Science.gov

Sample records for active coherent beam

  1. Coherent beam combining of pulsed fibre amplifiers with active phase control

    SciTech Connect

    Wang, X L; Zhou, Pu; Ma, Y X; Ma, H T; Xu, X J; Liu, Z J; Zhao, Y J

    2011-12-31

    Coherent beam combining of pulsed fibre lasers is a promising method for power scaling while simultaneously maintaining good beam quality. We propose and demonstrate a scalable architecture for coherent beam combining of all-fibre pulsed amplifiers with active phase control using the stochastic parallel gradient descent (SPGD) algorithm. A low-pass filter is introduced to eliminate the fluctuation of the metric function caused by pulsed lasers and to extract the exact phase noise signal. Active control is thereby based on the SPGD algorithm, resulting in stable coherent beam combining at the receiving plane even in a turbulent environment. Experimental results show that the fringe visibility of the long exposure pattern increases from 0 to 0.4, and the power encircled in the main-lobe increases by 1.6 times when the system evolves from the open-loop phase-locking scheme to the closed-loop scheme. This architecture can be easily scaled up to a higher power by increasing the number of amplifying channels and the power of a single amplifier.

  2. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  3. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, Paul; Bernhardt, Anthony

    1993-01-01

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  4. Scintillations of partially coherent Laguerre Gaussian beams

    NASA Astrophysics Data System (ADS)

    Yüceer, M.; Eyyuboğlu, H. T.; Lukin, I. P.

    2010-12-01

    Scintillations of Laguerre-Gaussian (LG) beams for weak atmospheric turbulence conditions are derived for on-axis receiver positions by using Huygens-Fresnel (HF) method in semi-analytic fashion. Numerical evaluations indicate that at the fully coherent limit, higher values of radial mode numbers will give rise to more scintillations, at medium and low partial coherence levels, particularly at longer propagation distances, scintillations will fall against rises in radial mode numbers. At small source sizes, the scintillations of LG beams having full coherence will initially rise, reaching saturation at large source sizes. For LG beams with low partial coherence levels, a steady fall toward the larger source sizes is observed. Partially coherent beams of medium levels generally exhibit a rising trend toward the large source sizes, also changing the respective positions of the related curves. Beams of low coherence levels will be less affected by the variations in the refractive index structure constant.

  5. Coherence evolution of partially coherent beams carrying optical vortices propagating in non-Kolmogorov turbulence.

    PubMed

    Qin, Zhiyuan; Tao, Rumao; Zhou, Pu; Xu, Xiaojun; Liu, Zejin

    2013-11-20

    Based on partially coherent Bessel-Gaussian beams (BGBs), the coherence evolution of the partially coherent beams carrying optical vortices in non-Kolmogorov turbulence is investigated in detail. The analytical formulas for the spatial coherence length of partially coherent BGBs with optical vortices in non-Kolmogorov turbulence have been derived by using the combination of a coherence superposition approximation of decentered Gaussian beams and the extended Huygens-Fresnel principle. The influences of beam and turbulence parameters on spatial coherence are investigated by numerical examples. Numerical results reveal that the coherence of the partially coherent laser beam with vortices is independent of the optical vortices, and the spatial correlation length of the beams does not decrease monotonically during propagation in non-Kolmogorov turbulence. Within a certain propagation distance, the coherence of the partially coherent beam will improve, and the improvement of the coherence of the partially coherent beams is closely related to the beam and turbulence parameters.

  6. Digital generation of partially coherent vortex beams.

    PubMed

    Perez-Garcia, Benjamin; Yepiz, Adad; Hernandez-Aranda, Raul I; Forbes, Andrew; Swartzlander, Grover A

    2016-08-01

    We present an experimental technique to generate partially coherent vortex beams with an arbitrary azimuthal index using only a spatial light modulator. Our approach is based on digitally simulating the intrinsic randomness of broadband light passing through a spiral phase plate. We illustrate the versatility of the technique by generating partially coherent beams with different coherence lengths and orbital angular momentum content, without any moving optical device. Consequently, we study its cross-correlation function in a wavefront folding interferometer. The comparison with theoretical predictions yields excellent agreement. PMID:27472596

  7. Average characteristics of partially coherent electromagnetic beams.

    PubMed

    Seshadri, S R

    2000-04-01

    Average characteristics of partially coherent electromagnetic beams are treated with the paraxial approximation. Azimuthally or radially polarized, azimuthally symmetric beams and linearly polarized dipolar beams are used as examples. The change in the mean squared width of the beam from its value at the location of the beam waist is found to be proportional to the square of the distance in the propagation direction. The proportionality constant is obtained in terms of the cross-spectral density as well as its spatial spectrum. The use of the cross-spectral density has advantages over the use of its spatial spectrum.

  8. Correlation in a coherent electron beam

    SciTech Connect

    Kodama, Tetsuji; Osakabe, Nobuyuki; Tonomura, Akira

    2011-06-15

    Correlations between successive detections in beams of free electrons are studied with a transmission electron microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed, indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb interactions.

  9. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  10. Synchrotron beam coherence: a spatially resolved measurement

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Peele, A. G.; Roberts, A.; Nugent, K. A.; Paterson, D.; McNulty, I.

    2005-01-01

    We report a precise and spatially resolved measurement of the complex degree of coherence of a one-dimensional 1.5-keV beam produced by a third-generation synchrotron source. The method of phase-space tomography is used, which requires only measurements of the x-ray intensity. We find that the field is statistically stationary to within experimental error, the correlations are very well approximated by a Gaussian distribution, and the measured coherence length is in excellent agreement with expectations.

  11. Generation of stochastic electromagnetic beams with complete controllable coherence.

    PubMed

    Chen, Xudong; Chang, Chengcheng; Chen, Ziyang; Lin, Zhili; Pu, Jixiong

    2016-09-19

    We generate a stochastic electromagnetic beam (SEB) with complete controllable coherence, that is, the coherence degree can be controlled independently along two mutually perpendicular directions. We control the coherence of the SEB by adjusting the phase modulation magnitude applied onto two crossed phase only spatial light modulators. We measure the beam's coherence properties using Young's interference experiment, as well as the beam propagation factor. It is shown that the experimental results are consistent with our theoretical predictions. PMID:27661897

  12. Propagation of partially coherent pulsed beams in the spatiotemporal domain.

    PubMed

    Wang, Li-gang; Lin, Qiang; Chen, Hong; Zhu, Shi-yao

    2003-05-01

    A generalized model to describe the spatiotemporal partially coherent pulsed beams is presented. The corresponding propagation formula is derived by using the partially coherent light theory. Based on this formula, we obtain a nonstationary generalized ABCD law (which illustrates the transformation of optical beams or pulses passing through media) to describe the spatiotemporal behavior of partially coherent Gaussian pulsed beams. The physical meaning of such generalized pulsed beams is discussed. An example to illustrate the application of this law is given. PMID:12786302

  13. Measuring the intensity fluctuation of partially coherent radially polarized beams in atmospheric turbulence.

    PubMed

    Chen, Ziyang; Cui, Shengwei; Zhang, Lei; Sun, Cunzhi; Xiong, Mengsu; Pu, Jixiong

    2014-07-28

    The scintillation index of a Gaussian beam and radially polarized beams in turbulent atmosphere is experimentally investigated. The scintillation index of a Gaussian beam and a completely coherent radially polarized beam increases with increasing propagation distance from 0 to 400m. The influence of the coherence of partially coherent radially polarized beam on the scintillation is studied. The result shows that the scintillation index of a partially coherent radially polarized beam can be smaller than that of a completely coherent beam.

  14. Repositioning and steering laser beam power via coherent combination of multiple Airy beams.

    PubMed

    Zhang, Ze; Ye, Zhuoyi; Song, Daohong; Zhang, Peng; Chen, Zhigang

    2013-12-10

    We study numerically and experimentally laser coherent combination (LCC) with multiple one- or two-dimensional Airy beams. It is shown that the method of LCC using Airy beams leads to a higher combining efficiency and a better feature of propagation than that using conventional Gaussian beams. Based on such coherent Airy beams combination, we propose a laser steering approach that could achieve large-angle beam steering (over 0.6°) without the need of using any mechanical steering component.

  15. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  16. Coherent Radiation from Relativistic Electron Beams.

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ren

    Two new laser concepts, the Ion-Ripple Laser (IRL) and the Ion-Channel Laser (ICL), are proposed. A unified theory for coherent radiation from relativistic electron beams devices is developed; the theory not only links the physics of Cyclotron Masers (CMs) and Free Electron Lasers (FELs) but covers the physics of the IRLs and the ICLs. We have also invented a new numerical method, the Neo-Finite -Difference (NFD) method, for electromagnetic plasma simulations and applied it to studies of these lasers. The unified amplification theory compares the growth mechanisms. Two bunching mechanisms (both axial and azimuthal) exist, not only for the noncollective single electron resonance regime, but also in the collective gain regime. Competition or reinforcement between the two bunching mechanisms is determined by the q value (a parameter that determines how the electron oscillation frequency depends on energy), the electron axial velocity, and the wave phase velocity. The unified theory concludes that, for wave amplification, the sign of the electron mismatch frequency is required to be the same as the sign of a bunching parameter that is determined by the total bunching. In an IRL, a relativistic electron beam propagates obliquely through an ion ripple in a plasma. The radiation frequency depends on the beam energy, the ripple wave number, and the angle: omega ~ 2gamma ^{2}k_{ir}ccos theta. By proper choice of device parameters, sources of microwaves, optical, and perhaps even X-rays can be made. The dispersion relation for wave coupling is derived and used to calculate the radiation frequency and linear growth rate. The nonlinear saturation mechanism is explored. Computer simulation is used to verify the ideas, scaling laws and nonlinear mechanisms. In an ICL, the ion focusing force causes the electrons to oscillate about the channel axis and plays a similar role to the magnetic field in a CM. This electron motion is nonlinear and is studied. Simulations were performed

  17. Coherent instabilities of a relativistic bunched beam

    SciTech Connect

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  18. Coherent beam combining performance in harsh environment

    NASA Astrophysics Data System (ADS)

    Lombard, L.; Canat, G.; Durecu, A.; Bourdon, P.

    2014-03-01

    Coherent beam combining (CBC) is a promising solution for high power directed energy weapons. We investigate several particular issues for this application: First, we study the evolution of phase noise spectrum for increasing pump power in 100 W MOPFA. The main variations in the spectrum are located in the low frequency region corresponding to thermal transfer between the fiber core heated by the pump absorption and the fiber environment. The phase noise root mean square evolves linearly with the pump power. Noise spectrum is not shifted to higher frequencies. Second, we investigate the influence of fiber packaging and amplifier packaging on the phase noise and estimate the LOCSET controller bandwidth (BW) requirement in each case. Results show large variation of BW depending on the packaging, and not on the power. Then, we investigate the performances of CBC in harsh environment. For this purpose, we implement CBC of a 20-W fiber amplifier and a passive fiber using the LOCSET technique and simulate harsh environment by applying strong vibrations with a hammering drill on the optical table. The applied vibration spectrum ranges from 1 Hz to ~10 kHz with a standard deviation of 9 m/s2. CBC of the amplifier output and the passive fiber output is performed on a second table, isolated from vibrations. Measurements of the phase difference between both outputs and of the applied vibrations are simultaneously performed. Residual phase error of λ/40 (i.e. > 99 % CBC efficiency) is achieved under strong vibrations at 20 W. The -3 dB bandwidth of the LOCSET controller has been measured to be ~4.5 kHz. Results are in agreement with simulations.

  19. Effect of Beam-Beam Interactions on Stability of Coherent Oscillations in a Muon Collider

    SciTech Connect

    Alexahin, Y.; Ohmi, K.; /KEK, Tsukuba

    2012-05-01

    In order to achieve peak luminosity of a muon collider in the 10{sup 34}/cm{sup 2}/s range the number of muons per bunch should be of the order of a few units of 10{sup 12} rendering the beam-beam parameter as high as 0.1 per IP. Such strong beam-beam interaction can be a source of instability if the working point is chosen close to a coherent beam-beam resonance. On the other hand, the beam-beam tunespread can provide a mechanism of suppression of the beam-wall driven instabilities. In this report the coherent instabilities driven by beam-beam and beam-wall interactions are studied with the help of BBSS code for the case of 1.5 TeV c.o.m muon collider.

  20. Further evidence of antibunching of two coherent beams of fermions

    SciTech Connect

    Iannuzzi, M.; Messi, R.; Moricciani, D.; Orecchini, A.; Sacchetti, F.; Facchi, P.; Pascazio, S.

    2011-07-15

    We describe an experiment confirming the evidence of the antibunching effect on a beam of noninteracting thermal neutrons. The comparison between the results recorded with a high-energy-resolution source of neutrons and those recorded with a broad-energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.

  1. Coherent beam-beam effects observation and mitigation at the RHIC collider

    SciTech Connect

    White S.; Fischer, W.; Luo, Y.

    2012-05-20

    In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.

  2. Ramsey resonance of coherent population trapping in slow rubidium beam

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2016-03-01

    We calculate the coherent population trapping (CPT) resonance in slow beam of rubidium 87 atoms caused by of their interaction with bichromatic electromagnetic field in two separated spatial domains. In the case of monovelocity beam we study the properties of the CPT resonance depending on type of working transitions, velocity of the atomic beam, intensity and polarization of electromagnetic fields, and space separation in Ramsey scheme.

  3. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-22

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  4. Electron Beam Diagnostics using Coherent Cherenkov Radiation in Aerogel

    NASA Astrophysics Data System (ADS)

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Ruelas, M.

    2009-01-01

    The use of coherent Cherenkov radiation as a diagnostic tool for longitudinal distribution of an electron beam is studied in this paper. Coherent Cherenkov radiation is produced in an aerogel with an index of refraction close to unity. An aerogel spectral properties are experimentally studied and analyzed. This method will be employed for the helical IFEL bunching experiment at Neptune linear accelerator facility at UCLA.

  5. Electron Beam Instrumentation Techniques Using Coherent Radiation

    NASA Astrophysics Data System (ADS)

    Wang, D. X.

    1997-05-01

    In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, advanced accelerators such as laser or plasma wakefield accelerators, and Compton backscattering X-ray sources. A short bunch length is needed to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, or accurate timing. Meanwhile, much progress has been made on photoinjectors and different magnetic and RF bunching schemes to produce very short bunches. Measurement of those short bunches becomes essential to develop, characterize, and operate such demanding machines. Conventionally, bunch duration of short electron bunches is measured by transverse RF deflecting cavities or streak camera. With such devices it becomes very challenging to measure bunch length down to a few hundred femtoseconds. Many frequency domain techniques have been recently developed, based on a relation between bunch profile and coherent radiation spectrum. These techniques provide excellent performance for short bunches. In this paper, coherent radiation and its applications to bunch length measurement will be discussed. A strategy for bunch length control at Jefferson Lab will be presented, which includes a noninvasive coherent synchrotron radiation (CSR) monitor, a zero-phasing technique used to calibrate the CSR detector, and phase transfer measurement used to correct RF phase drifts.

  6. Simulations of coherent beam-beam effects with head-on compensation

    SciTech Connect

    White S.; Fischer, W.; Luo. Y.

    2012-05-20

    Electron lenses are under construction for installation in RHIC in order to mitigate the head-on beam-beam effects. This would allow operation with higher bunch intensity and result in a significant increase in luminosity. We report on recent strong-strong simulations and experiments that were carried out using the RHIC upgrade parameters to assess the impact of coherent beam-beam effects in the presence of head-on compensation.

  7. Partially coherent beam propagation in atmospheric turbulence [invited].

    PubMed

    Gbur, Greg

    2014-09-01

    Partially coherent beams hold much promise in free-space optical communications for their resistance to the deleterious effects of atmospheric turbulence. We describe the basic theoretical and computational tools used to investigate these effects, and review the research to date.

  8. Novel adaptive fiber-optics collimator for coherent beam combination.

    PubMed

    Zhi, Dong; Ma, Pengfei; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2014-12-15

    In this manuscript, we experimentally validate a novel design of adaptive fiber-optics collimator (AFOC), which utilizes two levers to enlarge the movable range of the fiber end cap. The enlargement of the range makes the new AFOC possible to compensate the end-cap/tilt aberration in fiber laser beam combining system. The new AFOC based on flexible hinges and levers was fabricated and the performance of the new AFOC was tested carefully, including its control range, frequency response and control accuracy. Coherent beam combination (CBC) of two 5-W fiber amplifiers array with simultaneously end-cap/tilt control and phase-locking control was implemented successfully with the novel AFOC. Experimental results show that the average normalized power in the bucket (PIB) value increases from 0.311 to 0.934 with active phasing and tilt aberration compensation simultaneously, and with both controls on, the fringe contrast improves to more than 82% from 0% for the case with both control off. This work presents a promising structure for tilt aberration control in high power CBC system.

  9. Understanding Beam Alignment in a Coherent Lidar System

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Roychoudhari, Chandrasekhar

    2015-01-01

    Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.

  10. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  11. Beam wander of partially coherent array beams through non-Kolmogorov turbulence.

    PubMed

    Huang, Yongping; Zeng, Anping; Gao, Zenghui; Zhang, Bin

    2015-04-15

    Based on the theory of second moments and non-Kolmogorov spectrum, the beam wander theory is extend to non-Kolmogorov turbulence, the general analytical expression of beam wander in non-Kolmogorov turbulence is derived. Beam wander depends on the non-Kolmogorov turbulence parameters and the initial second moments of the laser beam at the input plane. Taking the Gaussian Schell model array beams as an example, the effects of the generalized exponent parameter, inner scale, and outer scale of non-Kolmogorov turbulence and the beam separation distance, beam number, and coherence degree on the beam wander are studied in detail. It has been shown that the beam wander varies non-monotonically with increasing generalized exponent parameter of the turbulence. Furthermore, it increases as the inner scale decreases or outer scale increases, and decreases as the beam separation distance and beam number increase and the coherence of the beam becomes weaker. Our results also indicate that the beam wander could be reduced by adjusting the beam parameters appropriately.

  12. Coherent Cerenkov radiation from the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Gurnett, D. A.; Goertz, C. K.

    1989-01-01

    The plasma environment of the Spacelab 2 mission was investigated through the deployment of the Plasma Diagnostics Package (PDP) by the Space Shuttle Orbiter and the Orbiter's ejection of a continuous 1-keV/50-mA electron beam along a field line. As the PDP flew by the beam, its plasma-wave instrument detected intense whistler-mode radiation originating from the beam. A detailed model has been developed of the coherent Cerenkov emission process, using a one-dimensional computer simulation of the beam to model the expected phase space structure of the electrons. The power calculated for the modeled 200-m beam segment can easily account for the measured whistler mode wave power.

  13. Editorial: Focus on X-ray Beams with High Coherence

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  14. Conditional generation scheme for entangled vacuum evacuated coherent states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2016-08-01

    Conditions to generate high-purity entangled vacuum-evacuated coherent states (| 0 > | α>0 - | - α>0 | 0 >) were studied for two cascade-placed beam splitters, with one squeezed state input and two coherent state inputs whenever a single photon is detected. Controlling the amplitudes and the phases of the beams allows for various amplitudes of the vacuum-evacuated coherent states (| α>0 = | α > -e - | α|2 | 0 >) up to α = 2.160 to be manipulated with high-purity.

  15. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  16. Study of Optical Phase Lock Loops and the Applications in Coherent Beam Combining and Coherence Cloning

    NASA Astrophysics Data System (ADS)

    Liang, Wei

    Optical Phase-Lock loops (OPLLs) have potential applications in phase coherent optics including frequency synthesis, clock distribution and recovery, jitter and noise reduction, etc. However, most implemented OPLLs are based on solid state lasers, fiber lasers, or specially designed semiconductor lasers, whose bulky size and high cost inhibit the applications of OPLLs. Semiconductor lasers have the advantages of low cost, small size, and high efficiency. In this thesis, I report on a study of OPLLs using commercial SCLs, and explore their novel applications in coherent beam combining and coherence cloning. In chapter 1-3, I will first introduce the theory of OPLLs and presents the experimental study of OPLLs made of different commercial SCLs. To improve the performance of OPLLs, electronic compensations using filter designs are also discussed and studied. In chapter 4-5, I will study the application of OPLLs in coherent beam combining. Using OPLLs, an array of slave lasers can be phase locked to the same master laser at the same frequency, their outputs can then be coherently combined. The phase variations of the element beams due to the optical path-length variations in fibers can be further corrected for by using multi-level OPLLs. This approach eliminates the use of the optical phase/frequency shifters conventionally required in a coherent beam combining system. In the proof of principle experiment, we have combined two lasers with a combining efficiency of 94% using the filled-aperture combining configuration. Furthermore, I will discuss the scalability of a cascaded filled-aperture combining system for the combination of a large number of lasers. OPLLs can also be used to reduce the phase noise of SCLs by locking them to a low noise master laser. In chapter 6, I will describe the theory of coherence cloning using OPLLs and present the experimental measurements of the linewidths and frequency noises of a low noise fiber laser, a free-running and locked slave

  17. Beam-based Feedback for the Linac Coherent Light Source

    SciTech Connect

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  18. Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Dajun; Wang, Yaochuan; Yin, Hongming

    2016-04-01

    The partially coherent four-petal Gaussian vortex beam is introduced and described by analytical expressions. The analytical propagation equation for partially coherent four-petal Gaussian vortex beam in turbulent atmosphere is derived by using the extended Huygens-Fresnel diffraction integral formula. The influences of refraction index structure, beam order n, topological charge M and the coherence length on the average intensity distributions of beam are investigated by numerical examples.

  19. [Liberation of active agents from coherent emulsions].

    PubMed

    Erós, I; Csóka, I; Csányi, E; Aref, T

    2000-01-01

    Drug release from coherent emulsions containing high water concentration (50-80 w/w%) was studied. Composition of coherent systems was as follows: self-emulsifying wax and preserved water. Griseofulvin was applied as active agent in suspended form. The liberation experiments were carried out with Hanson vertical diffusion cell, acceptor phase was distilled water, membrane was celophane one. It was established that the time course of liberation of griseofulvin from coherent emulsions can be characterized with a multiplicative function and the exponent of this function is about 0.5. The quantity of released drug increased linearly with the water content and it decreased exponentially with the viscosity of coherent emulsions.

  20. Snapshot fan beam coded aperture coherent scatter tomography.

    PubMed

    Hassan, Mehadi; Greenberg, Joel A; Odinaka, Ikenna; Brady, David J

    2016-08-01

    We use coherently scattered X-rays to measure the molecular composition of an object throughout its volume. We image a planar slice of the object in a single snapshot by illuminating it with a fan beam and placing a coded aperture between the object and the detectors. We characterize the system and demonstrate a resolution of 13 mm in range and 2 mm in cross-range and a fractional momentum transfer resolution of 15%. In addition, we show that this technique allows a 100x speedup compared to previously-studied pencil beam systems using the same components. Finally, by scanning an object through the beam, we image the full 4-dimensional data cube (3 spatial and 1 material dimension) for complete volumetric molecular imaging.

  1. Snapshot fan beam coded aperture coherent scatter tomography.

    PubMed

    Hassan, Mehadi; Greenberg, Joel A; Odinaka, Ikenna; Brady, David J

    2016-08-01

    We use coherently scattered X-rays to measure the molecular composition of an object throughout its volume. We image a planar slice of the object in a single snapshot by illuminating it with a fan beam and placing a coded aperture between the object and the detectors. We characterize the system and demonstrate a resolution of 13 mm in range and 2 mm in cross-range and a fractional momentum transfer resolution of 15%. In addition, we show that this technique allows a 100x speedup compared to previously-studied pencil beam systems using the same components. Finally, by scanning an object through the beam, we image the full 4-dimensional data cube (3 spatial and 1 material dimension) for complete volumetric molecular imaging. PMID:27505791

  2. Coherent and dynamic beam splitting based on light storage in cold atoms

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-09-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing.

  3. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  4. Propagation of high-power partially coherent fibre laser beams in a real environment

    NASA Astrophysics Data System (ADS)

    Tao, Ru-Mao; Si, Lei; Ma, Yan-Xing; Zou, Yong-Chao; Zhou, Pu

    2011-09-01

    The propagation performance of high-power partially coherent fibre laser beams in a real environment is investigated and the theoretical model of a high-power fibre laser propagating in a real environment is established. The influence of a collimating system and thermal blooming is considered together with atmospheric turbulence and mechanical jitter. The laser energy concentration of partially coherent beams in the far field is calculated and analysed based on the theoretical model. It is shown that the propagation performance of partially coherent beams depends on the collimating system, atmospheric turbulence, mechanical jitter and thermal blooming. The propagation performance of partially coherent beams and fully coherent beams is studied and the results show that partially coherent beams are less sensitive to the influence of thermal blooming, which results in that the energy degeneration for partially coherent beams is only 50% of that for fully coherent beams. Both partially coherent beams and fully coherent beams become less sensitive to thermal blooming when the average structural constant of the refraction index fluctuations increases to 1.7 × 10-14m-2/3. The investigation presents a reference for applications of a high-power fibre laser system.

  5. Progress of diagnostics for coherent beam combination on ultrashort pulse

    NASA Astrophysics Data System (ADS)

    Ouyang, Xiaoping; Wang, Yang; Zhu, Baoqiang; Zhu, Jian; Zhu, Jianqiang

    2015-08-01

    Ultrashort pulse is important to exploring laser acceleration in many areas, such as fast ignition, advanced radiography capability. Petawatt laser should not only improve output energy on a single beam, but also combine multi-beams coherently. Diagnostics of temporal and phase synchronization is developed for coherent beam combination on a 10ps laser pulse. When two pulses are guided into the diagnostics, one goes through a temporal delay unit and a lens with a focal length 500mm, then arrives at detector unit, the other goes through a phase delay unit and the same lens, and then arrives at detector unit, too. First, temporal synchronization is adjusted by temporal delay unit and monitored by a cross-correlation generator in the detector unit. Second, phase synchronization is adjusted by phase delay unit and monitored by a far field interferogram in the detector unit. In our design, temporal resolution is 6.7fs in temporal synchronization, and phase resolution is 0.007π in phase synchronization. Experiment has proved that this diagnostics is useful to realize synchronization between two ultrashort pulses both in temporal and in spatial.

  6. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.

    PubMed

    Dan, Youquan; Zhang, Bin

    2008-09-29

    The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.

  7. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  8. Internal dynamics of intense twin beams and their coherence

    PubMed Central

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted. PMID:26924749

  9. Internal dynamics of intense twin beams and their coherence.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-02-29

    The dynamics of intense twin beams in pump-depleted parametric down-conversion is studied. A generalized parametric approximation is suggested to solve the quantum model. Its comparison with a semiclassical model valid for larger twin-beam intensities confirms its applicability. The experimentally observed maxima in the spectral and spatial intensity auto- and cross- correlation functions depending on pump power are explained in terms of different speeds of the (back-) flow of energy between the individual down-converted modes and the corresponding pump modes. This effect is also responsible for the gradual replacement of the initial exponential growth of the down-converted fields by the linear one. Furthermore, it forms a minimum in the curve giving the effective number of twin-beam modes. These effects manifest a tight relation between the twin-beam coherence and its internal structure, as clearly visible in the model. Multiple maxima in the intensity correlation functions originating in the oscillations of energy flow between the pump and down-converted modes are theoretically predicted.

  10. A comparison of passive coherent beam combining architectures: experimental results

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Tiffany, Bradley; Leger, James R.

    2012-02-01

    Modal properties of two architectures for coherent beam combining are theoretically analyzed and experimentally verified. The supermodes of a two-laser spatially filtered cavity exhibit two distinctly different types of behavior depending on the path length error. When the error is small, the two modes present different cavity loss values and can be differentiated by gain. However, cavities containing path length errors greater than a critical value produce modes with identical losses and different resonant frequencies. A diode-bar side-pumped plano-concave Nd:YAG laser cavity is built for experimental verification of the theory. Experiments have shown two distinct regions as predicted by theory. In the small path length error region, the cavity runs in one single mode; however, when the path length error goes beyond a critical value, the cavity lases in two modes simultaneously or alternates between two modal states. Detailed loss versus phase error curves are presented and compared to theory. The modal behavior in this spatial filtering architecture is quite different from that found in a superposition architecture for coherent beam combining where the fundamental mode always has smaller loss per round trip than the second mode. The modal curves for a superposition architecture are provided for comparison with those from spatial filtering.

  11. Effects of e-beam parameters on coherent electron cooling

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.; Wang, G.

    2011-03-28

    Coherent Electron Cooling (CeC) requires detailed control of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. Coherent Electron Cooling (CeC) [1] is a new concept in intense, high energy hadron beamcooling, in which the Debye screened charge perturbation calculated in [2] is used to seed a high-gain free electron laser (FEL). Using delays to give the perturbing hadron an energy-dependent longitudinal displacement relative to its frequencymodulated charge perturbation, the hadron receives an energy-dependent kick which reduces its energy variation from the design energy. The equations of motion in [1] assume that the electron bunch is the same physical size as the hadron bunch, and has a homogeneous charge density across the entire bunch. In practice, the electron bunches will be much shorter than the hadron bunch, and this local spacial inhomogeneity in the charge distribution will alter the gain length of the FEL, resulting in both a change in the amplification of the initial signal and a phase shift. In this paper we consider these inhomogeneity effects, determining cooling equations for bunched beam CeC consistent with these effects and determining thresholds for the cooling parameters.

  12. Active Beam Spectroscopy

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  13. Intensity and effective beam width of partially coherent Laguerre-Gaussian beams through a turbulent atmosphere.

    PubMed

    Xu, Yonggen; Li, Yude; Zhao, Xile

    2015-09-01

    Propagation properties of partially coherent elegant Laguerre-Gaussian beam (PC-eLGB) and partially coherent standard Laguerre-Gaussian beam (PC-sLGB) through the turbulent atmosphere are studied. Analytical formulas for the intensity and effective beam width (EBW) of the PC-eLGB and PC-sLGB through the turbulent atmosphere are derived based on the extended Huygens-Fresnel principle. The propagation properties of PC-eLGB and PC-sLGB through the turbulent atmosphere are studied numerically and comparatively. It is shown that the intensities of the PC-eLGB and PC-sLGB are less affected by the turbulent atmosphere than the fully coherent Laguerre-Gaussian beam. The spreading (EBW and divergent angle of the far field) of PC-eLGB and PC-sLGB with the different mode orders (m,n) is slower in the free space than in the turbulent atmosphere, and the PC-sLGB spreads more rapidly than the PC-eLGB through the free space and the turbulent atmosphere. The study results will be useful for free space optical communications.

  14. [Liberation of active agents from coherent emulsions].

    PubMed

    Erós, I; Csóka, I; Csányi, E; Aref, T

    2000-01-01

    Drug release from coherent emulsions containing high water concentration (50-80 w/w%) was studied. Composition of coherent systems was as follows: self-emulsifying wax and preserved water. Griseofulvin was applied as active agent in suspended form. The liberation experiments were carried out with Hanson vertical diffusion cell, acceptor phase was distilled water, membrane was celophane one. It was established that the time course of liberation of griseofulvin from coherent emulsions can be characterized with a multiplicative function and the exponent of this function is about 0.5. The quantity of released drug increased linearly with the water content and it decreased exponentially with the viscosity of coherent emulsions. PMID:11379037

  15. Bench-marking beam-beam simulations using coherent quadrupole effects

    SciTech Connect

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks.

  16. Automated co-alignment of coherent fiber laser arrays via active phase-locking.

    PubMed

    Goodno, Gregory D; Weiss, S Benjamin

    2012-07-01

    We demonstrate a novel closed-loop approach for high-precision co-alignment of laser beams in an actively phase-locked, coherently combined fiber laser array. The approach ensures interferometric precision by optically transducing beam-to-beam pointing errors into phase errors on a single detector, which are subsequently nulled by duplication of closed-loop phasing controls. Using this approach, beams from five coherent fiber tips were simultaneously phase-locked and position-locked with sub-micron accuracy. Spatial filtering of the sensed light is shown to extend the control range over multiple beam diameters by recovering spatial coherence despite the lack of far-field beam overlap.

  17. Coherent X-ray radiation excited by a diverging relativistic electron beam in a single crystal

    SciTech Connect

    Blazhevich, S. V. Noskov, A. V.

    2015-05-15

    We develop a dynamic theory of coherent X-rays generated in a single-crystal wafer by a diverging relativistic electron beam. The dependence of the spectral-angular density of coherent X-ray radiation on the angle of divergence is analyzed for the case when the angular spread can be described by the 2D Gaussian distribution. The theory constructed here makes it possible to analyze coherent radiation for an arbitrary angular distribution of electrons in the beam as well.

  18. Method and apparatus for reducing coherence of high-power laser beams

    DOEpatents

    Moncur, Norman K.; Mayer, Frederick J.

    1978-01-01

    Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.

  19. Reference-beam storage for long-range low-coherence pulsed Doppler lidar.

    PubMed

    Dorrington, A A; Kunnemeyer, R; Danehy, P M

    2001-06-20

    We present a laser Doppler velocimeter that stores and delays the reference beam to preserve coherence with a long-path-length measurement beam. Our storage and delay technique relaxes the strict coherence requirements associated with lidar laser sources, permitting the use of low-coherence lasers. This technique potentially could reduce the cost and size of lidar systems for commercial applications. Experiments that use fiber-optic ring resonators to store the reference beams and generate reference pulse trains validated the concept. We obtained results at several simulated distances by beating each usable reference pulse with a delayed Doppler-shifted measurement beam reflected off a rotating mirror.

  20. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    SciTech Connect

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  1. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    SciTech Connect

    Hruszkewycz, S. O.; Fuoss, P. H.; Harder, R.; Xiao, X.

    2010-12-15

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  2. Characteristics of a partially coherent Gaussian Schell-model beam propagating in slanted atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Li, Ya-Qing; Wu, Zhen-Sen

    2012-05-01

    On the basis of the extended Huygens—Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector, the characteristics of the partially coherent Gaussian Schell-model (GSM) beams propagating in slanted atmospheric turbulence are studied. Using the cross- spectral density function (CSDF), we derive the expressions for the effective beam radius, the spreading angle, and the average intensity. The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically. The influences of the coherence degree, the propagation distance, the propagation height, and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.

  3. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-11-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue.

  4. Modeling of coherent beam combining from multimillijoule chirped pulse tapered fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.; Kim, A. V.; Anashkina, E. A.; Meyerov, I. B.; Lebedev, S. A.; Sergeev, A. M.; Koenig, K.; Mourou, G.

    2015-10-01

    The amplification of high energy chirped pulses in Large Mode Area tapered fiber amplifiers and their coherent combining have been investigated numerically. We have developed a three-dimensional model of strongly chirped nanosecond pulse amplification and compression back to femtosecond duration fully taking into account transverse and longitudinal variations of refractive index profile and distribution of active ions in the fiber, wavelength dependence of emission and absorption cross sections, gain saturation and Kerr nonlinearity. Modeling of Yb-doped fiber amplifier shows that up to 3 mJ of output energy can be extracted in 1 ns pulse with single-mode beam quality. Finally, we have investigated numerically the capabilities of compression and coherent combining of up to 36 perturbed amplifying channels in which high-order modes were excited and have obtained more than 70% combining efficiency and 380 fs compressed pulse duration.

