Sample records for active coating process

  1. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes.

    PubMed

    Marini, M; De Niederhausern, S; Iseppi, R; Bondi, M; Sabia, C; Toselli, M; Pilati, F

    2007-04-01

    Silver-doped organic-inorganic hybrid coatings were prepared starting from tetraethoxysilane- and triethoxysilane-terminated poly(ethylene glycol)-block-polyethylene by the sol-gel process. They were applied as a thin layer (0.6-1.1 microm) to polyethylene (PE) and poly(vinyl chloride) (PVC) films and the antibacterial activity of the coated films was tested against Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. The effect of several factors (such as organic-inorganic ratio, type of catalyst, time of post-curing, silver ion concentration, etc.) was investigated. Measurements at different contact times showed a rapid decrease of the viable count for both tested strains. The highest antibacterial activity [more than 6 log reduction within 6 h starting from 106 colony-forming units (cfu) mL-1] was obtained for samples with an organic-inorganic weight ratio of 80:20 and 5 wt % silver salt with respect to the coating. For the coatings prepared by an acid-catalyzed process, a high level of permanence of the antibacterial activity of the coated films was demonstrated by repeatedly washing the samples in warm water or by immersion in physiological saline solution at 37 degrees C for 3 days. The release of silver ions per square meter of coating is very similar to that previously observed for polyamides filled with metallic silver nanoparticles; however, when compared on the basis of Ag content, the concentration of silver ions released from the coating is much higher than that released from 1 mm thick specimens of polyamide (PA) filled with silver nanoparticles. Transparency and good adhesion of the coating to PE and PVC plastic substrates without any previous surface treatment are further interesting features.

  2. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Experimental analysis of tablet properties for discrete element modeling of an active coating process.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-03-01

    Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young's modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young's modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet-steel and tablet-tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.

  4. Feasibility of Raman spectroscopy as PAT tool in active coating.

    PubMed

    Müller, Joshua; Knop, Klaus; Thies, Jochen; Uerpmann, Carsten; Kleinebudde, Peter

    2010-02-01

    Active coating is a specific application of film coating where the active ingredient is comprised in the coating layer. This implementation is a challenging operation regarding the achievement of desired amount of coating and coating uniformity. To guarantee the quality of such dosage forms it is desirable to develop a tool that is able to monitor the coating operation and detect the end of the process. Coating experiments were performed at which the model drug diprophylline is coated in a pan coater on placebo tablets and tablets containing the active ingredient itself. During the active coating Raman spectra were recorded in-line. The spectral measurements were correlated with the average weight gain and the amount of coated active ingredient at each time point. The developed chemometric model was tested by monitoring further coated batches. Furthermore, the effects of pan rotation speed and working distance on the acquired Raman signal and, hence, resulting effect of the chemometric model were examined. Besides coating on placebo cores it was possible to determine the amount of active ingredient in the film when coated onto cores containing the same active ingredient. In addition, the method is even applicable when varying the process parameters and measurement conditions within a restricted range. Raman spectroscopy is an appropriate process analytical technology too.

  5. Lubricant Coating Process

    NASA Technical Reports Server (NTRS)

    1989-01-01

    "Peen Plating," a NASA developed process for applying molybdenum disulfide, is the key element of Techniblast Co.'s SURFGUARD process for applying high strength solid lubricants. The process requires two machines -- one for cleaning and one for coating. The cleaning step allows the coating to be bonded directly to the substrate to provide a better "anchor." The coating machine applies a half a micron thick coating. Then, a blast gun, using various pressures to vary peening intensities for different applications, fires high velocity "media" -- peening hammers -- ranging from plastic pellets to steel shot. Techniblast was assisted by Rural Enterprises, Inc. Coating service can be performed at either Techniblast's or a customer's facility.

  6. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  7. Solventless pharmaceutical coating processes: a review.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2007-01-01

    Coatings are an essential part in the formulation of pharmaceutical dosage form to achieve superior aesthetic quality (e.g., color, texture, mouth feel, and taste masking), physical and chemical protection for the drugs in the dosage forms, and modification of drug release characteristics. Most film coatings are applied as aqueous- or organic-based polymer solutions. Both organic and aqueous film coating bring their own disadvantages. Solventless coating technologies can overcome many of the disadvantages associated with the use of solvents (e.g., solvent exposure, solvent disposal, and residual solvent in product) in pharmaceutical coating. Solventless processing reduces the overall cost by eliminating the tedious and expensive processes of solvent disposal/treatment. In addition, it can significantly reduce the processing time because there is no drying/evaporation step. These environment-friendly processes are performed without any heat in most cases (except hot-melt coating) and thus can provide an alternative technology to coat temperature-sensitive drugs. This review discusses and compares six solventless coating methods - compression coating, hot-melt coating, supercritical fluid spray coating, electrostatic coating, dry powder coating, and photocurable coating - that can be used to coat the pharmaceutical dosage forms.

  8. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    PubMed

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  9. Development and in-line validation of a Process Analytical Technology to facilitate the scale up of coating processes.

    PubMed

    Wirges, M; Funke, A; Serno, P; Knop, K; Kleinebudde, P

    2013-05-05

    Incorporation of an active pharmaceutical ingredient (API) into the coating layer of film-coated tablets is a method mainly used to formulate fixed-dose combinations. Uniform and precise spray-coating of an API represents a substantial challenge, which could be overcome by applying Raman spectroscopy as process analytical tool. In pharmaceutical industry, Raman spectroscopy is still mainly used as a bench top laboratory analytical method and usually not implemented in the production process. Concerning the application in the production process, a lot of scientific approaches stop at the level of feasibility studies and do not manage the step to production scale and process applications. The present work puts the scale up of an active coating process into focus, which is a step of highest importance during the pharmaceutical development. Active coating experiments were performed at lab and production scale. Using partial least squares (PLS), a multivariate model was constructed by correlating in-line measured Raman spectral data with the coated amount of API. By transferring this model, being implemented for a lab scale process, to a production scale process, the robustness of this analytical method and thus its applicability as a Process Analytical Technology (PAT) tool for the correct endpoint determination in pharmaceutical manufacturing could be shown. Finally, this method was validated according to the European Medicine Agency (EMA) guideline with respect to the special requirements of the applied in-line model development strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Organic-aqueous crossover coating process for the desmopressin orally disintegrating microparticles.

    PubMed

    Kim, Ju-Young; Hwang, Kyu-Mok; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok

    2015-02-01

    The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability.

  11. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell

    1998-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.

  12. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  13. Biocatalytically active silCoat-composites entrapping viable Escherichia coli.

    PubMed

    Findeisen, A; Thum, O; Ansorge-Schumacher, M B

    2014-02-01

    Application of whole cells in industrial processes requires high catalytic activity, manageability, and viability under technical conditions, which can in principle be accomplished by appropriate immobilization. Here, we report the identification of carrier material allowing exceptionally efficient adsorptive binding of Escherichia coli whole cells hosting catalytically active carbonyl reductase from Candida parapsilosis (CPCR2). With the immobilizates, composite formation with both hydrophobic and hydrophilized silicone was achieved, yielding advanced silCoat-material and HYsilCoat-material, respectively. HYsilCoat-whole cells were viable preparations with a cell loading up to 400 mg(E. coli) · g(-1)(carrier) and considerably lower leaching than native immobilizates. SilCoat-whole cells performed particularly well in neat substrate exhibiting distinctly increased catalytic activity.

  14. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  15. Synergistic Effect of Sodium Chlorite and Edible Coating on Quality Maintenance of Minimally Processed Citrus grandis under Passive and Active MAP.

    PubMed

    Ban, Zhaojun; Feng, Jianhua; Wei, Wenwen; Yang, Xiangzheng; Li, Jilan; Guan, Junfeng; Li, Jiang

    2015-08-01

    Edible coating has been an innovation within the bioactive packaging concept. The comparative analysis upon the effect of edible coating, sodium chlorite (SC) and their combined application on quality maintenance of minimally processed pomelo (Citrus grandis) fruits during storage at 4 °C was conducted. Results showed that the combination of edible coating and SC dipping delayed the microbial development whereas the sole coating or dipping treatment was less efficient. The synergetic application of edible coating and SC treatment under modified atmosphere packaging (MAP, 10% O2 , 10% CO2 ) was able to maintain the total soluble solids level and ascorbic acid content, while reduce the weight loss as well as development of mesophiles and psychrotrophs. Nonetheless, the N, O-carboxymethyl chitosan solely coated samples showed significantly higher level of weight loss during storage with comparison to the untreated sample. Furthermore, the combined application of edible coating and SC dipping under active MAP best maintained the sensory quality of minimally processed pomelo fruit during storage. © 2015 Institute of Food Technologists®

  16. Use of edible coatings to preserve quality of lightly (and slightly) processed products.

    PubMed

    Baldwin, E A; Nisperos-Carriedo, M O; Baker, R A

    1995-11-01

    Lightly processed agricultural products present a special problem to the food industry and to scientists involved in postharvest and food technology research. Light or minimal processing includes cutting, slicing, coring, peeling, trimming, or sectioning of agricultural produce. These products have an active metabolism that can result in deteriorative changes, such as increased respiration and ethylene production. If not controlled, these changes can lead to rapid senescence and general deterioration of the product. In addition, the surface water activity of cut fruits and vegetables is generally quite high, inviting microbial attack, which further reduces product stability. Methods for control of these changes are numerous and can include the use of edible coatings. Also mentioned in this review are coating of nut products, and dried, dehydrated, and freeze-dried fruits. Technically, these are not considered to be minimally processed, but many of the problems and benefits of coating these products are similar to coating lightly processed products. Generally, the potential benefits of edible coatings for processed or lightly processed produce is to stabilize the product and thereby extend product shelf life. More specifically, coatings have the potential to reduce moisture loss, restrict oxygen entrance, lower respiration, retard ethylene production, seal in flavor volatiles, and carry additives that retard discoloration and microbial growth.

  17. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    PubMed

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Anodized aluminum coatings for thermal control. I - Coating process and stresses

    NASA Technical Reports Server (NTRS)

    Alwitt, R. S.; Mcclung, R. C.; Jacobs, S.

    1992-01-01

    Anodized aluminum is a candidate material for use as a thermal radiator surface on Space Station Freedom. Here, results of measurements of coating stress at room temperature are presented. The effects of coating process conditions and also subsequent exposure to different humidities, from above ambient to vacuum, are reported. The most important observation with regard to space applications is that the coating stress is very dependent on humidity, changing from compressive at ambient humidity to strongly tensile in 10 exp -6 torr vacuum. The increase in stress is accompanied by loss of water from the coating, and the process is reversible.

  19. Low friction and galling resistant coatings and processes for coating

    DOEpatents

    Johnson, Roger N.

    1987-01-01

    The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

  20. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  1. Waterjet processes for coating removal

    NASA Technical Reports Server (NTRS)

    Burgess, Fletcher; Cosby, Steve; Hoppe, David

    1995-01-01

    USBI and NASA have been testing and investigating the use of high pressure water for coating removal for approximately the past 12 years at the Automated TPS (Thermal Protection System - ablative materials used for thermal protection during ascent and descent of the solid rocket boosters) Removal Facility located in the Productivity Enhancement Complex at Marshall Space Flight Center. Originally the task was to develop and automate the removal process and transfer the technology to a production facility at Kennedy Space Center. Since that time more and more applications and support roles for the waterjet technology have been realized. The facility has become a vital part of development activities ongoing at MSFC. It supports the development of environmentally compliant insulations, sealants, and coatings. It also supports bonding programs, test motors, and pressure vessels. The most recent role of the cell is supporting Thiokol Corporation's solid rocket motor program in the development of waterjet degreasing and paint stripping methods. Currently vapor degreasing methods use 500,000 lbs. of ozone depleting chemicals per year. This paper describes the major cell equipment, test methods practiced, and coatings that have been removed.

  2. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    PubMed

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    DOEpatents

    Panitz, J.K.; Reed, S.T.; Ashley, C.S.; Neiser, R.A.; Moffatt, W.C.

    1999-07-20

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties. 6 figs.

  4. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  5. An Application of X-Ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    PubMed

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-06-01

    An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  6. Potentiodynamic study of Al-Mg alloy with superhydrophobic coating in photobiologically active/not active natural seawater.

    PubMed

    Benedetti, Alessandro; Cirisano, Francesca; Delucchi, Marina; Faimali, Marco; Ferrari, Michele

    2016-01-01

    Superhydrophobic coating technology is regarded as an attractive possibility for the protection of materials in a sea environment. DC techniques are a useful tool to characterize metals' behavior in seawater in the presence/absence of coatings and/or corrosion inhibitors. In this work, investigations concerning Al-5%Mg alloy with and without a sprayed superhydrophobic coating were carried out with potentiodynamic scans in photobiologically active and not active seawater (3 weeks of immersion). In not photobiologically active seawater, the presence of the superhydrophobic coating did not prevent pitting corrosion. With time, the coating underwent local exfoliations, but intact areas still preserved superhydrophobicity. In photobiologically active seawater, on samples without the superhydrophobic coating (controls) pitting was inhibited, probably due to the adsorption of organic compounds produced by the photobiological activity. After 3 weeks of immersion, the surface of the coating became hydrophilic due to diatom coverage. As suggested by intermediate observations, the surface below the diatom layer is suspected of having lost its superhydrophobicity due to early stages of biofouling processes (organic molecule adsorption and diatom attachment/gliding). Polarization curves also revealed that the metal below the coating underwent corrosion inhibiting phenomena as observed in controls, likely due to the permeation of organic molecules through the coating. Hence, the initial biofouling stages (days) occurring in photobiologically active seawater can both accelerate the loss of superhydrophobicity of coatings and promote corrosion inhibition on the underlying metal. Finally, time durability of superhydrophobic surfaces in real seawater still remains the main challenge for applications, where the early stages of immersion are demonstrated to be of crucial importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  8. Process for preparing multilayer enzyme coating on a fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  9. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    PubMed

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1982-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks.

  11. Anti-reflection coatings applied by acid leaching process

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  12. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  13. Processing of fused silicide coatings for carbon-based materials

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1983-01-01

    The processing and oxidation resistance of fused Al-Si and Ni-Si slurry coatings on ATJ graphite was studied. Ni-Si coatings in the 70 to 90 percent Si range were successfully processed to melt, wet, and bond to the graphite. The molten coatings also infiltrated the porosity in graphite and reacted with it to form SiC in the coating. Cyclic oxidation at 1200 C showed that these coatings were not totally protective because of local attack of the substrate, due to the extreme thinness of the coatings in combination with coating cracks. Previously announced in STAR as N83-27019

  14. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  15. Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2017-03-01

    Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.

  16. Process to minimize cracking of pyrolytic carbon coatings

    DOEpatents

    Lackey, Jr., Walter J.; Sease, John D.

    1978-01-01

    Carbon-coated microspheroids useful as fuels in nuclear reactors are produced with a low percentage of cracked coatings and are imparted increased strength and mechanical stability characteristics by annealing immediately after the carbon coating processes.

  17. Convergent spray process for environmentally friendly coatings

    NASA Technical Reports Server (NTRS)

    Scarpa, Jack

    1995-01-01

    Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.

  18. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  19. A Novel Nonelectrolytic Process for Chromium and Nickel Coating

    DTIC Science & Technology

    2015-06-01

    thermal spraying and involves similar protocols for coating an object. The process proceeds after powder is injected into a plasma jet then superheated...HVOF) High velocity oxygen fuel coating is characteristic of a thermal spray coating process , enhancing anti-corrosion and anti-wear properties of...observations due to limited metal deposition on the surface during treatment. No powder particles were produced during this RES process . a. Optical

  20. Electrical contact arrangement for a coating process

    DOEpatents

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  1. Chemical Processing of Nanostructured Coatings

    DTIC Science & Technology

    2000-01-01

    increasing particle loading in sol-gel process (8-10). This approach involved dispersing large ceramic powders in sol-gel solution, and the mixture...the high loading of ceramic powders. One way to prepare thicker coatings is to add powders into the sol. This helps to reduce the capillary stresses...thickness that range between 2 and 4 microns. In order to investigate the nature and origin of the textured region of the coatings, GIXS was used to

  2. A parylene coating process for hybrid circuits

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The parylene coating process developed during this program consists of (1) obtaining a hybrid cover with a hole in it, (2) sealing of the circuit with a hole in the cover, (3) parylene coating through the hole with the external leads protected from parylene by appropriate fixturing, and (4) sealing of the hole by soldering a pretinned kovar tab. Development of the above process required optimization of the parylene coater parameters to obtain a uniform consistent coating which could offer adequate protection to the circuits, fixture design for packages of various types, determination of the size of the deposition hole, and the amount of dimer charge per run, a process to hermetically seal the deposition holes and establishment of quality control techniques or acceptance criteria for the deposited film.

  3. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  4. Electrocurtain coating process for coating solar mirrors

    DOEpatents

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  5. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.

    PubMed

    Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc

    2016-10-10

    Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  7. Sol-gel antireflective spin-coating process for large-size shielding windows

    NASA Astrophysics Data System (ADS)

    Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian

    2002-10-01

    The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.

  8. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  9. Fused slurry silicide coatings for columbium alloy reentry heat shields. Volume 2: Experimental and coating process details

    NASA Technical Reports Server (NTRS)

    Fitzgerald, B.

    1973-01-01

    The experimental and coating process details are presented. The process specifications which were developed for the formulation and application of the R-512E fused slurry silicide coating using either an acrylic or nitrocellulose base slurry system is also discussed.

  10. Amorphous alumina coatings: processing, structure and remarkable barrier properties.

    PubMed

    Samélor, Diane; Lazar, Ana-Maria; Aufray, Maëlenn; Tendero, Claire; Lacroix, Loïc; Béguin, Jean-Denis; Caussat, Brigitte; Vergnes, Hugues; Alexis, Joël; Poquillon, Dominique; Pébère, Nadine; Gleizes, Alain; Vahlas, Constantin

    2011-09-01

    Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.

  11. Changes in antioxidant and biochemical activities in castor oil-coated Capsicum annuum L. during postharvest storage.

    PubMed

    Panigrahi, Jitendriya; Patel, Mansi; Patel, Niyati; Gheewala, Bhumi; Gantait, Saikat

    2018-06-01

    This study, for the first time, evaluates the efficiency of castor oil when used as an external coating on Capsicum annuum L., to increase postharvest storage-life at 4 ± 1 °C. The castor oil-coated fruits were successfully stored for 36 days, while the non-coated fruits could only sustain for 18 days. Throughout the storage period (at 9-day intervals), different antioxidants and biochemical assays (allied with storage) such as titratable acidity, ascorbic acid content, ferrous ion chelating activity, reducing power, DPPH scavenging activity, hydroxyl radical scavenging activity, total phenolic content, total sugar estimation, and enzymatic study of polyphenol oxidase and pectate lyase, were assessed. During storage, the castor oil-coated fruits showed a substantial decrease in titratable acidity, ascorbic acid content, total phenolic content, including antioxidant activities such as reducing power and DPPH activity; however, an increase in ferrous ion chelating activity, total soluble sugar content, polyphenol oxidase activity and initial pectate lyase activity was observed, in contrast to that of the non-coated fruits. The application of castor oil proved to be effective in delaying the ripening process of fruits during storage.

  12. A production parylene coating process for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Kale, V. S.; Riley, T. J.

    1977-01-01

    The real impetus for developing a production parylene coating process for internal hybrid passivation came as a result of the possibility of loose conductive particles in hybrid microelectronic circuits, causing intermittent and sometimes permanent failures. Because of the excellent mechanical properties of parylene, it is capable of securing the loose particles in place and prevent such failures. The process of coating described consists of (1) vaporizing the initial charge, which is in the form of a dimer; (2) conversion of the dimer into a reactive monomer; and (3) deposition and subsequent polymerization of the monomer in the deposition chamber which forms a uniform parylene film over all the cold surfaces in contact. Experimental results are discussed in terms of wire bond reliability, resistor drift, high-temperature storage characteristics of parylene, and coating acceptance standards. It is concluded that internal cavities of microelectronic circuits can be successfully coated with parylene provided appropriate tooling is used to protect external leads from the parylene monomer.

  13. Novel Chemical Process for Producing Chrome Coated Metal

    PubMed Central

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien

    2018-01-01

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed. PMID:29303977

  14. Novel Chemical Process for Producing Chrome Coated Metal.

    PubMed

    Pelar, Christopher; Greenaway, Karima; Zea, Hugo; Wu, Chun-Hsien; Luhrs, Claudia C; Phillips, Jonathan

    2018-01-05

    This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

  15. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  16. Transparent superhydrophobic surfaces using a spray coating process

    DOE PAGES

    Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton; ...

    2017-11-03

    One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less

  17. Transparent superhydrophobic surfaces using a spray coating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzos, Georgios; Jang, Gyoung Gug; Smith, D. Barton

    One significant maintenance problem and cost associated with solar energy conversion systems is the soiling due to the accumulation of dust and other pollutants. Here in this work, we describe a scalable approach for applying antisoiling coatings based on superhydrophobic (SH) silica particles using a spray coating process. A large water contact angle (WCA) is one of the characteristics of excellent SH surfaces and because of the low surface energy and low adhesion forces the soiling rate is reduced. Our findings indicate that the WCA depends strongly on the ratio of the polymer binder and the nanoparticles. The nanoparticle surfacemore » coverage of the spray coated samples was substantially improved after rinsing with solvent. This process tended to remove large aggregates and excess polymer binder and further increased the WCA by allowing exposure of the functionalized nanoparticles. The durability of the SH coatings was enhanced when the substrate was pretreated with polymer binder and an optimal curing time between 30 and 60 min. The abrasion tests of the SH coatings we report in this study showed that the WCA decreased from ~ 166° to ~ 157° after exposure to 2.6 g of sand. Such coatings will help reduce costs of periodic cleaning of solar energy conversion systems (photovoltaic panels and concentrated solar mirrors).« less

  18. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  19. Solventless visible light-curable coating: I. Critical formulation and processing parameters.

    PubMed

    Bose, Sagarika; Bogner, Robin H

    2010-06-30

    Film coating is generally accomplished by spraying polymers dissolved in solvents onto a cascading bed of tablets. The limitations associated with the use of solvents (both aqueous and organic) can be overcome by the use of solventless coating technologies. In this proposed solventless photocurable film coating system, each layer of coating onto the pellets (non-pareil beads) was formed using liquid photocurable monomer, powdered pore-forming agents, photosensitizers and photoinitiators in a mini-coating pan and later cured by visible light. Yield, coating efficiency, variation in color, diameter and roundness were determined for each batch to evaluate process efficiency and coating quality. It was found that the ratio (S/L ratio) of the amount of solid (S) pore-forming agent to volume of liquid (L) monomer, particle size and type of the pore-forming agent, concentration of initiator, and total exposure (light intensity x exposure time) of light were critical formulation and processing parameters for the process. Using lactose as a pore-forming agent, an optimum ratio of pore-forming agent to photocurable polymer was 1.8-3.0 to achieve good process efficiency and uniformity. The ratio was sensitive to particle size and type of pore-forming agent. 2010 Elsevier B.V. All rights reserved.

  20. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  1. Processing and Characterization of Functionally Graded Hydroxyapatite Coatings for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Bai, Xiao

    Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas

  2. Coated graphite articles useful in metallurgical processes and method for making same

    DOEpatents

    Holcombe, Cressie E.; Bird, Eugene L.

