt c from 79.18 to 71.33°C. CD experiments of interaction between Fe-NP and Cyt c revealed that the secondary structure of Cyt c with the dominant α-helix structures remained unchanged whereas the tertiary structure and heme position of Cyt c are subjected to remarkable changes. Absorption spectroscopy at 695 nm revealed that Fe-NP considerably disrupt the Fe…S(Met80) bond. In addition, the UV-vis experiment showed the peroxidase-like activity of Cyt c upon interaction with Fe-NP. Hence, the data indicate the Fe-NP results in unfolding of Cyt c and subsequent peroxidase-like activity of denatured species. It was concluded that a comprehensive study of the interaction of Fe-NP with biological system is a crucial step for their potential application as intracellular delivery carriers and medicinal agents.

  3. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62.

    PubMed

    Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C; King, Charles C; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E; Newton, Alexandra C

    2015-09-04

    Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation.

  4. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.

    PubMed

    Swanson, Colby A; Sliwinski, Marek K

    2013-09-01

    DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.

  5. Rounding up active cis-elements in the triple C corral: combining conservation, cleavage and conformation capture for the analysis of regulatory gene domains.

    PubMed

    McBride, David J; Kleinjan, Dirk A

    2004-11-01

    Identification and functional analysis of potential cis-regulatory elements is a laborious process that often depends on removing putative elements from their natural context to study their activity. While such methods provide valuable information about the isolated element, they disregard the potential role of an element's interaction(s) with other regulatory sequences and the three-dimensional structure of an active gene locus. Here, two novel methods are discussed--chromosome conformation capture (3C) and RNA-TRAP--that can be used to detect interactions between distal regulatory sites and which thus indicate the chromosomal conformation that is adopted by a gene locus in various states of transcriptional activity. Combined with comparative genomics and traditional DNase I hypersensitive site mapping, these methods form a powerful approach for the study of the mechanisms of long-range transcriptional regulation.

  6. Postnatal changes of local neuronal circuits involved in activation of jaw-closing muscles.

    PubMed

    Inoue, Tomio; Nakamura, Shiro; Takamatsu, Junichi; Tokita, Kenichi; Gemba, Akiko; Nakayama, Kiyomi

    2007-04-01

    Feeding behaviour in mammals changes from suckling to mastication during postnatal development and the neuronal circuits controlling feeding behaviour should change in parallel to the development of orofacial structures. In this review we discuss the location of excitatory premotor neurons for jaw-closing motoneurons (JCMNs) and postnatal changes of excitatory synaptic transmission from the supratrigeminal region (SupV) to JCMNs. We show that neurons located in SupV and the reticular formation dorsal to the facial nucleus most likely excite JCMNs. Excitatory inputs from SupV to JCMNs are mediated by activation of glutamate and glycine receptors in neonatal rats, whereas glycinergic inputs from SupV to JCMNs become inhibitory with age. We also show that the incidence of post-spike afterdepolarization increases during postnatal development, whereas the amplitude and half-duration of the medium-duration afterhyperpolarization decrease with age. Such postnatal changes in synaptic transmission from SupV to JCMNs and membrane properties of JCMNs might be involved in the transition from suckling to mastication.

  7. A Distant Echo of Milky Way Central Activity Closes the Galaxy’s Baryon Census

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Krongold, Y.; Mathur, S.; Elvis, M.

    2016-09-01

    We report on the presence of large amounts of million-degree gas in the Milky Way’s interstellar and circum-galactic medium. This gas (1) permeates both the Galactic plane and the halo, (2) extends to distances larger than 60-200 kpc from the center, and (3) its mass is sufficient to close the Galaxy’s baryon census. Moreover, we show that a vast, ˜6 kpc radius, spherically symmetric central region of the Milky Way above and below the 0.16 kpc thick plane has either been emptied of hot gas or the density of this gas within the cavity has a peculiar profile, increasing from the center up to a radius of ˜6 kpc, and then decreasing with a typical halo density profile. This, and several other converging pieces of evidence, suggest that the current surface of the cavity, at 6 kpc from the Galaxy’s center, traces the distant echo of a period of strong nuclear activity of our supermassive black hole, occurring about 6 Myr ago.

  8. Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic Archaeon

    PubMed Central

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu

    2014-01-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137

  9. Detection of local polarity and conformational changes at the active site of rabbit muscle creatine kinase with a new arginine-specific fluorescent probe.

    PubMed

    Wang, Shujuan; Wang, Xiaochun; Shi, Wen; Wang, Ke; Ma, Huimin

    2008-02-01

    A new polarity-sensitive fluorescent probe, 3-(4-chloro-6-p-glyoxal-phenoxy-1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CGTDP), is synthesized for selective labeling of active-site arginine residues. The probe comprises a neutral red moiety as a polarity-sensitive fluorophore and a phenylglyoxal unit as an arginine-specific labeling group. The probe exhibits a sensitive response of shift of fluorescence maximum emission wavelength to solvent polarity only instead of pH or temperature, which leads to the use of the probe in detecting the local polarity and conformational changes of the active site of rabbit muscle creatine kinase (CK) denatured by pH or temperature. The polarity of the active site domain has been first found to correspond to a dielectric constant of about 44, and the conformational change of the active site directly revealed by CGTDP occurs far before that of CK as a whole disclosed by the intrinsic tryptophan fluorescence during acid or thermal denaturation. The present strategy may provide a useful method to detect the local polarity and conformational changes of the active sites of many enzymes that employ arginine residues as anion recognition sites under different denaturation conditions.

  10. Differential Activities of the Two Closely Related Withanolides, Withaferin A and Withanone: Bioinformatics and Experimental Evidences

    PubMed Central

    Manjunath, Kavyashree; Uthayakumar, M.; Kanaujia, Shankar P.; Kaul, Sunil C.; Sekar, Kanagaraj; Wadhwa, Renu

    2012-01-01

    Background and Purpose Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. Methodology/Principal Findings In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and

  11. 75 FR 177 - Agency Information Collection; Activity Under OMB Review; Confidential Close Call Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... determining a root cause of such event. BTS collects close call reports submitted by railroad employees and... root causes of frequently reported close calls. The database is a valuable tool to railroad carriers... consequence from occurring. Such information is used to develop new training programs, identify root causes...

  12. Conformational studies on the four stereoisomers of the novel anticholinergic 4-(dimethylamino)-2-phenyl-2-(2-pyridyl)pentanamide

    NASA Astrophysics Data System (ADS)

    Oyasu, Hitoshi; Nakanishi, Isao; Tanaka, Akito; Murano, Kenji; Matsuo, Masaaki

    1995-04-01

    To interpret differences in the anticholinergic activity among the four steroisomers of 4-(dimethylamino)-2-phenyl-2-(2-pyridyl)pentanamide ( 1-4), we performed conformational studies using the semiempirical molecular orbital method. The structures of the global minimum-energy conformations obtained for 1-4, however, could not explain the different activities, particularly in terms of distances between the essential pharmacophores. We thus implemented superimposition studies, using the energetically stable conformations of the most active stereoisomer, 1( 2S,4R), as a template. The energy penalties for a conformation change of the less active stereoisomers 2-4 from their global minimum-energy structure to a new conformation, fitting onto the global minimum-energy conformation of 1, appear to account for the differences in the pharmacological potency better than using the other conformations of 1 as a template. We thus presume that the global minimum-energy conformation of 1 is closely related to the bioactive conformation for these anticholinergics, and also that the pharmacological potency is linked to how readily these substances can change their conformations to fit the muscarinic receptor.

  13. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  14. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases

    SciTech Connect

    Marcotte, Douglas J.; Liu, Yu-Ting; Arduini, Robert M.; Hession, Catherine A.; Miatkowski, Konrad; Wildes, Craig P.; Cullen, Patrick F.; Hong, Victor; Hopkins, Brian T.; Mertsching, Elisabeth; Jenkins, Tracy J.; Romanowski, Michael J.; Baker, Darren P.; Silvian, Laura F.

    2010-11-15

    Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 {angstrom} resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 {angstrom} resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.

  15. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics

    SciTech Connect

    Hanson, Jeffrey A.; Dunderstadt, Karl; Watkins, Lucas P.; Bhattacharyya, Sucharita; Brokaw, Jason B.; Chu, Jhih-wei; Yang, Haw

    2007-11-13

    Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme’s lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK’s domain movements on its catalytic time scale. To quantitatively measure the enzyme’s entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly, the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme’s conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme’s rate-limiting step.

  16. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star

    NASA Astrophysics Data System (ADS)

    Delrez, L.; Santerne, A.; Almenara, J.-M.; Anderson, D. R.; Collier-Cameron, A.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Udry, S.; Van Grootel, V.; West, R. G.

    2016-06-01

    We present the discovery by the WASP-South survey of WASP-121 b, a new remarkable short-period transiting hot Jupiter. The planet has a mass of 1.183_{-0.062}^{+0.064} MJup, a radius of 1.865 ± 0.044 RJup, and transits every 1.274 9255_{-0.000 0025}^{+0.000 0020} days an active F6-type main-sequence star (V = 10.4, 1.353_{-0.079}^{+0.080} M⊙, 1.458 ± 0.030 R⊙, Teff = 6460 ± 140 K). A notable property of WASP-121 b is that its orbital semimajor axis is only ˜1.15 times larger than its Roche limit, which suggests that the planet is close to tidal disruption. Furthermore, its large size and extreme irradiation (˜7.1 109 erg s-1 cm-2) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAnsiting Planets and PlanetesImals Small Telescope, we indeed detect its emission in the z'-band at better than ˜4σ, the measured occultation depth being 603 ± 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of 257.8°_{-5.5°}^{+5.3°}. This result may suggest a significant misalignment between the spin axis of the host star and the orbital plane of the planet. If confirmed, this high misalignment would favour a migration of the planet involving strong dynamical events with a third body.

  17. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases.

    PubMed

    Datta, Kausiki; Johnson, Neil P; LiCata, Vince J; von Hippel, Peter H

    2009-06-19

    In addition to their capacity for template-directed 5' --> 3' DNA synthesis at the polymerase (pol) site, DNA polymerases have a separate 3' --> 5' exonuclease (exo) editing activity that is involved in assuring the fidelity of DNA replication. Upon misincorporation of an incorrect nucleotide residue, the 3' terminus of the primer strand at the primer-template (P/T) junction is preferentially transferred to the exo site, where the faulty residue is excised, allowing the shortened primer to rebind to the template strand at the pol site and incorporate the correct dNTP. Here we describe the conformational changes that occur in the primer strand as it shuttles between the pol and exo sites of replication-competent Klenow and Klentaq DNA polymerase complexes in solution and use these conformational changes to measure the equilibrium distribution of the primer between these sites for P/T DNA constructs carrying both matched and mismatched primer termini. To this end, we have measured the fluorescence and circular dichroism spectra at wavelengths of >300 nm for conformational probes comprising pairs of 2-aminopurine bases site-specifically replacing adenine bases at various positions in the primer strand of P/T DNA constructs bound to DNA polymerases. Control experiments that compare primer conformations with available x-ray structures confirm the validity of this approach. These distributions and the conformational changes in the P/T DNA that occur during template-directed DNA synthesis in solution illuminate some of the mechanisms used by DNA polymerases to assure the fidelity of DNA synthesis.

  18. Conformational properties of pyrethroids

    NASA Astrophysics Data System (ADS)

    Mullaley, Anne; Taylor, Robin

    1994-04-01

    X-ray database searches and theoretical potential-energy calculations indicate that the acid moieties of pyrethroid cyclopropanecarboxylate esters adopt a well-defined, relatively inflexible conformation. In contrast, the alcohol moieties can exist in many low-energy geometries. One of the least conformationally flexible pyrethroid alcohols is 4-phenylindan-2-ol. The approximate overall conformation adopted at the biological binding site by insecticidal esters of this alcohol can be deduced with reasonable confidence by molecular modelling. Graphics superposition of a variety of pyrethroid acids suggests the existence of a large but rather narrow pocket at the binding site, in which substituents at the 3-position of the cyclopropane ring can be accommodated. This pocket is asymmetric with respect to the plane of the cyclopropane ring, extending further on the side remote from the ester group. The effects of α-substitution on the insecticidal activity of pyrethroid esters may be due to the influence of substituents on the preferred conformations of the molecules. This hypothesis rationalises the paradoxical dependence on absolute stereochemistry of the activities of various allylbenzyl and cinnamyl alcohol derivatives.

  19. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.

    PubMed

    Bustos-Jaimes, Ismael; Sosa-Peinado, Alejandro; Rudiño-Piñera, Enrique; Horjales, Eduardo; Calcagno, Mario L

    2002-05-24

    The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.

  20. Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment.

    PubMed Central

    Puri, A; Booy, F P; Doms, R W; White, J M; Blumenthal, R

    1990-01-01

    Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments. Images PMID:2196382

  1. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  2. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1

    SciTech Connect

    Santos, Camila Ramos; Meza, Andreia Navarro; Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto; Giesel, Guilherme Menegon; Verli, Hugo; Squina, Fabio Marcio; Prade, Rolf Alexander; Murakami, Mario Tyago

    2010-12-10

    Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

  3. A novel conformation of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90

    PubMed Central

    Krukenberg, K.A.; Förster, F.; Rice, L.M.; Sali, A.; Agard, D.A.

    2008-01-01

    Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free and the nucleotide-bound forms. Using small-angle x-ray scattering and newly developed molecular modeling methods, we describe the solution structure of HtpG and demonstrate how it differs from known Hsp90 conformations. In addition to this novel HtpG conformation, we demonstrate that under physiologically-relevant conditions, multiple conformations co-exist in equilibrium. In solution, nucleotide-free HtpG adopts a more extended conformation than observed in the crystal, and upon the addition of AMPPNP, HtpG is in equilibrium between this open state and a closed state that is in good agreement with the yeast AMPPNP crystal structure. These studies provide a unique view of Hsp90 conformational dynamics and provide a new model for the role of nucleotide in effecting conformational change. PMID:18462680

  4. Correlation of conventional and conformational anti-desmoglein antibodies with phenotypes and disease activities in patients with pemphigus vulgaris.

    PubMed

    Li, Zhiliang; Zhang, Jiechen; Xu, Haoxiang; Jin, Peiying; Feng, Suying; Wang, Baoxi

    2015-04-01

    Pemphigus is an autoimmune disease characterised by anti-desmoglein (Dsg) antibodies in the serum of patients. The disease can be divided into pemphigus foliaceus and pemphigus vulgaris. Anti-Dsg1 antibody is generally related to pemphigus with cutaneous lesion, and the anti-Dsg3 antibody is related to pemphigus with mucosa lesion. Twenty-nine patients with pemphigus vulgaris were selected in the clinical study. The severity of the cutaneous and mucosa lesions of these patients was evaluated using Pemphigus disease area index (PDAI). Conventional and conformational anti-Dsg index values were determined using enzyme-linked immunosorbent assay (ELISA) and ethylenediaminetetraacetic acid-treated ELISA. The relationship between clinical phenotypes and immunological profiles was analysed. In the correlation analysis, both the conventional and conformational anti-Dsg1 ELISA index values were correlated with the total and cutaneous PDAIs. In addition, conformational anti-Dsg3 ELISA index values exhibited a positive correlation with cutaneous PDAI in both types of pemphigus vulgaris, whereas no correlation was observed for the conventional anti-Dsg3 ELISA index values.

  5. How Close Is Close Reading?

    ERIC Educational Resources Information Center

    Saccomano, Doreen

    2014-01-01

    Close Reading is a strategy that can be used when reading challenging text. This strategy requires teachers to provide scaffolding, and create opportunities for think-alouds and rereading of text in order to help students become active readers who focus on finding text-based support for their answers. In addition, teachers must also be aware of…

  6. Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα.

    PubMed

    Akimoto, Madoka; McNicholl, Eric Tyler; Ramkissoon, Avinash; Moleschi, Kody; Taylor, Susan S; Melacini, Giuseppe

    2015-01-01

    Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a "gatekeeper" domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91-379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics.

  7. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.

    PubMed

    Flannelly, David F; Aoki, Thalia G; Aristilde, Ludmilla

    2015-09-01

    The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.

  8. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    PubMed Central

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-01-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme. PMID:27273563

  9. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    NASA Astrophysics Data System (ADS)

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-06-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

  10. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller.

    PubMed

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-06-07

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen's neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

  11. Conformational dynamics of threonine 195 and the S1 subsite in functional trypsin variants.

    PubMed

    Gokey, Trevor; Baird, Teaster T; Guliaev, Anton B

    2012-11-01

    Replacing the catalytic serine in trypsin with threonine (S195T variant) leads to a nearly complete loss of catalytic activity, which can be partially restored by eliminating the C42-C58 disulfide bond. The 0.69 μs of combined explicit solvent molecular dynamics (MD) simulations revealed continuous rearrangement of T195 with different conformational preferences between five trypsin variants tested. Among three conformational families observed for the T195 residue, one showed the T195 hydroxyl in a conformation analogous to that of the serine residue in wild-type trypsin, positioning the hydroxyl oxygen atom for attack on the carbonyl carbon of the peptide substrate. MD simulations demonstrated that this conformation was more populated for the C42A/C58V/S195T and C42A/C58A/S195T triple variants than for the catalytically inactive S195T variant and correlated with restored enzymatic activities for triple variants. In addition, observation of the increased motion of the S214-G219 segment in the S195T substituted variants suggested an existence of open and closed conformations for the substrate binding pocket. The closed conformation precludes access to the S1 binding site and could further reduce enzymatic activities for triple variants. Double variants with intact serine residues (C42A/C58A/S195 and C42A/C58V/S195) also showed interchange between closed and open conformations for the S214-G219 segment, but to a lesser extent than the triple variants. The increased conformational flexibility of the S1 subsite, which was not observed for the wild-type, correlated with reduced enzymatic activities and suggested a possible mode of substrate regulation for the trypsin variants tested.

  12. Conformational dimorphism of isochroman-1-ones in the solid state

    NASA Astrophysics Data System (ADS)

    Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert

    2014-12-01

    Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.

  13. Conformational Landscape of Nicotinoids: Solving the "conformational - Rity" of Anabasine

    NASA Astrophysics Data System (ADS)

    Lesarri, Alberto; Cocinero, Emilio J.; Evangelisti, Luca; Suenram, Richard D.; Caminati, Walther; Grabow, Jens-Uwe

    2010-06-01

    The conformational landscape of the alkaloid anabasine (neonicotine) has been investigated using rotational spectroscopy and ab initio calculations. The results allow a detailed comparison of the structural properties of the prototype piperidinic and pyrrolidinic nicotinoids (anabasine vs. nicotine). Anabasine adopts two most stable conformations in isolation conditions, for which we determined accurate rotational and nuclear quadrupole coupling parameters. The preferred conformations are characterized by an equatorial pyridine moiety and additional N-H equatorial stereochemistry at the piperidine ring (Eq-Eq). The two rings of anabasine are close to a bisecting arrangement, with the observed conformations differing in a ca. 180° rotation of the pyridine subunit, denoted either Syn or Anti. The preference of anabasine for the Eq-Eq-Syn conformation has been established by relative intensity measurements (Syn/Anti˜5(2)). The conformational preferences of free anabasine are directed by a N\\cdot\\cdot\\cdotH-C weak hydrogen bond interaction between the nitrogen lone pair at piperidine and the closest hydrogen bond in pyridine, with N\\cdot\\cdot\\cdotN distances ranging from 4.750 Å (Syn) to 4.233 Å (Anti). R. J. Lavrich, R. D. Suenram, D. F. Plusquellic and S. Davis, 58^th OSU Int. Symp. on Mol. Spectrosc., Columbus, OH, 2003, Comm. RH13.