  5. Gigabit per second modulation and transmission of a partially coherent beam through laboratory turbulence

    NASA Astrophysics Data System (ADS)

    Efimov, Anatoly

    2016-03-01

    A partially coherent beam (PCB) is modulated at 1 Gbps with pseudorandom bit sequence data stream and propagated through laboratory turbulence. Eye diagrams are measured and compared to those resulting from a fully coherent beam propagated through the same turbulence. Reduced scintillations of the PCB, as measured separately, expectedly result in a higher quality eye as compared to that of a fully coherent beam. Experimental data is supported by numerical modeling. This work demonstrates the feasibility and simplicity of using PCBs for Gbps data rate free-space optical communication through turbulent atmosphere.

  6. Graphic processing unit accelerated real-time partially coherent beam generator

    NASA Astrophysics Data System (ADS)

    Ni, Xiaolong; Liu, Zhi; Chen, Chunyi; Jiang, Huilin; Fang, Hanhan; Song, Lujun; Zhang, Su

    2016-07-01

    A method of using liquid-crystals (LCs) to generate a partially coherent beam in real-time is described. An expression for generating a partially coherent beam is given and calculated using a graphic processing unit (GPU), i.e., the GeForce GTX 680. A liquid-crystal on silicon (LCOS) with 256 × 256 pixels is used as the partially coherent beam generator (PCBG). An optimizing method with partition convolution is used to improve the generating speed of our LC PCBG. The total time needed to generate a random phase map with a coherence width range from 0.015 mm to 1.5 mm is less than 2.4 ms for calculation and readout with the GPU; adding the time needed for the CPU to read and send to LCOS with the response time of the LC PCBG, the real-time partially coherent beam (PCB) generation frequency of our LC PCBG is up to 312 Hz. To our knowledge, it is the first real-time partially coherent beam generator. A series of experiments based on double pinhole interference are performed. The result shows that to generate a laser beam with a coherence width of 0.9 mm and 1.5 mm, with a mean error of approximately 1%, the RMS values needed 0.021306 and 0.020883 and the PV values required 0.073576 and 0.072998, respectively.

  7. Coherent SASE FEL with electron beams prebunched in a masked chicane

    SciTech Connect

    Nguyen, D.; Carlsten, B.E.

    1995-12-31

    We present a new FEL concept based on coherent, self-amplified spontaneous emission of electron beams that are prebunched in a chicane buncher. In this scheme a chirped electron bunch is focused in the middle of the magnetic chicane where a transmission mask consisting of a series of slits modulates the transmitted beam current. With the appropriate slit spacing, the output of the chicane is a compressed pulse whose density is modulated at the resonant wavelength. It is then injected into a short, untapered wiggler with periods 2{gamma}{sup 2}(1+ a{sub w}) times the beam modulation wavelength. Due to prebunched nature of the beam, the emitted radiation exhibits coherent amplification analogous to the mutual coherency of radiation emitted in multiple undulators. In addition, because the bunch has a chirp, the interaction is similar to that in a tapered wiggler. The new scheme is also applicable to coherent x-ray production via Compton backscattering.

  8. Eyesafe coherent detection wind lidar based on a beam-combined pulsed laser source.

    PubMed

    Lombard, L; Valla, M; Planchat, C; Goular, D; Augère, B; Bourdon, P; Canat, G

    2015-03-15

    We report on a coherent wind lidar built with two coherently-beam-combined fiber amplifiers. The lidar performances of the combined-amplifier and the single-amplifier are compared using two criterions: carrier-to-noise ratio and wind speed noise floor. In both cases, lidar performances are not degraded with a combined source and are close to the theoretical optimum. Combined sources are well suited to improve coherent wind lidar accuracy, range, and integration time.

  9. Coherence and its application in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.

    1974-01-01

    The beam-foil light source is shown to be very useful in spectroscopic work. Not only the lifetimes of highly excited, multiply charged atoms can be measured in a straightforward way, but also the fine-structure and hyperfine-structure separations and the Lande factors can be obtained due to the fact that the coherent excitations are created in the impulsive beam-foil collision. The theories suggested to explain the origin of coherence are presently incomplete.

  10. Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Zhang, Peng-Fei; Zhang, Jing-Hui; Qiao, Chun-Hong; Fan, Cheng-Yu

    2016-08-01

    Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained. It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 61405205).

  11. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  12. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  13. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  14. Effect of turbulence on the spectral switches of diffracted spatially and spectrally partially coherent pulsed beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ding, Chaoliang; Pan, Liuzhan; Lü, Baida

    2009-10-01

    Taking the spectrally partially coherent Gaussian Schell-model pulsed (GSMP) beam as a typical example of spatially and spectrally partially coherent pulsed beams, an analytical expression for the spectrum of diffracted spectrally partially coherent GSMP beams propagating through atmospheric turbulence is derived by using the method of the complex Gaussian function expansion, and used to study the spectral switches of spectrally partially coherent GSMP beams in atmospheric turbulence. Numerical calculation results are given to illustrate the dependence of spectral switches on the refraction index structure constant and temporal coherent length. The results are interpreted physically.

  15. Circular grating interferometer for mapping transverse coherence area of X-ray beams

    SciTech Connect

    Shi, Xianbo Marathe, Shashidhara; Wojcik, Michael J.; Kujala, Naresh G.; Macrander, Albert T.; Assoufid, Lahsen

    2014-07-28

    A circular grating interferometer was used to map the transverse coherence area of an X-ray beam. Due to the radial symmetry of the circular grating, coherence lengths along all transverse directions were obtained simultaneously by measuring the visibility decay of interferograms recorded at different distances behind a single circular π/2 phase grating. The technique is model-free and provides direct measurement of the complex coherence factor of the beam. The use of a circular grating also enables the unique capability of measuring the source shape profile. Sensitivity of this technique was demonstrated by detecting the small source tilt of a few degrees.

  16. Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices

    NASA Astrophysics Data System (ADS)

    Li, Jinhong; Lü, Baida

    2009-04-01

    Taking the Gaussian Schell-model (GSM) vortex beam as a typical example of partially coherent vortex beams, the analytical expressions for the cross-spectral density, average intensity and root mean square (rms) width of a GSM vortex beam with topological charge m = ± 1 propagating through atmospheric turbulence are derived, which enable us to study the propagation properties of GSM vortex beams through atmospheric turbulence and evolution behavior of their coherent vortices. The propagation of GSM vortex beams undergoes several stages of evolution of the intensity profile in both free space and turbulence, and is different from that of GSM non-vortex beams. An increase of the refraction index structure constant Cn2 and a decrease of the spatial correlation length σ0 speed up the evolution process. The beam-width spreading of GSM vortex beams is less than that of GSM non-vortex beams. The smaller the correlation length σ0 is, the less the beam-width spreading of GSM vortex beams is affected by turbulence. The position and number of coherent vortices depend on the structure constant Cn2, correlation length σ0 and topological charge m. The smaller Cn2 and larger σ0 result in a larger propagation distance for the conservation of the topological charge in turbulence.

  17. Coherent undulator radiation of electron beam, microbunched for the FEL power outcoupling

    SciTech Connect

    Kulipanov, G.N.; Sokolov, A.S.; Vinokurov, N.A.

    1995-12-31

    The spectral intensity of the coherent undulator radiation of electron beam, preliminarily microbunched by the FEL oscillator for the FEL power outcoupling, is approximately calculated by simple analytic considerations, taking into account the transverse emittances and the energy spread of the microbunched electron beams.

  18. Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers.

    PubMed

    Tünnermann, Henrik; Pöld, Jan Hendrik; Neumann, Jörg; Kracht, Dietmar; Willke, Benno; Wessels, Peter

    2011-09-26

    Collinear coherent combination of multiple single frequency fiber amplifiers is a promising approach to realize the high power laser sources required for 3rd generation gravitational wave detectors (GWD), as long as the stringent requirements on the beam quality and noise properties can be met. Here, we report the beam quality and noise properties of two coherently combined 10 W single frequency amplifiers with respect to the requirements of GWD. The combining efficiency was larger than 95% with 97% of the combined beam in the fundamental spatial mode. There was no significant noise increase compared to the fluctuations of the single amplifier.

  19. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    PubMed

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-01

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  20. An equivalent realization of coherent perfect absorption under single beam illumination

    NASA Astrophysics Data System (ADS)

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2014-12-01

    We have experimentally and numerically demonstrated that the coherent perfect absorption (CPA) can equivalently be accomplished under single beam illumination. Instead of using the counter-propagating coherent dual beams, we introduce a perfect magnetic conductor (PMC) surface as a mirror boundary to the CPA configuration. Such a PMC surface can practically be embodied, utilizing high impedance surfaces, i.e., mushroom structures. By covering them with an ultrathin conductive film of sheet resistance 377 Ω, the perfect (100%) microwave absorption is achieved when the film is illuminated by a single beam from one side. Employing the PMC boundary reduces the coherence requirement in the original CPA setup, though the present implementation is limited to the single frequency or narrow band operation. Our work proposes an equivalent way to realize the CPA under the single beam illumination, and might have applications in engineering absorbent materials.

  1. An equivalent realization of coherent perfect absorption under single beam illumination

    PubMed Central

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2014-01-01

    We have experimentally and numerically demonstrated that the coherent perfect absorption (CPA) can equivalently be accomplished under single beam illumination. Instead of using the counter-propagating coherent dual beams, we introduce a perfect magnetic conductor (PMC) surface as a mirror boundary to the CPA configuration. Such a PMC surface can practically be embodied, utilizing high impedance surfaces, i.e., mushroom structures. By covering them with an ultrathin conductive film of sheet resistance 377 Ω, the perfect (100%) microwave absorption is achieved when the film is illuminated by a single beam from one side. Employing the PMC boundary reduces the coherence requirement in the original CPA setup, though the present implementation is limited to the single frequency or narrow band operation. Our work proposes an equivalent way to realize the CPA under the single beam illumination, and might have applications in engineering absorbent materials. PMID:25482592

  2. Channel correlation of transmit diversity FSO systems with partially coherent optical beams

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Yao, Mingwu; Yi, Xiang; Liu, Zengji; Qiu, Zhiliang

    2015-01-01

    Spatial diversity, including transmit diversity, has been proven to be a promising technique to mitigate turbulence-induced signal fading. However, due to the limitation of size in compact FSO (free-space optical) terminals, the transmit antennas cannot always be separated far enough from each other, resulting in increased channel correlation and deteriorated diversity performance. In this paper, we focus on the channel correlation statistics of transmit diversity FSO systems with two transmit beams. Specifically, we consider partially coherent optical beams, which reduce scintillation over fully coherent optical beams. We perform theoretical analysis and obtain some interesting numerical results, such as the degree of channel correlation which changed mainly with source correlation radius from 0.001 to 0.1 m. These results can be helpful for designing transmit diversity FSO systems with partially coherent beams.

  3. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam.

    PubMed

    Thielen, Peter A; Ho, James G; Burchman, David A; Goodno, Gregory D; Rothenberg, Joshua E; Wickham, Michael G; Flores, Angel; Lu, Chunte A; Pulford, Benjamin; Robin, Craig; Sanchez, Anthony D; Hult, D; Rowland, K B

    2012-09-15

    We demonstrate coherent beam combining using a two-dimensionally patterned diffractive optic combining element. Fifteen Yb-doped fiber amplifier beams arranged in a 3×5 array were combined into a single 600 W, M²=1.1 output beam with 68% combining efficiency. Combining losses under thermally stable conditions at 485 W were found to be dominated by spatial mode-mismatch between the free space input beams, in quantitative agreement with calculations using the measured amplitude and phase profiles of the input beams.

  4. Wave optics simulation of spatially partially coherent beams: Applications to free space laser communications

    NASA Astrophysics Data System (ADS)

    Xiao, Xifeng

    One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial

  5. Coherent spontaneous radiation from highly bunched electron beams

    SciTech Connect

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-12-31

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10{sup 4} has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques.

  6. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect

    Not Available

    2010-12-01

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  7. Transverse Coherence Properties of the LCLS X-Ray Beam

    SciTech Connect

    Reiche, S.; /UCLA

    2007-04-16

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  8. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  9. Average intensity and directionality of partially coherent model beams propagating in turbulent ocean.

    PubMed

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun

    2016-08-01

    We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment. PMID:27505642

  10. Average intensity and directionality of partially coherent model beams propagating in turbulent ocean.

    PubMed

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun

    2016-08-01

    We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.

  11. Radial phased-locked partially coherent flat-topped vortex beam array in non-Kolmogorov medium.

    PubMed

    Liu, Huilong; Lü, Yanfei; Xia, Jing; Chen, Dong; He, Wei; Pu, Xiaoyun

    2016-08-22

    The analytical expressions for the cross-spectral density, the average intensity and the complex degree of spatial coherence of a radial phased-locked partially coherent flat-topped vortex beam array propagating through non-Kolmogorov medium are obtained by using the extended Huygens-Fresnel principle. The evolution behaviors of a radial phased-locked partially coherent flat-topped vortex beam array propagating through non-Kolmogorov medium are studied in detail. It is shown that the evolution behaviors of average intensity depend on beam parameters including the spatial correlation length, the radius of the beam array, as well as the propagation distance. A radial phased-locked partially coherent flat-topped vortex beam array with high coherence evolves more rapidly than that with low coherence.

  12. Demonstration of a multiwave coherent holographic beam combiner in a polymeric substrate

    NASA Astrophysics Data System (ADS)

    Yum, H. N.; Hemmer, Philip R.; Heifetz, A.; Shen, J. T.; Lee, J.-K.; Tripathi, R.; Shahriar, M. S.

    2005-11-01

    We demonstrate an efficient coherent holographic beam combiner (CHBC) that uses angle multiplexing of gratings in a thick polymeric substrate. Our experimental results compare well with the theoretical model based on the coupled-wave theory of multiwave mixing in a passive medium. A CHBC of this type may prove useful in producing a high-power laser by combining amplified beams produced by splitting a master oscillator. Furthermore, the ability to angle multiplex a large number of beams enables a CHBC to be used in multiple-beam interferometry applications as a high-precision surface sensor.

  13. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang

    2012-04-23

    The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.

  14. Coherent beam combining using a 2D internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Sutton, Andrew J; Fleddermann, Roland; de Vine, Glenn; Malikides, Emmanuel A; Wuchenich, Danielle M R; McClelland, David E; Shaddock, Daniel A

    2014-08-01

    Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter. This internally sensed architecture can be implemented with no freespace components, offering improved robustness to shock and vibration exhibited by all-fiber devices. To demonstrate the concept, a single laser is split into three channels/emitters, each independently controlled using separate electro-optic modulators. The output phase of each channel is measured using DEHI to sense the small fraction of light that is reflected back into the fiber at the OPA's glass-air interface. The relative phase between emitters is used to derive the control signals needed to stabilize their relative path lengths and maintain coherent combination in the far field.

  15. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey

    2016-02-15

    We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.

  16. Spatial and spectral coherence in propagating high-intensity twin beams.

    PubMed

    Haderka, Ondřej; Machulka, Radek; Peřina, Jan; Allevi, Alessia; Bondani, Maria

    2015-09-25

    Spatial and spectral coherence of high-intensity twin-beam states propagating from the near-field to the far-field configurations is experimentally investigated by measuring intensity auto- and cross-correlation functions. The experimental setup includes a moving crystal and an iCCD camera placed at the output plane of an imaging spectrometer. Evolution from the tight near-field spatial position cross-correlations to the far-field momentum cross-correlations, accompanied by changeless spectral cross-correlations, is observed. Intensity autocorrelation functions and beam profiles are also monitored as they provide the number of degrees of freedom constituting the down-converted beams. The strength of intensity cross-correlations as an alternative quantity for the determination of the number of degrees of freedom is also measured. The relation between the beam coherence and the number of degrees of freedom is discussed.

  17. Spatial and spectral coherence in propagating high-intensity twin beams

    PubMed Central

    Haderka, Ondřej; Machulka, Radek; Peřina, Jan; Allevi, Alessia; Bondani, Maria

    2015-01-01

    Spatial and spectral coherence of high-intensity twin-beam states propagating from the near-field to the far-field configurations is experimentally investigated by measuring intensity auto- and cross-correlation functions. The experimental setup includes a moving crystal and an iCCD camera placed at the output plane of an imaging spectrometer. Evolution from the tight near-field spatial position cross-correlations to the far-field momentum cross-correlations, accompanied by changeless spectral cross-correlations, is observed. Intensity autocorrelation functions and beam profiles are also monitored as they provide the number of degrees of freedom constituting the down-converted beams. The strength of intensity cross-correlations as an alternative quantity for the determination of the number of degrees of freedom is also measured. The relation between the beam coherence and the number of degrees of freedom is discussed. PMID:26403609

  18. Measurements and modeling of coherent synchrotron radiation and its impact on the Linac Coherent Light Source electron beam

    NASA Astrophysics Data System (ADS)

    Bane, K. L. F.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; Wu, J.

    2009-03-01

    In order to reach the high peak current required for an x-ray free electron laser, two separate magnetic dipole chicanes are used in the Linac Coherent Light Source accelerator to compress the electron bunch length in stages. In these bunch compressors, coherent synchrotron radiation (CSR) can be emitted either by a short electron bunch or by any longitudinal density modulation that may be on the bunch. In this paper, we report detailed measurements of the CSR-induced energy loss and transverse emittance growth in these compressors. Good agreement is found between the experimental results and multiparticle tracking studies. We also describe direct observations of CSR at optical wavelengths and compare with analytical models based on beam microbunching.

  19. Active beam spectroscopy for ITER

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Barnsley, R.; Biel, W.; Delabie, E.; Hawkes, N.; Jaspers, R.; Johnson, D.; Klinkhamer, F.; Lischtschenko, O.; Marchuk, O.; Schunke, B.; Singh, M. J.; Snijders, B.; Summers, H. P.; Thomas, D.; Tugarinov, S.; Vasu, P.

    2010-11-01

    Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1> r/ a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0< r/ a<0.7) using a top observation port. Thus optimum radial resolution is ensured for each system with better than a/30 resolution. Finally, the US will develop a dedicated MSE system making use of the HNBs and two equatorial ports. With appropriate modification, these systems could also potentially provide information on alpha particle slowing-down features. . On the engineering side, comprehensive preparations were made involving the development of an observation periscope, a neutron labyrinth optical system and design studies for remote maintenance including the exchange of the first mirror assembly, a critical issue for the operation of the CXRS diagnostic in the harsh ITER environment. Additionally, an essential change of the orientation of the DNB injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall.

  20. Coherent parasitic energy loss of the recycler beam

    SciTech Connect

    K.Y. Ng

    2004-07-14

    Parasitic energy loss of the particle beam in the Recycler Ring is discussed. The long beam confined between two barrier waves has a spectrum that falls off rapidly with frequency. Discrete summation over the revolution harmonics must be made to obtain the correct energy loss per particle per turn, because only a few lower revolution harmonics of real part of the longitudinal impedance contribute to the parasitic energy loss. The longitudinal impedances of the broadband rf cavities, the broadband resistive-wall monitors, and the resistive wall of the vacuum chamber are discussed. They are the main sources of the parasitic energy loss.

  1. Design of the multiplexing communication system with non-coherent vortex beams

    NASA Astrophysics Data System (ADS)

    Zhao, Hongdong; Peng, Xiaocan; Ma, Li; Sun, Mei

    2016-11-01

    In order to enlarge the communication capability, a model of the multiplexing communication system with non-coherent vortex beams is established. One detector for measurement the signal of the vortex beam with topological charge of 0, which is a Gaussian beam, is located in the center of the cross sectional plane of vortex beam. The other three detectors are set around the first detector in the same plane to receive the power of the vortex beam with topological charge of 1. The principle of determining the emitting power of vortex beams, the radii and the positions of the detectors are suggested to increase the signals and reduce the interchannel crosstalk noise at the detectors. The signal powers as well as the interchannel crosstalk noise in a receiver channel are identical to that in another channel, respectively. This research may have applications in free space optical communications.

  2. Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams.

    PubMed

    Zhang, Yaxin; Dong, Liang

    2012-09-24

    This paper presents the studies on the enhanced coherent THz Smith-Purcell superradiation excited by two pre-bunched electron beams that pass through the 1-D sub-wavelength holes array. The Smith-Purcell superradiation has been clearly observed. The radiation emitting out from the system has the radiation angle matching the 2nd harmonic frequency component of the pre-bunched electron beams. The results show that the two electron beams can be coupled with each other through the holes array so that the intensity of the radiated field has been enhanced about twice higher than that excited by one electron beam. Consequently superradiation at the frequency of 0.62 THz can be generated with 20A/cm(2) current density of electron beam based on above mechanism. The advantages of low injection current density and 2nd harmonic radiation promise the potential applications in the development of electron-beam driven THz sources. PMID:23037412

  3. Pulsed supersonic molecular-beam coherent anti-Stokes Raman spectroscopy of C2H2

    NASA Technical Reports Server (NTRS)

    Duncan, M. D.; Byer, R. L.; Osterlin, P.

    1981-01-01

    A high-resolution coherent anti-Stokes Raman spectrum of C2H2 in a pulsed molecular beam was obtained and the resolved Q-branch spectrum was used to study the properties of the expansion. Cluster formation limited the minimum observed rotational temperature in the pure-acetylene expansion to 30 K.

  4. Diffraction with a coherent X-ray beam: dynamics and imaging

    PubMed Central

    Livet, Frédéric

    2007-01-01

    Methods for carrying out coherent X-ray scattering experiments are reviewed. The brilliance of the available synchrotron sources, the characteristics of the existing optics, the various ways of obtaining a beam of controlled coherence properties and the detectors used are summarized. Applications in the study of the dynamics of speckle patterns are described. In the case of soft condensed matter, the movement of inclusions like fillers in polymers or colloidal particles can be observed and these can reflect polymer or liquid-crystal fluctuations. In hard condensed-matter problems, like phase transitions, charge-density waves or phasons in quasicrystals, the study of speckle fluctuations provides new time-resolved methods. In the domain of lensless imaging, the coherent beam gives the modulus of the sample Fourier transform. If oversampling conditions are fulfilled, the phase can be obtained and the image in the direct space can be reconstructed. The forthcoming improvements of all these techniques are discussed. PMID:17301470

  5. Coherent control of atomic beam diffraction by standing light waves

    SciTech Connect

    Dey, Bijoy K.

    2003-02-01

    Quantum interference is shown to deliver a means of regulating the diffraction pattern of a thermal atomic beam interacting with two standing-wave electric fields. Parameters have been identified to enhance the diffraction probability of one momentum component over the others, with specific application to Rb atoms.

  6. Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    von Vacano, Bernhard; Buckup, Tiago; Motzkus, Marcus

    2006-08-01

    Single-beam coherent anti-Stokes Raman-scattering (CARS) microspectroscopy achieves a complete CARS scheme with a femtosecond laser. Here, we introduce heterodyne detection in a simple experimental extension: the optical fields driving the CARS process and the local oscillator used for heterodyning are derived from a single beam of ultrashort laser pulses by pulse shaping. The heterodyne signal is amplified by more than 3 orders of magnitude and is linearly dependent on the concentration of Raman scatterers. This dramatically increases the sensitivity of chemically selective detection at microscopic resolution while maintaining the simplicity of the single-beam setup.

  7. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna

    SciTech Connect

    Ho Wu, Dong; Graber, Benjamin; Kim, Christopher; Qadri, S. B.; Garzarella, Anthony

    2014-02-03

    We have systematically measured and analyzed the terahertz beams of a photoconductive antenna fabricated on a GaAs substrate. Our data indicate that the antenna produces both coherent and incoherent terahertz beams. The former is produced largely by the plasmon, and the latter is believed to be due to the black body radiation resulting from the thermal excitations and Joule heating by both the femto-second laser and the bias voltage, applied across the electrodes of the antenna. The terahertz-beam property is greatly affected by the operating condition of the photoconductive antenna.

  8. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen; Wang, Mu

    2016-06-01

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000-1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  9. Dual beam heterodyne Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bachmann, Adrian H.; Michaely, Roland; Lasser, Theo; Leitgeb, Rainer A.

    2007-07-01

    We report on a novel method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantage of the presented approach is the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion. The method and first experimental results are presented and its properties concerning SNR and dynamic range are discussed.

  10. Changes of skewness and sharpness of partially coherent decentered annular beams on propagation

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Ji, Xiaoling; Li, Xiaoqing; Zhang, Hao; Wang, Tao

    2016-01-01

    Changes of skewness and sharpness of partially coherent decentered annular beams (PCDA beams) on propagation both in free space and in oceanic turbulence are studied. Based on the Wigner distribution function, the analytical expressions for the skewness parameter A and the kurtosis parameter K of PCDA beams are derived. The analytical expression for the oceanic turbulence parameter T‧ related to K is also derived, and characteristics of T‧ are examined. It is found that the behaviors of A and K in oceanic turbulence are quite different from those in free space. In free space, the mass of the intensity distribution may move from one side of the centroid position axis yc to another side at a certain propagation distance z0, and z0 is independent of the correlation parameter τ. The mass of the intensity distribution is concentrated on one side of yc on propagation only for a poorly coherent beam in free space, but it is always this situation for different value of τ when oceanic turbulence is not weak. In free space, it takes a leptokurtic profile in the far field, and a Gaussian profile appears only for a poorly coherent beam. However, in oceanic turbulence it always reaches a Gaussian profile for different value of τ in the far field.

  11. Coherent Cone-Beam X-ray Microscopy

    SciTech Connect

    Harder, R.; Xiao, X.

    2011-09-09

    A novel full-field imaging method using the (111) Bragg diffraction of a sub-micron gold crystal as the divergent cone-beam for sample illumination is reported. The divergence of the illumination allows for very high magnification, limited only by the achievable ratio of the crystal-to-sample and sample-to-detector distances. In this case an x-ray magnification of approximately 115 was achieved.

  12. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment

    NASA Astrophysics Data System (ADS)

    Liu, Ruifeng; Wang, Feiran; Chen, Dongxu; Wang, Yunlong; Zhou, Yu; Gao, Hong; Zhang, Pei; Li, Fuli

    2016-02-01

    It is known that the cross-correlation function (CCF) of a partially coherent vortex (PCV) beam shows a robust link with the radial and azimuthal mode indices. However, the previous proposals are difficult to measure the CCF in practical systems, especially in the case of astronomical objects. In this letter, we demonstrate experimentally that the Hanbury Brown and Twiss effect can be used to measure the mode indices of the original vortex beam and investigate the relationship between the spatial coherent width and the characterization of CCF of the PCV beam. The technique we exploit is quite efficient and robust, and it may be useful in the field of free space communication and astronomy which are related to the photon's orbital angular momentum.

  13. Experimental demonstration of coherent beam combining over a 7 km propagation path.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail A; Carhart, Gary W; Beresnev, Leonid A; Rostov, Andrey P; Polnau, Ernst E; Liu, Jony Jiang

    2011-11-15

    We demonstrate coherent combining (phase locking) of seven laser beams emerging from an adaptive fiber-collimator array over a 7 km atmospheric propagation path using a target-in-the-loop (TIL) setting. Adaptive control of the piston and the tip and tilt wavefront phase at each fiber-collimator subaperture resulted in automatic focusing of the combined beam onto an unresolved retroreflector target (corner cube) with precompensation of quasi-static and atmospheric turbulence-induced phase aberrations. Both phase locking (piston) and tip-tilt control were performed by maximizing the target-return optical power using iterative stochastic parallel gradient descent (SPGD) techniques. The performance of TIL coherent beam combining and atmospheric mitigation was significantly increased by using an SPGD control variation that accounts for the round-trip propagation delay (delayed SPGD).

  14. The performance of heterodyne detection system for partially coherent beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chengqiang, Li; Tingfeng, Wang; Heyong, Zhang; Jingjiang, Xie; Lisheng, Liu; Shuai, Zhao; Jin, Guo

    2015-12-01

    The performance of heterodyne system is discussed for partially coherent beams in turbulent atmosphere by introducing turbulence spectrum of refractive-index fluctuations. Several analytic formulae for the heterodyne detection system using the partially coherent Gaussian Schell-model beam are presented. Based on Tatarskii spectrum model, some numerical results are given for the variation in the heterodyne efficiency with the misalignment angle, detector diameter, turbulence conditions, and parameters of the overlapping beams. According to the numerical results, we find that the turbulent atmosphere degrades the heterodyne efficiency significantly, and the variation in heterodyne efficiency is even slower against the misalignment angle in turbulence. For the deterministic received signal and the detector, the performance of the heterodyne detection can be adjusted by controlling the local oscillator signal parameters.

  15. Quantifying the influence of Bessel beams on image quality in optical coherence tomography

    PubMed Central

    Curatolo, Andrea; Munro, Peter R. T.; Lorenser, Dirk; Sreekumar, Parvathy; Singe, C. Christian; Kennedy, Brendan F.; Sampson, David D.

    2016-01-01

    Light scattered by turbid tissue is known to degrade optical coherence tomography (OCT) image contrast progressively with depth. Bessel beams have been proposed as an alternative to Gaussian beams to image deeper into turbid tissue. However, studies of turbid tissue comparing the image quality for different beam types are lacking. We present such a study, using numerically simulated beams and experimental OCT images formed by Bessel or Gaussian beams illuminating phantoms with optical properties spanning a range typical of soft tissue. We demonstrate that, for a given scattering parameter, the higher the scattering anisotropy the lower the OCT contrast, regardless of the beam type. When focusing both beams at the same depth in the sample, we show that, at focus and for equal input power and resolution, imaging with the Gaussian beam suffers less reduction of contrast. This suggests that, whilst Bessel beams offer extended depth of field in a single depth scan, for low numerical aperture (NA < 0.1) and typical soft tissue properties (scattering coefficient, μs = 3.7 mm−1 and high scattering anisotropy, g > 0.95), superior contrast (by up to ~40%) may be obtained over an extended depth range by a Gaussian beam combined with dynamic focusing. PMID:27009371

  16. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  17. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Wang, X. L.; Su, R. T.; Zhou, P.; Chen, J. B.

    2015-10-01

    The active coherent polarization beam combining (CPBC) technique has been experimentally proved to be a promising approach for the energy and power scaling of ultrashort laser pulses, despite the tremendous challenge in temporal synchronization, dispersion management and nonlinearity control. In order to develop a comprehensive theoretical model to investigate the influence of temporal-spectral effects on ultrafast fiber active CPBC systems, a generalized nonlinear Schrödinger equation carrying spectral factors is used to depict the propagation of ultrashort pulses in fiber amplifier channels and ultrashort-pulsed Gaussian beams (PGBs) carrying temporal-spatial factors are utilized to picture the propagation of ultrashort pulses in the free space. To the best of our knowledge, the influence of different temporal-spectral effects has been segregated for the first time and corresponding analytical equations have been strictly derived to link the combining efficiency with specific factors. Based on our analysis, the optical path difference (OPD) has the most detrimental impact on the combining efficiency because of the high controlling accuracy and anti-interference requirements. For instance, the OPD must be controlled in ~  ±14 μm to achieve a combining efficiency of above 95% for combining ultrashort laser pulses with a 3 dB spectral bandwidth of 13 nm centered at 1064 nm. Besides, the analytical expression also demonstrates that the impact of self-phase modulation on the combining efficiency has no dependence on spectral bandwidth and only depends on the B integral difference if neglecting the direct influence of the peak power difference. Our analysis also indicates that the group velocity dispersion has relatively small influence on the combining efficiency. These formulas can be used to diagnose the influence of temporal-spectral effects and provide useful guidelines for the design or optimization of the active CPBC system of ultrafast fiber chirped

  18. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    SciTech Connect

    Ratner, Daniel

    2011-05-01

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  19. Self-Organized Transition to Coherent Activity in Disordered Media

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Xu, Jinshan; Garnier, Nicolas G.; Pumir, Alain; Sinha, Sitabhra

    2012-02-01

    Synchronized oscillations are of critical functional importance in many biological systems. We show that such oscillations can arise without centralized coordination in a disordered system of electrically coupled excitable and passive cells. Increasing the coupling strength results in waves that lead to coherent periodic activity, exhibiting cluster, local and global synchronization under different conditions. Our results may explain the self-organized transition in a pregnant uterus from transient, localized activity initially to system-wide coherent excitations just before delivery.

  20. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system

    PubMed Central

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-01-01

    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lack of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit–TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau–Zener–Stückelberg interference has great potential in precise control of the quantum states in the tripartite system. PMID:20975719

  1. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide.

    PubMed

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  2. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    PubMed Central

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  3. Electron Signal Detection for the Beam-Finder Wire of the Linac Coherent Light Source Undulator

    SciTech Connect

    Wu, Juhao; Emma, P.; Field, R.C.; /SLAC

    2006-09-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. The tight tolerances for positioning the electron beam close to the undulator axis calls for the introduction of Beam Finder Wire (BFW) device. A BFW device close to the upstream end of the undulator segment and a quadrupole close to the down stream end of the undulator segment will allow a beam-based undulator segment alignment. Based on the scattering of the electrons on the BFW, we can detect the electron signal in the main dump bends after the undulator to find the beam position. We propose to use a threshold Cherenkov counter for this purpose. According to the signal strength at such a Cherenkov counter, we then suggest choice of material and size for such a BFW device in the undulator.

  4. Determining helicity and topological structure of coherent vortex beam from laser speckle

    NASA Astrophysics Data System (ADS)

    R. V, Vinu; Singh, Rakesh Kumar

    2016-09-01

    We propose and experimentally demonstrate a technique to quantitatively determine the topological structure of the vortex beam coaxially launched into the random scattering media with another non-vortex beam of the orthogonal polarization component. The proposed technique applies the coherent superposition of the random electromagnetic fields and a priori knowledge of correlation of one of the random fields to determine the polarization correlation of the other. The polarization correlation of the random field is used to determine the topological charge and phase structure of the vortex beam from the laser speckle. The application of the proposed technique is demonstrated by determining the helicity and topological charge of the vortex beam for three different cases.

  5. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide.

    PubMed

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-21

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  6. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-07-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.

  7. Polarization and collision-induced coherence in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  8. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  9. Three-beam spectral-domain optical coherence tomography for retinal imaging.

    PubMed

    Suehira, Nobuhito; Ooto, Sotaro; Hangai, Masanori; Matsumoto, Kazuhiro; Tomatsu, Nobuhiro; Yuasa, Takashi; Yamada, Kazuro; Yoshimura, Nagahisa

    2012-10-01

    A three-beam spectral domain optical coherence tomography system (OCT) whose center wavelength is 840 nm was developed. The three beams focus on fundus 3.1 mm apart from each other and are detected by a single line sensor. The distance between the beams is fixed and the beams scan a total area of 10×10  mm² while keeping this separation during three-dimensional (3-D) measurement. The line rate of the sensor is 70 kHz, therefore the total speed is equivalent to 210k A-scans per second in this system. A 1000(x)×500(z)×250(y) voxel volumetric 3D OCT data set can be acquired within 2 s. Images of a model eye, a healthy human eye and a diseased eye taken by this system are shown and evaluated. The image quality of one B-Scan is as good as an image from a single-beam OCT. Adjustment among the beams is solved by additional signal processing using a model eye. A multi-beam OCT has the potential not only for high speed imaging but also functional imaging although problems such as compensation among the beams and motion artifacts must be solved. PMID:23224000

  10. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  11. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales.