    1995-01-01

    Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

  3. Real-time imaging as an emerging process analytical technology tool for monitoring of fluid bed coating process.

    PubMed

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Wakte, Pravin S

    2018-07-01

    A direct imaging system (Eyecon TM ) was used as a Process Analytical Technology (PAT) tool to monitor fluid bed coating process. Eyecon TM generated real-time onscreen images, particle size and shape information of two identically manufactured laboratory-scale batches. Eyecon TM has accuracy of measuring the particle size increase of ±1 μm on particles in the size range of 50-3000 μm. Eyecon TM captured data every 2 s during the entire process. The moving average of D90 particle size values recorded by Eyecon TM were calculated for every 30 min to calculate the radial coating thickness of coated particles. After the completion of coating process, the radial coating thickness was found to be 11.3 and 9.11 μm, with a standard deviation of ±0.68 and 1.8 μm for Batch 1 and Batch 2, respectively. The coating thickness was also correlated with percent weight build-up by gel permeation chromatography (GPC) and dissolution. GPC indicated weight build-up of 10.6% and 9.27% for Batch 1 and Batch 2, respectively. In conclusion, weight build-up of 10% can also be correlated with 10 ± 2 μm increase in the coating thickness of pellets, indicating the potential applicability of real-time imaging as an endpoint determination tool for fluid bed coating process.

  4. Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon.

    PubMed

    Kim, Eun-Ah; Seyfferth, Angelia L; Fendorf, Scott; Luthy, Richard G

    2011-01-01

    An effective mercury removal method using polymer-coated activated carbon was studied for possible use in water treatment. In order to increase the affinity of activated carbon for mercury, a sulfur-rich compound, polysulfide-rubber (PSR) polymer, was effectively coated onto the activated carbon. The polymer was synthesized by condensation polymerization between sodium tetrasulfide and 1,2-dichloroethane in water. PSR-mercury interactions and Hg-S bonding were elucidated from x-ray photoelectron spectroscopy, and Fourier transform infra-red spectroscopy analyses. The sulfur loading levels were controlled by the polymer dose during the coating process and the total surface area of the activated carbon was maintained for the sulfur loading less than 2 wt%. Sorption kinetic studies showed that PSR-coated activated carbon facilitates fast reaction by providing a greater reactive surface area than PSR alone. High sulfur loading on activated carbon enhanced mercury adsorption contributing to a three orders of magnitude reduction in mercury concentration. μ-X-ray absorption near edge spectroscopic analyses of the mercury bound to activated carbon and to PSR on activated carbon suggests the chemical bond with mercury on the surface is a combination of Hg-Cl and Hg-S interaction. The pH effect on mercury removal and adsorption isotherm results indicate competition between protons and mercury for binding to sulfur at low pH. Copyright © 2010. Published by Elsevier Ltd.

  5. X-ray powder diffractometry of intact film coated tablets--an approach to monitor the physical form of the active pharmaceutical ingredient during processing and storage.

    PubMed

    Yamada, Hiroyuki; Suryanarayanan, Raj

    2007-08-01

    The antiviral compound, 2-amino-6-(4-methoxyphenylthio)-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl)ester (MCC-478), can exist in several anhydrous polymorphic forms and also as a hemihydrate. The XRD patterns of the tablets, containing each form of the active pharmaceutical ingredient (API), revealed at least one peak unique to each form. A semiquantitative microdiffractometric method was developed to nondestructively characterize the physical form of the API in intact film-coated tablets. This was accomplished even though the weight fraction of the API was <0.2 and that of mannitol, a highly crystalline excipient, was approximately 0.6. The method was used to determine the effect of aqueous film-coating process on the physical form of the API. The final dosage form was also monitored following storage at 40 degrees C/75% RH for 6 months. There was no phase transformation of the API either due to the film-coating process or following accelerated storage. This technique has potential utility not only for process control during manufacture, but also for the quality control of the final product. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  6. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  7. Deposition of Hydroxyapatite Onto Superelastic Nitinol Using an Ambient Temperature Blast Coating Process

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.

    2018-06-01

    This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.

  8. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  9. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  10. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  11. Real-time data processing for in-line monitoring of a pharmaceutical coating process by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Ziegler, Jakob; Hannesschläger, Günther; Sacher, Stephan; Buchsbaum, Andreas; Leitner, Michael; Khinast, Johannes G.

    2014-05-01

    Coating of tablets is a widely applied unit operation in the pharmaceutical industry. Thickness and uniformity of the coating layer are crucial for efficacy as well as for compliance. Not only due to different initiatives it is thus essential to monitor and control the coating process in-line. Optical coherence tomography (OCT) was already shown in previous works to be a suitable candidate for in-line monitoring of coating processes. However, to utilize the full potential of the OCT technology an automatic evaluation of the OCT measurements is essential. The automatic evaluation is currently implemented in MATLAB and includes several steps: (1) extraction of features of each A-scan, (2) classification of Ascan measurements based on their features, (3) detection of interfaces (air/coating and coating/tablet core), (4) correction of distortions due to the curvature of the bi-convex tablets and the oblique orientation of the tablets, and (5) determining the coating thickness. The algorithm is tested on OCT data acquired by moving the sensor head of the OCT system across a static tablet bed. The coating thickness variations of single tablets (i.e., intra-tablet coating variability) can additionally be analyzed as OCT allows the measurement of the coating thickness on multiple displaced positions on one single tablet. Specifically, the information about those parameters emphasizes the high capability of the OCT technology to improve process understanding and to assure a high product quality.

  12. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  13. PAT-tools for process control in pharmaceutical film coating applications.

    PubMed

    Knop, Klaus; Kleinebudde, Peter

    2013-12-05

    Recent development of analytical techniques to monitor the coating process of pharmaceutical solid dosage forms such as pellets and tablets are described. The progress from off- or at-line measurements to on- or in-line applications is shown for the spectroscopic methods near infrared (NIR) and Raman spectroscopy as well as for terahertz pulsed imaging (TPI) and image analysis. The common goal of all these methods is to control or at least to monitor the coating process and/or to estimate the coating end point through timely measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  15. Processing and Development of Nano-Scale HA Coatings for Biomedical Application

    DTIC Science & Technology

    2005-01-01

    thickness of the film has been processed and tested as a more effective orthopedic/ dental implant coating. The present study aims to increase the service...life of an orthopedic/ dental implant by creating materials that form a strong, long lasting, bond with the Ti substrate as well as juxtaposed bone... dental replacement surgery may quickly return to a normal active lifestyle. Cross-sectional transmission electron microscopy analysis displayed that the

  16. Infiltration processing of metal matrix composites using coated ceramic particulates

    NASA Astrophysics Data System (ADS)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  17. Passivation Behavior of Fe-Based Amorphous Coatings Prepared by High-Velocity Air/Oxygen Fuel Processes

    NASA Astrophysics Data System (ADS)

    Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.

    2017-12-01

    Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.

  18. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  19. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  20. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol-gel process.

    PubMed

    Jun, Shin-Hee; Lee, Eun-Jung; Yook, Se-Won; Kim, Hyoun-Ee; Kim, Hae-Won; Koh, Young-Hag

    2010-01-01

    A bioactive coating consisting of a silica xerogel/chitosan hybrid was applied to Ti at room temperature as a novel surface treatment for metallic implants. A crack-free thin layer (<2 microm) was coated on Ti with a chitosan content of >30 vol.% through a sol-gel process. The coating layer became more hydrophilic with increasing silica xerogel content, as assessed by contact angle measurement. The hybrid coatings afforded excellent bone bioactivity by inducing the rapid precipitation of apatite on their surface when immersed in a simulated body fluid (SBF). Osteoblastic cells cultured on the hybrid coatings were more viable than those on a pure chitosan coating. Furthermore, the alkaline phosphate activity of the cells was significantly higher on the hybrid coatings than on a pure chitosan coating, with the highest level being achieved on the hybrid coating containing 30% chitosan. These results indicate that silica xerogel/chitosan hybrids are potentially useful as room temperature bioactive coating materials on titanium-based medical implants.

  1. An update on pharmaceutical film coating for drug delivery.

    PubMed

    Felton, Linda A; Porter, Stuart C

    2013-04-01

    Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.

  2. In-Line Monitoring of a Pharmaceutical Pan Coating Process by Optical Coherence Tomography.

    PubMed

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Buchsbaum, Andreas; Pescod, Russel; Baele, Thomas; Khinast, Johannes G

    2015-08-01

    This work demonstrates a new in-line measurement technique for monitoring the coating growth of randomly moving tablets in a pan coating process. In-line quality control is performed by an optical coherence tomography (OCT) sensor allowing nondestructive and contact-free acquisition of cross-section images of film coatings in real time. The coating thickness can be determined directly from these OCT images and no chemometric calibration models are required for quantification. Coating thickness measurements are extracted from the images by a fully automated algorithm. Results of the in-line measurements are validated using off-line OCT images, thickness calculations from tablet dimension measurements, and weight gain measurements. Validation measurements are performed on sample tablets periodically removed from the process during production. Reproducibility of the results is demonstrated by three batches produced under the same process conditions. OCT enables a multiple direct measurement of the coating thickness on individual tablets rather than providing the average coating thickness of a large number of tablets. This gives substantially more information about the coating quality, that is, intra- and intertablet coating variability, than standard quality control methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. The insulation of copper wire by the electrostatic coating process

    NASA Astrophysics Data System (ADS)

    Wells, M. G. H.

    1983-06-01

    A review of the fluidized bed electrostatic coating process and materials available for application to flat copper conductor has been made. Lengths of wire were rolled and electrostatically coated with two epoxy insulations. Electrical tests were made in air on coated samples at room and elevated temperatures. Compatibility tests in the cooling/lubricating turbine oil at temperatures up to 220 deg. C were also made. Recommendations for additional work are provided.

  4. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Silica coating of nanoparticles by the sonogel process.

    PubMed

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  6. Process for forming a metal compound coating on a substrate

    DOEpatents

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  7. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay

    2015-02-01

    The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

  8. Processing on high efficiency solar collector coatings

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  9. Nanocontainer-based corrosion sensing coating.

    PubMed

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-10-18

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer.The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings.

  10. Impact of Processing Conditions on Inter-tablet Coating Thickness Variations Measured by Terahertz In-Line Sensing

    PubMed Central

    Lin, Hungyen; May, Robert K; Evans, Michael J; Zhong, Shuncong; Gladden, Lynn F; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    A novel in-line technique utilising pulsed terahertz radiation for direct measurement of the film coating thickness of individual tablets during the coating process was previously developed and demonstrated on a production-scale coater. Here, we use this technique to monitor the evolution of tablet film coating thickness and its inter-tablet variability during the coating process under a number of different process conditions that have been purposefully induced in the production-scale coating process. The changes that were introduced to the coating process include removing the baffles from the coater, adding uncoated tablets to the running process, halting the drum, blockage of spray guns and changes to the spray rate. The terahertz sensor was able to pick up the resulting changes in average coating thickness in the coating drum and we report the impact of these process changes on the resulting coating quality. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2513–2522, 2015 PMID:26037660

  11. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied asmore » potential candidates for internal pipeline coating to transport SCCO2.« less

  12. PLA coated paper containing active inorganic nanoparticles: Material characterization and fate of nanoparticles in the paper recycling process.

    PubMed

    Zhang, Hai; Bussini, Daniele; Hortal, Mercedes; Elegir, Graziano; Mendes, Joana; Jordá Beneyto, Maria

    2016-06-01

    For paper and paperboard packaging, recyclability plays an important role in conserving the resources and reducing the environmental impacts. Therefore, when it comes to the nano-enabled paper packaging material, the recyclability issue should be properly addressed. This study represents our first report on the fate of nanomaterials in paper recycling process. The packaging material of concern is a PLA (Polylactic Acid) coated paper incorporating zinc oxide nanoparticles in the coating layer. The material was characterised and assessed in a lab-scale paper recycling line. The recyclability test was based on a method adapted from ATICELCA MC501-13, which enabled to recover over 99% of the solids material. The mass balance result indicates that 86-91% zinc oxide nanoparticles ended up in the rejected material stream, mostly embedded within the polymer coating; whereas 7-16% nanoparticles ended up in the accepted material stream. Besides, the tensile strength of the recycled handsheets suggests that the nano-enabled coating had no negative impacts on the recovered fibre quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  14. Palladium coated porous anodic alumina membranes for gas reforming processes

    NASA Astrophysics Data System (ADS)

    Wu, Jeremy P.; Brown, Ian W. M.; Bowden, Mark E.; Kemmitt, Timothy

    2010-11-01

    Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.

  15. Measurement of the Intertablet Coating Uniformity of a Pharmaceutical Pan Coating Process With Combined Terahertz and Optical Coherence Tomography In-Line Sensing.

    PubMed

    Lin, Hungyen; Dong, Yue; Markl, Daniel; Williams, Bryan M; Zheng, Yalin; Shen, Yaochun; Zeitler, J Axel

    2017-04-01

    We present in-line coating thickness measurements acquired simultaneously using 2 independent sensing modalities: terahertz pulsed imaging (TPI) and optical coherence tomography (OCT). Both techniques are sufficiently fast to resolve the coating thickness of individual pharmaceutical tablets in situ during the film coating operation, and both techniques are direct structural imaging techniques that do not require multivariate calibration. The TPI sensor is suitable to measure coatings greater than 50 μm and can penetrate through thick coatings even in the presence of pigments over a wide range of excipients. Due to the long wavelength, terahertz radiation is not affected by scattering from dust within the coater. In contrast, OCT can resolve coating layers as thin as 20 μm and is capable of measuring the intratablet coating uniformity and the intertablet coating thickness distribution within the coating pan. However, the OCT technique is less robust when it comes to the compatibility with excipients, dust, and potentially the maximum coating thickness that can be resolved. Using a custom-built laboratory scale coating unit, the coating thickness measurements were acquired independently by the TPI and OCT sensors throughout a film coating operation. Results of the in-line TPI and OCT measurements were compared against one another and validated with off-line TPI and weight gain measurements. Compared with other process analytical technology sensors, such as near-infrared and Raman spectroscopy, the TPI and OCT sensors can resolve the intertablet thickness distribution based on sampling a significant fraction of the tablet populations in the process. By combining 2 complementary sensing modalities, it was possible to seamlessly monitor the coating process over the range of film thickness from 20 μm to greater than 250 μm. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    PubMed

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  17. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  18. Throughput increase by adjustment of the BARC drying time with coat track process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Long, Ryan

    2005-05-01

    Throughput of a coater module within the coater track is related to the solvent evaporation rate from the material that is being coated. Evaporation rate is controlled by the spin dynamics of the wafer and airflow dynamics over the wafer. Balancing these effects is the key to achieving very uniform coatings across a flat unpatterned wafer. As today"s coat tracks are being pushed to higher throughputs to match the scanner, the coat module throughput must be increased as well. For chemical manufacturers the evaporation rate of the material depends on the solvent used. One measure of relative evaporation rates is to compare flash points of a solvent. The lower the flash point, the quicker the solvent will evaporate. It is possible to formulate products with these volatile solvents although at a price. Shipping and manufacturing a more flammable product increase chances of fire, thereby increasing insurance premiums. Also, the end user of these chemicals will have to take extra precautions in the fab and in storage of these more flammable chemicals. An alternative coat process is possible which would allow higher throughput in a distinct coat module without sacrificing safety. A tradeoff is required for this process, that being a more complicated coat process and a higher viscosity chemical. The coat process uses the fact that evaporation rate depends on the spin dynamics of the wafer by utilizing a series of spin speeds that first would set the thickness of the material followed by a high spin speed to remove the residual solvent. This new process can yield a throughput of over 150 wafers per hour (wph) given two coat modules. The thickness uniformity of less than 2 nm (3 sigma) is still excellent, while drying times are shorter than 10 seconds to achieve the 150 wph throughput targets.

  19. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  20. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  1. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  2. Process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  3. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  5. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  6. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  7. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  8. PAT-Based Control of Fluid Bed Coating Process Using NIR Spectroscopy to Monitor the Cellulose Coating on Pharmaceutical Pellets.

    PubMed

    Naidu, Venkata Ramana; Deshpande, Rucha S; Syed, Moinuddin R; Deoghare, Piyush; Singh, Dharamvir; Wakte, Pravin S

    2017-08-01

    Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm -1 , 7515.24 to 7108.33 cm -1 , and 5257.00 to 5098.87 cm -1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm -1 was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.

  9. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings

    NASA Astrophysics Data System (ADS)

    Falcón, Jesus; Sawczen, Tiago; Aoki, Idalina

    2015-11-01

    Currently the most promising approach in the corrosion protection by smart coatings is the use of nanoreservoirs loaded with corrosion inhibitors. Nanocontainers are filled with anti-corrosive agents and embedded into a primer coating. Future prospective containers are halloysite nanotubes due to their low price, availability, durability, with high mechanical strength and biocompatibility. The aim of this work is to study the use of halloysite nanotubes as nanocontainers for encapsulated dodecylamine for active corrosion protection of carbon steel. Halloysite clay was characterized by XRD and TGA- thermogravimetric analysis techniques. Halloysite nanotubes were loaded with dodecylamine and embedded into an alkyd primer with a weight ratio of 10 wt.% . The anticorrosive performance of the alkyd primer doped with 10 wt.% of entrapped-dodecylamine halloysite was tested on coated carbon steel by direct exposure of the coated samples with a provoked defect into 0.01 mol/L NaCl corrosive media using electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). EIS and SVET measurements showed the self-healing properties of the doped alkyd coating. Coated samples were also evaluated in a salt spray chamber and the self-healing effect was unequivocally noticed.

  10. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  11. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

  12. In-line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging.

    PubMed

    Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan

    2018-05-09

    Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb

    Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.

  14. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity.

    PubMed

    Yangui, Asma; Abderrabba, Manef

    2018-10-01

    Activated carbon coated with milk proteins was used for the removal and recovery of phenolic compounds from actual olive mill wastewater (OMW). The extraction of polyphenols using the new adsorbent based on natural coating agent has significant potential compared with traditional extraction methods, as it significantly increases the extraction yield (80%) and overall efficiencies of the process for total phenols (75.4%) and hydroxytyrosol (90.6%) which is the most valuable compound. Complete discussions on the adsorption isotherms, kinetic and thermodynamic were performed and the optimum adsorption variables were investigated using the response surface methodology and the central composite experimental design. The extracted polyphenols exhibited a high antioxidant activity and a fast scavenging effect on DPPH free radical. The strategy devised in this work for polyphenol extraction using modified activated carbon with biological coating agent is of simple design, very effective and ensure the recovery of highly antioxidant extract. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Investigation on influence of Wurster coating process parameters for the development of delayed release minitablets of Naproxen.

    PubMed

    Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant

    2017-12-01

    The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.

  16. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  17. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  18. Structure and properties of polymer nanocomposite coatings applied by the HVOF process

    NASA Astrophysics Data System (ADS)

    Petrovicova, Elena

    1999-11-01

    A high velocity oxy-fuel (HVOF) combustion spray process was used to produce coatings from nylon 11 powders with average starting particle diameters of 30 and 60 gin. Silica and carbon black were used as nanosized reinforcements, and their nominal content was varied from 0 to 15 vol. %. Optimization of the HVOF processing parameters was based on an assessment of the degree of splatting of polymer particles, and was accomplished by varying the jet temperature (via the hydrogen/oxygen ratio). Gas mixtures with low hydrogen contents minimized polymer particle degradation. Analytical modeling of particle temperature profiles confirmed the effect of the gas velocity and temperature on the particle heating and resulting coating properties. The morphology of the polymer and the microstructure of the coatings depended on the reinforcement surface chemistry and the volume fraction of the reinforcement, as well as the initial nylon 11 particle size. Although all reinforced coatings had higher crystallinities than pure nylon 11 coatings, coatings produced from a smaller starting polymer particle size (30 mum) exhibited improved spatial distribution of the silica in the matrix and lower crystallinity. In addition, coatings produced from the smaller polymer particles had a higher density and lower porosity due to a higher degree of melting and splatting compared to coatings produced from larger particles (60 mum). Nanoreinforced coatings exhibited increased scratch and sliding wear resistance and improved mechanical and barrier properties. Improvements of up to 35% in scratch and 67% in wear resistance were obtained for coatings with nominal 15 vol. % contents of hydrophobic silica or carbon black, relative to nonreinforced coatings. Reinforcement of the polymer matrix resulted in increases of ca. 200% in the storage modulus both below and above the glass transition temperature. The increase in crystallinity seemed to further enhance the reinforcement provided by the

  19. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  20. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    NASA Astrophysics Data System (ADS)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  1. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

    PubMed

    Kim, Byungsuk; Woo, Young-Ah

    2018-05-30

    In this study the authors developed a real-time Process Analytical Technology (PAT) of a coating process by applying in-line Raman spectroscopy to evaluate the coating weight gain, which is a quantitative analysis of the film coating layer. The wide area illumination (WAI) Raman probe was connected to the pan coater for real-time monitoring of changes in the weight gain of coating layers. Under the proposed in-line Raman scheme, a non-contact, non-destructive analysis was performed using WAI Raman probes with a spot size of 6 mm. The in-line Raman probe maintained a focal length of 250 mm, and a compressed air line was designed to protect the lens surface from spray droplets. The Design of Experiment (DOE) was applied to identify factors affecting the Raman spectra background of laser irradiation. The factors selected for DOE were the strength of compressed air connected to the probe, and the shielding of light by the transparent door connecting the probe to the pan coater. To develop a quantitative model, partial least squares (PLS) models as multivariate calibration were developed based on the three regions showing the specificity of TiO 2 individually or in combination. For the three single peaks (636 cm -1 , 512 cm -1 , 398 cm -1 ), least squares method (LSM) was applied to develop three univariate quantitative analysis models. One of best multivariate quantitative model having a factor of 1 gave the lowest RMSEP of 0.128, 0.129, and 0.125, respectively for prediction batches. When LSM was applied to the single peak at 636 cm -1 , the univariate quantitative model with an R 2 of 0.9863, slope of 0.5851, and y-intercept of 0.8066 had the lowest RMSEP of 0.138, 0.144, and 0.153, respectively for prediction batches. The in-line Raman spectroscopic method for the analysis of coating weight gain was verified by considering system suitability and parameters such as specificity, range, linearity, accuracy, and precision in accordance with ICH Q2 regarding

  2. Process for coating an object with silicon carbide

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  3. Micro/nanoreservoirs for controlled release of active species in smart functional coatings =

    NASA Astrophysics Data System (ADS)

    Maia, Frederico Calheiros

    This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing

  4. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  5. Plasma sprayed manganese-cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance

    NASA Astrophysics Data System (ADS)

    Han, Su Jung; Pala, Zdenek; Sampath, Sanjay

    2016-02-01

    Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.

  6. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  7. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    NASA Astrophysics Data System (ADS)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency

  8. Spectroscopic studies of triethoxysilane sol-gel and coating process.

    PubMed

    Li, Ying-Sing; Ba, Abdul

    2008-10-01

    Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si-H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si-H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 degrees C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.

  9. Improving tablet coating robustness by selecting critical process parameters from retrospective data.

    PubMed

    Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M

    2016-09-01

    Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.

  10. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  11. Influence of Ceramic Powder Size on Process of Cermet Coating Formation by Cold Spray

    NASA Astrophysics Data System (ADS)

    Sova, A.; Papyrin, A.; Smurov, I.