  14. 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity

    PubMed Central

    2015-01-01

    Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specificity, enhanced biological potency, improved pharmacokinetic properties, increased functional potency, and lowered metabolic susceptibility. The CuI-catalyzed azide–alkyne 1,3-dipolar Huisgen’s cycloaddition, the prototypic click reaction, presents a promising opportunity to develop a new paradigm for an orthogonal bioorganic and intramolecular side chain-to-side chain cyclization. In fact, the proteolytic stable 1,4- or 4,1-disubstituted [1,2,3]triazolyl moiety is isosteric with the peptide bond and can function as a surrogate of the classical side chain-to-side chain lactam forming bridge. Herein we report the design, synthesis, conformational analysis, and functional biological activity of a series of i-to-i+5 1,4- and 4,1-disubstituted [1,2,3]triazole-bridged cyclopeptides derived from MT-II, the homodetic Asp5 to Lys10 side chain-to-side chain bridged heptapeptide, an extensively studied agonist of melanocortin receptors. PMID:25347033

  15. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease.

    PubMed

    Weikl, Thomas R; Hemmateenejad, Bahram

    2013-05-01

    A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.

  16. New open conformation of SMYD3 implicates conformational selection and allostery

    PubMed Central

    Spellmon, Nicholas; Sun, Xiaonan; Xue, Wen; Holcomb, Joshua; Chakravarthy, Srinivas; Shang, Weifeng; Edwards, Brian; Sirinupong, Nualpun; Li, Chunying; Yang, Zhe

    2016-01-01

    SMYD3 plays a key role in cancer cell viability, adhesion, migration and invasion. SMYD3 promotes formation of inducible regulatory T cells and is involved in reducing autoimmunity. However, the nearly “closed” substrate-binding site and poor in vitro H3K4 methyltransferase activity have obscured further understanding of this oncogenically related protein. Here we reveal that SMYD3 can adopt an “open” conformation using molecular dynamics simulation and small-angle X-ray scattering. This ligand-binding-capable open state is related to the crystal structure-like closed state by a striking clamshell-like inter-lobe dynamics. The two states are characterized by many distinct structural and dynamical differences and the conformational transition pathway is mediated by a reversible twisting motion of the C-terminal domain (CTD). The spontaneous transition from the closed to open states suggests two possible, mutually non-exclusive models for SMYD3 functional regulation and the conformational selection mechanism and allostery may regulate the catalytic or ligand binding competence of SMYD3. This study provides an immediate clue to the puzzling role of SMYD3 in epigenetic gene regulation. PMID:28050603

  17. Small-Angle Neutron Scattering Reveals pH-Dependent Conformational Changes in Trichoderma reesei Cellobiohydrolase I: Implications for Enzymatic Activity

    SciTech Connect

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; McGaughey, Joseph; Urban, Volker S; Rempe, Caroline S; Petridis, Loukas; Smith, Jeremy C; Evans, Barbara R; Heller, William T

    2011-01-01

    Cellobiohydrolase I (Cel7A) of the fungus Trichoderma reesei (now classified as an anamorph of Hypocrea jecorina) hydrolyzes crystalline cellulose to soluble sugars, making it of key interest for producing fermentable sugars from biomass for biofuel production. The activity of the enzyme is pH-dependent, with its highest activity occurring at pH 4 5. To probe the response of the solution structure of Cel7A to changes in pH, we measured small angle neutron scattering of it in a series of solutions having pH values of 7.0, 6.0, 5.3, and 4.2. As the pH decreases from 7.0 to 5.3, the enzyme structure remains well defined, possessing a spatial differentiation between the cellulose binding domain and the catalytic core that only changes subtly. At pH 4.2, the solution conformation of the enzyme changes to a structure that is intermediate between a properly folded enzyme and a denatured, unfolded state, yet the secondary structure of the enzyme is essentially unaltered. The results indicate that at the pH of optimal activity, the catalytic core of the enzyme adopts a structure in which the compact packing typical of a fully folded polypeptide chain is disrupted and suggest that the increased range of structures afforded by this disordered state plays an important role in the increased activity of Cel7A through conformational selection.

  18. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop.

    PubMed

    Zhang, Xu; Wu, Jiaxi; Du, Fenghe; Xu, Hui; Sun, Lijun; Chen, Zhe; Brautigam, Chad A; Zhang, Xuewu; Chen, Zhijian J

    2014-02-13

    The presence of DNA in the cytoplasm is a danger signal that triggers immune and inflammatory responses. Cytosolic DNA binds to and activates cyclic GMP-AMP (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP binds to the adaptor protein STING and activates a signaling cascade that leads to the production of type I interferons and other cytokines. Here, we report the crystal structures of human cGAS in its apo form, representing its autoinhibited conformation as well as in its cGAMP- and sulfate-bound forms. These structures reveal switch-like conformational changes of an activation loop that result in the rearrangement of the catalytic site. The structure of DNA-bound cGAS reveals a complex composed of dimeric cGAS bound to two molecules of DNA. Functional analyses of cGAS mutants demonstrate that both the protein-protein interface and the two DNA binding surfaces are critical for cGAS activation. These results provide insights into the mechanism of DNA sensing by cGAS.

  19. Activation of high and low affinity dopamine receptors generates a closed loop that maintains a conductance ratio and its activity correlate

    PubMed Central

    Krenz, Wulf-Dieter C.; Hooper, Ryan M.; Parker, Anna R.; Prinz, Astrid A.; Baro, Deborah J.

    2013-01-01

    Neuromodulators alter network output and have the potential to destabilize a circuit. The mechanisms maintaining stability in the face of neuromodulation are not well described. Using the pyloric network in the crustacean stomatogastric nervous system, we show that dopamine (DA) does not simply alter circuit output, but activates a closed loop in which DA-induced alterations in circuit output consequently drive a change in an ionic conductance to preserve a conductance ratio and its activity correlate. DA acted at low affinity type 1 receptors (D1Rs) to induce an immediate modulatory decrease in the transient potassium current (IA) of a pyloric neuron. This, in turn, advanced the activity phase of that component neuron, which disrupted its network function and thereby destabilized the circuit. DA simultaneously acted at high affinity D1Rs on the same neuron to confer activity-dependence upon the hyperpolarization activated current (Ih) such that the DA-induced changes in activity subsequently reduced Ih. This DA-enabled, activity-dependent, intrinsic plasticity exactly compensated for the modulatory decrease in IA to restore the IA:Ih ratio and neuronal activity phase, thereby closing an open loop created by the modulator. Activation of closed loops to preserve conductance ratios may represent a fundamental operating principle neuromodulatory systems use to ensure stability in their target networks. PMID:24155696

  20. Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations.

    PubMed

    Amaral, Cristiano; Carnevale, Vincenzo; Klein, Michael L; Treptow, Werner

    2012-12-26

    The X-ray structure of the bacterial voltage-gated sodium channel NavAb has been reported in a conformation with a closed conduction pore. Comparison between this structure and the activated-open and resting-closed structures of the voltage-gated Kv1.2 potassium channel suggests that the voltage-sensor domains (VSDs) of the reported structure are not fully activated. Using the aforementioned structures of Kv1.2 as templates, molecular dynamics simulations are used to identify analogous functional conformations of NavAb. Specifically, starting from the NavAb crystal structure, conformations of the membrane-bound channel are sampled along likely pathways for activation of the VSD and opening of the pore domain. Gating charge computations suggest that a structural rearrangement comparable to that occurring between activated-open and resting-closed states is required to explain experimental values of the gating charge, thereby confirming that the reported VSD structure is likely an intermediate along the channel activation pathway. Our observation that the X-ray structure exhibits a low pore domain-opening propensity further supports this notion. The present molecular dynamics study also identifies conformations of NavAb that are seemingly related to the resting-closed and activated-open states. Our findings are consistent with recent structural and functional studies of the orthologous channels NavRh, NaChBac, and NavMs and offer possible structures for the functionally relevant conformations of NavAb.

  1. Identification of a nonpeptidic and conformationally restricted bradykinin B1 receptor antagonist with anti-inflammatory activity.

    PubMed

    D'Amico, Derin C; Aya, Toshi; Human, Jason; Fotsch, Christopher; Chen, Jian Jeffrey; Biswas, Kaustav; Riahi, Bobby; Norman, Mark H; Willoughby, Christopher A; Hungate, Randall; Reider, Paul J; Biddlecome, Gloria; Lester-Zeiner, Dianna; Staden, Carlo Van; Johnson, Eileen; Kamassah, Augustus; Arik, Leyla; Wang, Judy; Viswanadhan, Vellarkad N; Groneberg, Robert D; Zhan, James; Suzuki, Hideo; Toro, Andras; Mareska, David A; Clarke, David E; Harvey, Darren M; Burgess, Laurence E; Laird, Ellen R; Askew, Benny; Ng, Gordon

    2007-02-22

    We report the discovery of chroman 28, a potent and selective antagonist of human, nonhuman primate, rat, and rabbit bradykinin B1 receptors (0.4-17 nM). At 90 mg/kg s.c., 28 decreased plasma extravasation in two rodent models of inflammation. A novel method to calculate entropy is introduced and ascribed approximately 30% of the gained affinity between "flexible" 4 (Ki = 132 nM) and "rigid" 28 (Ki = 0.77 nM) to decreased conformational entropy.

  2. Differential furanose selection in the active sites of archaeal DNA polymerases probed by fixed-conformation nucleotide analogues

    PubMed Central

    Ketkar, Amit; Zafar, Maroof K.; Banerjee, Surajit; Marquez, Victor E.; Egli, Martin; Eoff, Robert L.

    2012-01-01

    DNA polymerases select for the incorporation of deoxyribonucleotide triphosphates (dNTPs) using amino acid side-chains that act as a “steric-gate” to bar improper incorporation of rNTPs. An additional factor in the selection of nucleotide substrates resides in the preferred geometry for the furanose moiety of the incoming nucleotide triphosphate. We have probed the role of sugar geometry during nucleotide selection by model DNA polymerases from Sulfolobus solfataricus using fixed conformation nucleotide analogues. North-methanocarba-dATP (N-MC-dATP) locks the central ring into a RNA-type (C2′-exo, North) conformation near a C3′-endo pucker and South-methanocarba-dATP (S-MC-dATP) locks the central ring system into a (C3′-exo, South) conformation near a C2′-endo pucker. Dpo4 preferentially inserts N-MC-dATP and in the crystal structure of Dpo4 in complex with N-MC-dAMP, the nucleotide analogue superimposes almost perfectly with Dpo4 bound to unmodified dATP. Biochemical assays indicate that the S. solfataricus B-family DNA polymerase Dpo1 can insert and extend from both N-MC-dATP and S-MC-dATP. In this respect, Dpo1 is unexpectedly more tolerant of substrate conformation than Dpo4. The crystal structure of Dpo4 bound to S-MC-dADP shows that poor incorporation of the Southern pucker by the Y-family polymerase results from a hydrogen bond between the 3′-OH group of the nucleotide analogue and the OH group of the steric gate residue, Tyr12, shifting the S-MC-dADP molecule away from the dNTP binding pocket and distorting the base pair at the primer-template junction. These results provide insights into substrate specificity of DNA polymerases, as well as molecular mechanisms that act as a barrier against insertion of rNTPs. PMID:23050956

  3. Conformational Change Observed in the Active Site of Class C β-Lactamase MOX-1 upon Binding to Aztreonam.

    PubMed

    Oguri, Takuma; Ishii, Yoshikazu; Shimizu-Ibuka, Akiko

    2015-08-01

    We solved the crystal structure of the class C β-lactamase MOX-1 complexed with the inhibitor aztreonam at 1.9Å resolution. The main-chain oxygen of Ser315 interacts with the amide nitrogen of aztreonam. Surprisingly, compared to that in the structure of free MOX-1, this main-chain carboxyl changes its position significantly upon binding to aztreonam. This result indicates that the interaction between MOX-1 and β-lactams can be accompanied by conformational changes in the B3 β-strand main chain.

  4. Spin-Selective Thermal Activation of Methane by Closed-Shell [TaO3 ](.).

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-06-13

    Thermal reactions of the closed-shell metal-oxide cluster [TaO3 ](+) with methane were investigated by using FTICR mass spectrometry complemented by high-level quantum chemical calculations. While the generation of methanol and formaldehyde is somewhat expected, [TaO3 ](+) remarkably also has the ability to abstract two hydrogen atoms from methane with the elimination of CH2 . Mechanistically, the generation of CH2 O and CH3 OH occurs on the singlet-ground-state surface, while for the liberation of (3) CH2 , a two-state reactivity scenario prevails.

  5. Computer-assisted determination of minimum energy conformations. 7: A pharmacophore model of the active region of the alpha2-adrenoceptor

    NASA Astrophysics Data System (ADS)

    Ashman, William P.; Mickiewicz, A. P.; Nelson, Todd M.

    1992-09-01

    Molecular modeling and computational chemistry techniques are used to analyze compounds in developing pharmacophores of biological receptors to use as templates in structure activity relationship studies and to design new chemicals having physiological activity of interest. In this study, the results of x-ray crystal analyses and PM3 semi-empirical molecular orbital conformational analyses are used to determine the three-dimensional representations of selected adrenergic compounds known to be agonists with the alpha2-adrenoceptor in achieving optimized geometries and electrostatic parameters. The alpha2-adrenergic agonists interact with the adrenergic system receptors to produce various increases or decreases in hemodynamic responses (i.e., hypertension, hypotension, and bradycardia) and sedation. A pharmacophore model of the active region of the alpha2-adrenoceptor is described based on the superimposition of common structural, electrostatic, and physicochemical features of the compounds. Using the model to predict compound adrenergic activity and to design alpha2-adrenergic compounds is discussed.

  6. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules.

    PubMed Central

    Zegers, I.; Maes, D.; Dao-Thi, M. H.; Poortmans, F.; Palmer, R.; Wyns, L.

    1994-01-01

    The interactions of RNase A with cytidine 3'-monophosphate (3'-CMP) and deoxycytidyl-3',5'-deoxyadenosine (d(CpA)) were analyzed by X-ray crystallography. The 3'-CMP complex and the native structure were determined from trigonal crystals, and the d(CpA) complex from monoclinic crystals. The differences between the overall structures are concentrated in loop regions and are relatively small. The protein-inhibitor contacts are interpreted in terms of the catalytic mechanism. The general base His 12 interacts with the 2' oxygen, as does the electrostatic catalyst Lys 41. The general acid His 119 has 2 conformations (A and B) in the native structure and is found in, respectively, the A and the B conformation in the d(CpA) and the 3'-CMP complex. From the present structures and from a comparison with RNase T1, we propose that His 119 is active in the A conformation. The structure of the d(CpA) complex permits a detailed analysis of the downstream binding site, which includes His 119 and Asn 71. The comparison of the present RNase A structures with an inhibitor complex of RNase T1 shows that there are important similarities in the active sites of these 2 enzymes, despite the absence of any sequence homology. The water molecules were analyzed in order to identify conserved water sites. Seventeen water sites were found to be conserved in RNase A structures from 5 different space groups. It is proposed that 7 of those water molecules play a role in the binding of the N-terminal helix to the rest of the protein and in the stabilization of the active site. PMID:7756988

  7. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  8. Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur

    2015-03-01

    Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.

  9. Conformational Change Near the Redox Center of Dihydrolipoamide Dehydrogenase Induced by NAD(+) to Regulate the Enzyme Activity.

    PubMed

    Fukamichi, Tomoe; Nishimoto, Etsuko

    2015-05-01

    Dihydrolipoamide dehydrogenase (LipDH) transfers two electrons from dihydrolipoamide (DHL) to NAD(+) mediated by FAD. Since this reaction is the final step of a series of catalytic reaction of pyruvate dehydrogenase multi-enzyme complex (PDC), LipDH is a key enzyme to maintain the fluent metabolic flow. We reported here the conformational change near the redox center of LipDH induced by NAD(+) promoting the access of the DHL to FAD. The increase in the affinity of DHL to redox center was evidenced by the decrease in K M responding to the increase in the concentration of NAD(+) in Lineweaver-Burk plots. The fluorescence intensity of FAD transiently reduced by the addition of DHL was not recovered but rather reduced by the binding of NAD(+) with LipDH. The fluorescence decay lifetimes of FAD and Trp were prolonged in the presence of NAD(+) to show that FAD would be free from the electron transfer from the neighboring Tyrs and the resonance energy transfer efficiency between Trp and FAD lowered. These results consistently reveal that the conformation near the FAD and the surroundings would be so rearranged by NAD(+) to allow the easier access of DHL to the redox center of LipDH.

  10. Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere.

    PubMed

    Bollhöfer, A; Schlosser, C; Ross, J O; Sartorius, H; Schmid, S

    2014-01-01

    Krypton-85 activity concentrations in surface air have been measured at Darwin, which is located in northern Australia and is influenced by seasonal monsoonal activity. Measurements between August 2007 and May 2010 covered three wet seasons. The mean activity concentration of krypton-85 measured during this period was 1.31±0.02Bqm(-3). A linear model fitted to the average monthly data, using month and monsoon as predictors, shows that krypton-85 activity concentration measured during the sampling period has declined by 0.01Bqm(-3) per year. Although there is no statistically significant difference in mean activity concentration of krypton-85 between wet and dry season, the model implies that activity concentration is higher by about 0.015Bqm(-3) during months influenced by the monsoon when a north westerly flow prevails. Backward dispersion runs using the Lagrangian particle dispersion model Hysplit4 highlight possible source regions during an active monsoon located deep in the northern hemisphere, and include reprocessing facilities in Japan and India. However, the contribution of these facilities to krypton-85 activity concentrations in Darwin would be less than 0.003Bqm(-3).

  11. Supratrigeminal Bilaterally Projecting Neurons Maintain Basal Tone and Enable Bilateral Phasic Activation of Jaw-Closing Muscles

    PubMed Central

    Stanek, Edward; Rodriguez, Erica; Zhao, Shengli; Han, Bao-Xia

    2016-01-01

    Anatomical studies have identified brainstem neurons that project bilaterally to left and right oromotor pools, which could potentially mediate bilateral muscle coordination. We use retrograde lentiviruses combined with a split-intein-mediated split-Cre-recombinase system in mice to isolate, characterize, and manipulate a population of neurons projecting to both the left and right jaw-closing trigeminal motoneurons. We find that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus (SupV) and the parvicellular and intermediate reticular regions dorsal to the facial motor nucleus. These BPNs also project to multiple midbrain and brainstem targets implicated in orofacial sensorimotor control, and consist of a mix of glutamatergic, GABAergic, and glycinergic neurons, which can drive both excitatory and inhibitory inputs to trigeminal motoneurons when optogenetically activated in slice. Silencing BPNs with tetanus toxin light chain (TeNT) increases bilateral masseter activation during chewing, an effect driven by the expression of TeNT in SupV BPNs. Acute unilateral optogenetic inhibition of SupV BPNs identifies a group of tonically active neurons that function to lower masseter muscle tone, whereas unilateral optogenetic activation of SupV BPNs is sufficient to induce bilateral masseter activation both during resting state and during chewing. These results provide evidence for SupV BPNs in tonically modulating jaw-closing muscle tone and in mediating bilateral jaw closing. SIGNIFICANCE STATEMENT We developed a method that combines retrograde lentiviruses with the split-intein-split-Cre system in mice to isolate, characterize, and manipulate neurons that project to both left and right jaw-closing motoneurons. We show that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus and the rostral parvicellular and intermediate reticular nuclei. BPNs consist of both excitatory and

  12. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  13. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.

    PubMed

    Fiori, Simone

    2003-12-01

    In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.

  14. Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes.