  12. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    NASA Astrophysics Data System (ADS)

    Chubar, O.; Fluerasu, A.; Chu, Y. S.; Berman, L.; Wiegart, L.; Lee, W.-K.; Baltser, J.

    2013-03-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured interference pattern is not straightforward. Here we show that this can nevertheless be done by using partially-coherent synchrotron radiation wavefront propagation simulations. The results obtained from measurements, performed at the 32-ID undulator beamline of the Advanced Photon Source, and wavefront propagation based simulations show, in particular, that new generation 1D Beryllium Compound Refractive Lenses [3, 4] do not reduce the X-ray transverse coherence in any significant manner.

  13. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  14. Optimal Cloning of Coherent States with a Linear Amplifier and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Braunstein, Samuel L.; Cerf, Nicolas J.; Iblisdir, Sofyan; van Loock, Peter; Massar, Serge

    2001-05-01

    A transformation achieving the optimal symmetric N-->M cloning of coherent states is presented. Its implementation requires only a phase-insensitive linear amplifier and a network of beam splitters. An experimental demonstration of this continuous-variable cloner should therefore be in the scope of current technology. The link between optimal quantum cloning and optimal amplification of quantum states is also pointed out.

  15. Research on the effect of coherent beam combination based on array of liquid crystal optical phased arrays

    NASA Astrophysics Data System (ADS)

    Yang, Zhenming; Kong, Lingjiang; Xiao, Feng; Chen, Jian

    2014-12-01

    On the basis of Coherent Beam Combination(CBC) based on Array of Liquid Crystal Optical Phased Arrays(LCOPA array), two major contributions are made in this article. Firstly, grating lobes and side lobes of combined beam are analyzed. Furthermore, according to interference theory the methods to suppress grating lobes and side lobes are put forward. Secondly, a new beam quality factor Q(θ0) is proposed to evaluate the beam quality of combined beam and several influence factors are discussed. These analysis results help to obtain combined beam with better beam quality.

  16. Fiber coupling and field mixing of coherent free-space optical beams in satellite communications

    NASA Astrophysics Data System (ADS)

    Poliak, J.; Giggenbach, D.; Mata Calvo, R.; Bok, D.

    2016-03-01

    Effective coupling of the optical field from free-space to optical fiber is an essential prerequisite for modern free-space optical communications systems. It allows for easier system integration with active and passive optical fiber-coupled components as well as for efficient optical field mixing for coherent communications. While coupling into single-mode fiber provides the advantage of using low-noise erbium-doped fiber preamplifiers, its relatively small mode field diameter limits achievable fiber coupling efficiency. Coupling into multimode fiber (MMF) increases the fiber coupling efficiency while introducing other spurious effects the authors have set out to analyze. The study of free-space optical beam coupling in the context of satellite communications will be presented. Here, we assume satellite link scenarios with different elevations, which correspond to different index-of-refraction turbulence (IRT) conditions. IRT gives rise to both intensity and phase aberration of the received optical field, which then causes extended speckle patterns in the focus of the receiver telescope. The speckle field at the fiber input is calculated by means of Fourier transform of the received field. Using dedicated modelling software, study of the fiber coupling efficiency, polarization preservation and high-order mode coupling in different multi-mode fibers is carried out.

  17. Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence.

    PubMed

    Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin

    2015-01-26

    Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance. PMID:25835869

  18. Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence.

    PubMed

    Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin

    2015-01-26

    Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance.

  19. The coherent production of (K+π0) Pairs by K+ beam on copper nuclei in OKA detector

    NASA Astrophysics Data System (ADS)

    Burtovoy, V. S.

    2015-12-01

    The detection of coherent (K+π0) pairs was made in collisions of K+ beam with copper nuclei in the OKA detector. The number of electromagnetic and strong coherent events and the number of interference events were counted here. The difference between the electromagnetic and strong phases was also measured.

  20. Label free detection of optogenetically stimulated cellular activity by low coherence interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Satpathy, Sarmishtha; Batabyal, Subrata; Dave, Digant P.; Mohanty, Samarendra K.

    2016-03-01

    Detecting cellular activity in sub-millisecond timescale and micrometer resolution without using invasive means has been a long standing goal in the study of cellular networks. Here, we have employed phase sensitive low coherence interferometry for detecting optogenetically stimulated activity of cells. Nanoscale changes in optical path length (due to change in refractive index and changes in cell thickness) occur when cells are activated, which we aim to detect by phase sensitive low coherence interferometry. A low coherence interferometry and patch-clamp electrophysiology systems were integrated with an inverted fluorescence microscope. Blue laser beam was coupled to the electrophysiology-interferometric detection system for optogenetic stimulation. The phase-sensitive measurements were carried out on Channelrhodopsin-2 sensitized cells (identified by YFP fluorescence) as well as control cells in reflection mode for different intensities and exposures of optogenetic stimulation beam. This method offers good temporal and spatial resolution without using exogenous labeling. Results of studies on all optical stimulation and detection of cellular activity will be presented. Interpretation of the optical activity signals will be discussed in context with changes in cell physiology during stimulation. We will also discuss the potential sources of various artifacts in optical/electrical detection of cellular activity during optical stimulation.

  1. Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates

    SciTech Connect

    Dennis, Graham R.; Johnsson, Mattias T.

    2010-09-15

    We present a theoretical analysis of a coupled, two-state Bose-Einstein condensate with nonequal scattering lengths and show that dynamical instabilities can be excited. We demonstrate that these instabilities are exponentially amplified, resulting in highly directional, oppositely propagating, coherent matter beams at specific momenta. To accomplish this we prove that the mean field of our system is periodic and extend the standard Bogoliubov approach to consider a time-dependent, but cyclic, background. This allows us to use Floquet's theorem to gain analytic insight into such systems, rather than employing the usual Bogoliubov-de Gennes approach, which is usually limited to numerical solutions. We apply our theory to the metastable helium atom laser experiment by Dall et al. [Phys. Rev. A 79, 011601(R) (2009)] and show that it explains the anomalous beam profiles they observed. Finally, we demonstrate that the paired particle beams will be Einstein-Podolsky-Rosen entangled on formation.

  2. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.

    PubMed

    Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing; Cheng, Qi; Zhang, Dan

    2016-06-10

    The analytical formulas for the orbital angular momentum (OAM) mode probability density, signal OAM mode detection probability, and spiral spectrum of partially coherent Laguerre-Gaussian (LG) beams with optical vortices propagation in weak horizontal oceanic turbulent channels were developed, based on the Rytov approximation theory. The effect of oceanic turbulence and beam source parameters on the propagation behavior of the optical vortices carried by partially coherent LG beams was investigated in detail. Our results indicated that optical turbulence in an ocean environment produced a much stronger effect on the optical vortex than that in an atmosphere environment; the effective range of the signal OAM mode of LG beams with a smaller ratio of the mode crosstalk was limited to only several tens of meters in turbulent ocean. The existence of oceanic turbulence evidently induced OAM mode crosstalk and spiral spectrum spread. The effects of oceanic turbulence on the OAM mode detection probability increased with the increase of radial and azimuthal mode orders, oceanic turbulent equivalent temperature structure parameter, and temperature-salinity balance parameter. The spatial partial coherence of the beam source would enhance the effect of turbulent aberrations on the signal OAM mode detection probability, and fully coherent vortex beams provided better performance than partially coherent ones. Increasing wavelength of the vortex beams would help improve the performance of this quantum optical communication system. These results might be of interest for the potential application of optical vortices in practical underwater quantum optical communication among divers, submarines, and sensors in the ocean environment. PMID:27409021

  3. Single-frequency linearly polarized master-oscillator fiber power amplifier system and its application in high fill factor coherent beam combining.

    PubMed

    Qi, Yunfeng; Liu, Chi; Zhou, Jun; Lou, Qihong; Chen, Weibiao; Dong, Jingxing; Wei, Yunrong

    2009-10-10

    In this paper we combine the master-oscillator power fiber amplifier (MOPFA), active phase-compensation, and beam-tilting techniques to demonstrate high fill factor coherent beam combining. First, we optimize a single-frequency, linearly polarized MOPFA system with high scalability and flexibility based on compact, high efficiency Yb-doped fiber amplifier chains. Second, we demonstrate high fill factor coherent beam combining of these MOPFA arrays at a 50 W level in the far field successfully. Last, the interference matrix of eight element arrays under an opened loop condition is investigated. Scaling the system to higher power can be expected by increasing the power per fiber chain and adding the number of laser channels. PMID:19823235

  4. Characterization and mitigation of coherent-optical-transition-radiation signals from a compressed electron beam

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Sereno, N. S.; Berg, W. J.; Borland, M.; Li, Y.; Pasky, S. J.

    2009-08-01

    The Advanced Photon Source (APS) injector complex includes an option for rf photocathode (PC) gun beam injection into the 450-MeV S-band linac. At the 150-MeV point, a four-dipole chicane was used to compress the micropulse bunch length from a few ps to sub-0.5 ps (FWHM). Noticeable enhancements of the optical transition radiation (OTR) signal sampled after the APS chicane were then observed as has been reported in the Linac Coherent Light Source (LCLS) injector commissioning. A far-infrared (FIR) coherent transition radiation detector and interferometer were used to monitor the bunch compression process and correlate the appearance of localized spikes of OTR signal (5 to 10 times brighter than adjacent areas) within the beam-image footprint. We have performed spectral-dependency measurements at 375 MeV with a series of bandpass filters centered in 50-nm increments from 400 to 700 nm and with an imaging spectrometer and observed a broadband enhancement in these spikes. Mitigation concepts of the observed coherent OTR, which exhibits an intensity enhancement in the red part of the visible spectrum as compared to incoherent OTR, are described.

  5. Characterization and mitigation of coherent optical transition radiation signal from a compressed electron beam.

    SciTech Connect

    Lumpkin, A. H.; Sereno, N. S.; Berg, W.; Borland, M.; Li, Y.; Pasky, S. )

    2009-01-01

    The Advanced Photon Source (APS) injector complex includes an option for rf photocathode (PC) gun beam injection into the 450-MeV S-band linac. At the 150-MeV point, a four-dipole chicane was used to compress the micropulse bunch length from a few ps to sub-0.5 ps (FWHM). Noticeable enhancements of the optical transition radiation (OTR) signal sampled after the APS chicane were then observed as has been reported in the Linac Coherent Light Source (LCLS) injector commissioning. A far-infrared (FIR) coherent transition radiation detector and interferometer were used to monitor the bunch compression process and correlate the appearance of localized spikes of OTR signal (5 to 10 times brighter than adjacent areas) within the beam-image footprint. We have performed spectral-dependency measurements at 375 MeV with a series of bandpass filters centered in 50-nm increments from 400 to 700 nm and with an imaging spectrometer and observed a broadband enhancement in these spikes. Mitigation concepts of the observed coherent OTR, which exhibits an intensity enhancement in the red part of the visible spectrum as compared to incoherent OTR, are described.

  6. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  7. Application of THz probe radiation in low-coherent tomographs based on spatially separated counterpropagating beams

    SciTech Connect

    Kuritsyn, I I; Shkurinov, A P; Nazarov, M M; Mandrosov, V I; Cherkasova, O P

    2013-10-31

    A principle of designing a high-resolution low-coherent THz tomograph, which makes it possible to investigate media with a high spatial resolution (in the range λ{sub 0} – 2λ{sub 0}, where λ{sub 0} is the average probe wavelength) is considered. The operation principle of this tomograph implies probing a medium by radiation with a coherence length of 8λ{sub 0} and recording a hologram of a focused image of a fixed layer of this medium using spatially separated counterpropagating object and reference beams. Tomograms of the medium studied are calculated using a temporal approach based on application of the time correlation function of probe radiation. (terahertz radiation)

  8. Improved measurement of neutral current coherent $\\pi^0$ production on carbon in a few-GeV neutrino beam

    SciTech Connect

    Kurimoto, Y.; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; Franke, A.J.; /Columbia U. /INFN, Rome

    2010-05-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.

  9. Improved measurement of neutral current coherent π0 production on carbon in a few-GeV neutrino beam

    NASA Astrophysics Data System (ADS)

    Kurimoto, Y.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Wilking, M. J.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2010-06-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent π0 production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive π0 production has been improved by detecting recoil protons from resonant π0 production. We measure the ratio of the neutral current coherent π0 production to total charged current cross sections to be (1.16±0.24)×10-2. The ratio of charged current coherent π+ to neutral current coherent π0 production is calculated to be 0.14-0.28+0.30, using our published charged current coherent pion measurement.

  10. Propagation based on second-order moments for partially coherent Laguerre-Gaussian beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian

    2016-07-01

    The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.

  11. Propagation based on second-order moments for partially coherent Laguerre–Gaussian beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian

    2016-07-01

    The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.

  12. Generating Ultrashort Coherent Soft X-ray Radiation in Storage Rings Using Angular-modulated Electron Beams

    SciTech Connect

    Xiang, D.; Wan, W.; /LBL, Berkeley

    2010-08-23

    A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with non-zero transfer matrix element R{sub 54}, the angular modulation is converted to density modulation which contains considerable higher harmonic contents of the laser. It is found that the harmonic number can be one or two orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings.

  13. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    SciTech Connect

    Shin, Young -Min

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes ($TE_{10}$ and $TE_{20}$) are considerably suppressed ($\\sim-50$ dB) below the multi-beam resonating mode ($TE_{30}$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $TE_{30}$ mode is $\\sim$23 dBm and $\\sim$50 dBm stronger than the $TE_{10}$ and $TE_{20}$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.

  14. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam

    DOE PAGES

    Shin, Young -Min; Fermi National Accelerator Lab.

    2012-06-27

    Intense coherent radiation is obtained from multiple electron beams monochromatically bunched over the wide higher-order-mode (HOM) spectral band in the THz regime. The overmoded waveguide corrugated by dielectric-implanted staggered gratings superimposes evanescent waves emitted from the low energy electron beams. The dispersion and transmission simulations of the three-beam slow wave structure show that the first two fundamental modes (more » $$TE_{10}$$ and $$TE_{20}$$) are considerably suppressed ($$\\sim-50$$ dB) below the multi-beam resonating mode ($$TE_{30}$$) at the THz regime (0.8–1.24 THz). The theoretical calculations and particle-in-cell simulations show that with significantly higher interaction impedance and power growth rate radiation of the $$TE_{30}$$ mode is $$\\sim$$23 dBm and $$\\sim$$50 dBm stronger than the $$TE_{10}$$ and $$TE_{20}$$ modes around 1 THz, respectively. As a result, this highly selective HOM multi-beam interaction has potential applications for power THz sources and high intensity accelerators.« less

  15. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  16. Terahertz coherent transition radiation based on an ultrashort electron bunching beam

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Xin; Huang, Wen-Hui; Du, Ying-Chao; Yan, Li-Xin; Wu, Dai; Tang, Chuan-Xiang

    2011-07-01

    The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin—Puplett interferometer and Kramers—Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.

  17. Total retinal blood flow measurement by three beam Doppler optical coherence tomography

    PubMed Central

    Haindl, Richard; Trasischker, Wolfgang; Wartak, Andreas; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-01-01

    We present measurements of total retinal blood flow in healthy volunteers using a three beam Doppler optical coherence tomography (D-OCT) technique. This technology has the advantage of a precise determination of the flow vector without the use of any a-priori information on the vessel geometry. Circular D-OCT scans around the optic disc were recorded and venous as well as arterial total blood flow was determined and compared for each subject. The reproducibility of the method was assessed in 6 subjects by repeated measurements. Only small deviations of around 6% between the measurements were found which indicates the high precision of the proposed method. PMID:26977340

  18. Dynamic control of coherent orbital-angular-momentum beams in turbid environments

    NASA Astrophysics Data System (ADS)

    Morgan, K. S.; Miller, J. K.; Cochenour, B. M.; Johnson, E. G.

    2016-05-01

    This work examines the propagation properties of two superimposed coherent orbital angular momentum (OAM) modes for use in underwater systems as an alternative to amplitude modulation. An OAM mode of l=+2 is interfered with OAM mode l=-1 from a λ = 540 nm laser source. These OAM modes are superimposed using a Mach-Zehnder (MZ) interferometer combined with diffractive optical elements. By manipulating the optical path length of one of the MZ legs, the interference of these beams can be temporally controlled. The spatial profile is maintained in a turbid environment up through 4.9 attenuation lengths for both cases.

  19. Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-05-01

    In this paper, we introduce a controllable method for producing two and three-mode entangled coherent states (ECS's) using atom-field interaction in cavity QED and beam splitter. The generated states play central roles in linear optics, quantum computation and teleportation. We especially focus on qubit, qutrit and qufit like ECS's and investigate their entanglement by concurrence measure. Moreover, we illustrate decoherence properties of ECS's due to noisy channels, using negativity measure. At the end the effect of noise on monogamy inequality is discussed.

  20. Generation of phase - matched coherent point source in plasma media by propagated X-ray laser seeded beam

    NASA Astrophysics Data System (ADS)

    Pikuz, T.; Faenov, A.; Magnitskiy, S.; Nagorskiy, N.; Tanaka, M.; Ishino, M.; Nishikino, M.; Kando, M.; Kato, Y.; Kawachi, T.

    2016-03-01

    There is a significant interest in developing the coherent table-top X-ray lasers. Advent of plasma-based transient collisional excitation x-ray laser and particular, injection of coherent seeded beam, especially high-order harmonics, has tremendously improved the spatial coherence of such lasers, what allowed them to be the same widely used as synchrotron sources. Here we report experimental founding of unknown interference structure in a spatial profile of the output beam of the two-stage plasma X-ray laser. That allowed us experimental and theoretical discovering a new phenomenon consisted in a generation of phase-matched coherent point source in a laser plasma media by propagated X-ray laser seeded beam. This phenomenon could extend the applications of such x-ray lasers. For explanation of the observed phenomenon a new method of solving the standard system of Maxwell-Bloch equations has been developed. It was found that the interference pattern in the output laser beam was formed due to an emergence of phase-matched coherent virtual point source in the XRL amplifier and could be treated as the first observation of mirage phenomenon, analogous to the optical mirage, but in X-rays. The obtained results bring new comprehension into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and opening new opportunities for X-ray interferometry, holography and other applications, which requiring multiple rigidly phased sources of coherent radiation.

  1. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect

    Zhu, Diling Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric; Stoupin, Stanislav; Shvyd'ko, Yuri V.; Terentyev, Sergey A.; Blank, Vladimir D.; Driel, Tim B. van

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  2. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  3. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs. PMID:27534473

  4. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam.

    PubMed

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 10(5) W/cm(2). The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  5. Electron beam bunch length characterizations using incoherent and coherent radiation on the APS SASE FEL project.

    SciTech Connect

    Berg, W. J.; Happek, U.; Lewellen, J. W.; Lumpkin, A. H.; Sereno, N. S.; Yang, B. X.

    1999-08-28

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance rf thermionic gun and a photocathode (PC) rf gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR), A visible light Hamarnatsu C5680 synchroscan streak camera was used to measure the thermionic rf gun beam's bunch length ({sigma} {approximately}2 to 3ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observation s of CTR signal strength variation with gun a-magnet current and interferograms have been obtained. Progress in characterizing the beam at these locations and a comparison to other bunch length determinations will be presented.

  6. Spin coherence time studies of a horizontally polarized deuteron beam at COSY

    NASA Astrophysics Data System (ADS)

    G Guidoboni JEDI Collaboration

    2015-11-01

    The measurement of a non-zero electric dipole moment (EDM) aligned along the spin of sub-atomic particles would probe new physics beyond the standard model. It has been proposed to search for the EDM of charged particles using a storage ring and a longitudinally polarized beam. The EDM signal would be a rotation of the polarization from the horizontal plane toward the vertical direction as a consequence of the radial electric field always present in the particle frame. This experiment requires ring conditions that can ensure a lifetime of the in-plane polarization (spin coherence time, SCT) up to 1000 s. A study has begun at the COoler SYnchrotron (COSY) located at the Forschungszentrum Jülich to examine the effects of emittance and momentum spread on the SCT of a polarized deuteron beam at 0.97 GeV c-1. A special Data AcQuisition has been developed in order to provide a direct measurement of a rapidly rotating horizontal polarization as a function of time. The set of data presented here shows how second-order effects from emittance and momentum spread of the beam affect the lifetime of the horizontal polarization of a bunched beam. It has been demonstrated that sextupole fields can be used to correct for these depolarizing sources and increase the SCT up to hundreds of seconds.

  7. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    PubMed Central

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  8. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam.

    PubMed

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-11-03

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 10(5) W/cm(2). The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime.

  9. A fully coherent electron beam from a noble-metal covered W(111) single-atom emitter.

    PubMed

    Chang, Che-Cheng; Kuo, Hong-Shi; Hwang, Ing-Shouh; Tsong, Tien T

    2009-03-18

    In quantum mechanics, a wavefunction contains two factors: the amplitude and the phase. Only when the probing beam is fully phase coherent, can complete information be retrieved from a particle beam based experiment. Here we use the electron beam field emitted from a noble-metal covered W(111) single-atom tip to image single-walled carbon nanotubes (SWNTs) in an electron point projection microscope (PPM). The interference fringes of an SWNT bundle exhibit a very high contrast and the fringe pattern extends throughout the entire beam width. This indicates good phase correlation at all points transverse to the propagation direction. Application of these sources can significantly improve the performance and expand the capabilities of current electron beam based techniques. New instrumentation based on the full spatial coherence may allow determination of the three-dimensional atomic structures of nonperiodic nanostructures and make many advanced experiments possible.

  10. Electron-Beam Noise and spontaneous emission Suppression and the Fundamental Coherence Limits of Free Electron Radiators

    NASA Astrophysics Data System (ADS)

    Gover, Avraham

    2010-02-01

    It is shown that the electron beam current noise can be reduced at optical frequencies below the classical shot-noise limit. This self-ordering phenomenon takes place due to longitudinal collective Coulomb interaction when the beam parameters are set to excite Langmuir plasma-wave single mode oscillation [1]. Full 3-D particle dynamics simulations confirm the theoretical model. Based on this result, it is shown that it is possible to obtain sub-radiance (in the sense of Dicke [2]) of spontaneous emission from electron-beam radiators. This results in fundamental limit expressions for the coherence of FELs and other e-beam radiators, analogously to the Schawlow-Towns limit [3]. Surpassing the shot-noise limit, the coherence of free electron laser radiation is limited by the e-beam energy spread at frequencies below the IR, and fundamentally limited by quantum noise at higher frequencies. )

  11. Coherent Smith-Purcell Radiation for use in electron beam diagnostics

    NASA Astrophysics Data System (ADS)

    Lampel, M. C.

    1999-07-01

    Coherent Smith-Purcell Radiation (CSPR) is quite useful in the area of intense ultra-short pulse electron beams. This is because it offers the potential for non-destructive, real time measurements of high brightness pulses being developed for use in many next-generation electron beam accelerator projects, such as NLC, TESLA test facility, and various other plasma-based accelerator schemes. Both the non-destructive and real time aspects of using CSPR are significant to ultra-short pulse measurement. Preliminary calculations show that CSPR is capable of producing usable signals from realistic electron beam and electron beamline operating parameters that can be analyzed to provide pulse structure, energy, emittance, and timing information. At the same time, induced emittance growth is well below an amount that would seriously deteriorate beam quality for even ultra-high brightness beams. Timing measurements using CSPR is a critical area for development efforts, because of the lack of existing techniques for accurate single pulse sub-picosecond measurements. Injection accuracy for advanced accelerator techniques, as is the case for conventional RF structures, is dictated by getting the pulse into the accelerator at the correct phase. This implies absolute timing accuracies on the order of 10-20 femtoseconds, for a laser-accelerator system that pulses at much less than once per second. By producing CSPR at one or more locations along the beamline, interferometric techniques can then mix this radiation with a timing signal from the laser and beamline timing measurements, useful for fine tuning the transport system and laser beam delay lines, will become obtainable.

  12. CLASSICAL AREAS OF PHENOMENOLOGY: Propagation of the off-axis superposition of partially coherent beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, En-Tao; Ji, Xiao-Ling; Lü, Bai-Da

    2009-02-01

    The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB) are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity Imax and the PIB decrease and w(z) increases as the refraction index structure constant Cn2 increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance xd and beam number M is less affected by the turbulence than that with a larger value of γ and smaller values of xd and M. The main results obtained in this paper are explained physically.

  13. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    SciTech Connect

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-04-17

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam.

  14. Coherent Beam Combining of High-Power Broad-Area Laser Diode Array in CW and Pulsed Modes

    SciTech Connect

    Liu, Bo; Liu, Yun; Braiman, Yehuda

    2010-01-01

    We present experimental results on coherent beam combining from large arrays of high power broad-area semiconductor lasers. Our laser array consists of 47 high-power anti-reflection coated broad-area semiconductor lasers and each laser emitter is capable of emitting 1.8 W when uncoated with a maximum array output power of 80W. The total available power from the AR coated array is approximately 40W. By using an external V-shape cavity design, we experimentally demonstrated a coherently combined beam at the output power of {approx}13 W with the 0.07 nm FWHM spectrum linewidth that is limited by the sensitivity of the optical spectrum analyzer. We also discuss coherent beam combining of high power broad area laser diode array in current driver pulse mode operation.

  15. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    PubMed

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-01

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  16. Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel

    NASA Astrophysics Data System (ADS)

    Paroli, B.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Petrillo, V.; Potenza, M. A. C.; Rossi, A. R.; Serafini, L.

    2015-07-01

    A 3-dimensional time-domain simulation of X-ray produced by a laser wakefield accelerated electron beam was performed in order to know its properties like intensity, spectrum, divergence and coherence. Particular attention was paid to the coherence around the acceleration axis. The broad spectrum of betatron radiation (1-10 keV) leads to a short coherence length. Nevertheless we observe that under particular detection condition the spatial coherence has a characteristic enlargement. We give a simplified interpretation of this effect in terms of phase shift of the electric field on a virtual detector. Moreover we describe a near field scattering technique to characterize the betatron radiation. This diagnostics will be used to map the transverse spatio-temporal coherence of X-ray radiation in the laser wakefield accelerator under development at Frascati National Laboratories (LNF).

  17. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence.

    PubMed

    Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua

    2013-07-01

    We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

  18. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  19. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain.

    PubMed

    Cai, Yangjian; Zhu, Shijun

    2014-04-01

    We derive the general expression for the orbital angular momentum (OAM) flux of an astigmatic partially coherent beam carrying twist phase [i.e., twisted anisotropic Gaussian-Schell model (TAGSM) beam] propagating through an astigmatic ABCD optical system with loss or gain. The evolution properties of the OAM flux of a TAGSM beam in a Gaussian cavity or propagating through a cylindrical thin lens are illustrated numerically with the help of the derived formula. It is found that we can modulate the OAM of a partially coherent beam by varying the parameters of the cavity or the orientation angle of the cylindrical thin lens, which will be useful in some applications, such as free-space optical communications and particle trapping.

  20. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-07-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations.

  1. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    PubMed Central

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations. PMID:27386838

  2. Coherent Reflection of He Atom Beams from Rough Surfaces at Grazing Incidence

    SciTech Connect

    Zhao, Bum Suk; Schewe, H. Christian; Meijer, Gerard; Schoellkopf, Wieland

    2010-09-24

    We report coherent reflection of thermal He atom beams from various microscopically rough surfaces at grazing incidence. For a sufficiently small normal component k{sub z} of the incident wave vector of the atom the reflection probability is found to be a function of k{sub z} only. This behavior is explained by quantum reflection at the attractive branch of the Casimir-van der Waals interaction potential. For larger values of k{sub z} the overall reflection probability decreases rapidly and is found to also depend on the parallel component k{sub x} of the wave vector. The material specific k{sub x} dependence for this classic reflection at the repulsive branch of the potential is discussed in terms of an averaging out of the surface roughness under grazing incidence conditions.

  3. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures.

    PubMed

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations. PMID:27386838

  4. A new compact self-coherent high power microwave source based on dual beams

    SciTech Connect

    Yan, Xiaolu Zhang, Xiaoping; Li, Yangmei; Qi, Zumin; Dang, Fangchao

    2015-05-15

    In this paper, a compact self-coherent high power microwave source based on dual beams is presented. It consists of a two-cavity triaxial klystron amplifier (TKA) (noted as the outer sub-source below) and a multiwave Cerenkov generators (noted as the inner sub-source) inserted in the TKA's inner conductor. These two sub-sources share a common cathode and the magnetic field. The injected signals to the outer sub-source are leakage microwaves from the inner sub-source through the anode-cathode gap (A-K gap). Particle-in-cell simulation shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, two microwaves with power of 1.02 GW and 2.65 GW and the same frequency of 9.72 GHz are generated in the inner and the outer sub-source, respectively; the corresponding power efficiencies are 24% and 31%. Two sub-sources reach the phase locking at 23 ns with a phase difference fluctuation within ±3°. The fast and stable phase locking in the voltage ranging from 665 kV to 709 kV further suggests that the proposed source is promising for coherent power combination and to export a higher power of combined microwaves.

  5. Absolute Retinal Blood Flow Measurement With a Dual-Beam Doppler Optical Coherence Tomography

    PubMed Central

    Dai, Cuixia; Liu, Xiaojing; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2013-01-01

    Purpose. To test the capability of a novel dual-beam Doppler optical coherence tomography (OCT) technique for simultaneous in vivo measurement of the Doppler angle and, thus, the absolute retinal blood velocity and the retinal flow rate, without the influence of motion artifacts. Methods. A novel dual-beam Doppler spectral domain OCT (SD-OCT) was developed. The two probing beams are separated with a controllable distance along an arbitrary direction, both of which are controlled by two independent 2D optical scanners. Two sets of optical Doppler tomography (ODT) images are acquired simultaneously. The Doppler angle of each blood vessel segment is calculated from the relative coordinates of the centers of the blood vessel in the two corresponding ODT images. The absolute blood flow velocity and the volumetric blood flow rate can then be calculated. To measure the total retinal blood flow, we used a circular scan pattern centered at the optic disc to obtain two sets of concentric OCT/ODT images simultaneously. Results. We imaged two normal human subjects at ages of 48 and 34 years. The total retinal blood flow rates of the two human subjects were calculated to be 47.01 μL/min (older subject) and 51.37 μL/min (younger subject), respectively. Results showed that the performance of this imaging system is immune to eye movement, since the two sets of ODT images were acquired simultaneously. Conclusions. The dual-beam OCT/ODT system is successful in measuring the absolute retinal blood velocity and the volumetric flow rate. The advantage of the technique is that the two sets of ODT images used for the calculation are acquired simultaneously, which eliminates the influence of eye motion and ensures the accuracy of the calculated hemodynamic parameters. PMID:24222303

  6. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  7. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens–Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  8. Coherent Lidar Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.; Singh, Upendra N.; Yu, Jirong

    2007-01-01

    NASA Langley Research Center has been developing and using coherent lidar systems for many years. The current projects at LaRC are the Global Wind Observing Sounder (GWOS) mission preparation, the Laser Risk Reduction Program (LRRP), the Instrument Incubator Program (IIP) compact, rugged Doppler wind lidar project, the Autonomous precision Landing and Hazard detection and Avoidance Technology (ALHAT) project for lunar landing, and the Skywalker project to find and use thermals to extend UAV flight time. These five projects encompass coherent lidar technology development; characterization, validation, and calibration facilities; compact, rugged packaging; computer simulation; trade studies; data acquisition, processing, and display development; system demonstration; and space mission design. This paper will further discuss these activities at LaRC.

  9. The spatial coherence of Schumann activity in the polar cap

    NASA Astrophysics Data System (ADS)

    Holtham, P. M.; McAskill, B. J.

    1988-02-01

    The spatial coherence of the first two Schumann resonant modes has been studied at two locations in the polar cap separated by 1100 km. Measurements were made at Assistance Bay and Mould Bay, which have geomagnetic latitudes of 83 and 79 deg, respectively, and satellite time-keeping was employed to accurately synchronize the field stations. The coherence was found to be high, typically 95 percent for the first Schumann mode, and was unaffected by changes in Kp, a storm sudden commencement, or a solar flare event. Polarization rotations were observed between the two stations, which could most likely be attributed to the coastline effect. The results are consistent with a stable propagation of Schumann activity from midlatitudes to high latitudes that is relatively unaffected by changes in the polar cap ionosphere.

  10. Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams

    NASA Astrophysics Data System (ADS)

    Landheer, Karl; Johns, Paul C.

    2012-09-01

    Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. In medical applications scatter imaging can improve x-ray contrast or reduce dose using information that is currently discarded in radiological images to augment the transmitted radiation information. Other applications include non-destructive testing and security. A system at the Canadian Light Source synchrotron was configured which utilizes multiple pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. A Maximum Likelihood-Expectation Maximization-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials of interest. A five-beam primary and scatter image set (which had a pixel beam time of 990 ms and total scan time of 56 min) of a porcine phantom is included. For comparison a single-beam coherent scatter image of the same phantom is included. The muscle-fat contrast was 0.10 ± 0.01 and 1.16 ± 0.03 for the five-beam primary and scatter images, respectively. The air kerma was measured free in air using aluminum oxide optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be 7.2 ± 0.4 cGy although due to difficulties in small-beam dosimetry this number could be inaccurate.

  11. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.

    PubMed

    Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat

    2016-06-01

    Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens-Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. PMID:27409430

  12. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.

    PubMed

    Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat

    2016-06-01

    Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens-Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices.

  13. Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity: Formation of Sinusoid Beam Shapes and Coherent Trajectories

    SciTech Connect

    Nemeth, Karoly; Li Yuelin; Shang Hairong; Harkay, Katherine C.; Shen Baifei; Crowell, Robert; Cary, John R.

    2009-01-22

    High amplitude coherent electron-trajectories have been seen in 3D particle-in-cell simulations of the colliding pulse injection scheme of laser-wakefield accelerators in the bubble regime, and explained as a consequence of laser-driven coherent betatron oscillation in our recent paper [K. Nemeth et al., Phys. Rev. Lett. 100, 095002 (2008)]. In the present paper we provide more details on the shape of the trajectories, their relationship to the phase velocity of the laser and indicate the dependence of the phenomenon on the accuracy of the numerical representation and choice of laser/plasma parameters.

  14. Observation of the pulp horn by swept source optical coherence tomography and cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Ebihara, Arata; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Cone-beam computed tomography (CBCT) is one of the most useful diagnostic techniques in dentistry but it involves ionizing radiation, while swept source optical coherence tomography (SS-OCT) has been introduced recently as a nondestructive, real-time, high resolution imaging technique using low-coherence interferometry, which involves no ionizing radiation. The purpose of this study was to evaluate the ability of SS-OCT to detect the pulp horn (PH) in comparison with that of CBCT. Ten extracted human mandibular molars were used. After horizontally removing a half of the tooth crown, the distance from the cut dentin surface to PH was measured using microfocus computed tomography (Micro CT) (SL) as the gold standard, by CBCT (CL) and by SS-OCT (OL). In the SS-OCT images, only when PH was observed beneath the overlying dentin, the distance from the cut dentin surface to PH was recorded. If the pulp was exposed, it was defined as pulp exposure (PE). The results obtained by the above three methods were statistically analyzed by Spearman's rank correlation coefficient at a significance level of p < 0.01. SS-OCT detected the presence of PH when the distance from the cut dentin surface to PH determined by SL was 2.33 mm or less. Strong correlations of the measured values were found between SL and CL (r=0.87), SL and OL (r=0.96), and CL and OL (r=0.86). The results showed that SS-OCT images correlated closely with CBCT images, suggesting that SS-OCT can be a useful tool for the detection of PH.