    2009-12-01

    Influence of the ceramic particle size on the process of formation of cermet coatings by cold spray is experimentally studied. A specially developed nozzle with separate injection of ceramic and metal powders into the gas stream is used in the experiments. The results obtained demonstrate that fine ceramic powders (Al2O3, SiC) produce a strong activation effect on the process of spraying soft metal (Al, Cu) and increase deposition efficiency of the metal component of the mixture compared to the pure metal spraying. At the same time, coarse ceramic powder produces a strong erosion effect that considerably reduces coating mass growth and deposition efficiency of the metal component. It is experimentally shown that the addition of fine hard powder to soft metals as Al and Cu allows to significantly reduce the “critical” temperature (the minimum gas stagnation temperature at which a nonzero particle deposition is observed) for spraying these metals.

  12. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining

    NASA Astrophysics Data System (ADS)

    Wang, Dengyong; Zhu, Zengwei; Wang, Ningfeng; Zhu, Di

    2016-09-01

    Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 mm. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.

  13. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  14. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation.

    PubMed

    Tank, Chiti; Raman, Sujatha; Karan, Sujoy; Gosavi, Suresh; Lalla, Niranjan P; Sathe, Vasant; Berndt, Richard; Gade, W N; Bhoraskar, S V; Mathe, Vikas L

    2013-06-01

    Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

  15. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  16. Warm spraying—a novel coating process based on high-velocity impact of solid particles

    PubMed Central

    Kuroda, Seiji; Kawakita, Jin; Watanabe, Makoto; Katanoda, Hiroshi

    2008-01-01

    In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called ‘warm spraying’ has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1) the critical velocity needed to form a coating can be significantly lowered by heating, (2) the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3) various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications. PMID:27877996

  17. Warm spraying-a novel coating process based on high-velocity impact of solid particles.

    PubMed

    Kuroda, Seiji; Kawakita, Jin; Watanabe, Makoto; Katanoda, Hiroshi

    2008-07-01

    In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1) the critical velocity needed to form a coating can be significantly lowered by heating, (2) the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3) various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC-Co cermet and polymers are described with potential industrial applications.

  18. Influence of the inlet air temperature in a fluid bed coating process on drug release from shellac-coated pellets.

    PubMed

    Farag, Yassin; Leopold, Claudia Sabine

    2011-03-01

    Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.

  19. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    NASA Technical Reports Server (NTRS)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  1. The effect of silica-coating by sol-gel process on resin-zirconia bonding.

    PubMed

    Lung, Christie Ying Kei; Kukk, Edwin; Matinlinna, Jukka Pekka

    2013-01-01

    The effect of silica-coating by sol-gel process on the bond strength of resin composite to zirconia was evaluated and compared against the sandblasting method. Four groups of zirconia samples were silica-coated by sol-gel process under varied reagent ratios of ethanol, water, ammonia and tetraethyl orthosilicate and for different deposition times. One control group of zirconia samples were treated with sandblasting. Within each of these five groups, one subgroup of samples was kept in dry storage while another subgroup was aged by thermocycling for 6,000 times. Besides shear bond testing, the surface topography and surface elemental composition of silica-coated zirconia samples were also examined using scanning electron microscopy and X-ray photoelectron spectroscopy. Comparison of silica coating methods revealed significant differences in bond strength among the Dry groups (p<0.001) and Thermocycled groups (p<0.001). Comparison of sol-gel deposition times also revealed significant differences in bond strength among the Dry groups (p<0.01) and Thermocycled groups (p<0.001). Highest bond strengths were obtained after 141-h deposition: Dry (7.97±3.72 MPa); Thermocycled (2.33±0.79 MPa). It was concluded that silica-coating of zirconia by sol-gel process resulted in weaker resin bonding than by sandblasting.

  2. The dead seed coat functions as a long-term storage for active hydrolytic enzymes

    PubMed Central

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the “seedsphere” and could contribute to seed persistence in the soil, germination and seedling establishment. PMID:28700755

  3. The dead seed coat functions as a long-term storage for active hydrolytic enzymes.

    PubMed

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak; Grafi, Gideon

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the "seedsphere" and could contribute to seed persistence in the soil, germination and seedling establishment.

  4. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.

    PubMed

    Möltgen, C-V; Puchert, T; Menezes, J C; Lochmann, D; Reich, G

    2012-04-15

    Film coating of tablets is a multivariate pharmaceutical unit operation. In this study an innovative in-line Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS) application is described which enables real-time monitoring of a full industrial scale pan coating process of heart-shaped tablets. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film of up to approx. 28 μm on the tablet face as determined by SEM, corresponding to a weight gain of 2.26%. For a better understanding of the aqueous coating process the NIR probe was positioned inside the rotating tablet bed. Five full scale experimental runs have been performed to evaluate the impact of process variables such as pan rotation, exhaust air temperature, spray rate and pan load and elaborate robust and selective quantitative calibration models for the real-time determination of both coating growth and tablet moisture content. Principal Component (PC) score plots allowed each coating step, namely preheating, spraying and drying to be distinguished and the dominating factors and their spectral effects to be identified (e.g. temperature, moisture, coating growth, change of tablet bed density, and core/coat interactions). The distinct separation of HPMC coating growth and tablet moisture in different PCs enabled a real-time in-line monitoring of both attributes. A PLS calibration model based on Karl Fischer reference values allowed the tablet moisture trajectory to be determined throughout the entire coating process. A 1-latent variable iPLS weight gain calibration model with calibration samples from process stages dominated by the coating growth (i.e. ≥ 30% of the theoretically applied amount of coating) was sufficiently selective and accurate to predict the progress of the thin HPMC coating layer. At-line NIR Chemical Imaging (NIR-CI) in combination with PLS Discriminant Analysis (PLSDA) verified the HPMC coating growth and physical changes at the core/coat interface during the initial

  5. Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes

    PubMed Central

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the R B-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples. PMID:23316128

  6. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, P.L.; Giammarise, A.W.

    1994-12-20

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  7. Apparatus and process for depositing hard coating in a nozzle orifice

    DOEpatents

    Flynn, Paul L.; Giammarise, Anthony W.

    1994-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  8. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits.

    PubMed

    Santagata, Gabriella; Mallardo, Salvatore; Fasulo, Gabriella; Lavermicocca, Paola; Valerio, Francesca; Di Biase, Mariaelena; Di Stasio, Michele; Malinconico, Mario; Volpe, Maria Grazia

    2018-08-30

    In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    DTIC Science & Technology

    2016-06-01

    Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC

  10. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  11. Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps

    NASA Astrophysics Data System (ADS)

    Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, A.; Sampath, S.; Liu, X.; Hannula, S.-P.

    2014-08-01

    Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.

  12. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  13. New Bond Coat Materials for Thermal Barrier Coating Systems Processed Via Different Routes

    NASA Astrophysics Data System (ADS)

    Soare, A.; Csaki, I.; Sohaciu, M.; Oprea, C.; Soare, S.; Costina, I.; Petrescu, M. I.

    2017-06-01

    This paper aims at describing the development of new Ru-based Bond Coats (BC) as part of Thermal Barrier Coatings. The challenge of this research was to obtain an adherent and uniform layer of alumina protective layer after high temperature exposure. We have prepared a RuAl 50/50 at% alloy in an induction furnace which was subsequently subjected to oxidation in an electric furnace, in air, at 1100C, for 10h and 100h. Mechanical alloying of Ru and Al powders was another processing route used in an attempt to obtain a stoichiometric RuAl. The alloy was sintered by Spark Plasma Sintering (SPS) and then oxidized at 1100C for 1 and10h. The alloys obtained as such were analysed before and after oxidation using advanced microscopy techniques (SEM and TEM). The encouraging results in case of RuAl alloys prepared by induction melting reveal that we obtained an adherent and uniform layer of alumina, free of delta-Ru. The results for the samples processed by powder metallurgy were positive but need to be further investigated. We should note here the novelty of this method for this particular type of application - as a BC part of a TBC system.

  14. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction

    PubMed Central

    Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)

    2015-01-01

    A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247

  15. Size-dependent surface phase change of lithium iron phosphate during carbon coating

    NASA Astrophysics Data System (ADS)

    Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang

    2014-03-01

    Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.

  16. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  17. The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum.

    PubMed

    Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S

    2000-08-01

    The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.

  18. Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications.

    PubMed

    Lozoya-Rodríguez, Denisse A; de Lima, Renata; Fraceto, Leonardo F; Ledezma Pérez, Antonio; Bazaldua Domínguez, Mercedes; Gómez Batres, Roberto; Reyes Rojas, Armando; Orozco Carmona, Víctor

    2017-08-08

    In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 "Antimicrobial Product-Test for Antimicrobial Activity and Efficacy". Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry.

  19. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.

  20. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  1. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  2. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process.

    PubMed

    Lee, Min-Jeong; Seo, Da-Young; Lee, Hea-Eun; Wang, In-Chun; Kim, Woo-Sik; Jeong, Myung-Yung; Choi, Guang J

    2011-01-17

    Along with the risk-based approach, process analytical technology (PAT) has emerged as one of the key elements to fully implement QbD (quality-by-design). Near-infrared (NIR) spectroscopy has been extensively applied as an in-line/on-line analytical tool in biomedical and chemical industries. In this study, the film thickness on pharmaceutical pellets was examined for quantification using in-line NIR spectroscopy during a fluid-bed coating process. A precise monitoring of coating thickness and its prediction with a suitable control strategy is crucial to the quality assurance of solid dosage forms including dissolution characteristics. Pellets of a test formulation were manufactured and coated in a fluid-bed by spraying a hydroxypropyl methylcellulose (HPMC) coating solution. NIR spectra were acquired via a fiber-optic probe during the coating process, followed by multivariate analysis utilizing partial least squares (PLS) calibration models. The actual coating thickness of pellets was measured by two separate methods, confocal laser scanning microscopy (CLSM) and laser diffraction particle size analysis (LD-PSA). Both characterization methods gave superb correlation results, and all determination coefficient (R(2)) values exceeded 0.995. In addition, a prediction coating experiment for 70min demonstrated that the end-point can be accurately designated via NIR in-line monitoring with appropriate calibration models. In conclusion, our approach combining in-line NIR monitoring with CLSM and LD-PSA can be applied as an effective PAT tool for fluid-bed pellet coating processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Evaluation of vibrated fluidized bed techniques in coating hemosorbents.

    PubMed

    Morley, D B

    1991-06-01

    A coating technique employing a vibrated fluidized bed was used to apply an ultrathin (2 microns) cellulose nitrate coating to synthetic bead activated charcoal. In vitro characteristics of the resulting coated sorbent, including permeability to model small and middle molecules, and mechanical integrity, were evaluated to determine the suitability of the process in coating granular sorbents used in hemoperfusion. Initial tests suggest the VFB-applied CN coating is both highly uniform and tightly adherent and warrants further investigation as a hemosorbent coating.

  4. Void forming pyrolytic carbon coating process

    DOEpatents

    Beatty, Ronald L.; Cook, Jackie L.

    2000-01-01

    A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.

  5. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging.

    PubMed

    Iseppi, Ramona; Pilati, Francesco; Marini, Michele; Toselli, Maurizio; de Niederhäusern, Simona; Guerrieri, Elisa; Messi, Patrizia; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata; Bondi, Moreno

    2008-04-30

    In this study, Enterocin 416K1, a bacteriocin produced by Enterococcus casseliflavus IM 416K1, was entrapped in an organic-inorganic hybrid coating applied to a LDPE (low-density polyethylene) film for its potential use in the active food packaging field. The antibacterial activity of the coated film was evaluated against Listeria monocytogenes NCTC 10888 by qualitative modified agar diffusion assay, quantitative determination in listeria saline solution suspension and direct contact with artificially contaminated food samples (frankfurters and fresh cheeses) stored at room and refrigeration temperatures. All investigations demonstrated that enterocin-activated coatings have a good anti-listeria activity. Qualitative tests showed a clear zone of inhibition in the indicator lawn in contact with and around the coated film. During the quantitative antibacterial evaluation the L. monocytogenes viable counts decreased to 1.5 log units compared to the control. The inhibitory capability was confirmed also in food-contact assays. In all food samples packed with coated films we observed a significant decrease in L. monocytogenes viable counts in the first 24 h compared to the control. This difference was generally maintained up to the seventh day and then decreased, with the exception of the cheese samples stored at refrigeration temperature.

  6. Sol-Gel Processing of MgF₂ Antireflective Coatings.

    PubMed

    Löbmann, Peer

    2018-05-02

    There are different approaches for the preparation of porous antireflective λ/4 MgF₂ films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible.

  7. Preservation of H 2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures: Preservation of R.palustris latex coatings

    DOE PAGES

    Piskorska, M.; Soule, T.; Gosse, J. L.; ...

    2013-07-21

    To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O 2 on preservation of H 2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H 2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H 2 production activity, whereas considerable H 2 production was still detected in sucrose- and trehalose-stabilized coatings. We stored the coatings at a relative humidity level which significantly impacts themore » recovery and subsequent rates of H 2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H 2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H 2 production activity after 8 weeks of storage. Furthermore, when stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H 2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Ultimately, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.« less

  8. Optical Constants of Crystallized TiO₂ Coatings Prepared by Sol-Gel Process.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-07-12

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO₂ coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  9. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  10. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  11. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  12. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  13. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    PubMed

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  14. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yunhong; O'Neill, Alex J.; Ding, Yulong

    2015-04-01

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  15. Influence of process parameters on the content of biomimetic calcium phosphate coating on titanium: a Taguchi analysis.

    PubMed

    Thammarakcharoen, Faungchat; Suvannapruk, Waraporn; Suwanprateeb, Jintamai

    2014-10-01

    In this study, a statistical design of experimental methodology based on Taguchi orthogonal design has been used to study the effect of various processing parameters on the amount of calcium phosphate coating produced by such technique. Seven control factors with three levels each including sodium hydroxide concentration, pretreatment temperature, pretreatment time, cleaning method, coating time, coating temperature and surface area to solution volume ratio were studied. X-ray diffraction revealed that all the coatings consisted of the mixture of octacalcium phosphate (OCP) and hydroxyapatite (HA) and the presence of each phase depended on the process conditions used. Various content and size (-1-100 μm) of isolated spheroid particles with nanosized plate-like morphology deposited on the titanium surface or a continuous layer of plate-like nanocrystals having the plate thickness in the range of -100-300 nm and the plate width in the range of 3-8 μm were formed depending on the process conditions employed. The optimum condition of using sodium hydroxide concentration of 1 M, pretreatment temperature of 70 degrees C, pretreatment time of 24 h, cleaning by ultrasonic, coating time of 6 h, coating temperature of 50 degrees C and surface area to solution volume ratio of 32.74 for producing the greatest amount of the coating formed on the titanium surface was predicted and validated. In addition, coating temperature was found to be the dominant factor with the greatest contribution to the coating formation while coating time and cleaning method were significant factors. Other factors had negligible effects on the coating performance.

  16. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  17. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  18. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    NASA Astrophysics Data System (ADS)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  19. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  20. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings.

    PubMed

    Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey

    2013-10-01

    The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity

    PubMed Central

    Farsi, Zohreh; Rammner, Burkhard; Woehler, Andrew; Lafer, Eileen M; Mim, Carsten; Jahn, Reinhard

    2018-01-01

    Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling. PMID:29652249

  2. Below room temperature: How the photocatalytic activity of dense and mesoporous TiO2 coatings is affected

    NASA Astrophysics Data System (ADS)

    Cedillo-González, Erika Iveth; Riccò, Raffaele; Costacurta, Stefano; Siligardi, Cristina; Falcaro, Paolo

    2018-03-01

    Different parameters such as morphology, porosity, crystalline phase or doping agents affect the self-cleaning performance of photocatalytic TiO2-based coatings. However, also environmental conditions have been found to play a major role on the photocatalytic self-cleaning property. Substrate temperature is a significant environmental variable that can drastically affect this process. This variable becomes of great importance especially for outdoor applications: many self-cleaning photocatalytic materials have been designed to be exposed to outdoor environments and consequently, can be exposed to variable temperatures depending on the season of the year and the typical weather of the geographical zone. Thus, understanding the influence of the most common outdoor temperatures on the self-cleaning performance of TiO2-based coatings is essential for the fabrication of any kind of photocatalytic self-cleaning materials (fabricated by coating technology) that is expected to be subjected to outdoor environments. In this work, the photocatalytic activity was studied by Fourier Transformed Infrared (FTIR) Spectroscopy varying the temperature in the 0 to 30 °C range for dense and mesoporous TiO2 coatings. The temperature conditions at which these coatings present better performances were identified, providing a deeper insight for the practical application of TiO2-based self-cleaning coatings.

  3. Process for ultra smooth diamond coating on metals and uses thereof

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); Catledge, Shane A. (Inventor)

    2001-01-01

    The present invention provides a new process to deposit well adhered ultra smooth diamond films on metals by adding nitrogen gas to the methane/hydrogen plasma created by a microwave discharge. Such diamond coating process is useful in tribological/wear resistant applications in bio-implants, machine tools, and magnetic recording industry.

  4. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Viroulaud, Rémi; Światowska, Jolanta; Seyeux, Antoine; Zanna, Sandrine; Tardelli, Joffrey; Marcus, Philippe

    2017-11-01

    The effects of surface pretreatments (degreasing and pickling) on the characteristics of the Trivalent Chromium Process (TCP) coating on pure aluminum and on AA2024-T351 aluminum alloy were investigated here by means of surface sensitive techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The XPS and ToF-SIMS results evidence that the TCP coating homogeneity is strongly dependent on the pretreatment process used. The TCP coverage factor, calculated from XPS results, is significantly lower, on both pure aluminum and AA2024-T351 alloy surface, when a pickling step is applied. One of the main effects of pickling pretreatment is strong metallic copper enrichment at the surface of the 2024 alloy, associated with chemical dissolution of Al-Cu intermetallic particles. However, it is evidenced here, that the copper enrichment is not detrimental for the quality of the TCP coating. The coating failure, observed when the pickling step is applied, can be assigned to a faster kinetics of the coating growth leading to formation of thicker conversion coating more susceptible to cracking or to the localized presence of aluminum fluoride species leading to the appearance of coating defects or detachment.

  5. Electrochemical corrosion behaviour of nickel chromium-chromium carbide coating by HVOF process

    NASA Astrophysics Data System (ADS)

    Amudha, A.; Nagaraja, H. S.; Shashikala, H. D.

    2018-04-01

    To overcome the corrosion problem in marine industry, coatings are one of the most economical solutions. In this paper, the corrosion behaviour of 25(NiCr)-75Cr3C2 cermet coating on low carbon steel substrate by HVOF process is studied. Different phases such as Cr7C3 and Cr3C2, along with Ni and chromium oxide(Cr3O2) constituents present in the coating were revealed by X-Ray Diffraction (XRD) analysis. The morphology of the coating obtained by scanning electron microscope (SEM) gave confirmation for the XRD analysis. Electrochemical corrosion techniques such as Linear Polarization Resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) were used to study the corrosion behaviour of the cermet in 3.5wt% NaCl electrolyte solution. The corrosion current density of the coated sample and substrate were found to be 6.878µA/cm-2 and 21.091µA/cm-2 respectively. The Nyquist Impedance spectra were used to derive an equivalent circuit to analyze the interaction between the coating and electrolyte. The Bode Impedance plots obtained by EIS for the coating showed a typical passive material capacitive behaviour, indicated by medium to low frequency with phase angle approaching -60o, suggesting that a stable film is formed on the tested material in the electrolyte used.

  6. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells.

    PubMed

    Rai, Akhilesh; Pinto, Sandra; Evangelista, Marta B; Gil, Helena; Kallip, Silvar; Ferreira, Mario G S; Ferreira, Lino

    2016-03-01

    Medical device-associated infections are a multi-billion dollar burden for the worldwide healthcare systems. The modification of medical devices with non-leaching coatings capable of killing microorganisms on contact is one of the strategies being investigated to prevent microorganism colonization. Here we developed a robust antimicrobial coating based on the chemical immobilization of the antimicrobial peptide (AMP), cecropin-melittin (CM), on gold nanoparticles coated surfaces. The concentration of AMP immobilized (110 μg/cm(2)) was higher than most of the studies reported so far (<10 μg/cm(2)). This translated onto a coating with high antimicrobial activity against Gram positive and negative bacteria sp., as well as multi-drug resistant bacteria. Studies with E. coli reporter bacteria showed that these coatings induced the permeability of the outer membrane of bacteria in less than 5 min and the inner membrane in approximately 20 min. Importantly, the antimicrobial properties of the coating are maintained in the presence of 20% (v/v) human serum, and have low probability to induce bacteria resistance. We further show that coatings have low toxicity against human endothelial and fibroblast cells and is hemocompatible since it does not induce platelet and complement activation. The antimicrobial coating described here may be promising to prevent medical device-associated infections. In recent years, antimicrobial peptides (AMPs) have been chemically immobilized on surfaces of medical devices to render them with antimicrobial properties. Surfaces having immobilized cationic peptides are susceptible to be adsorbed by plasma proteins with the subsequent loss of antimicrobial activity. Furthermore, with the exception of very few studies that have determined the cytotoxicity of surfaces in mammalian cells, the effect of the immobilized AMP on human cells is relatively unknown. Here we report a coating based on cecropin-melittin peptide (CM) that maintains its

  7. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  8. Tablet Velocity Measurement and Prediction in the Pharmaceutical Film Coating Process.

    PubMed

    Suzuki, Yasuhiro; Yokohama, Chihiro; Minami, Hidemi; Terada, Katsuhide

    2016-01-01

    The purpose of this study was to measure the tablet velocity in pan coating machines during the film coating process in order to understand the impact of the batch size (laboratory to commercial scale), coating machine type (DRIACOATER, HICOATER® and AQUA COATER®) and manufacturing conditions on tablet velocity. We used a high speed camera and particle image velocimetry to measure the tablet velocity in the coating pans. It was observed that increasing batch sizes resulted in increased tablet velocities under the same rotation number because of the differences in circumferential rotation speeds. We also observed the tendency that increase in the filling ratio of tablets resulted in an increased tablet velocity for all coating machines. Statistical analysis was used to make a tablet velocity predictive equation by employing the filling ratio and rotation speed as the parameters from these measured values. The correlation coefficients of predicted value and experimental value were more than 0.959 in each machine. Using the predictive equation to determine tablet velocities, the manufacturing conditions of previous products were reviewed, and it was found that the tablet velocities of commercial scales, in which tablet chipping and breakage problems had occurred, were higher than those of pilot scales or laboratory scales.

  9. Hydroxyapatite Coatings on High Nitrogen Stainless Steel by Laser Rapid Manufacturing

    NASA Astrophysics Data System (ADS)

    Das, Ashish; Shukla, Mukul

    2017-11-01

    In this research, the laser rapid manufacturing (LRM) additive manufacturing process was used to deposit multifunctional hydroxyapatite (HAP) coatings on high nitrogen stainless steel. LRM overcomes the limitations of conventional coating processes by producing coatings with metallurgical bond, osseointegration, and infection inhibition properties. The microstructure, microhardness, antibacterial efficacy, and bioactivity of the coatings were investigated. The microstructure studies established that the coatings consist of austenite dendrites with HAP and some reaction products primarily occurring in the inter-dendritic regions. A Vickers microhardness test confirmed the hardness values of deposited HAP coatings to be higher than those of the bare 254SS samples, while a fluorescence activated cell sorting test confirmed their superior antibacterial properties as compared with pristine samples. The coated samples immersed in simulated body fluid showed rapid apatite forming ability. The results obtained in this research signify the potential application of the LRM process in synthesizing multifunctional orthopaedic coatings.