    PubMed

    Dadlani, Vikash; Levine, James A; McCrady-Spitzer, Shelly K; Dassau, Eyal; Kudva, Yogish C

    2015-10-18

    Physical activity is an important determinant of glucose variability in type 1 diabetes (T1D). It has been incorporated as a nonglucose input into closed-loop control (CLC) protocols for T1D during the last 4 years mainly by 3 research groups in single center based controlled clinical trials involving a maximum of 18 subjects in any 1 study. Although physical activity data capture may have clinical benefit in patients with T1D by impacting cardiovascular fitness and optimal body weight achievement and maintenance, limited number of such studies have been conducted to date. Clinical trial registries provide information about a single small sample size 2 center prospective study incorporating physical activity data input to modulate closed-loop control in T1D that are seeking to build on prior studies. We expect an increase in such studies especially since the NIH has expanded support of this type of research with additional grants starting in the second half of 2015. Studies (1) involving patients with other disorders that have lasted 12 weeks or longer and tracked physical activity and (2) including both aerobic and resistance activity may offer insights about the user experience and device optimization even as single input CLC heads into real-world clinical trials over the next few years and nonglucose input is introduced as the next advance.

  15. Low-order design and high-order simulation of active closed-loop control for aerospace structures under construction

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.

    1989-01-01

    Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.

  16. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE.

    PubMed

    Kondyurin, Alexey; Nosworthy, Neil J; Bilek, Marcela M M

    2011-05-17

    Horseradish peroxidase (HRP) was immobilized onto both plasticized and unplasticized polyvinylchloride (PVC) and ultrahigh molecular weight polyethylene (UHMWPE). Plasma immersion ion implantation (PIII) in a nitrogen plasma with 20 kV bias was used to facilitate covalent immobilization and to improve the wettability of the surfaces. The surfaces and immobilized protein were studied using attenuated total reflection infrared (ATR-IR) spectroscopy and water contact angle measurements. Protein elution on exposure to repeated sodium dodecyl sulfate (SDS) washing was used to assess the strength of HRP immobilization. The presence of low molecular weight components (plasticizer, additives in solvent, unreacted monomers, adsorbed molecules on surface) was found to have a major influence on the strength of immobilization and the conformation of the protein on the samples not exposed to the PIII treatment. A phenomenological model considering interactions between the low molecular weight components, the protein molecule, and the surface is developed to explain these observations.

  17. Steinberg conformal algebras

    NASA Astrophysics Data System (ADS)

    Mikhalev, A. V.; Pinchuk, I. A.

    2005-06-01

    The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.

  18. Catalase activity as a potential indicator of the reducer component of small closed ecosystems

    NASA Astrophysics Data System (ADS)

    Sarangova, A. B.; Somova, L. A.; Pisman, T. I.

    1997-01-01

    Dynamics of catalase activity has been shown to reflect the growth curve of microorganisms in batch cultivation (celluloselythic bacteria Bacillus acidocaldarius and bacteria of the associated microflora Chlorella vulgaris). Gas and substrate closure of the three component ecosystems with spatially separated components ``producer-consumer-reducer'' (Chl. vulgaris-Paramecium caudatum-B. acidocaldarius, two bacterial strains isolated from the associated microflora Chl. vulgaris) demonstrated that the functioning of the reducer component can be estimated by the catalase activity of microorganisms of this component.

  19. Recent seismogenic fault activity in a Late Quaternary closed-lake graben basin (Albacete, SE Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pascua, M. A.; Pérez-López, R.; Calvo, J. P.; García del Cura, M. A.

    2008-11-01

    The Cordovilla basin, located within the frontal thrust belt of the Betic Cordillera, SE Spain, is an elongated NW-SE graben showing discrete surface rupture generated by Holocene paleoearthquake activity. A main and an antithetic normal, NW-SE trending, active faults bound the basin. Paleoseismological evidence is reported on upslope-facing scarps of the antithetic fault, acting as dams to runoff, which contributed to temporary lacustrine conditions, as well as sediment uplift. The fluvial network in the area shows a poor drainage activity, whereas a present lake is dammed by the antithetic fault. The modern landscape is controlled by Holocene faulting, modifying the geological environment according to earthquake occurrence, from flat alluvial plains to lacustrine local basins. The application of the diffusion dating technique to unconsolidated sediments for the antithetic fault scarp indicates an age between 1 and 2 ka. Various geometric parameters have been obtained in order to reconstruct the paleoseismic history of the Cordovilla graben basin. The surface rupture and fault-offset values are associated with discrete active morpholineaments, parallel to the Pozohondo Fault. The Tobarra-Cordovilla segment (the structural boundary of the Cordovilla Basin) was generated by earthquakes with magnitudes (Mw) greater than 6.0, based on Wells and Coppersmith fault scarp relations.

  20. Three closely related 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridines: synthesis, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    PubMed

    Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-03-01

    In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C21H19F4N3O2S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C21H19ClF3N3O2S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C22H22F3N3O2S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P212121, respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R3(3)(18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.

  1. Dynamic equilibrium between closed and partially closed states of the bacterial Enzyme I unveiled by solution NMR and X-ray scattering

    PubMed Central

    Venditti, Vincenzo; Schwieters, Charles D.; Grishaev, Alexander; Clore, G. Marius

    2015-01-01

    Enzyme I (EI) is the first component in the bacterial phosphotransferase system, a signal transduction pathway in which phosphoryl transfer through a series of bimolecular protein–protein interactions is coupled to sugar transport across the membrane. EI is a multidomain, 128-kDa homodimer that has been shown to exist in two conformational states related to one another by two large (50–90°) rigid body domain reorientations. The open conformation of apo EI allows phosphoryl transfer from His189 located in the N-terminal domain α/β (EINα/β) subdomain to the downstream protein partner bound to the EINα subdomain. The closed conformation, observed in a trapped phosphoryl transfer intermediate, brings the EINα/β subdomain into close proximity to the C-terminal dimerization domain (EIC), thereby permitting in-line phosphoryl transfer from phosphoenolpyruvate (PEP) bound to EIC to His189. Here, we investigate the solution conformation of a complex of an active site mutant of EI (H189A) with PEP. Simulated annealing refinement driven simultaneously by solution small angle X-ray scattering and NMR residual dipolar coupling data demonstrates unambiguously that the EI(H189A)–PEP complex exists in a dynamic equilibrium between two approximately equally populated conformational states, one corresponding to the closed structure and the other to a partially closed species. The latter likely represents an intermediate in the open-to-closed transition. PMID:26305976

  2. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  3. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    SciTech Connect

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.

  4. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography

    DOE PAGES

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; ...

    2015-02-10

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less

  5. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography*

    PubMed Central

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-01-01

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. PMID:25670859

  6. Ionic liquid-induced all-α to α + β conformational transition in cytochrome c with improved peroxidase activity in aqueous medium.

    PubMed

    Bharmoria, Pankaj; Trivedi, Tushar J; Pabbathi, Ashok; Samanta, Anunay; Kumar, Arvind

    2015-04-21

    Choline dioctylsulfosuccinate [Cho][AOT] (a surface active ionic liquid) has been found to induce all-α to α + β conformational transition in the secondary structure of enzyme cytochrome c (Cyt c) with an enhanced peroxidase activity in its aqueous vesicular phase at pH 7.0. [Cho][AOT] interacted with Cyt c distinctly at three critical concentrations (aggregation C1, saturation C2 and vesicular C3) as detected from isothermal titration calorimetric analysis. Oxidation of heme iron was observed from the disappearance of the Q band in the UV-vis spectra of Cyt c upon [Cho][AOT] binding above C3. Circular dichroism analysis (CD) has shown the loss in both the secondary (190-240 nm) and tertiary (250-300 nm) structure of Cyt c in the monomeric regime until C1, followed by their stabilization until the pre-vesicular regime (C1 → C3). Loss in both the secondary and tertiary structure has been observed in the post-vesicular regime with the change in Cyt c conformation from all-α to α + β which is similar to the conformational changes of Cyt c upon binding with mitochondrial membrane (Biochemistry 1998, 37, 6402-6409), thus citing the potential utility of [Cho][AOT] membranes as an artificial analog for in vitro bio-mimicking. Fluorescence correlation spectroscopy (FCS) measurements confirm the unfolding of Cyt c in the vesicular phase. Dynamic light scattering experiments have shown the contraction of [Cho][AOT] vesicles upon Cyt c binding driven by electrostatic interactions observed by charge neutralization from zeta potential measurements. [Cho][AOT] has been found to enhance the peroxidase activity of Cyt c with maximum activity at C3, observed using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt as the substrate in the presence of hydrogen peroxide. This result shows the relevance of tuning ionic liquids to surfactants for bio-mimicking of specific membrane protein-lipid interactions.

  7. Close, but no garlic: Perceptuomotor and event knowledge activation during language comprehension

    PubMed Central

    Amsel, Ben D.; DeLong, Katherine A.; Kutas, Marta

    2015-01-01

    Recent research has shown that language comprehension is guided by knowledge about the organization of objects and events in long-term memory. We use event-related brain potentials (ERPs) to determine the extent to which perceptuomotor object knowledge and event knowledge are immediately activated during incremental language processing. Event-related but anomalous sentence continuations preceded by single-sentence event descriptions elicited reduced N400s, despite their poor fit within local sentence contexts. Anomalous words sharing particular sensory or motor attributes with contextually expected words also elicited reduced N400s, despite being inconsistent with global context (i.e., event information). We rule out plausibility as an explanation for both relatedness effects. We show that perceptuomotor-related facilitation is not due to lexical priming between words in the local context and the target or to associative or categorical relationships between expected and unexpected targets. Overall our results are consistent with the immediate and incremental activation of perceptual and motor object knowledge and generalized event knowledge during sentence processing. PMID:25897182

  8. Structure and cytotoxic activity of sesquiterpene glycoside esters from Calendula officinalis L.: Studies on the conformation of viridiflorol.

    PubMed

    D'Ambrosio, Michele; Ciocarlan, Alexandru; Colombo, Elisa; Guerriero, Antonio; Pizza, Cosimo; Sangiovanni, Enrico; Dell'Agli, Mario

    2015-09-01

    Topic applications of Calendula officinalis L. lipophilic extracts are used in phytotherapy to relieve skin inflammatory conditions whereas infusions are used as a remedy for gastric complaints. Such a different usage might be explained by some cytotoxicity of lipophilic extracts at gastric level but little is known about this. Therefore, we screened the CH2Cl2 extract from the flowers of C. officinalis by MTT and LDH assays in human epithelial gastric cells AGS. This bioassay-oriented approach led to the isolation of several sesquiterpene glycosides which were structurally characterized by spectroscopic measurements, chemical reactions and MM calculations. The conformational preferences of viridiflorol fucoside were established and a previously assigned stereochemistry was revised. The compounds 1a, 2a and 3f showed comparably high cytotoxicity in the MTT assays, whereas the effect on LDH release was lower. Our study provides new insights on the composition of C. officinalis extracts of medium polarity and identifies the main compounds that could be responsible for cytotoxic effects at gastric level.

  9. Connecting Active-Site Loop Conformations and Catalysis in Triosephosphate Isomerase: Insights from a Rare Variation at Residue 96 in the Plasmodial Enzyme.

    PubMed

    Pareek, Vidhi; Samanta, Moumita; Joshi, Niranjan V; Balaram, Hemalatha; Murthy, Mathur R N; Balaram, Padmanabhan

    2016-04-01

    Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position 96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residue--phenylalanine--at this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue 96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.

  10. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  11. Stabilities and conformational transitions of various proteases in the presence of an organic solvent.

    PubMed

    Ogino, Hiroyasu; Gemba, Yuichi; Yutori, Yoshikazu; Doukyu, Noriyuki; Ishimi, Kosaku; Ishikawa, Haruo

    2007-01-01

    The half-life of the activity of the PST-01 protease that was secreted by organic solvent-tolerant Pseudomonas aeruginosa PST-01 was very long in the presence of methanol as compared to that in the absence of methanol. The conformational transitions of the PST-01 protease, alpha-chymotrypsin, thermolysin, and subtilisin in the presence and absence of methanol were monitored by measuring the CD spectra. The conformational stabilities of the PST-01 protease and subtilisin in the presence of methanol were higher than those in the absence of methanol. This resulted in high stability of these proteases in the presence of methanol. Furthermore, it was suggested that the organic solvent stabilities of enzymes were closely related to the secondary structure by monitoring the conformational transitions of polyamino acids, which form the particular conformations, in the presence and absence of methanol.

  12. Non-dimensionalised closed-form parametric analysis of semi-active vehicle suspensions using a quarter-car model

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Blanchard, Emmanuel

    2011-02-01

    This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.

  13. Association between food mixing ability and electromyographic activity of jaw-closing muscles during chewing of a wax cube.

    PubMed

    Fueki, K; Sugiura, T; Yoshida, E; Igarashi, Y

    2008-05-01

    The purpose of this study was to clarify association between food mixing ability and activity of jaw-closing muscles during chewing of a wax cube. Twenty subjects with complete dentitions (mean age 24.1 years) were directed to chew a two-coloured paraffin wax cube for 10 strokes on preferred chewing side. Surface electromyograms (EMG) were recorded from the right and left masseter and anterior temporalis muscles during chewing of the wax cube. Maximum voltage, duration and muscle work for burst of each chewing cycle were measured on integrated EMG in each muscle. Food mixing ability was estimated as mixing ability index determined from the colour mixture and shape of the chewed wax cube. Some EMG parameters of all muscles except for masseter muscle on non-chewing side showed significant positive correlations with the mixing ability index (r = 0.45-0.56, P < 0.05). However, most of the EMG parameters correlated with one another. As a result, only muscle work of masseter muscle on the chewing side was identified as a significant predictor accounting for 28% interindividual variation in the mixing ability index (P < 0.01). These results suggest that activity of jaw-closing muscles during chewing the wax cube seems to be weakly related to food mixing ability.

  14. Tryptophanase from Proteus vulgaris: the conformational rearrangement in the active site, induced by the mutation of Tyrosine 72 to phenylalanine, and its mechanistic consequences.

    PubMed

    Kulikova, Vitalia V; Zakomirdina, Ludmila N; Dementieva, Irene S; Phillips, Robert S; Gollnick, Paul D; Demidkina, Tatyana V; Faleev, Nicolai G

    2006-04-01

    Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.

  15. Relationship between SU subdomains that regulate the receptor-mediated transition from the native (fusion-inhibited) to the fusion-active conformation of the murine leukemia virus glycoprotein.

    PubMed

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-10-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  16. Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein

    PubMed Central

    Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc

    2002-01-01

    Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All

  17. ALLOSTERY AND SUBSTRATE CHANNELING IN THE TRYPTOPHAN SYNTHASE BIENZYME COMPLEX: EVIDENCE FOR TWO SUBUNIT CONFORMATIONS AND FOUR QUATERNARY STATES

    PubMed Central

    Niks, Dimitri; Hilario, Eduardo; Dierkers, Adam; Ngo, Huu; Borchardt, Dan; Neubauer, Thomas J.; Fan, Li; Mueller, Leonard J.; Dunn, Michael F.

    2014-01-01

    The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. 19F NMR studies of bound α-site substrate analogues, N-(4’-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4’-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in 19F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformation states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle. PMID:23952479

  18. Histone Deacetylase Activity Represses Gamma Interferon-Inducible HLA-DR Gene Expression following the Establishment of a DNase I-Hypersensitive Chromatin Conformation

    PubMed Central

    Osborne, Aaron; Zhang, Hongquan; Yang, Wen-Ming; Seto, Edward; Blanck, George

    2001-01-01

    Expression of the retinoblastoma tumor suppressor protein (Rb) is required for gamma interferon (IFN-γ)-inducible major histocompatibility complex class II gene expression and transcriptionally productive HLA-DRA promoter occupancy in several human tumor cell lines. Treatment of these Rb-defective tumor cell lines with histone deacetylase (HDAC) inhibitors rescued IFN-γ-inducible HLA-DRA and -DRB mRNA and cell surface protein expression, demonstrating repression of these genes by endogenous cellular HDAC activity. Additionally, Rb-defective, transcriptionally incompetent tumor cells retained the HLA-DRA promoter DNase I-hypersensitive site. Thus, HDAC-mediated repression of the HLA-DRA promoter occurs following the establishment of an apparent nucleosome-free promoter region and before transcriptionally productive occupancy of the promoter by the required transactivators. Repression of HLA-DRA promoter activation by HDAC activity likely involves a YY1 binding element located in the first exon of the HLA-DRA gene. Chromatin immunoprecipitation experiments localized YY1 to the HLA-DRA gene in Rb-defective tumor cells. Additionally, mutation of the YY1 binding site prevented repression of the promoter by HDAC1 and partially prevented activation of the promoter by trichostatin A. Mutation of the octamer element also significantly reduced the ability of HDAC1 to confer repression of inducible HLA-DRA promoter activation. Treatment of Rb-defective tumor cells with HDAC inhibitors greatly reduced the DNA binding activity of Oct-1, a repressor of inducible HLA-DRA promoter activation. These findings represent the first evidence that HDAC activity can repress IFN-γ-inducible HLA class II gene expression and also demonstrate that HDAC activity can contribute to promoter repression following the establishment of a DNase I-hypersensitive chromatin conformation. PMID:11533238

  19. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity.

    PubMed

    Fourmann, Jean-Baptiste; Tillault, Anne-Sophie; Blaud, Magali; Leclerc, Fabrice; Branlant, Christiane; Charpentier, Bruno

    2013-01-01

    Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10-L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.

  20. The Evolutionary Conformation from Traditional Lecture to Active Learning in an Undergraduate Biology Course and Its Effects on Student Achievement

    ERIC Educational Resources Information Center

    Diederich, Kirsten Bakke

    2010-01-01

    In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that…

  1. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation.

    PubMed

    Secundo, Francesco; Carrea, Giacomo

    2005-11-20

    Sucrose, trehalose, and mannitol were colyophilized with lipase from Burkholderia cepacia and their effects on the activity and enantioselectitivity of the enzyme evaluated using as model reactions the transesterification between n-octanol or 6-methyl-5-hepten-2-ol with vinyl acetate. The lipase co-lyophilized with sugars showed an activity which was up to 4.7-fold higher (at a sugar/lipase ratio >or= 20) than that observed without sugar. Analogously, lipase enantioselectivity, expressed as the enantiomeric ratio, increased up to 2.8-fold in the presence of sugars. The conformation of the lipase was investigated by means of Fourier transform infrared spectroscopy (FT/IR) in water and as lyophilized powder. The infrared spectra of lyophilized lipase in the presence and, even more so, in the absence of sugars were different from that of the enzyme in water. In particular, the band at around 1,654/cm, typically assigned to alpha-helix, was less intense in the lyophilized samples. Nevertheless, the enzyme in the presence of sugars showed a decrease of the bands at 1,614-1,620/cm and at 1,680-1,695/cm that indicates a lower content of intermolecular beta-sheets (typical of protein aggregates). Additionally the increase of the component at 1,546/cm in the amide II region is consistent with a hydrogen bond pattern of the enzyme more similar to that shown in water. These results suggest that although sugars are not able to fully preserve the native secondary structure, they might contribute to reduce the conformational changes caused by protein/protein interactions. These factors in combinations with others (e.g., ability to reduce deleterious interactions between the enzyme and inert supports) make sugars (both mono- and disaccharides) an interesting class of additives for improving the performance of biocatalysts in organic solvents.

  2. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy.

    PubMed

    Lu, Maolin; Lu, H Peter

    2014-10-16

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  3. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment.

  4. Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease.

    PubMed

    Mahawaththa, Mithun C; Pearce, Benjamin J G; Szabo, Monika; Graham, Bim; Klein, Christian D; Nitsche, Christoph; Otting, Gottfried

    2017-03-21

    The Zika virus presents a serious risk for global health. Crystal structures of different constructs of the Zika virus NS2B-NS3 protease (NS2B-NS3pro) have been determined with the aim to provide a basis for rational drug discovery. In these structures, the C-terminal β-hairpin of NS2B, NS2Bc, was observed to be either disordered (open conformation) or bound to NS3pro complementing the substrate binding site (closed conformation). Enzymatically active constructs of flaviviral NS2B-NS3 proteases commonly used for inhibitor testing contain a covalent peptide linker between NS2B and NS3pro. Using a linked construct of Zika virus NS2B-NS3pro, we studied the location of NS2Bc relative to NS3pro in solution by pseudocontact shifts generated by a paramagnetic lanthanide tag attached to NS3pro. Both closed and open conformations were observed with different inhibitors. As the NS2B co-factor is involved in substrate binding of flaviviral NS2B-NS3 proteases, the destabilization of the closed conformation in the linked construct makes it an attractive tool to search for inhibitors that interfere with the formation of the enzymatically active, closed conformation.

  5. A comparative analysis between active and passive techniques for underwater 3D reconstruction of close-range objects.

    PubMed

    Bianco, Gianfranco; Gallo, Alessandro; Bruno, Fabio; Muzzupappa, Maurizio

    2013-08-20

    In some application fields, such as underwater archaeology or marine biology, there is the need to collect three-dimensional, close-range data from objects that cannot be removed from their site. In particular, 3D imaging techniques are widely employed for close-range acquisitions in underwater environment. In this work we have compared in water two 3D imaging techniques based on active and passive approaches, respectively, and whole-field acquisition. The comparison is performed under poor visibility conditions, produced in the laboratory by suspending different quantities of clay in a water tank. For a fair comparison, a stereo configuration has been adopted for both the techniques, using the same setup, working distance, calibration, and objects. At the moment, the proposed setup is not suitable for real world applications, but it allowed us to conduct a preliminary analysis on the performances of the two techniques and to understand their capability to acquire 3D points in presence of turbidity. The performances have been evaluated in terms of accuracy and density of the acquired 3D points. Our results can be used as a reference for further comparisons in the analysis of other 3D techniques and algorithms.

  6. A Comparative Analysis between Active and Passive Techniques for Underwater 3D Reconstruction of Close-Range Objects

    PubMed Central

    Bianco, Gianfranco; Gallo, Alessandro; Bruno, Fabio; Muzzupappa, Maurizio

    2013-01-01

    In some application fields, such as underwater archaeology or marine biology, there is the need to collect three-dimensional, close-range data from objects that cannot be removed from their site. In particular, 3D imaging techniques are widely employed for close-range acquisitions in underwater environment. In this work we have compared in water two 3D imaging techniques based on active and passive approaches, respectively, and whole-field acquisition. The comparison is performed under poor visibility conditions, produced in the laboratory by suspending different quantities of clay in a water tank. For a fair comparison, a stereo configuration has been adopted for both the techniques, using the same setup, working distance, calibration, and objects. At the moment, the proposed setup is not suitable for real world applications, but it allowed us to conduct a preliminary analysis on the performances of the two techniques and to understand their capability to acquire 3D points in presence of turbidity. The performances have been evaluated in terms of accuracy and density of the acquired 3D points. Our results can be used as a reference for further comparisons in the analysis of other 3D techniques and algorithms. PMID:23966193

  7. Conformer-specific hydrogen atom tunnelling in trifluoromethylhydroxycarbene

    NASA Astrophysics Data System (ADS)

    Mardyukov, Artur; Quanz, Henrik; Schreiner, Peter R.

    2017-01-01

    Conformational control of organic reactions is at the heart of the biomolecular sciences. To achieve a particular reactivity, one of many conformers may be selected, for instance, by a (bio)catalyst, as the geometrically most suited and appropriately reactive species. The equilibration of energetically close-lying conformers is typically assumed to be facile and less energetically taxing than the reaction under consideration itself: this is termed the 'Curtin-Hammett principle'. Here, we show that the trans conformer of trifluoromethylhydroxycarbene preferentially rearranges through a facile quantum-mechanical hydrogen tunnelling pathway, while its cis conformer is entirely unreactive. Hence, this presents the first example of a conformer-specific hydrogen tunnelling reaction. The Curtin-Hammett principle is not applicable, due to the high barrier between the two conformers.

  8. A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein.

    PubMed

    Paul, Bijan Kumar; Bhattacharjee, Kaustav; Bose, Subhrangsu; Guchhait, Nikhil

    2012-11-28

    The understanding of the interaction of nanomaterials with relevant biological targets e.g., proteins is of paramount importance in biological and pharmaceutical fields of research. In a biological fluid, proteins can associate with nanomaterials which can subsequently exert a significant impact on the conformation and functionality of the protein. Here we report the binding interaction of a model plasma protein Bovine Serum Albumin (BSA) with a magnetic nanoparticle of mixed spinel origin (Ni(0.5)Zn(0.5)Fe(2)O(4), abbreviated as NZFO from now and onwards). The thermodynamic parameters (ΔH, ΔS and ΔG) for the protein-nanoparticle binding interaction have been evaluated from the van't Hoff equation to unveil that the binding interaction is enthalpically as well as entropically driven (ΔH < 0 and ΔS > 0), with an overall favorable Gibbs free energy change (ΔG < 0). Also the thermodynamic parameters delineate the predominant role of electrostatic interaction in the BSA-NZFO binding process. The results of temperature dependent fluorescence quenching and time-resolved fluorescence decay measurements indicate a static quenching mechanism in the present case. Steady-state absorption, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes in BSA induced by the binding of NZFO. Disruption of the native conformation of the protein upon binding with NZFO is reflected through a reduced functionality (in terms of esterase activity) of the protein-NZFO conjugate system in comparison to the native protein. Based on the experimental findings the probable binding location of NZFO is argued to be the hydrophilic domain IB. This seems physically realizable since domain I of BSA is characterized by a net negative charge and hence can serve as a favorable binding site for NZFO carrying a positive surface charge. The key role of electrostatic forces in the BSA

  9. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  10. The evolutionary conformation from traditional lecture to active learning in an undergraduate biology course and its effects on student achievement

    NASA Astrophysics Data System (ADS)

    Diederich, Kirsten Bakke

    In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that requires students do something in the classroom rather than simply listen to a lecture (Herreid, 2006). These student centered approaches provide the students with the opportunity to work cooperatively while developing the skills required for critical inquiry. They also help the students make the connections between what is being taught and how it can be applied in a real world setting. Science education researchers have attempted to analyze the efficacy of active learning. Although they find it difficult to compare the data, they state unequivocally that "Active learning is a better strategy for learning than the traditional didactic lecture format" (Prince, 2004). However, even though research supports the efficacy of active learning, instructors find it difficult to adopt this pedagogy into their classrooms due to concerns such as loss of content knowledge and student resistance. This three year qualitative and quantitative study addressed the level of student learning and satisfaction in an introductory vertebrate biology class at a small liberal arts college. The courses were taught by the same instructor using three pedagogical methods; traditional lecture (TL), problem-based learning (PBL), and case-based learning (CBL). Student grades and levels of assessment were compared between the TL and PBL, while student attrition rates, course satisfaction and views of active and group learning were analyzed across all three sections. The evolutionary confirmations from TL to PBL and ultimately the adoption of CBL as the method of choice are discussed from the view of both the faculty member and the students.

  11. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  12. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients.

  13. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin

    PubMed Central

    1990-01-01

    Ligand affinity chromatography was used to purify a cell surface alpha 2-macroglobulin (alpha 2M) receptor. Detergent extracts of human placenta were applied to an affinity matrix consisting of alpha 2M, previously reacted with methylamine, coupled to Sepharose. Elution with EDTA specifically released polypeptides with apparent molecular masses of 420 and 39 kD. In some preparations, small amounts of a 90-kD polypeptide were observed. The 420- and 39-kD polypeptides appear specific for the forms of alpha 2M activated by reaction with proteinases or methylamine and do not bind to an affinity matrix consisting of native alpha 2M coupled to Sepharose. Separation of these two polypeptides was accomplished by anion exchange chromatography, and binding activity was exclusively associated with the 420-kD polypeptide. The purified 420-kD protein binds to the conformationally altered forms of alpha 2M that are known to specifically interact with alpha 2M receptors and does not bind to native alpha 2M. Binding of the 420-kD polypeptide to immobilized wheat germ agglutinin indicates that this polypeptide is a glycoprotein. The cell surface localization of the 420-kD glycoprotein was confirmed by affinity chromatography of extracts from surface radioiodinated fibroblasts. These properties suggest that the 420-kD polypeptide is a cell surface receptor for the activated forms of alpha 2M. PMID:1691187

  14. Mutations at Arg220 and Thr237 in PER-2 β-lactamase: impact on conformation, activity and susceptibility to inhibitors.

    PubMed

    Ruggiero, Melina; Curto, Lucrecia; Brunetti, Florencia; Sauvage, Eric; Galleni, Moreno; Power, Pablo; Gutkind, Gabriel

    2017-03-20

    PER-2 accounts for up to 10% of oxyimino-cephalosporin resistance in Klebsiella pneumoniae and Escherichia coli in Argentina, and hydrolyzes both cefotaxime and ceftazidime with high catalytic efficiencies (kcat/Km). Through crystallographic analyses, we recently proposed the existence of a hydrogen-bond network connecting Ser70-Gln69-oxyanion water-Thr237-Arg220 that might be important for the activity and inhibition of the enzyme. Mutations at Arg244 in most class A β-lactamases (as TEM and SHV) reduce susceptibility to mechanism-based inactivators, and Arg220 in PER β-lactamases is equivalent to Arg244. Alterations in the hydrogen bond network of the active site in PER-2, through modifications in key residues such as Arg220 and (to a much lesser extent) Thr237, dramatically impact the overall susceptibility to inactivation, with up to ∼300 and 500-fold reduction in the kinact/KI values for clavulanic acid and tazobactam, respectively. Hydrolysis on cephalosporins and aztreonam was also affected although in different extents compared to wild-type PER-2; for cefepime, only Arg220Gly mutation resulted in a strong reduction in the catalytic efficiency. Mutations at Arg220 entail modifications in the catalytic activity of PER-2, and probably local perturbations in the protein, but not global conformational changes. Therefore, the apparent structural stability of the mutants suggests that these enzymes could be possibly selected in vivo.

  15. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    SciTech Connect

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  16. Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation.

    PubMed

    Qian, Ke; Gu, Yi; Zhao, Yumei; Li, Zhenzong; Sun, Ming

    2014-07-01

    Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. Citicoline (250 mg/kg i.v. 30 min and 4 h after CHI) lessened body weight loss, and improved neurological functions significantly at 7 days after CHI. It markedly lowered brain edema and blood-brain barrier permeability, enhanced the activities of superoxide dismutase and the levels of glutathione, reduced the levels of malondialdehyde and lactic acid. Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.

  17. Activation and Transformation of Ethane by Au2 VO3(+) Clusters with Closed-Shell Electronic Structures.

    PubMed

    Li, Ya-Ke; Li, Zi-Yu; Zhao, Yan-Xia; Liu, Qing-Yu; Meng, Jing-Heng; He, Sheng-Gui

    2016-01-26

    The study of chemical reactions between gold-containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O(-.)), the role of gold in the systems without O(-.) is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2 VO3(+) clusters with closed-shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C-H activation. The Au-Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2 VO3(+) and bare Au2(+) demonstrates that Au2 VO3(+) not only retains the property of bare Au2(+) that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.

  18. Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions.

    PubMed

    Smith, William James; Nassar, Nicolas; Bretscher, Anthony; Cerione, Richard A; Karplus, P Andrew

    2003-02-14

    Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins that cross-link the actin cytoskeleton to the plasma membrane and also may function in signaling cascades that regulate the assembly of actin stress fibers. Here, we report a crystal structure for the free (activated) FERM domain (residues 2-297) of recombinant human ezrin at 2.3 A resolution. Structural comparison among the dormant moesin FERM domain structure and the three known active FERM domain structures (radixin, moesin, and now ezrin) allows the clear definition of regions that undergo structural changes during activation. The key regions affected are residues 135-150 and 155-180 in lobe F2 and residues 210-214 and 235-267 in lobe F3. Furthermore, we show that a large increase in the mobilities of lobes F2 and F3 accompanies activation, suggesting that their integrity is compromised. This leads us to propose a new concept that we refer to as keystone interactions. Keystone interactions occur when one protein (or protein part) contributes residues that allow another protein to complete folding, meaning that it becomes an integral part of the structure and would rarely dissociate. Such interactions are well suited for long-lived cytoskeletal protein interactions. The keystone interactions concept leads us to predict two specific docking sites within lobes F2 and F3 that are likely to bind target proteins.

  19. Interaction of Rio1 Kinase with Toyocamycin Reveals a Conformational Switch That Controls Oligomeric State and Catalytic Activity

    SciTech Connect

    Kiburu, Irene N.; LaRonde-LeBlanc, Nicole

    2012-10-10

    Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 {angstrom} and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.

  20. The Effect of Tensile Stress on the Conformational Free Energy Landscape of Disulfide Bonds

    PubMed Central

    Anjukandi, Padmesh; Dopieralski, Przemyslaw; Ribas–Arino, Jordi; Marx, Dominik

    2014-01-01

    Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C–C–S–S dihedrals, and . Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force–clamp spectroscopy and computer simulation. The and angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so–called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C–C–S–S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two –carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides. PMID:25286308

  1. Synthesis and structure-activity relationship of novel conformationally restricted analogues of serotonin as 5-HT6 receptor ligands.

    PubMed

    Nirogi, Ramakrishna V S; Kambhampati, Ramasastri; Kothmirkar, Prabhakar; Konda, Jagadishbabu; Bandyala, Thrinath Reddy; Gudla, Parandhama; Arepalli, Sobhanadri; Gangadasari, Narasimhareddy P; Shinde, Anil K; Deshpande, Amol D; Dwarampudi, Adireddy; Chindhe, Anil K; Dubey, Pramod Kumar

    2012-06-01

    5-Hydroxytryptamine 6 receptors (5-HT(6)R) are being perceived as the possible target for treatment of cognitive disorders as well as obesity. The present article deals with the design, synthesis, in vitro binding and structure-activity relationship of a novel series of tetracyclic tryptamines with the rigidized N-arylsulphonyl, N-arylcarbonyl and N-benzyl substituents as 5-HT(6) receptor ligands. The chiral sulphonyl derivatives 15a and 17a showed high affinity at 5-HT(6)R with the K(i) of 23.4 and 20.5 nM, respectively. The lead compound from the series 15a has acceptable ADME properties, adequate brain penetration and is active in animal models of cognition like Novel Object Recognition Task (NORT) and water maze.

  2. Mapping intermolecular interactions and active site conformations: from human MMP-1 crystal structure to molecular dynamics free energy calculations.

    PubMed

    Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2017-02-01

    The zinc-dependent Matrix Metalloproteinases (MMPs) found within the extracellular matrix (ECM) of vertebrates are linked to pathological processes such as arthritis, skin ulceration and cancer. Although a general backbone proteolytic mechanism is understood, crystallographic data continue to suggest an active site that is too narrow to encompass the respective substrate. We present a fully parameterised Molecular Dynamics (MD) study of the structural properties of an MMP-1-collagen crystallographic structure (Protein Data Bank - 4AUO), followed by an exploration of the free energy surface of a collagen polypeptide chain entering the active site, using a combined meta-dynamics and umbrella sampling (MDUS) approach. We conclude that the interactions between MMP-1 and the collagen substrate are in good agreement with a number of experimental studies. As such, our unrestrained MD simulations and our MDUS results, which indicate an energetic barrier for a local uncoiling and insertion event, can inform future investigations of the collagen-peptide non-bonded association steps with the active site prior to proteolytic mechanisms. The elucidation of such free energy barriers provides a better understanding of the role of the enzyme in the ECM and is important in the design of future MMP inhibitors.

  3. Conformational Analysis of an Antibacterial Cyclodepsipeptide Active against Mycobacterium tuberculosis by a Combined ROE and RDC Analysis.

    PubMed

    Fredersdorf, Maic; Kurz, Michael; Bauer, Armin; Ebert, Marc-Olivier; Rigling, Carla; Lannes, Laurie; Thiele, Christina Marie

    2017-01-20

    Griselimycin (GM) and methylgriselimycin (MGM), naturally produced by microorganisms of the genus Streptomyces, are cyclic depsipeptides composed of ten amino acids. They exhibit antibacterial activity against Mycobacterium species by inhibiting the sliding clamp of prokaryotic DNA polymerase III and are therefore considered as potential anti-tuberculosis drugs. The difference between the peptides is the presence of l-(R)-4-methyl-proline in MGM instead of l-proline in GM at position 8 of the amino acid sequence. Methylation increases both metabolic stability and activity of MGM compared to GM. To get deeper insight into the structure-activity relationship, the solution structure of the cyclic part of MGM was determined using rotating-frame nuclear Overhauser effect (ROE) distance restraints and residual dipolar couplings (RDC). The structure of MGM in solution is compared to the structure of GM in a co-crystal with DNA polymerase III subunit beta. As a result, a highly defined structural model of MGM is obtained, which shows related characteristics to the bound GM.

  4. Conformational analysis of thiophene analogs of propranolol

    NASA Astrophysics Data System (ADS)

    Corral, Carlos; Donoso, Rosa; Elguero, Jose; Goya, Pilar; Lissavetzky, Jaime; Rozas, Isabel

    1990-10-01

    Conformation of 3-tert-butylamino-1-thienyloxy-2-propanol, a thiophene analogue of propanolol, have been theoretically investigated by molecular mechanics and semiempirical calculations. The conformational minima obtained have been compared with those reported for propranolol using molecular graphics. The good "fit" obtained can account for the similar biological activity of these compounds.

  5. Molecular conformation of the full-length tumor suppressor NF2/Merlin—a small angle neutron scattering study

    PubMed Central

    Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei

    2014-01-01

    Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693

  6. Spectroscopic analyses of manganese ions effects on the conformational changes of inorganic pyrophosphatase from psychrophilic Shewanella sp. AS-11.

    PubMed

    Ginting, Elvy Like; Maeganeku, Chihiro; Motoshima, Hiroyuki; Watanabe, Keiichi

    2014-02-01

    Mn²⁺ ions influence the activity, temperature dependence, and thermostability of the psychrophilic Shewanella-PPase (Sh-PPase), and are required to function in cold environments. The functional characteristics of Sh-PPase on activation with Mn²⁺ ions are possibly related to conformational changes in the molecule. In this study, conformational changes of Sh-PPase on activation with Mn²⁺ ions were analyzed in solution by fluorescence spectroscopy analysis of intrinsic tryptophan residues, 1-anilino-8-naphthalene sulfonate fluorescence, and circular dichroism spectroscopy. For Sh-PPase, Mn²⁺ ions did not affect the flexibility of the tryptophan residues and secondary structure of the enzyme. However, the microenvironment of the tryptophan residues and surface area of Sh-PPase were more hydrophilic on activation with Mn²⁺ ions. These results indicate that activation with Mn²⁺ ions causes conformational changes around the aromatic amino acid residues and affects the hydrophobicity of the enzyme surface, which results in conformational changes. Substrate-induced conformational changes reflect that metal-free Sh-PPase in solution indicated an open structure and will be a close structure when binding substrate. In combination of our spectroscopic analyses on Sh-PPase, it can be concluded that activation with Mn²⁺ ions changes some conformation of Sh-PPase molecule in solution.

  7. Active ocular vergence improves postural control in elderly as close viewing distance with or without a single cognitive task.

    PubMed

    Matheron, Eric; Yang, Qing; Delpit-Baraut, Vincent; Dailly, Olivier; Kapoula, Zoï

    2016-01-01

    Performance of the vestibular, visual, and somatosensory systems decreases with age, reducing the capacity of postural control, and increasing the risk of falling. The purpose of this study is to measure the effects of vision, active vergence eye movements, viewing distance/vergence angle and a simple cognitive task on postural control during an upright stance, in completely autonomous elderly individuals. Participated in the study, 23 elderly subjects (73.4 ± 6.8 years) who were enrolled in a center dedicated to the prevention of falling. Their body oscillations were measured with the DynaPort(®) device, with three accelerometers, placed at the lumbosacral level, near the center of mass. The conditions were the following: eyes open fixating on LED at 20 cm or 150 cm (vergence angle 17.0° and 2.3° respectively) with or without additional cognitive tasks (counting down from one hundred), performing active vergence by alternating the fixation between the far and the near LED (convergence and divergence), eyes closed after having fixated the far LED. The results showed that the postural stability significantly decreased when fixating on the LED at a far distance (weak convergence angle) with or without cognitive tasks; active convergence-divergence between the LEDs improved the postural stability while eye closure decreased it. The privilege of proximity (with increased convergence at near), previously established with foot posturography, is shown here to be valid for accelerometry with the center of mass in elderly. Another major result is the beneficial contribution of active vergence eye movements to better postural stability. The results bring new perspectives for the role of eye movement training to preserve postural control and autonomy in elderly.

  8. Physicochemical characterization of the cytoplasmic domain of the epidermal growth factor receptor and evidence for conformational changes associated with its activation by ammonium sulphate.

    PubMed Central

    Gregoriou, M; Jones, P F; Timms, J F; Yang, J J; Radford, S E; Rees, A R

    1995-01-01

    in the presence of high (NH4)2SO4 showed that the protein was more extensively phosphorylated than in the absence of salt, or than the native receptor. Far-u.v. circular-dichroism spectra of the cytoplasmic domain changed dramatically at 1 M (NH4)2SO4, raising the possibility that (NH4)2SO4 activates the kinase catalytic domain by inducing conformational changes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 PMID:7702558

  9. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase.

    PubMed

    Biswas, Tapan; Yi, Li; Aggarwal, Parag; Wu, Jing; Rubin, John R; Stuckey, Jeanne A; Woodard, Ronald W; Tsodikov, Oleg V

    2009-10-30

    The phosphatase KdsC cleaves 3-deoxy-D-manno-octulosonate 8-phosphate to generate a molecule of inorganic phosphate and Kdo. Kdo is an essential component of the lipopolysaccharide envelope in Gram-negative bacteria. Because lipopolysaccharide is an important determinant of bacterial resistance and toxicity, KdsC is a potential target for novel antibacterial agents. KdsC belongs to the broad haloacid dehalogenase superfamily. In haloacid dehalogenase superfamily enzymes, substrate specificity and catalytic efficiency are generally dictated by a fold feature called the cap domain. It is therefore not clear why KdsC, which lacks a cap domain, is catalytically efficient and highly specific to 3-deoxy-D-manno-octulosonate 8-phosphate. Here, we present a set of seven structures of tetrameric Escherichia coli KdsC (ranging from 1.4 to 3.06 A in resolution) that model different intermediate states in its catalytic mechanism. A crystal structure of product-bound E. coli KdsC shows how the interface between adjacent monomers defines the active site pocket. Kdo is engaged in a network of polar and nonpolar interactions with residues at this interface, which explains substrate specificity. Furthermore, this structural and kinetic analysis strongly suggests that the binding of the flexible C-terminal region (tail) to the active site makes KdsC catalytically efficient by facilitating product release.

  10. The Tail of KdsC: Conformational Changes Control the Activity of a Haloacid Dehalogenase Superfamily Phosphatase

    SciTech Connect

    Biswas, Tapan; Yi, Li; Aggarwal, Parag; Wu, Jing; Rubin, John R.; Stuckey, Jeanne A.; Woodard, Ronald W.; Tsodikov, Oleg V.

    2010-01-28

    The phosphatase KdsC cleaves 3-deoxy-d-manno-octulosonate 8-phosphate to generate a molecule of inorganic phosphate and Kdo. Kdo is an essential component of the lipopolysaccharide envelope in Gram-negative bacteria. Because lipopolysaccharide is an important determinant of bacterial resistance and toxicity, KdsC is a potential target for novel antibacterial agents. KdsC belongs to the broad haloacid dehalogenase superfamily. In haloacid dehalogenase superfamily enzymes, substrate specificity and catalytic efficiency are generally dictated by a fold feature called the cap domain. It is therefore not clear why KdsC, which lacks a cap domain, is catalytically efficient and highly specific to 3-deoxy-d-manno-octulosonate 8-phosphate. Here, we present a set of seven structures of tetrameric Escherichia coli KdsC (ranging from 1.4 to 3.06 {angstrom} in resolution) that model different intermediate states in its catalytic mechanism. A crystal structure of product-bound E. coli KdsC shows how the interface between adjacent monomers defines the active site pocket. Kdo is engaged in a network of polar and nonpolar interactions with residues at this interface, which explains substrate specificity. Furthermore, this structural and kinetic analysis strongly suggests that the binding of the flexible C-terminal region (tail) to the active site makes KdsC catalytically efficient by facilitating product release.

  11. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation

    PubMed Central

    Fanning, Sean W; Mayne, Christopher G; Dharmarajan, Venkatasubramanian; Carlson, Kathryn E; Martin, Teresa A; Novick, Scott J; Toy, Weiyi; Green, Bradley; Panchamukhi, Srinivas; Katzenellenbogen, Benita S; Tajkhorshid, Emad; Griffin, Patrick R; Shen, Yang; Chandarlapaty, Sarat; Katzenellenbogen, John A; Greene, Geoffrey L

    2016-01-01

    Somatic mutations in the estrogen receptor alpha (ERα) gene (ESR1), especially Y537S and D538G, have been linked to acquired resistance to endocrine therapies. Cell-based studies demonstrated that these mutants confer ERα constitutive activity and antiestrogen resistance and suggest that ligand-binding domain dysfunction leads to endocrine therapy resistance. Here, we integrate biophysical and structural biology data to reveal how these mutations lead to a constitutively active and antiestrogen-resistant ERα. We show that these mutant ERs recruit coactivator in the absence of hormone while their affinities for estrogen agonist (estradiol) and antagonist (4-hydroxytamoxifen) are reduced. Further, they confer antiestrogen resistance by altering the conformational dynamics of the loop connecting Helix 11 and Helix 12 in the ligand-binding domain of ERα, which leads to a stabilized agonist state and an altered antagonist state that resists inhibition. DOI: http://dx.doi.org/10.7554/eLife.12792.001 PMID:26836308

  12. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site.

    PubMed Central

    Törrönen, A; Harkki, A; Rouvinen, J

    1994-01-01

    The three-dimensional structure of endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 18.3% at 1.8 A resolution. The 190 amino acid length protein was found to exist as a single domain where the main chain folds to form two mostly antiparallel beta-sheets, which are packed against each other in parallel. The beta-sheet structure is twisted, forming a large cleft on one side of the molecule. The structure of XYNII resembles that of Bacillus 1,3-1,4-beta-glucanase. The cleft is an obvious suggestion for an active site, which has putative binding sites for at least four xylose residues. The catalytic residues are apparently the two glutamic acid residues (Glu86 and Glu177) in the middle of the cleft. One structure was determined at pH 5.0, corresponding to the pH optimum of XYNII. The second structure was determined at pH 6.5, where enzyme activity is reduced considerably. A clear structural change was observed, especially in the position of the side chain of Glu177. The observed conformational change is probably important for the mechanism of catalysis in XYNII. Images PMID:8013449

  13. A closed-loop dynamic simulation-based design method for articulated heavy vehicles with active trailer steering systems

    NASA Astrophysics Data System (ADS)

    Manjurul Islam, Md.; Ding, Xuejun; He, Yuping

    2012-05-01

    This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs' manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it 'drivers' the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.

  14. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    NASA Astrophysics Data System (ADS)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  15. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: a theoretical study.

    PubMed

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-10

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  16. Protein conformational populations and functionally relevant substates.

    PubMed

    Ramanathan, Arvind; Savol, Andrej; Burger, Virginia; Chennubhotla, Chakra S; Agarwal, Pratul K

    2014-01-21

    it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.

  17. Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling: DEPENDENCE ON DNA SEQUENCE, MR CONFORMATION, AND AP-1 FAMILY MEMBER EXPRESSION.

    PubMed

    Dougherty, Edward J; Elinoff, Jason M; Ferreyra, Gabriela A; Hou, Angela; Cai, Rongman; Sun, Junfeng; Blaine, Kevin P; Wang, Shuibang; Danner, Robert L

    2016-11-04

    Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.

  18. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy

    PubMed Central

    Perera, Angelo S.; Thomas, Javix; Poopari, Mohammad R.; Xu, Yunjie

    2016-01-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with

  19. The clusters-in-a-liquid approach for solvation: New insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yunjie; Perera, Angelo; Thomas, Javix; Poopari, Mohammad

    2016-02-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as a powerful spectroscopic tool for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed at the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones who contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the

  20. Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16.

    PubMed

    Wu, Albert M; Singh, Tanuja; Liu, Jia-Hau; Krzeminski, Mickael; Russwurm, Roland; Siebert, Hans-Christian; Bonvin, Alexandre M J J; André, Sabine; Gabius, Hans-Joachim

    2007-02-01

    Gene duplication and sequence divergence are driving forces toward establishing protein families. To examine how sequence changes affect carbohydrate specificity, the two closely related proto-type chicken galectins CG-14 and CG-16 were selected as models. Binding properties were analyzed using a highly sensitive solid-phase assay. We tested 56 free saccharides and 34 well-defined glycoproteins. The two galectins share preference for the II (Galbeta1-4GlcNAc) versus I (Galbeta1-3GlcNAc) version of beta-galactosides. A pronounced difference is found owing to the reactivity of CG-14 with histo-blood group ABH active oligosaccharides and A/B active glycoproteins. These experimental results prompted to determine activity-structure correlations by modeling. Computational analysis included consideration of the flexibility of binding partners and the presence of water molecules. It provided a comparative description of complete carbohydrate recognition domains, which had so far not been characterized in animal galectins. The structural models assigned II, I selectivity to a region downstream of the central Trp moiety. Docking revealed that the tetrasaccharides can be accommodated in their free-state low-energy conformations. CG-14's preference for A versus B epitopes could be attributed to a contact between His124 and the N-acetyl group of GalNAc. Regarding intergalectin comparison, the Ala53/Cys51 exchange affects the interaction potential of His54/His52. Close inspection of simulated dynamic interplay revealed reorientation of His124 at the site of the His124/Glu123 substitution, with potential impact on ligand dissociation. In summary, this study identifies activity differences and provides information on their relation to structural divergence, epitomizing the value of this combined approach beyond galectins.

  1. Structural basis for the antipolymer activity of Hb ζ2βs2 trapped in a tense conformation

    NASA Astrophysics Data System (ADS)

    Safo, Martin K.; Ko, Tzu-Ping; Schreiter, Eric R.; Eric Russell, J.

    2015-11-01

    The phenotypical severity of sickle cell disease (SCD) can be mitigated by modifying mutant hemoglobin S (Hb s, Hb α2β 2s) to contain embryonic ζ globin in place of adult α-globin subunits (Hb ζ2β2s). Crystallographical analyses of liganded Hb ζζ2β2s, though, demonstrate a tense (T-state) quaternary structure that paradoxically predicts its participation in--rather than its exclusion from--pathological deoxyHb S polymers. We resolved this structure-function conundrum by examining the effects of α → ζ exchange on the characteristics of specific amino acids that mediate sickle polymer assembly. Superposition analyses of the βs subunits of T-state deoxyHb α2β2s and T-state CO-liganded Hb ζ2β2s reveal significant displacements of both mutant βsVal6 and conserved β-chain contact residues, predicting weakening of corresponding polymer-stabilizing interactions. Similar comparisons of the α- and ζ-globin subunits implicate four amino acids that are either repositioned or undergo non-conservative substitution, abrogating critical polymer contacts. CO-Hb ζ2βs2 additionally exhibits a unique trimer-of-heterotetramers crystal packing that is sustained by novel intermolecular interactions involving the pathological βsVal6, contrasting sharply with the classical double-stranded packing of deoxyHb S. Finally, the unusually large buried solvent-accessible surface area for CO-Hb ζ2β2s suggests that it does not co-assemble with deoxyHb S in vivo. In sum, the antipolymer activities of Hb ζ203b2;2s appear to arise from both repositioning and replacement of specific α- and βs-chain residues, favoring an alternate T-state solution structure that is excluded from pathological deoxyHb S polymers. These data account for the antipolymer activity of Hb ζ2β2s, and recommend the utility of SCD therapeutics that capitalize on α-globin exchange strategies.

  2. Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination

    PubMed Central

    Gilhooly, Neville S.; Carrasco, Carolina; Gollnick, Benjamin; Wilkinson, Martin; Wigley, Dale B.; Moreno-Herrero, Fernando; Dillingham, Mark S.

    2016-01-01

    In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition. PMID:26762979

  3. Identification of a novel motif that affects the conformation and activity of the MARCH1 E3 ubiquitin ligase.

    PubMed

    Bourgeois-Daigneault, Marie-Claude; Thibodeau, Jacques

    2013-02-15

    MARCH1, a member of the membrane-associated RING-CH family of E3 ubiquitin ligases, regulates antigen presentation by downregulating the cell surface expression of Major Histocompatibility Complex class II and CD86 molecules. MARCH1 is a transmembrane protein that exposes both its N- and C-terminus to the cytoplasm. We have conducted a structure-function analysis of its two cytoplasmic tails to gain insights into the trafficking of MARCH1 in the endocytic pathway. Fusion of the N-terminal portion of MARCH1 to a type II transmembrane reporter molecule revealed that this cytoplasmic tail contains endosomal sorting motifs. The C-terminal domain also appears to contain intracellular sorting signals because it reduced surface expression of a type I transmembrane reporter molecule. Mutation of the two putative C-terminal tyrosine-based sorting signals did not affect the activity of human MARCH1; however, it did reduce its incorporation into exosomes. Moreover, site-directed mutagenesis pointed to a functional C-terminal 221VQNC224 sequence that affects the spatial organization of the two cytoplasmic regions. This motif is also found in other RING-type E3 ubiquitin ligases, such as parkin. Altogether, these findings highlight the complex regulation of MARCH1 trafficking in the endocytic pathway as well as the intricate interactions between its cytoplasmic tails.

  4. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone).

    PubMed

    Rawat, Poonam; Singh, R N

    2015-04-05

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm(-1)) and asymmetric (3389, 3382 cm(-1)) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0=23.83×10(-30) esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors--Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule.

  5. Assessment of conformational, spectral, antimicrobial activity, chemical reactivity and NLO application of Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone)

    NASA Astrophysics Data System (ADS)

    Rawat, Poonam; Singh, R. N.

    2015-04-01

    An orange colored pyrrole dihydrazone: Pyrrole-2,5-dicarboxaldehyde bis(oxaloyldihydrazone) (PDBO) has been synthesized by reaction of oxalic acid dihydrazide with 2,5 diformyl-1H-pyrrole and has been characterized by spectroscopic analysis (1H, 13C NMR, UV-visible, FT-IR and DART Mass). The properties of the compound has been evaluated using B3LYP functional and 6-31G(d,p)/6-311+G(d,p) basis set. The symmetric (3319, 3320 cm-1) and asymmetric (3389, 3382 cm-1) stretching wave number confirm free NH2 groups in PDBO. NBO analysis shows, inter/intra molecular interactions within the molecule. Topological parameters have been analyzed by QTAIM theory and provide the existence of intramolecular hydrogen bonding (N-H⋯O). The local reactivity descriptors analyses determine the reactive sites within molecule. The calculated first hyperpolarizability value (β0 = 23.83 × 10-30 esu) of pyrrole dihydrazone shows its suitability for non-linear optical (NLO) response. The preliminary bioassay suggested that the PDBO exhibits relatively good antibacterial and fungicidal activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, Aspergillus niger. The local reactivity descriptors - Fukui functions (fk+, fk-), local softnesses (sk+, sk-) and electrophilicity indices (ωk+, ωk-) analyses have been used to determine the reactive sites within molecule.

  6. The Conformal Bootstrap

    NASA Astrophysics Data System (ADS)

    Simmons-Duffin, David

    These notes are from courses given at TASI and the Advanced Strings School in summer 2015. Starting from principles of quantum field theory and the assumption of a traceless stress tensor, we develop the basics of conformal field theory, including conformal Ward identities, radial quantization, reection positivity, the operator product expansion, and conformal blocks. We end with an introduction to numerical bootstrap methods, focusing on the 2d and 3d Ising models.

  7. Proteolytic degradation of the RGD-binding and non-RGD-binding conformers of human platelet integrin glycoprotein IIb/IIIa: clues for identification of regions involved in the receptor's activation.

    PubMed Central

    Calvete, J J; Mann, K; Schäfer, W; Fernandez-Lafuente, R; Guisán, J M

    1994-01-01

    The human integrin glycoprotein (GP)IIb/IIIa plays a central role in haemostasis as an inducible receptor for fibrinogen and other RGD-containing adhesive proteins at the platelet plasma membrane. Expression of the fibrinogen receptor on platelet activation involves conformational changes in the quaternary structure of GPIIb/IIIa. Little is known, however, about the nature of this conformational transition. Given that isolated GPIIb/IIIa contains a mixture of RGD-binding and non-RGD-binding heterodimers, we used limited proteolysis as a tool for investigating the structural differences between the two conformers. Comparison of their fragmentation patterns shows that, whereas in the non-RGD-binding form of GPIIb/IIIa the N-terminal half of the heavy chain of GPIIb (GPIIbH) and the central region of GPIIIa are cleaved by endoproteinase Arg-C, these domains associate tightly with one another in the RGD-binding GPIIb/IIIa and are thus protected from proteolysis. In addition, the C-terminal half of GPIIb becomes more susceptible to degradation in the non-RGD-binding GPIIb/IIIa conformer. Our interpretation, in the context of available structural and functional data, is that a major relative reorientation of the GPIIbH and GPIIIa extracellular domains takes place along the subunit interface during the conformational transition of the platelet integrin. Images Figure 1 PMID:8129707

  8. Influence of polar side chains modifications on the dual enkephalinase inhibitory activity and conformation of human opiorphin, a pain perception related peptide.

    PubMed

    Rosa, Mònica; Marcelo, Filipa; Calle, Luis P; Rougeot, Catherine; Jiménez-Barbero, Jesús; Arsequell, Gemma; Valencia, Gregorio

    2015-11-15

    The dual inhibitory action of the pain related peptide opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH) against neutral endopeptidase (NEP) and aminopeptidase N (AP-N) was further investigated by a SAR study involving minor modifications on the polar side chains of Arg residues and glycosylation with monosaccharides at Ser. None of them exerted dual or individual inhibitory potency superior than opiorphin. However, the correlations deduced offer further proof for the key role of these residues upon the binding and bioactive conformational stabilization of opiorphin. NMR conformational studies on the glycopeptides suggest that they are still very flexible compounds that may attain their respective bioactive conformations.

  9. Nonequilibrium Relaxation of Conformational Dynamics Facilitates Catalytic Reaction in an Elastic Network Model of T7 DNA Polymerase.

    PubMed

    Zhao, Ziqing W; Xie, X Sunney; Ge, Hao

    2016-03-24

    Nucleotide-induced conformational closing of the finger domain of DNA polymerase is crucial for its catalytic action during DNA replication. Such large-amplitude molecular motion is often not fully accessible to either direct experimental monitoring or molecular dynamics simulations. However, a coarse-grained model can offer an informative alternative, especially for probing the relationship between conformational dynamics and catalysis. Here we investigate the dynamics of T7 DNA polymerase catalysis using a Langevin-type elastic network model incorporating detailed structural information on the open conformation without the substrate bound. Such a single-parameter model remarkably captures the induced conformational dynamics of DNA polymerase upon dNTP binding, and reveals its close coupling to the advancement toward transition state along the coordinate of the target reaction, which contributes to significant lowering of the activation energy barrier. Furthermore, analysis of stochastic catalytic rates suggests that when the activation energy barrier has already been significantly lowered and nonequilibrium relaxation toward the closed form dominates the catalytic rate, one must appeal to a picture of two-dimensional free energy surface in order to account for the full spectrum of catalytic modes. Our semiquantitative study illustrates the general role of conformational dynamics in achieving transition-state stabilization, and suggests that such an elastic network model, albeit simplified, possesses the potential to furnish significant mechanistic insights into the functioning of a variety of enzymatic systems.

  10. Chromosome Conformation Capture in Drosophila.

    PubMed

    Li, Hua-Bing

    2016-01-01

    Linear chromatin fiber is packed inside the nuclei as a complex three-dimensional structure, and the organization of the chromatin has important roles in the appropriate spatial and temporal regulation of gene expression. To understand how chromatin organizes inside nuclei, and how regulatory proteins physically interact with genes, chromosome conformation capture (3C) technique provides a powerful and sensitive tool to detect both short- and long-range DNA-DNA interaction. Here I describe the 3C technique to detect the DNA-DNA interactions mediated by insulator proteins that are closely related to PcG in Drosophila, which is also broadly applicable to other systems.

  11. NMR structure of the noncytotoxic α-sarcin mutant Δ(7-22): The importance of the native conformation of peripheral loops for activity

    PubMed Central

    García-Mayoral, Ma Flor; García-Ortega, Lucia; Lillo, Ma Pilar; Santoro, Jorge; Martínez Del Pozo, Álvaro; Gavilanes, José G.; Rico, Manuel; Bruix, Marta

    2004-01-01

    The deletion mutant Δ(7-22) of α-sarcin, unlike its wild-type protein counterpart, lacks the specific ability to degrade rRNA in intact ribosomes and exhibits an increased unspecific ribonuclease activity and decreased interaction with lipid vesicles. In trying to shed light on these differences, we report here on the three-dimensional structure of the Δ(7-22) α-sarcin mutant using NMR methods. We also evaluated its dynamic properties on the basis of theoretical models and measured its correlation time (6.2 nsec) by time-resolved fluorescence anisotropy. The global fold characteristic of ribotoxins is preserved in the mutant. The most significant differences with respect to the α-sarcin structure are concentrated in (1) loop 2, (2) loop 3, which adopts a new orientation, and (3) loop 5, which shows multiple conformations and an altered dynamics. The interactions between loop 5 and the N-terminal hairpin are lost in the mutant, producing increased solvent accessibility of the active-site residues. The degree of solvent exposure of the catalytic His 137 is similar to that shown by His 92 in RNase T1. Additionally, the calculated order parameters of residues belonging to loop 5 in the mutant correspond to an internal dynamic behavior more similar to RNase T1 than α-sarcin. On the other hand, changes in the relative orientation of loop 3 move the lysine-rich region 111–114, crucial for substrate recognition, away from the active site. All of the structural and dynamic data presented here reveal that the mutant is a hybrid of ribotoxins and noncytotoxic ribonucleases, consistent with its biological properties. PMID:15044731

  12. Molecular Dynamics Simulations Show That Conformational Selection Governs the Binding Preferences of Imatinib for Several Tyrosine Kinases*

    PubMed Central

    Aleksandrov, Alexey; Simonson, Thomas

    2010-01-01

    Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called “DFG-out” conformation of Abl, which differs from the preferred, “DFG-in” conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 ± 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 ± 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling. PMID:20200154

  13. Conformal Window and Correlation Functions in Lattice Conformal QCD

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    We discuss various aspects of Conformal Field Theories on the Lattice. We mainly investigate the SU(3) gauge theory with Nf degenerate fermions in the fundamental representation, employing the one-plaquette gauge action and the Wilson fermion action. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 ≤ Nf ≤ 16. Secondly, we introduce a new concept, "conformal theories with IR cutof" and point out that any numerical simulation on a lattice is bounded by an IR cutoff ∧IR. Then we make predictions that when Nf is within the conformal window, the propagator of a meson G(t) behaves at large t, as G(t) = c exp (-mHt)/tα, that is, a modified Yukawa-type decay form, instead of the usual exponential decay form exp (-mHt), in the small quark mass region. This holds on an any lattice for any coupling constant g, as far as g is between 0 and g*, where g* is the IR fixed point. We verify that numerical results really satisfy the predictions for the Nf = 7 case and the Nf = 16 case. Thirdly, we discuss small number of flavors (Nf = 2 ˜ 6) QCD at finite temperatures. We point out theoretically and verify numerically that the correlation functions at T/Tc > 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential decay with power correction. Investigating our numerical data by a new method which we call the "local-analysis" of propagators, we observe that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are similar to each other, while the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are similar to each other. Further, we observe our data are consistent with the picture that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are close to the meson unparticle model. On the other hand, the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are close to

  14. Conformational Electroresistance and Hysteresis in Nanoclusters

    DOE PAGES

    Li, Xiangguo; Zhang, Xiaoguang; Cheng, Hai-Ping

    2014-07-02

    Among many mechanisms proposed for electroresistance, ones involving structural changes are the least understood because of challenges of controllability and repeatability. Yet structural changes can cause dramatic changes in electronic properties, leading to multiple ways in which conduction paths can be opened and closed, not limited to filament movement or variation in molecular conductance. Here we show at least another way: conformational dependence of the Coulomb charging energy of a nanocluster, where charging induced conformational distortion changes the blockade voltage, which in turn leads to a giant electroresistance. This intricate interplay between charging and conformation change is demonstrated in amore » nanocluster Zn3O4 by combining a first-principles calculation with a temperature dependent transport model. The predicted hysteretic Coulomb blockade staircase in the current-voltage curve adds another dimension to the rich phenomenon of tunneling electroresistance. The new mechanism also provides a better controlled and repeatable platform to study conformational electroresistance.« less

  15. Conformational Electroresistance and Hysteresis in Nanoclusters

    SciTech Connect

    Li, Xiangguo; Zhang, Xiaoguang; Cheng, Hai-Ping

    2014-07-02

    Among many mechanisms proposed for electroresistance, ones involving structural changes are the least understood because of challenges of controllability and repeatability. Yet structural changes can cause dramatic changes in electronic properties, leading to multiple ways in which conduction paths can be opened and closed, not limited to filament movement or variation in molecular conductance. Here we show at least another way: conformational dependence of the Coulomb charging energy of a nanocluster, where charging induced conformational distortion changes the blockade voltage, which in turn leads to a giant electroresistance. This intricate interplay between charging and conformation change is demonstrated in a nanocluster Zn3O4 by combining a first-principles calculation with a temperature dependent transport model. The predicted hysteretic Coulomb blockade staircase in the current-voltage curve adds another dimension to the rich phenomenon of tunneling electroresistance. The new mechanism also provides a better controlled and repeatable platform to study conformational electroresistance.

  16. Sublingual delivery of insulin: effects of enhancers on the mucosal lipid fluidity and protein conformation, transport, and in vivo hypoglycemic activity.

    PubMed

    Cui, Chun-Ying; Lu, Wan-Liang; Xiao, Lan; Zhang, Shuang-Qing; Huang, Yan-Bei; Li, Sheng-Lin; Zhang, Rui-Juan; Wang, Gui-Ling; Zhang, Xuan; Zhang, Qiang

    2005-12-01

    The purposes of this study were to evaluate effects of enhancers for sublingual delivering insulin on the mucosal lipid fluidity and protein conformation, transport, and in vivo hypoglycemic activity in normal rats. The effects on sublingual mucosa, and aggregation states of insulin were estimated using fluorescence polarization, and circular dichroism method, respectively. The human immortalized oral epithelial cell monolayer was used for evaluating transport of insulin. Hydroxylpropyl-beta-cyclodextrin (HP-beta-CD), chitosan, polyethylene-polypropylene glycol, polyoxyethylene lauryl ether, polysorbate 80, egg lecithin, or oleic acid, was used as a penetration enhancer, respectively. The fluidity of sublingual mucosal lipid was markedly reduced by these enhancers excluding polysorbate 80, and the secondary structure of the mucosal proteins was also influenced by these enhancers. The hexamers of insulin were dissociated to monomers only by chitosan, polyoxyethylene lauryl ether, and egg lecithin. Nonetheless, plasma glucose levels in normal rats were significantly lowered after sublingual administration of insulin with an enhancer compared with those without an enhancer at the same time-point. The enhancing effects may be due to one or multiple factors: increasing the mucosal lipid fluidity, directly loosing the tight junction of epithelia, and dissociating the hexamers of insulin to monomers. Among these, the opened tight junction may correlate most with the enhancing effect in the mucosal permeability. Because the aggregates of insulin exist, the dissociation of the aggregates by an enhancer would benefit the permeability.

  17. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters.

    PubMed

    Lee, Po-Hsien; Kuo, Kuei-Ling; Chu, Pei-Ying; Liu, Eric M; Lin, Jung-Hsin

    2009-07-01

    Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

  18. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal a Novel Type IA Topoisomerase-DNA Conformational Intermediate

    SciTech Connect

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    2010-03-05

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.

  19. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters.

    PubMed

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-04-18

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.

  20. A conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN.

    PubMed

    Karow, Anne R; Klostermeier, Dagmar

    2009-07-01

    Cooperative binding of ATP and RNA to DEAD-box helicases induces the closed conformation of their helicase core, with extensive interactions across the domain interface. The bound RNA is bent, and its distortion may constitute the first step towards RNA unwinding. To dissect the role of the conformational change in the helicase core for RNA unwinding, we characterized the RNA-stimulated ATPase activity, RNA unwinding and the propensity to form the closed conformer for mutants of the DEAD box helicase YxiN. The ATPase-deficient K52Q mutant forms a closed conformer upon binding of ATP and RNA, but is deficient in RNA unwinding. A mutation in motif III slows down the catalytic cycle, but neither affects the propensity for the closed conformer nor its global conformation. Hence, the closure of the cleft in the helicase core is necessary but not sufficient for RNA unwinding. In contrast, the G303A mutation in motif V prevents a complete closure of the inter-domain cleft, affecting ATP binding and hydrolysis and is detrimental to unwinding. Possibly, the K52Q and motif III mutants still introduce a kink into the backbone of bound RNA, whereas G303A fails to kink the RNA substrate.

  1. [Dosimetric evaluation of conformal radiotherapy: conformity factor].

    PubMed

    Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F

    2000-01-01

    The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.

  2. Integrals of motion from TBA and lattice-conformal dictionary

    NASA Astrophysics Data System (ADS)

    Feverati, Giovanni; Grinza, Paolo

    2004-12-01

    The integrals of motion of the tricritical Ising model are obtained by thermodynamic Bethe ansatz (TBA) equations derived from the A integrable lattice model. They are compared with those given by the conformal field theory leading to a unique one-to-one lattice-conformal correspondence. They can also be followed along the renormalization group flows generated by the action of the boundary field φ on conformal boundary conditions in close analogy to the usual TBA description of energies.

  3. Conformal differential invariants

    NASA Astrophysics Data System (ADS)

    Kruglikov, Boris

    2017-03-01

    We compute the Hilbert polynomial and the Poincaré function counting the number of fixed jet-order differential invariants of conformal metric structures modulo local diffeomorphisms, and we describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action. This resolves the local recognition problem for conformal structures.

  4. Conformations of Substituted Ethanes.

    ERIC Educational Resources Information Center

    Kingsbury, Charles A.

    1979-01-01

    Reviews state-of-the-art of conformational analysis and factors which affect it. Emphasizes sp-3 hybridized acrylic molecules. Provides examples on the importance of certain factors in determining conformation. Purpose, is to provide examples for examination questions. (Author/SA)

  5. Increasing the conformational entropy of the Ω-loop lid domain in PEPCK impairs catalysis and decreases catalytic fidelity†

    PubMed Central

    Johnson, Troy A.; Holyoak, Todd

    2010-01-01

    Many studies have shown that the dynamic motions of individual protein segments can play an important role in enzyme function. Recent structural studies on the gluconeogenic enzyme PEPCK demonstrate that PEPCK contains a 10-residue Ω-loop domain that acts as an active site lid. Based upon these structural studies we have previously proposed a model for the mechanism of PEPCK catalysis in which the conformation of this mobile lid-domain is energetically coupled to ligand binding resulting in the closed conformation of the lid, necessary for correct substrate positioning, becoming more energetically favorable as ligands associate with the enzyme. Here we test this model by the introduction of a point mutation (A467G) into the center of the Ω-loop lid that is designed to increase the entropic penalty for lid closure. Structural and kinetic characterization of this mutant enzyme demonstrates that the mutation has decreased the favorability of the enzyme adapting the closed lid conformation. As a consequence of this shift in the equilibrium defining the conformation of the active site lid, the enzyme’s ability to stabilize the reaction intermediate is reduced resulting in catalytic defect. This stabilization is initially surprising, as the lid domain makes no direct contacts with the enolate intermediate formed during the reaction. Furthermore, during the conversion of OAA to PEP, the destabilization of the lid closed conformation results in the reaction becoming decoupled as the enolate intermediate is protonated rather than phosphorylated resulting in the formation of pyruvate. Taken together, the structural and kinetic characterization of A467G-PEPCK support our model of the role of the active site lid in catalytic function and demonstrate that the shift in the lowest energy conformation between open and closed lid states is a function of the free energy available to the enzyme through ligand binding and the entropic penalty for ordering of the ten-residue

  6. Increasing the conformational entropy of the Omega-loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity .

    PubMed

    Johnson, Troy A; Holyoak, Todd

    2010-06-29

    Many studies have shown that the dynamic motions of individual protein segments can play an important role in enzyme function. Recent structural studies of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) demonstrate that PEPCK contains a 10-residue Omega-loop domain that acts as an active site lid. On the basis of these structural studies, we have previously proposed a model for the mechanism of PEPCK catalysis in which the conformation of this mobile lid domain is energetically coupled to ligand binding, resulting in the closed conformation of the lid, necessary for correct substrate positioning, becoming more energetically favorable as ligands associate with the enzyme. Here we test this model by introducing a point mutation (A467G) into the center of the Omega-loop lid that is designed to increase the entropic penalty for lid closure. Structural and kinetic characterization of this mutant enzyme demonstrates that the mutation has decreased the favorability of the enzyme adapting the closed lid conformation. As a consequence of this shift in the equilibrium defining the conformation of the active site lid, the enzyme's ability to stabilize the reaction intermediate is weakened, resulting in catalytic defect. This stabilization is initially surprising, as the lid domain makes no direct contacts with the enolate intermediate formed during the reaction. Furthermore, during the conversion of OAA to PEP, the destabilization of the lid-closed conformation results in the reaction becoming decoupled as the enolate intermediate is protonated rather than phosphorylated, resulting in the formation of pyruvate. Taken together, the structural and kinetic characterization of A467G-PEPCK supports our model of the role of the active site lid in catalytic function and demonstrates that the shift in the lowest-energy conformation between open and closed lid states is a function of the free energy available to the enzyme through ligand binding and the entropic

  7. The bent conformation of poly(A)-binding protein induced by RNA-binding is required for its translational activation function

    PubMed Central

    Hong, Ka Young; Lee, Seung Hwan; Gu, Sohyun; Kim, Eunah; An, Sihyeon; Kwon, Junyoung; Jang, Sung Key

    2017-01-01

    ABSTRACT A recent study revealed that poly(A)-binding protein (PABP) bound to poly(A) RNA exhibits a sharply bent configuration at the linker region between RNA-recognition motif 2 (RRM2) and RRM3, whereas free PABP exhibits a highly flexible linear configuration. However, the physiological role of the bent structure of mRNA-bound PABP remains unknown. We investigated a role of the bent structure of PABP by constructing a PABP variant that fails to form the poly(A)-dependent bent structure but maintains its poly(A)-binding activity. We found that the bent structure of PABP/poly(A) complex is required for PABP's efficient interaction with eIF4G and eIF4G/eIF4E complex. Moreover, the mutant PABP had compromised translation activation function and failed to augment the formation of 80S translation initiation complex in an in vitro translation system. These results suggest that the bent conformation of PABP, which is induced by the interaction with 3′ poly(A) tail, mediates poly(A)-dependent translation by facilitating the interaction with eIF4G and the eIF4G/eIF4E complex. The preferential binding of the eIF4G/eIF4E complex to the bent PABP/poly(A) complex seems to be a mechanism discriminating the mRNA-bound PABPs participating in translation from the idling mRNA-unbound PABPs. PMID:28095120

  8. Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2.

    PubMed

    Hoang, Tuan; Matovic, Tijana; Parker, James; Smith, Matthew D; Jelokhani-Niaraki, Masoud

    2015-04-14

    Residing at the inner mitochondrial membrane, uncoupling protein-2 (UCP2) mediates proton transport from the intermembrane space (IMS) to the mitochondrial matrix and consequently reduces the rate of ATP synthesis in the mitochondria. The ubiquitous expression of UCP2 in humans can be attributed to the protein's multiple physiological roles in tissues, including its involvement in protective mechanisms against oxidative stress, as well as glucose and lipid metabolisms. Currently, the structural properties and ion transport mechanism of UCP2 and other UCP homologues remain poorly understood. UCP2-mediated proton transport is activated by fatty acids and inhibited by di- and triphosphate purine nucleotides. UCP2 also transports chloride and some other small anions. Identification of key amino acid residues of UCP2 in its ion transport pathway can shed light on the protein's ion transport function. On the basis of our previous studies, the second transmembrane helix segment (TM2) of UCP2 exhibited chloride channel activity. In addition, it was suggested that the positively charged residues on TM2 domains of UCPs 1 and 2 were important for their chloride transport activity. On this basis, to further understand the role of these positively charged residues on the ion transport activity of UCP2, we recombinantly expressed four TM2 mutants: R76Q, R88Q, R96Q, and K104Q. The wild type UCP2 and its mutants were purified and reconstituted into liposomes, and their conformation and ion (proton and chloride) transport activity were studied. TM2 Arg residues at the matrix interface of UCP2 proved to be crucial for the protein's anion transport function, and their absence resulted in highly diminished Cl(-) transport rates. On the other hand, the two other positively charged residues of TM2, located at the UCP2-IMS interface, could participate in the salt-bridge formation in the protein and promote the interhelical tight packing in the UCP2. Absence of these residues did not

  9. Conformational Changes in Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase upon Substrate Binding

    PubMed Central

    Baños-Sanz, José Ignacio; Sanz-Aparicio, Julia; Whitfield, Hayley; Hamilton, Chris; Brearley, Charles A.; González, Beatriz

    2012-01-01

    Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP5. Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP5 2-K, which shed light on aspects of substrate recognition. However, failure of IP5 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP5 2-K in its different conformations by crystallography. Thus, the IP5 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP5 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg130 mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP5 2-K in mammals. PMID:22745128

  10. THE CHROMOSPHERIC ACTIVITY OF [HH97] FS Aur-79: A CLOSE BINARY WITH LATE-TYPE ACTIVE (dK7e+dM3e) COMPONENTS

    SciTech Connect

    Austin, S. J.; Robertson, J. W.; De Souza, T. R.; Tycner, C.; Honeycutt, R. K. E-mail: jrobertson@atu.edu E-mail: c.tycner@cmich.edu

    2011-04-15

    Using Doppler tomography we show that FS Aur-79, a near-contact close binary system with late-type active dK7e+dM3e components, has chromospheric prominences in two distinct emission regions associated with the primary star and a larger amount of chromospheric activity associated with the cooler secondary star. The line profiles, equivalent widths, and equivalent width ratios of the H{alpha} and H{beta} emission lines as a function of orbital phase further support that the majority of the chromospheric emission originates above the secondary star and near the neck region. Analysis of high-resolution spectra using the technique of broadening functions has enabled us to determine the radial velocity of the secondary star near quadratures to be approximately 224 km s{sup -1}. A Wilson-Devinney model of the system fitting the UBV light curves and radial velocities shows that there are star spots near the chromospherically active regions. Finally, the absence of Li I {lambda}6708 in the spectra lets us put a lower limit on the age of this system to at least 500 Myr.

  11. Closing in on Close Reading

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2013-01-01

    "A significant body of research links the close reading of complex text--whether the student is a struggling reader or advanced--to significant gains in reading proficiency and finds close reading to be a key component of college and career readiness" (Partnership for Assessment of Readiness for College and Careers, 2011, p. 7). When the author…

  12. Conformational Changes in the Activation Loop of Mitochondrial Glutaminase C: A Direct Fluorescence Read-Out that Distinguishes the Binding of Allosteric Inhibitors from Activators.

    PubMed

    Stalnecker, Clint A; Erickson, Jon W; Cerione, Richard A

    2017-02-14

    The first step in glutamine catabolism is catalyzed by the mitochondrial enzyme glutaminase, with a specific isoform, glutaminase C (GAC), being highly expressed in cancer cells. GAC activation requires the formation of homo-tetramers, promoted by anionic allosteric activators such as inorganic phosphate. This leads to the proper orientation of a flexible loop proximal to the dimer-dimer interface that is essential for catalysis (i.e. the activation loop). A major class of allosteric inhibitors of GAC, with the prototype being BPTES (bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide), and the related molecule CB-839, binds to the activation loop and induces the formation of an inactive tetramer (2 inhibitors bound per active tetramer). Here, we describe a direct readout for monitoring the dynamics of the activation loop of GAC in response to these allosteric inhibitors, as well as allosteric activators, through the substitution of phenylalanine at position 327 with tryptophan (F327W). The tryptophan fluorescence of the GAC(F327W) mutant undergoes a marked quenching upon the binding of BPTES or CB-839, yielding titration profiles that make it possible to measure the binding affinities of these inhibitors for the enzyme. Allosteric activators like phosphate induce the opposite effect (i.e. a fluorescence enhancement). These results describe direct read-outs for the binding of the BPTES-class of allosteric inhibitors, as well as for inorganic phosphate and related activators of GAC, which should facilitate screening for additional modulators of this important metabolic enzyme.

  13. Structure of Human Pancreatic Lipase-Related Protein 2 with the Lid in an Open Conformation

    SciTech Connect

    Eydoux, Cecilia; Spinelli, Silvia; Davis, Tara L.; Walker, John R.; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carriere, Frederic

    2008-10-02

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  14. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation.

    PubMed

    Eydoux, Cécilia; Spinelli, Silvia; Davis, Tara L; Walker, John R; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carrière, Frédéric

    2008-09-09

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  15. EC declaration of conformity.

    PubMed

    Donawa, M E

    1996-05-01

    The CE-marking procedure requires that manufacturers draw up a written declaration of conformity before placing their products on the market. However, some companies do not realize that this is a requirement for all devices. Also, there is no detailed information concerning the contents and format of the EC declaration of conformity in the medical device Directives or in EC guidance documentation. This article will discuss some important aspects of the EC declaration of conformity and some of the guidance that is available on its contents and format.

  16. Conformal Carroll groups

    NASA Astrophysics Data System (ADS)

    Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2014-08-01

    Conformal extensions of Lévy-Leblond's Carroll group, based on geometric properties analogous to those of Newton-Cartan space-time are proposed. The extensions are labeled by an integer k. This framework includes and extends our recent study of the Bondi-Metzner-Sachs (BMS) and Newman-Unti (NU) groups. The relation to conformal Galilei groups is clarified. Conformal Carroll symmetry is illustrated by ‘Carrollian photons’. Motion both in the Newton-Cartan and Carroll spaces may be related to that of strings in the Bargmann space.

  17. Conformational selectivity in cytochrome P450 redox partner interactions

    PubMed Central

    Hollingsworth, Scott A.; Batabyal, Dipanwita; Nguyen, Brian D.; Poulos, Thomas L.

    2016-01-01

    The heme iron of cytochromes P450 must be reduced to bind and activate molecular oxygen for substrate oxidation. Reducing equivalents are derived from a redox partner, which requires the formation of a protein–protein complex. A subject of increasing discussion is the role that redox partner binding plays, if any, in favoring significant structural changes in the P450s that are required for activity. Many P450s now have been shown to experience large open and closed motions. Several structural and spectral studies indicate that the well-studied P450cam adopts the open conformation when its redox partner, putidaredoxin (Pdx), binds, whereas recent NMR studies indicate that this view is incorrect. Given the relevance of this discrepancy to P450 chemistry, it is important to determine whether Pdx favors the open or closed form of P450cam. Here, we have used both computational and experimental isothermal titration calorimetry studies that unequivocally show Pdx favors binding to the open form of P450cam. Analyses of molecular-dynamic trajectories also provide insights into intermediate conformational states that could be relevant to catalysis. PMID:27439869

  18. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  19. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  20. Cosmology in Conformally Flat Spacetime

    NASA Astrophysics Data System (ADS)

    Endean, Geoffrey

    1997-04-01

    A possible solution to cosmological age and redshift-distance difficulties has recently been proposed by applying the appropriate conformally flat spacetime (CFS) coordinates to the standard solution of the field equations in a standard dust model closed universe. Here it is shown that CFS time correctly measures the true age of the universe, thus answering a major theoretical objection to the proposal. It is also shown that the CFS interpretation leads to a strong Copernican principle and is in all other respects wholly self-consistent. The deceleration parameter q0 is related to t0, the present age of the universe divided by L, the scale length of its curvature (an absolute constant). The values of q0 and L are approximately 5/6 and 9.2 × 109 yr, respectively. It is shown that the universe started everywhere simultaneously, with no recession velocity until the effects of its closed topology became significant. Conclusions to the contrary in standard theory (the big bang) stem from a different definition of recession velocity. The theoretical present cosmological mass density is quantified as 4.4 × 10-27 kg m-3 approximately, thus greatly reducing, in a closed universe, the observational requirement to find hidden mass. It is also shown that the prediction of standard theory, for a closed universe, of collapse toward a big crunch termination, will not in fact take place.

  1. Animal culture: chimpanzee conformity?

    PubMed

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity.

  2. Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase

    PubMed Central

    Bordes, Florence; Barbe, Sophie; Escalier, Pierre; Mourey, Lionel; André, Isabelle; Marty, Alain; Tranier, Samuel

    2010-01-01

    We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding. PMID:20923657

  3. Pilot Non-Conformance to Alerting System Commands

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Instances of pilot non-conformance to alerting system commands have been identified in previous studies. Pilot non-conformance changes the final behavior of the system, and therefore may reduce actual performance from that anticipated. A simulator study has examined pilot non-conformance, using the task of collision avoidance during closely spaced parallel approaches as a case study. Consonance between the display and the alerting system was found to significantly improve subject agreement with automatic alerts. Based on these results, a more general discussion of the factors involved in pilot conformance is given, and design guidelines for alerting systems are given.

  4. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    SciTech Connect

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance; Besra, Gurdyal S.; Sacchettini, James C.

    2011-07-01

    Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix and in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.

  5. Bunching effect in single-molecule T4 lysozyme nonequilibrium conformational dynamics under enzymatic reactions.

    PubMed

    Wang, Yuanmin; Lu, H Peter

    2010-05-20

    The bunching effect, implying that conformational motion times tend to bunch in a finite and narrow time window, is observed and identified to be associated with substrate-enzyme complex formation in T4 lysozyme conformational dynamics under enzymatic reactions. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. On the basis of the single-molecule spectroscopic results, molecular dynamics simulation, and a random walk model analysis, multiple intermediate states have been estimated in the evolution of T4 lysozyme enzymatic reaction active complex formation (Chen, Y.; Hu, D.; Vorpagel, E. R.; Lu, H. P. Probing single-molecule T4 lysozyme conformational dynamics by intramolecular fluorescence energy transfer. J. Phys. Chem. B 2003, 107, 7947-7956). In this Article, we report progress on the analysis of the reported experimental results, and we have identified the bunching effect of the substrate-enzyme active complex formation time in T4 lysozyme enzymatic reactions. We show that the bunching effect, a dynamic behavior observed for the catalytic hinge-bending conformational motions of T4 lysozyme, is a convoluted outcome of multiple consecutive Poisson rate processes that are defined by protein functional motions under substrate-enzyme interactions; i.e., convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. We suggest that the bunching effect is likely common in protein conformational dynamics involved in conformation-gated protein functions.

  6. Use of surface plasmon resonance for real-time measurements of the global conformational transition in human phenylalanine hydroxylase in response to substrate binding and catalytic activation.

    PubMed

    Flatmark, T; Stokka, A J; Berge, S V

    2001-07-15

    In the present study the optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the reversible binding of the pterin cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and l-phenylalanine (l-Phe) to human phenylalanine hydroxylase (hPAH). When BH(4) (241 Da) was injected over the sensor chip with immobilized tetrameric wt-hPAH a positive DeltaRU response was observed with a square-wave type of sensorgram and a saturable response (about 25 RU/(pmol subunit/mm(2)) with a [S](0.5) value of 5.6 +/- 0.8 microM for the pterin cofactor. The rapid on-and-off rates were, however, not possible to determine. By contrast, when l-Phe (165 Da) was injected a time-dependent increase in RU (up to about 3 min) and a much higher saturable DeltaRU response (about 75 RU/(pmol subunit/mm(2)) at 2 mM l-Phe) than expected (i.e., <5 RU/(pmol subunit/mm(2))) from the low molecular mass of l-Phe were observed in the sensorgram. The half-time for the on-and-off rates were 6 +/- 2 and 9 +/- 1 s, respectively, at 2 mM l-Phe. The steady-state (apparent equilibrium) response revealed a hyperbolic concentration dependence with a [S](0.5) value of 98 +/- 7 microM. The [S](0.5) values of both pterin cofactor and l-Phe were lower than those determined by steady-state enzyme kinetic analysis. Evidence is presented that the DeltaRU response to l-Phe is accounted for by the global conformational transition which occurs in the enzyme upon l-Phe binding, i.e., by the slow reversible transition from a low activity state ("T"-state) to a high activity state ("R"-state) characteristic of this hysteretic enzyme.

  7. Closed Large Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Large Cell Clouds in the South Pacific     ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...

  8. 29 CFR 779.105 - Employees engaged in activitiesclosely related” and “directly essential” to the production of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... âdirectly essentialâ to the production of goods for commerce. 779.105 Section 779.105 Labor Regulations... Engaged in Commerce Or in the Production of Goods for Commerce § 779.105 Employees engaged in activitiesclosely related” and “directly essential” to the production of goods for commerce. Some employees...

  9. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P.

    PubMed

    Hsieh, John; Koutmou, Kristin S; Rueda, David; Koutmos, Markos; Walter, Nils G; Fierke, Carol A

    2010-07-02

    Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5'-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P x pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES* conformer) before the cleavage step. Here, we show that the ES* conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5' leader. These data demonstrate that the 5' leader of pre-tRNA moves 4 to 6 A closer to the PRNA x P protein interface during the ES-to-ES* transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES* complex.

  10. The Structure of a High Fidelity DNA Polymerase Bound to a Mismatched Nucleotide Reveals an ;Ajar; Intermediate Conformation in the Nucleotide Selection Mechanism

    SciTech Connect

    Wu, Eugene Y.; Beese, Lorena S.

    2011-10-10

    To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established 'open' and 'closed' states. In this 'ajar' conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation.

  11. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr215 in Aerococcus viridans lactate oxidase

    PubMed Central

    Stoisser, Thomas; Brunsteiner, Michael; Wilson, David K.; Nidetzky, Bernd

    2016-01-01

    L-Lactate oxidase (LOX) belongs to a large family of flavoenzymes that catalyze oxidation of α-hydroxy acids. How in these enzymes the protein structure controls reactivity presents an important but elusive problem. LOX contains a prominent tyrosine in the substrate binding pocket (Tyr215 in Aerococcus viridans LOX) that is partially responsible for securing a flexible loop which sequesters the active site. To characterize the role of Tyr215, effects of substitutions of the tyrosine (Y215F, Y215H) were analyzed kinetically, crystallographically and by molecular dynamics simulations. Enzyme variants showed slowed flavin reduction and oxidation by up to 33-fold. Pyruvate release was also decelerated and in Y215F, it was the slowest step overall. A 2.6-Å crystal structure of Y215F in complex with pyruvate shows the hydrogen bond between the phenolic hydroxyl and the keto oxygen in pyruvate is replaced with a potentially stronger hydrophobic interaction between the phenylalanine and the methyl group of pyruvate. Residues 200 through 215 or 216 appear to be disordered in two of the eight monomers in the asymmetric unit suggesting that they function as a lid controlling substrate entry and product exit from the active site. Substitutions of Tyr215 can thus lead to a kinetic bottleneck in product release. PMID:27302031

  12. Conformational transitions of Adenylate Kinase: switching by cracking

    PubMed Central

    Whitford, Paul C.; Miyashita, Osamu; Levy, Yaakov; Onuchic, José N.

    2007-01-01

    Conformational heterogeneity in proteins is known to often be the key to their function. We present a coarse grained model to explore the interplay between protein structure, folding and function which is applicable to allosteric or non-allosteric proteins. We employ the model to study the detailed mechanism of the reversible conformational transition of Adenylate Kinase (AKE) between the open to the closed conformation, a reaction that is crucial to the protein’s catalytic function. We directly observe high strain energy which appears to be correlated with localized unfolding during the functional transition. This work also demonstrates that competing native interactions from the open and closed form can account for the large conformational transitions in AKE. We further characterize the conformational transitions with a new measure ΦFunc, and demonstrate that local unfolding may be due, in part, to competing intra-protein interactions. PMID:17217965

  13. Observing lysozyme's closing and opening motions by high-resolution single-molecule enzymology.

    PubMed

    Akhterov, Maxim V; Choi, Yongki; Olsen, Tivoli J; Sims, Patrick C; Iftikhar, Mariam; Gul, O Tolga; Corso, Brad L; Weiss, Gregory A; Collins, Philip G

    2015-06-19

    Single-molecule techniques can monitor the kinetics of transitions between enzyme open and closed conformations, but such methods usually lack the resolution to observe the underlying transition pathway or intermediate conformational dynamics. We have used a 1 MHz bandwidth carbon nanotube transistor to electronically monitor single molecules of the enzyme T4 lysozyme as it processes substrate. An experimental resolution of 2 μs allowed the direct recording of lysozyme's opening and closing transitions. Unexpectedly, both motions required 37 μs, on average. The distribution of transition durations was also independent of the enzyme's state: either catalytic or nonproductive. The observation of smooth, continuous transitions suggests a concerted mechanism for glycoside hydrolysis with lysozyme's two domains closing upon the polysaccharide substrate in its active site. We distinguish these smooth motions from a nonconcerted mechanism, observed in approximately 10% of lysozyme openings and closings, in which the enzyme pauses for an additional 40-140 μs in an intermediate, partially closed conformation. During intermediate forming events, the number of rate-limiting steps observed increases to four, consistent with four steps required in the stepwise, arrow-pushing mechanism. The formation of such intermediate conformations was again independent of the enzyme's state. Taken together, the results suggest lysozyme operates as a Brownian motor. In this model, the enzyme traces a single pathway for closing and the reverse pathway for enzyme opening, regardless of its instantaneous catalytic productivity. The observed symmetry in enzyme opening and closing thus suggests that substrate translocation occurs while the enzyme is closed.

  14. Paxilline inhibits BK channels by an almost exclusively closed-channel block mechanism.

    PubMed

    Zhou, Yu; Lingle, Christopher J

    2014-11-01

    Paxilline, a tremorogenic fungal alkaloid, potently inhibits large conductance Ca(2+)- and voltage-activated K(+) (BK)-type channels, but little is known about the mechanism underlying this inhibition. Here we show that inhibition is inversely dependent on BK channel open probability (Po), and is fully relieved by conditions that increase Po, even in the constant presence of paxilline. Manipulations that shift BK gating to more negative potentials reduce inhibition by paxilline in accordance with the increase in channel Po. Measurements of Po times the number of channels at negative potentials support the idea that paxilline increases occupancy of closed states, effectively reducing the closed-open equilibrium constant, L(0). Gating current measurements exclude an effect of paxilline on voltage sensors. Steady-state inhibition by multiple paxilline concentrations was determined for four distinct equilibration conditions, each with a distinct Po. The IC50 for paxilline shifted from around 10 nM when channels were largely closed to near 10 µM as maximal Po was approached. Model-dependent analysis suggests a mechanism of inhibition in which binding of a single paxilline molecule allosterically alters the intrinsic L(0) favoring occupancy of closed states, with affinity for the closed conformation being >500-fold greater than affinity for the open conformation. The rate of inhibition of closed channels was linear up through 2 µM paxilline, with a slope of 2 × 10(6) M(-1)s(-1). Paxilline inhibition was hindered by either the bulky cytosolic blocker, bbTBA, or by concentrations of cytosolic sucrose that hinder ion permeation. However, paxilline does not hinder MTSET modification of the inner cavity residue, A313C. We conclude that paxilline binds more tightly to the closed conformation, favoring occupancy of closed-channel conformations, and propose that it binds to a superficial position near the entrance to the central cavity, but does not hinder access of smaller

  15. Integrin activation and structural rearrangement.

    PubMed

    Takagi, Junichi; Springer, Timothy A

    2002-08-01

    Among adhesion receptor families, integrins are particularly important in biological processes that require rapid modulation of adhesion and de-adhesion. Activation on a timescale of < 1 s of beta2 integrins on leukocytes and beta3 integrins on platelets enables deposition of these cells at sites of inflammation or vessel wall injury. Recent crystal, nuclear magnetic resonance (NMR), and electron microscope (EM) structures of integrins and their domains lead to a unifying mechanism of activation for both integrins that contain and those that lack an inserted (I) domain. The I domain adopts two alternative conformations, termed open and closed. In striking similarity to signaling G-proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations that stabilize a particular conformation show that the open conformation has high affinity for ligand, whereas the closed conformation has low affinity. Movement of the C-terminal alpha-helix 10 A down the side of the domain in the open conformation is sufficient to increase affinity at the distal ligand-binding site 9,000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. Recent structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the integrin headpiece, and a critical role for integrin epidermal growth factor (EGF) domains in the stalk region. The headpiece of the integrin faces down towards the membrane in the inactive conformation, and extends upward in a "switchblade"-like opening upon activation. These long-range structural rearrangements of the entire integrin molecule involving interdomain contacts appear closely linked to conformational changes within the I and I-like domains, which result in increased affinity and competence for ligand binding.

  16. Conformational kinetics reveals affinities of protein conformational states.

    PubMed

    Daniels, Kyle G; Suo, Yang; Oas, Terrence G

    2015-07-28

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

  17. Conformers of Gaseous Serine.

    PubMed

    He, Kedan; Allen, Wesley D

    2016-08-09

    The myriad conformers of the neutral form of natural amino acid serine (Ser) have been investigated by systematic computations with reliable electronic wave function methods. A total of 85 unique conformers were located using the MP2/cc-pVTZ level of theory. The 12 lowest-energy conformers of serine fall within a 8 kJ mol(-1) window, and for these species, geometric structures, precise relative energies, equilibrium and vibrationally averaged rotational constants, anharmonic vibrational frequencies, infrared intensities, quartic and sextic centrifugal distortion constants, dipole moments, and (14)N nuclear quadrupole coupling constants were computed. The relative energies were refined through composite focal-point analyses employing basis sets as large as aug-cc-pV5Z and correlation treatments through CCSD(T). The rotational constants for seven conformers measured by Fourier-transform microwave spectroscopy are in good agreement with the vibrationally averaged rotational constants computed in this study. Our anharmonic vibrational frequencies are compared to the large number of experimental vibrational absorptions attributable to at least six conformers.

  18. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    PubMed

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  19. Solution phase parallel synthesis and evaluation of MAPK inhibitory activities of close structural analogues of a Ras pathway modulator.

    PubMed

    Lu, Yingchun; Sakamuri, Sukumar; Chen, Quin-Zene; Keng, Yen-Fang; Khazak, Vladimir; Illgen, Katrin; Schabbert, Silke; Weber, Lutz; Menon, Sanjay R

    2004-08-02

    A solution phase parallel synthesis approach was undertaken to rapidly explore the structure-activity relationship of an inhibitor of the Ras/Raf protein interaction identified from a small molecule compound library. Evaluation of the MAPK pathway signaling inhibitory activity of the synthesized analogues as well as their antiproliferative activity and ability to inhibit soft agar growth were performed.

  20. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain

    PubMed Central

    Oxvig, Claus; Lu, Chafen; Springer, Timothy A.

    1999-01-01

    For efficient ligand binding, integrins must be activated. Specifically, a conformational change has been proposed in a ligand binding domain present within some integrins, the inserted (I) domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340]. This proposal remains controversial, however, despite extensive crystal structure studies on the I domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340; Liddington, R. & Bankston, L. (1998) Structure (London) 6, 937–938; Qu, A. & Leahy, D. J. (1996) Structure (London) 4, 931–942; and Baldwin, E. T., Sarver, R. W., Bryant, G. L., Jr., Curry, K. A., Fairbanks, M. B., Finzel, B. C., Garlick, R. L., Heinrikson, R. L., Horton, N. C. & Kelly, L. L. (1998) Structure (London) 6, 923–935]. By defining the residues present in the epitope of a mAb against the human Mac-1 integrin (αMβ2, CD11b/CD18) that binds only the active receptor, we provide biochemical evidence that the I domain itself undergoes a conformational change with activation. This mAb, CBRM1/5, binds the I domain very close to the ligand binding site in a region that is widely exposed regardless of activation as judged by reactivity with other antibodies. The conformation of the epitope differs in two crystal forms of the I domain, previously suggested to represent active and inactive receptor. Our data suggests that conformational differences in the I domain are physiologically relevant and not merely a consequence of different crystal lattice interactions. We also demonstrate that the transition between the two conformational states depends on species-specific residues at the bottom of the I domain, which are proposed to be in an interface with another integrin domain, and that this transition correlates with functional activity. PMID:10051621

  1. Seed conformal blocks in 4D CFT

    NASA Astrophysics Data System (ADS)

    Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis; Serone, Marco

    2016-02-01

    We compute in closed analytical form the minimal set of "seed" conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation ( ℓ, overline{ℓ} ) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0, | ℓ - overline{7ell;} |) and one (| ℓ - overline{ℓ} |, 0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any ( ℓ, overline{ℓ} ), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p = | ℓ - overline{ℓ} | and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.

  2. Evolution of Conformity in Social Dilemmas.

    PubMed

    Dong, Yali; Li, Cong; Tao, Yi; Zhang, Boyu

    2015-01-01

    People often deviate from their individual Nash equilibrium strategy in game experiments based on the prisoner's dilemma (PD) game and the public goods game (PGG), whereas conditional cooperation, or conformity, is supported by the data from these experiments. In a complicated environment with no obvious "dominant" strategy, conformists who choose the average strategy of the other players in their group could be able to avoid risk by guaranteeing their income will be close to the group average. In this paper, we study the repeated PD game and the repeated m-person PGG, where individuals' strategies are restricted to the set of conforming strategies. We define a conforming strategy by two parameters, initial action in the game and the influence of the other players' choices in the previous round. We are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conforming strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategy if the expected number of rounds exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity in general promotes the evolution of cooperation, and that a regime of cooperation can be established in an AllD population through TFT-like strategies. These results provide insight into the emergence of cooperation in social dilemma games.

  3. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  4. Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility.

    PubMed

    You, T J; Bashford, D

    1995-11-01

    A new method for including local conformational flexibility in calculations of the hydrogen ion titration of proteins using macroscopic electrostatic models is presented. Intrinsic pKa values and electrostatic interactions between titrating sites are calculated from an ensemble of conformers in which the positions of titrating side chains are systematically varied. The method is applied to the Asp, Glu, and Tyr residues of hen lysozyme. The effects of different minimization and/or sampling protocols for both single-conformer and multi-conformer calculations are studied. For single-conformer calculations it is found that the results are sensitive to the choice of all-hydrogen versus polar-hydrogen-only atomic models and to the minimization protocol chosen. The best overall agreement of single-conformer calculations with experiment is obtained with an all-hydrogen model and either a two-step minimization process or minimization using a high dielectric constant. Multi-conformational calculations give significantly improved agreement with experiment, slightly smaller shifts between model compound pKa values and calculated intrinsic pKa values, and reduced sensitivity of the intrinsic pKa calculations to the initial details of the structure compared to single-conformer calculations. The extent of these improvements depends on the type of minimization used during the generation of conformers, with more extensive minimization giving greater improvements. The ordering of the titrations of the active-site residues, Glu-35 and Asp-52, is particularly sensitive to the minimization and sampling protocols used. The balance of strong site-site interactions in the active site suggests a need for including site-site conformational correlations.

  5. The anti/syn conformation of 8-oxo-7,8-dihydro-2'-deoxyguanosine is modulated by Bacillus subtilis PolX active site residues His255 and Asn263. Efficient processing of damaged 3'-ends.

    PubMed

    Zafra, Olga; Pérez de Ayala, Lucía; de Vega, Miguel

    2017-04-01

    8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn(2+)-dependent 3'-phosphatase and 3'-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3'-5' exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3' termini.

  6. Paxilline inhibits BK channels by an almost exclusively closed-channel block mechanism

    PubMed Central

    Zhou, Yu

    2014-01-01

    Paxilline, a tremorogenic fungal alkaloid, potently inhibits large conductance Ca2+- and voltage-activated K+ (BK)-type channels, but little is known about the mechanism underlying this inhibition. Here we show that inhibition is inversely dependent on BK channel open probability (Po), and is fully relieved by conditions that increase Po, even in the constant presence of paxilline. Manipulations that shift BK gating to more negative potentials reduce inhibition by paxilline in accordance with the increase in channel Po. Measurements of Po times the number of channels at negative potentials support the idea that paxilline increases occupancy of closed states, effectively reducing the closed–open equilibrium constant, L(0). Gating current measurements exclude an effect of paxilline on voltage sensors. Steady-state inhibition by multiple paxilline concentrations was determined for four distinct equilibration conditions, each with a distinct Po. The IC50 for paxilline shifted from around 10 nM when channels were largely closed to near 10 µM as maximal Po was approached. Model-dependent analysis suggests a mechanism of inhibition in which binding of a single paxilline molecule allosterically alters the intrinsic L(0) favoring occupancy of closed states, with affinity for the closed conformation being >500-fold greater than affinity for the open conformation. The rate of inhibition of closed channels was linear up through 2 µM paxilline, with a slope of 2 × 106 M−1s−1. Paxilline inhibition was hindered by either the bulky cytosolic blocker, bbTBA, or by concentrations of cytosolic sucrose that hinder ion permeation. However, paxilline does not hinder MTSET modification of the inner cavity residue, A313C. We conclude that paxilline binds more tightly to the closed conformation, favoring occupancy of closed-channel conformations, and propose that it binds to a superficial position near the entrance to the central cavity, but does not hinder access of smaller

  7. Piscidin-1-analogs with double L- and D-lysine residues exhibited different conformations in lipopolysaccharide but comparable anti-endotoxin activities

    PubMed Central

    Kumar, Amit; Mahajan, Mukesh; Awasthi, Bhanupriya; Tandon, Anshika; Harioudh, Munesh Kumar; Shree, Sonal; Singh, Pratiksha; Shukla, Praveen Kumar; Ramachandran, Ravishankar; Mitra, Kalyan; Bhattacharjya, Surajit; Ghosh, Jimut Kanti

    2017-01-01

    To become clinically effective, antimicrobial peptides (AMPs) should be non-cytotoxic to host cells. Piscidins are a group of fish-derived AMPs with potent antimicrobial and antiendotoxin activities but limited by extreme cytotoxicity. We conjectured that introduction of cationic residue(s) at the interface of polar and non-polar faces of piscidins may control their insertion into hydrophobic mammalian cell membrane and thereby reducing cytotoxicity. We have designed several novel analogs of piscidin-1 by substituting threonine residue(s) with L and D-lysine residue(s). L/D-lysine-substituted analogs showed significantly reduced cytotoxicity but exhibited either higher or comparable antibacterial activity akin to piscidin-1. Piscidin-1-analogs demonstrated higher efficacy than piscidin-1 in inhibiting lipopolysaccharide (LPS)-induced pro-inflammatory responses in THP-1 cells. T15,21K-piscidin-1 (0.5 mg/Kg) and T15,21dK-piscidin-1 (1.0 mg/Kg) demonstrated 100% survival of LPS (12.0 mg/Kg)-administered mice. High resolution NMR studies revealed that both piscidin-1 and T15,21K-piscidin-1 adopted helical structures, with latter showing a shorter helix, higher amphipathicity and cationic residues placed at optimal distances to form ionic/hydrogen bond with lipid A of LPS. Remarkably, T15,21dK-piscidin-1 showed a helix-loop-helix structure in LPS and its interactions with LPS could be sustained by the distance of separation of side chains of R7 and D-Lys-15 which is close to the inter-phosphate distance of lipid A. PMID:28051162

  8. Efficient Room-Temperature Methane Activation by the Closed-Shell, Metal-Free Cluster [OSiOH](+) : A Novel Mechanistic Variant.

    PubMed

    Sun, Xiaoyan; Zhou, Shaodong; Schlangen, Maria; Schwarz, Helmut

    2016-09-26

    The closed-shell cluster ion [OSiOH](+) is generated in the gas phase and its reactivity towards the thermal activation of CH4 has been examined using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry in conjunction with state-of-the-art quantum chemical calculations. Quite unexpectedly at room temperature, [OSiOH](+) efficiently mediates C-H bond activation, giving rise to [SiOH](+) and [SiOCH3 ](+) with the concomitant formation of methanol and water, respectively. Mechanistic aspects for this unprecedented reactivity pattern are presented, and the properties of the [OSiOH](+) /CH4 couple are compared with those of the closed-shell systems [OCOH](+) /CH4 and [MgOH](+) /CH4 ; the last two couples exhibit an entirely different reactivity scenario.

  9. Tibiofemoral conformity and kinematics of rotating-bearing knee prostheses.

    PubMed

    D'Lima, D D; Trice, M; Urquhart, A G; Colwell, C W

    2001-05-01

    Increasing tibiofemoral articular conformity theoretically increases articular contact area and reduces contact stresses in total knee arthroplasty. Fixed-bearing knee designs possess relatively low tibiofemoral conformity, in part to allow tibiofemoral rotation without generating excessive stresses at the articulation or the implant-bone interface. This study analyzed knee kinematics of mobile-bearing designs in a closed chain dynamic knee extension model in posterior cruciate-retaining design with high- and low tibiofemoral conformity and posterior cruciate-substituting designs with and without rotational constraint. Overall, for all conditions, the mobile-bearing insert rotated with the femur in the presence of tibiofemoral axial rotation. In addition, the correlation of bearing rotation with femoral rotation was stronger for the high-conformity and rotationally-constrained designs than for the low-conformity designs and strongest for the posterior cruciate-retaining high-conformity condition. Changes in conformity or rotational constraint did not appear to affect femoral roll back, tibiofemoral axial rotation, or varus-valgus angulation. The results suggest that mobile-bearing inserts rotate with the femur and increasing conformity or rotational constraint in mobile-bearing design knee prostheses does not affect knee kinematics adversely, at least under closed chain knee extension conditions in vitro.

  10. Conformal cloak for waves

    SciTech Connect

    Chen Huanyang; Leonhardt, Ulf; Tyc, Tomas

    2011-05-15

    Conformal invisibility devices are only supposed to work within the valid range of geometrical optics. Here, we show by numerical simulations and analytical arguments that for certain quantized frequencies, they are nearly perfect even in a regime that clearly violates geometrical optics. The quantization condition follows from the analogy between the Helmholtz equation and the stationary Schroedinger equation.

  11. Stabilizing the integrin alpha M inserted domain in alternative conformations with a range of engineered disulfide bonds.

    PubMed

    Shimaoka, Motomu; Lu, Chafen; Salas, Azucena; Xiao, Tsan; Takagi, Junichi; Springer, Timothy A

    2002-12-24

    Conformational movement of the C-terminal alpha7 helix in the integrin inserted (I) domain, a major ligand-binding domain that adopts an alpha/beta Rossmann fold, has been proposed to allosterically regulate ligand-binding activity. Disulfide bonds were engineered here to reversibly lock the position of the alpha7 helix in one of two alternative conformations seen in crystal structures, termed open and closed. Our results show that pairs of residues with Cbeta atoms farther apart than optimal for disulfide bond stereochemistry can be successfully replaced by cysteine, suggesting that backbone movement accommodates disulfide formation. We also find more success with substituting partially exposed than buried residues. Disulfides stabilizing the open conformation resulted in constitutively active alphaMbeta2 heterodimers and isolated alphaM inserted domains, which were reverted to an inactive form by dithiothreitol reduction. By contrast, a disulfide stabilizing the closed conformation resulted in inactive alphaMbeta2 that was resistant to activation but became activatable after dithiothreitol treatment.

  12. Intramolecular shielding maintains the ER Ca²⁺ sensor STIM1 in an inactive conformation.

    PubMed

    Yu, Fang; Sun, Lu; Hubrack, Satanay; Selvaraj, Senthil; Machaca, Khaled

    2013-06-01

    Store-operated calcium entry (SOCE) represents a major calcium influx pathway in non-excitable cells and is central to many physiological processes such as T cell activation and mast cell degranulation. SOCE is activated through intricate coordination between the Ca(2+) sensor on the ER membrane (stromal interaction molecule 1, STIM1) and the plasma membrane channel Orai1. When Ca(2+) stores are depleted, STIM1 oligomerizes and physically interacts with Orai1 through its SOAR/CAD domain, resulting in Orai1 gating and Ca(2+) influx. Here, we describe novel inter- and intramolecular FRET sensors in the context of the full-length membrane-anchored STIM1, and show that STIM1 undergoes a conformational change in response to store depletion to adopt a stretched 'open' conformation that exposes SOAR/CAD and allows it to interact with Orai1. Mutational analyses reveal that electrostatic interactions between the predicted first and third coiled-coil domains of STIM1 are not involved in maintaining the 'closed' inactive conformation. In addition, the results argue that an amphipathic α-helix between residues 317 and 336 in the so-called inhibitory domain is important to maintain STIM1 in a closed conformation at rest. Indeed, mutations that alter the amphipathic properties of this helix result in a STIM1 variant that is unable to respond to store depletion in terms of forming puncta, translocation to the cortical ER or activating Orai1.

  13. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  14. Mycobacterium tuberculosis acyl carrier protein synthase adopts two different pH-dependent structural conformations

    SciTech Connect

    Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance; Besra, Gurdyal S.; Sacchettini, James C.

    2011-09-20

    The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS-ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the {alpha}2 helix and in the conformation of the {alpha}3-{alpha}4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4-6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS-ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS-ADP adopt different conformations depending upon the pH conditions of the crystallization solution.

  15. Atropisomerism about aryl-Csp(3) bonds: the electronic and steric influence of ortho-substituents on conformational exchange in cannabidiol and linderatin derivatives.

    PubMed

    Berber, Hatice; Lameiras, Pedro; Denhez, Clément; Antheaume, Cyril; Clayden, Jonathan

    2014-07-03

    Terpenylation reactions of substituted phenols were used to prepare cannabidiol and linderatin derivatives, and their structure and conformational behavior in solution were investigated by NMR and, for some representative examples, by DFT. VT-NMR spectra and DFT calculations were used to determine the activation energies of the conformational change arising from restricted rotation about the aryl-Csp(3) bond that lead to two unequally populated rotameric epimers. The NBO calculation was applied to explain the electronic stabilization of one conformer over another by donor-acceptor charge transfer interactions. Conformational control arises from a combination of stereoelectronic and steric effects between substituents in close contact with each other on the two rings of the endocyclic epoxide atropisomers. This study represents the first exploration of the stereoelectronic origins of atropisomerism around C(sp(2))-C(sp(3)) single bonds through theoretical calculations.

  16. Structure, domain organization, and different conformational states of stem cell factor-induced intact KIT dimers

    PubMed Central

    Opatowsky, Yarden; Lax, Irit; Tomé, Francisco; Bleichert, Franziska; Unger, Vinzenz M.; Schlessinger, Joseph

    2014-01-01

    Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the homotypic interactions in the membrane proximal Ig-like domain of the extracellular region differ from those observed in the crystal structure of the unconstrained extracellular regions. We observe two prevalent conformations in which the tyrosine kinase domains interact asymmetrically. The asymmetric arrangement of the cytoplasmic regions may represent snapshots of molecular interactions occurring during trans autophosphorylation. Moreover, the asymmetric arrangements may facilitate specific intermolecular interactions necessary for trans phosphorylation of different KIT autophosphorylation sites that are required for stimulation of kinase activity and recruitment of signaling proteins by activated KIT. PMID:24449920

  17. Close Correlation of Monoamine Oxidase Activity with Progress of Alzheimer’s Disease in Mice, Observed by in Vivo Two-Photon Imaging

    PubMed Central

    2016-01-01

    Monoamine oxidases (MAOs) play an important role in Alzheimer’s disease (AD) pathology. We report in vivo comonitoring of MAO activity and amyloid-β (Aβ) plaques dependent on the aging of live mice with AD, using a two-photon fluorescence probe. The probe under the catalytic action of MAO produces a dipolar fluorophore that senses Aβ plaques, a general AD biomarker, enabling us to comonitor the enzyme activity and the progress of AD indicated by Aβ plaques. The results show that the progress of AD has a close correlation with MAO activity, which can be categorized into three stages: slow initiation stage up to three months, an aggressive stage, and a saturation stage from nine months. Histological analysis also reveals elevation of MAO activity around Aβ plaques in aged mice. The close correlation between the MAO activity and AD progress observed by in vivo monitoring for the first time prompts us to investigate the enzyme as a potential biomarker of AD. PMID:28058286

  18. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site.

    PubMed

    Fu, Dawei; Li, Zhongyuan; Huang, Huoqing; Yuan, Tiezheng; Shi, Pengjun; Luo, Huiying; Meng, Kun; Yang, Peilong; Yao, Bin

    2011-05-01

    The maximum activity of Yersinia enterocolitica phytase (YeAPPA) occurs at pH 5.0 and 45 °C, and notably, its specific activity (3.28 ± 0.24 U mg(-1)) is 800-fold less than that of its Yersinia kristeensenii homolog (YkAPPA; 88% amino acid sequence identity). Sequence alignment and molecular modeling show that the arginine at position 79 (Arg79) in YeAPPA corresponding to Gly in YkAPPA as well as other histidine acid phosphatase (HAP) phytases is the only non-conserved residue near the catalytic site. To characterize the effects of the corresponding residue on the specific activities of HAP phytases, Escherichia coli EcAPPA, a well-characteri