  15. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a

  16. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei

    2016-01-01

    Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.

  17. Experimental investigation of a coherent flute instability using a heavy ion beam probe

    SciTech Connect

    Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.

    1988-09-01

    A coherent, low-frequency instability found in a cylindrical, hollow cathode arc plasma has been investigated by using a heavy ion beam probe (HIBP). The energy density of the plasma was high enough to render it inaccessible to Langmuir probes, but the HIBP was able to provide measurements throughout the plasma cross section. The data clearly show that azimuthal symmetry does not exist. Radial profiles of steady-state density and space potential and of simultaneous n-italic-tilde, phi-tilde amplitude and phase were obtained to allow detailed comparison between theory and experiment. Predictions from a cylindrically symmetric, small-perturbation theoretical model provide reasonably conclusive identification of the instability as a Kelvin--Helmholtz flute driven by and localized in a region of fluid shear. The most serious discrepancy was with regard to the oscillation frequency, which was consistently predicted to be three to four times lower than that observed experimentally. The reason for the discrepancy is not understood, but it is probably related to inadequacies in the theory caused by assumptions of azimuthal symmetry and of small linear perturbations.

  18. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip.

    PubMed

    Akca, B I; Považay, B; Alex, A; Wörhoff, K; de Ridder, R M; Drexler, W; Pollnau, M

    2013-07-15

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, we assemble the central components of a spectral-domain OCT system on a silicon chip. The spectrometer comprises an arrayed-waveguide grating with 136-nm free spectral range and 0.21-nm wavelength resolution. The beam splitter is realized by a non-uniform adiabatic coupler with its 3-dB splitting ratio being nearly constant over 150 nm. With this device whose overall volume is 0.36 cm(3) we demonstrate high-quality in vivo imaging in human skin with 1.4-mm penetration depth, 7.5-µm axial resolution, and a signal-to-noise ratio of 74 dB. Considering the reasonable performance of this early OCT on-a-chip system and the anticipated improvements in this technology, a completely different range of devices and new fields of applications may become feasible.

  19. A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition

    NASA Astrophysics Data System (ADS)

    Chen, Linfei; Gao, Xiong; Chen, Xudong; He, Bingyu; Liu, Jingyu; Li, Dan

    2016-04-01

    In this paper, a new optical image cryptosystem is proposed based on two-beam coherent superposition and unequal modulus decomposition. Different from the equal modulus decomposition or unit vector decomposition, the proposed method applies common vector decomposition to accomplish encryption process. In the proposed method, the original image is firstly Fourier transformed and the complex function in spectrum domain will be obtained. The complex distribution is decomposed into two vector components with unequal amplitude and phase by the common vector decomposition method. Subsequently, the two components are modulated by two random phases and transformed from spectrum domain to spatial domain, and amplitude parts are extracted as encryption results and phase parts are extracted as private keys. The advantages of the proposed cryptosystem are: four different phase and amplitude information created by the method of common vector decomposition strengthens the security of the cryptosystem, and it fully solves the silhouette problem. Simulation results are presented to show the feasibility and the security of the proposed cryptosystem.

  20. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    PubMed

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-01-01

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  1. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources

    PubMed Central

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-01-01

    Young’s double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources. PMID:27021589

  2. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxin; Li, Xiaoying; Cui, Liang; Guo, Xueshi; Yang, Lei

    2011-08-01

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g(2) of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.

  3. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    SciTech Connect

    Lumpkin, A.H.; Dejus, R.J.; Sereno, N.S.; /Argonne

    2009-02-01

    Observations of strongly enhanced optical transition radiation (OTR) following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source (LCLS) accelerator and recently at the Advanced Photon Source (APS) linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge (LSC) microbunching instability which leads to coherent OTR (COTR) emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE) free-electron laser (FEL) data at APS in the visible-UV regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  4. The coherent production of (K{sup +}π{sup 0}) Pairs by K{sup +} beam on copper nuclei in OKA detector

    SciTech Connect

    Burtovoy, V. S.

    2015-12-15

    The detection of coherent (K{sup +}π{sup 0}) pairs was made in collisions of K{sup +} beam with copper nuclei in the OKA detector. The number of electromagnetic and strong coherent events and the number of interference events were counted here. The difference between the electromagnetic and strong phases was also measured.

  5. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    SciTech Connect

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.

  6. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    NASA Astrophysics Data System (ADS)

    Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.

    2015-03-01

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.

  7. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    SciTech Connect

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot and also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.

  8. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    NASA Astrophysics Data System (ADS)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  9. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  10. Dual-beam optical coherence tomography system for quantification of flow velocity in capillary phantoms

    NASA Astrophysics Data System (ADS)

    Daly, S. M.; Silien, C.; Leahy, M. J.

    2012-03-01

    The quantification of (blood) flow velocity within the vasculature has potent diagnostic and prognostic potential. Assessment of flow irregularities in the form of increased permeability (micro haemorrhaging), the presence of avascular areas, or conversely the presence of vessels with enlarged or increased tortuosity in the acral regions of the body may provide a means of non-invasive in vivo assessment. If assessment of dermal flow dynamics were performed in a routine manner, the existence and prevalence of ailments such as diabetes mellitus, psoriatic arthritis and Raynaud's condition may be confirmed prior to clinical suspicion. This may prove advantageous in cases wherein the efficacy of a prescribed treatment is dictated by a prompt diagnosis and to alleviate patient discomfort through early detection. Optical Coherence Tomography (OCT) is an imaging modality which utilises the principle of optical interferometry to distinguish between spatial changes in refractive index within the vasculature and thus formulate a multi-dimensional representation of the structure of the epi- and dermal skin layers. The use of the Doppler functionality has been the predominant force for the quantification of moving particles within media, elucidated via estimation of the phase shift in OCT A-scans. However, the theoretical formulation for the assessment of these phase shifts dictates that the angle between the incident light source and the vessel under question be known a priori; this may be achieved via excisional biopsy of the tissue segment in question, but is counter to the non-invasive premise of the OCT technique. To address the issue of angular dependence, an alternate means of estimating absolute flow velocity is presented. The design and development of a dual-beam (db) system incorporating an optical switch mechanism for signal discrimination of two spatially disparate points enabling quasi-simultaneous multiple specimen scanning is described. A crosscorrelation (c

  11. On spectral and temporal coherence of x-ray free-electron laser beams.

    PubMed

    Ahad, Lutful; Vartiainen, Ismo; Setälä, Tero; Friberg, Ari T; David, Christian; Makita, Mikako; Turunen, Jari

    2016-06-13

    A model for the coherence properties of free-electron lasers (FELs) in time and frequency domains is introduced within the framework of classical second-order coherence theory of nonstationary light. An iterative phase-retrieval algorithm is applied to construct an ensemble of field realizations in both domains, based on single-pulse spectra measured at the Linac Coherent Light Source (LCLS) in self-amplified spontaneous emission mode. Such an ensemble describes the specific FEL pulse train in a statistically averaged sense. Two-time and two-frequency correlation functions are constructed, demonstrating that the hard X-ray free-electron laser at LCLS in this case behaves as a quasistationary source with low spectral and temporal coherence. We also show that the Gaussian Schell model provides a good description of this FEL. PMID:27410327

  12. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion

    SciTech Connect

    Liu Wei; Niu Hanben

    2011-02-15

    We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.

  13. Measurements and Simulations of Ultra-Low Emittance and Ultra-Short Electron Beams in the Linac Coherent Light Source

    SciTech Connect

    Ding, Y.; Brachmann, A.; Decker, F.-J.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2009-02-03

    The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project presently in a commissioning phase at SLAC. We report here on very low emittance measurements made at low bunch charge, and a few femtosecond bunch length produced by the LCLS bunch compressors. Start-to-end simulations associated with these beam parameters show the possibilities of generating hundreds of GW at 1.5 {angstrom} x-ray wavelength and nearly a single longitudinally spike at 1.5 nm with 2-fs duration.

  14. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  15. Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution

    NASA Astrophysics Data System (ADS)

    Haindl, R.; Trasischker, W.; Baumann, B.; Pircher, M.; Hitzenberger, C. K.

    2015-12-01

    An improved three-beam Doppler optical coherence tomography system was developed. It utilizes a custom-made three-facet prism telescope to improve the transversal resolution at the sample. Furthermore, a two-axis gimbal-less MEMS mirror is used to minimize off-pivot beam movement at the pupil of the eye, enabling circular scanning for in vivo retinal measurements. We demonstrate the system's abilities for in vitro circular scanning to measure absolute flow and to reconstruct the full velocity vector on a bifurcation flow phantom. Moreover, in vivo retinal measurements using circular scanning around vessel bifurcations of healthy human volunteers were performed. Measurements of the absolute mean flow and its orientation are in good agreement with the expected values for in vitro measurements. For in vivo measurements, the in- and outflow of blood for retinal vessel bifurcations show an excellent agreement, demonstrating the reliability of the technique.

  16. Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution

    PubMed Central

    Haindl, R.; Trasischker, W.; Baumann, B.; Pircher, M.; Hitzenberger, C.K.

    2015-01-01

    An improved three-beam Doppler optical coherence tomography system was developed. It utilizes a custom-made three-facet prism telescope to improve the transversal resolution at the sample. Furthermore, a two-axis gimbal-less MEMS mirror is used to minimize off-pivot beam movement at the pupil of the eye, enabling circular scanning for in vivo retinal measurements. We demonstrate the system’s abilities for in vitro circular scanning to measure absolute flow and to reconstruct the full velocity vector on a bifurcation flow phantom. Moreover, in vivo retinal measurements using circular scanning around vessel bifurcations of healthy human volunteers were performed. Measurements of the absolute mean flow and its orientation are in good agreement with the expected values for in vitro measurements. For in vivo measurements, the in- and outflow of blood for retinal vessel bifurcations show an excellent agreement, demonstrating the reliability of the technique. PMID:26689672

  17. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  18. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya

    2015-02-01

    We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.

  19. Steering, splitting, and cloning of an optical beam in a coherently driven Raman gain system

    NASA Astrophysics Data System (ADS)

    Verma, Onkar N.; Dey, Tarak N.

    2015-01-01

    We propose an all-optical antiwaveguide mechanism for steering, splitting, and cloning of an optical beam without diffraction. We use a spatially inhomogeneous pump beam to create an antiwaveguide structure in a Doppler broadened N -type four-level Raman gain medium for a copropagating weak probe beam. We show that a transverse modulated index of refraction and gain due to the spatially dependent pump beam hold the keys to steering, splitting, and cloning of an optical beam. We have also shown that an additional control field permits the propagation of an optical beam through an otherwise gain medium without diffraction and instability. We further discuss how finesse of the cloned images can be increased by changing the detuning of the control field. We arrive at similar results by using homogeneously broadened gain media at higher density.

  20. Coherent beamsstrahlung

    SciTech Connect

    Spence, W.L.

    1987-11-01

    The radiation coherently emitted by a high energy bunched beam suffering an arbitrarily large disruption in a collision with an idealized undisrupted beam is calculated. The near-luminal velocity of the beam - such that the emitted radiation moves very slowly with respect to the bunch - implies that only a small part of the bunch radiates coherently and necessitates a careful treatment of the disrupted beam phase space during emission. The angular distribution and spectral density are presented. It is found that most of the radiation is at wave lengths greater than or equal to the bunch length and that the total energy lost by the beam due to coherent effects should be negligible in high energy-high luminosity linear colliders. 4 refs.

  1. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  2. Development of a coherent THz radiation source based on the ultra-short electron beam and its applications

    NASA Astrophysics Data System (ADS)

    Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Sei, N.; Koike, M.; Yamada, K.

    2011-05-01

    At the National Institute of Advanced Industrial Science and Technology (AIST), a coherent terahertz (THz) radiation source has been developed based on an ultra-short electron beam using an S-band compact electron linac. The designed THz pulse has a high peak power of more than 1 kW in the frequency range 0.1-2 THz. The entire system is located in one research room of about 10 m square. The linac consists of a laser photocathode rf gun (BNL type) with a Cs2Te photocathode load-lock system and two 1.5-m-long S-band accelerator tubes. The electron beam can be accelerated up to approximately 42 MeV. The electron bunch was compressed to less than 1 ps (rms) with a magnetic bunch compressor. The coherent synchrotron radiation (CSR) of the THz region was generated from the ultra-short electron bunch at the 90° bending magnet, and it was extracted from a z-cut quartz window for THz applications. In this work, the THz scanning transmission imaging was successfully demonstrated for measuring the freshness of a vegetable leaf over a period of time.

  3. Analysis of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco, V. M.; Perez-Peraza, J. A.; Mendoza, B. E.; Valdes-Galicia, J. F.; Sosa, O.; Alvarez-Madrigal, M.

    2007-05-01

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (Be10 and C14) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the t Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist . Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist . It can be speculated that such fictitious periodicities hav been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, 3.5, 5.5, 7, 60, 120 and 240 years. The concept of a Glaisberg cycle falls between those of 60 and 120 years. We conclude that the periodicity of 120 years

  4. Low-speckle holographic beam shaping of high-coherence EUV sources

    SciTech Connect

    Anderson, Christopher N.; Miyakawa, Ryan H.; Naulleau, Patrick

    2010-08-01

    This paper describes a method to arbitrarily shape and homogenize high-coherence extreme ultraviolet sources using time-varying holographic optical elements and a scanning subsystem to mitigate speckle. In systems with integration times longer than 100 ms, a speckle contrast below 1% can be achieved.

  5. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    PubMed

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7. PMID:27137299

  6. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    PubMed

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  7. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    DOE PAGES

    Hall, C C.; Biedron, S G.; Edelen, A L.; Milton, S V.; Benson, S; Douglas, D; Li, R; Tennant, C D.; Carlsten, B E.

    2015-03-09

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with themore » measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.« less

  8. Intense terahertz pulses from SLAC electron beams using coherent transition radiation

    SciTech Connect

    Wu Ziran; Fisher, Alan S.; Hogan, Mark; Loos, Henrik; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Lindenberg, Aaron

    2013-02-15

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/A) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  9. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam

    SciTech Connect

    Liu, Shenggang Hu, Min; Chen, Xiaoxing; Zhang, Ping; Gong, Sen; Zhao, Tao; Zhong, Renbin; Zhang, Chao

    2014-05-19

    Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strong radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.

  10. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  11. Conditional generation scheme for high-fidelity Yurke-Stoler states by mixing two coherent beams with a squeezed vacuum state

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-01-01

    The numerical conditions to generate high-fidelity Yurke-Stoler states (| α > + e iψ | - α >)were found for two cascade-placed beam splitters with one squeezed state input and two coherent state inputs. Controlling the amplitudes and the phases of beams allows for various Yurke-Stoler states to be manipulated with ultra-high fidelity, and the expected theoretical fidelity is more than 0.9999.

  12. A high-speed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm

    SciTech Connect

    Huang, Zh M; Liu, C L; Li, J F; Zhang, D Y

    2014-04-28

    A phase controller for coherent beam combining (CBC) of fibre lasers has been designed and manufactured based on a stochastic parallel gradient descent (SPGD) algorithm and a field programmable gate array (FPGA). The theoretical analysis shows that the iteration rate is higher than 1.9 MHz, and the average compensation bandwidth of CBC for 5 or 20 channels is 50 kHz or 12.5 kHz, respectively. The tests show that the phase controller ensures reliable phase locking of lasers: When the phases of five lasers are locked by the improved control strategy with a variable gain, the energy encircled in the target is increased by 23 times than that in the single output, the phase control accuracy is better than λ/20, and the combining efficiency is 92%. (control of laser radiation parameters)

  13. Impact of detector geometry for compressive fan beam snapshot coherent scatter imaging

    NASA Astrophysics Data System (ADS)

    Hassan, Mehadi; Holmgren, Andrew; Greenberg, Joel A.; Odinaka, Ikenna; Brady, David

    2016-05-01

    Previous realizations of coded-aperture X-ray diffraction tomography (XRDT) techniques based on pencil beams image one line through an object via a single measurement but require raster scanning the object in multiple dimensions. Fan beam approaches are able to image the spatial extent of the object while retaining the ability to do material identification. Building on these approaches we present our system concept and geometry of combining a fan beam with energy sensitive/photon counting detectors and a coded aperture to capture both spatial and spectral information about an object at each voxel. Using our system we image slices via snapshot measurements for four different detector configurations and compare their results.

  14. Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity.

    PubMed

    Duda, Timothy F; Collis, Jon M; Lin, Ying-Tsong; Newhall, Arthur E; Lynch, James F; DeFerrari, Harry A

    2012-02-01

    Sound at 85 to 450 Hz propagating in approximately 80-m depth water from fixed sources to a joint horizontal/vertical line array (HLA/VLA) is analyzed. The data are from a continental shelf area east of Delaware Bay (USA) populated with tidally generated long- and short-wavelength internal waves. Sound paths are 19 km in the along-shore (along internal-wave crest) direction and 30 km in the cross-shore direction. Spatial statistics of HLA arrivals are computed as functions of beam steering angle and time. These include array gain, horizontally lagged spatial correlation function, and coherent beam power. These quantities vary widely in magnitude, and vary over a broad range of time scales. For example, correlation scale can change rapidly from forty to five wavelengths, and correlation-scale behavior is anisotropic. In addition, the vertical array can be used to predict correlation expected for adiabatic propagation with cylindrical symmetry, forming a benchmark. Observed variations are in concert with internal-wave activity. Temporal variations of three coherence measures, horizontal correlation length, array gain, and ratio of actual correlation length to predicted adiabatic-mode correlation length, are very strong, varying by almost a factor of ten as internal waves pass.

  15. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  16. Coherence preservation and beam flatness of a single-bounce multilayer monochromator (beamline ID19—ESRF)

    NASA Astrophysics Data System (ADS)

    Rack, A.; Weitkamp, T.; Zanette, I.; Morawe, Ch.; Vivo Rommeveaux, A.; Tafforeau, P.; Cloetens, P.; Ziegler, E.; Rack, T.; Cecilia, A.; Vagovič, P.; Harmann, E.; Dietsch, R.; Riesemeier, H.

    2011-09-01

    Larger spectral bandwidth and higher photon flux density are the major advantages of multilayer monochromators over crystal-based devices. Especially for synchrotron-based hard X-ray microimaging applications the increased photon flux density is important in order to achieve high contrast and resolution in space and/or time. However, the modifications on the beam profile induced by reflection on a multilayer are a drawback which can seriously harm the performance of such a monochromator. A recent study [A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, E. Ziegler, J. Synchrotron Radiat. 17 (2010) 496-510] has shown that the modifications in terms of beam flatness and coherence preservation can be influenced via the material composition of the multilayer coating. The present article extends this knowledge by studying further material compositions used on a daily basis for hard X-ray monochromatization at the beamline ID19 of the European Synchrotron Radiation Facility.

  17. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    SciTech Connect

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H.; Mendonça, J. T.; Galvão, R. M. O.

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  18. BEAM-BEAM 2003 SUMMARY.

    SciTech Connect

    FISCHER,W.SEN,T.

    2003-05-19

    This paper summarizes the presentations and discussions of the Beam-Beam'03 workshop, held in Montauk, Long Island, from May 19 to 23, 2003. Presentations and discussions focused on halo generation from beam-beam interactions; beam-beam limits, especially coherent limits and their effects on existing and future hadron colliders; beam-beam compensation techniques, particularly for long-range interactions; and beam-beam study tools in theory, simulation, and experiment.

  19. Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: A proof of concept

    SciTech Connect

    Rüegsegger, Michael B.; Steiner, Patrick; Kowal, Jens H.; Geiser, Dominik; Pica, Alessia; Aebersold, Daniel M.

    2014-08-15

    Purpose: External beam radiation therapy is currently considered the most common treatment modality for intraocular tumors. Localization of the tumor and efficient compensation of tumor misalignment with respect to the radiation beam are crucial. According to the state of the art procedure, localization of the target volume is indirectly performed by the invasive surgical implantation of radiopaque clips or is limited to positioning the head using stereoscopic radiographies. This work represents a proof-of-concept for direct and noninvasive tumor referencing based on anterior eye topography acquired using optical coherence tomography (OCT). Methods: A prototype of a head-mounted device has been developed for automatic monitoring of tumor position and orientation in the isocentric reference frame for LINAC based treatment of intraocular tumors. Noninvasive tumor referencing is performed with six degrees of freedom based on anterior eye topography acquired using OCT and registration of a statistical eye model. The proposed prototype was tested based on enucleated pig eyes and registration accuracy was measured by comparison of the resulting transformation with tilt and torsion angles manually induced using a custom-made test bench. Results: Validation based on 12 enucleated pig eyes revealed an overall average registration error of 0.26 ± 0.08° in 87 ± 0.7 ms for tilting and 0.52 ± 0.03° in 94 ± 1.4 ms for torsion. Furthermore, dependency of sampling density on mean registration error was quantitatively assessed. Conclusions: The tumor referencing method presented in combination with the statistical eye model introduced in the past has the potential to enable noninvasive treatment and may improve quality, efficacy, and flexibility of external beam radiotherapy of intraocular tumors.

  20. Active annular-beam laser autocollimator system.

    PubMed

    Yoder, P R; Schlesinger, E R; Chickvary, J L

    1975-08-01

    An autocollimator using an axicon and a beam expander telescope to generate a 12.5-cm. o.d. annular beam of helium-neon laser light with high (25:1) diameter-to-width ratio has been developed. It is used with a two-axis, electromagnetically actuated mirror assembly to acquire automatically and maintain dynamically autocollimation from a nearby but separately mounted annular mirror. The servo system controls beam alignment even though angular vibratory motions of the annular mirror make it appear to tilt relative to the autocollimator as much as 7 mrad at frequencies below 300 Hz. This paper describes the optical system and the alignment sensing and control system.

  1. Electron beam injection during active experiments. II - Collisional effects

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    During active beam experiments, the presence of high neutral densities at low altitudes and/or during thruster firings has been observed to modify the spacecraft charging and the properties of the beam. Two-dimensional (three-velocity) electromagnetic particle simulations with ionizing collisions incorporated are used to investigate the modification of the beam-plasma interaction as the neutral density is increased. It is shown that when the spacecraft is uniformly immersed in a neutral cloud, most of the ionization is produced by direct ionization by the beam and its secondaries, rather than via vehicle-induced or wave-induced ionization for the neutral densities considered.

  2. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOEpatents

    Douglas, David R.; Tennant, Christopher D.

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  3. High-power beam-based coherently enhanced THz radiation source

    SciTech Connect

    Li, Yuelin; Sun, Yin-E; Kim, Kwang-Je; /Argonne

    2008-08-01

    We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz.

  4. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, A.; Lunin, A.; Yakovlev, V.; Gonin, I.; Khabiboulline, T.; Saini, A.; Solyak, N.; Yostrikov, A.

    2012-09-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  5. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  6. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  7. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  8. Coherent beam control with an all-dielectric transformation optics based lens

    PubMed Central

    YI, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation. PMID:26729400

  9. Greater electroencephalographic coherence between left and right temporal lobe structures during increased geomagnetic activity.

    PubMed

    Saroka, Kevin S; Caswell, Joseph M; Lapointe, Andrew; Persinger, Michael A

    2014-02-01

    Interhemispheric coherence for 19 channel EEG activity collected over a three year period from 184 men and women who relaxed in a quiet, darkened chamber showed significant increased coherence between caudal temporal regions for the 11 Hz frequency band during increased (>∼8 nT) global geomagnetic activity at the time of measurement. Detailed analyses from source-localization indicated that a likely origin was the parahippocampal regions whose net differences at 10, 11 and 12 Hz intervals were significantly correlated with geomagnetic activity. Analyses of residuals to obtain a "purer" measure of parahippocampal contributions indicated that interhemispheric temporal lobe coherence across unit increments between 1 and 40 Hz revealed the most statistically significant peaks at 7.5 Hz and 19.5 Hz. These weak but reliable correlations between global geomagnetic activity and the degree of inter-temporal lobe coherence for normal people relaxing in a dark, quiet area are consistent with the results of multiple studies indicating that intrusive experiences such as "presences" or "hallucinations" are more frequent when global geomagnetic activity increases above ∼15-20 nT.

  10. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  11. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control.

    PubMed

    Geng, Chao; Luo, Wen; Tan, Yi; Liu, Hongmei; Mu, Jinbo; Li, Xinyang

    2013-10-21

    A novel approach of tip/tilt control by using divergence cost function in stochastic parallel gradient descent (SPGD) algorithm for coherent beam combining (CBC) is proposed and demonstrated experimentally in a seven-channel 2-W fiber amplifier array with both phase-locking and tip/tilt control, for the first time to our best knowledge. Compared with the conventional power-in-the-bucket (PIB) cost function for SPGD optimization, the tip/tilt control using divergence cost function ensures wider correction range, automatic switching control of program, and freedom of camera's intensity-saturation. Homemade piezoelectric-ring phase-modulator (PZT PM) and adaptive fiber-optics collimator (AFOC) are developed to correct piston- and tip/tilt-type aberrations, respectively. The PIB cost function is employed for phase-locking via maximization of SPGD optimization, while the divergence cost function is used for tip/tilt control via minimization. An average of 432-μrad of divergence metrics in open loop has decreased to 89-μrad when tip/tilt control implemented. In CBC, the power in the full width at half maximum (FWHM) of the main lobe increases by 32 times, and the phase residual error is less than λ/15. PMID:24150347

  12. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    SciTech Connect

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  13. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-06-20

    A theoretical formulation of the spherical-wave two-frequency mutual coherence function (MCF) for a propagation path characterized by a complex ABCD matrix with anisotropic atmospheric turbulence existing somewhere is developed. A specialization of this formulation leads to an expression for the two-frequency MCF of an equivalent pulsed Gaussian beam propagating in weak anisotropic atmospheric turbulence along a horizontal line-of-sight path; relevant closed-form analytical solutions under both near- and far-field conditions are obtained. The small- and large-scale solutions for both the plane- and spherical-wave spatial-coherence radii in either horizontal or vertical direction are derived. Analysis shows that the formula for the on-axis two-frequency MCF of a pulsed Gaussian beam under the weak-turbulence condition in both the near- and far-field regions is distinguished from that applicable in the strong-turbulence limit only by whether the turbulence-induced beam broadening can be thought of as negligible. Under both the near- and far-field conditions, the turbulence-induced increment of the mean-square temporal-pulse half-width is proportional to the effective anisotropy factor of turbulence. The MCF becomes statistically anisotropic due to the anisotropy of turbulence. For the spatial coherence radius of either a plane or spherical wave propagating along a horizontal line-of-sight path in anisotropic atmospheric turbulence, the corresponding small-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient depending only on the effective anisotropy factor of turbulence. The corresponding large-scale solution is proportional to that for the plane-wave spatial-coherence radius in the isotropic-turbulence case with a proportionality coefficient that depends on both the effective anisotropy factor and spectral index of turbulence.

  14. Production of a coherent pair of light beams with a microwave frequency difference from a single extended-cavity diode laser.

    PubMed

    Yim, Sin Hyuk; Cho, D

    2010-02-01

    We produced a pair of coherent laser beams with a 3-GHz frequency difference by optically phase locking two modes from a single, multimode extended-cavity diode laser. This method is complementary to either a direct modulation or an optical phase locking of two independent lasers. A large differential frequency shift between the two modes of the laser allows efficient phase locking. We developed a simple theory to account for the large differential frequency shift. Allan deviation of the beat frequency when the two modes are phase-locked drops as an inverse of the measurement time and it reaches 10(-14) when the time is 1 h. Coherent population trapping spectroscopy of Rb atoms using the phase-locked beams resulted in a spectrum as narrow as that of the case using direct modulation by a stable frequency synthesizer.

  15. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly. PMID:26368074

  16. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    NASA Astrophysics Data System (ADS)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-01

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  17. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  18. Coherent terahertz radiation from high-harmonic component of modulated free-electron beam in a tapered two-asymmetric grating structure

    SciTech Connect

    Zhang Yaxin; Zhou Yucong; Dong Liang; Liu Shenggang

    2012-09-17

    Based on the mechanism of incoherent diffraction radiation excited by an electron bunch in a waveguide with periodic structure, this paper presents the concept of coherent terahertz (THz) radiation from the high-harmonic component of a modulated free-electron beam in a tapered two-asymmetric grating structure. The results show that in this mechanism 0.43 THz radiation can be generated with 10 A/cm{sup 2} current density, and the efficiency can reach 0.5%. Because of the low required current density and relative high efficiency, this concept shows the application potential for electron-beam-driven terahertz sources.

  19. Coherence and frequency in the reticular activating system (RAS).

    PubMed

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J

    2013-06-01

    This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.

  20. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.

  1. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  2. Vibration control of flexible beams using an active hinge

    NASA Technical Reports Server (NTRS)

    Cudney, H. H., Jr.; Inman, D. J.; Horner, G. C.

    1985-01-01

    The use of an active hinge to attenuate the transverse vibrations of a flexible beam is examined. A slender aluminum beam is suspended vertically, cantilevered at the top. An active hinge is placed at the node of the second vibration mode. The active hinge consists of a torque motor, strain gauge, and tachometer. A control law is implemented using both beam-bending strain and the relative angular velocity measured at this hinge, thereby configuring the hinge to act as an active damper. Results from implementing this control law show little improvement in the first mode damping ratio, 130 percent increase in the second mode damping ratio, and 180 percent increase in the third mode damping ratio. The merits of using a motor with a gearbox are discussed.

  3. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji

    2013-09-15

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are {sup 12}C nuclei, {sup 16}O nuclei, and {sup 40}Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP

  4. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  5. Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction.

    PubMed

    Lee, Sang Wook; Landers, Katlin; Harris-Love, Michelle L

    2014-03-01

    In the human upper extremity (UE), unintended effects of proximal muscle activation on muscles controlling the hand could be an important aspect of motor control due to the necessary coordination of distal and proximal segments during functional activities. This study aimed to elucidate the effects of concurrent activation of elbow muscles on the coordination between hand muscles performing a grip task. Eleven healthy subjects performed precision grip tasks while a constant extension or flexion moment was applied to their elbow joints, inducing a sustained submaximal contraction of elbow muscles to counter the applied torque. Activation of four hand muscles was measured during each task condition using surface electromyography (EMG). When concurrent activation of elbow muscles was induced, significant changes in the activation levels of the hand muscles were observed, with greater effects on the extrinsic finger extensor (23.2 % increase under 30 % elbow extensor activation; p = 0.003) than extrinsic finger flexor (14.2 % increase under 30 % elbow flexor activation; p = 0.130). Elbow muscle activation also induced involuntary changes in the intrinsic thumb flexor activation (44.6 % increase under 30 % elbow extensor activation; p = 0.005). EMG-EMG coherence analyses revealed that elbow muscle activation significantly reduced intermuscular coherence between distal muscle pairs, with its greatest effects on coherence in the β-band (13-25 Hz) (average of 17 % decrease under 30 % elbow flexor activation). The results of this study provide evidence for involuntary, muscle-specific interactions between distal and proximal UE muscles, which may contribute to UE motor performance in health and disease.

  6. Localized Si enrichment in coherent self-assembled Ge islands grown by molecular beam epitaxy on (001)Si single crystal

    NASA Astrophysics Data System (ADS)

    Valvo, M.; Bongiorno, C.; Giannazzo, F.; Terrasi, A.

    2013-01-01

    Transmission electron microscopy (TEM), atomic force microscopy, and Rutherford backscattering spectrometry (RBS) have been used to investigate the morphology, structure, and composition of self-assembled Ge islands grown on Si (001) substrates by molecular beam epitaxy (MBE) at different temperatures. Increasing the temperature from 550 °C to 700 °C causes progressive size and shape uniformity, accompanied by enhanced Si-Ge intermixing within the islands and their wetting layer. Elemental maps obtained by energy filtered-TEM (EF-TEM) clearly show pronounced Si concentration not only in correspondence of island base perimeters, but also along their curved surface boundaries. This phenomenon is strengthened by an increase of the growth temperature, being practically negligible at 550 °C, while very remarkable already at 650 °C. The resulting island shape is affected, since this localized Si enrichment not only provides strain relief near their highly stressed base perimeters but it also influences the cluster surface energy by effective alloying, so as to form Si-enriched SiGe interfaces. Further increase to 700 °C causes a shape transition where more homogenous Si-Ge concentration profiles are observed. The crucial role played by local "flattened" alloyed clusters, similar to truncated pyramids with larger bases and enhanced Si enrichment at coherently stressed interfaces, has been further clarified by EF-TEM analysis of a multi-layered Ge/Si structure containing stacked Ge islands grown at 650 °C. Sharp accumulation of Si has been here observed not only in proximity of the uncapped island surface in the topmost layer but also at the buried Ge/Si interfaces and even in the core of such capped Ge islands.

  7. Electron-beam activated GaAs-switches

    SciTech Connect

    Kirkman, G.; Hur, J.; Jiang, B.; Reinhardt, N.; Allen, R.J.; Schoenbach, K.H.

    1994-12-31

    Electron-beam excitation allows the authors to modulate the conductance of wide-gap semi-insulating semiconductors over a wide range and to use them as variable resistors and as high power switches. The penetration depth of electrons, the electron range, was computed by means of a Monte-Carlo code. For electron energies of 30 keV, it is approximately 2 micrometers. In order to activate the switch material over a larger depth, the switch material, semi-insulating GaAs, was doped over a thickness corresponding to the electron range with zinc, which form shallow acceptors in GaAs. The Zn layers serves as an efficient source of cathodoluminescence, transforming the electron energy into photon energy and therefore converting the electron-beam activated switch into a photoconductive one. Experiments with 2 mm semi-insulating GaAs-switches with p-doped cathode layer have been performed where the electron beam was injected through one of the metal contacts which were placed on either face of the GaAs wafer. The 500 ns electron beam has electron energies of up to 30 keV and current densities of several A/cm{sup 2}. The results show that electron-beam controlled GaAs switches can be safely operated at switch voltages of several kV`s and current densities of 50 A/cm{sup 2} with low energy electron-beams as control elements.