  10. Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi

    2015-08-01

    Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.

  11. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-08-13

    The aim of this study was to better understand the importance of coating and curing conditions of moisture-protective polymer coatings. Tablets containing freeze-dried garlic powder were coated with aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), poly(vinyl alcohol), ethyl cellulose and poly(methacrylate-methylmethacrylates). The water content of the tablets during coating and during storage at different temperatures and relative humidities (RH) was determined gravimetrically. In addition, changes in the allicin (active ingredient in garlic powder) content were monitored. During the coating process, the water uptake was below 2.7% and no drug degradation was detectable. Thermally induced drug degradation occurred only at temperatures above the coating temperatures. Different polymer coatings effectively decreased the rate, but not the extent of water uptake during open storage at room temperature and 75% RH. Tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates) showed the lowest moisture uptake rates (0.49 and 0.57%/d, respectively). Curing at elevated temperature after coating did not improve the moisture-protective ability of the polymeric films, but reduced the water content of the tablets. Drug stability was significantly improved with tablets coated with poly(vinyl alcohol) and poly(methacrylate-methylmethacrylates).

  12. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal

  13. Investigation of Thermal Processing on the Properties of PS304: A Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Williams, Syreeta (Technical Monitor)

    2002-01-01

    The effect of thermal processing on PS304, a solid lubricant coating, was investigated. PS304 is a plasma sprayed solid lubricant consisting of 10% Ag and 10% BaF2 and CaF2 in a eutectic mixture for low and high temperature lubricity respectively. In addition, PS304 contains 20% Cr2O3 for increased hardness and 60% NiCr which acts as a binder. All percents are in terms of weight not volume. Previous research on thermal processing (NAG3-2245) of PS304 revealed that substrate affected both the pre- and post-anneal hardness of the plasma spray coating. The objective of this grant was to both quantify this effect and determine whether the root cause was an artifact of the substrate or an actual difference in hardness due to interaction between the substrate and the coating. In addition to clarifying past research developments new data was sought in terms of coating growth due to annealing.

  14. Formulation and process strategies to minimize coat damage for compaction of coated pellets in a rotary tablet press: A mechanistic view.

    PubMed

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2016-02-29

    Compaction of multiple-unit pellet system (MUPS) tablets has been extensively studied in the past few decades but with marginal success. This study aims to investigate the formulation and process strategies for minimizing pellet coat damage caused by compaction and elucidate the mechanism of damage sustained during the preparation of MUPS tablets in a rotary tablet press. Blends containing ethylcellulose-coated pellets and cushioning agent (spray dried aggregates of micronized lactose and mannitol), were compacted into MUPS tablets in a rotary tablet press. The effects of compaction pressure and dwell time on the physicomechanical properties of resultant MUPS tablets and extent of pellet coat damage were systematically examined. The coated pellets from various locations at the axial and radial peripheral surfaces and core of the MUPS tablets were excavated and assessed for their coat damage individually. Interestingly, for a MUPS tablet formulation which consolidates by plastic deformation, the tablet mechanical strength could be enhanced without exacerbating pellet coat damage by extending the dwell time in the compaction cycle during rotary tableting. However, the increase in compaction pressure led to faster drug release rate. The location of the coated pellets in the MUPS tablet also contributed to the extent of their coat damage, possibly due to uneven force distribution within the compact. To ensure viability of pellet coat integrity, the formation of a continuous percolating network of cushioning agent is critical and the applied compaction pressure should be less than the pellet crushing strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  16. A Novel Scale Up Model for Prediction of Pharmaceutical Film Coating Process Parameters.

    PubMed

    Suzuki, Yasuhiro; Suzuki, Tatsuya; Minami, Hidemi; Terada, Katsuhide

    2016-01-01

    In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.

  17. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  18. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  19. Influence of the aqueous film coating process on the properties and stability of tablets containing a moisture-labile drug.

    PubMed

    Ruotsalainen, Mirja; Heinämäki, Jyrki; Taipale, Krista; Yliruusi, Jouko

    2003-01-01

    The effects of an aqueous film coating process on the morphology and storage stability of hydroxypropyl methylcellulose-coated tablets containing a moisture-labile model drug (acetylsalicylic acid, ASA) were evaluated using an instrumented side-vented tablet pan coater. Coating parameters studied were inlet air absolute humidity 5 g/m3 and 12 g/m3, spraying air pressure 100 kPa and 500 kPa, pan air temperature 35 degrees C and 55 degrees C, and coating solution flow rate 2.2 g/min and 7.8 g/min. The surface roughness of the coatings was measured with a laser profilometer and the chemical hydrolysis of the model drug ASA with an UV-spectrophotometer. The film-coated tablets were stored at 25 degrees C/60% RH and 40 degrees C/75% RH for three months. The high absolute humidity of the inlet air increased the residual water content and surface roughness of the coated tablets. Using a lower coating solution flow rate, higher spraying air pressure and pan temperature the coatings were smooth and homogeneous. In both ambient and accelerated storage conditions, the roughness of the coatings and the hydrolysis of ASA increased, but this was independent of the film coating process. Uniform and smooth hydroxypropyl methylcellulose coatings can be achieved by improved control of process parameters related to the application of the coating solution and water evaporation of the tablet surface.

  20. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  1. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  2. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability.

    PubMed

    Vital, Ana Carolina Pelaes; Guerrero, Ana; Monteschio, Jessica de Oliveira; Valero, Maribel Velandia; Carvalho, Camila Barbosa; de Abreu Filho, Benício Alves; Madrona, Grasiele Scaramal; do Prado, Ivanor Nunes

    2016-01-01

    The effects of an alginate-based edible coating containing natural antioxidants (rosemary and oregano essential oils) on lipid oxidation, color preservation, water losses, texture and pH of beef steaks during 14 days of display were studied. The essential oil, edible coating and beef antioxidant activities, and beef consumer acceptability were also investigated. The edible coatings decreased lipid oxidation of the meat compared to the control. The coating with oregano was most effective (46.81% decrease in lipid oxidation) and also showed the highest antioxidant activity. The coatings significantly decreased color losses, water losses and shear force compared to the control. The coatings had a significant effect on consumer perception of odor, flavor and overall acceptance of the beef. In particular, the oregano coating showed significantly high values (approximately 7 in a 9-point scale). Active edible coatings containing natural antioxidants could improve meat product stability and therefore have potential use in the food industry.

  3. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability

    PubMed Central

    Vital, Ana Carolina Pelaes; Guerrero, Ana; Monteschio, Jessica de Oliveira; Valero, Maribel Velandia; Carvalho, Camila Barbosa; de Abreu Filho, Benício Alves; Madrona, Grasiele Scaramal; do Prado, Ivanor Nunes

    2016-01-01

    The effects of an alginate-based edible coating containing natural antioxidants (rosemary and oregano essential oils) on lipid oxidation, color preservation, water losses, texture and pH of beef steaks during 14 days of display were studied. The essential oil, edible coating and beef antioxidant activities, and beef consumer acceptability were also investigated. The edible coatings decreased lipid oxidation of the meat compared to the control. The coating with oregano was most effective (46.81% decrease in lipid oxidation) and also showed the highest antioxidant activity. The coatings significantly decreased color losses, water losses and shear force compared to the control. The coatings had a significant effect on consumer perception of odor, flavor and overall acceptance of the beef. In particular, the oregano coating showed significantly high values (approximately 7 in a 9-point scale). Active edible coatings containing natural antioxidants could improve meat product stability and therefore have potential use in the food industry. PMID:27504957

  4. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    NASA Astrophysics Data System (ADS)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  5. Influence of coatings on the thermal and mechanical processes at insulating glass units

    NASA Astrophysics Data System (ADS)

    Penkova, Nina; Krumov, Kalin; Surleva, Andriana; Geshkova, Zlatka

    2017-09-01

    Different coatings on structural glass are used in the advances transparent facades and window systems in order to increase the thermal performance of the glass units and to regulate their optical properties. Coated glass has a higher absorptance in the solar spectrum which leads to correspondent higher temperature in the presence of solar load compared to the uncoated one. That process results in higher climatic loads at the insulating glass units (IGU) and in thermal stresses in the coated glass elements. Temperature fields and gradients in glass panes and climatic loads at IGU in window systems are estimated at different coating of glazed system. The study is implemented by numerical simulation of conjugate heat transfer in the window systems at summer time and presence of solar irradiation, as well as during winter night time.

  6. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  7. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  8. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    PubMed Central

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-01-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery. PMID:26548760

  9. Effect of active edible coatings made by basil seed gum and thymol on oil uptake and oxidation in shrimp during deep-fat frying.

    PubMed

    Khazaei, Naimeh; Esmaiili, Mohsen; Emam-Djomeh, Zahra

    2016-02-10

    The effect of active coating treatments on oil uptake, moisture loss, lipid oxidation, texture, color, and sensory evaluation of shrimp after deep-fat frying process was investigated. Compared with the uncoated samples, coating treatments decreased the oil uptake and moisture loss of fried shrimp by 34.50 and 13.9%, respectively. Fried shrimp samples were analyzed for peroxide value (PV) and thiobarbituric acid (TBA). The most reduction in lipid oxidation (46.4% for PV and 40.8% for TBA) was observed when shrimp samples were coated with CS4 (containing 10% thyme), while the control samples had the highest values of PV and TBA after deep-fat frying process. Coated fried samples had significantly lower toughness and stiffness than control samples (P<0.05). In terms of sensory evaluation, there was no significant difference in color, smell, and taste among the treatments (P>0.05). However, for the texture, juiciness, chewiness, and overall acceptability, coated fried samples had higher scores than control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of Processing Conditions on the Anelastic Behavior of Plasma Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vaishak

    2011-12-01

    Plasma sprayed ceramic materials contain an assortment of micro-structural defects, including pores, cracks, and interfaces arising from the droplet based assemblage of the spray deposition technique. The defective architecture of the deposits introduces a novel "anelastic" response in the coatings comprising of their non-linear and hysteretic stress-strain relationship under mechanical loading. It has been established that this anelasticity can be attributed to the relative movement of the embedded defects under varying stresses. While the non-linear response of the coatings arises from the opening/closure of defects, hysteresis is produced by the frictional sliding among defect surfaces. Recent studies have indicated that anelastic behavior of coatings can be a unique descriptor of their mechanical behavior and related to the defect configuration. In this dissertation, a multi-variable study employing systematic processing strategies was conducted to augment the understanding on various aspects of the reported anelastic behavior. A bi-layer curvature measurement technique was adapted to measure the anelastic properties of plasma sprayed ceramic. The quantification of anelastic parameters was done using a non-linear model proposed by Nakamura et.al. An error analysis was conducted on the technique to know the available margins for both experimental as well as computational errors. The error analysis was extended to evaluate its sensitivity towards different coating microstructure. For this purpose, three coatings with significantly different microstructures were fabricated via tuning of process parameters. Later the three coatings were also subjected to different strain ranges systematically, in order to understand the origin and evolution of anelasticity on different microstructures. The last segment of this thesis attempts to capture the intricacies on the processing front and tries to evaluate and establish a correlation between them and the anelastic

  11. Evaluation of Chemical Coating Processes for AXAF

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E.

    1997-01-01

    The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXAF program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXAF observatory key component.

  12. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  13. Spin-on bottom antireflective coating defect reduction by proper filter selection and process optimization

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry

    2003-06-01

    A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.

  14. Silica coatings formed on noble dental casting alloy by the sol-gel dipping process.

    PubMed

    Yoshida, K; Tanagawa, M; Kamada, K; Hatada, R; Baba, K; Inoi, T; Atsuta, M

    1999-08-01

    The sol-gel dipping process, in which liquid silicon alkoxide is transformed into the solid silicon-oxygen network, can produce a thin film coating of silica (SiO2). The features of this method are high homogeneity and purity of the thin SiO2 film and a low sinter temperature, which are important in preparation of coating films that can protect from metallic ion release from the metal substrate and prevent attachment of dental plaque. We evaluated the surface characteristics of the dental casting silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy coated with a thin SiO2 film by the sol-gel dipping process. The SiO2 film bonded strongly (over 40 MPa) to Ti-implanted Ag-Pd-Cu-Au alloy substrate as demonstrated by a pull test. Hydrophobilization of Ti-implanted/SiO2-coated surfaces resulted in a significant increase of the contact angle of water (80.5 degrees) compared with that of the noncoated alloy specimens (59.3 degrees). Ti-implanted/SiO2-coated specimens showed the release of many fewer metallic ions (192 ppb/cm2) from the substrate than did noncoated specimens (2,089 ppb/cm2). The formation of a thin SiO2 film by the sol-gel dipping process on the surface of Ti-implanted Ag-Pd-Cu-Au alloy after casting clinically may be useful for minimizing the possibilities of the accumulation of dental plaque and metal allergies caused by intraoral metal restorations.

  15. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  16. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackiewicz-Ludtka, G.; Sebright, J.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates,more » with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and

  17. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    EPA Science Inventory

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  18. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the nanoparticles after 48 h of incubation. It is concluded from the present study that, the PDDS-Fe3O4 showed good antiplasmodial activity and it might be used for the development of antiplasmodial drugs.

  19. Top coat or no top coat for immersion lithography?

    NASA Astrophysics Data System (ADS)

    Stepanenko, N.; Kim, Hyun-Woo; Kishimura, S.; Van Den Heuvel, D.; Vandenbroeck, N.; Kocsis, M.; Foubert, P.; Maenhoudt, M.; Ercken, M.; Van Roey, F.; Gronheid, R.; Pollentier, I.; Vangoidsenhoven, D.; Delvaux, C.; Baerts, C.; O'Brien, S.; Fyen, W.; Wells, G.

    2006-03-01

    Since the moment immersion lithography appeared in the roadmaps of IC manufacturers, the question whether to use top coats has become one of the important topics for discussions. The top coats used in immersion lithography have proved to serve as good protectors from leaching of the resist components (PAGs, bases) into the water. However their application complicates the process and may lead to two side effects. First, top coats can affect the process window and resist profile depending on the material's refractive index, thickness, acidity, chemical interaction with the resist and the soaking time. Second, the top coat application may increase the total amount of defects on the wafer. Having an immersion resist which could work without the top coat would be a preferable solution. Still, it is quite challenging to make such a resist as direct water/resist interaction may also result in process window changes, CD variations, generation of additional defects. We have performed a systematic evaluation of a large number of immersion resist and top coat combinations, using the ASML XT:1250Di scanner at IMEC. The samples for the experiments were provided by all the leading resist and top coat suppliers. Particular attention was paid to how the resist and top coat materials from different vendors interacted with each other. Among the factors which could influence the total amount of defects or CD variations on the wafer were: the material's dynamic contact angle and its interaction with the scanner stage speed, top coat thickness and intermixing layer formation, water uptake and leaching. We have examined the importance of all mentioned factors, using such analytical techniques as Resist Development Analyser (RDA), Quartz Crystal Microbalance (QCM), Mass Spectroscopy (MS) and scatterometry. We have also evaluated the influence of the pre- and pos- exposure rinse processes on the defectivity. In this paper we will present the data on imaging and defectivity performance of

  20. Characterization of emission factors related to source activity for trichloroethylene degreasing and chrome plating processes.

    PubMed

    Wadden, R A; Hawkins, J L; Scheff, P A; Franke, J E

    1991-09-01

    A study at an automotive parts fabrication plant evaluated four metal surface treatment processes during production conditions. The evaluation provides examples of how to estimate process emission factors from activity and air concentration data. The processes were open tank and enclosed tank degreasing with trichloroethylene (TCE), chromium conversion coating, and chromium electroplating. Area concentrations of TCE and chromium (Cr) were monitored for 1-hr periods at three distances from each process. Source activities at each process were recorded during each sampling interval. Emission rates were determined by applying appropriate mass balance models to the concentration patterns around each source. The emission factors obtained from regression analysis of the emission rate and activity data were 16.9 g TCE/basket of parts for the open-top degreaser; 1.0 g TCE/1000 parts for the enclosed degreaser; 1.48-1.64 mg Cr/1000 parts processed in the hot CrO3/HNO3 tank for the chrome conversion coating; and 5.35-9.17 mg Cr/rack of parts for chrome electroplating. The factors were also used to determine the efficiency of collection for the local exhaust systems serving each process. Although the number of observations were limited, these factors may be useful for providing initial estimates of emissions from similar processes in other settings.

  1. Demonstration of Aflatoxin Inhibitory Activity in a Cotton Seed Coat Xylan

    PubMed Central

    Mellon, J. E.; Cotty, P. J.; Godshall, M. A.; Roberts, E.

    1995-01-01

    An inhibitor of aflatoxin biosynthesis localized in the seed coats of developing cotton was partially purified and characterized. Aqueous extracts from 25-day postanthesis seed coat tissue inhibited aflatoxin (B(inf1)) production in liquid cultures of Aspergillus flavus AF13. Inhibition was concentration dependent, with a 50% effective dose of 173 (mu)g of crude extract per ml of medium. The inhibitor was neutral in charge. Two active fractions were obtained from crude preparations by gel filtration chromatography (BioGel P-100). The purest fraction eluted in the void volume. Carbohydrate composition analysis of this void volume inhibitor indicated a composition of xylose (>90%) and mannose. Aflatoxin production in vitro was inversely related to inhibitor concentration in the fermentation medium (log of aflatoxin versus log of [inhibitor]; r(sup2) = 0.82; P < 0.002). The void volume inhibitor had a 50% effective dose of 6.2 (mu)g/ml, a 28-fold purification of the inhibitor material. These data support the hypothesis that seed coat inhibitory activity is associated with a cottonseed-specific xylan. PMID:16535194

  2. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    PubMed

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  3. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  4. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles.

    PubMed

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-04-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.

  5. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    PubMed Central

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-01-01

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. PMID:28811410

  6. A deep look into the spray coating process in real-time—the crucial role of x-rays

    NASA Astrophysics Data System (ADS)

    Roth, Stephan V.

    2016-10-01

    Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.

  7. Biologically Active Polymeric Coating Materials

    DTIC Science & Technology

    1975-04-01

    unsaturated alkyds , or through a condensation reaction of an organometallic oxide and a resin containing carboxylic acid groups as side chains. The...extend the service life of antifouling coatings by means of polymerization of toxicant into paint resins . The coating binder is so constructed that the...from styrene (s6) and polyester (P54, figure 5) organometallic resins . To date, the antifouling performance of epoxy (WS 52B, figure 6) and

  8. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    EPA Science Inventory

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  9. A deletion mutation at the ep locus causes low seed coat peroxidase activity in soybean.

    PubMed

    Gijzen, M

    1997-11-01

    The Ep locus severely affects the amount of peroxidase enzyme in soybean seed coats. Plants containing the dominant Ep allele accumulate large amounts of peroxidase in the hourglass cells of the sub-epidermis. Homozygous recessive epep genotypes do not accumulate peroxidase in the hourglass cells and are much reduced in total seed coat peroxidase activity. To isolate the gene encoding the seed coat peroxidase and to determine whether it corresponds to the Ep locus, a cDNA library was constructed from developing seed coats and an abundant 1.3 kb peroxidase transcript was cloned. The corresponding structural gene was also isolated from a genomic library. Sequence analysis shows that the seed coat peroxidase is translated as a 352 amino acid precursor protein of 38 kDa. Processing of a putative 26 amino acid signal sequence results in a mature protein of 326 residues with a calculated mass of 35 kDa and a pl of 4.4. Using probes derived from the cDNA, genomic DNA blot hybridization and polymerase chain reaction analysis detected polymorphisms that distinguished EpEp and epep genotypes. Co-segregation of the polymorphisms in an F2 population from a cross of EpEp and epep plants shows that the Ep locus encodes the seed coat peroxidase protein. Comparison of Ep and ep alleles indicates that the recessive gene lacks 87 bp of sequence encompassing the translation start codon. Analysis by RNA blot hybridization shows that epep plants have drastically reduced amounts of peroxidase transcript compared with EpEp plants. The peroxidase mRNA is abundant in seed coat tissues of EpEp plants during the late stages of seed maturation, and could also be detected in root tissues, but not in the flower, embryo, pod or leaf. The results indicate that the lack of peroxidase accumulation in seed coats of homozygous recessive epep plants is due to a mutation of the structural gene that reduces transcript abundance.

  10. Coating system to permit direct brazing of ceramics

    DOEpatents

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  11. Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy

    NASA Astrophysics Data System (ADS)

    Gabb, T. P.; Rogers, R. B.; Nesbitt, J. A.; Miller, R. A.; Puleo, B. J.; Johnson, D.; Telesman, J.; Draper, S. L.; Locci, I. E.

    2017-11-01

    Oxidation and corrosion can attack superalloy disk surfaces exposed to increasing operating temperatures in some turbine engine environments. Any potential protective coatings must also be resistant to harmful fatigue cracking during service. The objective of this study was to investigate how residual stresses evolve in one such coating. Fatigue specimens of a powder metallurgy-processed disk superalloy were coated with a NiCrY coating, shot peened, and then subjected to fatigue in air at room and high temperatures. The effects of this processing and fatigue cycling on axial residual stresses and other aspects of the coating were assessed. While shot peening did induce beneficial compressive residual stresses in the coating and substrate, these stresses relaxed in the coating with subsequent heating. Several cast alloys having compositions near the coating were subjected to thermal expansion and tensile stress relaxation tests to help explain this response of residual stresses in the coating. For the coated fatigue specimens, this response contributed to earlier cracking of the coating than for the uncoated surface during long intervals of cycling at 760 °C. Yet, substantial compressive residual stresses still remained in the substrate adjacent to the coating, which were sufficient to suppress fatigue cracking there. The coating continued to protect the substrate from hot corrosion pitting, even after fatigue cracks initiated in the coating.

  12. ENABLING COMMERCIALIZATION OF A LEAD-FREE COATING MANUFACTURING PROCESS - PHASE I

    EPA Science Inventory

    This Phase I SBIR program addresses the need for a manufacturing process that enables high reliability Pb-free tin coatings. Pb-free tin solders used in electronics applications have demonstrated whisker growth, due in part to compressive stresses within the deposit, causing ...

  13. Electrolytic Plasma Processing for Sequential Cleaning and Coating Deposition for Cadmium Plating Replacement

    DTIC Science & Technology

    2008-08-01

    deposit Al coatings or ZnAl alloys from aqueous solution. Unfortunately this proved impossible, producing only Al hydroxides and oxides, which are... deposited by normal aqueous electroplating methods. A great deal of effort was expended on attempts to produce metallic Al alloys , but no satisfactory... process . If an Al -bearing salt were soluble in a non- aqueous fluid that did not need an enclosure, then it might be possible to deposit Al coatings

  14. A study on the applicability of in-line measurements in the monitoring of the pellet coating process.

    PubMed

    Hudovornik, Grega; Korasa, Klemen; Vrečer, Franc

    2015-07-30

    Special populations including paediatric and elderly patients often need advanced approaches in treatment, such as one-a-day dosing, which is achieved with modified release formulations or alternative routes of applications such as nasogastric route. Pellets are a dosage form that is frequently used in such formulations. The aim of the present work was to study the applicability of two in-line techniques, namely, Near Infrared Spectroscopy (NIR) and Spatial Filtering Technique (SFT) in the pellet coating process. The first objective of our work was to develop a prediction model for moisture content determination with the in-line NIR and to test its robustness in terms of sensitivity to changes in composition of the pellets and performance in wide range of moisture content. Secondly, the in-line SFT measurement was correlated with different off-line particle size methods. The third objective was to evaluate the ability of both in-line techniques for the detection of undesired deviations during the process, such as pellet attrition and agglomeration. Finally, the ability to predict coating thickness with the in-line NIR probe was evaluated. Results suggested that NIR prediction model for moisture content was less robust outside the calibration range and was also sensitive to changes in composition of the film coating. Nevertheless, satisfactory prediction was achieved in the case when coating composition was partially altered and adequate calibration range was used. The SFT probe results were in good correlation with off-line particle size measurement methods and proved to be an effective tool for coating thickness determination during the coating, however, the probe failed to accurately show the actual amount of the agglomerates formed during the process. In experiment when pellet attrition was initiated, both probes successfully detected abrasion of the pellet surface in real time. Furthermore, a predictive NIR model for coating thickness was made and showed a good

  15. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  16. Leaching of biocides used in façade coatings under laboratory test conditions.