  8. Activation detection in functional near-infrared spectroscopy by wavelet coherence.

    PubMed

    Zhang, Xin; Yu, Jian; Zhao, Ruirui; Xu, Wenting; Niu, Haijing; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) detects hemodynamic responses in the cerebral cortex by transcranial spectroscopy. However, measurements recorded by fNIRS not only consist of the desired hemodynamic response but also consist of a number of physiological noises. Because of these noises, accurately detecting the regions that have an activated hemodynamic response while performing a task is a challenge when analyzing functional activity by fNIRS. In order to better detect the activation, we designed a multiscale analysis based on wavelet coherence. In this method, the experimental paradigm was expressed as a binary signal obtained while either performing or not performing a task. We convolved the signal with the canonical hemodynamic response function to predict a possible response. The wavelet coherence was used to investigate the relationship between the response and the data obtained by fNIRS at each channel. Subsequently, the coherence within a region of interest in the time-frequency domain was summed to evaluate the activation level at each channel. Experiments on both simulated and experimental data demonstrated that the method was effective for detecting activated channels hidden in fNIRS data. PMID:25562502

  9. Conceptual coherence affects phonological activation of context objects during object naming.

    PubMed

    Oppermann, Frank; Jescheniak, Jörg D; Schriefers, Herbert

    2008-05-01

    In 4 picture-word interference experiments, speakers named a target object that was presented with a context object. Using auditory distractors that were phonologically related or unrelated either to the target object or the context object, the authors assessed whether phonological processing was confined to the target object or not. Phonological activation of the context objects was reliably observed if the target and context objects were embedded in a conceptually coherent scene (e.g., if the picture showed a mouse eating some cheese), regardless of whether the target was cued by its thematic role (agent vs. patient) or by color. However, this activation dissipated if the two objects were presented in an arbitrary object array (e.g., if the cheese was presented along with a finger). These findings suggest that conceptual coherence among multiple objects affects the information flow in the conceptual-lexical system during speech planning. PMID:18444758

  10. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  11. Cross-sectional imaging of functional activation in the rat somatosensory cortex with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aguirre, A. D.; Chen, Y.; Ruvinskaya, L.; Devor, A.; Boas, D. A.; Fujimoto, J. G.

    2005-08-01

    Simultaneous optical coherence tomography (OCT) and video microscopy were performed on the rat somatosensory cortex through a thinned skull during forepaw stimulation. Fractional change measurements in OCT images reveal a functional signal timecourse similar to well understood hemodynamic signal timecourses measured with video microscopy. The precise etiology of the observed OCT functional signal is still under investigation, but these results suggest that OCT can provide high-resolution cross-sectional images of functional neuro-vascular activation.

  12. The development of enabling technologies for producing active interrogation beams

    SciTech Connect

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F.; Vodolaga, B.; Terekhin, V.; Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L.; Parkhomchuk, V.; Reva, V.; Vostrikov, V.; Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A.

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  13. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  14. Active local volume displacement cancellation of a vibrating baffled beam

    NASA Astrophysics Data System (ADS)

    Zahui, Marcellin

    An active noise control apparatus is developed. The device reduces the sound radiated from a vibrating clamped beam. The attenuation of the sound field is obtained through minimization of local volume displacements of the vibrating beam. Two single- input/single-output cancellation devices are used. Each device employs a motion sensor and an acoustic actuator. The actuator is a loudspeaker equipped with a pressure sensor to detect its volume displacement. The motion sensor signal is related to the local volume displacement of the structure which is then reduced by a loudspeaker driven with an equal but opposing volume displacement. The volume displacement sensors are developed and fabricated using Polyvinylidene Fluoride (PVDF). They measure the local volume displacements of the vibrating beam. The pressure sensor is mounted in the loudspeaker enclosure. It provides the feedback signal for the loudspeaker volume displacement control. Previous work showed the successful implementation of this technique for uniformly vibrating radiators. This thesis presents the development of this technique for the reduction of sound radiated from a vibrating beam. First, a numerical local volume displacement cancellation experiment is performed using several loudspeakers, each canceling the volume displacement of a section of the beam. The finite element method is used to calculate the velocity distribution of the vibrating beam. A discretized form of the Rayleigh integral is then used to find the sound pressure and the sound power radiated before and after cancellation. Second, the numerical results are verified by laboratory experiments using a beam divided into two sections. Two motion sensors for the beam and one pressure sensor for each loudspeaker are fabricated and thoroughly checked. The cancellation experiment is then performed on a broadband random noise using two independent Proportional-Derivative (PD) controllers.

  15. Experimental demonstration of an intensity minimum at the focus of a laser beam created by spatial coherence: application to the optical trapping of dielectric particles.

    PubMed

    Raghunathan, Shreyas B; van Dijk, Thomas; Peterman, Erwin J G; Visser, Taco D

    2010-12-15

    In trying to manipulate the intensity distribution of a focused field, one typically uses amplitude or phase masks. Here we explore an approach, namely, varying the state of spatial coherence of the incident field. We experimentally demonstrate that the focusing of a Bessel-correlated beam produces an intensity minimum at the geometric focus rather than a maximum. By varying the spatial coherence width of the field, which can be achieved by merely changing the size of an iris, it is possible to change this minimum into a maximum in a continuous manner. This method can be used, for example, in novel optical trapping schemes, to selectively manipulate particles with either a low or high index of refraction. PMID:21165125

  16. Search for charged current coherent pion production on carbon in a few-GeV neutrino beam

    NASA Astrophysics Data System (ADS)

    Hiraide, K.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Mariani, C.; Masuike, S.; Matsuoka, K.; Metcalf, W.; Mills, G.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Nguyen, V.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H.; Wilking, M. J.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2008-12-01

    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, νμC12→μ-C12π+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67×10-2 at mean neutrino energy 1.1 GeV and 1.36×10-2 at mean neutrino energy 2.2 GeV.

  17. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  18. Response of Retinal Blood Flow to Systemic Hyperoxia as Measured with Dual-Beam Bidirectional Doppler Fourier-Domain Optical Coherence Tomography

    PubMed Central

    Werkmeister, René M.; Palkovits, Stefan; Told, Reinhard; Gröschl, Martin; Leitgeb, Rainer A.; Garhöfer, Gerhard; Schmetterer, Leopold

    2012-01-01

    Purpose There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV). Methods 10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity. Results As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher. Conclusion A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo. PMID:23029289

  19. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  20. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations. PMID:26560913

  1. Prethermalization in a quenched one-dimensional quantum fluid of light. Intrinsic limits to the coherent propagation of a light beam in a nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Larré, Pierre-Élie; Carusotto, Iacopo

    2016-03-01

    We study the coherence properties of a laser beam after propagation along a one-dimensional lossless nonlinear optical waveguide. Within the paraxial, slowly-varying-envelope, and single-transverse-mode approximations, the quantum propagation of the light field in the nonlinear medium is mapped onto a quantum Gross-Pitaevskii-type evolution of a closed one-dimensional system of many interacting photons. Upon crossing the entrance and the back faces of the waveguide, the photon-photon interaction parameter undergoes two sudden jumps, resulting in a pair of quantum quenches of the system's Hamiltonian. In the weak-interaction regime, we use the modulus-phase Bogoliubov theory of dilute Bose gases to describe the quantum fluctuations of the fluid of light and predict that correlations typical of a prethermalized state emerge locally in their final form and propagate in a light-cone way at the Bogoliubov speed of sound in the photon fluid. This peculiar relaxation dynamics, visible in the light exiting the waveguide, results in a loss of long-lived coherence in the beam of light.

  2. Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence.

    PubMed

    Cang, Ji; Liu, Xu

    2011-09-01

    The performance of partially coherent free-space optical links is investigated in the moderate to strong fluctuation regime of non-Kolmogorov turbulence. The expressions for large- and small-scale log-irradiance flux variance are obtained in non-Kolmogorov turbulence. By employing the gamma-gamma distribution of irradiance fluctuations, the effects of spatial coherence of the source, index of non-Kolmogorov spectrum, and size of the receiver on channel capacity for horizontal links are discussed. Results show that channel capacity presents fluctuating behaviors with the variation of alpha for longer links and increases for alpha values higher than 11/3.

  3. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    NASA Technical Reports Server (NTRS)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  4. Fresnel Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Quiney, H. M.; Dhal, B. B.; Tran, C. Q.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.

    2006-07-01

    We present an x-ray coherent diffractive imaging experiment utilizing a nonplanar incident wave and demonstrate success by reconstructing a nonperiodic gold sample at 24 nm resolution. Favorable effects of the curved beam illumination are identified.

  5. Passive and active plasma deceleration for the compact disposal of electron beams

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating at high beam power.

  6. Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors

    SciTech Connect

    Santana Leitner, Mario; Fasso, Alberto; Fisher, Alan S.; Nuhn, Heinz D.; Dooling, Jeffrey C.; Berg, William; Yang, Bin X.; /Argonne

    2010-09-14

    In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

  7. Active retrodirective arrays for SPS beam pointing. [phase conjugation

    NASA Technical Reports Server (NTRS)

    Chernoff, R.

    1980-01-01

    The basic requirement of the SPS beam pointing system is that it deliver a certain amount of S-band (lambda = 12.5 cm) power to a 9.6 km diameter receiving rectenna on the ground. The power is transmitted from a 1.0 km diameter antenna array on the SPS, which is, for a rectenna at about plus or minus 40 deg. latitude, some 37.5x10 to the 6th power km distant. At the present time ARA's appear to be the best bet to realize this very stringent beam pointing requirement. An active retrodirective array (ARA) transmits a beam towards the apparent source of an illuminating signal called the pilot. The array produces, not merely reflects, RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the "conjugate" of that received by the element. Phase conjugate circuits and pointing errors in ARA's are described. Results obtained using a 2-element X-band ARA and an 8-element S-band ARA are included.

  8. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity.

    PubMed

    Watanabe, Y; Cornélissen, G; Halberg, F; Otsuka, K; Ohkawa, S I

    2001-01-01

    Helio-geomagnetic influences on the human circulation are investigated on the basis of an 11-year-long record from a clinically healthy cardiologist, 35 years of age at the start of monitoring. He measured his blood pressure and heart rate around the clock with an ambulatory monitor programmed to inflate an arm cuff, mostly at intervals of 15-30 minutes, with only few interruptions, starting in August 1987. While monitoring is continuing, data collected up to July 1998 are analyzed herein by cosinor rhythmometry and cross-spectral coherence with matching records of solar activity, gauged by Wolf numbers (WN) and of the geomagnetic disturbance index, Kp. A direct association between heart rate (HR) and WN is found to be solar cycle stage-dependent, whereas an inverse relationship between heart rate variability (HRV) and WN is found consistently. An inverse relation is also observed between WN and the variability in systolic blood pressure (SBP), and to a lesser extent, diastolic blood pressure (DBP). Moreover, HR is cross-spectrally coherent with WN at a frequency of one cycle in about 7.33 months. The results support previously reported associations on morbidity and mortality statistics, extending their scope to human physiology monitored longitudinally. PMID:11774871

  9. Lunisolar tidal waves, geomagnetic activity and epilepsy in the light of multivariate coherence.

    PubMed

    Mikulecky, M; Moravcikova, C; Czanner, S

    1996-08-01

    The computed daily values of lunisolar tidal waves, the observed daily values of Ap index, a measure of the planetary geomagnetic activity, and the daily numbers of patients with epileptic attacks for a group of 28 neurology patients between 1987 and 1992 were analyzed by common, multiple and partial cross-spectral analysis to search for relationships between periodicities in these time series. Significant common and multiple coherence between them was found for rhythms with a period length over 3-4 months, in agreement with seasonal variations of all three variables. If, however, the coherence between tides and epilepsy was studied excluding the influence of geomagnetism, two joint infradian periodicities with period lengths of 8.5 and 10.7 days became significant. On the other hand, there were no joint rhythms for geomagnetism and epilepsy when the influence of tidal waves was excluded. The result suggests a more primary role of gravitation, compared with geomagnetism, in the multivariate process studied. PMID:9181091

  10. [On the stability and modifiability of the sense of coherence in active seniors].

    PubMed

    Wiesmann, U; Rölker, S; Ilg, H; Hirtz, P; Hannich, H-J

    2006-04-01

    According to Antonovsky, the sense of coherence (SOC) determines health and wellbeing. This life orientation is shaped up to the age of 30 and is supposed to remain constant up to senior age. In a field study, in which the SOC, psycho-social resources and subjective health were assessed at three points in time, it could be shown for the first time that the SOC in old age can be malleable and expanding. The master sample (time t(1)) consisted of N = 58 active and "healthy" seniors at the mean age of 66.3 years (65.5% female), who decided to take part in a 14-week program focusing on physical activity and/or self-reflection (endurance training, strength training, yoga, or meditation), respectively. One year before, 90% of them had participated in the Greifswald Aging Study (t0). The intervention study was attended regularly by n = 42 persons (t1 and t2). The SOC and associated health appraisals remained constant over a period of one year (t0-t1); re-test reliabilities varied from satisfactory to very good. Overall, the current SOC (t1) was more important than the past SOC (t0) in accounting for current well-being (t1). The intervention (t1-t2) revealed that the elderly's SOC was significantly strengthened-independently of the program they took part in. Correspondingly, participants' wellbeing, subjective health and psycho-social resources were enhanced. Taking part in a systematic, age-based and group-oriented program that encourages an active and productive every-day life brings about coherence-promoting and health-promoting life experiences in old age.

  11. Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes

    PubMed Central

    Doblhoff-Dier, Veronika; Schmetterer, Leopold; Vilser, Walthard; Garhöfer, Gerhard; Gröschl, Martin; Leitgeb, Rainer A.; Werkmeister, René M.

    2014-01-01

    We present a system capable of measuring the total retinal blood flow using a combination of dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes and a fundus camera-based retinal vessel analyzer. Our results show a high degree of conformity of venous and arterial flows, which corroborates the validity of the measurements. In accordance with Murray’s law, the log-log regression coefficient between vessel diameter and blood flow was found to be ~3. The blood’s velocity scaled linearly with the vessel diameter at higher diameters (> 60 µm), but showed a clear divergence from the linear dependence at lower diameters. Good agreement with literature data and the large range and high measurement sensitivity point to a high potential for further investigations. PMID:24575355

  12. Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes.

    PubMed

    Doblhoff-Dier, Veronika; Schmetterer, Leopold; Vilser, Walthard; Garhöfer, Gerhard; Gröschl, Martin; Leitgeb, Rainer A; Werkmeister, René M

    2014-02-01

    We present a system capable of measuring the total retinal blood flow using a combination of dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes and a fundus camera-based retinal vessel analyzer. Our results show a high degree of conformity of venous and arterial flows, which corroborates the validity of the measurements. In accordance with Murray's law, the log-log regression coefficient between vessel diameter and blood flow was found to be ~3. The blood's velocity scaled linearly with the vessel diameter at higher diameters (> 60 µm), but showed a clear divergence from the linear dependence at lower diameters. Good agreement with literature data and the large range and high measurement sensitivity point to a high potential for further investigations.

  13. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  14. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Collimation and compression of atomic beams under conditions of coherent population trapping

    NASA Astrophysics Data System (ADS)

    Kosachev, D. V.; Matisov, B. G.; Rozhdestvenskiĭ, Yu V.

    1992-07-01

    A theoretical investigation was made of the collimation and compression of atomic beams under two-frequency cooling conditions. It was possible to reach cooled atom temperatures right down to TR = \\hslash2k2/2MkB approx 10-6 K, determined by the recoil energy of the atom. The dependences of the temperature on the frequency difference between the light waves were investigated, for velocities near zero, and these were found to be in qualitative agreement with those observed experimentally. An expression for the beam diameter after compression by diverging waves was derived. Estimates of these effects are given for cases of practical importance.

  16. Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.

    PubMed

    Macleod, Neil A; Molero, Francisco; Weidmann, Damien

    2015-01-26

    A widely tunable active coherent laser spectrometer (ACLaS) has been demonstrated for standoff detection of broadband absorbers in the 1280 to 1318 cm-1 spectral region using an external cavity quantum cascade laser as a mid-infrared source. The broad tuning range allows detection and quantification of vapor phase molecules, such as dichloroethane, ethylene glycol dinitrate, and tetrafluoroethane. The level of confidence in molecular mixing ratios retrieved from interfering spectral measurements is assessed in a quantitative manner. A first qualitative demonstration of condensed phase chemical detection on nitroacetanilide has also been conducted. Detection performances of the broadband ACLaS have been placed in the context of explosive detection and compared to that obtained using distributed feedback quantum cascade lasers.

  17. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  18. Laser beam active brazing of metal ceramic joints

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Bach, Friedrich W.; von Alvensleben, Ferdinand; Kreutzburg, K.

    1996-04-01

    The use of engineering ceramics is becoming more and more important. Reasons for this are the specific properties of these materials, such as high strength, corrosion resistance and wear resistance. To apply the advantages of ceramics, joining techniques of metal ceramic parts are required. In this paper, joining of metal ceramic joints by laser beam brazing is presented. This joining technique is characterized by local heat input, and the minimal thermal stress of the brazed components. During the investigations, an Nd:YAG laser and a vacuum chamber were applied. The advantages of Nd:YAG lasers are the simple mechanical construction, and laser beam guidance via quartz glass fibers, which leads to high handling flexibility. In addition, most of the materials show a high absorption rate for this kind of radiation. As materials, ceramic Al2O3 with a purity of 99.4% and metals such as X5CrNi189 and Fe54Ni29Co17 were used. As a filler material, commercially available silver and silver- copper brazes with chemically active elements like titanium were employed. During this study, the brazing wetting behavior and the formation of diffusion layers in dependence on processing parameters were investigated. The results have shown that high brazing qualities can be achieved by means of the laser beam brazing process. Crack-free joining of metal ceramic parts is currently only possible by the use of metals such as Fe54Ni29Co17 because of its low thermal expansion coefficient, which reduces thermal stresses within the joining zone.

  19. Changes of internal state are expressed in coherent shifts of neuromuscular activity in Aplysia feeding behavior.

    PubMed

    Zhurov, Yuriy; Proekt, Alex; Weiss, Klaudiusz R; Brezina, Vladimir

    2005-02-01

    The multitasking central pattern generator (CPG) that drives consummatory feeding behaviors of Aplysia can produce ingestive, egestive, and intermediate motor programs. External stimuli trigger the programs but, remarkably, do not directly specify which type of program is produced. Rather, recent work has proposed, the type of program is determined by the internal network state of the CPG that has developed in response to the previous history of the stimulation. Here we have tested a key prediction of this network-state hypothesis. If the network state has a real existence and governs real functional behavior, changes in the state should be seen as coherent, coordinated changes along many dimensions of interneuron and motor neuron activity, muscle contraction, and ultimately movement, that underlie functional behavior. In reduced neuromuscular preparations, we elicited repetitive motor programs by continued stimulation of the esophageal nerve while recording the firing of motor neurons B8, B15, B16, B4/5, and B48, and contractions of the accessory radula closer and I7-I10 muscles that respectively close and open the animal's food-grasping organ, the radula. Using sonomicrometric techniques, we similarly recorded the movement of the radula in the complete buccal mass. Successive esophageal nerve programs indeed exhibited clear progressive changes in motor neuron firing, muscle contractions, and the phasing of radula movements within each cycle, from an initially intermediate or even ingestive character to a strongly egestive character. We conclude that the Aplysia feeding CPG really has a coherent internal network state whose dynamics are likely to be reflected in the real behavior of the animal.

  20. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction.

    PubMed

    Li, Ming; Cvijetic, Milorad

    2015-02-20

    We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.

  1. Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention.

    PubMed

    Taylor, K; Mandon, S; Freiwald, W A; Kreiter, A K

    2005-09-01

    Attention serves to select objects from often complex scenes for enhanced processing and perception. In particular, the perception of shape depends critically on attention for integrating the various parts of the selected object into a coherent representation of object shape. To study whether oscillatory neuronal synchrony may serve as a mechanism of attention in shape perception, we introduced a novel shape-tracking task requiring sustained attention to a morphing shape. Attention was found to strongly increase oscillatory currents underlying the recorded field potentials in the gamma-frequency range, thus indicating enhanced neuronal synchrony within the population of V4 neurons representing the attended stimulus. Errors indicating a misdirection of attention to the distracter instead of the target were preceded by a corresponding shift of oscillatory activity from the target's neuronal representation to that of the distracter. No such effect was observed for errors unrelated to attention. Modulations of the attention-dependent enhancement of oscillatory activity occurred in correspondence with changing attentional demands during the course of a trial. The specificity of the effect of attentional errors together with the close coupling between attentional demand and oscillatory activity support the hypothesis that oscillatory neuronal synchrony serves as a mechanism of attention.

  2. Linear analysis of active-medium two-beam accelerator

    NASA Astrophysics Data System (ADS)

    Voin, Miron; Schächter, Levi

    2015-07-01

    We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is close to active-medium resonant frequency, resulting in amplification of the former and domination of a single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze extensively the impact of various parameters on the wakefield amplification process.

  3. Active vibration control of a free-free beam by using a tendon mechanism

    NASA Astrophysics Data System (ADS)

    Tani, Junji; Ueda, Hiroki

    This paper is concerned with an active vibration control of a free-free beam. The beam is reduced to a finite-degree-of-freedom system by the modal analysis, in which the mode function is derived from the transfer matrix method. A control force is produced by a pair of tendons and a DC servo motor attached to the beam. The state of the beam is presumed by the minimum order state observer and the control force is determined by the digital optimum regulator theory. It is found that the active tendon control method is effective to suppress the vibration of the free-free beam.

  4. Cortical regions activated by the subjective sense of perceptual coherence of environmental sounds: a proposal for a neuroscience of intuition.

    PubMed

    Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves

    2008-09-01

    According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input. PMID:18814468

  5. Cortical regions activated by the subjective sense of perceptual coherence of environmental sounds: a proposal for a neuroscience of intuition.

    PubMed

    Volz, Kirsten G; Rübsamen, Rudolf; von Cramon, D Yves

    2008-09-01

    According to the Oxford English Dictionary, intuition is "the ability to understand or know something immediately, without conscious reasoning." In other words, people continuously, without conscious attention, recognize patterns in the stream of sensations that impinge upon them. The result is a vague perception of coherence, which subsequently biases thought and behavior accordingly. Within the visual domain, research using paradigms with difficult recognition has suggested that the orbitofrontal cortex (OFC) serves as a fast detector and predictor of potential content that utilizes coarse facets of the input. To investigate whether the OFC is crucial in biasing task-specific processing, and hence subserves intuitive judgments in various modalities, we used a difficult-recognition paradigm in the auditory domain. Participants were presented with short sequences of distorted, nonverbal, environmental sounds and had to perform a sound categorization task. Imaging results revealed rostral medial OFC activation for such auditory intuitive coherence judgments. By means of a conjunction analysis between the present results and those from a previous study on visual intuitive coherence judgments, the rostral medial OFC was shown to be activated via both modalities. We conclude that rostral OFC activation during intuitive coherence judgments subserves the detection of potential content on the basis of only coarse facets of the input.

  6. Active coherent laser spectrometer for remote detection and identification of chemicals

    NASA Astrophysics Data System (ADS)

    MacLeod, Neil A.; Weidmann, Damien

    2012-10-01

    Currently, there exists a capability gap for the remote detection and identification of threat chemicals. We report here on the development of an Active Coherent Laser Spectrometer (ACLaS) operating in the thermal infrared and capable of multi-species stand-off detection of chemicals at sub ppm.m levels. A bench top prototype of the instrument has been developed using distributed feedback mid-infrared quantum cascade lasers as spectroscopic sources. The instrument provides active eye-safe illumination of a topographic target and subsequent spectroscopic analysis through optical heterodyne detection of the diffuse backscattered field. Chemical selectivity is provided by the combination of the narrow laser spectral bandwidth (typically < 2 MHz) and frequency tunability that allows the recording of the full absorption spectrum of any species within the instrument line of sight. Stand-off detection at distances up to 12 m has been demonstrated on light molecules such as H2O, CH4 and N2O. A physical model of the stand-off detection scenario including ro-vibrational molecular absorption parameters was used in conjunction with a fitting algorithm to retrieve quantitative mixing ratio information on multiple absorbers.

  7. Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy

    SciTech Connect

    Wang, L. B.; Guo, J. K.; Kang, N. E-mail: hqxu@pku.edu.cn; Li, Sen; Fan, Dingxun; Pan, Dong; Zhao, Jianhua; Xu, H. Q. E-mail: hqxu@pku.edu.cn

    2015-04-27

    We report low-temperature magnetotransport studies of individual InAs nanowires grown by molecule beam epitaxy. At low magnetic fields, the magnetoconductance characteristics exhibit a crossover between weak antilocalization and weak localization by changing either the gate voltage or the temperature. The observed crossover behavior can be well described in terms of relative scales of the transport characteristic lengths extracted based on the quasi-one-dimensional theory of weak localization in the presence of spin-orbit interaction. The spin relaxation length extracted from the magnetoconductance data is found to be in the range of 80–100 nm, indicating the presence of strong spin-orbit coupling in the InAs nanowires. Moreover, the amplitude of universal conductance fluctuations in the nanowires is found to be suppressed at low temperatures due to the presence of strong spin-orbit scattering.

  8. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    PubMed

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  9. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    NASA Astrophysics Data System (ADS)

    de Oliveira Sampa, Maria Helena; Rela, Paulo Roberto; Casas, Alexandre Las; Mori, Manoel Nunes; Duarte, Celina Lopes

    2004-09-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood "pinus". If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  10. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  11. Measurement scheme for a ground-state parity non-conserving (PNC) measurement in a cesium atomic beam via two-pathway coherent control

    NASA Astrophysics Data System (ADS)

    Choi, Jungu; Elliott, Dan; Elliott's Lab Team

    2016-05-01

    We present a detailed analysis of an experimental setup for parity non-conserving (PNC) measurements in a cesium atomic beam. We employ a parallel-plate transmission line (PPTL) structure and highly reflective cylindrical mirrors to form a microwave cavity resonator to excite the PNC transitions in the cesium hyperfine ground states. In addition, a variable external dc field is applied to observe the Stark-induced transition, which would interfere with the PNC transition as the dc field amplitude changes. Finally, strong Raman lasers are used to excite the ground hyperfine transition. The Raman fields interfere with the weak transitions, and by varying the phase difference between the Raman fields and the microwave fields, we would infer the weak transition amplitudes from the signal modulation. The experimental setup requires maintaining coherent phase relations between all fields, well-characterized dc and rf field patterns, the two co-propagating Raman lasers, and suppression of the magnetic dipole contribution. Our analysis of the field modes supported by the PPTL structure indicates that with a moderate rf power and a few tens of seconds of data collection time, the PNC measurement of less than 3% uncertainty would be feasible.

  12. Experimental generation of optical coherence lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yahong; Ponomarenko, Sergey A.; Cai, Yangjian

    2016-08-01

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  13. Energetic Beam Processing of Silicon to Engineer Optoelectronically Active Defects

    NASA Astrophysics Data System (ADS)

    Recht, Daniel

    This thesis explores ways to use ion implantation and nanosecond pulsed laser melting, both energetic beam techniques, to engineer defects in silicon. These defects are chosen to facilitate the use of silicon in optoelectronic applications for which its indirect bandgap is not ideal. Chapter 2 develops a kinetic model for the use of point defects as luminescence centers for light-emitting diodes and demonstrates an experimental procedure capable of high-throughput screening of the electroluminescent properties of such defects. Chapter 3 discusses the dramatic change in optical absorption observed in silicon highly supersaturated (i.e., hyperdoped) with the chalcogens sulfur, selenium, and tellurium and reports the first measurements of the optical absorption of such materials for photon energies greater than the bandgap of silicon. Chapter 3 examines the use of silicon hyperdoped with chalcogens in light detectors and concludes that while these devices display strong internal gain that is coupled to a particular type of surface defect, hyperdoping with chalcogens does not lead directly to measurable sub-bandgap photoconductivity. Chapter 4 considers the potential for Silicon to serve as the active material in an intermediate-band solar cell and reports experimental progress on two proposed approaches for hyperdoping silicon for this application. The main results of this chapter are the use of native-oxide etching to control the surface evaporation rate of sulfur from silicon and the first synthesis of monocrystalline silicon hyperdoped with gold.

  14. Alpha power and coherence primarily reflect neural activity related to stages of motor response during a continuous monitoring task.

    PubMed

    Moore, Roger A; Gale, Anthony; Morris, Paul H; Forrester, Dave

    2008-08-01

    Previously, EEG theta (4-6 Hz) was related to goal conflict resolution [Moore, R.A., Gale, A., Morris, P.H., Forrester, D., 2006. Theta phase locking across the neocortex reflects cortico-hippocampal recursive communication during goal conflict resolution. Int. J. Psychophysiol. 60, 260-273] in the context of theory linked with animal hippocampal theta [Gray, J.A., McNaughton, N., 2000. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal system, 2nd ed, Oxford University Press, Oxford]. Here, the hypothesis that human EEG alpha (8-12 Hz) may also be a natural analogue to animal hippocampal theta is tested. Participants engaged in a monitoring task where the object was to press a response key immediately after presentation of 4 individual, non-repeating, single integer odd digits. These were presented amongst a continuous stream of single integer digits and Xs. EEG recorded in the earlier study were reanalysed; this time extracting alpha power and coherence from the same 34 participants. Alpha had a different profile to theta and was not primarily related to goal conflict. Low alpha (8-10 Hz) coherence consistently increased at electrodes close to primary sensorimotor cortex; particularly during response execution and response inhibition. The coherence analysis revealed that high alpha (10-12 Hz) related to response execution. Supplementary analyses demonstrated widespread high alpha coherence increase during response execution, inhibition and preparation. These data were discussed within the context of motor driven 'classic alpha' and Rolandic mu. A coherence profile which differentiated response execution and response inhibition was proposed to reflect a working memory network which was activated during response execution. Also, alpha power (8-12 Hz) reduced at several central electrodes during response execution. This reflected classic Rolandic mu response. Participants displaying a predicted low alpha power trend had the

  15. Status of LHC crab activity simulations and beam studies

    SciTech Connect

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  16. Coherent Control of Molecular Torsion and the Active-space Decomposition Method

    NASA Astrophysics Data System (ADS)

    Parker, Shane Matthew

    This dissertation discusses schemes and applications for the strong-field control of molecular torsions as well as introduces the active-space decomposition method. In the first part, a route to realize general control over the torsional motions of a class of biaryl compounds is proposed. Torsion in biaryl compounds--molecules with two aromatic moieties connected by a bond about which the barrier to rotation is small--mediates the electronic coupling between the two rings in the molecule. Thus, by controlling the torsion angle, one also controls the electron transfer and transport rates, the absorption and emission spectra, and the molecule's chirality. In our scheme, a non-resonant half-cycle pulse interacts with the permanent dipole of only one moiety of the pre-oriented biaryl compound. In the non-adiabatic regime, coherent motion is initiated by the half-cycle pulse. In the adiabatic regime, the torsion angle is tuned by the pulse. By properly choosing the parameters and polarization of the half-cycle pulse, we show that free internal rotation can be started or that the molecular chirality can be inverted. Then, with the aid of optimal control theory, we design "deracemizing" control pulses, i.e., control pulses that convert a racemic mixture into an enantiopure mixture. Finally, we explore the potential for this type of control in a single-molecule pulling experiment. In the second part, we describe the active space decomposition method for computing excited states of molecular dimers. In this method, the dimer's wavefunction is expressed as a linear combination of direct products of orthogonal localized monomer states. The adiabatic dimer states are found by diagonalizing the Hamiltonian in this direct product space. Matrix elements between direct product states are computed directly, without ever explicitly forming the dimer wavefunction, thus enabling calculations of dimers with active space sizes that would be otherwise impossible. The decomposed

  17. Audio-visual congruency alters power and coherence of oscillatory activity within and between cortical areas.

    PubMed

    Lange, Joachim; Christian, Nadine; Schnitzler, Alfons

    2013-10-01

    Dynamic communication between functionally specialized, but spatially distributed areas of the brain is essential for effective brain functioning. A candidate mechanism for effective neuronal communication is oscillatory neuronal synchronization. Here, we used magnetoencephalography (MEG) to study the role of oscillatory neuronal synchronization in audio-visual speech perception. Subjects viewed congruent audio-visual stimuli of a speaker articulating the vowels /a/ or /o/. In addition, we presented modified, incongruent versions in which visual and auditory signals mismatched. We identified a left hemispheric network for processing congruent audio-visual speech as well as network interaction between areas: low frequency (4-12 Hz) power was suppressed for congruent stimuli at auditory onset around auditory cortex, while power in the high gamma (120-140 Hz)-band was enhanced in the Broca's area around auditory offset. In addition, beta-power (20-30 Hz) was suppressed in supramarginal gyrus for incongruent stimuli. Interestingly, coherence analysis revealed a functional coupling between auditory cortex and Broca's area for congruent stimuli demonstrated by an increase of coherence. In contrast, coherence decreased for incongruent stimuli, suggesting a decoupling of auditory cortex and Broca's area. In addition, the increase of coherence was positively correlated with the increase of high gamma-power. The results demonstrate that oscillatory power in several frequency bands correlates with the processing of matching audio-visual speech on a large spatio-temporal scale. The findings provide evidence that coupling of neuronal groups can be mediated by coherence in the theta/alpha band and that low frequency coherence and high frequency power modulations are correlated in audio-visual speech perception.

  18. Coherent electron cooling demonstration experiment

    SciTech Connect

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  19. Coherence Properties of the LCLS

    SciTech Connect

    Ocko, Samuel

    2010-08-25

    The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on the self amplified spontaneous emission principle, has recently come on-line. For many users it is desirable to have an idea of the level of transverse coherence of the X-Ray beam produced. In this paper, we analyze the output of GENESIS simulations of electrons traveling through the FEL. We first test the validity of an approach that ignores the details of how the beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coherence, predicts the level of transverse coherence simply through looking at the beam radius at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to calculating the degree of transverse coherence, which offers a {approx}100-fold speedup compared to the brute-force algorithm previously in use. We find the beam highly coherent. Using a similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.

  20. The periodicities of Solar Magnetic Activity with the Wavelet Coherence Method

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel

    The origin, behavior and evolution of the solar magnetic field is one of the main challenges of observational and theoretical solar physics. Up to now the Dynamo theory gives us the best approach to the problem. However, it is not yet able to predict many features of the solar activity, which seems not to be strictly a periodical phenomenon. Among the indicators of solar magnetic variability there is the 11-years cycle of sunspots, as well as the solar magnetic cycle of 22 years (the Hale cycle). In order to provide more elements to the Dynamo theory that could help it in the predicting task, we analyze here the plausible existence of other periodicities associated with the solar magnetic field. In this preliminary work we use historical data (sunspots and aurora borealis), proxies (10 Be and 14 C) and modern instrumental data (Coronal Holes, Cosmic Rays, sunspots, flare indexes and solar radio flux at 10.7 cm). To find relationships between different time-frequency series we have employed the Wavelet Coherence technique: this technique indicates if two time-series of solar activity have the same periodicities in a given time interval. If so, it determines whether such relation is a linear one or not. Such a powerful tool indicates that, if some periodicity at a given frequency has a confidence level below 95%, it appears very lessened or does not appear in the Wavelet Spectral Analysis, such periodicity does not exist. Our results show that the so called Glaisberg cycle of 80-90 years and the periodicity of 205 years (the Suess cycle) do not exist. It can be speculated that such fictitious periodicities have been the result of using the Fourier transform with series with are not of stationary nature, as it is the case of the Be10 and C14 series. In contrast we confirm the presence of periodicities of 1.3, 1.7, quasi-triennial, quasi-quinquennial, Shawabe-cycle, Gale-cycle 60, 120 and 240 years.

  1. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking.

    PubMed

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π-stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C(2h) symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π-stacking symmetry and phonon-induced coherent or thermally activated mechanisms. PMID:26382701

  2. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  3. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  4. Dysregulated Coherence of Subjective and Cardiac Emotional Activation in Adolescents with Internalizing and Externalizing Problems

    ERIC Educational Resources Information Center

    Hastings, Paul D.; Nuselovici, Jacob N.; Klimes-Dougan, Bonnie; Kendziora, Kimberly T.; Usher, Barbara A.; Ho, Moon-Ho R.; Zahn-Waxler, Carolyn

    2009-01-01

    Background: Effective emotion regulation should be reflected in greater coherence between physiological and subjective aspects of emotional responses. Method: Youths with normative to clinical levels of internalizing problems (IP) and externalizing problems (EP) watched emotionally evocative film-clips while having heart rate (HR) recorded, and…

  5. Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods.