    PubMed

    Schoknecht, Ute; Gruycheva, Jana; Mathies, Helena; Bergmann, Hannelore; Burkhardt, Michael

    2009-12-15

    The European Biocidal Products Directive 98/8/EC requires a risk assessment concerning possible effects of active ingredients on the environment. Biocides can be leached from treated materials exposed to outdoor use. These emissions have to be estimated and evaluated during the authorization procedure. Different immersion and irrigation tests were performed to investigate leaching of biocides from façade coatings. Several marketed formulations of textured coatings and paints spiked with a mixture of commonly used active ingredients (OIT, DCOIT, IPBC, carbendazim, isoproturon, diuron, terbutryn, and Irgarol 1051) were investigated. The emission process can be described by time-dependent functions that depend on the test conditions. The results of all test procedures confirm that leachability is related to water solubility and n-octanol-water partition coefficient of the active ingredients and that leaching of biocides from façade coatings is mainly a diffusion controlled process. Other factors like the composition of the product, availability and transport of water, concentration of active ingredients in the coatings, as well as UV-exposure of the coatings influence biocide emissions.

  17. Investigation of radiation keeping property of barite coated cloth via image processing method

    NASA Astrophysics Data System (ADS)

    Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.

    2012-09-01

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  18. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    NASA Astrophysics Data System (ADS)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  19. Sol-Gel Processing of MgF2 Antireflective Coatings

    PubMed Central

    Löbmann, Peer

    2018-01-01

    There are different approaches for the preparation of porous antireflective λ/4 MgF2 films from liquid precursors. Among these, the non-aqueous fluorolytic synthesis of precursor solutions offers many advantages in terms of processing simplicity and scalability. In this paper, the structural features and optical performance of the resulting films are highlighted, and their specific interactions with different inorganic substrates are discussed. Due to their excellent abrasion resistance, coatings have a high potential for applications on glass. Using solvothermal treatment of precursor solutions, also the processing of thermally sensitive polymer substrates becomes feasible. PMID:29724064

  20. A continuous silicon-coating facility

    NASA Technical Reports Server (NTRS)

    Butter, C.; Heaps, J. D.

    1979-01-01

    Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.

  1. The effect of spraying parameters on micro-structural properties of WC-12%Co coating deposited on copper substrate by HVOF process

    NASA Astrophysics Data System (ADS)

    Sathwara, Nishit; Jariwala, C.; Chauhan, N.; Raole, P. M.; Basa, D. K.

    2015-08-01

    High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varying process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.

  2. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  3. Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Stackpoole, Margaret Mary

    Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also

  4. Interface activation and surface characteristics of Ti/TiN/HA coated sintered stainless steels

    NASA Astrophysics Data System (ADS)

    Choe, Han-Cheol; Ko, Yeong-Mu

    2006-02-01

    Interface activation and surface characteristics of Ti/TiN/HA film coated sintered stainless steels (SSS) have been investigated by electrochemical and biocompatibility tests. HA (hydroxyapatite), Ti, and Ti/TiN film coatings were applied using electron-beam deposition method (EB-PVD). Ti, Ti/TiN, and Ti/TiN/HA film coated surfaces and layers were investigated by SEM and XPS. The coated films showed micro-columnar structure, and Ti/TiN/HA films were denser than Ti or HA-only film. The corrosion resistance of the HA coating was similar to that of Ti/TiN/HA film coating when Cu content reached 4 wt.%, but the corrosion resistance of the HA coating decreased when Cu content increased from 4 wt.% in 0.9% NaCl solution. Therefore, HA-only coating could ensure corrosion resistance when Cu content does not exceed 4 wt.%. The results of biocompatibility tests of SSS on dogs showed that bone formation and biocompatibility were favorable when Cu content did not exceed 4 wt.%. The biocompatibility with bone was generally favorable in Ti/TiN/HA film coating and HA-only coating, while bone formation was somewhat faster for the HA film coated surface than for the Ti/TiN/HA film coating. Also, good cell growth and osseointegration without toxicity were observed.

  5. Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Dandan; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2018-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. In our study, Ca-Si coatings with Sr-containing nanowire-like structures (NW-Sr-CS) were achieved via hydrothermal treatment. In order to identify the effect of nanowire-like topography and Sr dopant on the biological properties of Ca-Si-based coatings, the original Ca-Si coating, Ca-Si coatings modified with nanoplate (NP-CS) and similar nanowire-like structure (NW-CS) were fabricated as the control. Surface morphology, phase composition, surface area, zeta potential and ion release of these coatings were characterized. The in vitro osteogenic activities and immunomodulatory properties were evaluated with bone marrow stromal cells (BMSCs) and RAW 264.7 cells, a mouse macrophage cell line. Compared with the CS and NP-CS coatings, the NW-CS coating possessed a larger surface area and pore volume, beneficial protein adsorption, up-regulated the expression levels of integrin β1, Vinculin and focal adhesion kinase and promoted cell spreading. Furthermore, the NW-CS coating significantly enhanced the osteogenic differentiation and mineralization as indicated by the up-regulation of ALP activity, mineralized nodule formation and osteoblastogenesis-related gene expression. With the introduction of Sr, the NW-Sr-CS coatings exerted a greater effect on the BMSC proliferation rate, calcium sensitive receptor gene expression as well as PKC and ERK1/2 phosphorylation. In addition, the Sr-doped coatings significantly up-regulated the ratio of OPG/RANKL in the BMSCs. The NW-Sr-CS coatings could modulate the polarization of macrophages towards the wound-healing M2 phenotype, reduce the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and enhance anti-inflammatory cytokines (IL-1ra, IL-10). The Sr-doped nanowire modification may be a valuable approach to enhance osteogenic activities and reduce inflammatory reactions.

  6. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  7. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  8. Effects of sol-gel processed silica coating on bond strength of resin cements to glass-infiltrated alumina ceramic.

    PubMed

    Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang

    2009-02-01

    The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant

  9. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    NASA Astrophysics Data System (ADS)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  10. Friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes

    NASA Astrophysics Data System (ADS)

    Deng, Jianxin; Yan, Pei; Wu, Ze

    2012-11-01

    MoS2 metal composite coatings have been successful used in dry turning, but its suitability for dry drilling has not been yet established. Therefore, it is necessary to study the friction and wear behaviors of MoS2/Zr coated HSS in sliding wear and in drilling processes. In the present study, MoS2/Zr composite coatings are deposited on the surface of W6Mo5Cr4V2 high speed steel(HSS). Microstructural and fundamental properties of these coatings are examined. Ball-on-disc sliding wear tests on the coated discs are carried out, and the drilling performance of the coated drills is tested. Test results show that the MoS2/Zr composite coatings exhibit decreases friction coefficient to that of the uncoated HSS in sliding wear tests. Energy dispersive X-ray(EDX) analysis on the wear surface indicates that there is a transfer layer formed on the counterpart ball during sliding wear processes, which contributes to the decreasing of the friction coefficient between the sliding couple. Drilling tests indicate that the MoS2/Zr coated drills show better cutting performance compared to the uncoated HSS drills, coating delamination and abrasive are found to be the main flank and rake wear mode of the coated drills. The proposed research founds the base of the application of MoS2 metal composite coatings on dry drilling.

  11. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOEpatents

    Feng, Zhu; Brewer, Marilee; Brown, Ian; Komvopoulos, Kyriakos

    1994-01-01

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment.

  12. Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate

    DOEpatents

    Feng, Z.; Brewer, M.; Brown, I.; Komvopoulos, K.

    1994-05-03

    A process is disclosed for the pretreatment of a carbon-coated substrate to provide a uniform high density of nucleation sites thereon for the subsequent deposition of a continuous diamond film without the application of a bias voltage to the substrate. The process comprises exposing the carbon-coated substrate, in a microwave plasma enhanced chemical vapor deposition system, to a mixture of hydrogen-methane gases, having a methane gas concentration of at least about 4% (as measured by partial pressure), while maintaining the substrate at a pressure of about 10 to about 30 Torr during the pretreatment. 6 figures.

  13. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  14. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  15. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  16. Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ramachandran, C. S.; Balasubramanian, V.; Ananthapadmanabhan, P. V.

    2011-03-01

    Atmospheric plasma spraying is used extensively to make Thermal Barrier Coatings of 7-8% yttria-stabilized zirconia powders. The main problem faced in the manufacture of yttria-stabilized zirconia coatings by the atmospheric plasma spraying process is the selection of the optimum combination of input variables for achieving the required qualities of coating. This problem can be solved by the development of empirical relationships between the process parameters (input power, primary gas flow rate, stand-off distance, powder feed rate, and carrier gas flow rate) and the coating quality characteristics (deposition efficiency, tensile bond strength, lap shear bond strength, porosity, and hardness) through effective and strategic planning and the execution of experiments by response surface methodology. This article highlights the use of response surface methodology by designing a five-factor five-level central composite rotatable design matrix with full replication for planning, conduction, execution, and development of empirical relationships. Further, response surface methodology was used for the selection of optimum process parameters to achieve desired quality of yttria-stabilized zirconia coating deposits.

  17. Plasma spray processing of TiC-based coatings for sliding wear resistance

    NASA Astrophysics Data System (ADS)

    Mohanty, Mahesh

    achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.

  18. Controlled release from drug microparticles via solventless dry-polymer coating.

    PubMed

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  20. Investigation of radiation keeping property of barite coated cloth via image processing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilincarslan, S.; Akkurt, I.; Molla, T.

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. Themore » results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.« less

  1. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    A DC magnetron sputtering system has been used to actively coat optical fibers with hermetic metal coatings during the fiber draw process. Thin films of Inconel 625 have been deposited on optical fibers and annealed in air at 2000 F. Scanning electron microscopy and Auger electron microscopy have been used to investigate the morphology and composition of the films prior to and following thermal cycling. Issues to be addressed include film adhesion, other coating materials, and a discussion of additional applications for this novel technology.

  2. The effect of spraying parameters on micro-structural properties of WC-12%Co coating deposited on copper substrate by HVOF process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathwara, Nishit, E-mail: nishit-25@live.in; Metallurgical & Materials Engineering Department, Indus University, Ahmedabad-382115; Jariwala, C., E-mail: chetanjari@yahoo.com

    High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varyingmore » process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.« less

  3. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    NASA Technical Reports Server (NTRS)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  4. PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL

    DOEpatents

    Hoover, T.B.

    1959-04-01

    An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i

  5. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    PubMed

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  6. Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bai, Long; Hang, Ruiqiang; Gao, Ang; Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin; Zhao, Lingzhou; Chu, Paul K.

    2015-11-01

    Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium-silver (Ti-Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti-Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti-Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti-Ag coatings.

  7. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  8. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    NASA Astrophysics Data System (ADS)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  9. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  10. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  11. Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Cooley, Kevin M

    2008-01-01

    Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electronmore » probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved.« less

  12. Effects of coating thickness on high power metal coated fibre lasers

    NASA Astrophysics Data System (ADS)

    Daniel, Jae M. O.; Simakov, Nikita; Hemming, Alexander; Clarkson, W. Andrew; Haub, John

    2017-03-01

    We investigate the effects of coating thickness on the scattering losses of metal coated active fibre. A range of low numerical aperture metal coated optical fibres are placed in etchant solutions whilst measuring propagation loss as a function of time. By utilising concurrent coating diameter measurements, we are able to correlate propagation losses with coating thickness. Experimentally we find a monotonic dependence on coating thickness and scattering loss. We present the results of this work, providing useful parameters for high power metal coated fibre laser designs.

  13. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Wang, Kebai; Li, Dai; Qin, Jiabin

    2017-10-01

    The novel graphite carbon coating hollow CuFe2O4 spheres were fabricated through solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra, etc. The catalytic performance of the graphite carbon coating hollow CuFe2O4 spheres was evaluated in photo-Fenton-like degradation of methylene blue (MB) using H2O2 as a green oxidant under light irradiation (λ > 400 nm). The results demonstrated that the hollow CuFe2O4 spheres with graphite carbon coating exhibited superior catalytic activity. In the preparation process of catalyst, the addition of glucose was very important to its catalytic performance. Photoresponse analysis of the typical samples proved that CuFe2O4@graphite carbon core-shell hollow spheres possessed excellent photocurrent response and lower electrochemical impedance. In addition, a possible mechanism for photocatalytic degradation of MB had been presumed. Moreover, after five regeneration cycles, the graphite carbon coating hollow CuFe2O4 spheres still exhibited better properties.

  14. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    PubMed

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. Copyright © 2016. Published by Elsevier Ltd.

  15. Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel

    NASA Astrophysics Data System (ADS)

    Selles Canto, Miguel Angel

    The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing

  16. Novel multifunctional titania-silica-lanthanum phosphate nanocomposite coatings through an all aqueous sol-gel process.

    PubMed

    Smitha, Venu Sreekala; Jyothi, Chembolli Kunhatta; Peer, Mohamed A; Pillai, Saju; Warrier, Krishna Gopakumar

    2013-04-07

    A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

  17. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer.

    PubMed

    Pretti, Carlo; Oliva, Matteo; Mennillo, Elvira; Barbaglia, Martina; Funel, Marco; Reddy Yasani, Bhaskar; Martinelli, Elisa; Galli, Giancarlo

    2013-12-01

    Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms. © 2013 Elsevier Inc. All rights reserved.

  18. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles

    PubMed Central

    Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470

  19. Research on width control of Metal Fused-coating Additive Manufacturing based on active control

    NASA Astrophysics Data System (ADS)

    Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.

  20. Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Liu, Hongwei; Sun, Sihao

    2017-12-01

    Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.

  1. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  2. Livestock air treatment using PVA-coated powdered activated carbon biofilter

    USDA-ARS?s Scientific Manuscript database

    The efficacy of polyvinyl alcohol (PVA) biofilters was studied using bench-scale biofilters and air from aerobically-treated swine manure. The PVA-coated powdered activated carbon particles showed excellent properties as a biofiltration medium: water holding capacity of 1.39 g H2O/g-dry PVA; wet por...

  3. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  4. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  5. Towards fully spray coated organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim

    2014-10-01

    Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.

  6. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan

    2017-08-01

    Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.

  7. Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping.

    PubMed

    Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm

    2015-12-21

    Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.

  8. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    PubMed

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  9. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less

  10. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  11. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  12. Ultrathin amorphous coatings on lunar dust grains.

    PubMed

    Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R

    1972-02-18

    UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.

  13. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    NASA Astrophysics Data System (ADS)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  14. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  15. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  16. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  17. High-Throughput Industrial Coatings Research at The Dow Chemical Company.

    PubMed

    Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T

    2016-09-12

    At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.

  18. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  19. An investigation of the curing process for moisture-crosslinkable polyethylene used in cable coating extrusion

    NASA Astrophysics Data System (ADS)

    Cantor, Kirk Martin

    1998-12-01

    Moisture-crosslinkable polyethylene used in the extrusion coating of electrical cable has many advantages over other polymer systems used for crosslinked cable coating. However, one of its major drawbacks is the long cure times required. The purpose of this study was to describe how curing takes place in cable systems using moisture-crosslinkable polyethylene, with an ultimate goal of gaining insight into how cure times might be reduced. Crosslinking was investigated with an emphasis on how the curing reaction proceeds through the coating, using analyses to characterize processing conditions and resulting mechanical and structural properties. In the design of the study, material compounds were varied as were curing conditions. Cable coatings were sectioned by position through the coating thickness and characterized using several techniques. Mechanical, thermal, and structural properties of the polymer coating were measured. A significant finding from the study was that the degree of cure was highest at positions in the coating closest to the conductor. Because this was opposite to what was expected, an investigation into the cause of this finding was pursued. It was found that during cure at elevated temperature, the inside surface of the coating remains at a generally higher temperature than the outside surface. This provides a more favorable cure condition for positions in the coating closest to the conductor. Based on the results of this study, a list of suggested follow-up studies is provided at the end of the dissertation. One proposal for investigating reduced cure times involves providing heat to the interior of the cable during cure.

  20. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide

    PubMed Central

    Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo

    2016-01-01

    The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287

  1. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    NASA Astrophysics Data System (ADS)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  2. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOEpatents

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  3. Optical enhancing durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Varadarajan, Aravamuthan; Movassat, Meisam

    2016-07-05

    Disclosed herein are polysilsesquioxane based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In embodiments, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in the polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, Si--OH condensation catalyst and/or nanofillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes including flow coating and roll coating, and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  4. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  5. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH; Dawson, William J [Dublin, OH; McCormick, Buddy E [Dublin, OH

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  6. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  7. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte.

    PubMed

    Chen, Wei; Rakhi, R B; Alshareef, H N

    2013-05-21

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50,000 cycles).

  8. Comprehensive process maps for synthesizing high density aluminum oxide-carbon nanotube coatings by plasma spraying for improved mechanical and wear properties

    NASA Astrophysics Data System (ADS)

    Keshri, Anup Kumar

    Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity

  9. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    PubMed

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  10. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD)

    PubMed Central

    Frank, Matthias J.; Walter, Martin S.; Rubert, Marina; Thiede, Bernd; Monjo, Marta; Reseland, Janne E.; Haugen, Håvard J.; Lyngstadaas, Ståle Petter

    2014-01-01

    The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity. PMID:28788564

  11. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  12. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE PAGES

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.; ...

    2017-03-07

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  13. Preservation of H2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures

    PubMed Central

    Piskorska, M; Soule, T; Gosse, J L; Milliken, C; Flickinger, M C; Smith, G W; Yeager, C M

    2013-01-01

    Summary To assess the applicability of latex cell coatings as an ‘off-the-shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. PMID:23331993

  14. Recovery of Multilayer-Coated Zerodur and ULE Optics for Extreme-Ultraviolet Lithography by Recoating, Reactive-Ion Etching, and Wet-Chemical Processes.

    PubMed

    Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A

    2001-01-01

    Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise.

  15. Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream

    NASA Astrophysics Data System (ADS)

    Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.

    2016-09-01

    The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http

  16. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  17. Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Van Gelder, Aldo

    Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.

  18. Development of chitosan-coated gold nanoflowers as SERS-active probes

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Gu, Jiangjiang; Wang, Weina; Yu, Xuehai; Xi, Kai; Jia, Xudong

    2010-09-01

    Surface-enhanced Raman scattering (SERS) has been intensely researched for many years as a potential technique for highly sensitive detection. This work, through the reduction of HAuCl4 with pyrrole in aqueous solutions, investigated a facile one-pot synthesis of flower-like Au nanoparticles with rough surfaces. The formation process of the Au nanoflowers (AuNFs) was carefully studied, and a spontaneous assembly mechanism was proposed based on the time-course experimental results. The key synthesis strategy was to use pyrrole as a weak particle stabilizing and reducing agent to confine crystal growth in the limited ligand protection region. The nanometer-scale surface roughness of AuNFs provided several hot spots on a single particle, which significantly increased SERS enhancement. Good biocompatible stable Raman-active probes were synthesized by coating AuNFs with chitosan. The conservation of the SERS effects in living cells suggested that the chitosan-capped AuNFs could be suitable for highly sensitive detection and have potential for targeting of tumors in vivo.

  19. Isomolybdate conversion coatings

    NASA Technical Reports Server (NTRS)

    Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).

  20. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. PVD thermal barrier coating applications and process development for aircraft engines

    NASA Astrophysics Data System (ADS)

    Rigney, D. V.; Viguie, R.; Wortman, D. J.; Skelly, D. W.

    1997-06-01

    Thermal barrier coatings (TBCs) have been developed for application to aircraft engine components to improve service life in an increasingly hostile thermal environment. The choice of TBC type is related to the component, intended use, and economics. Selection of electron beam physical vapor deposition proc-essing for turbine blade is due in part to part size, surface finish requirements, thickness control needs, and hole closure issues. Process development of PVD TBCs has been carried out at several different sites, including GE Aircraft Engines (GEAE). The influence of processing variables on microstructure is dis-cussed, along with the GEAE development coater and initial experiences of pilot line operation.

  2. Precision Optical Coatings for Large Space Telescope Mirrors

    NASA Astrophysics Data System (ADS)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  3. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    NASA Astrophysics Data System (ADS)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  4. The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants.

    PubMed

    Kalita, V I; Komlev, D I; Komlev, V S; Radyuk, A A

    2016-03-01

    A plasma spraying process for the deposition of three-dimensional capillary-porous titanium coatings using a wire has been developed. In this process, two additional dc arcs are discharged between plasmatron and both the wire and the substrate, resulting in additional activation of the substrate and the particles, particularly by increasing their temperature. The shear strength of the titanium coating with 46% porosity is 120.6 MPa. A new procedure for estimating the shear strength of porous coatings has been developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The role of nano-particles in the field of thermal spray coating technology

    NASA Astrophysics Data System (ADS)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  6. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    PubMed Central

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  7. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms.

    PubMed

    Korasa, Klemen; Vrečer, Franc

    2018-01-01

    Over the last two decades, regulatory agencies have demanded better understanding of pharmaceutical products and processes by implementing new technological approaches, such as process analytical technology (PAT). Process analysers present a key PAT tool, which enables effective process monitoring, and thus improved process control of medicinal product manufacturing. Process analysers applicable in pharmaceutical coating unit operations are comprehensibly described in the present article. The review is focused on monitoring of solid oral dosage forms during film coating in two most commonly used coating systems, i.e. pan and fluid bed coaters. Brief theoretical background and critical overview of process analysers used for real-time or near real-time (in-, on-, at- line) monitoring of critical quality attributes of film coated dosage forms are presented. Besides well recognized spectroscopic methods (NIR and Raman spectroscopy), other techniques, which have made a significant breakthrough in recent years, are discussed (terahertz pulsed imaging (TPI), chord length distribution (CLD) analysis, and image analysis). Last part of the review is dedicated to novel techniques with high potential to become valuable PAT tools in the future (optical coherence tomography (OCT), acoustic emission (AE), microwave resonance (MR), and laser induced breakdown spectroscopy (LIBS)). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  9. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  10. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  11. Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation

    NASA Astrophysics Data System (ADS)

    Martukanitz, R. P.; Babu, S. S.

    2004-06-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.

  12. Sensitive fluorimetric assays for α-glucosidase activity and inhibitor screening based on β-cyclodextrin-coated quantum dots.