    PubMed

    Dissanayaka, Chamila; Ben-Simon, Eti; Gruberger, Michal; Maron-Katz, Adi; Sharon, Haggai; Hendler, Talma; Cvetkovic, Dean

    2015-07-01

    This study examined the electroencephalogram functional connectivity (coherence) and effective connectivity (flow of information) of selected brain regions during three different attentive states: awake, meditation and drowsiness. For the estimation of functional connectivity (coherence), Welch and minimum variance distortionless response (MVDR) methods were compared. The MVDR coherence was found to be more suitable since it is both data and frequency dependent and enables higher spectral resolution, while Welch's periodogram-based approach is both data and frequency independent. The directed transfer function (DTF) method was applied in order to estimate the effective connectivity or brain's flow of information between different regions during each state. DTF enables to identify the main brain areas that initiate EEG activity and the spatial distribution of these activities with time. Analysis was conducted using the EEG data of 30 subjects (ten awake, ten drowsy and ten meditating) focusing on six main electrodes (F3, F4, C3, C4, P3, P4, O1 and O2). For each subject, EEG data were recorded during 5-min baseline and 15 min of a specific condition (awake, meditation or drowsiness). Statistical analysis included the Kruskal-Wallis (KW) nonparametric analysis of variance followed by post hoc tests with Bonferroni alpha correction. The results reveal that both states of drowsiness and meditation states lead to a marked difference in the brain's flow of information (effective connectivity) as shown by DTF analyses. In specific, a significant increase in the flow of information in the delta frequency band was found only in the meditation condition and was further found to originate from frontal (F3, F4), parietal (P3, P4) and occipital (O1, O2) regions. Altogether, these results suggest that a change in attentiveness leads to significant changes in the spectral profile of the brain's information flow as well as in its functional connectivity and that these changes can

  6. Coherent Raman Umklappscattering

    NASA Astrophysics Data System (ADS)

    Yuan, L.; Lanin, A. A.; Jha, P. K.; Traverso, A. J.; Voronine, D. V.; Dorfman, K. E.; Fedotov, A. B.; Welch, G. R.; Sokolov, A. V.; Zheltikov, A. M.; Scully, M. O.

    2011-10-01

    We identify the conditions for coherent Raman scattering to enable the generation of phase-matched, highly directional, nearly-backward-propagating light beams. Our analysis indicates a unique possibility for standoff detection of trace gases using their rotational and vibrational spectroscopic signals. We demonstrate spatial selectivity of Raman transitions and variability of possible Umklappscattering implementation schemes and laser sources.

  7. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  8. Active fault tolerant control of a flexible beam

    NASA Astrophysics Data System (ADS)

    Bai, Yuanqiang; Grigoriadis, Karolos M.; Song, Gangbing

    2007-04-01

    This paper presents the development and application of an H∞ fault detection and isolation (FDI) filter and fault tolerant controller (FTC) for smart structures. A linear matrix inequality (LMI) formulation is obtained to design the full order robust H∞ filter to estimate the faulty input signals. A fault tolerant H∞ controller is designed for the combined system of plant and filter which minimizes the control objective selected in the presence of disturbances and faults. A cantilevered flexible beam bonded with piezoceramic smart materials, in particular the PZT (Lead Zirconate Titanate), in the form of a patch is used in the validation of the FDI filter and FTC controller design. These PZT patches are surface-bonded on the beam and perform as actuators and sensors. A real-time data acquisition and control system is used to record the experimental data and to implement the designed FDI filter and FTC. To assist the control system design, system identification is conducted for the first mode of the smart structural system. The state space model from system identification is used for the H∞ FDI filter design. The controller was designed based on minimization of the control effort and displacement of the beam. The residuals obtained from the filter through experiments clearly identify the fault signals. The experimental results of the proposed FTC controller show its e effectiveness for the vibration suppression of the beam for the faulty system when the piezoceramic actuator has a partial failure.

  9. A mask for high-intensity heavy-ion beams in the MAYA active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Pancin, J.; Damoy, S.; Roger, T.; Babo, M.; Caamaño, M.; Farget, F.; Grinyer, G. F.; Jacquot, B.; Pérez-Loureiro, D.; Ramos, D.; Suzuki, D.

    2014-12-01

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a 136Xe beam are presented.

  10. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  11. Powers of the degree of coherence.

    PubMed

    Mei, Zhangrong; Korotkova, Olga; Mao, Yonghua

    2015-04-01

    We establish conditions under which a legitimate degree of coherence of a statistically stationary beam-like field raised to a power results in a novel legitimate degree of coherence. The general results and examples relate to scalar beams having uniform and non-uniform correlations.

  12. SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams

    SciTech Connect

    Elmekawy, A; Ewell, L; Butuceanu, C; Zhu, L

    2014-06-01

    Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measured as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.

  13. Electron-beam activated thermal sputtering of thermoelectric materials

    SciTech Connect

    Wu Jinsong; Dravid, Vinayak P.; He Jiaqing; Han, Mi-Kyung; Sootsman, Joseph R.; Girard, Steven; Arachchige, Indika U.; Kanatzidis, Mercouri G.

    2011-08-15

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 deg. C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  14. Electron-beam activated thermal sputtering of thermoelectric materials.

    SciTech Connect

    Wu, J.; He, J.; Han, M-K.; Sootsman, J. R.; Girard, S.; Arachchige, I. U.; Kanatzidis, M. G.; Dravid, V. P.

    2011-08-01

    Thermoelectricity and Seebeck effect have long been observed and validated in bulk materials. With the development of advanced tools of materials characterization, here we report the first observation of such an effect in the nanometer scale: in situ directional sputtering of several thermoelectric materials inside electron microscopes. The temperature gradient introduced by the electron beam creates a voltage-drop across the samples, which enhances spontaneous sputtering of specimen ions. The sputtering occurs along a preferential direction determined by the direction of the temperature gradient. A large number of nanoparticles form and accumulate away from the beam location as a result. The sputtering and re-crystallization are found to occur at temperatures far below the melting points of bulk materials. The sputtering occurs even when a liquid nitrogen cooling holder is used to keep the overall temperature at -170 C. This unique phenomenon that occurred in the nanometer scale may provide useful clues to understanding the mechanism of thermoelectric effect.

  15. Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh).

    PubMed

    Pascual-Marqui, Roberto D; Biscay, Rolando J; Bosch-Bayard, Jorge; Lehmann, Dietrich; Kochi, Kieko; Kinoshita, Toshihiko; Yamada, Naoto; Sadato, Norihiro

    2014-01-01

    Functional connectivity is of central importance in understanding brain function. For this purpose, multiple time series of electric cortical activity can be used for assessing the properties of a network: the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections. The partial directed coherence (PDC) of Baccala and Sameshima (2001) is a widely used method for this problem. The three aims of this study are: (1) To show that the PDC can misrepresent the frequency response under plausible realistic conditions, thus defeating the main purpose for which the measure was developed; (2) To provide a solution to this problem, namely the "isolated effective coherence" (iCoh), which consists of estimating the partial coherence under a multivariate autoregressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest; and (3) To show that adequate iCoh estimators can be obtained from non-invasively computed cortical signals based on exact low resolution electromagnetic tomography (eLORETA) applied to scalp EEG recordings. To illustrate the severity of the problem with the PDC, and the solution achieved by the iCoh, three examples are given, based on: (1) Simulated time series with known dynamics; (2) Simulated cortical sources with known dynamics, used for generating EEG recordings, which are then used for estimating (with eLORETA) the source signals for the final connectivity assessment; and (3) EEG recordings in rats. Lastly, real human recordings are analyzed, where the iCoh between six cortical regions of interest are calculated and compared under eyes open and closed conditions, using 61-channel EEG recordings from 109 subjects. During eyes closed, the posterior cingulate sends alpha activity to all other regions. During eyes open, the anterior cingulate sends theta-alpha activity to other frontal regions.

  16. SUMMARY OF BEAM BEAM OBSERVATIONS DURING STORES IN RHIC.

    SciTech Connect

    FISCHER,W.

    2003-05-19

    During stores, the beam-beam interaction has a significant impact on the beam and luminosity lifetimes in RHIC. This was observed in heavy ion, and even more pronounced in proton collisions. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. In addition, RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. Coherent beam-beam modes were observed, and suppressed by tune changes. In this article we summarize the most important beam-beam observations made during stores so far.

  17. Optical coherency matrix tomography

    NASA Astrophysics Data System (ADS)

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-10-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes.

  18. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  19. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

    PubMed Central

    Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle

    2015-01-01

    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382

  20. Cortical activation and inter-hemispheric sensorimotor coherence in individuals with arm dystonia due to childhood stroke

    PubMed Central

    Kukke, Sahana N.; de Campos, Ana Carolina; Damiano, Diane; Alter, Katharine E.; Patronas, Nicholas; Hallett, Mark

    2014-01-01

    Objective Dystonia is a disabling motor disorder often without effective therapies. To better understand the genesis of dystonia after childhood stroke, we analyzed electroencephalographic (EEG) recordings in this population. Methods Resting spectral power of EEG signals over bilateral sensorimotor cortices (Powrest), resting inter-hemispheric sensorimotor coherence (Cohrest), and task-related changes in power (TRPow) and coherence (TRCoh) during wrist extension were analyzed in individuals with dystonia (age 20±3 years) and healthy volunteers (age 17±5 years). Results Ipsilesional TRPow decrease was significantly lower in patients than controls during the more affected wrist task. Force deficits of the affected wrist correlated with reduced alpha TRPow decrease on the ipsilesional and not the contralesional hemisphere. Cohrest was significantly lower in patients than controls, and correlated with more severe dystonia and poorer hand function. Powrest and TRCoh were similar between groups. Conclusions The association between weakness and cortical activation during wrist extension highlights the importance of ipsilesional sensorimotor activation on function. Reduction of Cohrest in patients reflects a loss of inter-hemispheric connectivity that may result from structural changes and neuroplasticity, potentially contributing to the development of dystonia. Significance Cortical and motor dysfunction are correlated in patients with childhood stroke and may in part explain the genesis of dystonia. PMID:25499610

  1. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    PubMed

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders.

  2. Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory.

    PubMed

    Corcoran, Kevin A; Frick, Brendan J; Radulovic, Jelena; Kay, Leslie M

    2016-01-01

    Memory for contextual fear conditioning relies upon the retrosplenial cortex (RSC) regardless of how long ago conditioning occurred, whereas areas connected to the RSC, such as the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) appear to play time-limited roles. To better understand whether these brain regions functionally interact during memory processing and how the passage of time affects these interactions, we simultaneously recorded local field potentials (LFPs) from these three regions as well as anterior dorsal thalamus (ADT), which provides one of the strongest inputs to RSC, and measured coherence of oscillatory activity within the theta (4-12Hz) and gamma (30-80Hz) frequency bands. We identified changes of theta coherence related to encoding, retrieval, and extinction of context fear, whereas changes in gamma coherence were restricted to fear extinction. Specifically, exposure to a novel context and retrieval of recently acquired fear conditioning memory were associated with increased theta coherence between RSC and all three other structures. In contrast, RSC-DH and RSC-ADT theta coherence were decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote memory. Greater RSC-ADT theta and gamma coherence were observed during recent, compared to remote, extinction of freezing responses. Thus, the degree of coherence between RSC and connected brain areas may predict and contribute to context memory retrieval and retrieval-related phenomena such as fear extinction. Importantly, although theta coherence in this circuit increases during memory encoding and retrieval of recent memory, failure to decrease RSC-DH theta coherence might be linked to retrieval deficit in the long term, and possibly contribute to aberrant memory processing characteristic of neuropsychiatric disorders. PMID:26691782

  3. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained. PMID:26565471

  4. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; Matlis, N. H.; Shaw, B. H.; Gonsalves, A. J.; Huijts, J. V.; Nakamura, K.; Daniels, J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2015-10-01

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T /m , enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  5. Broadband coherent light generation in Raman-active crystals driven by femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Zhi, Miaochan

    I studied a family of closely connected topics related to the production and application of ultrashort laser pulses. I achieved broadband cascade Raman generation in crystals, producing mutually coherent frequency sidebands which can possibly be used to synthesize optical pulses as short as a fraction of a femtosecond (fs). Unlike generation using gases, there is no need for a cumbersome vacuum system when working with room temperature crystals. Our method, therefore, shows promise for a compact system. One problem for sideband generation in solids is phase matching, because the dispersion is significant. I solved this problem by using non-collinear geometry. I observed what to our knowledge is a record-large number of spectral sidebands generated in a popular Raman crystal PbWO4 covering infrared, visible, and ultraviolet spectral regions, when I applied two 50 fs laser pulses tuned close to the Raman resonance. Similar generation in diamond was also observed, which shows that the method is universal. When a third probe pulse is applied, a very interesting 2-D color array is generated in both crystals. As many as 40 anti-Stokes and 5 Stokes sidebands are generated when a pair of time-delayed linear chirped pulses are applied to the PbWO4 crystal. This shows that pulses with picosecond duration, which is on the order of the coherence decay time, is more effective for sidebands generation than Fourier transform limited fs pulses. I also studied the technique of fs coherent Raman anti-Stokes scattering (CARS) which is used as a tool for detecting dipicolinic acid, the marker molecule for bacterial spores. I observed that there is a maximum when the concentration dependence of the near-resonant CARS signal is measured. I presented a model to describe this behavior, and found an analytical solution that agrees with our experimental data. Theoretically, I explored a possible application for single-cycle pulses: laser induced nuclear fusion. I performed both classical

  6. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  7. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  8. Impact of wave front and coherence optimization in coherent diffractive imaging.

    PubMed

    Ge, X; Boutu, W; Gauthier, D; Wang, F; Borta, A; Barbrel, B; Ducousso, M; Gonzalez, A I; Carré, B; Guillaumet, D; Perdrix, M; Gobert, O; Gautier, J; Lambert, G; Maia, F R N C; Hajdu, J; Zeitoun, P; Merdji, H

    2013-05-01

    We present single shot nanoscale imaging using a table-top femtosecond soft X-ray laser harmonic source at a wavelength of 32 nm. We show that the phase retrieval process in coherent diffractive imaging critically depends on beam quality. Coherence and image fidelity are measured from single-shot coherent diffraction patterns of isolated nano-patterned slits. Impact of flux, wave front and coherence of the soft X-ray beam on the phase retrieval process and the image quality are discussed. After beam improvements, a final image reconstruction is presented with a spatial resolution of 78 nm (half period) in a single 20 fs laser harmonic shot.

  9. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials.

    PubMed

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-23

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  10. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  11. Control over coherent light fields enables multidimensional coherent spectroscopy and multispectral coherent control

    NASA Astrophysics Data System (ADS)

    Nelson, Keith A.

    2012-02-01

    Using a combination of spatial and temporal shaping of optical laser fields, fully coherent spectroscopy and coherent control can be carried out to high order from optical to THz spectral ranges. A single beam with a single femtosecond pulse can be transformed into multiple beams and multiple pulses, reconfigurably under computer control with no human alignment needed, retaining full phase coherence among all the noncollinear fields. This enables multiple-quantum 2D and 3D Fourier transform optical spectroscopy of excitons and exciton-polaritons in inorganic quantum wells and microcavities, in organic J-aggregate films, and in inorganic/organic hybrid structures, the results of which will be discussed. Spatiotemporal shaping also enables coherent control over THz phonon-polariton waves in ferroelectric crystals. The THz waves can be coherently superposed to reach extremely large field amplitudes both in the host crystals and in free space, and the fields can be further enhanced in dipolar antenna and metamaterial structures, enabling highly nonlinear coherent spectroscopy and coherent control in the THz regime. Results from solid, liquid, and gas phases, including multiple-quantum rotational coherences in molecular gases and THz-induced phase transitions in crystalline solids, will be presented. Prospects for further generalization of the approach all the way to the hard x-ray regime will be discussed.

  12. Measurement of coherent production of π± in neutrino and antineutrino beams on carbon from Eν of 1.5 to 20 GeV

    DOE PAGES

    Higuera, A.

    2014-12-23

    Neutrino-induced coherent charged pion production on nuclei ν(–)μA → μ±π∓A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. In addition, we select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We findmore » poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.« less

  13. Measurement of coherent production of π(±) in neutrino and antineutrino beams on carbon from Eν of 1.5 to 20 GeV.

    PubMed

    Higuera, A; Mislivec, A; Aliaga, L; Altinok, O; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Brooks, W K; Budd, H; Butkevich, A; Carneiro, M F; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Fiorentini, G A; Gallagher, H; Gomez, A; Gran, R; Harris, D A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Snider, F D; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P

    2014-12-31

    Neutrino-induced coherent charged pion production on nuclei νμA→μ(±)π(∓)A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. We select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments. PMID:25615308

  14. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

    PubMed

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous

  15. Changes in cerebellar activity and inter-hemispheric coherence accompany improved reading performance following Quadrato Motor Training

    PubMed Central

    Ben-Soussan, Tal Dotan; Avirame, Keren; Glicksohn, Joseph; Goldstein, Abraham; Harpaz, Yuval; Ben-Shachar, Michal

    2014-01-01

    Dyslexia is a multifactorial reading deficit that involves multiple brain systems. Among other theories, it has been suggested that cerebellar dysfunction may be involved in dyslexia. This theory has been supported by findings from anatomical and functional imaging. A possible rationale for cerebellar involvement in dyslexia could lie in the cerebellum’s role as an oscillator, producing synchronized activity within neuronal networks including sensorimotor networks critical for reading. If these findings are causally related to dyslexia, a training regimen that enhances cerebellar oscillatory activity should improve reading performance. We examined the cognitive and neural effects of Quadrato Motor Training (QMT), a structured sensorimotor training program that involves sequencing of motor responses based on verbal commands. Twenty-two adult Hebrew readers (12 dyslexics and 10 controls) were recruited for the study. Using Magnetoencephalography (MEG), we measured changes in alpha power and coherence following QMT in a within-subject design. Reading performance was assessed pre- and post-training using a comprehensive battery of behavioral tests. Our results demonstrate improved performance on a speeded reading task following one month of intensive QMT in both the dyslexic and control groups. Dyslexic participants, but not controls, showed significant increase in cerebellar oscillatory alpha power following training. In addition, across both time points, inter-hemispheric alpha coherence was higher in the dyslexic group compared to the control group. In conclusion, the current findings suggest that the combination of motor and language training embedded in QMT increases cerebellar oscillatory activity in dyslexics and improves reading performance. These results support the hypothesis that the cerebellum plays a role in skilled reading, and begin to unravel the underlying mechanisms that mediate cerebellar contribution in cognitive and neuronal augmentation. PMID

  16. Changes in cerebellar activity and inter-hemispheric coherence accompany improved reading performance following Quadrato Motor Training.

    PubMed

    Ben-Soussan, Tal Dotan; Avirame, Keren; Glicksohn, Joseph; Goldstein, Abraham; Harpaz, Yuval; Ben-Shachar, Michal

    2014-01-01

    Dyslexia is a multifactorial reading deficit that involves multiple brain systems. Among other theories, it has been suggested that cerebellar dysfunction may be involved in dyslexia. This theory has been supported by findings from anatomical and functional imaging. A possible rationale for cerebellar involvement in dyslexia could lie in the cerebellum's role as an oscillator, producing synchronized activity within neuronal networks including sensorimotor networks critical for reading. If these findings are causally related to dyslexia, a training regimen that enhances cerebellar oscillatory activity should improve reading performance. We examined the cognitive and neural effects of Quadrato Motor Training (QMT), a structured sensorimotor training program that involves sequencing of motor responses based on verbal commands. Twenty-two adult Hebrew readers (12 dyslexics and 10 controls) were recruited for the study. Using Magnetoencephalography (MEG), we measured changes in alpha power and coherence following QMT in a within-subject design. Reading performance was assessed pre- and post-training using a comprehensive battery of behavioral tests. Our results demonstrate improved performance on a speeded reading task following one month of intensive QMT in both the dyslexic and control groups. Dyslexic participants, but not controls, showed significant increase in cerebellar oscillatory alpha power following training. In addition, across both time points, inter-hemispheric alpha coherence was higher in the dyslexic group compared to the control group. In conclusion, the current findings suggest that the combination of motor and language training embedded in QMT increases cerebellar oscillatory activity in dyslexics and improves reading performance. These results support the hypothesis that the cerebellum plays a role in skilled reading, and begin to unravel the underlying mechanisms that mediate cerebellar contribution in cognitive and neuronal augmentation.

  17. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  18. Observation of Coherent Optical Transition Radiation in the LCLS Linac

    SciTech Connect

    Loosy, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford

    2008-09-18

    The beam diagnostics in the linac for the Linac Coherent Light Source (LCLS) X-ray FEL project at SLAC includes optical transition radiation (OTR) screens for measurements of transverse and longitudinal beam properties. We report on observations of coherent light emission from the OTR screens (COTR) at visible wavelengths from the uncompressed and compressed electron beam at various stages in the accelerator.

  19. Beams, brightness, and background: Using active spectroscopy techniques for precision measurements in fusion plasma research

    SciTech Connect

    Thomas, Dan M.

    2012-05-15

    The use of an injected neutral beam-either a dedicated diagnostic beam or the main heating beams-to localize and enhance plasma spectroscopic measurements can be exploited for a number of key physics issues in magnetic confinement fusion research, yielding detailed profile information on thermal and fast ion parameters, the radial electric field, plasma current density, and turbulent transport. The ability to make these measurements has played a significant role in much of our recent progress in the scientific understanding of fusion plasmas. The measurements can utilize emission from excited state transitions either from plasma ions or from the beam atoms themselves. The primary requirement is that the beam 'probe' interacts with the plasma in a known fashion. Advantages of active spectroscopy include high spatial resolution due to the enhanced localization of the emission and the use of appropriate imaging optics, background rejection through the appropriate modulation and timing of the beam and emission collection/detection system, and the ability of the beam to populate emitter states that are either nonexistent or too dim to utilize effectively in the case of standard or passive spectroscopy. In addition, some active techniques offer the diagnostician unique information because of the specific quantum physics responsible for the emission. This paper will describe the general principles behind a successful active spectroscopic measurement, emphasize specific techniques that facilitate the measurements and include several successful examples of their implementation, briefly touching on some of the more important physics results. It concludes with a few remarks about the relevance and requirements of active spectroscopic techniques for future burning plasma experiments.

  20. Study of beam-beam effects in eRHIC

    SciTech Connect

    Hao, Y.; Litvinenko, V.; Ptitsyn, V.

    2010-05-23

    Beam-beam effects in eRHIC have a number of unique features, which distinguish them from both hadron and lepton colliders. Due to beam-beam interaction, both electron and hadron beams would suffer quality degradation or beam loss from without proper treatments. Those features need novel study and dedicate countermeasures. We study the beam dynamics and resulting luminosity of the characteristics, including mismatch, disruption and pinch effects on electron beam, in additional to their consequences on the opposing beam as a wake field and other incoherent effects of hadron beam. We also carry out countermeasures to prevent beam quality degrade and coherent instability.

  1. Optical coherence tomography phase measurement of transient changes in squid giant axons during activity.

    PubMed

    Akkin, Taner; Landowne, David; Sivaprakasam, Aarthi

    2009-09-01

    Noncontact optical measurements reveal that transient changes in squid giant axons are associated with action potential propagation and altered under different environmental (i.e., temperature) and physiological (i.e., ionic concentrations) conditions. Using a spectral-domain optical coherence tomography system, which produces real-time cross-sectional images of the axon in a nerve chamber, axonal surfaces along a depth profile are monitored. Differential phase analyses show transient changes around the membrane on a millisecond timescale, and the response is coincident with the arrival of the action potential at the optical measurement area. Cooling the axon slows the electrical and optical responses and increases the magnitude of the transient signals. Increasing the NaCl concentration bathing the axon, whose diameter is decreased in the hypertonic solution, results in significantly larger transient signals during action potential propagation. While monophasic and biphasic behaviors are observed, biphasic behavior dominates the results. The initial phase detected was constant for a single location but alternated for different locations; therefore, these transient signals acquired around the membrane appear to have local characteristics.

  2. Coherent catastrophism

    NASA Astrophysics Data System (ADS)

    Asher, D. J.; Clube, S. V. M.; Napier, W. M.; Steel, D. I.

    We review the theoretical and observational evidence that, on timescales relevant to mankind, the prime collision hazard is posed by temporally correlated impacts (coherent catastrophism, Δt ˜ 10 2-10 4 yr) rather than random ones (stochastic catastrophism, Δt ˜ 10 5-10 8 yr). The mechanism whereby coherent incursions into and through the terrestrial atmosphere occur is described as being the result of giant cometary bodies arriving in orbits with perihelia in the inner solar system. Hierarchical fragmentation of such large (100 km-plus) bodies — due to thermal stresses near perihelion, collisions in the asteroid belt, or passages through the Jovian Roche radius — results in numerous ˜kilometre-sized objects being left in short-period orbits, and appearing in telescopic searches as Apollo-type asteroids. Many more smaller objects, in the 10-100 metre size range and only recently observed, by the Spacewatch team, are expected to be in replenished clusters in particular orbits as a result of continuing disintegrations of large, differentiated, cometary objects. Gravitational perturbations by Jupiter bring these clusters around to have a node at 1 AU in a cyclic fashion, leading to impacts at certain times of year every few years during active periods lasting a few centuries, such periods being separated by intervals of a few millennia. Furthermore, fragmentations within the hierarchy result in significant bombardment commensurabilities ( Δt ˜ 10-10 2 yr) during active periods occurring at random intervals ( Δt ˜ 10 2-10 3 yr). It appears that the Earth has been subject to such impacts since the break-up of such a comet ˜2×10 4 years ago; currently we are not passing through a high-risk epoch, although some phenomena originating in the products of this break-up have been observed in the 20th century. This most recent hierarchical disintegration, associated with four well-known meteor showers and termed the Taurid Complex, is now recognized as resulting

  3. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  4. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  5. Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films.

    PubMed

    Steinbusch, T P; Tyagi, H K; Schaafsma, M C; Georgiou, G; Gómez Rivas, J

    2014-11-01

    We demonstrate active beam steering of terahertz radiation using a photo-excited thin layer of gallium arsenide. A constant gradient of phase discontinuity along the interface is introduced by an spatially inhomogeneous density of free charge carriers that are photo-generated in the GaAs with an optical pump. The optical pump has been spatially modulated to form the shape of a planar blazed grating. The phase gradient leads to an asymmetry between the +1 and -1 transmission diffracted orders of more than a factor two. Optimization of the grating structure can lead to an asymmetry of more than one order of magnitude. Similar to metasurfaces made of plasmonic antennas, the photo-generated grating is a planar structure that can achieve large beam steering efficiency. Moreover, the photo-generation of such structures provides a platform for active THz beam steering. PMID:25401807

  6. Coherent detectors

    NASA Astrophysics Data System (ADS)

    Lawrence, C. R.; Church, S.; Gaier, T.; Lai, R.; Ruf, C.; Wollack, E.

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  7. Group delay locking of coherently combined broadband lasers.

    PubMed

    Weiss, S Benjamin; Weber, Mark E; Goodno, Gregory D

    2012-02-15

    We demonstrate a method for single-detector coherent sensing and automated coalignment of group delays in a coherently combined laser array, enabling robust coherent combining of broadband sources despite initial path mismatches exceeding the laser coherence length. The method is based on Fourier-domain filtering of the coherently combined laser beam to extract error signals, and it is equally applicable to controlling both spatial and temporal misalignments.

  8. High sensitivity stand-off detection and quantification of chemical mixtures using an active coherent laser spectrometer (ACLaS)

    NASA Astrophysics Data System (ADS)

    MacLeod, Neil A.; Weidmann, Damien

    2016-05-01

    High sensitivity detection, identification and quantification of chemicals in a stand-off configuration is a highly sought after capability across the security and defense sector. Specific applications include assessing the presence of explosive related materials, poisonous or toxic chemical agents, and narcotics. Real world field deployment of an operational stand-off system is challenging due to stringent requirements: high detection sensitivity, stand-off ranges from centimeters to hundreds of meters, eye-safe invisible light, near real-time response and a wide chemical versatility encompassing both vapor and condensed phase chemicals. Additionally, field deployment requires a compact, rugged, power efficient, and cost-effective design. To address these demanding requirements, we have developed the concept of Active Coherent Laser Spectrometer (ACLaS), which can be also described as a middle infrared hyperspectral coherent lidar. Combined with robust spectral unmixing algorithms, inherited from retrievals of information from high-resolution spectral data generated by satellitebased spectrometers, ACLaS has been demonstrated to fulfil the above-mentioned needs. ACLaS prototypes have been so far developed using quantum cascade lasers (QCL) and interband cascade lasers (ICL) to exploit the fast frequency tuning capability of these solid state sources. Using distributed feedback (DFB) QCL, demonstration and performance analysis were carried out on narrow-band absorbing chemicals (N2O, H2O, H2O2, CH4, C2H2 and C2H6) at stand-off distances up to 50 m using realistic non cooperative targets such as wood, painted metal, and bricks. Using more widely tunable external cavity QCL, ACLaS has also been demonstrated on broadband absorbing chemicals (dichloroethane, HFC134a, ethylene glycol dinitrate and 4-nitroacetanilide solid) and on complex samples mixing narrow-band and broadband absorbers together in a realistic atmospheric background.

  9. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  10. Attosecond beamline with actively stabilized and spatially separated beam paths

    NASA Astrophysics Data System (ADS)

    Huppert, M.; Jordan, I.; Wörner, H. J.

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  11. Attosecond beamline with actively stabilized and spatially separated beam paths.

    PubMed

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids. PMID:26724005

  12. Coherence current, coherence vortex, and the conservation law of coherence.

    PubMed

    Wang, Wei; Takeda, Mitsuo

    2006-06-01

    Introducing scalar and vector densities for a mutual coherence function, we present a new conservation law for optical coherence of scalar wave fields in the form of a continuity equation. This coherence conservation law provides new insights into topological phenomena for the complex coherence function. Some properties related to the newly introduced coherence vector density, such as a circulating coherence current associated with a coherence vortex, are investigated both theoretically and experimentally for the first time.

  13. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  14. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  15. Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics.

    PubMed

    Selig, Ulrike; Langhojer, Florian; Dimler, Frank; Löhrig, Tatjana; Schwarz, Christoph; Gieseking, Björn; Brixner, Tobias

    2008-12-01

    We introduce an inherently phase-stable setup for coherent two-dimensional femtosecond spectroscopy in noncollinear box geometry using only conventional beam splitters, mirrors, and delay stages. Avoiding diffractive optics, pulse shapers, and active phase-locking loops, our spectroscopy setup is simple, robust, and works for ultrabroad bandwidths in all spectral regimes (infrared, visible, and ultraviolet).

  16. Ongoing Activity in Temporally Coherent Networks Predicts Intra-Subject Fluctuation of Response Time to Sporadic Executive Control Demands

    PubMed Central

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person’s response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color–word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute “cognitive readiness,” which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance. PMID:24901995

  17. Preliminary results, obtained by using a proton beam, for an active scanning system to installed on the KHIMA

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hyeuk; Lee, Hwa-Ryun; Jang, Sea Duk; Kim, Hyunyong; Hahn, Garam; Kim, Jeong Hwan; Jang, Hong Suk; Park, Dong Wook; Hwang, Won Taek; Yang, Tae-Keun

    2015-08-01

    The active scanning technique is a pencil beam delivery method in particle therapy. The active scanning beam delivery system consists of a beam scanner, beam monitor, energy modulator, and related programs, such as the irradiation control and planning programs. A proposed prototype active scanning system was designed and installed on MC-50 at the Korea Institute of Radiological and Medical Science (KIRAMS) with a 45-MeV proton beam. The laminated magnetic yoke of the scanning magnet supported fast ramping. The beam intensity and the beam profile monitors were designed for measuring the beam's properties. Both the range shifter and the ridge filter modulate the incoming beam energy. The LabVIEW®-based beam-irradiation-control program operates the system in a sequential operation manner for use with the MC-50 cyclotron. In addition, an in-housecoded irradiation-planning program generates an optimal irradiation path. A scanning experiment was successfully completed to print the logo of the Korea Heavy Ion Medical Accelerator (KHIMA) on GaF film. Moreover, the beam's position accuracy was measured as 0.62 mm in the x-direction and as 0.83 mm in the y-direction.

  18. Proposed new reactor-activated positron source for intense slow e + beam production

    NASA Astrophysics Data System (ADS)

    Skalsey, M.; Van House, J.

    1988-03-01

    A novel method is suggested for producing a new positron (e +) emitting isotope in a nuclear reactor with application to slow e + beams. The initial radiated sample is 124Xe which is transformed to 126I by two neutron absorptions and an intermediate decay. Over 25 Ci of positrons with a specific activity of 25 {Ci}/{gm} can be produced by this technique, allowing the generation of a slow e + beam of over 4 × 10 7{e +}/{cm 2} -s. As discussed in the conclusion, specific activities approaching 200 {Ci}/{gm} should be for activation cells are presented, one with Xe in the gas phase, the other with solid Xe. Both designs allow the easy separation of the 126I from other contaminants, permitting the production of a pure, high specific activity source.

  19. Statistical validation of wavelet transform coherence method to assess the transfer of calf muscle activation to blood pressure during quiet standing

    PubMed Central

    2013-01-01

    Background Continuous and discrete wavelet transforms have been established as valid tools to analyze non-stationary and transient signals over Fourier domain methods. Additionally, Fourier transform based coherence methods provide aggregate results but do not provide insights into the changes in coherent behavior over time, hence limiting their utility. Methods Statistical validation of the wavelet transform coherence (WTC) was conducted with simulated data sets. Time frequency maps of signal coherence between calf muscle electromyography (EMG) and blood pressure (BP) were obtained by WTC to provide further insight into their interdependent time-varying behavior via the skeletal muscle pump during quiet stance. Data were collected from healthy young males (n = 5, 19–28 years) during a quiet stance on a balance platform. Waveforms for EMG and BP were acquired and processed for further analysis. Results Low values of bias and standard deviation (< 0.1) were observed and the use of both simulated and real data demonstrated that the WTC method was able to identify time points of significant coherence (> Threshold) and objectively detect existence of interdependent activity between the calf muscle EMG and blood pressure. Conclusions The WTC method effectively identified the presence of linear coupling between the EMG and BP signals during quiet standing. Future studies with more human data are needed to establish the exact characteristics of the identified relationship. PMID:24365103

  20. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  1. Development of CNS Active Target for Deuteron Induced Reactions with High Intensity Exotic Beam

    NASA Astrophysics Data System (ADS)

    Ota, Shinsuke; Tokieda, H.; Lee, C. S.; Kojima, R.; Watanabe, Y. N.; Corsi, A.; Dozono, M.; Gibelin, J.; Hashimoto, T.; Kawabata, T.; Kawase, S.; Kubono, S.; Kubota, Y.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Michimasa, S.; Nakao, T.; Nishi, T.; Obertelli, A.; Otsu, H.; Santamaria, C.; Sasano, M.; Takaki, M.; Tanaka, Y.; Leung, T.; Uesaka, T.; Yako, K.; Yamaguchi, H.; Zenihiro, J.; Takada, E.

    An active target system called CAT, has been developed aiming at the measurement of deuteron induced reactions with high intensity beams in inverse kinematics. The CAT consists of a time projection chamber using THGEM and an array of Si detectors or NaI scintilators. The effective gain for the recoil particle is deisgned to be 5 - 10 × 103, while one for the beam is reduced by 102 using mesh grid to match the amplified signal to the dynamic range same as the one for recoil particle. The structure of CAT and the effect of the mesh grid are reported.

  2. Observations of the plasma environment during an active ionospheric ion beam injection experiment

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Pollock, C. J.; Cahill, L. J., Jr.; Erlandson, R. E.; Kintner, P. M.

    1990-01-01

    Several sounding rocket flights have been used to clarify the electrodynamics of neutral beam releases of Ar ions in the upper ionosphere, by varying the Ar's point of release with respect to the diagnostic payload. A volume of 10-m radius centered on the Ar release payload is measured for broadband wave activity; the superthermal neutralizing beam electrons become magnetized in this volume for across-field plasma releases, and ambient electrons are accelerated to energies of several hundred eV. This is speculated to be due to wave turbulence rather than payload-neutralization.

  3. Duration of Coherence Intervals in Electrical Brain Activity in Perceptual Organization

    PubMed Central

    Gepshtein, Sergei; Gong, Pulin; van Leeuwen, Cees

    2010-01-01

    We investigated the relationship between visual experience and temporal intervals of synchronized brain activity. Using high-density scalp electroencephalography, we examined how synchronized activity depends on visual stimulus information and on individual observer sensitivity. In a perceptual grouping task, we varied the ambiguity of visual stimuli and estimated observer sensitivity to this variation. We found that durations of synchronized activity in the beta frequency band were associated with both stimulus ambiguity and sensitivity: the lower the stimulus ambiguity and the higher individual observer sensitivity the longer were the episodes of synchronized activity. Durations of synchronized activity intervals followed an extreme value distribution, indicating that they were limited by the slowest mechanism among the multiple neural mechanisms engaged in the perceptual task. Because the degree of stimulus ambiguity is (inversely) related to the amount of stimulus information, the durations of synchronous episodes reflect the amount of stimulus information processed in the task. We therefore interpreted our results as evidence that the alternating episodes of desynchronized and synchronized electrical brain activity reflect, respectively, the processing of information within local regions and the transfer of information across regions. PMID:19596712

  4. Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan

    NASA Astrophysics Data System (ADS)

    Horioka, K.; Kawamura, T.; Nakajima, M.; Kondo, K.; Ogawa, M.; Oguri, Y.; Hasegawa, J.; Kawata, S.; Kikuchi, T.; Sasaki, T.; Murakami, M.; Takayama, K.

    2009-07-01

    Recent research activities in Japan relevant to heavy ion fusion (HIF) are presented. During the past two years, significant progress in HIF and high energy density (HED) physics research has been made by a number of research groups in universities and accelerator facilities. Evolutions in phase space during the longitudinal compression of intense beams were investigated at UU-NUT-TIT. Beam-plasma interaction experiments and related theoretical studies are in progress at RLNR-TIT. In the study, shock-heated hydrogen was used for the interaction experiments as a well-defined non-ideal-plasma target. In the beam-plasma interaction experiments, a special emphasis is placed on an evaluation of non-linear effects on the stopping power in a beam-heated plasma target. A direct-indirect hybrid scheme of a beam-driven ICF target has been proposed and discussed at UU. In the same group, a method for controlling the Rayleigh-Taylor instability in imploding fuel target has been proposed using oscillating heavy ion beams (HIBs). Core dynamics of the impact ignition has been investigated both experimentally and numerically at ILE—Osaka. Dense plasmas driven by intense ion beams and/or a pulse powered device, were evaluated by a group of DES-TIT, concerning the researches on HED and warm dense matter (WDM) physics. A quasi-statically tamped target was proposed to make a well-defined, warm dense state for equation-of-state (EOS) studies based on ion accelerators. The potentiality of the new facility planned at KEK was evaluated by a collaborating group of TIT-UU-KEK, which can extend the parameter regime for laboratory experiments to study the properties of matter under extreme conditions. A possible method to make a high-pressure condition for study of the planetary science was discussed as a short-term subject of intense HIBs.

  5. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.

    PubMed

    Chingin, Konstantin; Makarov, Alexander; Denisov, Eduard; Rebrov, Oleksii; Zubarev, Roman A

    2014-01-01

    First results are reported on the fragmentation of multiply protonated polypeptide ions produced in electrospray ionization mass spectrometry (ESI-MS) with a beam of high-energy cations as a source of activation. The ion beam is generated with a microwave plasma gun installed on a benchtop Q Exactive mass spectrometer. Precursor polypeptide ions are activated when trapped inside the collision cell of the instrument (HCD cell), and product species are detected in the Orbitrap analyzer. Upon exposure to the beam of air plasma cations (∼100 μA, 5 s), model precursor species such as multiply protonated angiotensin I and ubiquitin dissociated across a variety of pathways. Those pathways include the cleavages of C-CO, C-N as well as N-Cα backbone bonds, accordingly manifested as b/y, a, and c/z fragment ion series in tandem mass spectra. The fragmentation pattern observed includes characteristic fragments of collision-induced dissociation (CID) (b/y/a fragments) as well as electron capture/transfer dissociation (ECD, ETD) (c/z fragments), suggesting substantial contribution of both vibrational and electronic excitation in our experiments. Besides backbone cleavages, notable amounts of nondissociated precursor species were observed with reduced net charge, formed via electron or proton transfer between the colliding partners. Peaks corresponding to increased charge states of the precursor ions were also detected, which is the major distinctive feature of ion beam activation.

  6. SIMULATIONS OF RHIC COHERENT STABILITIES DUE TO WAKEFIELD AND ELECTRON COOLING

    SciTech Connect

    WANG,G.; BLASKIEWICZ, M.

    2007-06-25

    The Electron cooling beam has both coherent and incoherent effects to the circulating ion beam. The incoherent longitudinal cooling could reduce the ion beam energy spread and hence cause 'over-cooling' of the ion beam. Depending on the beam densities and cooling length, the coherent interaction between the ion and electron beam could either damp or anti-damp the ion coherent motions. Using the tracking codes, TRANFT, the threshold for 'over-cooling' has been found and compared with theoretical estimation. The transverse coherent effect of electron cooling has been implemented into the codes and its effect for the bunched ion beam is shown.

  7. Active control of the forced and transient response of a finite beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John T.

    1990-01-01

    Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.

  8. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  9. ACE to Ulysses Coherences

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Maclennan, C. G.; Lanzerotti, L. J.

    2006-12-01

    The EPAM charged particle instrument on ACE is the backup for the HISCALE instrument on Ulysses making the two ideally suited for spatial coherence studies over large heliosphere distances. Fluxes of low-energy ( ~50 - 200 keV) electrons are detected in eight spatial sectors on both spacecraft. A spherical harmonic description of the particle flux as a function of time using only the l=0 and l=1 degree coefficients describes most of the observed flux. Here we concentrate on the three l=1 coefficients for the 60--100 kev electrons.Between the two spacecraft these result in nine coherence estimates that are all typically moderately coherent, but the fact that the different coefficients at each spacecraft are also coherent with each other makes interpretation difficult. To avoid this difficulty we estimated the canonical coherences between the two groups of three series. This, in effect, chooses an optimum coordinate system at each spacecraft and for each frequency and estimates the coherence in this frame. Using one--minute data, we find that the canonical coherences are generally larger at high frequencies (3 mHz and above) than they are at low frequencies. This appears to be generally true and does not depend particularly on time, range, etc. However, if the data segment is chosen too long, say > 30 days with 1--minute sampling, the coherence at high frequencies drops. This may be because the spatial and temporal features of the mode are confounded, or possibly because the solar modes p--modes are known to change frequency with solar activity, so do not appear coherent on long blocks.The coherences are not smooth functions of frequency, but have a bimodal distribution particularly in the 100 μHz to 5 mHz range. Classifying the data at frequencies where the canonical coherences are high in terms of apparent polarization and orientation, we note two major families of modes that appear to be organized by the Parker spiral. The magnetic field data on the two

  10. Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John Theodore

    1989-01-01

    When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays

  11. Electrical activation and spin coherence of ultra low doseantimony implants in silicon

    SciTech Connect

    Schenkel, T.; Tyryshkin, A.M.; de Sousa, R.; Whaley, K.B.; Bokor,J.; Liddle, J.A.; Persaud, A.; Shangkuan, J.; Chakarov, I.; Lyon, S.A.

    2005-07-13

    We implanted ultra low doses (0.2 to 2 x 10{sup 11} cm{sup -2}) of Sb ions into isotopically enriched {sup 28}Si, and probed electrical activation and electron spin relaxation after rapid thermal annealing. Strong segregation of dopants towards both Si{sub 3}N{sub 4} and SiO{sub 2} interfaces limits electrical activation. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant profiles, and the interface quality. A spin decoherence time, T{sub 2}, of 1.5 ms is found for profiles peaking 25 nm below a Si/SiO{sub 2} interface, increasing to 2.1 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins.

  12. Measuring subwavelength spatial coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Morrill, Drew; Li, Dongfang; Pacifici, Domenico

    2016-10-01

    Optical interferometry has enabled quantification of the spatial and temporal correlations of electromagnetic fields, which laid the foundations for the theory of optical coherence. Despite significant advances in fundamental theories and applications, the measurement of nanoscale coherence lengths for highly incoherent optical fields has remained elusive. Here, we employ plasmonic interferometry (that is, optical interferometry with surface plasmons) to characterize the spatial degree of coherence of light beams down to subwavelength scales, with measured coherence lengths as low as ∼330 nm for an incident wavelength of 500 nm. Furthermore, we demonstrate a compact coherence meter that integrates this method with an image sensor. Precise determination of spatial coherence can advance high-resolution imaging and tomographic schemes, and provide an experimental platform for the development and testing of optical coherence theories at the nanoscale.

  13. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  14. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG

  15. Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans.

    PubMed

    Sella, Irit; Reiner, Miriam; Pratt, Hillel

    2014-07-01

    Cues that involve a number of sensory modalities are processed in the brain in an interactive multimodal manner rather than independently for each modality. We studied multimodal integration in a natural, yet fully controlled scene, implemented as an interactive game in an auditory-haptic-visual virtual environment. In this imitation of a natural scene, the targets of perception were ecologically valid uni-, bi- and tri-modal manifestations of a simple event-a ball hitting a wall. Subjects were engaged in the game while their behavioral and early cortical electrophysiological responses were measured. Behavioral results confirmed that tri-modal cues were detected faster and more accurately than bi-modal cues, which, likewise, showed advantages over unimodal responses. Event-Related Potentials (ERPs) were recorded, and the first 200 ms following stimulus onset was analyzed to reveal the latencies of cortical multimodal interactions as estimated by sLORETA. These electrophysiological findings indicated bi-modal as well as tri-modal interactions beginning very early (~30 ms), uniquely for each multimodal combination. The results suggest that early cortical multimodal integration accelerates cortical activity and, in turn, enhances performance measures. This acceleration registers on the scalp as sub-additive cortical activation.

  16. Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation

    SciTech Connect

    Maier, G V; Kopylova, T N; Svetlichnyi, Valerii A; Podgaetskii, Vitalii M; Dolotov, S M; Ponomareva, O V; Monich, A E; Monich, E A

    2007-01-31

    The technology is developed for manufacturing active polymer optical fibres doped with organic dyes. Stimulated emission and amplification in the long-wavelength part of the visible spectrum is studied for rhodamine 11B, phenalemine 512 and substituted DCM pyran in polymer optical fibres. Lasing was observed upon longitudinal and transverse pumping by the second harmonic of a Nd:YAG laser. The gain in polymer fibres was estimated by measuring the intensity ratio of radiation of a master oscillator (dye laser) propagated through the excited (pumped) and unexcited (not pumped) fibre pieces doped with organic dyes. It is shown that the lasing efficiency of rhodamine 11B in a transversely pumped polymer fibre can achieve 36%. The maximum gain (25 dB m{sup -1}) is obtained in fibres doped with phenalemine 512. (lasers)

  17. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity.

  18. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity. PMID:26907420

  19. All fiber actively mode-locked fiber laser emitting cylindrical vector beam

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wang, Anting; Gu, Chun; Xu, Lixin; Zhan, Qiwen

    2015-08-01

    We demonstrated an all fiber actively mode-locked laser emitting cylindrical vector beam. A few-mode fiber Bragg grating is adopted to achieve mode selecting and spectrum filtering. An offset splicing of single-mode fiber with fourmode fiber is utilized as a mode coupler in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode locking in the laser. The laser operates at 1547nm with 30 dB spectrum width of 0.3nm. The emitted modelocked pulses have a duration of 1ns and repetition of 12.06MHz. Both radially and azimuthally polarized beams have been obtained with very good modal symmetry by adjusting the polarization in the laser cavity.

  20. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors.

    PubMed

    Marsolat, F; Tromson, D; Tranchant, N; Pomorski, M; Le Roy, M; Donois, M; Moignau, F; Ostrowsky, A; De Carlan, L; Bassinet, C; Huet, C; Derreumaux, S; Chea, M; Cristina, K; Boisserie, G; Bergonzo, P

    2013-11-01

    Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve

  1. Modeling activities on the negative-ion-based Neutral Beam Injectors of the Large Helical Device

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Serianni, G.; Veltri, P.; Cavenago, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.

    2011-09-26

    At the National Institute for Fusion Science (NIFS) large-scaled negative ion sources have been widely used for the Neutral Beam Injectors (NBIs) mounted on the Large Helical Device (LHD), which is the world-largest superconducting helical system. These injectors have achieved outstanding performances in terms of beam energy, negative-ion current and optics, and represent a reference for the development of heating and current drive NBIs for ITER.In the framework of the support activities for the ITER NBIs, the PRIMA test facility, which includes a RF-drive ion source with 100 keV accelerator (SPIDER) and a complete 1 MeV Neutral Beam system (MITICA) is under construction at Consorzio RFX in Padova.An experimental validation of the codes has been undertaken in order to prove the accuracy of the simulations and the soundness of the SPIDER and MITICA design. To this purpose, the whole set of codes have been applied to the LHD NBIs in a joint activity between Consorzio RFX and NIFS, with the goal of comparing and benchmarking the codes with the experimental data. A description of these modeling activities and a discussion of the main results obtained are reported in this paper.

  2. A mechanism for weak double layers and coherent low-frequency electrostatic wave activity in the solar wind

    NASA Astrophysics Data System (ADS)

    Singh Lakhina, Gurbax; Singh, Satyavir

    2016-07-01

    A mechanism for the weak double layers and coherent low-frequency electrostatic wave activity observed by Wind spacecraft in the solar wind at 1 AU is proposed in terms of ion-acoustic solitons and double layers. The solar wind plasma is modelled by a three component plasma consisting of fluid hot protons, hot alpha particles streaming with respect to protons, and suprathermal electrons having κ- distribution. This system supports two types of, slow and fast, ion-acoustic solitary waves. The fast ion-acoustic mode is similar to the ion-acoustic mode of proton-electron plasma, and can support only positive potential solitons. The slow ion-acoustic mode is a new mode that occurs due to the presence of alpha particles. This mode can support both positive and negative solitons and double layers. An increase of the κ- index leads to an increase in the critical Mach number, maximum Mach number and the maximum amplitude of both slow and fast ion-acoustic solitons. The slow ion-acoustic double layer can explain the amplitudes and widths, but not shapes, of the weak double layers (WDLs) observed in the solar wind at 1 AU by Wind spacecraft. The Fourier transform of the slow ion-acoustic solitons/double layers would produce broadband low-frequency electrostatic waves having main peaks between 0.35 kHz to 1.6 kHz, with electric field in the range of E = (0.01 - 0.7 ) mV/m, in excellent agreement with the observed low-frequency electrostatic wave activity in the solar wind at 1 AU.

  3. Coherent amplified optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  4. Performance of a lead-scintillation-fiber calorimeter designed as an active beam shield for the VENUS detector

    NASA Astrophysics Data System (ADS)

    Takasaki, Fumihiko; Utsumi, M.; Fukui, T.; Narita, Y.; Hosoda, N.; Hirose, T.; Chiba, M.

    1992-11-01

    We made a cylindrical calorimeter which consisted of plastic scintillating fibers and lead. This calorimeter was designed to serve as an active beam shield for the VENUS detector [1] at the TRISTAN electron-positron collider [2]. This device has been successfully used as a beam background shield and as a luminosity monitor of the VENUS detector.

  5. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  6. Pilot experiments for the International Thermonuclear Experimental Reactor active beam spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Hellermann, M. von; Bock, M. de; Jaspers, R.; Jakubowska, K.; Barnsley, R.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.; Lotte, P.; Giannella, R.; Malaquias, A.; Rachlew, E.; Tugarinov, S.; Krasilnikov, A.; Litnovsky, A.; Philipps, V.; Wienhold, P.; Oelhafen, P.; Temmerman, G. De; Shmaenok, L.

    2004-10-01

    Supporting pilot experiments and activities which are currently considered or already performed for the development of the International Thermonuclear Experiment Reactor active beam spectroscopy diagnostic are addressed in this article. Four key issues are presented including optimization of spectral instrumentation, feasibility of a motional Stark effect (MSE) evaluation based on line ratios, "first-mirror" test-bed experiments at the tokamak TEXTOR, and finally the role of integrated data analysis for the conceptual layout of the change exchange recombination spectroscopy and MSE diagnostic.

  7. An Active Target-Time Projection Chamber (AT-TPC) for reaccelerated beams

    NASA Astrophysics Data System (ADS)

    Beceiro-Novo, Saul; Ahn, T.; Abu-Nimeh, F.; Bazin, D.; Bradt, J.; Chajecki, Z.; Fritsch, A.; Kohley, Z.; Kolata, J. J.; Lynch, W.; Mittig, W.; Suzuki, D.; Usher, N.

    2014-09-01

    Reaccelerated radioactive beams near the Coulomb barrier, which will soon be available from the ReA3 accelerator at NSCL, will open up new opportunities for the study of nuclear structure near the driplines. Since these beams can only be produced at modest intensities, efficient techniques must be used for measurement. The Active Target- Time Projection Chamber (AT-TPC), which was developed at MSU, solves this problem by providing the increased luminosity of a thick target while maintaining a good energy resolution by tracking the reaction vertex over an essentially 4 π solid angle. The AT-TPC and similar detectors allow us to take full advantage of the radioactive ion beams at present and future nuclear physics facilities to explore the frontier of rare isotopes where much of the spectroscopic information is unknown. We used a prototype of the AT-TPC to study resonances in light nuclei, and some illustrative results will be shown. The AT-TPC technology will be presented together with new experimental results and the commissioning of the detector and its 10240 electronic channels. Reaccelerated radioactive beams near the Coulomb barrier, which will soon be available from the ReA3 accelerator at NSCL, will open up new opportunities for the study of nuclear structure near the driplines. Since these beams can only be produced at modest intensities, efficient techniques must be used for measurement. The Active Target- Time Projection Chamber (AT-TPC), which was developed at MSU, solves this problem by providing the increased luminosity of a thick target while maintaining a good energy resolution by tracking the reaction vertex over an essentially 4 π solid angle. The AT-TPC and similar detectors allow us to take full advantage of the radioactive ion beams at present and future nuclear physics facilities to explore the frontier of rare isotopes where much of the spectroscopic information is unknown. We used a prototype of the AT-TPC to study resonances in light nuclei

  8. Active Nozzle Control and Integrated Design Optimization of a Beam Subject to Fluid-Dynamic Forces

    NASA Astrophysics Data System (ADS)

    Borglund, D.

    1999-02-01

    Active nozzle control is used to improve the stability of a beam subject to forces induced by fluid flow through attached pipes. The control system has a significant effect on the structural stability, making both flutter and divergence type of instabilities possible. The stability analysis is carried out using a state-variable approach based on a finite element formulation of the structural dynamics. The simultaneous design of the control system and the beam shape minimizing structural mass is performed using numerical optimization. The inclusion of the control system in the optimization gives a considerable reduction of the structural mass but results in an optimal design which is very sensitive to imperfections. Using a simple model of the control system uncertainties, a more robust design is obtained by solving a modified optimization problem. Throughout the study, the theoretical findings are verified by experiments.

  9. Semi-active damping strategy for beams system with pneumatically controlled granular structure

    NASA Astrophysics Data System (ADS)

    Bajkowski, Jacek M.; Dyniewicz, Bartłomiej; Bajer, Czesław I.

    2016-03-01

    The paper deals with a control method for semi-active damping of a double beam system with a smart granular structure placed in a thin silicone envelope. The damping properties of the system are controlled pneumatically, by subjecting the granular material to underpressure at particular moments. A mathematical model of the layered beam with a granular damping structure is represented by the two degrees of freedom, modified Kelvin-Voigt model of two masses, a spring with controllable stiffness, and a viscous damper with a variable damping coefficient. The optimal control problem is posed, using the concept of switching of the parameters to increase the efficiency of suppressing the displacement's amplitude. The resulting control strategy was verified experimentally for free vibrations of a cantilever system. The research proved that the appropriate, periodic switching of the properties of the considered structure enables reducing the vibration more effectively than if the material is treated passively.

  10. Fresnel diffractive imaging: Experimental study of coherence and curvature

    NASA Astrophysics Data System (ADS)

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; de Jonge, M. D.; McNulty, I.

    2008-03-01

    A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.

  11. Electromagnetically induced grating with maximal atomic coherence

    SciTech Connect

    Carvalho, Silvania A.; Araujo, Luis E. E. de

    2011-10-15

    We describe theoretically an atomic diffraction grating that combines an electromagnetically induced grating with a coherence grating in a double-{Lambda} atomic system. With the atom in a condition of maximal coherence between its lower levels, the combined gratings simultaneously diffract both the incident probe beam as well as the signal beam generated through four-wave mixing. A special feature of the atomic grating is that it will diffract any beam resonantly tuned to any excited state of the atom accessible by a dipole transition from its ground state.

  12. Coherence measurement with digital micromirror device.

    PubMed

    Partanen, Henri; Turunen, Jari; Tervo, Jani

    2014-02-15

    We measure the complex-valued spatial coherence function of a multimode broad-area laser diode using Young's classical double slit experiment realized with a digital micromirror device. We use this data to construct the coherent modes of the beam and to simulate its propagation before and after the measurement plane. When comparing the results to directly measured intensity profiles, we find excellent correspondence to the extent that even small details of the beam can be predicted. We also consider the number of measurement points required to model the beam with sufficient accuracy.

  13. Wakefields Generated by Electron Beams Passing through a Waveguide Loaded with an Active Medium

    SciTech Connect

    Tyukhtin, Andrey; Kanareykin, Alexei; Schoessow, Paul

    2006-11-27

    The wakefields of a relativistic electron beam passing through a waveguide loaded with an active medium with weak resonant dispersion have been considered. For the calculations in this paper the parameters of the medium are those of a solution of fullerene (C60) in a nematic liquid crystal that exhibits activity in the X-band. It was shown that several of the TM accelerating modes can be amplified for the geometries under consideration; structures in which higher order modes are amplified exhibit essential advantages as PASERs. In particular, the amplification of the highest mode occurs in a structure loaded with a rather thick active medium layer that maximizes the energy stored by the active medium.

  14. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer.

    PubMed

    Marino, A; Cammarata, M; Matar, S F; Létard, J-F; Chastanet, G; Chollet, M; Glownia, J M; Lemke, H T; Collet, E

    2016-03-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  15. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  16. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer.

    PubMed

    Marino, A; Cammarata, M; Matar, S F; Létard, J-F; Chastanet, G; Chollet, M; Glownia, J M; Lemke, H T; Collet, E

    2016-03-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules.

  17. Experimental studies on active vibration control of a smart composite beam using a PID controller

    NASA Astrophysics Data System (ADS)

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  18. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial

    NASA Astrophysics Data System (ADS)

    Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond

    2016-02-01

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.

  19. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial

    PubMed Central

    Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond

    2016-01-01

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials. PMID:26879520

  20. Improvement of chaperone activity of 2-Cys peroxiredoxin using electron beam

    NASA Astrophysics Data System (ADS)

    Hong, Sung Hyun; An, Byung Chull; Lee, Seung Sik; Lee, Jae Taek; Cho, Jae-Hyun; Jung, Hyun Suk; Chung, Byung Yeoup

    2012-08-01

    The peroxiredoxin protein expressed in Pseudomonas aeruginosa PAO1 (PaPrx) is a typical 2-cysteine peroxiredoxin that has dual functions as both a thioredoxin-dependent peroxidase and molecular chaperone. As the function of PaPrx is regulated by its structural status, in the present study, we examined the effects of electron beam radiation on the structural modifications of PaPrx, as well as changes to PaPrx peroxidase and chaperone functions. It was found that the chaperone activity of PaPrx was increased approximately 3- to 4-fold at 2 kGy when compared to non-irradiated PaPrx, while its peroxidase activity decreased. This corresponded to a shift from the low molecular weight PaPrx species that acts as a peroxidase to the high molecular weight complex that functions as a chaperone, as detected using polyacrylamide gel electrophoresis. We also investigated the influence of the electron beam on physical protein properties such as hydrophobicity and secondary structure. The exposure of the PaPrx hydrophobic domains in response to irradiation reached a peak at 2 kGy and then decreased in a dose-dependent manner at higher doses. In addition, the exposure of β-sheet and random coil elements on the surface of PaPrx was significantly increased following irradiation with an electron beam, whereas exposure of α-helix and turn elements was decreased. These results suggest that irradiated PaPrx may be a potential candidate for use in bio-engineering systems and various industrial applications, due to its enhanced chaperone activity.

  1. Evaluation of uncertainty in experimental active buckling control of a slender beam-column with disturbance forces using Weibull analysis

    NASA Astrophysics Data System (ADS)

    Enss, Georg C.; Platz, Roland

    2016-10-01

    Buckling of slender load-bearing beam-columns is a crucial failure scenario in light-weight structures as it may result in the collapse of the entire structure. If axial load and load capacity are unknown, stability becomes uncertain. To compensate this uncertainty, the authors successfully developed and evaluated an approach for active buckling control for a slender beam-column, clamped at the base and pinned at the upper end. Active lateral forces are applied with two piezoelectric stack actuators in opposing directions near the beam-column' clamped base to prevent buckling. A Linear Quadratic Regulator is designed and implemented on the experimental demonstrator and statistical tests are conducted to prove effectivity of the active approach. The load capacity of the beam-column could be increased by 40% and scatter of buckling occurrences for increasing axial loads is reduced. Weibull analysis is used to evaluate the increase of the load capacity and its related uncertainty compensation.

  2. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    PubMed

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  3. Role of activated chemisorption in gas-mediated electron beam induced deposition.

    PubMed

    Bishop, James; Lobo, Charlene J; Martin, Aiden; Ford, Mike; Phillips, Matthew; Toth, Milos

    2012-10-01

    Models of adsorbate dissociation by energetic electrons are generalized to account for activated sticking and chemisorption, and used to simulate the rate kinetics of electron beam induced chemical vapor deposition (EBID). The model predicts a novel temperature dependence caused by thermal transitions from physisorbed to chemisorbed states that govern adsorbate coverage and EBID rates at elevated temperatures. We verify these results by experiments that also show how EBID can be used to deposit high purity materials and characterize the rates and energy barriers that govern adsorption.

  4. How to produce high specific activity tin-117m using alpha particle beam.

    PubMed

    Duchemin, C; Essayan, M; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2016-09-01

    Tin-117m is an interesting radionuclide for both diagnosis and therapy, thanks to the gamma-ray and electron emissions, respectively, resulting from its decay to tin-117g. The high specific activity of tin-117m is required in many medical applications, and it can be obtained using a high energy alpha particle beam and a cadmium target. The experiments performed at the ARRONAX cyclotron (Nantes, France) using an alpha particle beam delivered at 67.4MeV provide a measurement of the excitation function of the Cd-nat(α,x)Sn-117m reaction and the produced contaminants. The Cd-116(α,3n)Sn-117m production cross section has been deduced from these experimental results using natural cadmium. Both production yield and specific activity as a function of the projectile energy have been calculated. These informations help to optimize the irradiation conditions to produce tin-117m with the required specific activity using α particles with a cadmium target.

  5. Active control of a flexible smart beam using a system identification technique based on ARMAX

    NASA Astrophysics Data System (ADS)

    Bu, Xiongzhu; Ye, Lin; Su, Zhongqing; Wang, Chunhui

    2003-10-01

    A study on active vibration suppression for a flexible structural beam via a system identification approach was experimentally performed. The beam, incorporating a pair of piezoceramic transducers as actuators and a set of surface-bonded strain gauges as sensors, was evaluated. The relationship between the input control voltage applied on the actuators and the consequently induced strain, measured by the sensor, was then derived. An active control system, considering both the actuators and sensor, was configured using the ARMAX (auto-regressive moving average exogenous) model. A continuous signal with step waveform was selected as the input excitation. A digital-signal-processor-based real-time adaptive vibration control algorithm, supported by Agilent® E1415A, SCPs 1511 and SCPs 1532, was developed, and an algorithm was established using a pole placement control method, so as to achieve the desired closed-loop control. The effectiveness of the ARMAX model was examined by comparing it with the ARX (auto-regression with extra inputs) model. The results show good performance of the ARMAX model for system identification purposes and excellent effectiveness for active structural vibration control.

  6. Coherent diffractive imaging and partial coherence

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Quiney, Harry M.; Peele, Andrew G.; Nugent, Keith A.

    2007-03-01

    We formulate coherent diffractive imaging in the framework of partially spatially coherent diffraction. We find that the reconstruction can be critically dependent on the degree of coherence in the illuminating field and that even a small departure from full coherence may invalidate the conventional assumption that a mapping exists between an exit surface wave of finite support and a far field diffraction pattern. We demonstrate that the introduction of sufficient phase curvature in the illumination can overcome the adverse effects of partial coherence.

  7. Coherence area profiling in multi-spatial-mode squeezed states

    DOE PAGES

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  8. Coherence area profiling in multi-spatial-mode squeezed states

    SciTech Connect

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  9. Effect of N+ Beam Exposure on Superoxide Dismutase and Catalase Activities and Induction of Mn-SOD in Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Song, Dao-jun; Chen, Ruo-lei; Shao, Chun-lin; Wu, Li-jun; Yu, Zeng-liang

    2000-10-01

    Though bacteria of the radiation-resistant Deinococcus radiodurans have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. In this report, the superoxide dismutase (SOD) and catalase (CAT) activities produced by these bacteria were measured, and the change of SOD and CAT activities by 20 keV N+ beam exposure was examined. Their activities were increased by N+ beam exposure from 8×1014 ions/cm2 to 6×1015 ions/cm2. The treatment of H2O2 and [CHCl3 +CH3CH2OH] and the measurement of absorption spectrum showed that the increase in SOD activity was resulted from inducible activities of Mn-SOD in D. radiodurans AS1.633 by N+ beam exposure. These results suggested that this bacteria possess inducible defense mechanisms against the deleterious effects of oxidization.

  10. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  11. Active suppression of a beam under a moving mass using a pointwise fiber Bragg grating displacement sensing system.

    PubMed

    Chuang, Kuo-Chih; Ma, Chien-Ching; Wu, Rong-Hua

    2012-10-01

    This paper investigates active vibration control of a beam under a moving mass using a pointwise fiber Bragg grating (FBG) displacement sensing system. Dynamic responses of the proposed FBG displacement sensor are demodulated with an FBG filter and verified with measurement results obtained from a noncontact fiber-optic displacement sensor. System identification of the beam is first performed with a piezoceramic actuator and positive position feedback (PPF) controllers are designed based on the identified results. Then, transient responses of the beam under a moving mass with different moving conditions are measured using the FBG displacement sensor. A high-speed camera is used to detect the speed of the moving mass for further discussions about its influence on the transient response. Finally, active vibration control of the beam under the moving mass is performed and fast Fourier transform (FFT) as well as short-time Fourier transform (STFT) are employed to demonstrate control performances. For the case in which a rolling steel ball is directed from a slide to the beam to generate the moving mass, reductions of the vibration up to 50% and 60% are achieved in the frequency domain for the first and second modes of the beam, respectively. Based on the control experiments on the smallscale beam, results in this work show that the proposed FBG displacement sensing system can be used in research on the moving mass problem. PMID:23143564

  12. Coherent Communications, Imaging and Targeting

    SciTech Connect

    Stappaerts, E; Baker, K; Gavel, D; Wilks, S; Olivier, S; Brase, J; Olivier, S; Brase, J

    2003-10-03

    Laboratory and field demonstration results obtained as part of the DARPA-sponsored Coherent Communications, Imaging and Targeting (CCIT) program are reviewed. The CCIT concept uses a Phase Conjugation Engine based on a quadrature receiver array, a hologram processor and a spatial light modulator (SLM) for high-speed, digital beam control. Progress on the enabling MEMS SLM, being developed by a consortium consisting of LLNL, academic institutions and small businesses, is presented.

  13. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  14. First Beam to FACET

    SciTech Connect

    Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S.; Lipkowitz, N.; Nelson, J.; Phinney, N.; Schuh, P.; Sheppard, J.; Smith, H.; Smith, T.; Stanek, M.; Turner, J.; Warren, J.; Weathersby, S.; Wienands, U.; Wittmer, W.; Woodley, M.; Yocky, G.; /SLAC

    2011-12-13

    The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.

  15. A Kinematically Beamed, Low Energy Pulsed Neutron Source for Active Interrogation

    SciTech Connect

    Dietrich, D; Hagmann, C; Kerr, P; Nakae, L; Rowland, M; Snyderman, N; Stoeffl, W; Hamm, R

    2004-10-07

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of SNM (Special Nuclear Materials) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals, (1) Energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) Neutrons with an energy of approximately 60 to 100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n,2n) or (n,n') processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  16. Spatial-Coherence Effects in Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wolf, Emil

    2002-12-01

    In this report account is presented of research carried out during the period December 1, 1999 - November 30, 2002 under the sponsorship of the Air Force Office of Scientific Research under grant F49620-00l-l-0125. Our research covered many areas of modern optical physics, especially wave propagation in random media, inverse scattering, coherence properties of light, correlation-induced spectral changes, partially coherent beams, focusing of waves of arbitrary state of coherence, partially coherent solitons, spreading of partially coherent beams in random media, diffraction tomography and singular optics with polychromatic light. We believe that of special significance are some new results that we have obtained concerning the propagation of partially coherent beams in the turbulent atmosphere. The results indicate that in certain situations it is preferable to employ partially coherent beams rather than fully coherent ones for communication, tracking and guiding, for example. These results are preliminary and we are pursuing the subject further. In the field of singular optics we have opened up a new direction for progress in the field by having shown that some new and unexpected effects take place in the neighborhood of phase singularities in optical fields, when the light is polychromatic rather than monochromatic (studied previously). Specifically we have demonstrated that drastic changes of the spectrum of light take place in the immediate vicinity of the singular points. The results of our investigations were reported in 43 publications. They are listed on pages 3 to 5. Summaries of these publications are given on pages 6 - 14. Scientists who have participated in this research are listed on page 15.

  17. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  18. Diffractive-optics-based beam combination of a phase-locked fiber laser array.

    PubMed

    Cheung, Eric C; Ho, James G; Goodno, Gregory D; Rice, Robert R; Rothenberg, Josh; Thielen, Peter; Weber, Mark; Wickham, Michael

    2008-02-15

    A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.

  19. Beam diagnostics

    SciTech Connect

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-08-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the {open_quotes}Booster{close_quotes} and {open_quotes}ATLAS{close_quotes} linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates.

  20. Generation of new spatial and temporal coherent light states using III-V semiconductor laser technology: VORTEX, continuum, dual frequency for THz

    NASA Astrophysics Data System (ADS)

    Garnache, Arnaud; Seghilani, Mohamed; Paquet, Romain; Sellhai, Mohamed; Chomet, Baptiste; Myara, Mikhal; Blin, Stephane; Sagnes, Isabelle; Beaudoin, Gregoire; Legratiet, Luc; Lalanne, Philippe

    2016-03-01

    We take advantage of III-V VeCSEL technology integrating at-photonics for the generation of new coherent states, thanks to insertion of intracavity functions based on at photonics. These new kinds of coherent light states target many applications including optical tweezers, telecommunications, fundamental physics, sensors For this purpose, we extended the VeCSEL semiconductor technology, designing active sections, sub-wavelength metallic masks and photonic crystal, enabling to control the electrical field inside the cavity. This leads to the generation and control of highly coherent single high-order Laguerre- or Hermite-Gauss mode, VORTEX beam carrying controlled orbital-angular-momentum, as well as of coherent dual-frequency wave for THz, and of coherent continuum modeless source.

  1. 100 s extraction of negative ion beams by using actively temperature-controlled plasma grid

    SciTech Connect

    Kojima, A. Hanada, M.; Yoshida, M.; Tobari, H.; Kashiwagi, M.; Umeda, N.; Watanabe, K.; Grisham, L. R.

    2014-02-15

    Long pulse beam extraction with a current density of 120 A/m{sup 2} for 100 s has been achieved with a newly developed plasma grid (PG) for the JT-60SA negative ion source which is designed to produce high power and long pulse beams with a negative ion current of 130 A/m{sup 2} (22 A) and a pulse length of 100 s. The PG temperature is regulated by fluorinated fluids in order to keep the high PG temperature for the cesium-seeded negative ion production. The time constant for temperature controllability of the PG was measured to be below 10 s, which was mainly determined by the heat transfer coefficient of the fluorinated fluid. The measured decay time of the negative ion current extracted from the actively temperature-controlled PG was 430 s which was sufficient for the JT-60SA requirement, and much longer than that by inertial-cooling PG of 60 s. Obtained results of the long pulse capability are utilized to design the full size PG for the JT-60SA negative ion source.

  2. Power beam technology at Los Alamos/A review of research and development activities

    SciTech Connect

    Casey, H.

    1990-01-01

    This document discusses techniques and research programs in power beam welding at Los Alamos National Laboratories. Specific areas discussed are in plasma welding, electron beam welding and laser welding. 11 refs., 9 figs. (FSD)

  3. Multichannel polarization stabilization for coherently combined fiber laser arrays.

    PubMed

    Goodno, Gregory D; McNaught, Stuart J; Weber, Mark E; Weiss, S Benjamin

    2012-10-15

    We demonstrate a simplified approach toward active polarization control in coherently combined laser architectures. By leveraging optical phase dithers applied by a phase controller, polarization error signals are generated for an entire laser array from a single beam sample of the combined output, enabling closed-loop polarization locking of non-polarization-maintaining fibers. The concept is shown to be compatible with both hill-climbing and synchronous multidither phase control methods. Simultaneous phase locking and polarization locking was demonstrated for a five-fiber array with >99% phasing efficiency and >20 dB polarization extinction ratio.

  4. Measurement of the Spatial Coherence Function of Undulator Radiation using a Phase Mask

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Paterson, D.; Peele, A. G.; McMahon, P. J.; Chantler, C. T.; Nugent, K. A.; Lai, B.; Moldovan, N.; Cai, Z.; Mancini, D. C.; McNulty, I.

    2003-02-01

    A measurement of the horizontal coherence function of 7.9keV radiation from an undulator beam line at the Advanced Photon Source is reported. X-ray diffraction from a phase-shifting mask was used, and the coherence function was measured as a function of the width of beam-conditioning slits in the beam line. The coherence distribution is found to be best described by a Lorentzian function.

  5. A Study of the Effect of Preschool Children's Participation in Sensorimotor Activities on Their Understanding of the Mechanical Equilibrium of a Balance Beam

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara

    2009-01-01

    The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its…

  6. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane. PMID:24663619

  7. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  8. Design of active temperature compensated composite free-free beam MEMS resonators in a standard process

    NASA Astrophysics Data System (ADS)

    Xereas, George; Chodavarapu, Vamsy P.

    2014-03-01

    Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.

  9. Biological effects of passive versus active scanning proton beams on human lung epithelial cells.

    PubMed

    Gridley, Daila S; Pecaut, Michael J; Mao, Xiao W; Wroe, Andrew J; Luo-Owen, Xian

    2015-02-01

    The goal was to characterize differences in cell response after exposure to active beam scanning (ABS) protons compared to a passive delivery system. Human lung epithelial (HLE) cells were evaluated at various locations along the proton depth dose profile. The dose delivered at the Bragg peak position was essentially identical (∼4 Gy) with the two techniques, but depth dose data showed that ABS resulted in lower doses at entry and more rapid drop-off after the peak. Average dose rates for the passive and ABS beams were 1.1 Gy/min and 5.1 Gy/min, respectively; instantaneous dose rates were 19.2 Gy/min and 2,300 Gy/min (to a 0.5 × 0.5 mm(2) voxel). Analysis of DNA synthesis was based on (3)H-TdR incorporation. Quantitative real-time polymerase chain reaction (RT-PCR) was done to determine expression of genes related to p53 signaling and DNA damage; a total of 152 genes were assessed. Spectral karyotyping and analyses of the Golgi apparatus and cytokines produced by the HLE cells were also performed. At or near the Bragg peak position, ABS protons resulted in a greater decrease in DNA synthesis compared to passively delivered protons. Genes with >2-fold change (P < 0.05 vs. 0 Gy) after passive proton irradiation at one or more locations within the Bragg curve were BTG2, CDKN1A, IFNB1 and SIAH1. In contrast, many more genes had >2-fold difference with ABS protons: BRCA1, BRCA2, CDC25A, CDC25C, CCNB2, CDK1, DMC1, DNMT1, E2F1, EXO1, FEN1, GADD45A, GTSE1, IL-6, JUN, KRAS, MDM4, PRC1, PTTG1, RAD51, RPA1, TNF, WT1, XRCC2, XRCC3 and XRCC6BP1. Spectral karyotyping revealed numerous differences in chromosomal abnormalities between the two delivery systems, especially at or near the Bragg peak. Percentage of cells staining for the Golgi apparatus was low after exposure to passive and active proton beams. Studies such as this are needed to ensure patient safety and make modifications in ABS delivery, if necessary.

  10. Beam wander of random electromagnetic Gaussian-shell model vortex beams propagating through a Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Dai, Wen; Tang, Hua; Guo, Hong

    2015-02-01

    Beam wander of random electromagnetic Gaussian-Shell model (EGSM) vortex beams propagating through atmospheric turbulence is investigated. We develop the expression for beam wander of random EGSM vortex beams in theory. The effects of topological charge, turbulence strength, initial spatially coherent length, transverse scale, and wavelength on beam wander are illustrated numerically. The numerical results show that vortex beams with both positive and negative topological charges have the same beam wander, decreasing the coherent length and decreasing the transverse scale, or increasing the topological charge, can decrease the beam wander. In free-space optical (FSO) communication, we can choose beams with smaller coherent length, smaller wavelength, and larger topological charge to reduce beam wander.

  11. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    SciTech Connect

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-06-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10{sup 3} compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second.

  12. Modes of storage ring coherent instabilities

    SciTech Connect

    Wang, J.M.

    1986-12-01

    Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered. (LEW)

  13. Operational Performance of LCLS Beam Instrumentation

    SciTech Connect

    Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.; /SLAC /LLNL, Livermore

    2010-06-15

    The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.

  14. Enhancing active and passive remote sensing in the ocean using broadband acoustic transmissions and coherent hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Tran, Duong Duy

    The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm

  15. PREFACE: 9th International Fröhlich's Symposium: Electrodynamic Activity of Living Cells (Including Microtubule Coherent Modes and Cancer Cell Physics)

    NASA Astrophysics Data System (ADS)

    Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej

    2011-12-01

    This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non

  16. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  17. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  18. Promoting Coherence in Athletic Training Education Programs

    ERIC Educational Resources Information Center

    Dodge, Thomas M.; Walker, Stacy E.; Laursen, R. Mark

    2009-01-01

    Objective: To present athletic training educators with guidelines for developing coherent athletic training education programs. Background: Coherent athletic training education programs are marked by a clear relationship between program goals and learning activities. These learning activities follow a logical progression that facilitates knowledge…

  19. Gaussian cloning of coherent states with known phases

    SciTech Connect

    Alexanian, Moorad

    2006-04-15

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier.

  20. Coherent x-ray diffraction from quantum dots

    SciTech Connect

    Vartanyants, I.A.; Robinson, I. K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.

    2005-06-15

    Coherent x-ray diffraction is a new experimental method for studying perfect and imperfect crystals. Instead of incoherent averaging, a coherent sum of amplitudes produces a coherent diffraction pattern originating from the real space arrangement of the sample. We applied this method for studying quantum dot samples that were specially fabricated GeSi islands of nanometer size and in a regular array embedded into a Si substrate. A coherent beam was focused by special Kirkpatric-Baez optics to a micrometer size. In the experiment it was observed that such a microfocused coherent beam produced coherent diffraction pattern with Bragg spots and broad diffuse maxima. The diffuse peak breaks up into a fine speckle pattern. The grazing incidence diffraction pattern has a typical shape resulting from the periodic array of identical islands. We used this diffraction pattern to reconstruct the average shape of the islands using a model independent approach.

  1. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    PubMed Central

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-01-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials. PMID:27211050

  2. A practical fan-beam design and reconstruction algorithm for Active and Passive Computed Tomography of radioactive waste barrels

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; More, M. R.; Ratheesh, Jilju; Sinha, Amar

    2015-09-01

    Active and Passive CT (A&PCT) of waste barrels is mostly carried out in parallel beam configuration due to its relative ease of implementation. This necessitates either using a single detector-source pair and translating the barrel or using multiple detector-source pairs for increasing the scanning speed. Additionally, because the use of bulky HPGe detectors may limit the number of detectors used in both active and passive modes, we propose to use 1″×1″ LaBr3(Ce) scintillators. This paper describes a practical fan-beam reconstruction for A&PCT imaging of waste barrels. A fan beam system model has been computed analytically and reconstruction done using MLEM algorithm. The results are compared with analytical reconstruction.

  3. Active depth-locking handheld micro-injector based on common-path swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong-Woo; Huang, Yong; Kang, Jin U.

    2015-03-01

    This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth. The evaluation tests show our system can guide the injection needle into the desired depth with 4.12μm average deviation error while injecting 50nƖ of fluorescein dye.

  4. Coherent laser vision system

    SciTech Connect

    Sebastion, R.L.

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  5. Diffusion filter eliminates fringe effects of coherent laser light source

    NASA Technical Reports Server (NTRS)

    Olsasky, M. J.

    1970-01-01

    Diffusion filter comprised of small particles in colloidal suspension reduces the coherence of a laser beam used as a photographic light source. Interference patterns which obscure details in photographic film are eliminated, the intensity and collimation are moderately affected.

  6. [Effect of coherent extremely high-frequency and low-intensity electromagnetic radiation on the activity of membrane systems in Escherichia coli].

    PubMed

    Tadevosian, A; Trchunian, A

    2009-01-01

    It has been shown that the exposure of wild-type Escherichia coli K12 bacteria grown in anaerobic conditions upon fermentation of glucose to coherent extremely high-frequency (51.8 and 53 GHz) electromagnetic radiation (EMR) or millimeter waves (wavelength 5.8 to 6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) caused a marked decrease in energy-dependent and N,N'-dicyclohexylcarbodiimide- or azide-sensitive proton and potassium ions transport fluxes through the membrane, including proton fluxes via proton F0F1-ATPase and through the potassium uptake Trk system, correspondingly. K+ uptake was less for the E. coli mutant Trk 1110. The rate of molecular hydrogen production by formate hydrogen lyase 2 is strongly inhibited. The results indicate that the bacterial effect of coherent extremely high-frequency EMR includes changes in the activity of membrane transport and enzymatic systems in which the F0F1-ATPase plays a key role.

  7. Purposeful Co-Curricular Activities Designed to Increase Engagement: A Practice Brief Based on BEAMS Project Outcomes

    ERIC Educational Resources Information Center

    Hazeur, Camille

    2008-01-01

    One of a series highlighting key practices undertaken by some of the many successful BEAMS (Building Engagement and Attainment for Minority Students) schools during the project's five years of data collection and action plan implementation, this practice brief demonstrates how emphasis on co-curricular activities can ultimately result in increased…

  8. Coherent seeding of self-modulated plasma wakefield accelerators

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.; Grüner, F. J.

    2013-05-15

    The growth of the beam self-modulation and hosing instabilities initiated by a seed wakefield is examined. Although the growth rates for the self-modulation and hosing instabilities are comparable, it is shown that an externally excited wakefield can be effective in selectively seeding the beam radial self-modulation, enabling the beam to fully modulate before strong beam hosing develops. Methods for coherent seeding are discussed.

  9. Coherent seeding of self-modulated plasma wakefield accelerators

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Gruener, Florian; Leemans, Wim

    2013-04-30

    The growth of the beam self-modulation and hosing instabilities initiated by a seed wakefield is examined. Although the growth rates for the self-modulation and hosing instabilities are comparable, it is shown that an externally excited wakefield can be effective in selectively seeding the beam radial self-modulation, enabling the beam to fully modulate before strong beam hosing develops. Methods for coherent seeding are discussed.

  10. Coherent diffractive imaging using focused beams

    NASA Astrophysics Data System (ADS)

    Nugent, Keith A.; Peele, Andrew G.; Quiney, Harry M.

    2005-08-01

    It is well-known that the loss of phase information at detection means that a diffraction pattern may be consistent with a multitude of physically different structures. This paper shows that it is possible to perform unique structural determination in the absence of a-priori information using x-ray fields with phase curvature. We argue that significant phase curvature is already available using modern x-ray optics and we demonstrate an algorithm that allows the phase to be recovered uniquely and reliably.

  11. Improving laser beam coherence - A concept

    NASA Technical Reports Server (NTRS)

    Heflinger, L. O.

    1971-01-01

    Laser frequencies may be reduced to single frequency or selected frequencies. For single frequency performance, spacing of frequencies falls in natural line width. For two or more frequencies, thicker spacing is used. Configuration adapts to operation with Kerr or Pockel cell for Q switching.

  12. Dual Beam Doppler Optical Coherence Angiography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki; Makita, Shuichi; Jaillon, Franck

    The ocular vasculature and circulation play a crucial role in the development of several eye diseases including glaucoma [1], diabetic retinopathy [2], and exudative macular diseases [3]. Modalities that are capable of investigating the ocular vasculature and circulation are important for both understanding the mechanisms of the diseases and diagnosing these diseases.

  13. Fractals, Coherence and Brain Dynamics

    NASA Astrophysics Data System (ADS)

    Vitiello, Giuseppe

    2010-11-01

    I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range

  14. Off-axis coherently pumped laser

    NASA Technical Reports Server (NTRS)

    Koepf, G. A. (Inventor)

    1984-01-01

    A coherently optically pumped laser system is described. A pump laser beam propagates through a laser medium contained in a degenerate cavity resonator in a controlled multiple round trip fashion in such a way that the unused pump beam emerges from an injection aperture at a different angle from which it enters the resonator. The pump beam is angularly injected off of the central axis of the resonator body whereupon the pump beam alternately undergoes spreading and focusing while pumping the laser medium by a process of resonant absorption. The emergent pump beam can also be used as a second pump beam source by being reinjected back into the cavity or it can be used for pumping another laser.

  15. Optimizing 50kV hydrogen diagnostic neutral beam performance for active spectroscopy in MST

    NASA Astrophysics Data System (ADS)

    Feng, X.; Boguski, J.; Craig, D.; den Hartog, D. J.; Munaretto, S.; Nornberg, M. D.; Olivia, S.

    2015-11-01

    The 50 kV hydrogen diagnostic neutral beam on MST provides local measurements of impurity ion emission through charge exchange recombination spectroscopy (CHERS) and of core-localized magnetic field through the motional Stark effect (MSE). The beam, which was designed to provide 5A of neutral current at 50 kV to meet these needs, is currently on a test stand to accommodate diagnosis, in order to increase the reliability of beam formation, sustain a steady current of 5 amps for 20ms, and optimize the primary energy fraction. The reliability of arc formation was increased from 40% to 80% success rate with increase of cathode gas pressure from 150kPa to 200kPa, and the stability of the arc current is improved with a decrease of the insulation magnetic field. A calorimeter with 5 thermocouples is installed to measure the horizontal and vertical beam profiles as well as beam divergence. Beam energy components are quantified through Doppler-shift spectroscopy. Preliminary simulation results of the beam using the ALCBEAM code as well as a description of how changes to the beam performance can affect CHERS and MSE measurements are presented. This work is supported by the U.S. DOE.

  16. High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy

    SciTech Connect

    McSkimming, Brian M. Speck, James S.; Chaix, Catherine

    2015-09-15

    In the present study, the authors report on a modified Riber radio frequency (RF) nitrogen plasma source that provides active nitrogen fluxes more than 30 times higher than those commonly used for plasma assisted molecular beam epitaxy (PAMBE) growth of gallium nitride (GaN) and thus a significantly higher growth rate than has been previously reported. GaN films were grown using N{sub 2} gas flow rates between 5 and 25 sccm while varying the plasma source's RF forward power from 200 to 600 W. The highest growth rate, and therefore the highest active nitrogen flux, achieved was ∼7.6 μm/h. For optimized growth conditions, the surfaces displayed a clear step-terrace structure with an average RMS roughness (3 × 3 μm) on the order of 1 nm. Secondary ion mass spectroscopy impurity analysis demonstrates oxygen and hydrogen incorporation of 1 × 10{sup 16} and ∼5 × 10{sup 17}, respectively. In addition, the authors have achieved PAMBE growth of GaN at a substrate temperature more than 150 °C greater than our standard Ga rich GaN growth regime and ∼100 °C greater than any previously reported PAMBE growth of GaN. This growth temperature corresponds to GaN decomposition in vacuum of more than 20 nm/min; a regime previously unattainable with conventional nitrogen plasma sources. Arrhenius analysis of the decomposition rate shows that samples with a flux ratio below stoichiometry have an activation energy greater than decomposition of GaN in vacuum while samples grown at or above stoichiometry have decreased activation energy. The activation energy of decomposition for GaN in vacuum was previously determined to be ∼3.1 eV. For a Ga/N flux ratio of ∼1.5, this activation energy was found to be ∼2.8 eV, while for a Ga/N flux ratio of ∼0.5, it was found to be ∼7.9 eV.

  17. Active H ∞ control of the vibration of an axially moving cantilever beam by magnetic force

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Chen, Huai-hai; He, Xu-dong

    2011-11-01

    An H ∞ method for the vibration control of an iron cantilever beam with axial velocity using the noncontact force by permanent magnets is proposed in the paper. The transverse vibration equation of the axially moving cantilever beam with a tip mass is derived by D'Alembert's principle and then updated by experiments. An experimental platform and a magnetic control system are introduced. The properties of the force between the magnet and the beam have been determined by theoretic analysis and tests. The H ∞ control strategy for the suppression of the beam transverse vibration by initial deformation excitations is put forward. The control method can be used for the beam with constant length or varying length. Numerical simulation and actual experiments are implemented. The results show that the control method is effective and the simulations fit well with the experiments.

  18. Application of partially coherent wavefront propagation calculations for design of coherence-preserving synchrotron radiation beamlines

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Chu, Yong S.; Kaznatcheev, Konstantine; Yan, Hanfei

    2011-09-01

    Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. "Extraction" of "coherent portion" of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using "Synchrotron Radiation Workshop" (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations.

  19. An admittance function of active piezoelectric elements bonded on a cracked beam

    NASA Astrophysics Data System (ADS)

    Kuang, You-Di; Li, Guo-Qing; Chen, Chuan-Yao

    2006-11-01

    The electric admittance function of the piezoelectric patches bonded on a beam with an open crack is presented, for the purpose of theoretically evaluating the health conditions of the cracked beam. At first, a sandwich beam with two layers of piezoelectric actuators is regarded as a piezoelectric bimorph, and the dynamics of the bimorph is represented by a 5×5 piezoelectric impedance matrix. Secondly, the dynamics of the elastic beam is also represented by a 4×4 impedance matrix, which is a degenerative form of piezoelectric impedance. Thirdly, the open crack is modeled as rotational massless spring and an expression of the equivalent stiffness is adopted, then the spring is used to connect the adjacent elastic beam segments. Furthermore, the cracked beam is represented by three elastic beam segments and one piezoelectric bimorph segment together with one spring. The admittance function of the piezoelectric elements is obtained by solving the linear impedance equations considering the mechanical-electric boundary conditions and the continuum conditions between the beam segments and the spring. Lastly, the effects of the crack depth and location on the admittance are examined in two numeric examples. It is found that the frequency changes and the admittance amplitude changes of the beam due to the crack can be predicted by the piezoelectric admittance function, and the modal frequencies calculated by the proposed method are accord with the results obtained by experiments and other methods. The possible application of the admittance function to detect the crack on the beam is discussed at the end of the paper as well.

  20. Slow light beam splitter.

    PubMed

    Xiao, Yanhong; Klein, Mason; Hohensee, Michael; Jiang, Liang; Phillips, David F; Lukin, Mikhail D; Walsworth, Ronald L

    2008-07-25

    We demonstrate a slow light beam splitter using rapid coherence transport in a wall-coated atomic vapor cell. We show that particles undergoing random and undirected classical motion can mediate coherent interactions between two or more optical modes. Coherence, written into atoms via electromagnetically induced transparency using an input optical signal at one transverse position, spreads out via ballistic atomic motion, is preserved by an antirelaxation wall coating, and is then retrieved in outgoing slow light signals in both the input channel and a spatially-separated second channel. The splitting ratio between the two output channels can be tuned by adjusting the laser power. The slow light beam splitter may improve quantum repeater performance and be useful as an all-optical dynamically reconfigurable router.

  1. Coherent Lidar Design and Performance Verification

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1996-01-01

    This final report summarizes the investigative results from the 3 complete years of funding and corresponding publications are listed. The first year saw the verification of beam alignment for coherent Doppler lidar in space by using the surface return. The second year saw the analysis and computerized simulation of using heterodyne efficiency as an absolute measure of performance of coherent Doppler lidar. A new method was proposed to determine the estimation error for Doppler lidar wind measurements without the need for an independent wind measurement. Coherent Doppler lidar signal covariance, including wind shear and turbulence, was derived and calculated for typical atmospheric conditions. The effects of wind turbulence defined by Kolmogorov spatial statistics were investigated theoretically and with simulations. The third year saw the performance of coherent Doppler lidar in the weak signal regime determined by computer simulations using the best velocity estimators. Improved algorithms for extracting the performance of velocity estimators with wind turbulence included were also produced.

  2. Active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2016-09-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.

  3. Beam ion losses due to energetic particle geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Fisher, R. K.; Pace, D. C.; Kramer, G. J.; Van Zeeland, M. A.; Nazikian, R.; Heidbrink, W. W.; García-Muñoz, M.

    2012-12-01

    We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.

  4. Observation of bipartite correlations using coherent light for optical communication.

    PubMed

    Lee, Kim Fook

    2009-04-01

    Bipartite polarization correlations of two distant observers are observed by using coherent noise interferences. This is accomplished by mixing a vertically polarized coherent light field with a horizontally polarized coherent noise field in a 50/50 beam splitter. The superposed light fields at each output port of the beam splitter are sent to two observers and then manipulated by using a quarter-wave plate and an analyzer. The bipartite correlations between the projection angles of two distant observers are established by analyzing their data through multiplication without any postselection technique. The scheme can be used to implement entanglement-based quantum cryptography in the future. PMID:19340232

  5. OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC.

    SciTech Connect

    Fischer, W; Brennan, J M; Cameron, P; Connolly, R; Montag, C; Peggs, S; Pilat, F; Ptitsyn, V; Tepikian, S; Trbojevic, D; Van Zeijts, J

    2003-05-12

    RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far.

  6. Development of Coherent X-ray Diffraction Apparatus with Kirkpatrick-Baez Mirror Optics

    SciTech Connect

    Takahashi, Y.; Tsutsumi, R.; Mimura, H.; Matsuyama, S.; Nishino, Y.; Ishikawa, T.; Yamauchi, K.

    2011-09-09

    To realize coherent x-ray diffraction microscopy with higher spatial resolution, it is necessary to increase the density of x-ray photons illuminated onto the sample. In this study, we developed a coherent x-ray diffraction apparatus with Kirkpatrick-Baez mirror optics. By using mirrors fabricated by elastic emission machining, a high-density coherent x-ray beam was produced. In a demonstration experiment using a silver nanocube as a sample, a high-contrast coherent x-ray diffraction pattern was observed over a wide-q range. This proves that both the density and the degree of coherence of the focused beam were high.

  7. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  8. Soft x-ray coherent scattering: Instrument and methods at ESRF ID08

    SciTech Connect

    Beutier, Guillaume; Marty, Alain; Livet, Frederic; Laan, Gerrit van der; Stanescu, Stefan; Bencok, Peter

    2007-09-15

    An experimental setup has been developed to perform soft x-ray coherent scattering at beamline ID08 of the European Synchrotron Radiation Facility. An intense coherent beam was obtained by filtering the primary beam with the monochromator and a circular pinhole. A pinhole holder with motorized translations was installed inside the UHV chamber of the diffractometer. The scattered intensity was recorded in reflection geometry with a back-illuminated charge coupled device camera. As a demonstration we report experimental results of resonant magnetic scattering using coherent beam. The degree of coherence is evaluated, and it is shown that, while the vertical coherence is much higher than the horizontal one at the source, the situation is reversed at the diffractometer. The intensity of the coherent beam is also discussed.

  9. Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development

    PubMed Central

    Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja; Sanyal, Subhabrata; Duch, Carsten

    2013-01-01

    Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dendritic growth. Second, AP-1 functions downstream of activity during MN5 dendritic growth. Third, using a newly engineered AP-1 reporter we demonstrate that AP-1 transcriptional activity is downstream of Dα7 nAChRs and Calcium/calmodulin-dependent protein kinase II (CaMKII) signaling. Fourth, AP-1 can have opposite effects on dendritic development, depending on the timing of activation. Enhancing excitability or AP-1 activity after MN5 cholinergic synapses and primary dendrites have formed causes dendritic branching, whereas premature AP-1 expression or induced activity prior to excitatory synapse formation disrupts dendritic growth. Finally, AP-1 transcriptional activity and dendritic growth are affected by MN5 firing only during development but not in the adult. Our results highlight the importance of timing in the growth and plasticity of neuronal dendrites by defining a developmental period of activity-dependent AP-1 induction that is temporally locked to cholinergic synapse formation and dendritic refinement, thus significantly refining prior models derived from chronic expression studies. PMID:23293292

  10. Random sources for cusped beams.

    PubMed

    Li, Jia; Wang, Fei; Korotkova, Olga

    2016-08-01

    We introduce two novel classes of partially coherent sources whose degrees of coherence are described by the rectangular Lorentz-correlated Schell-model (LSM) and rectangular fractional multi-Gaussian-correlated Schell-model (FMGSM) functions. Based on the generalized Collins formula, analytical expressions are derived for the spectral density distributions of these beams propagating through a stigmatic ABCD optical system. It is shown that beams belonging to both classes form the spectral density apex that is much higher and sharper than that generated by the Gaussian Schell-model (GSM) beam with a comparable coherence state. We experimentally generate these beams by using a nematic, transmissive spatial light modulator (SLM) that serves as a random phase screen controlled by a computer. The experimental data is consistent with theoretical predictions. Moreover, it is illustrated that the FMGSM beam generated in our experiments has a better focusing capacity than the GSM beam with the same coherence state. The applications that can potentially benefit from the use of novel beams range from material surface processing, to communications and sensing through random media. PMID:27505746

  11. Coherence brightened laser source for atmospheric remote sensing.

    PubMed

    Traverso, Andrew J; Sanchez-Gonzalez, Rodrigo; Yuan, Luqi; Wang, Kai; Voronine, Dmitri V; Zheltikov, Aleksei M; Rostovtsev, Yuri; Sautenkov, Vladimir A; Sokolov, Alexei V; North, Simon W; Scully, Marlan O

    2012-09-18

    We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O(2), followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy. PMID:22949687

  12. Coherence brightened laser source for atmospheric remote sensing.

    PubMed

    Traverso, Andrew J; Sanchez-Gonzalez, Rodrigo; Yuan, Luqi; Wang, Kai; Voronine, Dmitri V; Zheltikov, Aleksei M; Rostovtsev, Yuri; Sautenkov, Vladimir A; Sokolov, Alexei V; North, Simon W; Scully, Marlan O

    2012-09-18

    We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O(2), followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy.

  13. Coherence brightened laser source for atmospheric remote sensing

    PubMed Central

    Traverso, Andrew J.; Sanchez-Gonzalez, Rodrigo; Yuan, Luqi; Wang, Kai; Voronine, Dmitri V.; Zheltikov, Aleksei M.; Rostovtsev, Yuri; Sautenkov, Vladimir A.; Sokolov, Alexei V.; North, Simon W.; Scully, Marlan O.

    2012-01-01

    We have studied coherent emission from ambient air and demonstrated efficient generation of laser-like beams directed both forward and backward with respect to a nanosecond ultraviolet pumping laser beam. The generated optical gain is a result of two-photon photolysis of atmospheric O2, followed by two-photon excitation of atomic oxygen. We have analyzed the temporal shapes of the emitted pulses and have observed very short duration intensity spikes as well as a large Rabi frequency that corresponds to the emitted field. Our results suggest that the emission process exhibits nonadiabatic atomic coherence, which is similar in nature to Dicke superradiance where atomic coherence is large and can be contrasted with ordinary lasing where atomic coherence is negligible. This atomic coherence in oxygen adds insight to the optical emission physics and holds promise for remote sensing techniques employing nonlinear spectroscopy. PMID:22949687

  14. Evaluation of optical coherence tomography for the measurement of the effects of activators and anticoagulants on the blood coagulation in vitro.

    PubMed

    Xu, Xiangqun; Geng, Jinhai; Liu, Gangjun; Chen, Zhongping

    2013-08-01

    Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.

  15. Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task.

    PubMed

    Van Boxtel, A; Jessurun, M

    1993-11-01

    In earlier studies, positive but inconsistent relationships have been reported between mental effort and electromyogram (EMG) amplitude in task-irrelevant limb muscles. In this study, we explored whether facial EMG activity would provide more consistent results. Tonic EMG activity of six different facial and jaw-elevator muscles was bilaterally recorded during a two-choice serial reaction task with paced presentation of auditory or visual signals. In Experiment 1, task load (signal presentation rate) was kept constant for 20 min at the level of the subject's maximal capacity. In Experiment 2, task load was increased in a stepwise fashion over six successive 2-min periods from sub- to supramaximal capacity levels. EMG amplitude and coherency between momentary bilateral amplitude fluctuations were measured. In Experiment 1, EMG amplitude of frontalis, corrugator supercilii, and orbicularis oris inferior showed a strong gradual increase throughout the task period, whereas taks performance remained fairly stable. Orbicularis oculi, zygomaticus major, and temporalis EMG showed a much smaller increase or no increase. In Experiment 2, the first three muscles showed a fairly consistent increase in EMG amplitude with increasing task load. Orbicularis oculi and zygomaticus major were not active until task load became supramaximal. Effects of stimulus modality or laterality were not found in any experiment. These results are consistent with the notion that EMG amplitude of frontalis, corrugator, and orbicularis oris provides a sensitive index of the degree of exerted mental effort. PMID:8248451

  16. Quality and accuracy of cone beam computed tomography gated by active breathing control

    SciTech Connect

    Thompson, Bria P.; Hugo, Geoffrey D.

    2008-12-15

    The purpose of this study was to evaluate the quality and accuracy of cone beam computed tomography (CBCT) gated by active breathing control (ABC), which may be useful for image guidance in the presence of respiration. Comparisons were made between conventional ABC-CBCT (stop and go), fast ABC-CBCT (a method to speed up the acquisition by slowing the gantry instead of stopping during free breathing), and free breathing respiration correlated CBCT. Image quality was assessed in phantom. Accuracy of reconstructed voxel intensity, uniformity, and root mean square error were evaluated. Registration accuracy (bony and soft tissue) was quantified with both an anthropomorphic and a quality assurance phantom. Gantry angle accuracy was measured with respect to gantry speed modulation. Conventional ABC-CBCT scan time ranged from 2.3 to 5.8 min. Fast ABC-CBCT scan time ranged from 1.4 to 1.8 min, and respiratory correlated CBCT scans took 2.1 min to complete. Voxel intensity value for ABC gated scans was accurate relative to a normal clinical scan with all projections. Uniformity and root mean square error performance degraded as the number of projections used in the reconstruction of the fast ABC-CBCT scans decreased (shortest breath hold, longest free breathing segment). Registration accuracy for small, large, and rotational corrections was within 1 mm and 1 degree sign . Gantry angle accuracy was within 1 degree sign for all scans. For high-contrast targets, performance for image-guidance purposes was similar for fast and conventional ABC-CBCT scans and respiration correlated CBCT.

  17. Spatial coherence of the generalized diffraction-filtered resonator copper vapor laser.

    PubMed

    Prakash, O; Shukla, P K; Dixit, S K; Chatterjee, S; Vora, H S; Bhatnagar, R

    1998-11-20

    The results of a study on the spatial coherence of a generalized diffraction-filtered resonator (GDFR) copper vapor laser (CVL) for various magnifications are presented. The coherence width and output power are compared with that of unstable resonators (UR's) of equivalent magnifications. It is established, by use of reversal shear interferometry, that the GDFR CVL beam has better spatial coherence and average power characteristics than the UR CVL beam for equivalent resonator magnifications. PMID:18301614

  18. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Robert, A.; Curtis, R.; Flath, D.; Gray, A.; Sikorski, M.; Song, S.; Srinivasan, V.; Stefanescu, D.

    2013-03-01

    The X-ray Correlation Spectroscopy instrument (XCS) at the Linac Coherent Light Source (LCLS) is a dedicated instrument using coherent x-ray scattering techniques to investigate dynamics in condensed matter systems. XCS can probe both slow and ultrafast dynamics on lengthscales of interest. It employs an extensive suite of X-ray instrumentation to tailor the LCLS X-ray beam properties to experimental requirements. Results demonstrating the full transverse coherence of the LCLS beam are presented.

  19. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  20. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.