    PubMed

    Liu, Si-Yao; Wang, Huan; He, Tian; Qi, Liang; Zhang, Zhi-Qi

    2016-02-01

    A fluorescence method was established for a α-glucosidase activity assay and inhibitor screening based on β-cyclodextrin-coated quantum dots. p-Nitrophenol, the hydrolysis product of the α-glucosidase reaction, could quench the fluorescence of β-cyclodextrin-coated quantum dots via an electron transfer process, leading to fluorescence turn-off, whereas the fluorescence of the system turned on in the presence of α-glucosidase inhibitors. Taking advantage of the excellent properties of quantum dots, this method provided a very simple, rapid and sensitive screening method for α-glucosidase inhibitors. Two α-glucosidase inhibitors, 2,4,6-tribromophenol and acarbose, were used to evaluate the feasibility of this screening model, and IC50 values of 24 μM and 0.55 mM were obtained respectively, which were lower than those previously reported. The method may have potential application in screening α-glucosidase inhibitors. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium.

    PubMed

    Wojcieszak, D; Mazur, M; Kalisz, M; Grobelny, M

    2017-02-01

    In this work influence of copper, silver and gold additives on structural and surface properties of biologically active thin films based on titanium have been described. Coatings were prepared by magnetron sputtering method. During each process metallic discs (targets) - Ti and the additive (Cu, Ag or Au) were co-sputtered in argon atmosphere. Structural investigation of as-deposited coatings was performed with the aid of XRD and SEM/EDS method. It was found that all prepared thin films were homogenous. Addition of Cu, Ag and Au resulted in nanocrystalline structure. Moreover, influence of these additives on hardness and antibacterial activity of titanium coatings was also studied. Ti-Cu, Ti-Ag and Ti-Au films had lower hardness as-compared to Ti. According to AAS results the difference of their activity was related to the ion migration process. It was found that Ti-Ag and Ti-Au coatings had biocidal effect related to direct contact of their surface with microorganisms. In the case of Ti-Cu antimicrobial activity had direct and indirect nature due to efficient ion migration process from the film surface to the surrounding environment. Functional features of coatings such as wettability and corrosion resistance were also examined and included in the comprehensive analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of the corrosion protection mechanism of cerium-based conversion coatings on high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pinc, William Ross

    The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.

  15. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  16. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    PubMed

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  17. Low Temperature Powder Coating

    DTIC Science & Technology

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...coatings both in laboratory and field service evaluations • LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent ... chrome reduction. • The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in

  18. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    PubMed Central

    Huang, Chih-Wei; Aoh, Jong-Ning

    2018-01-01

    In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846

  19. A critical assessment of in-flight particle state during plasma spraying of YSZ and its implications on coating properties and process reliability

    NASA Astrophysics Data System (ADS)

    Srinivasan, Vasudevan

    Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.

  20. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  1. Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice.

    PubMed

    Kurimoto, Yuta; Shibayama, Yuki; Inoue, Seiya; Soga, Minoru; Takikawa, Masahito; Ito, Chiaki; Nanba, Fumio; Yoshida, Tadashi; Yamashita, Yoko; Ashida, Hitoshi; Tsuda, Takanori

    2013-06-12

    Black soybean seed coat has abundant levels of polyphenols such as anthocyanins (cyanidin 3-glucoside; C3G) and procyanidins (PCs). This study found that dietary black soybean seed coat extract (BE) ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase (AMPK) in type 2 diabetic mice. Dietary BE significantly reduced blood glucose levels and enhanced insulin sensitivity. AMPK was activated in the skeletal muscle and liver of diabetic mice fed BE. This activation was accompanied by the up-regulation of glucose transporter 4 in skeletal muscle and the down-regulation of gluconeogenesis in the liver. These changes resulted in improved hyperglycemia and insulin sensitivity in type 2 diabetic mice. In vitro studies using L6 myotubes showed that C3G and PCs significantly induced AMPK activation and enhanced glucose uptake into the cells.

  2. Highly Segmented Thermal Barrier Coatings Deposited by Suspension Plasma Spray: Effects of Spray Process on Microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio

    2016-12-01

    Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.

  3. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  4. Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors

    NASA Astrophysics Data System (ADS)

    Qi, Na; Tang, Bo; Liu, Guang; Liang, Xingsi

    2017-05-01

    The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change. The release rate of γ-PGA-coated Dox lipoplexes slightly increased at acidic pH, the accelerated Dox release might be attributed to greater drug delivery to tumor cells, resulting in a higher antitumor activity. Especially, γ-PGA-coated Dox lipoplexes exhibited higher cellular uptake, significant in vitro cytotoxicity in HepG2 cells, and improved in vivo antitumor efficacy toward HepG2 hepatoma-xenografted nude models in comparison with Dox liposomes and free Dox solution. In addition, the analysis results via flow cytometry showed that γ-PGA-coated Dox lipoplexes induce S phase cell cycle arrest and significantly increased apoptosis rate of HepG2 cells. In conclusion, the presence of γ-PGA on the surface of Dox lipoplexes enhanced antitumor effects of liver tumors.

  5. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces.

    PubMed

    Li, Xian; Contreras-Garcia, Angel; LoVetri, Karen; Yakandawala, Nandadeva; Wertheimer, Michael R; De Crescenzo, Gregory; Hoemann, Caroline D

    2015-12-01

    In the context of porous bone void filler for oral bone reconstruction, peptides that suppress microbial growth and promote osteoblast function could be used to enhance the performance of a porous bone void filler. We tested the hypothesis that P15-CSP, a novel fusion peptide containing collagen-mimetic osteogenic peptide P15, and competence-stimulating peptide (CSP), a cationic antimicrobial peptide, has emerging properties not shared by P15 or CSP alone. Peptide-coated surfaces were tested for antimicrobial activity toward Streptoccocus mutans, and their ability to promote human mesenchymal stem cell (MSC) attachment, spreading, metabolism, and osteogenesis. In the osteogenesis assay, peptides were coated on tissue culture plastic and on thin films generated by plasma-enhanced chemical vapor deposition to have hydrophilic or hydrophobic character (water contact angles 63°, 42°, and 92°, respectively). S. mutans planktonic growth was specifically inhibited by CSP, whereas biofilm formation was inhibited by P15-CSP. MSC adhesion and actin stress fiber formation was strongly enhanced by CSP, P15-CSP, and fibronectin coatings and modestly enhanced by P15 versus uncoated surfaces. Metabolic assays revealed that CSP was slightly cytotoxic to MSCs. MSCs developed alkaline phosphatase activity on all surfaces, with or without peptide coatings, and consistently deposited the most biomineralized matrix on hydrophilic surfaces coated with P15-CSP. Hydrophobic thin films completely suppressed MSC biomineralization, consistent with previous findings of suppressed osteogenesis on hydrophobic bioplastics. Collective data in this study provide new evidence that P15-CSP has unique dual capacity to suppress biofilm formation, and to enhance osteogenic activity as a coating on hydrophilic surfaces. © 2015 Wiley Periodicals, Inc.

  6. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  7. Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating.

    PubMed

    Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi

    2016-04-01

    Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings

    NASA Astrophysics Data System (ADS)

    Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell

    2018-05-01

    Ti is one of the most commonly used materials for biomedical applications. However, there are two issues associated with the use of it, namely its bio-inertness and high elastic modulus compared to the elastic modulus of the natural bone. Both of these hurdles could potentially be overcome by introducing a number of pores in the structure of the Ti implant to match the properties of the bone as well as improve the mechanical integration between the bone and implant, and subsequently coating it with a biologically active ceramic coating to promote chemical integration. Hence, in this study we investigated the usage of cyclic voltammetry in PEO treatment of porous Ti parts with different amount of porosity produced by both Metal Injection Moulding (MIM) and MIM in combination with a space holder. It was found that porous samples with higher porosity and open pores develop much thicker surface layers that penetrate through the inner structure of the samples forming a network of surface and subsurface coatings. The results are of potential benefit in producing surface engineered porous samples for biomedical applications which do not only address the stress shielding problem, but also improve the chemical integration.

  9. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  10. Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    NASA Astrophysics Data System (ADS)

    Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.

    2012-04-01

    An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network

  11. Characterization of Nanoparticle Release from Surface Coatings by the Simulation of a Sanding Process

    PubMed Central

    Göhler, Daniel; Stintz, Michael; Hillemann, Lars; Vorbau, Manuel

    2010-01-01

    Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles. PMID:20696941

  12. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    PubMed

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  13. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  14. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  15. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  16. High gain durable anti-reflective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers,more » Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.« less

  17. Antibacterial polymer coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores onmore » its surface.« less

  18. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  19. Polyglycerol coatings of glass vials for protein resistance.

    PubMed

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  1. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  2. Optical coherence tomography as a novel tool for in-line monitoring of a pharmaceutical film-coating process.

    PubMed

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G

    2014-05-13

    Optical coherence tomography (OCT) is a contact-free non-destructive high-resolution imaging technique based on low-coherence interferometry. This study investigates the application of spectral-domain OCT as an in-line quality control tool for monitoring pharmaceutical film-coated tablets. OCT images of several commercially-available film-coated tablets of different shapes, formulations and coating thicknesses were captured off-line using two OCT systems with centre wavelengths of 830nm and 1325nm. Based on the off-line image evaluation, another OCT system operating at a shorter wavelength was selected to study the feasibility of OCT as an in-line monitoring method. Since in spectral-domain OCT motion artefacts can occur as a result of the tablet or sensor head movement, a basic understanding of the relationship between the tablet speed and the motion effects is essential for correct quantifying and qualifying of the tablet coating. Experimental data was acquired by moving the sensor head of the OCT system across a static tablet bed. Although examining the homogeneity of the coating turned more difficult with increasing transverse speed of the tablets, the determination of the coating thickness was still highly accurate at a speed up to 0.7m/s. The presented OCT setup enables the investigation of the intra- and inter-tablet coating uniformity in-line during the coating process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inorganic antimicrobial coating for titanium alloy and its effect on bacteria.

    PubMed

    Tamai, Katsuya; Kawate, Kenji; Kawahara, Ikuo; Takakura, Yoshinori; Sakaki, Kazuhiko

    2009-03-01

    For orthopedic implants, infection is a serious problem. Therefore, we considered an implant with antimicrobial ability can prevent infection. We tried to coat a titanium alloy surface with Novaron, a commercially available inorganic antimicrobial. The purpose of this study was to analyze the differences among the surfaces of materials coated using different processing pressures of the working gas and analysis of the antimicrobial activity. One of the inorganic antimicrobials Novaron (grade VZ 600) was applied to titanium alloy (Ti6Al4V) plates. This antimicrobial has limited heat resistance, so we used cold spray technology to coat the titanium alloy with it. The principle of cold spray technology is spraying a powder in a high-velocity gas jet, accelerated by adiabatic expansion, against a substrate. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were used to analyze the differences among the surfaces of materials coated using different processing pressures of the working gas. The Japanese Industrial Standard (JIS) method (JIS Z2801: 2000) was used to analyze the antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Antimicrobial activity was analyzed only for the sample coated at 3.0 MPa. The SEM and EDS results indicated that when the pressure of the working gas was increased, the antimicrobial coated the titanium adequately. This material showed good effects against S. aureus and P. aeruginosa and some effect for K. pneumoniae. Antimicrobial implants represent a preventive method against infection. There is a possibility of using them not only for clean operations but also for operations with suspected bacterial contamination, such as fixation of slight compound fractures.

  4. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  5. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  6. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  7. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  8. Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings

    NASA Astrophysics Data System (ADS)

    Kumar, R. K.; Kamaraj, M.; Seetharamu, S.; Pramod, T.; Sampathkumaran, P.

    2016-08-01

    The hydro plants utilizing silt-laden water for power generation suffer from severe metal wastage due to particle-induced erosion and cavitation. High-velocity oxy-fuel process (HVOF)-based coatings is widely applied to improve the erosion life. The process parameters such as particle velocity, size, powder feed rate, temperature, affect their mechanical properties. The high-velocity air fuel (HVAF) technology, with higher particle velocities and lower spray temperatures, gives dense and substantially nonoxidized coating. In the present study, the cavitation resistance of 86WC-10Co4Cr-type HVOF coating processed at 680 m/s spray particle velocity was compared with HVAF coatings made at 895, 960, and 1010 m/s. The properties such as porosity, hardness, indentation toughness, and cavitation resistance were investigated. The surface damage morphology has been analyzed in SEM. The cohesion between different layers has been examined qualitatively through scratch depth measurements across the cross section. The HVAF coatings have shown a lower porosity, higher hardness, and superior cavitation resistance. Delamination, extensive cracking of the matrix interface, and detachment of the WC grains were observed in HVOF coating. The rate of metal loss is low in HVAF coatings implying that process parameters play a vital role in achieving improved cavitation resistance.

  9. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  10. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong

    2014-09-01

    Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also

  11. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  12. Silica-gelatin hybrid sol-gel coatings: a proteomic study with biocompatibility implications.

    PubMed

    Araújo-Gomes, N; Romero-Gavilán, F; Lara-Sáez, I; Elortza, F; Azkargorta, M; Iloro, I; Martínez-Ibañez, M; Martín de Llano, J J; Gurruchaga, M; Goñi, I; Suay, J; Sánchez-Pérez, A M

    2018-05-21

    Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin, were applied as coatings on sandblasted, acid-etched titanium (SAE-Ti) substrates and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings. This article is protected by copyright. All rights reserved.

  13. [Study on the preparation and properties of novel silica microporous antireflective coating by sol-gel process].

    PubMed

    Shang, Meng-Ying; Cao, Lin-Hong; Liu, Miao; Luo, Xuan; Ren, Hong-Bo; Ye, Xin; Tang, Yong-Jian; Jiang, Xiao-Dong

    2013-04-01

    Silica sol was prepared by acid catalyzed sol-gel process using tetraethylorthosilicate (TEOS) as precursor and dimethyldietoxysilane (DDS) as pore-forming agent. A novel kind of monolayer microporous silica anti-reflective (AR) coating was obtained on K9 glass substrate by dip-coating technique and then heat treated at 500 degrees C. The effects of different DDS/TEOS molar ratios on refractive index, transmittance and hardness were investigated. A positive correlation was found between the transmittance and the DDS/TEOS molar ratio due to the increasing porosity. The maximum transmittance can reach 99.7% with the molar ratio of DDS/TEOS rising to 1 : 1. Meanwhile, the refractive index was found quite close to the ideal value 1.22. Nevertheless, higher molar ratio will lead to a bad film-forming property. On the other hand, the hardness of the coatings decreased with the DDS increasing but still remained more than 2 h when the transmittance reached highest. Besides, these coatings exhibit a well abrasion-resistance and excellent adhesivity. The maximum transmittance was only dropped by 0.071% and 0.112% after abrasion for 500 and 1 000 times respectively. Accelerated corrosion tests indicated that the transmittance of traditional coatings rapidly fell down to the substrate level (-92%) after immersion for 5 min, while the transmittance of our novel coating almost linearly decreased and was kept 93.2% after 56 min. In other words, the environment-resistance of our novel silica AR coating is ten times higher than that of traditional ones. The promotions of the coating performances benefit from its micropore structure (-0. 4 nm) with which water molecule can be effectively prevented. With its high transmittance, good mechanical properties and high environment-resistance, this kind of novel coating has a potential application in the field of solar glass modification to improve its anti-reflective properties.

  14. Silicanizing Process On Mild Steel Substrate by Using Tronoh Silica Sand: Microstructure, composition and coating growth

    NASA Astrophysics Data System (ADS)

    Y, Yusnenti F. M.; M, Othman; Mustapha, Mazli; I, MohdYusri

    2016-02-01

    A new Silicanizing process on formation of coating on mild steel using Tronoh Silica Sand (TSS) is presented. The process was performed in the temperature range 1000- 1100°C and with varying deposition time of 1-4 hours. Influence of the layer and the substrate constituents on the coating compatibility of the whole silicanized layer is described in detail. Morphology and structure of the silicanized layer were investigated by XRF, XRD and SEM. It is observed that diffusion coatings containing high concentrations of silica which profile distribution of SiO2 in the silicanized layer was encountered and the depth from the surface to the substrate was taken as the layer thickness. The results also depicted that a longer deposition time have tendency to produce a looser and larger grain a hence rougher layer. The silicanized layer composed of FeSi and Fe2SiO4 phases with preferred orientation within the experimental range. It is also found that longer deposition time and higher temperature resulted in an increase in SiO2 concentration on the substrate (mild steel).

  15. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    NASA Astrophysics Data System (ADS)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  16. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  17. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  18. Liquid-Solid Self-Lubricated Coatings

    NASA Astrophysics Data System (ADS)

    Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.

    2013-02-01

    Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.

  19. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  20. Ranking protective coatings: Laboratory vs. field experience

    NASA Astrophysics Data System (ADS)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  1. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  2. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, J.; Allen, B.; Wriggins, W.

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirementmore » for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and

  3. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  4. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes

    NASA Astrophysics Data System (ADS)

    Silva, Edgar; Saraiva, Sofia M.; Miguel, Sónia P.; Correia, Ilídio J.

    2014-11-01

    Fungal infections affecting human beings have increased during the last years and the currently available treatments, when administered for long periods, trigger microbial resistance. Such demands the development of new viable therapeutic alternatives. Silver is known since the antiquity by its antimicrobial properties and, herein, it was used to produce two types of nanoparticles (NPs), uncoated and coated with polyvinylpyrrolidone (PVP), which were aimed to be used in fungal infection treatment. NPs properties were characterized by Transmission electron microscopy, X-ray diffraction, UV-Vis, Dynamic light scattering, Fourier transform infrared, and Energy-dispersive X-ray spectroscopy. Furthermore, in vitro studies were also performed to evaluate NPs cytotoxic profile and antifungal activity. The results obtained revealed that the produced nanoparticles are biocompatible and have a good potential for being used in the treatment of common skin infections caused by Trichophyton rubrum and Trichophyton mentagrophytes, being PVP-coated silver NPs the most suitable ones.

  5. Determination of fracture toughness of calcium phosphate coatings deposited onto Ti6Al4V substrate by using indentation technique

    NASA Astrophysics Data System (ADS)

    Aydin, Ibrahim; Cetinel, Hakan; Pasinli, Ahmet

    2012-09-01

    In this study, fracture toughness values of calcium phosphate (CaP) coatings deposited onto Ti6Al4V substrate were determined by using Vickers indentation method. In this new patent holding method, the activation processes were performed with NaOH and NaOH+H2O2 on the Ti6Al4V material surface. Thicknesses of CaP coatings were measured from cross-sections of the samples by using optical microscopy. Vickers indentation tests were performed by using microhardness tester. Young's modulus values of the coatings were determined by using ultra microhardness tester. As a result, fracture toughness (K1C) values of the CaP coatings produced by using two different activation processes, were calculated by using experimental study results. These were found to be 0.43 MPa m1/2 and 0.39 MPa m1/2, respectively. It was determined that the CaP coating on Ti6Al4V activated by NaOH+H2O2 had higher fracture toughness than the CaP coating on Ti6Al4V activated by NaOH.

  6. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  7. Enhanced antibacterial activity and biocompatibility of zinc-incorporated organic-inorganic nanocomposite coatings via electrophoretic deposition.

    PubMed

    Huang, Pin; Ma, Kena; Cai, Xinjie; Huang, Dan; Yang, Xu; Ran, Jiabing; Wang, Fushi; Jiang, Tao

    2017-12-01

    Increased use of reconstruction procedures in orthopedics has improved the life of patients undergoing surgery. However, surgical site infection remains a major challenge. Efforts were made to fabricate antibacterial surfaces with good biocompatibility. This present study aimed to fabricate zinc-incorporated chitosan/gelatin (CS/G) nanocomposite coatings on the titanium substrates via electrophoretic deposition (EPD). Physicochemical characterization confirmed that zinc was successfully deposited in a metallic oxide/salt complex status. Transmission electron microscopic (TEM) results observed formation of core-shell nanosized particles released from the coatings. The selected-area electron diffraction (SAED) pattern of the particles presented faces of ZnO with organic background. Mechanical tests showed improved tensile and shear bond strength between substrates and zinc-incorporated coating surfaces. Zinc-incorporated CS/G coatings presented antibacterial abilities against both Gram-negative E. coli and Gram-positive S. aureus in a concentration-dependent manner. The generation of ZnO/Zn 2+ complex in the coatings may contribute to bacteria inhibition. In vitro study demonstrated that appropriate concentration of zinc could promote proliferative and osteogenic activities of rat bone marrow stromal cells. The present study suggested that zinc-incorporated CS/G coating was a promising candidate for surface modification of biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Self-healing effect of the protective inhibitor-containing coatings on Mg alloys

    NASA Astrophysics Data System (ADS)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.

    2017-09-01

    The method of self-healing coating formation on the surface of magnesium alloys on the base of plasma electrolytic oxidation (PEO) with subsequent impregnation of the obtained layer with inhibitor has been suggested. The protective and electrochemical properties of such coatings have been described. Localised Scanning Electrochemical Methods were used for determining the kinetics and mechanism of the self-healing process. The treatment with the solution containing inhibitor enables us to increase the protective properties of the PEO-coating in 30 times in the corrosion-active environment.

  9. Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.

    PubMed

    Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E

    2011-11-01

    The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.

  10. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  11. Quality control of the tribological coating PS212

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher; Deadmore, Daniel L.

    1989-01-01

    PS212 is a self-lubricating, composite coating that is applied by the plasma spray process. It is a functional lubricating coating from 25 C (or lower) to 900 C. The coating is prepared from a blend of three different powders with very dissimilar properties. Therefore, the final chemical composition and lubricating effectiveness of the coatings are very sensitive to the process variables used in their preparation. Defined here are the relevant variables. The process and analytical procedures that will result in satisfactory tribological coatings are discussed.

  12. Enhancing storage stability of guava with tannic acid-crosslinked zein coatings.

    PubMed

    Santos, Talita M; Souza Filho, Men de Sá M; Silva, Ebenézer de O; Silveira, Márcia R S da; Miranda, Maria Raquel A de; Lopes, Mônica M A; Azeredo, Henriette M C

    2018-08-15

    The quality of zein (Z)- and zein-tannic acid (ZTA)-coated guavas was monitored throughout 12 days of storage. Coated fruit showed lower changes in terms of visual appearance, chlorophyll contents and color. Weight loss, softening, and changes in soluble solids were also decreased by the coatings. The respiration peak as well as H 2 O 2 and superoxide dismutase activity peaks were delayed by the coatings, and the ethylene production was reduced. So, the results were consistent with a slowed down ripening of guavas by the coatings, which was probably related to lowered oxygen permeability of guava skin. ZTA coating was more effective than Z to reduce weight loss, softening, color changes, ethylene production, and oxidative stress. The higher efficiency of ZTA coating was ascribed to zein crosslinking, which probably resulted in decreased gas permeability, promoting lower respiration rates and lower ROS production, slowing down the ripening process, and extending guava stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    PubMed

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  14. Method and apparatus for coating thin foil with a boron coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Jeffrey L.

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less

  15. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    PubMed

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  17. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  18. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  19. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  20. Combined Effect of Long Processing Time and Na2SiF6 on the Properties of PEO Coatings Formed on AZ91D

    NASA Astrophysics Data System (ADS)

    Rehman, Zeeshan Ur; Koo, Bon Heun

    2016-08-01

    In this study, protective ceramic coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) to improve the corrosion and mechanical properties of AZ91D magnesium alloy. The process was conducted in silicate-fluoride-based electrolyte solution. It was found that the average micro-hardness of the coating was significantly increased with an increase in the PEO processing time. The highest value of the average micro-hardness ~1271.2 HV was recorded for 60-min processing time. The phase analysis of the coatings indicated that they were mainly composed of Mg2SiO4, MgO, and MgF2 phases. The surface and cross-sectional study demonstrated that porosity was largely reduced with processing time, together with the change in pore geometry from irregular to spherical shape. The results of the polarization test in 3.5 wt.% NaCl solution revealed that aggressive corrosion took place for 5-min sample; however, the corrosion current was noticeably decreased to 0.43 × 10-7 A/cm2 for the 60-min-coated sample. The superior nobility and hardness for long processing time are suggested to be due to the dense and highly thick coating, coupled with the presence of MgF2 phase.

  1. Chemical vapor deposition of mullite coatings

    DOEpatents

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  2. Rheological of chocolate-flavored, reduced-calories coating as a function of conching process.

    PubMed

    Medina-Torres, Luis; Sanchez-Olivares, Guadalupe; Nuñez-Ramirez, Diola Marina; Moreno, Leonardo; Calderas, Fausto

    2014-07-01

    Continuous flow and linear viscoelasticity rheology of chocolate coating is studied in this work using fat substitute gums (xanthan, GX). An alternative conching process, using a Rotor-Estator (RE) type impeller, is proposed. The objective is to obtain a chocolate coating material with improved flow properties. Characterization of the final material through particle size distribution (PSD), differential scanning calorimetry (DSC) and proximal analysis is reported. Particle size distribution of the final material showed less polydispersity and therefore, greater homogeneity; fusion points were also generated at around 20 °C assuming crystal type I (β'2) and II (α). Moreover, the final material exhibited crossover points (higher structure material), whereas the commercial brand chocolate used for comparison did not. The best conditions to produce the coating were maturing of 36 h and 35 °C, showing crossover points around 76 Pa and a 0.505 solids particle dispersion (average particle diameter of 0.364 μm), and a fusion point at 20.04 °C with a ΔHf of 1.40 (J/g). The results indicate that xanthan gum is a good substitute for cocoa butter and provides stability to the final product.

  3. Enhancement of Cr(VI) Ion Removal Using Nanochitosan Coated on Bituminous Activated Carbon.

    PubMed

    Chooaksorn, Wanida; Nitisoravut, Rachnarin; Polprasert, Chongrak; Babel, Sandhya; Laohhasurayotin, Kritapas; Kangwansupamonkon, Wiyong

    2016-11-01

      Bituminous activated carbon (AC) has been widely used as a sorbent for adsorption of non-polar species, but its performance for removal of ionic species such as heavy metals has not been as efficient. In this study, AC was modified with chitosan nanoparticles (CN) using facile methods of dip coating and wet impregnation. The CN-coated AC demonstrated an increase in Cr(VI) removal efficiency in both kinetics and adsorption capacity. The adsorption capacity of the CN-coated AC (mg/g) was more than twice that of the uncoated AC (36.36 mg/g), or pure chitosan (32.57 mg/g). The sizes of the synthesized CN (160-2,000 nm) can be controlled by varying the concentration of the chitosan/reagents used. The adsorption isotherms are better described using the Freundlich rather than the Langmuir model and are in agreement with the heterogeneity of the surfaces. Adsorption kinetics followed that of the pseudo-second-order kinetics, suggesting chemisorption as a rate limiting step.

  4. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  5. Preparation and Characterisation of Hydroxyapatite Coatings on Nanotubular TiO2 Surface Obtained by Sol-Gel Process.

    PubMed

    Shin, Jin-Ho; Kim, Jung-Hwa; Koh, Jeong-Tae; Lim, Hyun-Pil; Oh, Gye-Jeong; Lee, Seok-Woo; Lee, Kwang-Min; Yun, Kwi-Dug; Park, Sang-Won

    2015-08-01

    Hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotubular surface has been developed to complement the defects of both TiO2 and HA. A sol-gel processing technique was used to coat HA on TiO2 nanotubular surface. All the titanium discs were blasted with resorbable blast media (RBM). RBM-blasted Ti surface, anodized Ti surface, and sol-gel HA coating on the anodized Ti surface were prepared. The characteristics of samples were observed using scanning electron microscopy and X-ray photoemission spectroscopy. Biologic responses were evaluated with human osteosarcoma MG63 cells in vitro. The top of the TiO2 nanotubes was not completely covered by HA particles when the coating time was less than 60 sec. It was demonstrated the sol-gel derived HA film was well-crystallized and this enhanced biologic responses in early stage cell response.

  6. Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhu, Yanping; Zhu, Runliang; Zhu, Gangqiang; Wang, Miaomiao; Chen, Yannan; Zhu, Jianxi; Xi, Yunfei; He, Hongping

    2018-03-01

    Nowadays, two-dimensional (2D) nanosheets, such as layered double hydroxides (LDH), have received considerable attention for their potential to meeting clean energy demand and solving environmental problems. In this work, novel and efficient photocatalysts of plasmonic Ag nanoparticles coated Zn/Ti-LDH nanosheets have been synthesized through low-temperature reduction method. The structural characteristics of the as-prepared products were investigated by a series of characteristic methods The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that Ag nanoparticles were distributed on the surface of Zn/Ti-LDH uniformly. The UV-vis diffuse reflectance spectra (DRS) showed that the absorbance of Ag/LDH in visible-light region enhanced markedly and presented a broad band at 500-600 nm, which was resulted from the surface plasmon resonance (SPR) effect of Ag nanoparticles. The photocatalytic activities of Ag/LDH were evaluated by degradation of Rhodamine-B (RhB) and NO. The photocatalytic experiments showed that Ag/LDH had higher photocatalytic activity than that of pure LDH, and 2%Ag/LDH exhibited the highest photocatalytic activity. In addition, the 2%Ag/LDH exhibited high photochemical stability after multiple reaction runs. The obtained results from photoluminescence (PL) spectroscopic measurement and transient photocurrent (I-V) analysis both revealed the existence of Schottky barriers between LDH and Ag nanoparticles. The electron spin resonance (ESR) showed that rad OH were the dominant active species in the photo-degradation process. The enhanced photocatalytic performance of the composite should be ascribed to both the SPR effect of Ag nanoparticles in visible light and the Schottky barriers between LDH and Ag nanoparticles.

  7. Chemical analysis and potential endocrine activities of aluminium coatings intended to be in contact with cosmetic water.

    PubMed

    Bou-Maroun, Elias; Dahbi, Laurence; Gomez-Berrada, Marie-Pierre; Pierre, Philippine; Rakotomalala, Sandrine; Ferret, Pierre-Jacques; Chagnon, Marie-Christine

    2017-10-25

    The objective of the work was to check the presence of Non-Intended Added Substances (NIAS) with hormonal activities in aluminium coatings extracts coded: AA, BBF, MC and RR, furnished by four different suppliers. Water samples were prepared at room temperature or at 40°C for three months to verify the storage effect on the coatings. Solid phase extraction was used to concentrate and to extract coating substances. Hormonal activities were checked in vitro using reporter gene bioassays. Except BBF, all extracts induced a weak but significant estrogenic agonist activity in the human cell line. Using an estrogenic antagonist (ICI-182, 780), the answer was demonstrated specific in the bioassay. RR was the only extract to induce a concentration dependent anti-androgenic response in the MDA-KB2 cell line. Analysis performed using GC-MS and HPLC-MS detected 12 substances in most of the extracts. 8 NIAS were present. Among them, 4 were identified with certainty: HMBT, BGA, DCU and BPA. Estrogenic potency was BPA>DCU>BGA>HMBT. HMBT was also anti-androgenic at high concentration. Combining chemical analysis and bioassays data, we demonstrated that in the RR and the RR40 extracts, the observed estrogenic response was mainly due to BPA, the anti-androgenic activity of RR could be due to a synergism between HMBT and BPA. For MC and AA, estrogenic responses appear to be due to the presence of DCU. Except BBF, storage conditions tended to increase estrogenic activities in all extracts. However, in term of risk assessment, activities observed were negligible. This work demonstrated that sensitive bioassays are pertinent tools in complement to chemical analysis to monitor and check the presence of NIAS with hormonal activity in coating extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan

    2017-04-26

    Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.

  9. Development of enteric-coated fixed dose combinations of amorphous solid dispersions of ezetimibe and lovastatin: Investigation of formulation and process parameters.

    PubMed

    Riekes, Manoela K; Dereymaker, Aswin; Berben, Philippe; Augustijns, Patrick; Stulzer, Hellen K; Van den Mooter, Guy

    2017-03-30

    Enteric-coated fixed-dose combinations of ezetimibe and lovastatin were prepared by fluid bed coating aiming to avoid the acidic conversion of lovastatin to its hydroxyacid derivative. In a two-step process, sucrose beads were layered with a glass solution of ezetimibe, lovastatin and Soluplus ® , top-coated with an enteric layer. The impact of different bead size, enteric polymers (Eudragit L100 ® and Eudragit L100-55 ® ) and coating time was investigated. Samples were evaluated by X-ray diffraction, scanning electron microscopy, laser diffraction and in vitro studies in 0.1M HCl and phosphate buffer pH 6.8. Results showed that smaller beads tend to agglomerate and release was jeopardized in acidic conditions, most likely due to irregular coating layer. Eudragit L100-55 ® required longer processing, but thinner coating layers provided lower drug release. Both polymers showed low drug release in acidic environment and fast release at pH 6.8. The off-line measurement of the coating thickness determined the ideal coating time as 15 and 30min for Eudragit L100-55 ® and Eudragit L100 ® -based samples, respectively. Both compounds were molecularly dispersed in Soluplus ® , and Eudragit L100 ® formulations showed concave pores on the surface, presenting higher drug release in acidic conditions. Stability studies after 6 months showed unaltered physical properties and drug release. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  11. Self-assembled nanolaminate coatings (SV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflectivemore » coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV

  12. Internally coated air-cooled gas turbine blading

    NASA Technical Reports Server (NTRS)

    Hsu, L.; Stevens, W. G.; Stetson, A. R.

    1979-01-01

    Ten candidate modified nickel-aluminide coatings were developed using the slip pack process. These coatings contain additives such as silicon, chromium and columbium in a nickel-aluminum coating matrix with directionally solidified MAR-M200 + Hf as the substrate alloy. Following a series of screening tests which included strain tolerance, dynamic oxidation and hot corrosion testing, the Ni-19A1-1Cb (nominal composition) coating was selected for application to the internal passages of four first-stage turbine blades. Process development results indicate that a dry pack process is suitable for internal coating application resulting in 18 percent or less reduction in air flow. Coating uniformity, based on coated air-cooled blades, was within + or - 20 percent. Test results show that the presence of additives (silicon, chromium or columbium) appeared to improve significantly the ductility of the NiA1 matrix. However, the environmental resistance of these modified nickel-aluminides were generally inferior to the simple aluminides.

  13. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less

  14. Industrialization of the mirror plate coatings for the ATHENA mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Christensen, F. E.; Ferreira, D. D. M.; Shortt, B.; Collon, M.; Sforzini, J.; Landgraf, B.; Hinze, F.; Aulhorn, S.; Biedermann, R.

    2017-08-01

    In the frame of the development of the Advanced Telescope for High-ENergy Astrophysics (Athena) mission, currently in phase A, ESA is continuing to mature the optics technology and the associated mass production techniques. These efforts are driven by the programmatic and technical requirement of reaching TRL 6 prior to proposing the mission for formal adoption (planned for 2020). A critical part of the current phase A preparation activities is addressing the industrialization of the Silicon Pore Optics mirror plates coating. This include the transfer of the well-established coating processes and techniques, performed at DTU Space, to an industrial scale facility suitable for coating the more than 100,000 mirror plates required for Athena. In this paper, we explain the considerations for the planned coating facility including, requirement specification, equipment and supplier selection, preparing the coating facility for the deposition equipment, designing and fabrication.

  15. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOEpatents

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  16. Coupled field modeling of E/M impedance of piezoelectric wafer active sensor for cataphoretic coating thickness measurement

    NASA Astrophysics Data System (ADS)

    Kamas, T.; Tekkalmaz, M.

    2017-04-01

    The cataphoretic electro-coating is one of the most common methods that are used against corrosion as a primary coating layer. The cataphoretic electro-coating is commonly utilized technique especially in protecting of automobile components in automotive industry. This coating method has many advantages such as high corrosion resistance, ability of homogeneous and complete coating of components in any geometry, less pollution, and less risk of ignition. In this study, some specimens in the form of steel sheets coated by the cataphoretic electro-coating method are examined using electro-mechanical impedance spectroscopy (EMIS) method. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. EMIS method has been utilized as a dynamic descriptor of PWAS and the structure on which it is bonded. EMIS of PWAS-structure couple is a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. To simulate the actual EMIS measurements in the present work, two-dimensional and three-dimensional coupled field finite element models are created for both uncoated and coated steel plates in a commercial FEA software, ANSYS®. The EMIS values of the specimens in certain sizes and coated in different thickness are going to be simulated in broad-band of frequency spectra. The thickness of the coating layer and coating time are of paramount importance for the corrosion resistance. The coating layer thickness and the corresponding coating period will be optimized by analyses of the values obtained from the 2D and 3D EMIS simulations.

  17. The properties of electrodeposited Zn-Co coatings

    NASA Astrophysics Data System (ADS)

    Mahieu, J.; de Wit, K.; de Cooman, B. C.; de Boeck, A.

    1999-10-01

    The possibility of increasing the corrosion resistance of automotive sheet steel by electrodepositing with Zn-Co alloy coatings was investigated. Process variables during electrodeposition such as current density, electrolyte flow rate, and pH were varied in order to examine their influence on the electroplating process. Cobalt contents varying from 0.2 to 7 wt% were easily obtained. The influence of these process parameters on the characteristics of the coating could be related to the hydroxide suppression mechanism for anomalous codeposition. The structure and the morphology of the coatings were determined using SEM and XRD analysis. Application properties important for coating systems used in the automotive industry, such as friction behavior, adhesion, and corrosion behavior, were investigated on coatings with varying cobalt content. The corrosion resistance of the Zn-Co alloy layers was found to be better than that of pure zinc coatings.

  18. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  19. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  20. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Ethylcellulose film coating of guaifenesin-loaded pellets: A comprehensive evaluation of the manufacturing process to prevent drug migration.

    PubMed

    Melegari, Cecilia; Bertoni, Serena; Genovesi, Alberto; Hughes, Kevin; Rajabi-Siahboomi, Ali R; Passerini, Nadia; Albertini, Beatrice

    2016-03-01

    The aim of the research was to investigate the complete process of pellet production in a Wurster fluidized bed coater in order to determine the main factors affecting the migration phenomenon of a soluble API through the ethycellulose film coating (Surelease®) and hence the long-term stability of the controlled release pellets. Guaifenesin (GFN), as BCS class I model drug, was layered on sugar spheres using a binder-polymer solution containing the dissolved GFN. The drug loaded pellets were then coated with Surelease®. The influence of drug loading (4.5-20.0% w/w), curing conditions (40-60°C and dynamic-static equipment), coating level (12-20% theoretical weight gain) and composition of the binder-layering solution (hypromellose versus Na alginate) on process efficiency (RSDW%), GFN content uniformity (RSDC%), GFN solid state (DSC and XRD) and pellet release profiles was evaluated. The effectiveness of the Surelease film was strongly affected by the ability of GFN to cross the coating layer and to recrystallize on the pellet surface. Results indicated that this behaviour was dependent on the polymer used in the binder-layering solution. Using hypromellose as polymer, GFN recrystallized on the coated pellet surface at both drug loadings. The curing step was necessary to stabilize the film effectiveness at the higher drug loading. Increasing the coating level delayed but did not prevent the GFN diffusion. Replacing hypromellose with Na alginate, reduced the migration of GFN through the film to a negligible amount even after six months of storage and the curing step was not necessary to achieve stable controlled release profiles over storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

    DTIC Science & Technology

    2017-07-07

    Activity by Bacillus sp. P11” Food Bioprocess Technol. 4:822- 828. (2011) Levy, S.B and Marshal,l B.; “ Antibacterial resistance worldwide: causes...TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT by Tobyn A. Branck Courtney M. Cowell Jennifer M. Rego and...October 2011 – September 2015 4. TITLE AND SUBTITLE BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

  4. Electrodeposited MCrAlY Coatings for Gas Turbine Engine Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-11-01

    Electrolytic codeposition is a promising alternative process for fabricating MCrAlY coatings. The coating process involves two steps, i.e., codeposition of CrAlY-based particles and a metal matrix of Ni, Co, or (Ni,Co), followed by a diffusion heat treatment to convert the composite coating to the desired MCrAlY microstructure. Despite the advantages such as low cost and non-line-of-sight, this coating process is less known than electron beam-physical vapor deposition and thermal spray processes for manufacturing high-temperature coatings. This article provides an overview of the electro-codeposited MCrAlY coatings for gas turbine engine applications, highlighting the unique features of this coating process and some important findings in the past 30 years. Challenges and research opportunities for further optimization of this type of MCrAlY coatings are also discussed.

  5. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang W., E-mail: lxwluck@gmail.co; Devaraju, M.K.; Yin, Shu

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidationmore » catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.« less

  6. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    PubMed Central

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115

  7. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process.

    PubMed

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  8. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method

    NASA Astrophysics Data System (ADS)

    Munro, T. C.; Gleeson, B.

    1996-12-01

    The halide-activated pack cementation method (HAPC) was utilized to deposit aluminide and silicide coatings on nominally stoichiometric γ-TiAl. The deposition temperature was 1000°C and deposition times ranged from 2 to 12 hours. The growth rates of the coatings were diffusion controlled, with the rate of aluminide growth being about a factor of 2 greater than that of silicide growth. The aluminide coating was inward growing and consisted of a thick, uniform outer layer of TiAl3 and a thin inner layer of TiAl2, with the rate-controlling step being the diffusion of aluminum from the pack into the substrate. Annealing experiments at 1100 °C showed that the interdiffusion between the aluminide coating and the γ-TiAl substrate was rapid. In contrast to the aluminide coating, the silicide coating was nonuniform and porous, consisting primarily of TiSi2, TiSi, and Ti5Si4, with the rate-controlling step for the coating growth believed to be the diffusion of aluminum into the γ-TiAl ahead of the silicide/γ-TiAl interface. The microstructural evolution of the aluminide and silicide coating structures is discussed qualitatively.

  9. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  10. Experimental analysis of pressure controlled atomization process (PCAP) coatings for replacement of hard chromium plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, J.C.; Glovan, R.J.; Witt, S.J.

    1995-12-31

    A four-phase experimental design was utilized to evaluate the abrasive wear and corrosion protection characteristics of VERSAlloy 50 coatings applied to AISI 4130 steel sheet. The coatings were applied with the Pressure Controlled Atomization Process (PCAP), a new thermal spray process being developed for the United States Air Force to replace hard chromium plating. Phase 1 of the design consisted of an evaluation of deposit profiles that were sprayed at five different standoff distances. Profile measurements yielded standard deviations ({sigma}) of the plume at each of the spray distances. Phase 2 consisted of a completely randomized series of eight spraymore » tests in which the track gap or distance between consecutive spray passes was varied by amounts of 0.5{sigma}, 1{sigma}, 2{sigma}, and 3{sigma}. The sprayed test coupons were then evaluated for corrosion protection, abrasive wear resistance, microhardness, and porosity. Results from Phase 2 were used to determine the best track gap or overlap for Phase 3 and Phase 4 testing. Phase 3 consisted of 22-run central composite design. The test coupons were evaluated the same as in Phase 2. Statistical analysis of Phase 3 data revealed that the optimal system operating parameters produced coatings that would either provide superior corrosion protection or resistance to abrasive wear. Phase 4 consisted of four spray tests to validate the results obtained in Phase 3. Phase 4 test coupons were again evaluated with the same analysis as in Phases 2 and 3. The validation tests indicated that PCAP system operating parameters could be controlled to produce VERSAlloy 50 coatings with superior corrosion protection or resistance to abrasive wear.« less

  11. Alloyed coatings for dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Wermuth, F. R.; Stetson, A. R.

    1971-01-01

    Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.

  12. Conformal Nitrogen-Doped TiO 2 Photocatalytic Coatings for Sunlight-Activated Membranes

    DOE PAGES

    Lee, Anna; Libera, Joseph A.; Waldman, Ruben Z.; ...

    2017-01-24

    Photocatalytic degradation of organic contaminants is enticing for addressing challenging, nontraditional water sources. A novel nitrogen-doping method is utilized to grow conformal titania coatings with visible-light activity on porous membranes. Here, the resulting membranes exhibit effective degradation of model organic species in simulated sunlight while at the same time requiring substantially lower transmembrane pressure than undoped membranes.

  13. Optical coatings on polymers

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas

    2005-09-01

    Optical transparent polymers are used for technical optics for more than 50 years and currently replace glass as optical material in several application fields. Optical functional coatings like mirrors, filters, beam splitters and anti-reflection coatings gain increasingly in importance. New light sources and head mounted systems need light and effective reflector designs. The paper gives an overview about vacuum coating technologies for metal and dielectric layers on polymers for technical optics. Especially for polymers controlling the complete process chain from injection moulding to storing, coating and shipping decides on the technological and commercial success.

  14. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  15. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  16. Dye surface coating enables visible light activation of TiO2 nanoparticles leading to degradation of neighboring biological structures.

    PubMed

    Blatnik, Jay; Luebke, Lanette; Simonet, Stephanie; Nelson, Megan; Price, Race; Leek, Rachael; Zeng, Leyong; Wu, Aiguo; Brown, Eric

    2012-02-01

    Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.

  17. A biomolecule friendly photolithographic process for fabrication of protein microarrays on polymeric films coated on silicon chips.

    PubMed

    Petrou, Panagiota S; Chatzichristidi, Margarita; Douvas, Antonios M; Argitis, Panagiotis; Misiakos, Konstantinos; Kakabakos, Sotirios E

    2007-04-15

    The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures coated silicon surface, protein spots with diameters ranging from 2 to 50 microm were created. The proposed methodology provided good intra-spot homogeneity (CV

  18. A Combined Brazing and Aluminizing Process for Repairing Turbine Blades by Thermal Spraying Using the Coating System NiCrSi/NiCoCrAlY/Al

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Möhwald, K.; Maier, H. J.

    2017-10-01

    The repair and maintenance of components in the aerospace industry play an increasingly important role due to rising manufacturing costs. Besides welding, vacuum brazing is a well-established repair process for turbine blades made of nickel-based alloys. After the coating of the worn turbine blade has been removed, the manual application of the nickel-based filler metal follows. Subsequently, the hot gas corrosion-protective coating is applied by thermal spraying. The brazed turbine blade is aluminized to increase the hot gas corrosion resistance. The thermal spray technology is used to develop a two-stage hybrid technology that allows shortening the process chain for repair brazing turbine blades and is described in the present paper. In the first step, the coating is applied on the base material. Specifically, the coating system employed here is a layer system consisting of nickel filler metal, NiCoCrAlY and aluminum. The second step represents the combination of brazing and aluminizing of the coating system which is subjected to a heat treatment. The microstructure, which results from the combined brazing and aluminizing process, is characterized and the relevant diffusion processes in the coating system are illustrated. The properties of the coating and the ramifications with respect to actual applications will be discussed.

  19. Reactive Molecular Dynamics Investigations of Alkoxysilane Sol-Gel and Surface Coating Processes

    NASA Astrophysics Data System (ADS)

    Deetz, Joshua David

    The ability to generate nanostructured materials with tailored morphology or chemistry is of great technological interest. One proven method of generating metal-oxide materials, and chemically modifying metal-oxide surfaces is through the reactions of molecular building blocks known as alkoxysilanes. Alkoxysilanes are a class of chemicals which contain one or more organic alkoxy groups bonded to silicon atoms. Alkoxysilane (Si-O-R) chemical groups can undergo reactions to form bridges (Si-O-M) with metal oxides. Due to their ability to "attach" to metal-oxides through condensation reactions, alkoxysilanes have a number of interesting applications, such as: the generation of synthetic siloxane materials through the sol-gel process, and the formation of functionalized surface coatings on metal-oxide surfaces. Despite widespread study of sol-gel and surface coatings processes, it is difficult to predict the morphology of the final products due to the large number of process variables involved, such as precursor molecule structure, solvent effects, solution composition, temperature, and pH. To determine the influence of these variables on the products of sol-gel and coatings processes reactive molecular dynamics simulations are used. A reactive force field was used (ReaxFF) to allow the chemical bonds in simulation to dynamically form and break. The force field parameters were optimized using a parallel optimization scheme with a combination of experimental information, and density functional theory calculations. Polycondensation of alkoxysilanes in mixtures of alcohol and water were studied. Steric effects were observed to influence the rates of hydrolysis and condensation in solutions containing different precursor monomers. By restricting the access of nucleophiles to the central silicon atom, the nucleation rate of siloxanes can be controlled. The influence of solution precursor, water, and methanol composition on reaction rates was explored. It was determined that

  20. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity.

    PubMed

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-06-25

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

  1. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

    PubMed Central

    Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long

    2017-01-01

    Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055

  2. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  3. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    NASA Astrophysics Data System (ADS)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  4. Coatings for minimally processed fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...

  5. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating

    PubMed Central

    Dennison, Thomas J.; Smith, Julian; Hofmann, Michael P.; Bland, Charlotte E.; Badhan, Raj K.; Al-Khattawi, Ali; Mohammed, Afzal R.

    2016-01-01

    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats. PMID:27548263

  6. [Preparation of a novel activated carbon coating fiber for solid phase micro-extraction and its application for halocarbon compound analysis in water].

    PubMed

    Wang, Shutao; Wang, Yan; You, Hong; Liang, Zhihua

    2004-09-01

    A novel activated carbon coating fiber used for solid phase micro-extraction (SPME) was prepared using activated carbon powder and silica resin adhesive. The extraction properties of the novel activated carbon coating fiber were investigated. The results indicate that this coating fiber has high concentration ability, with enrichment factors for chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene in the range of 13.8 to 18.7. The fiber is stable at temperature as high as 290 degrees C and it can be used for over 140 times at 250 degrees C. The activated carbon coating fiber was then applied to the analysis of the four halocarbon compounds mentioned above. A linear correlation with correlation coefficients between 0.995 2 and 0.999 4 and the detection limits between 0.008 and 0.05 microg/L were observed. The method was also applied to a real water sample analysis and the recoveries of these halocarbon compounds were from 95.5% to 104.6%.

  7. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating.

    PubMed

    Dutta, Debarun; Zhao, Timothy; Cheah, Kai Bing; Holmlund, Larke; Willcox, Mark D P

    2017-06-01

    To determine the antimicrobial activity of the melimine derived peptide Mel4 against Delftia, Stenotrophomonas, Elizabethkingia, Burkholderia and to investigate biocompatibility of Mel4 as an antimicrobial coating on contact lenses in animals and humans. In vitro antimicrobial activity of Mel4 was determined against the four Gram negative bacteria by investigating growth curves for 24h followed by viable counts to determine the minimum inhibitory concentration (MIC). Contact lenses were coated by covalently binding Mel4, characterized by amino acid analysis, and were investigated for changes in lens parameters. Safety of Mel-4 coated lenses were determined in a rabbit model of daily contralateral wear. A prospective, randomised, double-masked, contralateral, 1week daily wear human clinical trial was used to evaluate subjective responses and ocular physiology. Mel4 was active against all the bacteria tested (MIC 50 ranged from 31-1000μgml -1 ) and produced an antimicrobial surface on contact lenses. Mel4-coating resulted hydrophilic surface without any significant change in contact lens parameters, and showed no signs of cytotoxicity or ocular irritation during rabbit wear. During human clinical trial, there were no differences between Mel4 coated and uncoated contact lenses in lens performance indicators and ocular signs such as corneal fluorescein staining. Mel4 and control uncoated lenses had no differences in ocular symptoms during lens wear. Mel4 has achieved antimicrobial activity against variety of Gram negative bacteria that are often resistant to the action of cationic peptides and have been implicated in contact lens related adverse events. Mel4-coated contact lenses were safe to wear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  9. Interference lithography for optical devices and coatings

    NASA Astrophysics Data System (ADS)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self

  10. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    PubMed

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  11. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    PubMed

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  12. Polydopamine-Coated Manganese Complex/Graphene Nanocomposite for Enhanced Electrocatalytic Activity Towards Oxygen Reduction.

    PubMed

    Parnell, Charlette M; Chhetri, Bijay; Brandt, Andrew; Watanabe, Fumiya; Nima, Zeid A; Mudalige, Thilak K; Biris, Alexandru S; Ghosh, Anindya

    2016-08-16

    Platinum electrodes are commonly used electrocatalysts for oxygen reduction reactions (ORR) in fuel cells. However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures. During ORR, a peak potential at 0.433 V was recorded, which is a significant shift compared to the uncoated material's -0.303 V (both versus SHE). All the materials reduced oxygen in a wide pH range via a four-electron pathway. Rotating disk electrode and rotating ring disk electrode studies of the polydopamine-coated material revealed ORR occurring via 4.14 and 4.00 electrons, respectively. A rate constant of 6.33 × 10(6) mol(-1)s(-1) was observed for the polydopamine-coated material-over 4.5 times greater than the uncoated nanocomposite and superior to those reported for similar carbon-supported metal catalysts. Simply integrating an inexpensive bioinspired polymer coating onto the Mn-graphene nanocomposite increased ORR performance significantly, with a peak potential shift of over +730 mV. This indicates that the material can reduce oxygen at a higher rate but with lower energy usage, revealing its excellent potential as an ORR electrocatalyst in fuel cells.

  13. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    PubMed Central

    Girel, Kseniya V.; Panarin, Andrei; Terekhov, Sergei N.

    2018-01-01

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy. PMID:29883382

  14. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    PubMed

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  15. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    PubMed

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  16. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    PubMed Central

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-01-01

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623

  17. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2017-12-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  18. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  19. Stress evolution in solidifying coatings

    NASA Astrophysics Data System (ADS)

    Payne, Jason Alan

    The goal of this study is to measure, in situ, and control the evolution of stress in liquid applied coatings. In past studies, the stress in a coating was determined after processing (i.e., drying or curing). However, by observing a coating during drying or curing, the effects of processing variables (e.g., temperature, relative humidity, composition, etc.) on the stress state can be better determined. To meet the project goal, two controlled environment stress measurement devices, based on a cantilever deflection measurement principle, were constructed. Stress evolution experiments were completed for a number of coating systems including: solvent-cast homopolymers, tape-cast ceramics, aqueous gelatins, and radiation-cured multifunctional acrylates. In the majority of systems studied here, the final stresses were independent of coating thickness and solution concentration. Typical stress magnitudes for solvent-cast polymers ranged from zero to 18 MPa depending upon the pure polymer glass transition temperature (Tsb{g}), the solvent volatility, and additional coating components, such as plasticizers. Similar magnitudes and dependencies were observed in tape-cast ceramic layers. Stresses in gelatin coatings reached 50 MPa (due to the high Tsb{g} of the gelatin) and were highly dependent upon drying temperature and relative humidity. In contrast to the aforementioned coatings, stress in UV-cured tri- and tetrafunctional acrylate systems showed a large thickness dependence. For these materials, stress evolution rate and magnitude increased with photoinitiator concentration and with light intensity. Somewhat unexpectedly, larger monomer functionality led to greater stresses at faster rates even though the overall conversion fell. The stress magnitude and evolution rate at any stage in the solidification process are the result of a competition between shrinkage (due to drying, curing, etc.) and stress relaxation. A firm understanding of the mechanical, the thermal, and

  20. Sonochemical coating of textile fabrics with antibacterial nanoparticles

    NASA Astrophysics Data System (ADS)

    Beddow, Jamie; Singh, Gagandeep; Blanes, María; Molla, Korina; Perelshtein, Ilana; Gedanken, Aharon; Joyce, Eadaoin; Mason, Timothy

    2012-05-01

    The high incidence of hospital-acquired infections places a huge financial burden on our healthcare systems. These infections are also responsible for many millions of deaths each year. Antibacterial fabrics for use in medical textiles, such as hospital uniforms, bedding and wound dressings, can provide a useful weapon in the on-going fight against these infections. The aim of this EU funded Framework 7 project is to develop a pilot line sonochemical coating machine for the production of antibacterial fabrics. The sonochemical coating technology under development is based on a lab scale process that was developed at Bar-Ilan University (BIU). It involves two processes that are driven by acoustic cavitation; the in situ generation of the metal oxide (MO) nanoparticles and the simultaneous high velocity propulsion of these nanoparticles onto a fabric leading to impregnation. Here we report on a comparison of 2 different MO nanoparticle coatings, ZnO and CuO, that were sonochemically applied on to a plain cotton fabric. Both of these coatings were prepared by BIU. In this work, the antibacterial efficacy of the coated fabrics was quantitatively assessed using the absorption method from BS EN ISO 20743:2007. Both types of metal oxide nanoparticle displayed antibacterial activity against all of the test bacteria with particularly high levels of bacterial reduction observed with the CuO coating. The results presented here are from an EU Framework 7 funded project (SONO, EU Project Number: 228730). The project is a collaboration between 17 partner organizations from 10 different European countries. Further details can be found on the project website at: www.fp7-sono.eu.

  1. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  2. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  3. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  4. Coated electroactive materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  5. Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers

    NASA Astrophysics Data System (ADS)

    Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.

    2001-12-01

    Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.

  6. New temperable solar coatings: Tempsol

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  7. In vitro testing of Nd:YAG laser processed calcium phosphate coatings.

    PubMed

    De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W

    2006-11-01

    Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.

  8. Antibacterial graphene oxide coatings on polymer substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yiming; Wen, Jing; Gao, Yang; Li, Tianyang; Wang, Huifang; Yan, Hong; Niu, Baolong; Guo, Ruijie

    2018-04-01

    Graphene oxide (GO) was thought to be a promising antibacterial material. In this work, graphene oxide coatings on polymer substrate were prepared and the antibacterial activity against E. coli and S. aureus was investigated. It was demonstrated that the coatings exhibited stronger antibacterial activity against E. coli with thin membrane than S. aureus with thick membrane. Take into consideration the fact that the coatings presented smooth, sharp edges-free morphology and bonded parallelly to substrate, which was in mark contrast with their precursor GO nanosheets, oxidative stress mechanism was considered the main factor of antibacterial activity. The coatings, which are easy to recycle and have no inhalation risk, provide an alternative for application in antibacterial medical instruments.

  9. Coating of peanuts with edible whey protein film containing alpha-tocopherol and ascorbyl palmitate.

    PubMed

    Han, J H; Hwang, H-M; Min, S; Krochta, J M

    2008-10-01

    Physical properties of whey protein isolate (WPI) coating solution incorporating ascorbic palmitate (AP) and alpha-tocopherol (tocopherol) were characterized, and the antioxidant activity of dried WPI coatings against lipid oxidation in roasted peanuts were investigated. The AP and tocopherol were mixed into a 10% (w/w) WPI solution containing 6.7% glycerol. Process 1 (P1) blended an AP and tocopherol mixture directly into the WPI solution using a high-speed homogenizer. Process 2 (P2) used ethanol as a solvent for dissolving AP and tocopherol into the WPI solution. The viscosity and turbidity of the WPI coating solution showed the Newtonian fluid behavior, and 0.25% of critical concentration of AP in WPI solution rheology. After peanuts were coated with WPI solutions, color changes of peanuts were measured during 16 wk of storage at 25 degrees C, and the oxidation of peanuts was determined by hexanal analysis using solid-phase micro-extraction samplers and GC-MS. Regardless of the presence of antioxidants in the coating layer, the formation of hexanal from the oxidation of peanut lipids was reduced by WPI coatings, which indicates WPI coatings protected the peanuts from oxygen permeation and oxidation. However, the incorporation of antioxidants in the WPI coating layer did not show a significant difference in hexanal production from that of WPI coating treatment without incorporation of antioxidants.

  10. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC.

  11. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  12. The effect of irradiation process on the optical fiber coating

    NASA Astrophysics Data System (ADS)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  13. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles.

    PubMed

    Petkova, Petya; Francesko, Antonio; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2016-03-01

    The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the "stepwise" concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce "ready-to-use" antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Could titanium oxide coating from a sol-gel process make stone baskets more resistant to laser radiation at 2.1 μm?

    PubMed

    Cordes, Jens; Nguyen, Felix; Heidenau, Frank; Jocham, Dieter

    2012-10-19

    Stone baskets could be easily destroyed by Holmium:YAG-laser at an endourologic treatment, with respect to this, we try to improve the resistance by coating them with a titanium oxide layer. The layer was established by a sol-gel-process. Six new baskets (Equadus, Opi Med, Ettlingen, Germany) were used: 1.8 Ch. with 4 wires (diameter 0.127 mm). Three baskets were coated with a layer of titanium oxide established by a sol-gel process at the BioCerEntwicklungs GmbH in Bayreuth (~100 nanometres thickness). The lithotripter was a Holmium:YAG laser (Auriga XL, Starmedtec, Starnberg, Germany). 10 uncoated and 10 coated wires were tested with 610 mJ (the minimal clinical setting) and 2 uncoated and 2 coated wires were tested with 110 mJ. The wires were locked in a special holding instrument under water and the laser incident angle was 90°. The endpoint was gross visible damage to the wire and loss of electric conduction. Only two coated wires resisted two pulses (one in the 610 mJ and one in the 110 mJ setting). All other wires were destroyed after one pulse. This was the first attempt at making stone baskets more resistant to a Holmium:YAG laser beam. Titanium oxide deposited by a sol-gel-process on a titanium-nickel alloy did not result in better resistance to laser injuries.

  15. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  16. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization.

    PubMed

    Li, Kai; Shen, Qingyi; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2017-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. Cerium oxide (CeO 2 ) ceramics possess anti-oxidative properties and can be used to decrease mediators of inflammation, which makes them attractive for biomedical applications. In our work, two kinds of CeO 2 incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) were prepared via plasma spraying technique and the effects of CeO 2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were investigated. An increase in CeO 2 content in the HA coatings resulted in better osteogenic behaviors of BMSCs in terms of cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodule formation. RT-PCR and western blot analysis suggested that the incorporation of CeO 2 may promote the osteogenic differentiation of BMSCs through the Smad-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. The expression profiles of macrophages cultured on the CeO 2 modified coating revealed a tendency toward a M2 phenotype, because of an upregulation of M2 surface markers (CD163 and CD206), anti-inflammatory cytokines (TNF-α and IL-6) and osteoblastogenesis-related genes (BMP2 and TGF-β1) as well as a downregulation of M1 surface markers (CCR7 and CD11c), proinflammatory cytokines (IL-10 and IL-1ra) and reactive oxygen species production. The results suggested the regulation of BMSCs behaviors and macrophage-mediated responses at the coating's surface were associated with CeO 2 incorporation. The incorporation of CeO 2 in HA coatings can be a valuable strategy to promote osteogenic responses and reduce inflammatory reactions.

  17. Defluoridation of groundwater using aluminum-coated bauxite: Optimization of synthesis process conditions and equilibrium study.

    PubMed

    Salifu, Abdulai; Petrusevski, Branislav; Mwampashi, Emmanuel S; Pazi, Iddi A; Ghebremichael, Kebreab; Buamah, Richard; Aubry, Cyril; Amy, Gary L; Kenedy, Maria D

    2016-10-01

    There is no known effective treatment for fluoride-related health disorders, hence prevention through water defluoridation is necessary. This study explored the possibility of modifying the physico-chemical properties of bauxite, a locally available material in many countries including Ghana, by thermal treatment and an aluminum coating, for water defluoridation. The study mainly focused on investigating the effects of varying synthesis process conditions on the defluoridation efficiency of Granular Aluminum Coated Bauxite (GACB). GACB performed better than raw bauxite (RB) and was able to reduce fluoride concentration in groundwater from 5 ± 0.2 mg/L to ≤ 1.5 mg/L, World Health Organization (WHO) guideline. Based on nonlinear Chi-square (χ(2)) analysis, the best-fitting isotherm model for the fluoride-GACB system was in the order: Freundlich > Redlich-Perterson ≈ Langmuir > Temkin. The fluoride adsorption capacity of GACB (qmax = 12.29 mg/g) based on the Langmuir model was found to be either comparable or higher than the capacities of some reported fluoride adsorbents. Aluminum (Al) coating procedures optimized in this study could therefore be a useful approach for synthesizing an effective fluoride adsorbent using bauxite, a locally available material. Kinetic and isotherm analysis, thermodynamic calculations, as well as FTIR and Raman analysis suggested the mechanism of fluoride adsorption onto GACB was complex and involved both physical adsorption and chemisorption processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of nanostructured antireflection coatings for infrared technologies and applications

    NASA Astrophysics Data System (ADS)

    Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.

    2017-09-01

    Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.

  19. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  20. High temperature barrier coatings for refractory metals

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Walech, T.

    1995-01-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined; (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  1. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  2. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  4. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties.

    PubMed

    Drevet, Richard; Benhayoune, Hicham

    2013-10-01

    Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.

  5. The effect of packaging methods (paper, active paper, and edible coating) on the characteristic of papaya MJ9 in ambient temperature storage

    NASA Astrophysics Data System (ADS)

    Suwanti, D.; Utami, R.; Kawiji; Praseptiangga, D.; Khasanah, L. U.

    2018-01-01

    Papaya is one of the export commodities that contain high vitamin C but having short shelf-life. One method that use to extend the shelf-life and maintain the quality of papaya is packaging. The aim of this study was to investigate the effect of the packaging methods (paper, active paper and edible coating) on the characteristics of papaya MJ9 (weight loss, firmness, total soluble solid (TSS), Total Titratable Acid (TTA), pH, vitamin C and total mold and yeast). The packaging methods were control (F1), wrapping paper (F2), wrapping active paper (F3), combination of edible coating and wrapping paper (F4), and combination of edible coating and wrapping active paper (F5). The result showed that paper packaging, edible coating and active paper packaging significantly affected the weight loss, firmness, total soluble solid, total titratable acids, pH, vitamin C, and total mold and yeast of papaya. The weight loss, total soluble solid and pH of packaged papaya was lower than that of control sample, however, the value of firmness and total titratable acid was higher than that of the control sample. Packaging can inhibit the increase of weight loss, total soluble solids and pH, and the decrease of firmness, total titratable acid, vitamin C and total mold and yeast. Based on the papaya characteristics, the selected packaging method was the combination of edible coating and wrapping active paper.

  6. Biomedical coatings on magnesium alloys - a review.

    PubMed

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of zinc coating procedures : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    This research project was conducted in order to compare the existing procedure of zinc coating by hot-dip galvanizing with the other zinc coating systems of painting and electroplating. : Hardware coated by these processes was exposed to varied labor...

  8. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  9. Functionally graded bioactive coatings: From fabrication to testing

    NASA Astrophysics Data System (ADS)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  10. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    PubMed

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  11. Fast Printing and In-Situ Morphology Observation of Organic Photovoltaics using Slot-Die Coating

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Ferdous, Sunzida; Wang, Cheng; Hexamer, Alexander; Russell, Thomas; Cheng Wang Collaboration; Thomas Russell Team

    2014-03-01

    The solvent-processibility of polymer semiconductors is a key advantage for the fabrication of large area, organic bulk-heterojunction (BHJ) photovoltaic devices. Most reported power conversion efficiencies (PCE) are based on small active areas, fabricated by spin-coating technique. In general, this does not reflect device fabrication in an industrial setting. To realize commercial viability, devices need to be fabricated in a roll-to-roll fashion. The evolution of the morphology associated with different processing parameters, like solvent choice, concentration and temperature, needs to be understood and controlled. We developed a mini slot-die coater, to fabricate BHJ devices using various low band gap polymers mixed with phenyl-C71-butyric acid methyl ester (PCBM). Solvent choice, processing additives, coating rate and coating temperatures were used to control the final morphology. Efficiencies comparable to lab-setting spin-coated devices are obtained. The evolution of the morphology was monitored by in situ scattering measurements, detecting the onset of the polymer chain packing in solution that led to the formation of a fibrillar network in the film.

  12. Active corrosion protection performance of an epoxy coating applied on the mild steel modified with an eco-friendly sol-gel film impregnated with green corrosion inhibitor loaded nanocontainers

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.

    2018-05-01

    In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.

  13. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  14. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended

  15. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

  16. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa).

    PubMed

    Treviño-Garza, Mayra Z; García, Santos; del Socorro Flores-González, Ma; Arévalo-Niño, Katiushka

    2015-08-01

    Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P < 0.05) weight loss and fruit softening and delayed alteration of color (redness) and total soluble solids content. In contrast, pH and titratable acidity were not affected (P > 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits). © 2015 Institute of Food Technologists®

  17. Oxidation resistant coatings for ceramic matrix composite components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  18. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    PubMed

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings.

    PubMed

    Mehta, Prina; Al-Kinani, Ali A; Haj-Ahmad, Rita; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan

    2017-10-01

    Advances in nanotechnology have enabled solutions for challenging drug delivery targets. While the eye presents numerous emerging opportunities for delivery, analysis and sensing; issues persist for conventional applications. This includes liquid phase formulation localisation on the ocular surface once administered as formulated eye-drops; with the vast majority of dosage (>90%) escaping from the administered site due to tear production and various drainage mechanisms. The work presented here demonstrates a single needle electrohydrodynamic (EHD) engineering process to nano-coat (as an on demand and controllable fiber depositing method) the surface of multiple contact lenses rendering formulations to be stationary on the lens and at the bio-interface. The coating process was operational based on ejected droplet charge and glaucoma drug timolol maleate (TM) was used to demonstrate surface coating optimisation, bio-surface permeation properties (flux, using a bovine model) and various kinetic models thereafter. Polymers PVP, PNIPAM and PVP:PNIPAM (50:50%w/w) were used to encapsulate the active. Nano-fibrous and particulate samples were characterised using SEM, FTIR, DSC and TGA to confirm structural and thermal stability of surface coated formulations. More than 52% of nano-structured coatings (for all formulations) were <200nm in diameter. In vitro studies show coatings to exhibit biphasic release profiles; an initial burst release followed by sustained release; with TM-loaded PNIPAM coating releasing most drug after 24h (89.8%). Kinetic modelling (Higuchi, Korsmeyer-Peppas) was indicative of quasi-Fickian diffusion whilst biological evaluation demonstrates adequate ocular tolerability. Results from permeation studies indicate coated lenses are ideal to reduce dosing regimen, which in turn will reduce systemic drug absorption. Florescent microscopy demonstrated probe and probe embedded coating behaviour from lens surface in vitro. The multiple lens surface coating

  20. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings