Science.gov

Sample records for active colloidal suspensions

  1. Nonequilibrium Equation of State in Suspensions of Active Colloids

    NASA Astrophysics Data System (ADS)

    Ginot, Félix; Theurkauff, Isaac; Levis, Demian; Ybert, Christophe; Bocquet, Lydéric; Berthier, Ludovic; Cottin-Bizonne, Cécile

    2015-01-01

    Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  2. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  3. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  4. Gold enrichment in active geothermal systems by accumulating colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Hannington, Mark; Harðardóttir, Vigdis; Garbe-Schönberg, Dieter; Brown, Kevin L.

    2016-04-01

    The origins of high-grade hydrothermal ore deposits are debated, but active geothermal systems provide important clues to their formation. The highest concentrations of gold are found in geothermal systems with direct links to island arc magmatism. Yet, similar concentrations have also been found in the absence of any input from arc magmas, for example, in the Reykjanes geothermal field, Iceland. Here we analyse brine samples taken from deep wells at Reykjanes and find that gold concentrations in the reservoir zone have increased over the past seven years from an average of 3 ppb to 14 ppb. The metal concentrations greatly exceed the maximum solubility of gold in the reservoir under saturated conditions and are now nearly two orders of magnitude higher than in mid-ocean ridge black smoker fluids--the direct analogues of Reykjanes deep liquids. We suggest that ongoing extraction of brine, the resulting pressure drop, and increased boiling have caused gold to drop out of solution and become trapped in the reservoir as a colloidal suspension. This process may explain how the stock of metal in the reservoirs of fossil geothermal systems could have increased over time and thus become available for the formation of gold-rich ore deposits.

  5. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  6. Linear viscoelasticity of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cichocki, B.; Felderhof, B. U.

    1992-12-01

    We develop a phenomenological theory of the dynamic viscosity of colloidal suspensions, based on an extrapolation of the low-frequency behavior by use of a continued-fraction representation. In lowest approximation the dynamic viscosity depends on a small number of parameters, which may be determined experimentally. For semidilute suspensions the parameters may be found by theoretical calculation. The theory is tested by comparison with an exactly soluble model.

  7. Colloidal suspension simulates linear dynamic pressure profile

    NASA Technical Reports Server (NTRS)

    Mc Cann, R. J.

    1966-01-01

    Missile nose fairings immersed in colloidal suspension prepared with various specific gravities simulate pressure profiles very similar to those encountered during reentry. Stress and deflection conditions similar to those expected during atmospheric reentry are thus attained in the laboratory.

  8. Aggregation kinetics in a model colloidal suspension

    SciTech Connect

    Bastea, S

    2005-08-08

    The authors present molecular dynamics simulations of aggregation kinetics in a colloidal suspension modeled as a highly asymmetric binary mixture. Starting from a configuration with largely uncorrelated colloidal particles the system relaxes by coagulation-fragmentation dynamics to a structured state of low-dimensionality clusters with an exponential size distribution. The results show that short range repulsive interactions alone can give rise to so-called cluster phases. For the present model and probably other, more common colloids, the observed clusters appear to be equilibrium phase fluctuations induced by the entropic inter-colloidal attractions.

  9. Conductivity maximum in a charged colloidal suspension

    SciTech Connect

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  10. Gel transitions in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bergenholtz, J.; Fuchs, M.

    1999-12-01

    The idealized mode-coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures, MCT predicts a slowing down of the local dynamics and ergodicity-breaking transitions. The non-ergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the non-ergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical non-ergodicity parameters; this is motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low-temperature MCT non-ergodicity transitions.

  11. Microfluidic Rheology of Soft Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Nordstrom, Kerstin; Arratia, Paulo; Verneuil, Emilie; Gollub, Jerry; Durian, Douglas

    2008-11-01

    The rheology of a suspension of soft colloidal particles is investigated using a pressure-driven flow in a deep 25 μm wide microchannel. The system is composed of N-isopropylacrylamide (NIPA), colloidal microgel particles, suspended in aqueous solution. NIPA is temperature-sensitive in that the hydrodynamic radius of a particle decreases as temperature increases [1]. Therefore, colloidal suspensions of different packing fraction can be obtained simply by varying the temperature using a temperature-controlled stage. We determine the velocity profile and the local shear rate of the suspension using particle image velocimetry (PIV). We have developed methods to accurately infer the suspension shear viscosity and shear stress as a function of shear rate. The dynamical range of shear rates probed is approximately 5 orders of magnitude, ranging from 10-3 to 10^2 s-1. Results show that as the packing fraction is increased towards the jamming point, the velocity profiles are markedly non-Newtonian. Further, near the jamming point, the stress versus shear rate curves show yield stress behavior. [1] Alsayed, A.M., Islam, M.F., Zhang, J., Collings, P.J., Yodh, A.J., Science 309, 1207.-1210 (2005)

  12. Convection of a stratified colloidal suspension

    SciTech Connect

    Cherepanov, I. N.; Smorodin, B. L.

    2013-11-15

    The convection of a colloidal suspension, which is a binary mixture of a carrier medium with an admixture of nanoparticles having a large positive thermal diffusion parameter, has been studied for the case of the heating of a horizontal cell from below and periodic conditions at the vertical boundaries corresponding to the experimental situation of ring channels. Bifurcation diagrams have been constructed for vibrational and monotonic regimes of the convection of the colloidal mixture. The time dependences of the maximum stream function and the stream function at a fixed point of the cell, as well as the spatial distributions of the concentration field of the colloid admixture, have been obtained. It has been shown that a stable regime of traveling waves exists in a certain region of the parameters of the problem (Boltzmann and Rayleigh numbers characterizing the gravitational stratification and intensity of the thermal effect, respectively)

  13. An evaporation model of colloidal suspension droplets

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  14. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research

  15. Emergent behavior in active colloids

    NASA Astrophysics Data System (ADS)

    Zöttl, Andreas; Stark, Holger

    2016-06-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the third section, we review the emergent collective behavior of active colloidal suspensions, focusing on their structural and dynamic properties. After summarizing experimental observations, we give an overview of the progress in modeling collectively moving active colloids. While active Brownian particles are heavily used to study collective dynamics on large scales, more advanced methods are necessary to explore the importance of hydrodynamic and phoretic particle interactions. Finally, the relevant physical approaches to quantify the emergent collective behavior are presented.

  16. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions.

    PubMed

    Zhang, Rui; Schweizer, Kenneth S

    2015-10-14

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant. PMID:26472397

  17. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2015-10-01

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

  18. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions

    SciTech Connect

    Zhang, Rui; Schweizer, Kenneth S.

    2015-10-14

    We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.

  19. Source of cytotoxicity in a colloidal silver nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Kukut Hatipoglu, Manolya; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-01

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee-Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  20. Colloid suspension stability and transport through unsaturated porous media

    SciTech Connect

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  1. The flow and fracture of concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Smith, Mike

    Concentrated colloidal suspensions display dramatic rises in viscosity, leading to jamming and granulation, with increasing shear rate. It has been proposed that these effects result from inter particle friction, as lubrication forces are overcome. This suggests the jamming of concentrated colloidal suspensions should exhibit some shared phenomenology with macroscopic granular systems where friction leads to two different types of jammed state. Here we show that transient rheological measurements can be used to probe the processes of granulation in concentrated colloidal suspensions. Our results support the idea that frictional contacts are created between jammed particles. The jamming behaviour displays two qualitatively different regimes separated by a critical strain rate with qualitatively different types of fracture/break up behaviour. In the lower strain rate regime, it is found that vibrations can be used to control jamming and granulation, resulting in a flowable fluid.

  2. Rheology, microstructure and migration in brownian colloidal suspensions.

    PubMed

    Pan, Wenxiao; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    We demonstrate that suspended spherical colloidal particles can be effectively modeled as single dissipative particle dynamics (DPD) particles provided that the conservative repulsive force is appropriately chosen. The suspension model is further improved with a new formulation, which augments standard DPD with noncentral dissipative shear forces between particles while preserving angular momentum. Using the new DPD formulation we investigate the rheology, microstructure and shear-induced migration of a monodisperse suspension of colloidal particles in plane shear flows (Couette and Poiseuille). Specifically, to achieve a well-dispersed suspension we employ exponential conservative forces for the colloid-colloid and colloid-solvent interactions but keep the conventional linear force for the solvent-solvent interactions. Our simulations yield relative viscosity versus volume fraction predictions in good agreement with both experimental data and empirical correlations. We also compute the shear-dependent viscosity and the first and second normal-stress differences and coefficients in both Couette and Poiseuille flow. Simulations near the close packingvolume-fraction (64%) at low shear rates demonstrate a transition to flow-induced string-like structures of colloidal particles simultaneously with a transition to a nonlinear Couette velocity profile in agreement with experimental observations. After a sufficient increase ofthe shear rate the ordered structure melts into disorder with restoration of the linear velocity profile. Migration effects simulated in Poiseuille flow compare well with experiments and model predictions. The important role of angular momentum and torque in nondilute suspensions is also demonstrated when compared with simulations by the standard DPD, which omits the angular degrees of freedom. Overall, the new method agrees very well with the Stokesian Dynamics method but it seems to have lower computational complexity and is applicable to general

  3. Coarsening mechanics of a colloidal suspension in toggled fields.

    PubMed

    Bauer, Jonathan L; Liu, Yifei; Kurian, Martin J; Swan, James W; Furst, Eric M

    2015-08-21

    Suspensions of paramagnetic colloids are driven to phase separate and self-assemble in toggled magnetic fields. At field strengths above 575 A/m and toggle frequencies between 0.66 and 2 Hz, an initial gel-like, arrested network collapses into condensed, ellipsoidal aggregates. The evolution to this equilibrium structure occurs via a Rayleigh-Plateau instability. The toggle frequency ν determines the fluidity of the breakup process. At frequencies between 0.66 and 1.5 Hz, the suspension breaks up similar to a viscous, Newtonian fluid. At frequencies ν > 1.5 Hz, the network ruptures like a viscoplastic material. The field strength alters the onset time of the instability. A power law relationship emerges as the scaled frequency and field strength can be used to predict the onset of breakup. These results further aid in understanding the mechanics and dynamics of the phase separation process of suspensions of polarizable colloids in toggled external fields. PMID:26298150

  4. Coarsening mechanics of a colloidal suspension in toggled fields

    NASA Astrophysics Data System (ADS)

    Bauer, Jonathan L.; Liu, Yifei; Kurian, Martin J.; Swan, James W.; Furst, Eric M.

    2015-08-01

    Suspensions of paramagnetic colloids are driven to phase separate and self-assemble in toggled magnetic fields. At field strengths above 575 A/m and toggle frequencies between 0.66 and 2 Hz, an initial gel-like, arrested network collapses into condensed, ellipsoidal aggregates. The evolution to this equilibrium structure occurs via a Rayleigh-Plateau instability. The toggle frequency ν determines the fluidity of the breakup process. At frequencies between 0.66 and 1.5 Hz, the suspension breaks up similar to a viscous, Newtonian fluid. At frequencies ν > 1.5 Hz, the network ruptures like a viscoplastic material. The field strength alters the onset time of the instability. A power law relationship emerges as the scaled frequency and field strength can be used to predict the onset of breakup. These results further aid in understanding the mechanics and dynamics of the phase separation process of suspensions of polarizable colloids in toggled external fields.

  5. The viscosity of colloidal spheres in deionized suspensions

    NASA Astrophysics Data System (ADS)

    Okubo, Tsuneo

    1987-12-01

    Viscosities of colloidal spheres, i.e., colloidal silica (diameter 8 and 45 nm) and monodisperse polystyrene latices (diameter 85 to 780 nm), are measured in deionized (``salt-free'') suspensions and in the presence of a small amount of NaCl. The reduced viscosities (specific viscosity divided by concentration) of deionized silica (diameter 8 nm) are much higher than would be expected by Einstein's prediction and decrease sharply with increasing concentration. A sharp peak is observed in the reduced viscosity vs concentration curves of deionized colloidal silica of 45 nm diameter and the deionized latex spheres. The peak corresponds to the transition between ``liquid-like'' and ``crystal-like'' structures. These results show that electrostatic intersphere repulsion and the elongated Debye-screening length around the colloidal spheres are essential to explain the extraordinary properties.

  6. Quantitatively mimicking wet colloidal suspensions with dry granular media.

    PubMed

    Messina, René; Aljawhari, Sarah; Bécu, Lydiane; Schockmel, Julien; Lumay, Geoffroy; Vandewalle, Nicolas

    2015-01-01

    Athermal two-dimensional granular systems are exposed to external mechanical noise leading to Brownian-like motion. Using tunable repulsive interparticle interaction, it is shown that the same microstructure as that observed in colloidal suspensions can be quantitatively recovered at a macroscopic scale. To that end, experiments on granular and colloidal systems made up of magnetized particles as well as computer simulations are performed and compared. Excellent agreement throughout the range of the magnetic coupling parameter is found for the pair distribution as well as the bond-orientational correlation functions. This finding opens new ways to efficiently and very conveniently explore phase transitions, crystallization, nucleation, etc in confined geometries. PMID:26030718

  7. Stable monodisperse nanomagnetic colloidal suspensions: An overview.

    PubMed

    Ramimoghadam, Donya; Bagheri, Samira; Abd Hamid, Sharifah Bee

    2015-09-01

    Magnetic iron oxide nanoparticles (MNPs) have emerged as highly desirable nanomaterials in the context of many research works, due to their extensive industrial applications. However, they are prone to agglomerate on account of the anisotropic dipolar attraction, and therefore misled the particular properties related to single-domain magnetic nanostructures. The surface modification of MNPs is quite challenging for many applications, as it involves surfactant-coating for steric stability, or surface modifications that results in repulsive electrostatic force. Hereby, we focus on the dispersion of MNPs and colloidal stability. PMID:26073507

  8. Drying of a colloidal suspension in confined geometry

    NASA Astrophysics Data System (ADS)

    Leng, Jacques

    2010-08-01

    We describe experiments on drying of a hard-sphere colloidal suspension in confined geometry where a drop of the suspension is squeezed in between two circular transparent plates and allowed to dry. In this situation, the geometry controls the vapor removal rate and leads to a facilitated observation directly inside the drop. We monitor the drying kinetics of colloids of two sizes and several volume fractions; in most cases, the drying kinetics leads to the formation of a crust at the level of the meniscus which can be either crystalline or glassy, the transition between the two cases being triggered by the local deposition velocity, itself slaved to the evaporation rate. It yields a final dry state which is either polycrystalline or amorphous. The crust is also responsible for a shape instability of the quasi-two-dimensional drop shrinking upon evaporation but with a crust opposing mechanical and flow resistance, and possibly a partial adhesion on the substrate.

  9. Depletion-induced structure and dynamics in bimodal colloidal suspensions.

    SciTech Connect

    Sikorski, M.; Sandy, A. R.; Narayanan, S.

    2011-05-03

    Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

  10. Order-disorder transition in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. O.; Thirumalai, D.

    1987-12-01

    The disorder-order transition observed in aqueous suspension of charged macroions is investigated with use of both simulations and a simple theoretical model. Molecular-dynamics (MD) simulations were performed by assuming that the interaction between the charge stabilized particles interact via a modified Debye-Hückel potential. The parameters of the potential were chosen to mimic the experimental study of Lindsay and Chaikin. Simulation results predict that the liquid freezes into a bcc phase in accord with the experimental findings. For comparison, the phase diagram with use of the self-consistent phonon theory (SCP) is presented. It is shown that the predictions of the SCP theory in the weak screening limit are in disagreement with both the MD results and the experiments. Possible reasons for this failure are pointed out. Finally, similar calculations have been carried out for the Yukawa potential. It is found that for the parameters considered here, this is an unphysical model for the suspensions of polystyrene spheres. No evidence for reentrant transitions is found in either of these models. This is in agreement with the predictions of the self-consistent phonon theory.

  11. On Determination of the Equation of State of Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Huang, Hao; Uhl, Christopher; Ou-Yang, Daniel

    Colloidal suspensions are the main ingredients for a variety of materials in our daily life, e.g., milk, salad dressing, skin lotions and paint for wall coatings. Material properties of these systems require an understanding of the equation of state of these materials. Our project aims to experimentally determine the equation of state of colloidal suspensions by microfluidics, dielectrophoresis (DEP) and optical imaging. We use fluorescent polystyrene latexes as a model system for this study. Placing semi-permeable membranes between microfluidics channels, which made from PDMS, we control the particle concentration and ionic strengths of the suspension. We use osmotic equilibrium equation to analyze the particle concentration distribution in a potential force field created by DEP. We use confocal optical imaging to measure the spatial distribution of the particle concentration. We compare the results of our experimental study with data obtained by computer simulation of osmotic equilibrium of interacting colloids. NSF DMR-0923299, Emulsion Polymer Institute, Department of Physics, Bioengineering Program of Lehigh University.

  12. Forced spreading of films and droplets of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Espin, Leonardo; Kumar, Satish

    2014-11-01

    When a thin film of a colloidal suspension flows over a substrate, uneven distribution of the suspended particles can lead to an uneven coating. Motivated by this phenomenon, we analyse the flow of perfectly wetting films and droplets of colloidal suspensions down an inclined plane. Lubrication theory and the rapid-vertical-diffusion approximation are used to derive a coupled pair of one-dimensional partial differential equations describing the evolution of the interface height and particle concentration. Precursor films are assumed to be present, the colloidal particles are taken to be hard spheres, and particle and liquid dynamics are coupled through a concentration-dependent viscosity and diffusivity. We find that for sufficiently high Péclet numbers, even small initial concentration inhomogeneities produce viscosity gradients that cause the film or droplet front to evolve continuously in time instead of travelling without changing shape as happens in the absence of colloidal particles. Our results suggest that particle concentration gradients can have a dramatic influence on interface evolution in flowing films and droplets, a finding which may be relevant for understanding the onset of patterns that are observed experimentally.

  13. The theory of delamination during drying of confined colloidal suspensions.

    PubMed

    Wallenstein, K J; Russel, W B

    2011-05-18

    Recent experiments on the drying of colloidal films in confined thin rectangular geometries show an interesting new phenomenon: the delamination of the colloidal suspension from the cavity wall. The theory developed in this paper explains the phenomenon by applying the Griffith energy criteria to a poroelastic film of Hertzian spheres. Prior to delamination, flow due to drying compresses the film in the direction of flow and generates tension in the transverse direction. Delamination allows relaxation in both the transverse tensile stresses and the axial compression. Preliminary numerical solutions suggest that the elastic energy recovered should increase linearly with the length of the close-packed film. That suggests a simple analytical solution that predicts the advancing of the delamination as the length of the close-packed region increases and explains qualitatively the essential features of the phenomenon. PMID:21525555

  14. The renormalized Jellium model of colloidal suspensions with multivalent counterions

    NASA Astrophysics Data System (ADS)

    Colla, Thiago E.; Levin, Yan

    2010-12-01

    An extension of the renormalized Jellium model which allows to study colloidal suspensions containing trivalent counterions is proposed. The theory is based on a modified Poisson-Boltzmann equation which incorporates the effects of counterion correlations near the colloidal surfaces using a new boundary condition. The renormalized charges, the counterion density profiles, and osmotic pressures can be easily calculated using the modified renormalized Jellium model. The results are compared with the ones obtained using the traditional Wigner-Seitz (WS) cell approximation also with a new boundary condition. We find that while the thermodynamic functions obtained within the renormalized Jellium model are in a good agreement with their WS counterpart, the effective charges predicted by the two theories can be significantly different.

  15. Dynamics of a model colloidal suspension from dilute to freezing.

    PubMed

    Hannam, S D W; Daivis, P J; Bryant, G

    2016-07-01

    Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering function to study the change in dynamics leading up to the freezing point, and to determine whether the current model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.771]. It was found that the ratio was not constant, but instead was wave vector dependent. PMID:27575191

  16. Dynamics of a model colloidal suspension from dilute to freezing

    NASA Astrophysics Data System (ADS)

    Hannam, S. D. W.; Daivis, P. J.; Bryant, G.

    2016-07-01

    Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering function to study the change in dynamics leading up to the freezing point, and to determine whether the current model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996), 10.1103/PhysRevLett.77.771]. It was found that the ratio was not constant, but instead was wave vector dependent.

  17. Colloidal Suspensions in Shear Flow : a Real Space Study

    NASA Astrophysics Data System (ADS)

    Derks, D.

    2006-09-01

    We investigate the effect of shear flow on the microstructure of colloidal suspensions by means of microscopy. Systems of nearly equally sized particles are used, whose interactions and phase behavior are predominantly determined by their size and shape, and can further be tuned by the addition of polymers. Recently, a new type of shear cell was developed to study flowing suspensions in real space. The key property of this setup is the counter-rotating principle of the cone and plate, opening up the possibility to create a stationary layer in the bulk of the cell. In Chapter 2, we elaborate on the details of this setup and its performance. Fluorescence confocal microscopy is used to visualize the sheared suspension, and allows imaging of individual particles in the bulk in the stationary plane for a prolonged time. This way, the particle positions in a layer of, for example, a sheared colloidal crystal can be tracked. The particle dynamics in colloidal crystals in shear flow are the subject of Chapter 3. Here, the particles interact through a (nearly) hard sphere potential. Apart from the alignment of the crystal in the shear field and the collective zigzag motion, which had also been deduced from early scattering experiments, we find that random particle displacements increase with shear rate. Those increased fluctuations result in shear induced melting when their mean square displacement has reached about 13 % of the particle separation. Apart from hard spheres, we investigate mixtures of colloids and polymers in shear flow. The polymers cause an effective attraction between the spheres, leading to phase separation into a colloid rich (polymer poor) and a colloid poor (polymer rich) phase at sufficiently high colloid and polymer concentration. In Chapter 4, we study the demixing process in the (spinodal) two-phase region of the phase diagram. The system is quenched from an initially almost homogeneous state at very high shear rate to a low shear rate. A spinodal

  18. Holographic grating formation in a colloidal suspension of silver nanoparticles.

    PubMed

    Adleman, James R; Eggert, Helge A; Buse, Karsten; Psaltis, Demetri

    2006-02-15

    Holographic gratings are recorded in colloidal suspensions of silver nanoparticles by utilizing interfering nanosecond pulses. The diffraction efficiency is measured with continuous-wave light. An instantaneous response together with a transient grating are observed: the nanoparticles absorb the pump light and heat up. Heat is transferred to the solvent, and a delayed thermal grating appears. The final decay time constant of this grating depends quadratically on the period length and has a typical value of 1 micros for grating spacings of several micrometers. PMID:16496882

  19. Alternating strings and clusters in suspensions of charged colloids.

    PubMed

    Everts, J C; van der Linden, M N; van Blaaderen, A; van Roij, R

    2016-08-21

    We report the formation of alternating strings and clusters in a binary suspension of repulsive charged colloids with double layers larger than the particle size. Within a binary cell model we include many-body and charge-regulation effects under the assumption of a constant surface potential, and consider their repercussions on the two-particle interaction potential. We find that the formation of induced dipoles close to a charge-reversed state may explain the formation of these structures. Finally, we will touch upon the formation of dumbbells and small clusters in a one-component system, where the effective electrostatic interaction is always repulsive. PMID:27439990

  20. Optical detection of magnetic nanoparticles in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E.; Sanchez, Isaac C.; Yáñez-Limón, J. M.; Luna-Bárcenas, Gabriel

    2016-03-01

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 μg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles.

  1. Convection in a colloidal suspension in a closed horizontal cell

    SciTech Connect

    Smorodin, B. L. Cherepanov, I. N.

    2015-02-15

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined.

  2. Convection of colloidal suspensions stratified by thermodiffusion and gravity.

    PubMed

    Smorodin, B L; Cherepanov, I N

    2014-11-01

    The convective stability thresholds and nonlinear evolution of convective rolls are numerically investigated in a plane horizontal layer of a colloidal suspension with positive separation ratio in the case of no-slip, impermeable horizontal boundaries. The characteristics of the steady and oscillatory patterns are analyzed under heating and gravity stratification. The standing and traveling waves are found as stable solutions within certain domains of parameters (on the plane of the Rayleigh and the Boltzmann numbers). Complex bifurcation and spatiotemporal properties are caused by the interaction of gravity sedimentation, Soret-induced gradients, and convective mixing of the fluid. PMID:25416242

  3. Colloidal suspensions of C-particles: Entanglement, percolation and microrheology

    NASA Astrophysics Data System (ADS)

    Hoell, Christian; Löwen, Hartmut

    2016-05-01

    We explore structural and dynamical behavior of concentrated colloidal suspensions made up by C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus on the entanglement process between nearby particles for almost closed C-shapes with a small opening angle. Depending on the opening angle and the particle concentration, there is a percolation transition for the cluster of entangled particles which shows the classical scaling characteristics. In a broad density range below the percolation threshold, we find a stretched exponential function for the dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrheology by dragging a single tagged particle with constant speed through the suspension. We measure the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological theory, the size of the dragged cluster depends on the dragging direction and increases markedly with the dragging speed.

  4. Polymeric dispersants delay sedimentation in colloidal asphaltene suspensions.

    PubMed

    Hashmi, Sara M; Quintiliano, Leah A; Firoozabadi, Abbas

    2010-06-01

    Asphaltenes, among the heaviest components of crude oil, can become unstable under a variety of conditions and precipitate and sediment out of solution. In this report, we present sedimentation measurements for a system of colloidal scale asphaltene particles suspended in heptane. Adding dispersants to the suspension can improve the stability of the system and can mediate the transition from a power-law collapse in the sedimentation front to a rising front. Additional dispersant beyond a crossover concentration can cause a significant delay in the dynamics. Dynamic light scattering measurements suggest that the stabilization provided by the dispersants may occur through a reduction of both the size and polydispersity of the asphaltene particles in suspension. PMID:20334407

  5. Two spheres translating in tandem through a colloidal suspension.

    PubMed

    Sriram, Indira; Furst, Eric M

    2015-04-01

    Using laser tweezers, two colloidal particles are held parallel to a uniformly flowing suspension of similarly sized bath particles at an effective volume fraction ϕ(eff)=0.41. The local deformation in the bath suspension is imaged by confocal microscopy, and, concurrently, the drag forces exerted on both the leading and the trailing probe particles are measured as a function of probe separation and velocity. The bath structure changes in response to the velocity and separation of the probes. A depleted region between probes is observed at sufficiently high velocities. Both probes experience the same drag force and the drag force increases with probe separation. The results indicate that bath-probe and probe-probe hydrodynamic interactions contribute microstructure and drag force and that drag exerted by direct bath-probe collisions is reduced compared to an isolated probe. PMID:25974487

  6. Colloidal suspensions of C-particles: Entanglement, percolation and microrheology.

    PubMed

    Hoell, Christian; Löwen, Hartmut

    2016-05-01

    We explore structural and dynamical behavior of concentrated colloidal suspensions made up by C-shape particles using Brownian dynamics computer simulations and theory. In particular, we focus on the entanglement process between nearby particles for almost closed C-shapes with a small opening angle. Depending on the opening angle and the particle concentration, there is a percolation transition for the cluster of entangled particles which shows the classical scaling characteristics. In a broad density range below the percolation threshold, we find a stretched exponential function for the dynamical decorrelation of the entanglement process. Finally, we study a setup typical in microrheology by dragging a single tagged particle with constant speed through the suspension. We measure the cluster connected to and dragged with this tagged particle. In agreement with a phenomenological theory, the size of the dragged cluster depends on the dragging direction and increases markedly with the dragging speed. PMID:27155650

  7. Bulk and confinement-induced phase transitions in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Fortini, A.

    2007-02-01

    In the thesis, we have presented computer simulation results on the bulk and interfacial phase behaviour of colloidal suspensions. In the first part, we have developed and tested a simulation technique to calculate the free energy of hard-core systems. This technique was used to calculate the interfacial free energy of colloidal hard spheres and with the addition of non-adsorbing polymer coils. Good agreement was found between the simulation results and those from density functional theory. Furthermore, we have determined the equilibrium phases of a system of hard spheres confined between two parallel hard walls for plate separations from one to five hard-sphere diameters. We found a fluid-solid transition, which corresponded to either capillary freezing or melting depending on the plate separation. The coexisting solid phase consisted of crystalline layers with either triangular or square symmetry. At high densities, intermediate structures, e.g., prism, buckled, and rhombic phases, were found. In addition we have analysed colloid-polymer mixtures confined between two parallel plates. We have considered different types of confinement, namely either through two hard walls or through two semi-permeable walls that repel colloids but allowed polymers to freely penetrate. For hard walls we found capillary condensation, while for semi-permeable walls we found capillary evaporation. In the second part of the thesis we have analysed the bulk behaviour of colloidal suspensions. We have studied the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains. We found that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifted to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect

  8. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.

    PubMed

    Diestra-Cruz, Heberth; Bukusoglu, Emre; Abbott, Nicholas L; Acevedo, Aldo

    2015-04-01

    Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 ± 20 nm or poly(methyl methacrylate) with diameters of 150 ± 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 ± 0.20 μm) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering. PMID

  9. Probing Dynamical Heterogeneity in Dense Colloidal Suspensions with Depletion Attraction

    NASA Astrophysics Data System (ADS)

    Brown, Zachery; Hogan, Gregory; Gratale, Matthew; Yodh, Arjun G.; Habdas, Piotr

    We directly observe the particle dynamics in dense colloidal suspensions. Using depletion attraction, we vary inter particle potential to study the reentrant glass transition. Confocal microscopy and particle tracking allow us to follow particle trajectories over time. By varying inter particle attraction strength for a fixed volume fraction of colloidal suspensions, we observe three qualitatively different states. Mean square displacement and long time diffusion constant vary with the depletant concentration and indicate a glass state for low attraction strengths, ergodic liquid state for moderate attraction strengths, and attractive arrested state for the highest attraction strengths. Variance in the self overlap function gives the four point susceptibility, a measure of dynamical heterogeneity over a range of length scales and lag times. Results show that the lag times corresponding to the most heterogeneous dynamics are longer for arrested states than for fluid states. The length scale that maximizes four point susceptibility across a range of attraction strengths exhibits a reentrant glass behavior similar to that of the long time diffusion constant. Z.B., G.H., and P.H. acknowledge financial support of the NSF RUI-1306990. M.G. and A.G.Y. acknowledge financial support of the NSF Grant DMR-1205463, NSF MRSEC Grant DMR-1120901, and NASA Grant NNX08AO0G.

  10. Probing Cooperative Motion in Super-Cooled Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Sarangapani, Prasad; Zhu, Y. Elaine

    2008-03-01

    The physics of the glass transition remains inadequately understood despite its broad technological relevance. The anomalous divergence of viscosity without apparent structural change as a liquid is cooled has been attributed to the existence of growing dynamic length scales of ``cooperatively rearranging regions'' (CRR). In this work, we use ultra-fast fluorescence correlation spectroscopy (FCS) combined with high-speed imaging to determine the CRR sizes by measuring single-particle dynamics of tracer nano-particle embedded in super-cooled ``hard-sphere'' colloidal suspensions. Fluorescent poly-(methyl methacrylate) (PMMA) tracer particles of radii ranging from r=0.1-0.4 μm, mixed with plain PMMA particles of radius, r=0.6 μm and bulk volume fraction, φ = 0.38-0.58, serve as excellent probes for changes in the energy barrier landscape of the suspensions of increasing volume fraction and are sensitive to the creation and annihilation of icosahedral order in metastable colloidal fluids. We also find that the correlation length, determined by fluctuation-dissipation relations from the measured auto-correlation functions, shows a dramatic increase in the super-cooled regime until it diverges at φ=0.58.

  11. Synthesis of colloidal suspensions of zeolite ZSM-2

    SciTech Connect

    Schoeman, B.J.; Sterte, J.; Otterstedt, J.E.

    1995-03-15

    Discrete colloidal particles of zeolite ZSM-2 with crystal sizes less than 100 nm, in the form of aqueous suspensions, have been synthesized in tetramethylammonium (TMA)-aluminosilicate solutions in the presence of either lithium or a combination of lithium and sodium hydroxide. The well-crystallized ZSM-2 has a specific surface area of 781 m{sup 2}/g after purification and removal of the organic base by calcination. Synthesis times (t) are as short as 3 < t < 12 h and in certain cases, less than 3 h, less than those previously reported in the literature. Prolonged hydrothermal treatment of sols in the presence of sodium cations (>12 h) results in the phase transformation of ZSM-2 to the nitrogeneous edingtonite zeolite (Li,Na)-E. The synthesis of nitrogeneous (Li,Na)-E is also favored by a high TMA content in conjunction with sodium, whereas synthesis of zeolite N-A is favored by a high sodium content. Furthermore, it is shown that colloidal suspensions of TMA sodalite with crystal sizes less than 40 nm are synthesized in the absence of alkali cations.

  12. Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening.

    PubMed

    Démery, Vincent

    2015-06-01

    Colloidal suspensions have a rich rheology and can exhibit shear thinning as well as shear thickening. Numerical simulations recently suggested that shear-thickening may be attributed to the inertia of the colloids, besides the hydrodynamic interactions between them. Here, we consider the ideal limit of a dense bath of soft colloids following an underdamped Langevin dynamics. We use a mean-field equation for the colloidal density to get an analytical expression of the drag force felt by a probe pulled at constant velocity through the suspension. Our results show that inertia can indeed induce shear thickening by allowing density waves to propagate through the suspension. PMID:26172713

  13. Colloidal Brazil-nut effect in sediments of binary charged suspensions

    NASA Astrophysics Data System (ADS)

    Esztermann, A.; Löwen, H.

    2004-10-01

    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density-functional theory. For deionized samples, we predict a colloidal "Brazil nut" effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.

  14. Modified Mason number for charged paramagnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Du, Di; Hilou, Elaa; Biswal, Sibani Lisa

    2016-06-01

    The dynamics of magnetorheological fluids have typically been described by the Mason number, a governing parameter defined as the ratio between viscous and magnetic forces in the fluid. For most experimental suspensions of magnetic particles, surface forces, such as steric and electrostatic interactions, can significantly influence the dynamics. Here we propose a theory of a modified Mason number that accounts for surface forces and show that this modified Mason number is a function of interparticle distance. We demonstrate that this modified Mason number is accurate in describing the dynamics of a rotating pair of paramagnetic colloids of identical or mismatched sizes in either high or low salt solutions. The modified Mason number is confirmed to be pseudoconstant for particle pairs and particle chains undergoing a stable-metastable transition during rotation. The interparticle distance term can be calculated using theory or can be measured experimentally. This modified Mason number is more applicable to magnetorheological systems where surface forces are not negligible.

  15. Computation of shear viscosity of colloidal suspensions by SRD-MD

    SciTech Connect

    Laganapan, A. M. K.; Videcoq, A. Bienia, M.; Ala-Nissila, T.; Bochicchio, D.; Ferrando, R.

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  16. Characterization of hyperuniformity in colloidal suspensions through small angle static light scattering

    NASA Astrophysics Data System (ADS)

    Bretz, Coline; Still, Tim; Bartolo, Denis; Baudry, Jean; Yodh, Arjun; Dreyfus, Remi

    Hyperuniform materials have attracted increasing interest over the past decade due to their potential exciting photonic properties. Our work aims at exploring novel ways of assembling hyperuniform materials from colloidal suspensions. Three-dimensional systems of micrometer-sized colloids are considered and characterized by studying their structure factor using static small angle light scattering (SLS). A SLS set-up has been constructed for this purpose. Using an index-matched suspension of colloidal particles, we are able to record the structure factors of suspensions of micrometer-sized colloids in a three-dimensional cell. We will show how our apparatus allows us to follow the spatial organization of the colloids and characterize their hyperuniformity.

  17. Characterizations and Stability of Colloidal Coal-Measure Kaolinite in Aqueous Suspensions: a Review

    NASA Astrophysics Data System (ADS)

    Liu, Lingyun; Hu, Yang; Min, Fanfei; Zhang, Mingxu; Song, Shaoxian

    2013-02-01

    Coal-measure kaolinite is a main gangue mineral in coal deposits. Because of the colloidal particle size, the kaolinite is very stable in coal tailing slurries, leading to a high turbidity of recycled water in coal washing plants. The coagulation of colloidal kaolinite in aqueous suspensions is an essential problem in many coal washing plants. This review highlights the characterizations and stability of colloidal coal-measure kaolinite in aqueous suspensions. The characterizations include mineralogy, electrokinetics and hydration layers on kaolinite surfaces. The coagulation of colloidal kaolinite in aqueous suspensions is reviewed and discussed on the basis of the DLVO theory and the characterization. In addition,the main parameters of affecting the coagulation, such as suspension pH, electrolytic ions and temperature, are summarized.

  18. Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions

    PubMed Central

    Janai, Erez; Cohen, Avner P.; Butenko, Alexander V.; Schofield, Andrew B.; Schultz, Moty; Sloutskin, Eli

    2016-01-01

    Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters. PMID:27346611

  19. Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions

    NASA Astrophysics Data System (ADS)

    Janai, Erez; Cohen, Avner P.; Butenko, Alexander V.; Schofield, Andrew B.; Schultz, Moty; Sloutskin, Eli

    2016-06-01

    Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters.

  20. Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions.

    PubMed

    Janai, Erez; Cohen, Avner P; Butenko, Alexander V; Schofield, Andrew B; Schultz, Moty; Sloutskin, Eli

    2016-01-01

    Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters. PMID:27346611

  1. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions.

    PubMed

    Duval, Jérôme F L; Pinheiro, José P; van Leeuwen, Herman P

    2008-08-01

    A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e

  2. Kinetics of the glass transition of fragile soft colloidal suspensions.

    PubMed

    Saha, Debasish; Joshi, Yogesh M; Bandyopadhyay, Ranjini

    2015-12-01

    Microscopic relaxation time scales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations (CL), added salt concentrations (CS), and temperatures (T). It has been shown in an earlier work [D. Saha, Y. M. Joshi, and R. Bandyopadhyay, Soft Matter 10, 3292 (2014)] that the evolutions of relaxation time scales of colloidal glasses can be compared with molecular glass formers by mapping the waiting time (tw) of the former with the inverse of thermodynamic temperature (1/T) of the latter. In this work, the fragility parameter D, which signifies the deviation from Arrhenius behavior, is obtained from fits to the time evolutions of the structural relaxation time scales. For the Laponite suspensions studied in this work, D is seen to be independent of CL and CS but is weakly dependent on T. Interestingly, the behavior of D corroborates the behavior of fragility in molecular glass formers with respect to equivalent variables. Furthermore, the stretching exponent β, which quantifies the width w of the spectrum of structural relaxation time scales, is seen to depend on tw. A hypothetical Kauzmann time tk, analogous to the Kauzmann temperature for molecular glasses, is defined as the time scale at which w diverges. Corresponding to the Vogel temperature defined for molecular glasses, a hypothetical Vogel time tα (∞) is also defined as the time at which the structural relaxation time diverges. Interestingly, a correlation is observed between tk and tα (∞), which is remarkably similar to that known for fragile molecular glass formers. A coupling model that accounts for the tw-dependence of the stretching exponent is used to analyse and explain the observed correlation between tk and tα (∞). PMID:26646885

  3. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.

    PubMed

    Laganapan, Aleena Maria; Mouas, Mohamed; Videcoq, Arnaud; Cerbelaud, Manuella; Bienia, Marguerite; Bowen, Paul; Ferrando, Riccardo

    2015-11-15

    The percolation behavior of alumina suspensions is studied by computer simulations. The percolation threshold ϕc is calculated, determining the key factors that affect its magnitude: the strength of colloid-colloid attraction and the presence of hydrodynamic interactions (HIs). To isolate the effects of HIs, we compare the results of Brownian Dynamics, which do not include hydrodynamics, with those of Stochastic Rotation Dynamics-Molecular Dynamics, which include hydrodynamics. Our results show that ϕc decreases with the increase of the attraction between the colloids. The inclusion of HIs always leads to more elongated structures during the aggregation process, producing a sizable decrease of ϕc when the colloid-colloid attraction is not too strong. On the other hand, the effects of HIs on ϕc tend to become negligible with increasing attraction strength. Our ϕc values are in good agreement with those estimated by the yield stress model by Flatt and Bowen. PMID:26232284

  4. Electric-field mediated propulsion in binary colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Colon-Melendez, Laura; Spellings, Matthew; Glotzer, Sharon C.; Solomon, Michael J.

    We observe propulsion of pairs of unequally sized dielectric colloidal spheres in a plane perpendicular to the applied AC electric field. The fully reversible and reconfigurable effect is observed at different applied voltages and frequencies. Using confocal microscopy and particle tracking methods, we study the degree of active motion as a function of the number of particles in the dynamic clusters. The observed phenomenon is consistent with previous observations of asymmetric dumbbell propulsion in electric fields attributed to asymmetric electrohydrodynamic flow (Ma et al., PNAS 2015 112 (20) 6307-6312).

  5. Active microrheology of Brownian suspensions via Accelerated Stokesian Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Su, Yu; Gu, Kevin; Hoh, Nicholas; Zia, Roseanna

    2015-11-01

    The non-equilibrium rheological response of colloidal suspensions is studied via active microrheology utilizing Accelerated Stokesian Dynamics simulations. In our recent work, we derived the theory for micro-diffusivity and suspension stress in dilute suspensions of hydrodynamically interacting colloids. This work revealed that force-induced diffusion is anisotropic, with qualitative differences between diffusion along the line of the external force and that transverse to it, and connected these effects to the role of hydrodynamic, interparticle, and Brownian forces. This work also revealed that these forces play a similar qualitative role in the anisotropy of the stress and in the evolution of the non-equilibrium osmotic pressure. Here, we show that theoretical predictions hold for suspensions ranging from dilute to near maximum packing, and for a range of flow strengths from near-equilibrium to the pure-hydrodynamic limit.

  6. Modeling convection onset in colloidal suspensions of particles

    NASA Astrophysics Data System (ADS)

    Hadji, Layachi

    2011-09-01

    A particulate medium model is used to investigate the onset of Rayleigh-Bénard convection in a colloidal suspension of inert solid particles. The model accounts for the effects of thermophoresis, sedimentation and Brownian diffusion. Depending on the size of the particles, the problem has up to four time scales. These are due to thermal diffusion, particle diffusion, particle migration due to thermophoresis and particle sedimentation. The ratios of these time scales lead to the emergence of three parameters, one of which is the Lewis number τ. The smallness of the latter makes the differential eigenvalue system governing convection onset singular. The other two are the density number Γ and the dimensionless migration velocity β. For a given experimental set-up, β has a quadratic functional dependence on the particles radius. A combination of asymptotics and numerical computation is used to capture the effect of the resulting thin particle concentration boundary layers on the leading order instability thresholds. Results, which are depicted as function of Γ and β, reveal a non-monotonic dependence of the critical Rayleigh number ℛ c on β. The curve ℛ c (β) is bimodal and it exhibits a maximum , the value of which increases very sharply with |Γ| while the critical wavelength decreases. Experimental conditions can be fixed so that occurs at β values that correspond to nanoparticles. Therefore, experimental parameters can be controlled so that the mixing of a small amount of nano-size particles has a substantial stabilizing effect. An investigation of the flow patterns in the range of parameters associated with this sharp increase in ℛ c reveals a decrease in the effective

  7. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    PubMed Central

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-01-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in directional freezing colloidal suspensions, we proposed three interface instability modes, Mullins-Sekerka instability, global split instability and local split instability. The intrinsic mechanism of the instability modes comes from the competition of the solute boundary layer and the particle boundary layer, which only can be revealed from the initial transient stage of planar instability in directional freezing. PMID:26996630

  8. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    NASA Astrophysics Data System (ADS)

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-03-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions. However, the interface instability modes, the origin of the ice banding or ice lamellae, are still unclear. In-situ experimental observation of the onset of interface instability remains absent up to now. Here, by directly imaging the initial transient stage of planar interface instability in directional freezing colloidal suspensions, we proposed three interface instability modes, Mullins-Sekerka instability, global split instability and local split instability. The intrinsic mechanism of the instability modes comes from the competition of the solute boundary layer and the particle boundary layer, which only can be revealed from the initial transient stage of planar instability in directional freezing.

  9. Active colloids at fluid interfaces.

    PubMed

    Malgaretti, P; Popescu, M N; Dietrich, S

    2016-05-01

    If an active Janus particle is trapped at the interface between a liquid and a fluid, its self-propelled motion along the interface is affected by a net torque on the particle due to the viscosity contrast between the two adjacent fluid phases. For a simple model of an active, spherical Janus colloid we analyze the conditions under which translation occurs along the interface and we provide estimates of the corresponding persistence length. We show that under certain conditions the persistence length of such a particle is significantly larger than the corresponding one in the bulk liquid, which is in line with the trends observed in recent experimental studies. PMID:27025167

  10. Onsager’s reciprocal relations for electroacoustic and sedimentation: Application to (concentrated) colloidal suspensions

    SciTech Connect

    Gourdin-Bertin, S.; Chassagne, C.

    2015-05-21

    In this article, the relations for electroacoustic phenomena, such as sedimentation potential, sedimentation intensity, colloid vibration potential, colloid vibration intensity/current, or electric sonic amplitude, are given, on the basis of irreversible thermodynamics. This formalism allows in particular to discuss the different expressions for concentrated suspensions found by various authors, which are of great practical interest. It was found that some existing expressions have to be corrected. Relations between the electrophoretic mobilities assessed by the different experiments are derived.

  11. Onsager's reciprocal relations for electroacoustic and sedimentation: Application to (concentrated) colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gourdin-Bertin, S.; Chassagne, C.

    2015-05-01

    In this article, the relations for electroacoustic phenomena, such as sedimentation potential, sedimentation intensity, colloid vibration potential, colloid vibration intensity/current, or electric sonic amplitude, are given, on the basis of irreversible thermodynamics. This formalism allows in particular to discuss the different expressions for concentrated suspensions found by various authors, which are of great practical interest. It was found that some existing expressions have to be corrected. Relations between the electrophoretic mobilities assessed by the different experiments are derived.

  12. Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements

    PubMed Central

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2016-01-01

    Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent and particulate constitutional supercooling (PCS) caused by particles. However, quantitative identification of the interfacial undercooling in the solidification of colloidal suspensions, is still absent; thus, the question of which type of undercooling is dominant in this complex system remains unanswered. Here, we quantitatively measured the static and dynamic interface undercoolings of SCS and PCS in ideal and practical colloidal systems. We show that the interfacial undercooling primarily comes from SCS caused by the additives in the solvent, while PCS is minor. This finding implies that the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for pattern formation of cellular growth and lamellar structure in the solidification of colloidal suspensions, a general case of ice-templating method. Instead, the patterns in the ice-templating method can be controlled effectively by adjusting the additives. PMID:27329394

  13. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    PubMed

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound. PMID:24291307

  14. Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements.

    PubMed

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2016-01-01

    Interfacial undercooling in the complex solidification of colloidal suspensions is of significance and remains a puzzling problem. Two types of interfacial undercooling are supposed to be involved in the freezing of colloidal suspensions, i.e., solute constitutional supercooling (SCS) caused by additives in the solvent and particulate constitutional supercooling (PCS) caused by particles. However, quantitative identification of the interfacial undercooling in the solidification of colloidal suspensions, is still absent; thus, the question of which type of undercooling is dominant in this complex system remains unanswered. Here, we quantitatively measured the static and dynamic interface undercoolings of SCS and PCS in ideal and practical colloidal systems. We show that the interfacial undercooling primarily comes from SCS caused by the additives in the solvent, while PCS is minor. This finding implies that the thermodynamic effect of particles from the PCS is not the fundamental physical mechanism for pattern formation of cellular growth and lamellar structure in the solidification of colloidal suspensions, a general case of ice-templating method. Instead, the patterns in the ice-templating method can be controlled effectively by adjusting the additives. PMID:27329394

  15. Effect of Salt Concentration on the Pattern Formation of Colloidal Suspension

    NASA Astrophysics Data System (ADS)

    Ma, Wenjie; Wang, Yuren

    We study the effect of salt concentration on the drying process and pattern of thin liquid layer colloidal suspension. Panasonic camera is used to capture the drying process and macroscopic pattern. Microscopic patterns are analyzed by optical microscopy. It is shown that broad-ring pattern is avoided by adding little amount of sodium chloide into colloidal suspension. with the increase of salt concentraion, convection strength and interface instability are weakened, thus the edge of film becomes smooth and more homogeneous film forms. Beautiful microscopic patterns demonstrate that the cooperative interaction between sodium chloide and silica spheres has important influence on the pattern formation.

  16. Eulerian flow modeling of suspensions containing interacting nano-particles: application to colloidal film drying.

    NASA Astrophysics Data System (ADS)

    Gergianakis, I.; Meireles, M.; Bacchin, P.; Hallez, Y.

    2015-11-01

    Nano-particles in suspension often experience strong non-hydrodynamic interactions (NHIs) such as electrostatic repulsions. In this work, we present and justify a flow modeling strategy adapted to such systems. Earlier works on colloidal transport in simple flows, were based on the solution of a transport equation for the colloidal volume fraction with a known fluid velocity field and a volume-fraction-dependent diffusion coefficient accounting for mass fluxes due to NHIs. Extension of this modelling to complex flows requires the coupled resolution of a momentum transport equation for the suspension velocity field. We use the framework of the Suspension Balance Model to show that in the Pe << 1 regime relevant here, the average suspension velocity field is independent of NHIs between nanoparticles , while the average fluid phase and solid phase velocity fields both always depend of the NHIs. Lastly, we apply this modelling strategy to the problem of the drying of a colloidal suspension in a micro-evaporator [Merlin et al., 2012, Soft Matter]. The influence of the effective Peclet number on the 1D/2D character of the flow is evaluated and the possible colloidal film patterning due to defaults of substrate topography is commented.

  17. Clogging by sieving in microchannels: Application to the detection of contaminants in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Barney, Erin C.; Perro, Adeline; Villermaux, Emmanuel; Stone, Howard A.; Dressaire, Emilie

    2014-08-01

    We report on a microfluidic method that allows measurement of a small concentration of large contaminants in suspensions of solid micrometer-scale particles. To perform the measurement, we flow the colloidal suspension through a series of constrictions, i.e., a microchannel of varying cross-section. We show and quantify the role of large contaminants in the formation of clogs at a constriction and the growth of the resulting filter cake. By measuring the time interval between two clogging events in an array of parallel microchannels, we are able to estimate the concentration of contaminants whose size is selected by the geometry of the microfluidic device. This technique for characterizing colloidal suspensions offers a versatile and rapid tool to explore the role of contaminants on the properties of the suspensions.

  18. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems. PMID:25903907

  19. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.

    2015-04-01

    In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).

  20. The Influence of Gravity on Nucleation, Growth, Stability and Structure in Crystallizing Colloidal Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, Alice P.

    1996-01-01

    Our goal is to understand the dynamics of particles within colloidal crystals. In particular, we focus on the influence of the cell walls and gravity on the particle dynamics. In this study, we will use a novel light scattering experiment, known as diffusing wave spectroscopy, to probe particle motions in turbid suspensions. This is a noninvasive experimental probe of interparticle dynamics.

  1. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.

    PubMed

    Hynninen, A-P; Dijkstra, M; van Roij, R

    2004-06-01

    We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet potentials that were obtained from a numerical Poisson-Boltzmann study [Phys. Rev. E 66, 011402 (2002)

  2. An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.

    2005-01-01

    Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.

  3. In situ observation the interface undercooling of freezing colloidal suspensions with differential visualization method

    NASA Astrophysics Data System (ADS)

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2015-08-01

    Interface undercooling is one of the most significant parameters in the solidification of colloidal suspensions. However, quantitative measurement of interface undercooling of colloidal suspensions is still a challenge. Here, a new experimental facility and gauging method are designed to directly reveal the interface undercooling on both static and dynamic cases. The interface undercooling is visualized through the discrepancy of solid/liquid interface positions between the suspensions and its solvent in a thermal gradient apparatus. The resolutions of the experimental facility and gauging method are proved to be 0.01 K. The high precision of the method comes from the principle of converting temperature measurement into distance measurement in the thermal gradient platform. Moreover, both static and dynamic interface undercoolings can be quantitatively measured.

  4. In situ observation the interface undercooling of freezing colloidal suspensions with differential visualization method.

    PubMed

    You, Jiaxue; Wang, Lilin; Wang, Zhijun; Li, Junjie; Wang, Jincheng; Lin, Xin; Huang, Weidong

    2015-08-01

    Interface undercooling is one of the most significant parameters in the solidification of colloidal suspensions. However, quantitative measurement of interface undercooling of colloidal suspensions is still a challenge. Here, a new experimental facility and gauging method are designed to directly reveal the interface undercooling on both static and dynamic cases. The interface undercooling is visualized through the discrepancy of solid/liquid interface positions between the suspensions and its solvent in a thermal gradient apparatus. The resolutions of the experimental facility and gauging method are proved to be 0.01 K. The high precision of the method comes from the principle of converting temperature measurement into distance measurement in the thermal gradient platform. Moreover, both static and dynamic interface undercoolings can be quantitatively measured. PMID:26329221

  5. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  6. Bulk and interfacial stresses in suspensions of soft and hard colloids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, D.; Roger, V.; Dupas, C.; Mora, S.; Cipelletti, L.

    2015-05-01

    We explore the influence of particle softness and internal structure on both the bulk and interfacial rheological properties of colloidal suspensions. We probe bulk stresses by conventional rheology, by measuring the flow curves, shear stress versus strain rate, for suspensions of soft, deformable microgel particles and suspensions of near hard-sphere-like silica particles. A similar behaviour is seen for both kinds of particles in suspensions at concentrations up to the random close packing volume fraction, in agreement with recent theoretical predictions for sub-micron colloids. Transient interfacial stresses are measured by analyzing the patterns formed by the interface between the suspensions and their solvent, due to a generalized Saffman-Taylor hydrodynamic instability. At odds with the bulk behaviour, we find that microgels and hard particle suspensions exhibit vastly different interfacial stress properties. We propose that this surprising behaviour results mainly from the difference in particle internal structure (polymeric network for microgels versus compact solid for the silica particles), rather than softness alone.

  7. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.

    PubMed

    Kanehl, Philipp; Stark, Holger

    2015-06-01

    Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions. PMID:26049518

  8. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kanehl, Philipp; Stark, Holger

    2015-06-01

    Colloids in suspension exhibit shear-induced migration towards regions of low viscous shear. In dense bidisperse colloidal suspensions under pressure driven flow large particles can segregate in the center of a microchannel and the suspension partially demixes. To develop a theoretical understanding of these effects, we formulate a phenomenological model for the particle currents based on the work of Phillips et al. [Phys. Fluids 4, 30 (1992)]. We also simulate hard spheres under pressure-driven flow in two and three dimensions using the mesoscale simulation technique of multi-particle collision dynamics. Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces the simulated density profiles across the channel. We present a detailed parameter study on how a monodisperse suspension enriches the channel center and quantitatively confirm the experimental observation that a binary colloidal mixture partially segregates into its two species. In particular, we always find a strong accumulation of large particles in the center. Qualitative differences between two and three dimensions reveal that collective diffusion is more relevant in two dimensions.

  9. Startup of electrophoresis in a suspension of colloidal spheres.

    PubMed

    Chiang, Chia C; Keh, Huan J

    2015-12-01

    The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed-form formulas for the time-evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle-to-fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle-to-fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles. PMID:26417706

  10. Convection associated with exclusion zone formation in colloidal suspensions.

    PubMed

    Musa, Sami; Florea, Daniel; Wyss, Hans M; Huyghe, Jacques M

    2016-01-28

    The long-range repulsion of colloids from various interfaces has been observed in a wide range of studies from different research disciplines. This so-called exclusion zone (EZ) formation occurs near surfaces such as hydrogels, polymers, or biological tissues. It was recently shown that the underlying physical mechanism leading to this long-range repulsion is a combination of ion-exchange at the interface, diffusion of ions, and diffusiophoresis of colloids in the resulting ion concentration gradients. In this paper, we show that the same ion concentration gradients that lead to exclusion zone formation also imply that diffusioosmosis near the walls of the sample cell must occur. This should lead to convective flow patterns that are directly associated with exclusion zone formation. We use multi-particle tracking to study the dynamics of particles during exclusion zone formation in detail, confirming that indeed two pronounced vortex-like convection rolls occur near the cell walls. These dramatic flow patterns persist for more than 4 hours, with the typical velocity decreasing as a function of time. We find that the flow velocity depends strongly on the surface properties of the sample cell walls, consistent with diffusioosmosis being the main physical mechanism that governs these convective flows. PMID:26616213

  11. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Bialké, Julian; Kümmel, Felix; Löwen, Hartmut; Bechinger, Clemens; Speck, Thomas

    2013-06-01

    We study experimentally and numerically a (quasi-)two-dimensional colloidal suspension of self-propelled spherical particles. The particles are carbon-coated Janus particles, which are propelled due to diffusiophoresis in a near-critical water-lutidine mixture. At low densities, we find that the driving stabilizes small clusters. At higher densities, the suspension undergoes a phase separation into large clusters and a dilute gas phase. The same qualitative behavior is observed in simulations of a minimal model for repulsive self-propelled particles lacking any alignment interactions. The observed behavior is rationalized in terms of a dynamical instability due to the self-trapping of self-propelled particles.

  12. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles

    NASA Astrophysics Data System (ADS)

    Cerdán, Luis; Enciso, Eduardo; Martín, Virginia; Bañuelos, Jorge; López-Arbeloa, Iñigo; Costela, Angel; García-Moreno, Inmaculada

    2012-09-01

    The use of commercial long-wavelength (>650 nm) laser dyes in many biophotonic applications has several important limitations, including low absorption at the standard pump wavelength (532 nm) and poor photostability. Here, we demonstrate that the use of Förster type (FRET) energy transfer can overcome these problems to enable efficient, stable near-infrared lasing in a colloidal suspension of latex nanoparticles containing a mixture of Rhodamine 6G and Nile Blue dyes. Experimental and theoretical analyses of the photophysics suggest that the dominant energy transfer mechanism is Förster type via dipole-dipole coupling, and also reveal an unexpected core/shell morphology in the dye-doped nanoparticles. FRET-assisted incoherent random lasing is also demonstrated in solid samples obtained by evaporation of colloidal suspensions.

  13. Surface composition and texture of titanium polished with colloidal silica suspension and chromic oxide slurry.

    PubMed

    Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu

    2005-09-01

    CP titanium was polished with a colloidal silica suspension and chromic oxide slurry under low and high pressures. The polished surfaces were characterized by means of EPMA and XPS. Irrespective of polishing pressure, colloidal silica suspension successfully created a mirror-like surface that was clean at EPMA level. However, XPS detected a small amount of silicon on the outermost surface. On the other hand, chromic oxide slurry under high pressure yielded a very uneven surface with numerous scratches. The EPMA and XPS results suggested the presence of chromium-containing species in the polished surface, which might include hydroxides as well as oxides. In addition, the level of oxygen concentration was noticeably raised, which probably resulted from the increase of surface oxide film thickness or the extension of oxide-to-metal transition zone. PMID:16279732

  14. Do multilayer crystals nucleate in suspensions of colloidal rods?

    PubMed

    Patti, Alessandro; Dijkstra, Marjolein

    2009-03-27

    We study the isotropic-to-crystal transformation in a mixture of colloidal hard rods and nonabsorbing polymer using computer simulations. We determine the height of the nucleation barrier and find that the critical cluster consists of a single crystalline layer growing laterally for all polymer fugacities considered. At lower supersaturation, the free energy of a single hexagonally packed layer increases monotonically with size, while the nucleation barrier of a second crystalline layer is extremely high. Hence, the nucleation of multilayer crystals is never observed. Multilayer crystals form only in the spinodal decomposition regime, either where, in an intermediate stage, single crystalline membranes coalesce into multilayer clusters or where, at higher polymer fugacity, smaller clusters of rods stack on top of each other to form long filaments. Eventually, these transient structures evolve into a thermodynamically stable bulk crystal phase. PMID:19392328

  15. Synthesis of silicon carbide at room temperature from colloidal suspensions of silicon dioxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhukalin, D. A.; Tuchin, A. V.; Kulikova, T. V.; Bityutskaya, L. A.

    2015-11-01

    Experimental and theoretical approaches were used for the investigation of mechanisms and conditions of self-organized nanostructures formation in the drying drop of the mixture of colloidal suspensions of nanoscale amorphous silicon dioxide and carbon nanotubes. The formation of rodlike structures with diameter 250-300nm and length ∼4pm was revealed. The diffraction analysis of the obtained nanostructures showed the formation of the silicon carbide phase at room temperature.

  16. Rheology of dense suspensions of non colloidal spheres in yield-stress fluids

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Dagois-Bohy, Simon; Hormozi, Sarah; Pouliquen, Olivier; Aix-Marseille Université, Cnrs, Iusti Umr 7343 Team; Department Of Mechanical Engineering, Ohio University Team

    2015-11-01

    Pressure-imposed rheometry is used to study the rheological properties of suspensions of non colloidal spheres in yield stress fluids. Accurate measurements for both the shear stress and particle normal stress are obtained in the dense regime. The rheological measurements are favourably compared to a model based on scaling arguments and homogenisation methods. The detailed account of this study can be found in. ANR-13-IS09-0005-01, Etudes et Productions Schlumberger, NSERC Postdoctoral Fellowships Program PDF-439036-2013.

  17. Colloidal stability of coal-simulated suspensions in selective agglomeration

    SciTech Connect

    Schurger, M.L.

    1989-01-01

    A coal suspension was simulated by using graphite to simulate the carbonaceous fraction and kaolinite clay to simulate the ash fraction. Separate studies on each material established their response to additions of oxidized pyrite (ferrous sulfate) and a humic acid simulate (salicylic acid) in terms of zeta potentials profiles with pH and Ionic strength. Concentrations of iron and salicylic acid evaluated were 4.5 {times} 10{sup {minus}3} M and 2.0 {times} 10{sup {minus}4} M, respectively. The zeta potentials profiles of graphite, clay and hexadecane were negative throughout the pH ranges studied. The addition of iron lowered the zeta potentials all of the suspensions under all pH and ionic strength conditions. Salicylic acid decreased the graphite and hexadecane zeta potentials but had no effect on the clay zeta potential profiles. Agglomeration of graphite with bridging liquid shows distinct time dependent rate mechanisms, a initial growth of graphite agglomerates followed by consolidation phase. Graphite agglomeration was rapid with the maximum amount of agglomerate volume growth occurring in under 2-4 minutes. Agglomeration in the first two minutes was characterized by a 1st order rate mechanism. The presence of either Iron and salicylic acid generally improved the first order rates. The addition of clay also improved the first order rates except in the presence of salicylic acid. Heteroagglomeration of graphite with clay was found by hydrodynamic arguments to be unfavored. A multicomponent population balance model which had been developed for evaluating collision efficiencies of coal, ash and pyrite selective agglomeration was evaluated to explain these results. The growth and consolidation characteristics of graphite agglomeration for the experimental conditions examined herein revealed the limitations of such as model for this application.

  18. Dynamical facilitation governs glassy dynamics in suspensions of colloidal ellipsoids

    PubMed Central

    Mishra, Chandan K.; Hima Nagamanasa, K.; Ganapathy, Rajesh; Sood, A. K.; Gokhale, Shreyas

    2014-01-01

    One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particular, recent experiments and simulations have highlighted the importance of facilitation using simple model systems composed of spherical particles. However, an overwhelming majority of liquids possess anisotropy in particle shape and interactions, and it is therefore imperative to examine facilitation in complex glass formers. Here, we apply the DF theory to systems with orientational degrees of freedom as well as anisotropic attractive interactions. By analyzing data from experiments on colloidal ellipsoids, we show that facilitation plays a pivotal role in translational as well as orientational relaxation. Furthermore, we demonstrate that the introduction of attractive interactions leads to spatial decoupling of translational and rotational facilitation, which subsequently results in the decoupling of dynamical heterogeneities. Most strikingly, the DF theory can predict the existence of reentrant glass transitions based on the statistics of localized dynamical events, called excitations, whose duration is substantially smaller than the structural relaxation time. Our findings pave the way for systematically testing the DF approach in complex glass formers and also establish the significance of facilitation in governing structural relaxation in supercooled liquids. PMID:25313030

  19. Segregated Ice Growth in a Suspension of Colloidal Particles.

    PubMed

    Schollick, Julia M H; Style, Robert W; Curran, Arran; Wettlaufer, John S; Dufresne, Eric R; Warren, Patrick B; Velikov, Krassimir P; Dullens, Roel P A; Aarts, Dirk G A L

    2016-04-28

    We study the freezing of a dispersion of colloidal silica particles in water, focusing on the formation of segregated ice in the form of ice lenses. Local temperature measurements in combination with video microscopy give insight into the rich variety of factors that control ice lens formation. We observe the initiation of the lenses, their growth morphology, and their final thickness and spacing over a range of conditions, in particular the effect of the particle packing and the cooling rate. We find that increasing the particle density drastically reduces the thickness of lenses but has little effect on the lens spacing. Therefore, the fraction of segregated ice formed reduces. The effect of the cooling rate, which is the product of the temperature gradient and the pulling speed across the temperature gradient, depends on which parameter is varied. A larger temperature gradient causes ice lenses to be initiated more frequently, while a lower pulling speed allows for more time for ice lenses to grow: both increase the fraction of segregated ice. Surprisingly, we find that the growth rate of a lens does not depend on its undercooling. Finally, we have indications of pore ice in front of the warmest ice lens, which has important consequences for the interpretation of the measured trends. Our findings are relevant for ice segregation occurring in a wide range of situations, ranging from model lab experiments and theories to geological and industrial processes, like frost heave and frozen food production. PMID:27046043

  20. Photodegradation of dispersants in colloidal suspensions of pristine graphene.

    PubMed

    Hansen, Matthew J; Rountree, Kyler S; Irin, Fahmida; Sweeney, Charles B; Klaassen, Christopher D; Green, Micah J

    2016-03-15

    We demonstrate that UV degradation can remove polymeric dispersants from the surface of colloidal pristine graphene. In particular, we investigated the irradiation of polyvinylpyrrolidone (PVP)-dispersed graphene in water; this polymer has been established as a versatile nanosheet dispersant for a range of solvents, and it undergoes photo-oxidative degradation when exposed to UV light. We find that the molecular weight of PVP decreases with irradiation time and subsequently desorbs from the graphene surface. This causes gradual destabilization of graphene and agglomeration in water. The amount of adsorbed PVP decreases by approximately 45% after 4 h of irradiation in comparison with the non-irradiated dispersion. At this point, the majority of the stable graphene nanosheets flocculate, likely because of insufficient surface coverage as indicated by thermogravimetric analysis. Graphene aggregates were characterized as a function of irradiation time by optical microscopy, UV-vis spectroscopy, Raman spectroscopy, and conductivity measurements; the data suggest that the agglomerates maintain a graphene-like (rather than graphite-like) structure. The effect is also observed for another graphene dispersant (sapogenin), which suggests that our findings can be generalized to the broader class of photodegradable dispersants. PMID:26771505

  1. The reciprocal effect of lubrication and contact forces in shear-thickening of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Maia, Joao

    2015-03-01

    Recently, the shear-thickening of colloidal suspensions at high shear rates in general, and the so-called discontinuous shear-thickening (DST) in particular, has been attributed to frictional contact forces at high shear rates. This emerging understanding of the contact forces in a suspension has brought back the well-known dilatancy theory which was rather dormant in the past two decades. Here, we study the necessity of short-range hydrodynamics and the correlation between the contact and lubrication forces in shear-thickening suspensions. We use a modified Dissipative Particle Dynamics method that includes squeeze mode lubrication potentials based on the pair drag between two interacting colloids. The effect of simulation parameters and contact potentials on the rheological response of a suspension is studied. Our results show that although the quality of the shear-thickening behavior (whether DST can be obtained or not) is dominated by the contact potentials, the lubrication force is a prerequisite for any type of shear-thickening to be recovered. Needless to mention that this argument is valid for the high Péclet numbers, as opposed to shear-thinning regime which can be fully reproduced without the need to lubrication or contact potentials.

  2. Self-similarity in active colloid motion

    NASA Astrophysics Data System (ADS)

    Constant, Colin; Sukhov, Sergey; Dogariu, Aristide

    The self-similarity of displacements among randomly evolving systems has been used to describe the foraging patterns of animals and predict the growth of financial systems. At micron scales, the motion of colloidal particles can be analyzed by sampling their spatial displacement in time. For self-similar systems in equilibrium, the mean squared displacement increases linearly in time. However, external forces can take the system out of equilibrium, creating active colloidal systems, and making this evolution more complex. A moment scaling spectrum of the distribution of particle displacements quantifies the degree of self-similarity in the colloid motion. We will demonstrate that, by varying the temporal and spatial characteristics of the external forces, one can control the degree of self-similarity in active colloid motion.

  3. Aging and Yielding of Colloidal Suspension by MRI Velocimetry

    NASA Astrophysics Data System (ADS)

    Ragouilliaux, A.; Herzhaft, B.; Ovarlez, G.; Coussot, P.

    2008-07-01

    We study a suspension of water droplets in oil which, due to organoclay particles links, exhibits a yielding and thixotropic behavior. The local rheological behavior in time is determined with the help of MRI velocimetry in a Couette flow. Under constant rotation velocity, in a first stage we observe a progressive displacement of the fluid/solid interface towards the inner cylinder, which is associated with the increase of a critical shear rate below which there is apparently no flow. During this stage our local measurements show that the constitutive equation of the liquid region does not vary in time: only the thickness of the sheared region and the critical shear rate vary. Then we focus on the behavior in the solid and liquid regimes as a function of the droplet concentration φ (from 20 to 70%). The solid regime is studied by measuring the evolution of the elastic modulus (G) in time. The initial level of G increases with φ but G also increases in time, witch is the hallmark of the thixotropy (aging) at rest. We find that the effect of time on the restructuring is much larger than the effect of concentration increase. In order to study the liquid regime, we build the local flow curves from MRI velocity profiles as a function of time for all the formulations. The effect of a significant increase in droplet concentration on the material behavior in the liquid regime is found to be minor, in contrast with its effect on the behavior in the solid regime. This is explained by the fact that the behavior in the solid regime is mainly controlled by the droplet aggregation, a process which plays a much smaller role as soon as the liquid regime is reached.

  4. Colloidal crystallite suspensions studied by high pressure small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schroer, M. A.; Westermeier, F.; Lehmkühler, F.; Conrad, H.; Schavkan, A.; Zozulya, A. V.; Fischer, B.; Roseker, W.; Sprung, M.; Gutt, C.; Grübel, G.

    2016-02-01

    We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.

  5. Compensating for Electrode Polarization in Dielectric Spectroscopy Studies of Colloidal Suspensions: Theoretical Assessment of Existing Methods.

    PubMed

    Chassagne, Claire; Dubois, Emmanuelle; Jiménez, María L; van der Ploeg, J P M; van Turnhout, Jan

    2016-01-01

    Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles from which important interfacial electrokinetic properties, for instance their zeta potential, can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by electrode polarization (EP). In this article, we review several procedures to compensate for this effect. First EP in electrolyte solutions is described: the complex conductivity is derived as function of frequency, for two cell geometries (planar and cylindrical) with blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is given for each geometry. This equivalent circuit model is extended to suspensions. The complex conductivity of a suspension, in the presence of EP, is then calculated from the impedance. Different methods for compensating for EP are critically assessed, with the help of the theoretical findings. Their limit of validity is given in terms of characteristic frequencies. We can identify with one of these frequencies the frequency range within which data uncorrected for EP may be used to assess the dipole moment of colloidal particles. In order to extract this dipole moment from the measured data, two methods are reviewed: one is based on the use of existing models for the complex conductivity of suspensions, the other is the logarithmic derivative method. An extension to multiple relaxations of the logarithmic derivative method is proposed. PMID:27486575

  6. Compensating for Electrode Polarization in Dielectric Spectroscopy Studies of Colloidal Suspensions: Theoretical Assessment of Existing Methods

    PubMed Central

    Chassagne, Claire; Dubois, Emmanuelle; Jiménez, María L.; van der Ploeg, J. P. M; van Turnhout, Jan

    2016-01-01

    Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles from which important interfacial electrokinetic properties, for instance their zeta potential, can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by electrode polarization (EP). In this article, we review several procedures to compensate for this effect. First EP in electrolyte solutions is described: the complex conductivity is derived as function of frequency, for two cell geometries (planar and cylindrical) with blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is given for each geometry. This equivalent circuit model is extended to suspensions. The complex conductivity of a suspension, in the presence of EP, is then calculated from the impedance. Different methods for compensating for EP are critically assessed, with the help of the theoretical findings. Their limit of validity is given in terms of characteristic frequencies. We can identify with one of these frequencies the frequency range within which data uncorrected for EP may be used to assess the dipole moment of colloidal particles. In order to extract this dipole moment from the measured data, two methods are reviewed: one is based on the use of existing models for the complex conductivity of suspensions, the other is the logarithmic derivative method. An extension to multiple relaxations of the logarithmic derivative method is proposed. PMID:27486575

  7. Shear-induced criticality near a liquid-solid transition of colloidal suspensions.

    PubMed

    Miyama, Masamichi J; Sasa, Shin-ichi

    2011-02-01

    We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ(ex)) plane, where ρ is the density of the colloidal particles and γ(ex) is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ(ex)→0. PMID:21405806

  8. Possible origin of the crack pattern in deposition films formed from a drying colloidal suspension.

    PubMed

    Ma, Jun; Jing, Guangyin

    2012-12-01

    The fracture mechanics was usually employed to explain the crack propagation in the deposition produced by drying colloidal suspension. However, more complex than conventional fracture, those cracks periodically distribute and make up a unique pattern. Inspired by the concept of spinodal decomposition, here we develop the theory to illustrate the possible mechanism of the spatial arrangement of the cracks. It indicates that before the cracks develop and propagate in the deposition under the law of fracture mechanics, the periodically distributed flaws are generated by the phase separation of colloidal clusters and solvent. Then the cracks originate at the sites of those flaws in terms of fracture mechanics. It concludes that the crack spacing results from the wavelength of the concentration fluctuation during the phase separation, linearly growing with the increase of the deposition thickness and initial particle concentration, which is consistent with experimental results. PMID:23367949

  9. Stick-slip patterning at low capillary numbers for an evaporating colloidal suspension.

    PubMed

    Bodiguel, Hugues; Doumenc, Frédéric; Guerrier, Béatrice

    2010-07-01

    Pattern formation from a silica colloidal suspension that is evaporating has been studied when a movement is imposed to the contact line. This article focuses on the stick-slip regime observed for very low contact line velocities. A capillary rise experiment has been specially designed for the observation and allows us to measure the pinning force that increases during the pinning of the contact line on the growing deposit. We report systematic measurements of this pinning force and derive scaling laws when the velocity of the contact line, the colloid concentration, and the evaporation rate are varied. Our analysis supports the idea that the pinning of the contact line results from a competition between the geometry of the growing deposit and the force due to gravity. PMID:20429601

  10. Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Jabbari-Farouji, Sara; Meunier, Jacques; Bonn, Daniel

    2005-02-01

    There are two types of isotropic disordered nonergodic states in colloidal suspensions: colloidal glasses and gels. In a recent paper [H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004)], we discussed the static aspect of the differences and the similarities between the two. In this paper, we focus on the dynamic aspect. The kinetics of the liquid-glass transition is called “aging,” while that of the sol-gel transition is called “gelation.” The former is primarily governed by repulsive interactions between particles, while the latter is dominated by attractive interactions. Slowing down of the dynamics during aging reflects the increasing cooperativity required for the escape of a particle from the cage formed by the surrounding particles, while that during gelation reflects the increase in the size of particle clusters towards the percolation transition. Despite these clear differences in the origin of the slowing down of the kinetics between the two, it is not straightforward experimentally to distinguish them in a clear manner. For an understanding of the universal nature of ergodic-to-nonergodic transitions, it is of fundamental importance to elucidate the differences and the similarities in the kinetics between aging and gelation. We consider this problem, taking Laponite suspension as an explicit example. In particular, we focus on the two types of nonergodic states: (i) an attractive gel formed by van der Waals attractions for high ionic strengths and (ii) a repulsive Wigner glass stabilized by long-range Coulomb repulsions for low ionic strengths. We demonstrate that the aging of colloidal Wigner glass crucially differs not only from gelation, but also from the aging of structural and spin glasses. The aging of the colloidal Wigner glass is characterized by the unique cage-forming regime that does not exist in the aging of spin and structural glasses.

  11. Anderson localization of light in a colloidal suspension (TiO2@silica).

    PubMed

    Jimenez-Villar, Ernesto; da Silva, Iran F; Mestre, Valdeci; de Oliveira, Paulo C; Faustino, Wagner M; de Sá, Gilberto F

    2016-06-01

    In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition. PMID:26804337

  12. Collective behavior of thermally active colloids.

    PubMed

    Golestanian, Ramin

    2012-01-20

    Colloids with patchy metal coating under laser irradiation could act as local heat sources and generate temperature gradients that could induce self-propulsion and interactions between them. The collective behavior of a dilute solution of such thermally active particles is studied using a stochastic formulation. It is found that when the Soret coefficient is positive, the system could be described in a stationary state by the nonlinear Poisson-Boltzmann equation and could adopt density profiles with significant depletion in the middle region when confined. For colloids with a negative Soret coefficient, the system can be described as a dissipative equivalent of a gravitational system. It is shown that in this case the thermally active colloidal solution could undergo an instability at a critical laser intensity, which has similarities to a supernova explosion. PMID:22400792

  13. Collective Behavior of Thermally Active Colloids

    NASA Astrophysics Data System (ADS)

    Golestanian, Ramin

    2012-01-01

    Colloids with patchy metal coating under laser irradiation could act as local heat sources and generate temperature gradients that could induce self-propulsion and interactions between them. The collective behavior of a dilute solution of such thermally active particles is studied using a stochastic formulation. It is found that when the Soret coefficient is positive, the system could be described in a stationary state by the nonlinear Poisson-Boltzmann equation and could adopt density profiles with significant depletion in the middle region when confined. For colloids with a negative Soret coefficient, the system can be described as a dissipative equivalent of a gravitational system. It is shown that in this case the thermally active colloidal solution could undergo an instability at a critical laser intensity, which has similarities to a supernova explosion.

  14. Hyperuniform Density Fluctuations and Diverging Dynamic Correlations in Periodically Driven Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    2015-04-01

    The emergence of particle irreversibility in periodically driven colloidal suspensions has been interpreted as resulting either from a nonequilibrium phase transition to an absorbing state or from the chaotic nature of particle trajectories. Using a simple model of a driven suspension, we show that a nonequilibrium phase transition is accompanied by hyperuniform static density fluctuations in the vicinity of the transition, where we also observe strong dynamic heterogeneities reminiscent of dynamics in glassy materials. We find that single particle dynamics becomes intermittent and strongly non-Fickian, and that collective dynamics becomes spatially correlated over diverging length scales. Our results suggest that the two theoretical scenarii can be experimentally discriminated using particle-resolved measurements of standard static and dynamic observables.

  15. Criticality and correlated dynamics at the irreversibility transition in periodically driven colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    2016-03-01

    One possible framework to interpret the irreversibility transition observed in periodically driven colloidal suspensions is that of a non-equilibrium phase transition towards an absorbing reversible state at low amplitude of the driving force. We consider a simple numerical model for driven suspensions which allows us to characterize in great detail a large body of physical observables that can be experimentally determined to assess the existence and universality class of such a non-equilibrium phase transition. Characterizing the behaviour of static and dynamic correlation functions both in real and Fourier space we determine in particular several critical exponents for our model, which take values that are in good agreement with the universality class of directed percolation. We also provide a detailed analysis of single-particle and collective dynamics of the system near the phase transition, which appear intermittent and spatially correlated over diverging timescales and lengthscales, and provide clear signatures of the underlying criticality.

  16. Sedimentation and Crystallization of Hard-Sphere Colloidal Suspensions: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Davis, Kevin Eugene

    Sedimentation and ultrafiltration are important processes for removing solids from suspensions. The Kynch theory describes the transient settling of non-colloidal particles forming an incompressible sediment by providing a solution to the convective conservation equation. This solution predicts the evolution of several different regions. Subsequent treatments have accounted for compressibility within the sediment. These modifications, nevertheless, rely entirely on Kynch theory for analytical description, differing only by the assumed boundary condition imposed by the sediment. We present a model of sedimentation for colloidal systems by including a diffusion term in the governing equation. In the regions above the sediment, this term acts as a small perturbation to the Kynch theory. Within the sediment, owing to the high volume fraction, diffusion is comparable to convection. Slow compression to the maximum volume fraction contrasts the incompressibility of the Kynch theory. Application of the method of matched asymptotic expansions to the conservation equation enables us to complete a description of the settling process, in particular, the volume fraction evolution within the sediment. This method is also applied to the related ultrafiltration process. Colloidal dispersions exhibit thermodynamic properties similar to molecular systems, including a hard-sphere disorder -to-order transition, i.e. freezing or crystallization, at particle volume fractions above 0.50. Throughout concentrated suspensions investigators have observed nucleation and growth of small ordered regions. Our dilute suspensions of organophilic silica in cyclohexane depend on settling to concentrate particles. In contrast to the above we observe ordered sediments produced by one-dimensional crystal growth. The slow sedimentation of small particles permits rearrangement into the iridescent ordered structure at the phase boundary. Suspensions with particle sizes of up to 0.34mum easily form fully

  17. Anderson localization of light in a colloidal suspension (TiO2@silica)

    NASA Astrophysics Data System (ADS)

    Jimenez-Villar, Ernesto; da Silva, Iran F.; Mestre, Valdeci; de Oliveira, Paulo C.; Faustino, Wagner M.; de Sá, Gilberto F.

    2016-05-01

    In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition.In recent years, there has been dramatic progress in the photonics field in disordered media, ranging from applications in solar collectors, photocatalyzers, random lasing, and other novel photonic functions, to investigations into fundamental topics, such as light confinement and other phenomena involving photon interactions. This paper reports several pieces of experimental evidence of localization transition in a strongly disordered scattering medium composed of a colloidal suspension of core-shell nanoparticles (TiO2@silica) in ethanol solution. We demonstrate the crossover from a diffusive transport to a localization transition regime as the nanoparticle concentration is increased, and that an enhanced absorption effect arises at localization transition. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07540h

  18. Rotational diffusion of colloid spheres in concentrated suspensions studied by deuteron NMR

    NASA Astrophysics Data System (ADS)

    Kanetakis, J.; Töautlle, A.; Sillescu, H.

    1997-03-01

    We present a study of the application of deuteron-nuclear magnetic resonance spectroscopy (NMR) to the investigation of the rotational diffusion of spherical colloidal particles. We performed NMR pulse experiments on colloidal suspensions of polystyrene latex spheres in water-glycerol mixtures in a wide range of particle volume fractions φ from the dilute suspension up to φ=0.504. We have analyzed the stimulated echo NMR signal in the time domain. The full shape of the orientational correlation function deviates from an exponential behavior in the whole φ range examined. We evaluate the rotational diffusion coefficient and calculate its φ dependence up to the φ2 term in view of the theory proposed recently [V. Degiorgio, R. Piazza, and R. B. Jones, Phys. Rev. E 52, 2707 (1995)], which considers the effect of two- and three-body hydrodynamic interactions upon particle reorientation. We find considerable slowing down of sphere reorientation for φ>=0.2. The agreement between experimental results and theoretical considerations is satisfactory.

  19. Coffee ring effect resulted conductive nanowire patterns by evaporating colloidal suspension droplets without sintering process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Seong, Baekhoon; Yudistira, Hadi Teguh; Byun, Doyoung

    2015-11-01

    Drying colloidal suspensions containing non-volatile solute will form a ring like pattern, which is called ``coffee ring effect.'' Here, we present the coffee ring effect with silver nanowires dispersing into DI water, resulting in a highly dense-packed nanowire ring patterns. The effect of nanowire length, concentration, droplet size, and substrate temperature were investigated. With shorter nanowires, a distinct ring could be obtained. Meanwhile, the concentration of the colloidal suspension was found to affect the ring width. The droplet size and nanowire length played a significant role in affecting the occurrence of the coffee ring effect. When smaller droplets (i.e., less than 150 μm) containing long nanowires (~ 20 μm), the coffee ring effect was suppressed. While smaller droplets containing short nanowires (~ 1 μm), the coffee ring effect was not affected. By increasing the temperature of the substrate, multi-ring pattern was formed inside the original ring. The resistivity of the semi-circle of the nanowire ring was measured, and had a minimum value of 1.32 × 10-6 Ωm without any sintering process. These findings could be exploited to basic study of ring stain effect as well as the practical use, such as evaporative lithography and ink-jet printing for conductive film and display. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (Grant number: 2014-023284).

  20. Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Yunker, Peter J.; Lohr, Matthew A.; Still, Tim; Borodin, Alexei; Durian, D. J.; Yodh, A. G.

    2013-03-01

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge on the air-water interface in two-dimensions. The deposition front, or growth line, varies in space and time. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes. Interestingly, three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, appears to belong to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder. We gratefully acknowledge financial support from the National Science Foundation through DMR-0804881, the PENN MRSEC DMR11-20901, and NASA NNX08AO0G.

  1. C60 oxide as a key component of aqueous C60 colloidal suspensions.

    PubMed

    Murdianti, Befrika S; Damron, Joshua T; Hilburn, Martha E; Maples, Randall D; Hikkaduwa Koralege, Rangika S; Kuriyavar, Satish I; Ausman, Kevin D

    2012-07-17

    Stable aqueous fullerene colloidal suspensions (nC(60)) are demonstrated to rely on the [6,6]-closed epoxide derivative of the fullerene (C(60)O) for stability. This derivative is present, though often unrecognized, in small quantities in nearly all C(60) starting materials due to a reaction with air. The low-yield formation of nC(60) from organic solvent solutions results from a preferential partitioning and thus enrichment of C(60)O in the colloidal particles. This partitioning is significantly retarded in the nC(60) synthesis method that does not involve organic solvent solutions: long-term stirring in water. Instead, this method relies on trace levels of ozone in the ambient atmosphere to produce sufficient C(60)O at the surfaces of the nC(60) particles to allow stable suspension in water. Controlled-atmosphere syntheses, deliberate C(60)O enrichment, light scattering measurements, and extraction followed by HPLC analysis and UV-visible absorption spectroscopy support the above model of nC(60) formation and stabilization. PMID:22703564

  2. Surface roughness induced cracks of the deposition film from drying colloidal suspension.

    PubMed

    Liu, Tingting; Luo, Hao; Ma, Jun; Xie, Weiguang; Wang, Yan; Jing, Guangyin

    2016-02-01

    We investigate crack formation in deposition films from drying colloidal suspension drops, by varying the roughness and texture of the substrate. The experimental results indicate that the crack number or crack spacing presents a general dependence on the substrate roughness, despite the orientation of the substrate textures. Interestingly, the crack spacing decreases with the increase of the roughness. Two possible mechanisms are proposed to understand the dependence of the cracks on roughness. Firstly, the concentration reduction of the drying suspension due to collecting colloidal particles from the substrate textures decreases the crack spacing. Secondly, stress concentration resulting from the defects (the notches in textures) in the dried deposition enhances crack formation. However, a quantitative estimation by the calculation of the stress concentrating factors reveals that the notch of the substrate textures dominates crack variation. The results here bring forth a practical method for controlling the crack orientation and suppression, and a potential application to crack-free coatings, films and paintings during the drying of complex fluids. PMID:26920527

  3. Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids.

    PubMed

    Jungblut, S; Tuinier, R; Binder, K; Schilling, T

    2007-12-28

    When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The colloidal rods were modeled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while the overlap of polymers and rods is forbidden. Large amounts of depletant cause phase separation of the mixture. We estimated the phase boundaries of isotropic-isotropic coexistence both in the bulk and in confinement. To determine the phase boundaries we applied the grand canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120, 10925 (2004)], and we performed a finite size scaling analysis to estimate the location of the critical point. The results are compared with predictions of the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento D 16, 949 (1994)]. We also give estimates for the interfacial tension between the coexisting isotropic phases and analyze its power-law behavior on the approach of the critical point. PMID:18163708

  4. From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles.

    PubMed

    Grelet, Eric; Rana, Richa

    2016-05-18

    The liquid crystalline phase behavior of a colloidal system of sterically stabilized rods is reported. Our colloidal suspensions consist of highly monodisperse, semi-flexible filamentous viruses which have been coated with neutral hydrophilic polymers by irreversibly binding poly(ethylene glycol) (PEG) to the surface of the virus particles. Depending on the size of the grafted polymer, up to three different phase transitions are observed (isotropic-to-chiral nematic, chiral nematic-to-smectic, and smectic-to-columnar). Each phase transition is shown to be independent of ionic strength, confirming the steric stabilization of the viral colloids. A direct, i.e. without any free parameters, comparison with theory and computer simulations of the volume fraction associated with the phase transition can be performed, showing a quantitative agreement with hard rod behavior at a low polymer chain size, and some deviation stemming from soft repulsion by increasing the polymer thickness coating of the rod. Specifically, we demonstrate that the columnar mesophase is not stabilized by electrostatic repulsion, and we discuss the conditions of its existence. PMID:27108523

  5. How a "pinch of salt" can tune chaotic mixing of colloidal suspensions.

    PubMed

    Deseigne, Julien; Cottin-Bizonne, Cécile; Stroock, Abraham D; Bocquet, Lydéric; Ybert, Christophe

    2014-07-21

    Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of a trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than the usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows rationalization of our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering chaotic mixing as a prototypal building block for turbulent mixing suggests that these phenomena, occurring whenever the chemical environment is inhomogeneous, might bring interesting perspectives from micro-systems to large-scale situations, with examples ranging from ecosystems to industrial contexts. PMID:24909866

  6. STABILITY OF SUSPENSIONS OF SOLID PARTICLES OF PROTEINS AND PROTECTIVE ACTION OF COLLOIDS.

    PubMed

    Loeb, J

    1923-03-20

    the same as that for particles of boiled (denatured) white of egg. Since through the process of heating, egg albumin loses its solubility in water, it is inferred that egg albumin undergoes the same change when it forms a film around a solid particle like collodion. 7. The influence of electrolytes on the stability of suspensions of collodion particles coated with casein or edestin was similar to that of collodion particles coated with egg albumin. The experiments are, however, complicated by the fact that near the isoelectric point CaCl(2) and even NaCl cause a suspension again at concentrations of about M/2 or 1 M, while still higher concentrations may cause a precipitation again. These latter effects have no connection with double layers, but belong probably in the category of solubility phenomena. 8. These experiments permit us to define more definitely the conditions for a general protective action of colloids. Protective colloids must be capable of forming a durable film on the surface of the suspended particles and the molecules constituting the film must have a higher attraction for the molecules of the solvent than for each other; in other words, they must possess true solubility. Only in this case can they prevent the precipitating action of low concentrations of electrolytes on particles which are kept in suspension solely by the high potentials of an electrical double layer. Thus gelatin films, in which the attraction of the molecules for water is preserved, have a general protective action, while crystalline egg albumin, casein, and edestin, which seem to lose their attraction for water when forming a film, have a protective action only under limited conditions stated in the paper. PMID:19872016

  7. Preparation of Highly Crystallized Yttrium Oxysulfide Suspension via a Novel Colloidal Processing.

    PubMed

    Wang, Hong; Jiang, Tao; Xing, Ming-Ming; Fu, Yao; Peng, Yong; Luo, Xi-Xian

    2016-04-01

    High-crystallized Y2O2S suspension was synthesized by a novel two-step method of high temperature solid-state reaction and subsequent colloidal processing. The synthesis method proposed in this study retains all advantages of the high temperature solid-state reaction method. The obtained data agrees with that of the PDF card, which indicates the product is pure Y2O2S crystals. The results show that the prepared Y2O2S particles are highly crystallized without any significant defects. The fine smooth particles were almost regular, exhibiting an approximately subspherical shape. Quantitative image analysis of particles suggests a mean particle size of 120±34 nm. That is to say, the yttrium oxysulfide colloid prepared by this method have a very narrow size distribution. The obtained ethanol suspension shows Tyndall effect when irradiated with laser of wavelength 532 nm. In addition, the particles exhibit excellent dispersibility in ethanol solution. This is rarely observed for the covalent compounds, which generally present poor dispersibility in solution. As is known to all, the state of the dispersion depends on the acid leaching process. The acid leaching process facilitates the adsorption of ethanol molecules on the surface of the particles. The electrostatic repulsive force among colloidal particles will improve their rheological properties and dispersibility in solution. In this study, the particles can be dispersed well in ethanol after acid leaching. The method'proposed in this study can be extended for the preparation of mono-dispersed oxysulfide nanophosphors and may provide an efficient way for the preparation of stable covalent compound dispersions. PMID:27451744

  8. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Gurnon, Amanda Kate

    The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of

  9. Simulation of the injection of colloidal suspensions for the remediation of contaminated aquifer systems

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea

    2014-05-01

    Concentrated suspensions of microscale and nanoscale zerovalent iron particles (MZVI and NZVI) have been studied in recent years for the remediation of contaminated aquifers. The suspensions are injected into the subsurface to generate a reactive zone, and consequently the prediction of the particles distribution during the injection is a key aspect in the design of a field-scale injection. Colloidal dispersions of MZVI and NZVI are not stable in pure water, and shear thinning, environmentally friendly fluids (guar gum and xanthan gum solutions) were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1 - 3). Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. In this work, co-funded by European Union project AQUAREHAB (FP7 - Grant Agreement Nr. 226565), laboratory and pilot field tests for MZVI injection in saturated porous media are reported. MZVI was dispersed in guar gum solutions, and the transport behaviour under several polymer concentrations and injection rates was assessed in column tests (4). Based on the experimental results, a modelling approach is proposed to simulate the transport in porous media of nanoscale iron slurries, implemented in E-MNM1D (www.polito.it/groundwater/software). Colloid transport mechanisms are controlled by particle-collector and particle-particle interactions, usually modelled by a non equilibrium kinetic model accounting for deposition and release processes. The key aspects included in the E-MNM1D are clogging phenomena (i.e. reduction of porosity and permeability due to particles deposition), and the rheological properties of the carrier fluid (in this

  10. A scalable parallel Stokesian Dynamics method for the simulation of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bülow, F.; Hamberger, P.; Nirschl, H.; Dörfler, W.

    2016-07-01

    We have developed a new method for the efficient numerical simulation of colloidal suspensions. This method is designed and especially well-suited for parallel code execution, but it can also be applied to single-core programs. It combines the Stokesian Dynamics method with a variant of the widely used Barnes-Hut algorithm in order to reduce computational costs. This combination and the inherent parallelization of the method make simulations of large numbers of particles within days possible. The level of accuracy can be determined by the user and is limited by the truncation of the used multipole expansion. Compared to the original Stokesian Dynamics method the complexity can be reduced from O(N2) to linear complexity for dilute suspensions of strongly clustered particles, N being the number of particles. In case of non-clustered particles in a dense suspension, the complexity depends on the particle configuration and is between O(N) and O(Pnp,max2) , where P is the number of used processes and np,max = ⌈ N / P ⌉ , respectively.

  11. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles.

    PubMed

    Ramachandran, S; Sunil Kumar, P B; Pagonabarraga, I

    2006-06-01

    We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution. PMID:16779527

  12. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles

    NASA Astrophysics Data System (ADS)

    Ramachandran, S.; Kumar, P. B. Sunil; Pagonabarraga, I.

    2006-06-01

    We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution.

  13. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  14. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    SciTech Connect

    Jatav, Shweta; Joshi, Yogesh M

    2014-09-01

    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.

  15. MHz-ultrasound generation by chirped femtosecond laser pulses from gold nano-colloidal suspensions.

    PubMed

    Masim, Frances Camille P; Hsu, Wei-Hung; Tsai, Chih-Hung; Liu, Hao-Li; Porta, Matteo; Nguyen, Mai Thanh; Yonezawa, Tetsu; Balčytis, Armandas; Wang, Xuewen; Juodkazis, Saulius; Hatanaka, Koji

    2016-07-25

    Strong absorption of femtosecond laser pulses in Au nano-colloidal suspensions was used to generate coherent ultrasound signals at 1-20 MHz frequency range. The most efficient ultrasound generation was observed at negative chirp values and was proportional to the pulse duration. Maximization of a dimensionless factor A ≡ αc0tp defined as the ratio of pulse duration tp and the time required for sound at speed c0 to cross the optical energy deposition length (an inverse of the absorption coefficient α) given by 1/(αc0). Chirp controlled pulse duration allows effective enhancement of ultrasound generation at higher frequencies (shorter wavelengths) and is promising for a high spatial resolution acoustic imaging. PMID:27464156

  16. Structure and dynamics of concentration fluctuations in a non-equilibrium dense colloidal suspension.

    PubMed

    Giavazzi, Fabio; Savorana, Giovanni; Vailati, Alberto; Cerbino, Roberto

    2016-08-21

    Linearised fluctuating hydrodynamics describes effectively the concentration non-equilibrium fluctuations (NEF) arising during a diffusion process driven by a small concentration gradient. However, fluctuations in the presence of large gradients are not yet fully understood. Here we study the giant concentration NEF arising when a dense aqueous colloidal suspension is allowed to diffuse into an overlying layer of pure water. We use differential dynamic microscopy to determine both the statics and the dynamics of the fluctuations for several values of the wave-vector q. At small q, NEF are quenched by buoyancy, which prevents their full development and sets an upper timescale to their temporal relaxation. At intermediate q, the mean squared amplitude of NEF is characterised by a power law exponent -4, and fluctuations relax diffusively with diffusion coefficient D1. At large q, the amplitude of NEF vanishes and equilibrium concentration fluctuations are recovered, enabling a straightforward determination of the osmotic compressibility of the suspension during diffusion. In this q-range we also find that the relaxation of the fluctuations occurs with a diffusion coefficient D2 significantly different from D1. Both diffusion coefficients exhibit time-dependence with D1 increasing monotonically (by about 15%) and D2 showing the opposite behaviour (about 17% decrease). At equilibrium, the two coefficients coincide as expected. While the decrease of D2 is compatible with a diffusive evolution of the concentration profile, the increase of D1 is still not fully understood and may require considering nonlinearities that are neglected in current theories for highly stressed colloids. PMID:27425869

  17. Particle Deposition in Drying Drops of Colloidal Suspensions Containing Different Surfactants

    NASA Astrophysics Data System (ADS)

    Still, Tim; Yunker, Peter J.; Yodh, A. G.

    2012-02-01

    When a drop of water containing small solid particles dries, most of the solid material is deposited in a ring-shape stain after evaporation (the so-called coffee ring), driven by initial contact line pinning and a subsequent outward-flow. The fluid dynamics and, hence, the deposition mechanism in such suspensions can be dramatically changed when surfactants are introduced into the system. In a colloidal model-system, the ionic sodium dodecyl sulfate (SDS) produces a concentration-driven Marangoni flow counteracting the outward-flow of the coffee ring effect. SDS locally concentrates at the air/water interface next to the contact line, leading to a reduced local surface tension. Thus, a circulating flow (`Marangoni eddy') is introduced that prevents particles from deposition. This flow is visualized by the movements of the dragged particles using video microscopy. Other surfactants can influence this highly non-equilibrium systems in completely other ways. E.g., the non-ionic Polaxamer block-copolymer surfactants lead to a uniform particle deposition, which we explain by hydrophilization of the colloidal particles. Controlling the solid deposition in drying drops is of major importance for many technical applications.

  18. Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales

    NASA Astrophysics Data System (ADS)

    Padding, J. T.; Louis, A. A.

    2006-09-01

    We describe in detail how to implement a coarse-grained hybrid molecular dynamics and stochastic rotation dynamics simulation technique that captures the combined effects of Brownian and hydrodynamic forces in colloidal suspensions. The importance of carefully tuning the simulation parameters to correctly resolve the multiple time and length scales of this problem is emphasized. We systematically analyze how our coarse-graining scheme resolves dimensionless hydrodynamic numbers such as the Reynolds number Re, which indicates the importance of inertial effects, the Schmidt number Sc, which indicates whether momentum transport is liquidlike or gaslike, the Mach number, which measures compressibility effects, the Knudsen number, which describes the importance of noncontinuum molecular effects, and the Peclet number, which describes the relative effects of convective and diffusive transport. With these dimensionless numbers in the correct regime the many Brownian and hydrodynamic time scales can be telescoped together to maximize computational efficiency while still correctly resolving the physically relevant processes. We also show how to control a number of numerical artifacts, such as finite-size effects and solvent-induced attractive depletion interactions. When all these considerations are properly taken into account, the measured colloidal velocity autocorrelation functions and related self-diffusion and friction coefficients compare quantitatively with theoretical calculations. By contrast, these calculations demonstrate that, notwithstanding its seductive simplicity, the basic Langevin equation does a remarkably poor job of capturing the decay rate of the velocity autocorrelation function in the colloidal regime, strongly underestimating it at short times and strongly overestimating it at long times. Finally, we discuss in detail how to map the parameters of our method onto physical systems and from this extract more general lessons—keeping in mind that there

  19. Comparative efficacy of amphotericin B colloidal dispersion and amphotericin B deoxycholate suspension in treatment of murine coccidioidomycosis.

    PubMed Central

    Clemons, K V; Stevens, D A

    1991-01-01

    The efficacy of a novel sterol-complexed preparation of amphotericin B, amphotericin B colloidal dispersion, was compared with that of deoxycholate-complexed amphotericin B in an acute murine model of systemic coccidioidomycosis. Mice (CD-1, female) were infected intravenously with 180 or 200 arthroconidia of Coccidioides immitis, and intravenous therapy was begun 3 days later. Six doses in various regimens of either preparation were given over 14 days, and deaths were tallied for an additional 35 days. All regimens that were not acutely lethal prolonged the survival of mice over that of controls (P less than 0.001). Quantitative determination of residual burdens of C. immitis in the spleen, liver, and lungs of survivors revealed that the colloidal dispersion was not as effective as the deoxycholate suspension on a milligram-per-kilogram basis. Deoxycholate suspension at 1.3 mg/kg cleared the organs in all mice, whereas colloidal dispersion at 5.0 mg/kg was the lowest dose that cleared organisms from all animals. Lower doses cleared organisms from fewer animals or cleared only selected organs. Deoxycholate suspension was more efficacious than colloidal dispersion in clearing C. immitis from the liver or lungs (P less than 0.05 to 0.01, dose and organ dependent) at identical doses. No overt toxicity was observed in mice treated with colloidal dispersion at 10 mg/kg. In contrast, deoxycholate suspension at 2.0 mg/kg was acutely toxic; 50% of the treated mice died after treatment. The two complexes were not equivalent on a milligram-per-kilogram basis; the deoxycholate suspension was three to four times more efficacious and also greater than 5- to greater than or equal to 8-fold more toxic. Thus, the therapeutic index of the colloidal dispersion complex is greater than that of the deoxycholate complex. The amount of amphotericin B per dose could also be increased when given as a colloidal dispersion to an optimally level. Amphotericin B colloidal dispersion shows

  20. Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions.

    PubMed

    Hong; Faibish; Elimelech

    1997-12-15

    A series of well-controlled membrane filtration experiments are performed to systematically investigate the dynamic behavior of permeate flux in crossflow membrane filtration of colloidal suspensions. Results are analyzed by a transient permeate flux model which includes an approximate closed-form analytical expression for the change of permeate flux with time. The model is based on a simplified particle mass balance for the early stages of crossflow filtration before a steady-state flux is attained, and Happel's cell model for the hydraulic resistance of the formed particle cake layer. The filtration experiments demonstrate that permeate flux declines faster with increasing feed particle concentration and transmembrane pressure and with a decrease in the particle size of the suspension. It is also shown that crossflow velocity (shear rate) has no effect on permeate flux at the transient stages of crossflow filtration. Pressure relaxation experiments indicate that the particle cake layer is reversible, implying no irreversible deposition (attachment) of particles onto the membrane surface or the accumulated (retained) particles. The experimental results are shown to be in very good agreement with the theoretical predictions, thus verifying the validity of the model for the transient permeate flux in crossflow filtration and the underlying assumptions in the derivation of the model. Copyright 1997 Academic Press. PMID:9792752

  1. On the Radiolytic Decomposition of Colloidal Silver Iodide in Aqueous Suspension

    SciTech Connect

    Guentay, Salih; Cripps, Robin C.; Jaeckel, Bernd; Bruchertseifer, Horst

    2005-06-15

    The decomposition of aqueous colloidal suspensions of AgI induced by ionizing radiation was investigated under various conditions using {sup 188}Re as an in situ beta-radiation source. The suspensions were stabilized by an initial excess of either I{sup -} or Ag{sup +} ions. Although the results were somewhat scattered, the following trends were observed. With an initial excess of I{sup -} and under strong oxidizing conditions (N{sub 2}O sparging) at pH 2, {approx}65% AgI was decomposed into nonvolatile and volatile iodine (ratio 2:1) for doses of {approx}20 kGy, and up to {approx}80% was decomposed (mostly nonvolatile iodine) at pH 5. Chloride ions greatly enhanced the volatile and lowered the nonvolatile fractions. Little decomposition (<10%) was obtained with air sparging at both pH 2 and pH 5. Chloride ions increased the maximum decompositions to {approx}60% ({approx}47% volatile) and {approx}20% (mainly nonvolatile iodine), respectively. With an initial excess of Ag{sup +} with N{sub 2}O sparging and at pH 2 and pH 5, very little volatile iodine was produced. The maximum decomposition was {approx}20% after {approx}20 kGy. Chloride ion addition at pH 2 had greatly enhanced the volatile iodine yield. The relevance of these results to the possible release of iodine to the environment following a nuclear reactor accident is discussed.

  2. Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions.

    PubMed

    Hadji, L; DarAssi, M

    2014-01-01

    The onset of Soret-driven convection in a horizontal layer of a colloidal suspension is investigated by considering a particulate medium model. We consider a dilute suspension of spherical solid particles being subjected to convection in a Rayleigh-Bénard geometry setup. The mathematical model takes into account the effects of thermophoresis, particle sedimentation, and Brownian diffusion. The equations governing the convective motion consist of the momentum equation which includes an extra body force term to account for the thermophoretic force effect, the conservation of particles equation whose mass-flux term couples the Soret and particle diffusion effects and whose advective term includes the sedimentation force, and the heat and mass balance equations. The horizontal boundaries are assumed rigid, perfectly thermally conducting, and impervious to mass flow. Furthermore, the model makes use of the effective viscosity of the suspension whose dependence on the particle concentration is through Einstein's formula. Moreover, we take into account the decrease of both the coefficient of Brownian diffusion and the mixture thermal diffusion with particle concentration due to the particles hindrance effect. The nondimensionalization leads to the emergence of an experimental parameter, β, which depicts the competition between the effects of thermophoresis, sedimentation, and particle diffusion. The parameter β is a function of the particles radius, the shape of which is an inverted parabola having two zeros. A combination of asymptotic and numerical computations is used to determine the threshold for the onset of the mass dominated convection, which corresponds to 0<β≪1. Our findings shed light on the role of particle sedimentation and particle size, as well as the influence of other processing variables on the fluid instability. PMID:24580327

  3. Active colloids that slosh through passive matrices

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Granick, Steve

    Studies of natural and artificial active matter have focused on systems with a large mismatch of the time and length scales for active and passive elements, but in a variety of non-equilibrium condensed matter systems, including numerous biological processes, actively driven elements have a crowded environment of surrounding passive ``solvent'' elements of comparable size. Here we study self-propelled colloidal particles in a passive matrix of comparable size. Particles with high activity take straight lines and sharp turns through the soft 2-D crystal matrix to ensure rapid healing of the crystal structure. Effective attraction between active particles arises when the concentration of active particles or the hardness of the matrix increases; active particles tend to segregate in the grain boundaries of the crystal matrix.

  4. Effect of many-body interactions on the solid-liquid phase behavior of charge-stabilized colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Dobnikar, J.; Rzehak, R.; von Grünberg, H. H.

    2003-03-01

    The solid-liquid phase diagram of charge-stabilized colloidal suspensions has been calculated using a technique that combines a continuous Poisson-Boltzmann description for the microscopic electrolyte ions with a molecular-dynamics simulation for the macroionic colloidal spheres. While correlations between the microions are neglected in this approach, many-body interactions between the colloids, mediated by the screening ionic fluid between them, are fully included. The Lindemann criterion has been used to determine the solid-to-liquid transition temperature in a colloidal system at a relatively high colloid volume fraction where many-body interactions are expected to be strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting that colloids interact via Yukawa pair potentials, we compare our results with the phase diagram of a simple Yukawa liquid. We find an agreement under high-salt conditions, but considerable differences at low ionic strength. Using effective force calculations and data from molecular-dynamics simulations with simple model potentials, we further demonstrate that these differences are due to many-body interactions.

  5. Aqueous suspensions of polymer coated magnetite nanoparticles: Colloidal stability, specific absorption rate, and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Saville, Steven Lee

    The design, functionalization, characterization, and applications of magnetic nanoparticles have garnered significant interest over the past several decades. While this area has garnered increasing attention, several questions remain unanswered about the stability of these systems and it's influence on their biomedical applications. To help answer these questions about the stability of these, a novel tri(nitroDOPA) terminated polymer based ligand has been developed for the stabilization of magnetite nanoparticles. The synthesis involves a process in which ethylene oxide is polymerized using a trivinyl initiator, modified with carboxylic acid using a free radical addition of mercaptoundecanoic acid, and then functionalized with nitroDOPA using N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. This polymer has displayed robust adhesion even in harsh chemical environments, out performing many polymers used today for the stabilization of magnetite. Along these same lines, the effects of instability of these systems were analyzed in both MRI and magnetic hyperthermia applications. It is widely known that formation of linear aggregates (i.e. chains) occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. In this work the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate and heating rate in magnetic hyperthermia of aqueous suspensions of magnetic particles are examined. The results indicate that varying the ligand length has a direct effect on the colloidal

  6. Communication: Dynamical density functional theory for dense suspensions of colloidal hard spheres

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland; Hansen-Goos, Hendrik

    2015-11-01

    We study structural relaxation of colloidal hard spheres undergoing Brownian motion using dynamical density functional theory. Contrary to the partial linearization route [D. Stopper et al., Phys. Rev. E 92, 022151 (2015)] which amounts to using different free energy functionals for the self and distinct part of the van Hove function G(r, t), we put forward a unified description employing a single functional for both components. To this end, interactions within the self part are removed via the zero-dimensional limit of the functional with a quenched self component. In addition, we make use of a theoretical result for the long-time mobility in hard-sphere suspensions, which we adapt to the inhomogeneous fluid. Our results for G(r, t) are in excellent agreement with numerical simulations even in the dense liquid phase. In particular, our theory accurately yields the crossover from free diffusion at short times to the slower long-time diffusion in a crowded environment.

  7. Exploration and characterization of new synthesis methods for C60 colloidal suspensions in water

    NASA Astrophysics Data System (ADS)

    Hilburn, Martha E.

    Buckminsterfullerene, C60, has been used in the production of several commercial products from badminton racquets and lubricants for their mechanical properties to cosmetics and even dietary supplements for their "antioxidant" properties. Multi-ton production of C60 began in 2003 encouraging serious consideration of its fate in the environment in the case of an accidental release or improper disposal. Although C60 is practically insoluble in water, it readily forms stable aqueous colloidal suspensions (termed nC60) through solvent exchange methods or long-term vigorous stirring in water. Two new solvent exchange methods for synthesizing nC60 are presented. These methods combine key advantages of multiple existing synthesis methods including high yield, narrow particle size distribution, short synthesis time, and an absence of solvents such as tetrahydrofuran that have historically caused problems in laboratory synthesized aggregates. The resulting samples are attractive candidates for use in controlled environmental impact, biological, and toxicity studies. An improved method for quantifying residual solvents in nC60 samples utilizing solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) is also discussed.

  8. Transient Networks and Dense Colloidal Suspensions: From Viscous Flow to Elastic Instabilities

    NASA Astrophysics Data System (ADS)

    Bouchaud, Elisabeth

    2013-03-01

    In order to analyze the mechanical response of viscoelastic materials in highly non-linear regimes, we have designed a new kind of Hele-Shaw cell where both viscous liquids and soft elastic solids can be tested at a controlled loading rate. We first consider model Maxwell liquids - characterized by a single relaxation time - with the project of benchmarking the response of complex, glassy systems. We use several solutions of microemulsions connected by telechelic polymers. We show that these materials undergo instability in a broad range of loading rates. At low rates, this instability is shown to be of the viscous Saffman-Taylor type. At high rates, we observe a purely elastic bulk instability discovered recently in the context of soft elastomers. A microfluidic version of our cell makes it possible to study the response of colloidal suspensions. We use more or less concentrated PNIPA aqueous solutions for which temperature controls the volume fraction. Observations are interpreted in the light of our understanding of their viscoelastic properties. This work was done in collaboration with Maxime Lefranc, Baudouin Saintyves, Olivier Dauchot and Serge Mora. It was funded by ANR, France.

  9. Analysis of the static magnetic field-dependent optical transmission of Ni nanorod colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Krämer, Florian; Gratz, Micha; Tschöpe, Andreas

    2016-07-01

    The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.

  10. Structure and Dynamics in Freezing and Frozen Colloidal Suspensions from Direct Observations and X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Spannuth, Melissa

    Among common substances, water is unique because it can occur in its solid, liquid and vapor phases at temperatures and pressures typical of the Earth's surface. Each of these phases individually play important roles in the physical, chemical, and biological processes that shape the Earth's surface and atmosphere, as well as in the manufacturing, energy production, and agricultural activities that shape our lives. However, only rarely is one phase found in isolation from the other phases or other substances. More often, multiple phases of water coexist with each other and with foreign materials. The resulting interfaces give rise to interesting, new physical phenomena not present in the bulk phases. My thesis focuses on understanding how ice interacts with other solid materials, such as rocks, dust, cells, or colloidal particles. My experiments comprise a joint direct imaging and X-ray scattering study of particle redistribution in freezing and frozen colloidal suspensions. By using an analog system of monodisperse, spherical colloidal particles in water, I eliminate much of the complexity found in natural or technological settings, and thus investigate the fundamental physics involved. Visible light imaging combined with static and dynamic X-ray scattering provide a unique view of particle rearrangement during and after freezing as well as unprecedented information about the structure and dynamics of the samples at the single particle scale. After significant supercooling, the solutions freeze in two stages: an unstable first stage and a stable second stage. During the unstable stage, particles segregate into the regions between ice dendrites forming high-particle-density regions. The ice forces these particles into contact, creating aggregates. During the stable stage, the ice engulfs particles in the high-particle-density regions, whereas other particles are pushed ahead of the freezing front. After freezing, the polycrystalline ice coarsens and grain boundary

  11. Structure and short-time dynamics in concentrated suspensions of charged colloids

    NASA Astrophysics Data System (ADS)

    Westermeier, Fabian; Fischer, Birgit; Roseker, Wojciech; Grübel, Gerhard; Nägele, Gerhard; Heinen, Marco

    2012-09-01

    We report a comprehensive joint experimental-theoretical study of the equilibrium pair-structure and short-time diffusion in aqueous suspensions of highly charged poly-acrylate (PA) spheres in the colloidal fluid phase. Low-polydispersity PA sphere systems with two different hard-core radii, R0 = 542 and 1117 Å, are explored over a wide range of concentrations and salinities using static and dynamic light scattering (DLS), small angle x-ray scattering, and x-ray photon correlation spectroscopy (XPCS). The measured static and dynamic scattering functions are analyzed using state-of-the-art theoretical methods. For all samples, the measured static structure factor, S(Q), is in good agreement with results by an analytical integral equation method for particles interacting by a repulsive screened Coulomb plus hard-core pair potential. In our DLS and XPCS measurements, we have determined the short-time diffusion function D(Q) = D0 H(Q)/S(Q), comprising the free diffusion coefficient D0 and the hydrodynamic function H(Q). The latter is calculated analytically using a self-part corrected version of the δγ-scheme by Beenakker and Mazur which accounts approximately for many-body hydrodynamic interactions (HIs). Except for low-salinity systems at the highest investigated volume fraction ϕ ≈ 0.32, the theoretical predictions for H(Q) are in excellent agreement with the experimental data. In particular, the increase in the collective diffusion coefficient Dc = D(Q → 0), and the decrease of the self-diffusion coefficient, Ds = D(Q → ∞), with increasing ϕ is well described. In accord with the theoretical prediction, the peak value, H(Qm), of H(Q) relates to the nearest neighbor cage size ˜2π/Qm, for which concentration scaling relations are discussed. The peak values H(Qm) are globally bound from below by the corresponding neutral hard-spheres peak values, and from above by the limiting peak values for low-salinity charge-stabilized systems. HIs usually slow short

  12. Diffusion in active suspension of microswimmers

    NASA Astrophysics Data System (ADS)

    Climent, Eric; Delmotte, Blaise; Plouraboue, Franck; Keaveny, Eric; Martin, Matthieu; Rafai, Salima; Peyla, Philippe; Bertin, Eric; IMFT Team; IC Team; LiPhy Team

    2015-11-01

    The presence of microswimmers in a fluid generates flow agitation due to multi-body hydrodynamic interactions. This agitation of the fluid leads to random trajectories of passive tracers particles and the swimmers themselves, and from a macroscopic point view, it can be interpreted as a diffusive mechanism. By means of experiments (videomicroscopy of suspensions of chlamydomonas reinhardtii)and numerical simulations (Stokesian fluid populated with squirmers), we investigate the evolution of the effective diffusion coefficient when the volumetric concentration of the active suspension varies. By comparing the experimental and numerical results, we quantify the role of active swimming on the measured diffusion and identify the physical mechanisms that lead to diffusion enhancement. Our results aim to provide a better understanding of how swimming organisms affect micron-scale transport in the environment.

  13. Mixing in suspensions of active particles

    NASA Astrophysics Data System (ADS)

    Pushkin, Dmitri O.; Yeomans, Julia M.

    2014-03-01

    Microscopic active particles self-propelling in the surrounding fluid create flows that eventually lead to emergence of non-equilibrium states with long-ranged fluctuations. One of the technologically important consequences of these fluctuations is enhanced mixing of the surrounding fluid. It is also critical for understanding the ecology of a particular type of biological active systems, bacterial suspension, as the enhanced mixing strongly alters the fluxes of nutrients. We consider the theoretical foundations of fluid mixing enhancement in dilute suspensions of active force-free swimmers. We describe the impediments to fluid mixing imposed by the physical nature of fluid flows created by swimmers, and different ways of overcoming them. We show that fluid mixing in 3D suspensions of force-free (dipolar) swimmers is dominated by the effect of curvature of their trajectories, and obtain an exact analytical expression for the corresponding effective diffusion coefficient. Our results highlight limitations of alternative ``effective temperature'' approaches and may serve as a quantitative tool for designing technological applications.

  14. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes.

    PubMed

    McLaughlin, Christopher K; Duan, Da; Ganesh, Ahil N; Torosyan, Hayarpi; Shoichet, Brian K; Shoichet, Molly S

    2016-04-15

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the coaggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, coformulating them with bis-azo dyes. The coformulation reduced colloid sizes to <100 nm and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, coaggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT), or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase, and trypsin. Unlike traditional aggregates, the coformulated colloid-protein particles could be centrifuged and resuspended multiple times, and from resuspended particles, active trypsin could be released up to 72 h after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension, and release. PMID:26741163

  15. Spontaneous Circulation of Confined Active Suspensions

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Goldstein, Raymond

    2012-11-01

    Many active fluid systems encountered in biology are set in total geometric confinement; cytoplasmic streaming is a prominent and ubiquitous example. Using the simple paradigm of a dilute dipolar swimmer suspension, we demonstrate that the two key constraints of circular confinement and fluid incompressibility yield qualitatively new dynamics, effectively quantizing the behaviour regimes. We show analytically that there is an activity threshold for spontaneous auto-circulation and verify this numerically. Long-time non-linear behaviour is investigated via simulations, which reveal steady states displaying nematic defect separation and a high-activity bifurcation to an oscillatory regime.

  16. Diffusion of passive particles in active suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafai, Salima; John, Thomas; Peyla, Philippe; Wagner, Christian

    2013-11-01

    We study how an active suspension consisting of a definite volume fraction of the microswimmer Chlamydomonas Reinhardtii modifies the Brownian movement of small to medium size microspheres. We present measurements and simulations of trajectories of microspheres with a diameter of 20 μm in suspensions of Chlamydomonas Reinhardtii, a so called ``puller,'' and show that the mean squared displacement of such trajectories consist of parabolic and a linear part. The linear part is due to the hydrodynamic noise of the microswimmers while the parabolic part is a consequence of directed motion events that occur randomly, when a microsphere is transported by a microswimmer on a timescale that is in higher order of magnitude than the Brownian like hydrodynamic interaction. In addition, we theoretically describe this effect with a dimensional analysis that takes the force dipole model used to describe ``puller'' like Chlamydomonas Reinhardtii into account.

  17. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Marolt, Kevin; Roth, Roland; Hansen-Goos, Hendrik

    2015-08-01

    We study the dynamics of colloidal suspensions of hard spheres that are subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self- and distinct parts of the van Hove function by means of dynamical density functional theory. The free-energy model for the hard-sphere fluid that we use is the very accurate White Bear II version of Rosenfeld's fundamental measure theory. However, in order to remove interactions within the self-part of the van Hove function, a nontrivial modification has to be applied to the free-energy functional. We compare our theoretical results with data that we obtain from dynamical Monte Carlo simulations, and we find that the latter are well described by our approach even for colloid packing fractions as large as 40%.

  18. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres.

    PubMed

    Stopper, Daniel; Marolt, Kevin; Roth, Roland; Hansen-Goos, Hendrik

    2015-08-01

    We study the dynamics of colloidal suspensions of hard spheres that are subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self- and distinct parts of the van Hove function by means of dynamical density functional theory. The free-energy model for the hard-sphere fluid that we use is the very accurate White Bear II version of Rosenfeld's fundamental measure theory. However, in order to remove interactions within the self-part of the van Hove function, a nontrivial modification has to be applied to the free-energy functional. We compare our theoretical results with data that we obtain from dynamical Monte Carlo simulations, and we find that the latter are well described by our approach even for colloid packing fractions as large as 40%. PMID:26382387

  19. Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering.

    PubMed

    Li, Xin; Shew, Chwen-Yang; Liu, Yun; Pynn, Roger; Liu, Emily; Herwig, Kenneth W; Smith, Gregory S; Robertson, J Lee; Chen, Wei-Ren

    2010-05-01

    The application of the spin-echo small angle neutron scattering (SESANS) technique for structural characterization of interacting colloidal suspensions is considered in this work. The framework to calculate the theoretical SESANS correlation function is briefly laid out. A general discussion regarding the features of the SESANS correlation functions obtained from different model systems is presented. In comparison with conventional elastic scattering tools operating at the same length scale, our mean-field calculations, based on a monodisperse spherical colloidal system, show that the real-space measurement provided by SESANS presents a powerful probe for studying the intercolloid potential. The reason of this sensitivity is discussed from the standpoint of way, in which how the spatial correlations are manifested in different neutron scattering implementations. This study leads to a better understanding regarding the distinction between SANS and SESANS. PMID:20459176

  20. Dynamics of fractal cluster colloidal gels with embedded active Janus particles

    NASA Astrophysics Data System (ADS)

    Solomon, Michael; Szakasits, Megan; Zhang, Wenxuan

    We find that fractal cluster gels of colloids in which platinum-coated Janus particles have been embedded exhibit enhanced mobility when the Janus particles are made active by the addition of hydrogen peroxide. Gelation is induced through addition of a divalent salt, magnesium chloride, to an initially stable suspension of Janus and polystyrene colloids, each of size about 1 micron. After the gels have been created, the embedded Janus colloids are activated by hydrogen peroxide, which is delivered to the system through a porous hydrogel membrane. We vary the ratio of active to passive colloids in the gels from about 1:20 to 1:8. Changes in structure and dynamics are visualized by two channel confocal laser scanning microscopy. By image analysis, we determine the particle positions and compute the mean squared displacement (MSD) of all particles in the gel. We measure the mobility enhancement in the fractal gels as a function of hydrogen peroxide concentration and Janus particle concentration and discuss the results in terms of the force provided by each active particle to the fractal gel network.

  1. Electrostatic correlations in colloidal suspensions: Density profiles and effective charges beyond the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Diehl, Alexandre; Levin, Yan

    2009-03-01

    A theory is proposed which allows us to calculate the distribution of the multivalent counterions around a colloidal particle using the cell model. The results are compared with the Monte Carlo simulations and are found to be very accurate in the two asymptotic regimes, close to the colloidal particle and far from it. The theory allows to accurately calculate the osmotic pressure and the effective charge of colloidal particles with multivalent counterions.

  2. Testing the relevance of effective interaction potentials between highly-charged colloids in suspension

    NASA Astrophysics Data System (ADS)

    Dobnikar, J.; Castañeda-Priego, R.; von Grünberg, H. H.; Trizac, E.

    2006-11-01

    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behaviour, pressure and compressibility of highly-charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models.

  3. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement.

    PubMed

    Borhan, Shokoufeh; Hesaraki, Saeed; Ahmadzadeh-Asl, Shaghayegh

    2010-12-01

    In the present study new calcium sulfate-based nanocomposite bone cement with improved physicochemical and biological properties was developed. The powder component of the cement consists of 60 wt% α-calcium sulfate hemihydrate and 40 wt% biomimetically synthesized apatite, while the liquid component consists of an aqueous colloidal silica suspension (20 wt%). In this study, the above mentioned powder phase was mixed with distilled water to prepare a calcium sulfate/nanoapatite composite without any additive. Structural properties, setting time, compressive strength, in vitro bioactivity and cellular properties of the cements were investigated by appropriate techniques. From X-ray diffractometer analysis, except gypsum and apatite, no further phases were found in both silica-containing and silica-free cements. The results showed that both setting time and compressive strength of the calcium sulfate/nanoapatite cement improved by using colloidal silica suspension as cement liquid. Meanwhile, the condensed phase produced from the polymerization process of colloidal silica filled the micropores of the microstructure and covered rodlike gypsum crystals and thus controlled cement disintegration in simulated body fluid. Additionally, formation of apatite layer was favored on the surfaces of the new cement while no apatite precipitation was observed for the cement prepared by distilled water. In this study, it was also revealed that the number of viable osteosarcoma cells cultured with extracts of both cements were comparable, while silica-containing cement increased alkaline phosphatase activity of the cells. These results suggest that the developed cement may be a suitable bone filling material after well passing of the corresponding in vivo tests. PMID:20972610

  4. Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium.

    PubMed

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Xuan, Shouhu

    2014-02-14

    The magneto-induced stress and relative microstructure in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium is studied using particle-level dynamics simulation. It shows that the stress perpendicular to the direction of an external uniaxial magnetic field can be strongly enhanced by increasing the ratio of paramagnetic particles to approaching that of superparamagnetic particles. The magnetic field-induced net-like or embedded chain-like microstructures formed by paramagnetic and superparamagnetic particles contribute to this stress enhancing effect. PMID:24837318

  5. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    NASA Astrophysics Data System (ADS)

    Marinaro, G.; Accardo, A.; Benseny-Cases, N.; Burghammer, M.; Castillo-Michel, H.; Cotte, M.; Dante, S.; De Angelis, F.; Di Cola, E.; Di Fabrizio, E.; Hauser, C.; Riekel, C.

    2016-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments.

  6. Myosin II Activity Softens Cells in Suspension

    PubMed Central

    Chan, Chii J.; Ekpenyong, Andrew E.; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J.; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-01-01

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  7. Myosin II Activity Softens Cells in Suspension.

    PubMed

    Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska

    2015-04-21

    The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. PMID:25902426

  8. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  9. Adaptive control model of an active automobile suspension system

    NASA Astrophysics Data System (ADS)

    Fritz, Matthew; Wunsch, Donald C., II; Mitra, Sunanda

    1993-12-01

    The suspension system of a passenger car provides isolation between the occupants in the car and the road surface. The three goals of the suspension system are to provide ride isolation from vibration, limit suspension travel, and maintain road holding characteristics. Each of these three goals conflicts with the others. Thus, the controller must be designed to attain each goal to some extent. This paper proposes the use of a linear quadratic regulator and a fuzzy controller to maintain the ride isolation of a loosely sprung, lightly damped passive suspension while improving the handling characteristics of the vehicle. The suspension performance as pertains to ride isolation can be studied using a simple quarter car model of a suspension system. However, the handling characteristics and the coupling between each quarter of the suspension system must be studied using a full car model. Thus, this paper uses both a quarter car and a full car model to study the performance of suspension systems. The performance of the suspension systems is evaluated by running simulations of the systems subjected to both discrete and random road inputs. This paper shows that an active suspension using a linear full state feedback controller performs better than a passively suspended vehicle. The optimally controlled active suspension system is also compared to a fuzzy controlled active suspension system and the results are discussed.

  10. Divergence of the Long Wavelength Collective Diffusion Coefficient in Quasi-one and Quasi-two Dimensional Colloid Suspensions

    NASA Astrophysics Data System (ADS)

    Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A.

    2015-03-01

    We report the results of experimental studies of the short time-long wavelength behavior of collective particle displacements in q1D and q2D colloid suspensions. Our results are reported via the q->0 behavior of the hydrodynamic function H (q) that relates the effective collective diffusion coefficient, De (q) , with the static structure factor S (q) and the self-diffusion coefficient of isolated particles Do: H (q) De (q) S (q) /Do. We find an apparent divergence of H (q) as q->0 with the form H(q)q-(1.7 < γ<1.9), for both q1D and q2D colloid suspensions. Given that S (q) does not diverge as we infer that De (q) does. This behavior is qualitatively different from that of the three-dimensional H (q) and De (q) as q->0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one component 1D and 2D fluids not subject to boundary conditions that define the dimensionality of the system. The research was supported by the NSF MRSEC at the U of Chicago (NSF/DMR-MRSEC 0820054), NSF/CHE 0822838 (ChemMatCARS), and Israel Science Foundation (Grant No. 8/10).

  11. Active colloids propelled by induced-charge electrophoresis

    NASA Astrophysics Data System (ADS)

    Han, Ming; Luijten, Erik

    Populations of motile organisms exhibit a variety of collective behaviors, ranging from bacterial colony formation to the flocking of birds. Current understanding of these active motions, which are typically far from equilibrium and based on the collective behavior of self-propelled entities, is far from complete. One approach is to reproduce these observations in systems of synthetic active colloids. However, one of the standard self-propulsion mechanisms, induced-charge electrophoresis (ICEP) of a dielectric Janus colloid remains not fully understood by itself, especially the strong dependence of the resultant particle motion on the frequency of the external field. Resolution of this outstanding problem requires detailed study of the time-resolved dielectric response of the colloid and the dynamics of the electric double layer. Through molecular dynamics simulations coupled with an efficient dielectric solver, we elucidate the underlying mechanism of the frequency dependence of ICEP and the polarization of a metallodielectric Janus colloid.

  12. Spontaneous circulation of confined active suspensions.

    PubMed

    Woodhouse, Francis G; Goldstein, Raymond E

    2012-10-19

    Many active fluid systems encountered in biology are set in total geometric confinement. Cytoplasmic streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying molecular motors move along polymer filaments and generate coherent cell-scale flow. When filaments are not fixed to the cell periphery, a situation found both in vivo and in vitro, we observe that the basic dynamics of streaming are closely related to those of a nonmotile stresslet suspension. Under this model, it is demonstrated that confinement makes possible a stable circulating state; a linear stability analysis reveals an activity threshold for spontaneous autocirculation. Numerical analysis of the longtime behavior reveals a phenomenon akin to defect separation in nematic liquid crystals and a high-activity bifurcation to an oscillatory regime. PMID:23215137

  13. Spontaneous Circulation of Confined Active Suspensions

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis G.; Goldstein, Raymond E.

    2012-10-01

    Many active fluid systems encountered in biology are set in total geometric confinement. Cytoplasmic streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying molecular motors move along polymer filaments and generate coherent cell-scale flow. When filaments are not fixed to the cell periphery, a situation found both in vivo and in vitro, we observe that the basic dynamics of streaming are closely related to those of a nonmotile stresslet suspension. Under this model, it is demonstrated that confinement makes possible a stable circulating state; a linear stability analysis reveals an activity threshold for spontaneous autocirculation. Numerical analysis of the longtime behavior reveals a phenomenon akin to defect separation in nematic liquid crystals and a high-activity bifurcation to an oscillatory regime.

  14. Optical trapping and scattering studies of field-induced micromechanics, interactions and dynamics in a colloidal suspension

    NASA Astrophysics Data System (ADS)

    Furst, Eric Matthew

    2000-10-01

    Magnetorheological (MR) suspensions are colloidal-size paramagnetic particles dispersed in a non-magnetic fluid. When the dipolar interaction between particles induced by an external magnetic field H exceeds thermal energy, MR particles aggregate into chains, columns and networks of dipoles aligned in the field direction. The energy required to deform and rupture the microscopic structure results in a large yield stress. Here we apply optical trapping and light scattering to understand the microstructural and rheological transitions of MR suspensions. We examine the mechanics of individual dipolar chains as stresses are applied with optical tweezers. Our results agree with the expected mechanics from a self-consistent point-dipole model including an electrostatic double-layer interaction. Measured rupture tensions scale as H2, in agreement with the shear stress measured for dilute suspensions at field strengths below magnetic saturation. Chain defects cause reorganizations that relax imposed tension through strain increases and introduce weaknesses which may cause chains to rupture at lower tensions. The ratio of viscous to dipolar forces dictates whether defects anneal or rupture. Columns formed from individual chains maintain a structural integrity at field strengths far below the point single chains rupture under similar applied tensions. At intermediate field strengths we observe strain-hardening behavior of columns based on the rearrangement of particles induced by an applied tension. Using diffusing wave spectroscopy (DWS) we measure the short-time dynamics of dipolar chains as well as microstructural stiffening as the suspension structure coarsens. Our results agree with a local-mode analysis of the internal dynamics of colloidal aggregates and Brownian dynamics simulations of fluctuating chains. We investigate the lateral chain interactions. Chain stiffness and fluctuation amplitudes scale with H, consistent with fluctuation-induced interactions. Using

  15. Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids.

    PubMed

    Lattuada, Marco; Zaccone, Alessio; Wu, Hua; Morbidelli, Massimo

    2016-06-28

    Application of shear flow to charge-stabilized aqueous colloidal suspensions is ubiquitous in industrial applications and as a means to achieve controlled field-induced assembly of nanoparticles. Yet, applying shear flow to a charge-stabilized colloidal suspension, which is initially monodisperse and in quasi-equilibrium leads to non-trivial clustering phenomena (and sometimes to a gelation transition), dominated by the complex interplay between DLVO interactions and shear flow. The quantitative understanding of these strongly nonequilibrium phenomena is still far from being complete. By taking advantage of a recent shear-induced aggregation rate theory developed in our group, we present here a systematic numerical study, based on the governing master kinetic equation (population-balance) for the shear-induced clustering and breakup of colloids exposed to shear flow. In the presence of sufficiently stable particles, the clustering kinetics is characterized by an initial very slow growth, controlled by repulsion. During this regime, particles are slowly aggregating to form clusters, the reactivity of which increases along with their size growth. When their size reaches a critical threshold, a very rapid, explosive-like growth follows, where shear forces are able to overcome the energy barrier between particles. This stage terminates when a dynamic balance between shear-induced aggregation and cluster breakage is reached. It is also observed that these systems are characterized by a cluster mass distribution that for a long time presents a well-defined bimodality. The model predictions are quantitatively in excellent agreement with available experimental data, showing how the theoretical picture is able to quantitatively account for the underlying nonequilibrum physics. PMID:27222249

  16. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  17. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions

    SciTech Connect

    Xu, Bu; Gilchrist, James F.

    2014-05-28

    Hydrodynamic and near-particle interactions in sheared suspensions are communicated through suspension microstructure to produce a wide variety of rheological behaviors. To characterize this microstructure, the individual positions of monosized silica particles flowing through a microchannel are obtained with near simulation-level detail. The pair distribution functions of the microstructure at moderate to high Péclet number shear rates are very similar to previous numerical studies. Viscometric functions calculated based on the detailed microstructure obtained through this technique show qualitative agreement with computational results. These results elucidate the origins of shear-thickening of suspensions at high shear rates. While efforts are taken to screen electrostatic interactions to study hydrodynamic and Brownian interactions, the role of electrostatic interaction between particles is also investigated by reducing suspension ionic strength. These non-hydrodynamic electrostatic interactions result in a loss of anisotropy that generally agrees with previous findings of “soft” particle systems.

  18. The "macromolecular tourist": universal temperature dependence of thermal diffusion in aqueous colloidal suspensions.

    PubMed

    Iacopini, S; Rusconi, R; Piazza, R

    2006-01-01

    By performing measurements on a large class of macromolecular and colloidal systems, we show that thermophoresis (particle drift induced by thermal gradients) in aqueous solvents displays a distinctive universal dependence on temperature. For systems of particles interacting via temperature-independent forces, this behavior is strictly related to the solvent thermal expansivity, while an additional, T-independent term is needed to account for the behavior of "thermophilic" (migrating to the warmth) particles. The former relation between thermophoresis and thermal expansion may be exploited to envisage other fruitful studies of colloidal diffusion in inhomogeneous fluids. PMID:16446985

  19. Shape control and compartmentalization in active colloidal cells.

    PubMed

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M; Nguyen, Nguyen H P; Bishop, Kyle J M; Glotzer, Sharon C

    2015-08-25

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core-shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble-crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non-momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier-Stokes equation. PMID:26253763

  20. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  1. Pair interaction of catalytically active colloids: from assembly to escape

    NASA Astrophysics Data System (ADS)

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  2. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    DOE PAGESBeta

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; Wen, Haidan; Walko, Donald A.; Deshmukh, Sanket A.; Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.; Gray, Stephen K.; Ho, Phay

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, themore » behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.« less

  3. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    SciTech Connect

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; Wen, Haidan; Walko, Donald A.; Deshmukh, Sanket A.; Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.; Gray, Stephen K.; Ho, Phay

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, the behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.

  4. Femtosecond Laser Pulse Driven Melting in Gold Nanorod Aqueous Colloidal Suspension: Identification of a Transition from Stretched to Exponential Kinetics

    PubMed Central

    Li, Yuelin; Jiang, Zhang; Lin, Xiao-Min; Wen, Haidan; Walko, Donald A.; Deshmukh, Sanket A.; Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.; Gray, Stephen K.; Ho, Phay

    2015-01-01

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, the behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents. PMID:25634673

  5. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    SciTech Connect

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.

    2006-09-29

    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  6. Modeling of water-borne coating: stress relaxation of suspensions of colloids linked by telechelic HEUR polymers

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Larson, Ronald G.

    In water-borne coatings, the rheology of colloidal suspensions is modified by the presence of rheological modifiers, such as Hydrophobic Ethoxylated Urethane (HEUR) polymers. HEUR is a telechelic polymer with two hydrophobic tails (hydrophobes) and a long hydrophilic interblock consisting of poly(ethylene oxide), and its thickening effect is largely determined by the self-association of hydrophobes as well as their adsorption onto latex particles. Here we describe a model that simulates the complex interactions among latex particles due to the formation of bridges or superbridges via model HEURs. We calculate the stress relaxation of the system and identify different relaxation modes. We explore the relaxation time at different latex volume fractions, HEUR concentrations and energies of association between hydrophobes and latex particles, and discuss its relationship with the bridge or latex cluster formation. These results provide important insights for HEUR adsorption and water-borne coating rheology. We acknowledge the financial support from The Dow Chemical Company.

  7. Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions.

    PubMed

    Verde, M; Peiteado, M; Caballero, A C; Villegas, M; Ferrari, B

    2012-05-01

    The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques. PMID:21999953

  8. Liquid-Gel-Liquid Transition and Shear-Thickening in Mixed Suspensions of Silica Colloid and Hyperbranched Polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Zhang, Huan; Han, Charles C.

    2014-03-01

    The rheological property of mixed suspensions of silica colloid and hyperbranched polylethyleneimine was studied as functions of particle volume fraction, ratio of polymer to particle, and pH value. A mechanism of liquid-gel-liquid transition for this mixed system was proposed based on the amount and the conformation of polyelectrolyte bridges which were able to self-arrange with solution environments. The equilibrium adsorbed amount (Cp*) for a given volume fraction of particles is an important concentration ratio of polymer to particle denoting the transition of irreversible and reversible bridging. For mixed suspensions at equilibrium adsorbed state (Cp ~Cp *), the adsorption-desorption of polymer bridges on the particles can reversibly take place, and shear thickening is observed under a steady shear flow as a result of rapid extension of bridges when the relaxation time scale of extension is shorter than that of desorption. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503).

  9. Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions.

    PubMed

    Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A

    2014-02-01

    We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ≡ D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q → 0 with the form H(q) ∝ q(-γ) (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0 we infer that D(e)(q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D(e)(q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D(e)(q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D(e)(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q(-1) as q → 0. PMID:25353468

  10. Role of particle shape anisotropy on crack formation in drying of colloidal suspension

    PubMed Central

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K.; Basavaraj, Madivala G.

    2016-01-01

    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments. PMID:27477261

  11. Role of particle shape anisotropy on crack formation in drying of colloidal suspension

    NASA Astrophysics Data System (ADS)

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K.; Basavaraj, Madivala G.

    2016-08-01

    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

  12. Role of particle shape anisotropy on crack formation in drying of colloidal suspension.

    PubMed

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K; Basavaraj, Madivala G

    2016-01-01

    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments. PMID:27477261

  13. Formation kinetics of particulate films in directional drying of a colloidal suspension.

    PubMed

    Inasawa, S; Oshimi, Y; Kamiya, H

    2016-08-10

    We observed the kinetics of formation of colloidal films through directional drying with a pinned drying interface. The volume fraction of particles accumulated at the pinned drying interface increased in two stages: it rapidly increased in the initial stage of drying and then slowly increased. The final filling factor of the dried films decreased with increasing drying flux. We found a threshold drying flux for the formation of colloidal films below which uneven films are formed at the drying interface. This threshold flux is well explained by the competition between transport of particles by flow and transport by diffusion. We also found a minimum thickness for the formation of a packed layer of particles. The formation kinetics of a packed layer of particles due to drying was discussed. PMID:27471046

  14. Interactions and Collective Behaviour of Chemotactic Active Colloids

    NASA Astrophysics Data System (ADS)

    Saha, Suropriya; Hablani, Surbhi; Golestanian, Ramin; Ramaswamy, Sriram

    2015-03-01

    Artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior. We use it to study the scattering of such a swimmer off a reactant source and construct a framework for studying their two body interactions and finally their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signalling formation of clusters and asters. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior. We further study the athermal fluctuations of a pointed tracer particle in a bath of such swimmers.

  15. 15 CFR 970.2503 - Suspension of exploration activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Pre-license Exploration § 970.2503 Suspension of exploration activities. (a) The Administrator may issue an... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Suspension of exploration...

  16. 15 CFR 970.2503 - Suspension of exploration activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Pre-license Exploration § 970.2503 Suspension of exploration activities. (a) The Administrator may issue an... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Suspension of exploration...

  17. Size dependent Cu dielectric function for plasmon spectroscopy: Characterization of colloidal suspension generated by fs laser ablation

    NASA Astrophysics Data System (ADS)

    Santillán, J. M. J.; Videla, F. A.; Fernández van Raap, M. B.; Schinca, D. C.; Scaffardi, L. B.

    2012-09-01

    Copper metal nanoparticles (Nps) have received increasing interest during the last years due to their potential applications in several fields of science and technology. Their optical properties depend on the characteristics of the dielectric function of the metal, their size, and the type of environment. The contribution of free and bound electrons on the dielectric function of copper Nps is analyzed as well as their influence on its plasmonic properties. The contribution of free electrons is corrected for particle size under 10 nm, introducing a term inversely proportional to the particle's radius in the damping constant. For bound electron contribution, interband transitions from the d-band to the conduction band are considered. For particles with sizes below 2 nm, the larger spacing between electronic energy levels must be taken into account by making the electronic density of states in the conduction band size-dependent. Considering these specific modifications, optical parameters and band energy values could be determined by fitting the bulk complex dielectric function. The obtained values were coefficient for bound electron contribution Kbulk = 2 × 1024, gap energy Eg = 1.95 eV, Fermi energy EF = 2.15 eV, and bound electrons damping constant γb = 1.15 × 1014 Hz. Based on the dielectric function determined in this way, experimental extinction spectra of colloid suspensions generated by ultrafast laser ablation of a solid copper target in liquids was fitted using the Drude-interband model and Mie's theory. Depending on the experimental conditions and liquid medium, the particles in the suspension may have nanometric or subnanometric core size and may be capped with a shell of oxide. From the fitting, it was possible to determine the structure and size distribution of spherical bare core and core-shell copper Nps in the nanometer-subnanometer size range. These results were compared with those obtained by standard microscopy techniques such as AFM and HRTEM

  18. Colloidal behavior of aqueous montmorillonite suspensions in the presence of non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Gareche, M.; Azri, N.; Allal, A.; Zeraibi, N.

    2015-04-01

    In this paper we characterized at first, the rheological behavior of the bentonite suspensions and the aqueous solutions of polyethylene oxide (PEO), then we were investigated the influence of this polymer in a water-based drilling fluid model (6% of bentonite suspension). The objective is to exhibit how the non ionic polymer with molecular weight 6×103 g/mol. of varying concentration mass (0.7%, 1%, 2% et 3%) significantly alter the rheological properties (yield stress, viscosity, loss and elastic modulus) of the bentonite suspensions. The rheological measurements made in simple shear and in dynamic on the mixture (water-bentonite-PEO), showed rheological properties of bentonite suspensions both in the presence and absence of non-ionic polymer. The PEO presents an affinity for the bentonite particles slowing down their kinetic aggregation. The analysis by X-rays diffraction also allowed understanding the structure of this mixture. It had revealed the intercalation between of the clay platelets on one hand, and the links bridges assured by the chains of polymer between bentonite particles beyond a critical concentration in PEO on the other hand. The Herschel- Bulkley rheological model is used for the correlation of our experimental results.

  19. Non-equilibrium relaxation and near-arrest dynamics in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Medina-Noyola, M.; Ramírez-González, Pedro

    2009-12-01

    In this work we propose a theory to describe the irreversible diffusive relaxation of the local concentration of a colloidal dispersion that proceeds toward its stable thermodynamic equilibrium state, but which may in the process be trapped in metastable or dynamically arrested states. The central assumption of this theory is that the irreversible relaxation of the macroscopically observed mean value \\bar {n}(\\mathbf {r},t) of the local concentration of colloidal particles is described by a diffusion equation involving a local mobility b*(r,t) that depends not only on the mean value \\bar {n}(\\mathbf {r},t) but also on the covariance \\sigma (\\mathbf {r},\\mathbf {r}';t)\\equiv \\overline {\\delta n(\\mathbf {r},t)\\delta n(\\mathbf {r}',t)} of the fluctuations \\delta n(\\mathbf {r},t) \\equiv n(\\mathbf {r},t)-\\bar { n}(\\mathbf {r},t) . This diffusion equation must hence be solved simultaneously with the relaxation equation for the covariance σ(r,r't), and here we also derive the corresponding relaxation equation. The dependence of the local mobility b*(r,t) on the mean value and the covariance is determined by a self-consistent set of equations involving now the spatially and temporally non-local time-dependent correlation functions, which in a uniform system in equilibrium reduces to the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics. The resulting general theory considers the possibility that these relaxation processes occur under the influence of external fields, such as gravitational forces acting in the process of sedimentation. In this paper, however, we describe a simpler application, in which the system remains spatially uniform during the irreversible relaxation process, and discuss the general features of the glass transition scenario predicted by this non-equilibrium theory.

  20. Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer.

    PubMed

    Savenko, S V; Dijkstra, Marjolein

    2006-06-21

    We study the phase behavior of a mixture of colloidal hard rods with a length-to-diameter ratio of L/sigma(c)=5 and nonadsorbing ideal polymer. We map our binary mixture onto an effective one-component system by integrating out the degrees of freedom of the polymer coils. We derive a formal expression for the exact effective Hamiltonian of the colloidal rods, i.e., it includes all effective many-body interactions and it is related to the exact free volume available for the polymer. We determine numerically on a grid the free volume available for the ideal polymer coils "on the fly" for each colloidal rod configuration during our Monte Carlo simulations. This allows us to go beyond first-order perturbation theory, which employs the pure hard-rod system as reference state. We perform free energy calculations for the isotropic, nematic, smectic, and crystal phase using thermodynamic integration and common tangent constructions are used at fixed polymer fugacities to map out the phase diagram. The phase behavior is determined for size ratios q=sigma(p)/sigma(c)=0.15, 0.5, and 1, where sigma(p) is the diameter of the polymer coils. The phase diagrams based on the full effective Hamiltonian are compared with those obtained from first-order perturbation theory, from simulations using the effective pair potential approximation to the effective Hamiltonian, and with those based on an empiric effective depletion potential for the rods. We find that the many-body character of the effective interactions stabilizes the nematic and smectic phases for large q, while the effective pair potential description overestimates the attractive interactions and favors, hence, a broad isotropic-crystal coexistence. PMID:16821948

  1. Influence of sodium chloride on the colloidal and rennet coagulation properties of concentrated casein micelle suspensions.

    PubMed

    Zhao, Z; Corredig, M

    2016-08-01

    The research investigated the influence of NaCl on the colloidal and rennet coagulation properties of concentrated milk. Milk was concentrated to 1×, 3×, and 5× using ultrafiltration. Rennet gelation was followed by rheology and diffusing wave spectroscopy. Soluble protein, total and diffusible calcium and phosphate, size, and zeta potential were also measured as a function of concentration history. In the presence of 300mM NaCl, colloidal calcium phosphate solubilized and pH and the negative charge on the surface of casein micelles decreased. Increasing the volume fraction caused the formation of stiffer gels for both samples with or without NaCl. The addition of NaCl caused a significant increase in the bulk viscosity of the milk concentrated 5× and a decrease in turbidity. The concentration had no effect on the gelation time of control samples, nor on the kinetics of caseinomacropeptide release. On the other hand, rennet gelation was retarded by the addition of NaCl, and the gels showed lower elastic moduli compared with those obtained with control milk. PMID:27320668

  2. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration. PMID:21517529

  3. Weakly sheared active suspensions: Hydrodynamics, stability, and rheology

    NASA Astrophysics Data System (ADS)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: The apparent viscosity may decrease with the increase of the concentration.

  4. Many-body microhydrodynamics of colloidal particles with active boundary layers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one

  5. Chiroptical activity in colloidal quantum dots coated with achiral ligands.

    PubMed

    Melnikau, Dzmitry; Savateeva, Diana; Gaponik, Nikolai; Govorov, Alexander O; Rakovich, Yury P

    2016-01-25

    We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution. PMID:26832599

  6. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    PubMed

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2015-08-01

    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions. PMID:26070009

  7. Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions

    NASA Astrophysics Data System (ADS)

    Golde, Sebastian; Palberg, Thomas; Schöpe, Hans Joachim

    2016-07-01

    Dynamical and structural heterogeneities have long been thought to play a key role in a unified picture of solidification in view of the two competitive processes of crystallization and vitrification. Here, we study these heterogeneities by means of a combination of dynamic and static light-scattering techniques applied to the simplest model system exhibiting crystallization and vitrification: the colloidal hard-sphere system. Our method enables us to quantify and correlate the temporal evolution of the amount of ordered clusters (precursors) and the amount of slow particles. Our analysis shows that their temporal evolutions are closely related and that there is an intimate link between structural and dynamic heterogeneities, crystal nucleation and the non-crystallization transition.

  8. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices. PMID:20527779

  9. Interfacial and colloidal aspects of aqueous suspensions containing oxidic powders. Final report

    SciTech Connect

    Bleier, Alan

    1984-01-01

    This program addressed ceramics and colloid science research needs that underscore the physicochemical principles which govern the processing of oxide ceramic powders. Materials systems emphasized silica, alumina, zirconia, and mullite. The surface charge characteristics of the cited solids were determined using potentiometric techniques. Interfacial chemical reactions were thermodynamically evaluated. Zeta potential trends and values for silica and alumina systems were predicted reasonably well. Some surface behavior of mullite could be predicted from those of the constituent, silicon and aluminum oxides. Guidelines were generated for these problems and for a more complete description of the electrical double layers surrounding oxide ceramic powders in aqueous media. These efforts ultimately indicated that charge regulation is important to the processing of ceramics. A charge regulation model suggests that the electrostatic stabilizing effect of surface charge may critically depend on the volume concentration of powder.

  10. Isotropic-Nematic Interface and Wetting in Suspensions of Colloidal Platelets

    NASA Astrophysics Data System (ADS)

    van der Beek, D.; Reich, H.; van der Schoot, P.; Dijkstra, M.; Schilling, T.; Vink, R.; Schmidt, M.; van Roij, R.; Lekkerkerker, H.

    2006-08-01

    We study interfacial phenomena in a colloidal dispersion of sterically stabilized gibbsite platelets, exhibiting coexisting isotropic and nematic phases separated by a sharp horizontal interface. The nematic phase wets a vertical glass wall and polarized light micrographs reveal homeotropic surface anchoring both at the free isotropic-nematic interface and at the wall. On the basis of complete wetting of the wall by the nematic phase, as found in our density functional calculations and computer simulations, we analyze the balance between Frank elasticity and surface anchoring near the contact line. Because of weak surface anchoring, the director field in the capillary rise region is uniform. From the measured rise (6μm) of the meniscus at the wall we determine the isotropic-nematic surface tension to be 3nN/m, in quantitative agreement with our theoretical and simulation results.

  11. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    SciTech Connect

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-15

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d{sub 002}-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1 Multiplication-Sign 10{sup 3} {Omega}/square. - Graphical abstract: A stable graphene oxide suspension could be quickly prepared by exfoliating a graphite oxide suspension by a host-guest electrostatic repulsion in aqueous solution. Highlights: Black-Right-Pointing-Pointer Graphene nanosheets were prepared by a zwitterions amino acid intermediate from graphite oxide. Black-Right-Pointing-Pointer 11-aminoundecanoic acid was protonated to intercalate molecules into the graphene oxide to achieve ion exchange. Black-Right-Pointing-Pointer The d{sub 002}-spacing of the graphite oxide greatly increased from 0.330 nm to 0.415 nm after 11-aminoundecanoic acid treatment.

  12. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  13. Facile and highly efficient removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions sealed in dialysis bag.

    PubMed

    Chen, Weifan; Wang, Linlin; Zhuo, Mingpeng; Liu, Yue; Wang, Yiping; Li, Yongxiu

    2014-08-30

    A facile, highly efficient and second-pollution-free strategy to remove trace Gd(III) from aqueous solutions by adsorption of colloidal graphene oxide (GO) suspensions in dialysis bag has been developed. The effects of pH, ionic strength and temperature on Gd(III) adsorption, and the pH-dependent desorption were investigated. The maximum adsorption capacity of Gd(III)on GO at pH=5.9±0.1 and T=303K was 286.86mgg(-1), higher than any other currently reported. The Gd(III)-saturated GO suspension could resume colloidal state in 0.1M HNO3 with desorption rate of 85.00% in the fifth adsorption-desorption cycle. Gd(III) adsorption rate on GO was dependent more on pH and ionic strength than on temperature. The abundant oxygen-containing functional groups such as carboxyl and hydroxyl played a vital role on adsorption. The thermodynamics and kinetics investigations revealed that the adsorption of Gd(III) on GO was an endothermic, spontaneous and monolayer absorption process, which well fitted the pseudo-second-order model. GO could be a promising adsorbent applied in the enrichment and removal of lanthanides from aqueous solutions. More significantly, the combination of colloidal GO suspension with dialysis membrane facilely solves the re-pollution of the treated solutions due to the great difficulties in separation and recovery of GO. PMID:25108829

  14. Semi-active control of seat suspension with MR damper

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Fu, J.; Yu, M.; Peng, Y. X.

    2013-02-01

    The vibration control of a seat suspension system with magnetorheological (MR) damper is investigated in this study. Firstly, a dynamical model of the seat suspension system with parameter uncertainties (such as mass, stiffness, damping) and actuator saturation is established. Secondly, based on Lyapunov functional theory and considering constraint conditions for damping force, the semi-active controller is designed, and the controller parameters are derived in terms of linear matrix inequalities (LMIs), which guarantees performance index. Finally, compared control strategy and the passive, skyhook control strategy, the simulation results in time and frequency domains demonstrate the proposed approach can achieve better vertical acceleration attenuation for the seat suspension system and improve ride comfort.

  15. Impact-activated solidification of dense suspensions

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott

    2013-03-01

    Shear-thickening, non-Newtonian fluids have typically been investigated under steady-state conditions. This approach has produced two pictures for suspension response to imposed forcing. In the weak shear-thickening picture, the response is typically attributed to the hydrodynamic interactions giving rise to hydroclusters, small groups of particles interacting through lubrication forces. At the other end of the spectrum, in the discontinuous shear-thickening regime, the response can be seen as a system-wide jamming that is ultimately limited in strength by the system boundaries. While these steady-state pictures have proven extremely useful, some of the most interesting phenomena associated with dense suspensions is transient and local in character. A prototypical example is the extraordinarily large impact resistance of dense suspensions such as cornstarch and water. When poked lightly these materials respond like a fluid, but when punched or kicked they seem to temporarily ``solidify'' and provide enormous resistance to the motion of the impacting object. Using an array of experimental techniques, including high-speed video, embedded force and acceleration sensing, and x-ray imaging, we are able to investigate the dynamic details this process as it unfolds. We find that an impacting object drives the rapid growth of a jammed, solid-like region directly below the impact site. Being coupled to the surrounding fluid by grain-mediated lubrication forces, this creates substantial peripheral flow and ultimately leads to the sudden extraction of the impactor's momentum. With a simple jamming picture to describe the solidification and an added mass model to explain the force on the rod, we are able to predict the forces on the impactor quantitatively. These findings highlight the importance of the non-equilibrium character of dense suspensions near jamming and might serve as a bridge between the weak and discontinuous shear-thickening pictures.

  16. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo; Valeriani, Chantal; Vissers, Teun; Fortini, Andrea; Leunissen, Mirjam E.; van Blaaderen, Alfons; Frenkel, Daan; Dijkstra, Marjolein

    2008-12-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to a substitutionally-ordered/substitutionally-disordered solid-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the substitutionally-ordered/substitutionally-disordered crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, stops, giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favours crystallization over vitrification in gel-like structures.

  17. Flow of active suspensions and biased swimming

    NASA Astrophysics Data System (ADS)

    Rafai, Salima; Peyla, Philippe; Garcia, Xabel; Kitenbergs, Guntars; Garcia, Michaël; LIPhy Team

    2012-11-01

    It is a challenge to understand the hydrodynamics associated with individual or collective motion of microswimmers through their fluid-mediated interactions in order for instance to manipulate the cells efficiently for some applications purposes. The motion of these micro-organisms can be often affected by the presence of gradients leading to a biased random walk (chemotaxis in the presence of chemicals, gyrotaxis in a gravity field, phototaxis under light exposure). In this study, we present our experimental results concerning the coupling of a Poiseuille flow with the biased random walk of Chlamydomonas Reinhardtii, a green unicellular micro-alga. This is done by illuminating the microswimmer suspension while flowing in a microchannel device. We show that one can obtain a spontaneous and reversible migration and separation of the microalgae suspension from the rest of the suspending medium under illumination and then dynamically control the concentration of the suspension with light. We present a simple model that accounts for the observed phenomenon. We thank the ANR MOSICOB and MICMACSWIM.

  18. Suspensions

    NASA Astrophysics Data System (ADS)

    Braccini, Stefano

    2000-06-01

    Special suspension systems are used in gravitational wave detectors to reduce the transmission of seismic vibrations to test masses by many orders of magnitude. In ground-based interferometric antennas, this allows to detect gravitational signals even below a few tens of Hz, where seismic vibrations are very strong. The state of the art on this topic is presented. .

  19. Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation.

    PubMed

    Ta, V D; Carter, R M; Esenturk, E; Connaughton, C; Wasley, T J; Li, J; Kay, R W; Stringer, J; Smith, P J; Shephard, J D

    2016-05-18

    Dynamic control of the distribution of polystyrene suspended nanoparticles in evaporating droplets is investigated using a 2.9 μm high power laser. Under laser radiation a droplet is locally heated and fluid flows are induced that overcome the capillary flow, and thus a reversal of the coffee-stain effect is observed. Suspension particles are accumulated in a localised area, one order of magnitude smaller than the original droplet size. By scanning the laser beam over the droplet, particles can be deposited in an arbitrary pattern. This finding raises the possibility for direct laser writing of suspended particles through a liquid layer. Furthermore, a highly uniform coating is possible by manipulating the laser beam diameter and exposure time. The effect is expected to be universally applicable to aqueous solutions independent of solutes (either particles or molecules) and deposited substrates. PMID:27094902

  20. Structural explanation of the rheology of a colloidal suspension under high dc electric fields

    NASA Astrophysics Data System (ADS)

    Espín, Manuel J.; Delgado, Ángel V.; González-Caballero, Fernando

    2006-04-01

    In this work we describe the electrorheology of suspensions consisting of hematite (α-Fe2O3) particles dispersed in silicone oil in the presence of large dc electric fields. If an electric field pulse is applied to the systems, it is possible to estimate the time that the electrorheological (ER) fluid takes to reach its final microstructure in the presence of the field. Our results indicate that response times of several seconds are typical, and that this time decreases with the field strength. Conventional shear-rate sweeps indicate the existence of a well-defined dynamic yield stress and a shear-thinning behavior. Interestingly, both the yield stress and the shear-thinning slope a [relating the viscosity, η , and the shear rate, γ˙ , as η=aγ˙-b+η(∞) ] show a linear dependence on the field strength, E , in disagreement with the E2 dependence often reported. This deviation is associated with changes in the conductivity of the dispersion medium with the field strength. A simple calculation of the interactions present in our ER fluid demonstrates that the ER behavior is entirely controlled by hydrodynamic (∝γ˙) and electrical forces (∝E) . This is confirmed by the collapse of all experimental results in a single master curve when the relative viscosity is plotted against the ratio γ˙/E . Careful attention has been paid in this work to the microstructure of the suspensions in the presence of both shear and electric fields simultaneously: the particles gather themselves on the walls of the electrorheological measurement cell, forming aggregates with cylindrical symmetry, shaped as rings or lamellas of solids. The electric field induced increase in viscosity is the consequence of the balance between two actions: that of the electric field, tending to keep particles together, and that of the shear field, forcing the flow of the liquid phase in the regions between rings or between rings and walls.

  1. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil.

    PubMed

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2015-01-01

    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph. PMID:25061940

  2. Active Vibration Control for Suspension by Considering Its Stroke Limitation

    NASA Astrophysics Data System (ADS)

    Nishimura, Hidekazu; Takahashi, Nobuo

    When large external forces come from the road, a suspension stroke reaches its limitation and riding comfort may decrease. To overcome this problem, we propose a new control method for an active suspension that can avoid reaching the stroke limitation. A sliding mode controller is designed by considering the rigidity variation of a spring. Also, in order to estimate the internal state of the suspension, a variable structural system (VSS) observer is designed without the information of nonlinear force occurring in the rigidity variation when the suspension reaches the stroke limitation. By carrying out simulation and experiment of a quarter-car model, it is verified that the performance of the controller is superior to that of the method, which switches to a passive damper near the stroke limitation from a linear quadratic regulator (LQR) in a small stroke range.

  3. Temperature (de)activated patchy colloidal particles

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Telo da Gama, Margarida M.

    2016-06-01

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim’s first order perturbation theory, and use Flory–Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  4. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation. PMID:27115118

  5. Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension

    PubMed Central

    Sivapalan, Sean T.; DeVetter, Brent M.; Yang, Timothy K.; Schulmerich, Matthew V.; Bhargava, Rohit; Murphy, Catherine J.

    2013-01-01

    The rapidly expanding field of surface-enhanced Raman spectroscopy (SERS) has helped fuel an intense interest in noble metal nanoparticle synthesis. An in-suspension approach for quantifying SERS enhancement and relating that enhancement to a spontaneous Raman equivalent signal is described. Gold nanoparticles of various shapes were wrapped with polyelectrolyte multilayers that trapped Raman reporter molecules at defined distances from the metal core. Electrospray ionization liquid chromatography mass spectrometry (ESI-LC-MS) on digested samples was employed to measure the average number of bound Raman reporter molecules per gold nanoparticle, and inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the average number of gold atoms per nanoparticle. Using these data, SERS signal intensity was compared to a spontaneous Raman calibration curve to compute a spontaneous Raman equivalent factor. Three different geometries of gold nanoparticles (cubes, spheres, and trisoctahedra) were synthesized to investigate edge and corner effects using these quantitative techniques. Finite element method (FEM) electromagnetic simulations examined the relationship between the different geometries and the observed SERS signal intensities. The experimental observations and theoretical results indicate that cubic gold nanoparticles have the highest effective signal. PMID:24224064

  6. Short- and long-range topological correlations in two-dimensional aggregation of dense colloidal suspensions.

    PubMed

    Fernández-Toledano, J C; Moncho-Jordá, A; Martínez-López, F; González, A E; Hidalgo-Alvarez, R

    2005-04-01

    We have studied the average properties and the topological correlations of computer-simulated two-dimensional (2D) aggregating systems at different initial surface packing fractions. For this purpose, the centers of mass of the growing clusters have been used to build the Voronoi diagram, where each cell represents a single cluster. The number of sides (n) and the area (A) of the cells are related to the size of the clusters and the number of nearest neighbors, respectively. We have focused our paper in the study of the topological quantities derived from number of sides, n , and we leave for a future work the study of the dependence of these magnitudes on the area of the cells, A . In this work, we go beyond the adjacent cluster correlations and explore the organization of the whole system of clusters by dividing the space in concentric layers around each cluster: the shell structure. This method allows us to analyze the time behavior of the long-range intercluster correlations induced by the aggregation process. We observed that kinetic and topological properties are intimately connected. Particularly, we found a continuous ordering of the shell structure from the earlier stages of the aggregation process, where clusters positions approach a hexagonal distribution in the plane. For long aggregation times, when the dynamic scaling regime is achieved, the short- and long-range topological properties reached a final stationary state. This ordering is stronger for high particle densities. Comparison between simulation and theoretical data points out the fact that 2D colloidal aggregation in the absence of interactions (diffusion-limited cluster aggregation regimen) is only able to produce short-range cluster-cluster correlations. Moreover, we showed that the correlation between adjacent clusters verifies the Aboav-Weaire law, while all the topological properties for nonadjacent clusters are mainly determined by only two parameters: the second central moment of number

  7. Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces.

    PubMed

    Ghosh, Moniraj; Fan, Fengqiu; Stebe, Kathleen J

    2007-02-13

    We study the slow withdrawal of a partially wet vertical plate at velocity U from a suspension of well-wet particles. Periodic horizontal striped assemblies form spontaneously at the three-phase contact line on energetically uniform surfaces. Stripe width and spacing depend on the withdrawal velocity U relative to a transition velocity Ut. Thick stripes separated by large spaces form for UUt, thin stripes separated by small spaces form. The stripe spacing is reduced by an order of magnitude and varies weakly with U until a maximum velocity is reached at which the stripes fail to form. A partially wet surface can entrain a meniscus. For UUt, we infer that a film of thickness h is entrained above the meniscus. When h is smaller than the particle diameter D, particles aggregate where the entrained film thickens to match up to the wetting meniscus. When an entrained particle becomes exposed to air by evaporation, it becomes the new pinning site from which the next film is entrained. The film thickness h increases with U; at some velocity, h becomes comparable to D. Particles flow into the film and deposit there in a disordered manner. A diagram summarizing particle deposition is developed as a function of D, U, and h. PMID:17279711

  8. Physisorption of enzymatically active chymotrypsin on titania colloidal particles.

    PubMed

    Derr, Ludmilla; Dringen, Ralf; Treccani, Laura; Hildebrand, Nils; Ciacchi, Lucio Colombi; Rezwan, Kurosch

    2015-10-01

    In this study we use a straightforward experimental method to probe the presence and activity of the proteolytic enzyme α-chymotrypsin adsorbed on titania colloidal particles. We show that the adsorption of α-chymotrypsin on the particles is irreversible and pH-dependent. At pH 8 the amount of adsorbed chymotrypsin is threefold higher compared to the adsorption at pH 5. However, we observe that the adsorption is accompanied by a substantial loss of enzymatic activity, and only around 6-9% of the initial enzyme activity is retained. A Michaelis-Menten kinetics analysis of both unbound and TiO2-bound chymotrypsin shows that the K(M) value is increased from ∼10 μM for free chymotrypsin to ∼40 μM for the particle bound enzyme. Such activity decrease could be related by the hindered accessibility of substrate to the active site of adsorbed chymotrypsin, or by adsorption-induced structural changes. Our simple experimental method does not require any complex technical equipment, can be applied to a broad range of hydrolytic enzymes and to various types of colloidal materials. Our approach allows an easy, fast and reliable determination of particle surface-bound enzyme activity and has high potential for development of future enzyme-based biotechnological and industrial processes. PMID:26072448

  9. 31 CFR 903.2 - Suspension of collection activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Suspension of collection activity. 903.2 Section 903.2 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FEDERAL CLAIMS COLLECTION STANDARDS (DEPARTMENT OF THE TREASURY-DEPARTMENT OF JUSTICE) STANDARDS FOR SUSPENDING OR TERMINATING COLLECTION ACTIVITY...

  10. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  11. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol.

    PubMed

    Summerlin, Natalie; Qu, Zhi; Pujara, Naisarg; Sheng, Yong; Jambhrunkar, Siddharth; McGuckin, Michael; Popat, Amirali

    2016-08-01

    The naturally occurring polyphenol resveratrol (RES) has attracted increasing attention in recent years due to its antioxidant, anti-inflammatory, and anticancer activity. However, resveratrol's promising potential as a nutraceutical is hindered by its poor aqueous solubility, which limits its biological activity. Here we show that encapsulating resveratrol in colloidal mesoporous silica nanoparticles (MCM-48-RES) enhances its saturated solubility by ∼95% and increases its in vitro release kinetics compared to pure resveratrol. MCM-48-RES showed high loading capacity (20% w/w) and excellent encapsulation efficiency (100%). When tested against HT-29 and LS147T colon cancer cell lines, MCM-48-RES-mediated in vitro cell death was higher than that of pure resveratrol, mediated via the PARP and cIAP1 pathways. Finally, MCM-48-RES treatment also inhibited lipopolysaccharide-induced NF-κB activation in RAW264.7 cells, demonstrating improved anti-inflammatory activity. More broadly, our observations demonstrate the potential of colloidal mesoporous silica nanoparticles as next generation delivery carriers for hydrophobic nutraceuticals. PMID:27060664

  12. Magnetorheological effect in a suspension with an active carrier fluid

    SciTech Connect

    Kashevskii, B.E.; Kordonskii, V.I.; Prokhorov, I.V.

    1988-07-01

    The main quantitative laws governing the magnetorheological effect in a magnetorheological suspension with an active carrier liquid were established. The family of flow curves obtained for several samples of suspensions of one type of nonmagnetic particle was analyzed. Particles were suspended in a magnetic fluid of the magnetite-kerosite type. The main goal was to establish the law governing rheological similarity by generalizing experimental data with a universal relation while employing a small amount of initial data on the system. The data included the law of magnetization of the magnetic carrier fluid, the law of change in its viscosity in the field, and the law of change in the viscosity of the magnetorheological suspension/active carrier liquid system with an increase in the concentration of nonmagnetic particles in a zero field.

  13. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  14. Zero-valent iron colloid emplacement in sand columns

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.

    1997-05-01

    Application of chemically reactive barriers to mitigate contaminant migration is an active area of research and development. Studies were conducted to evaluate a novel approach of emplacing chemically reactive barriers composed of zero-valent iron (Fe{sup 0}) by injecting suspensions of colloidal-size Fe{sup 0} particles into porous media. The specific objective of this study was to evaluate the effect of influent colloid concentration, rate, and volume of colloidal suspensions on Fe{sup 0} colloid emplacement in sand columns. Relatively even distributions of Fe{sup 0} throughout a sand column were obtained at low influent colloid concentrations and high injection rates. As the concentration of influent suspensions was increased, a point was reached beyond which a significant increase in the filtration of Fe{sup 0} particles near the front of the column was observed. This point was also found to occur at lower influent colloid concentrations as the injection rate was decreased, i.e., there was an interactive effect of influent colloid concentration and injection rate on the extent of filtration that occurred near the front of the column. As the volume of the colloidal suspension injected into the column was increased, the distribution of Fe{sup 0} colloids within the column became increasingly even.

  15. Actively controlled vehicle suspension with energy regeneration capabilities

    NASA Astrophysics Data System (ADS)

    Bar David, Sagiv; Zion Bobrovsky, Ben

    2011-06-01

    The paper presents an innovative dual purpose automotive suspension topology, combining for the first time the active damping qualities with mechanical vibrations power regeneration capabilities. The new configuration consists of a linear generator as an actuator, a power processing stage based on a gyrator operating under sliding mode control and dynamics controllers. The researched design is simple and energetically efficient, enables an accurate force-velocity suspension characteristic control as well as energy regeneration control, with no practical implementation constraints imposed over the theoretical design. Active damping is based on Skyhook suspension control scheme, which enables overcoming the passive damping tradeoff between high- and low-frequency performance, improving both body isolation and the tire's road grip. The system-level design includes configuration of three system operation modes: passive, semi-active or fully active damping, all using the same electro-mechanical infrastructure, and each focusing on different objective: dynamics improvement or power regeneration. Conclusively, the innovative hybrid suspension is theoretically researched, practically designed and analysed, and proven to be feasible as well as profitable in the aspects of power regeneration, vehicle dynamics improvement and human health risks reduction.

  16. State of the art survey: active and semi-active suspension control

    NASA Astrophysics Data System (ADS)

    Tseng, H. Eric; Hrovat, Davor

    2015-07-01

    This survey paper aims to provide some insight into the design of suspension control system within the context of existing literature and share observations on current hardware implementation of active and semi-active suspension systems. It reviews the performance envelop of active, semi-active, and passive suspensions with a focus on linear quadratic-based optimisation including a specific example. The paper further discusses various design aspects including other design techniques, the decoupling of load and road disturbances, the decoupling of pitch and heave modes, the use of an inerter as an additional design element, and the application of preview. Various production and near production suspension systems were examined and described according to the features they offer, including self-levelling, variable damping, variable geometry, and anti-roll damping and stiffness. The lessons learned from these analytical insights and related hardware implementations are valuable and can be applied towards future active or semi-active suspension design.

  17. Microfluidic rheology of active particle suspensions: Kinetic theory.

    PubMed

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-07-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations. PMID:27375827

  18. Effect of hydrodynamic interactions in confined active suspensions

    NASA Astrophysics Data System (ADS)

    Ezhilan, Barath; Saintillan, David

    2014-11-01

    The dynamics of biologically active suspensions in confined geometries is investigated by incorporating accurate boundary conditions within the kinetic theory framework [Saintillan and Shelley, Phys. Fluids. (2008)]. Even in the absence of wall hydrodynamic interactions or imposed flow, swimming microorganisms have a tendency to accumulate at confining boundaries due to self-propulsion. Satisfying a zero wall-normal translational flux condition on the active particle probability distribution function captures this effect. Using a moment-closure approximation, analytical expressions for the equilibrium concentration/polarization profiles are derived in the dilute limit. As particle density increases, we expect particle-particle hydrodynamic interactions to become significant and to destabilize these equilibrium distributions. Using a linear stability analysis and 3D finite volume simulation of the equations for the orientational moments, we study in detail the effect of fluid coupling on the stability properties of the equilibrium states in confined active suspensions.

  19. Non-equilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting suspensions

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    In our recently developed non-equilibrium Stokes-Einstein relation, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here, we generalize our theory for systems of hydrodynamically interacting colloids, via active microrheology, where motion of a Brownian probe through the medium reveals rheological properties. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, the first normal stress difference and the osmotic pressure scale as Pe4 and Pe2 respectively when probe forcing is weak, and uniformly as Pe for strong probe forcing. As hydrodynamics become important, interparticle forces give way to lubrication interactions. Hydrodynamic coupling leads to a new low-Pe scaling of the first normal stress difference and the osmotic pressure as Pe2, and high-Pe scaling as Peδ, where 0.799 <= δ <= 1 as hydrodynamics vary from strong to weak. For the entire range of the strength of hydrodynamic interactions and probe forcing, the new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. We further draw a connection between the stress and the energy storage in a suspension, and the entropic nature of such storage is identified.

  20. Quasi-active suspension design using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Potter, Jack N.; Neild, Simon A.; Wagg, David J.

    2011-05-01

    Quasi-active damping is a method of coupled mechanical and control system design using multiple semi-active dampers. By designing the systems such that the desired control force may always be achieved using a combination of the dampers, quasi-active damping seeks to approach levels of vibration isolation achievable through active damping, whilst retaining the desirable attributes of semi-active systems. In this article a design is proposed for a quasi-active, base-isolating suspension system. Control laws are firstly defined in a generalised form, where semi-active dampers are considered as idealised variable viscous dampers. This system is used to demonstrate in detail the principles of quasi-active damping, in particular the necessary interaction between mechanical and control systems. It is shown how such a system can produce a tunable, quasi-active region in the frequency response of very low displacement transmissibility. Quasi-active control laws are then proposed which are specific for use with magnetorheological dampers. These are validated in simulation using a realistic model of the damper dynamics, again producing a quasi-active region in the frequency response. Finally, the robustness of the magnetorheological, quasi-active suspension system is demonstrated.

  1. Orientational order in two-dimensional confined active suspensions

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2013-11-01

    Geometric confinement in physical space is important for the studies of the collective motion of active suspensions. The reasons are two-fold: motile biological micro-organisms or active collides are always subject to different types of confinement in their swimming environment; The existence of confinement can significantly affects hydrodynamic interactions between the swimmers and thus changes the nature of collective motion. We focus on the situation when the swimmers are confined between two parallel plates such that the motion of the particles are restricted to two dimensions. In this case, the far-field hydrodynamic effect of a swimmer is no longer given by a force-dipole, which has been used in numerous studies on discrete numerical simulations and continuum theories. Instead, the far-field effect of a confined swimmer is given by a potential-dipole. Using a potential-dipole model in doubly-periodic domain, we perform numerical simulations to probe into the collective dynamics of confined active suspensions. We show that isotropic suspensions of swimmers are unstable and develop long time polar orientation order. This results in coherent clusters swimming in the same direction, reminiscent to the collective behavior usually observed in phenomenological models.

  2. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  3. Multiplexed model predictive control for active vehicle suspensions

    NASA Astrophysics Data System (ADS)

    Hu, Yinlong; Chen, Michael Z. Q.; Hou, Zhongsheng

    2015-02-01

    Multiplexed model predictive control (MMPC) is a recently proposed efficient model predictive control (MPC) algorithm, which can effectively reduce the computational burden of the online optimisation in MPC implementation by updating the control inputs in an asynchronous manner. This paper investigates the application of MMPC in active vehicle suspension design. An MMPC controller integrated with soft constraints and a Kalman filter is proposed based on a full-car model. Ride comfort, roadholding and suspension deflection are considered in this paper, where ride comfort and roadholding are formulated as a quadratic cost function in terms of sprung mass accelerations and tyre deflections, while suspension deflection performance is formulated as a hard constraint. The saturation of the actuator force is also considered and formulated as a hard constraint as well. Numerical simulation is performed with respect to different choices of weighting factors, vehicle speeds and control horizons. The results show that the overall performance of ride comfort and roadholding can be improved significantly by employing MMPC and the average time taken by MMPC to solve the individual quadratic programming problem is considerably smaller than that of the conventional MPC, which effectively demonstrate the effectiveness of the proposed method.

  4. Theory of activated dynamics and glass transition of hard colloids in two dimensions.

    PubMed

    Zhang, Bo-kai; Li, Hui-shu; Tian, Wen-de; Chen, Kang; Ma, Yu-qiang

    2014-03-01

    The microscopic nonlinear Langevin equation theory is applied to study the localization and activated hopping of two-dimensional hard disks in the deeply supercooled and glass states. Quantitative comparisons of dynamic characteristic length scales, barrier, and their dependence on the reduced packing fraction are presented between hard-disk and hard-sphere suspensions. The dynamic barrier of hard disks emerges at higher absolute and reduced packing fractions and correspondingly, the crossover size of the dynamic cage which correlates to the Lindemann length for melting is smaller. The localization lengths of both hard disks and spheres decrease exponentially with packing fraction. Larger localization length of hard disks than that of hard spheres is found at the same reduced packing fraction. The relaxation time of hard disks rises dramatically above the reduced packing fraction of 0.88, which leads to lower reduced packing fraction at the kinetic glass transition than that of hard spheres. The present work provides a foundation for the subsequent study of the glass transition of binary or polydisperse mixtures of hard disks, normally adopted in experiments and simulations to avoid crystallization, and further, the rheology and mechanical response of the two-dimensional glassy colloidal systems. PMID:24606367

  5. Shape of Dynamical Heterogeneities and Fractional Stokes-Einstein and Stokes-Einstein-Debye Relations in Quasi-Two-Dimensional Suspensions of Colloidal Ellipsoids

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan K.; Ganapathy, Rajesh

    2015-05-01

    We examine the influence of the shape of dynamical heterogeneities on the Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in quasi-two-dimensional suspensions of colloidal ellipsoids. For ellipsoids with repulsive interactions, both SE and SED relations are violated at all area fractions. On approaching the glass transition, however, the extent to which this violation occurs changes beyond a crossover area fraction. Quite remarkably, we find that it is not just the presence of dynamical heterogeneities but their change in the shape from stringlike to compact that coincides with this crossover. On introducing a suitable short-range depletion attraction between the ellipsoids, associated with the lack of morphological evolution of dynamical heterogeneities, the extent to which the SE and SED relations are violated remains unchanged even for deep supercooling.

  6. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  7. Studies on the sulfation of cellulose α-lipoate and ability of the sulfated product to stabilize colloidal suspensions of gold nanoparticles.

    PubMed

    Sarbova, Velina; Koschella, Andreas; Cheng, Fei; Kelly, Stephen M; Heinze, Thomas

    2015-06-25

    A versatile method for the synthesis of cellulose α-lipoate with a low degree of substitution (DS) has been developed using N,N-dimethylacetamide (DMA)/LiCl as a solvent and N,N'-carbonyldiimidazole (CDI) as an esterification reagent. The cellulose α-lipoate with DS of α-lipoate groups of 0.26 was converted with sulfur trioxide-pyridine complex in dimethyl sulfoxide (DMSO) as solvent. The sulfation is accompanied by an unexpected partial oxidation of the disulfide moiety leading to the formation of the corresponding stereoisomers of S-oxides. The resulting mixture of water-soluble cellulose α- and β-lipoate sulfate possesses a DS of sulfuric acid half ester groups of 1.78. This cellulose-α/β-lipoate sulfate derivative can be used as an effective stabilizer and solubilizer for the formation of colloidal suspensions of gold nanoparticles formed in situ in aqueous solution. PMID:25839801

  8. Active following fuzzy output feedback sliding mode control of real-vehicle semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Nonami, K.; Hagiwara, T.

    2008-07-01

    Many semi-active suspension systems have been investigated in various literatures in order to achieve lower energy consumption and as good performance as full-active suspension systems. Full-active suspension systems can achieve a good ride quality by actuators; however, their implementation equipments are expensive. The full-active suspensions are perfect from the point of view of control; hence, semi-active control laws with performance similar to full-active controls have attracted the engineering community for their ease and lower cost of implementation. This paper presents a new active following fuzzy output feedback sliding mode control for a real-vehicle semi-active suspension system. The performance of the proposed controller has been verified by comparing it with passive control and also with the full-active target semi-active approximation control method. In the experiment, it was shown that the proposed method has the effectiveness in stabilizing heave, roll and pitch movement of the car body.

  9. Colloidal Oatmeal (Avena Sativa) Improves Skin Barrier Through Multi-Therapy Activity.

    PubMed

    Ilnytska, Olha; Kaur, Simarna; Chon, Suhyoun; Reynertson, Kurt A; Nebus, Judith; Garay, Michelle; Mahmood, Khalid; Southall, Michael D

    2016-06-01

    Oats (Avena sativa) are a centuries-old topical treatment for a variety of skin barrier conditions, including dry skin, skin rashes, and eczema; however, few studies have investigated the actual mechanism of action for the skin barrier strengthening activity of colloidal oatmeal. Four extracts of colloidal oatmeal were prepared with various solvents and tested in vitro for skin barrier related gene expression and activity. Extracts of colloidal oatmeal were found to induce the expression of genes related to epidermal differentiation, tight junctions and lipid regulation in skin, and provide pH-buffering capacity. Colloidal oatmeal boosted the expression of multiple target genes related to skin barrier, and resulted in recovery of barrier damage in an in vitro model of atopic dermatitis. In addition, an investigator-blinded study was performed with 50 healthy female subjects who exhibited bilateral moderate to severe dry skin on their lower legs. Subjects were treated with a colloidal oatmeal skin protectant lotion. Clinically, the colloidal oatmeal lotion showed significant clinical improvements in skin dryness, moisturization, and barrier. Taken together, these results demonstrate that colloidal oatmeal can provide clinically effective benefits for dry and compromised skin by strengthening skin barrier.

    J Drugs Dermatol. 2016;15(6):684-690. PMID:27272074

  10. On the influence of a uniform magnetic field on the Néel relaxation of a colloidal suspension of nanometre-sized particles

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Kinsella, L.; Charles, S. W.

    1997-08-01

    Measurements of the complex, frequency-dependent susceptibility, 0022-3727/30/16/006/img6, of three colloidal suspensions of magnetite in isopar M (a hydrocarbon carrier) in the frequency range 30 MHz to 6 GHz for 14 values of the polarizing field, H, over the range 0 - 116 kA 0022-3727/30/16/006/img7 are presented. The effect of the polarizing field on the real and imaginary susceptibility profiles of the suspensions is clearly demonstrated and these measurements reveal the presence of a subsidiary loss peak in the 0022-3727/30/16/006/img8 component. This effect is found to exist over the approximate polarizing field range 9.5 - 40 kA 0022-3727/30/16/006/img7 and may be attributed to the presence of relatively strong high-frequency relaxation modes superimposed on the Néel relaxation mode, as originally predicted by Coffey et al and later analytically explained by Garanin. The dependence of this effect on the particle concentration is demonstrated.

  11. Activity-assisted self-assembly of colloidal particles.

    PubMed

    Mallory, S A; Cacciuto, A

    2016-08-01

    We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on-off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process. PMID:27627360

  12. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    SciTech Connect

    Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.

    2006-09-29

    Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.

  13. THE INFLUENCE OF OXIDANT TYPE ON THE PROPERTIES OF IRON COLLOIDS AND SUSPENSIONS FORMED FROM FERROUS IRON

    EPA Science Inventory

    "Red water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to brown depending on water chemistry and particle properties. Iron can originate from the source water and from distribution ...

  14. Clustering and Pattern Formation in Chemorepulsive Active Colloids.

    PubMed

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E

    2015-12-18

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns. PMID:26722949

  15. Clustering and Pattern Formation in Chemorepulsive Active Colloids

    NASA Astrophysics Data System (ADS)

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E.

    2015-12-01

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns.

  16. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids.

    PubMed

    Zhang, Yuying; Walkenfort, Bernd; Yoon, Jun Hee; Schlücker, Sebastian; Xie, Wei

    2015-09-01

    Noble metal nanoparticles (NPs) are the most commonly employed plasmonic substrates in surface-enhanced Raman scattering (SERS) experiments. Computer simulations show that monomers of Ag and Au nanocrystals ("spherical" NPs) do not exhibit a notable plasmonic enhancement, i.e., they are essentially non-SERS-active. However, in experiments, SERS enhanced by spherical NP colloids has been frequently reported. This implies that the monomers do not have strong SERS activity, but detectable enhancement should more or less be there. Because of the gap between theory and practice, it is important to demonstrate experimentally how SERS-active the metal colloid actually is and, in case a SERS signal is observed, where it originates from. In particular the aggregation of the colloid, induced by high centrifugal forces in washing steps or due to a harsh ionic environment of the suspension medium, should be controlled since it is the very high SERS activity of NP clusters which dominates the overall SERS signal of the colloid. We report here the experimental evaluation of the SERS activity of 80 nm Au and Ag NP monomers. Instead of showing fancy nanostructures and super SERS enhancement, we present the method on how to obtain negative experimental data. In this approach, no SERS signal was obtained from the colloid with a Raman reporter on the metal surface when the NPs were encapsulated carefully within a thick silica shell. Without silica encapsulation, if a very low centrifugation speed is used for the washing steps, only a negligible SERS signal can be detected even at very high NP concentrations. In contrast, strong SERS signals can be detected when the NPs are suspended in acidic solutions. These results indicate that Au and Ag NP monomers essentially exhibit no SERS activity of practical relevance. PMID:25491599

  17. Optimal design of active and semi-active suspensions including time delays and preview

    NASA Astrophysics Data System (ADS)

    Hac', A.; Youn, I.

    1993-10-01

    Several control laws for active and semi-active suspension based on a linear half car model are derived and investigated. The strategies proposed take full advantage of the fact that the road input to the rear wheels is a delayed version of that to the front wheels, which in turn can be obtained either from the measurements of the front wheels and body motions or by direct preview of road irregularities if preview sensors are available. The suspension systems are optimized with respect to ride comfort, road holding and suspension rattle space as expressed by the mean-square-values of body acceleration (including effects of heave and pitch), tire deflections and front and rear suspension travels. The optimal control laws that minimize the given performance index and include passivity constraints in the semi-active case are derived using calculus of variation. The optimal semi-active suspension becomes piecewise linear, varying between passive and fully active systems and combinations of them. The performances of active and semi-active systems with and without preview were evaluated by numerical simulation in the time and frequency domains. The results show that incorporation of time delay between the front and rear axles in controller design improves the dynamic behavior of the rear axle and control of body pitch motion, while additional preview improves front wheel dynamics and body heave.

  18. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    PubMed Central

    2010-01-01

    Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy. PMID:21080962

  19. Self-diffusion of colloidal particles in a two-dimensional suspension: Are deviations from Fick's law experimentally observable

    SciTech Connect

    van der Hoef, M.A.; Frenkel, D. -Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam ); Ladd, A.J.C. )

    1991-12-09

    Simulations of a colloidal particle suspended in a two-dimensional fluid are reported. The dissipative and fluctuating hydrodynamic forces acting on the particle are modeled by a lattice gas. Our results indicate that large long-time tails are present in both the translational and the rotational velocity correlation functions; these are the first observations of a rotational long-time tail. The strong translational tail leads to an observable renormalization of the diffusion coefficient; our results suggest that experimental observation of the latter effect is possible.

  20. Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering

    SciTech Connect

    Chen, Wei-Ren; Herwig, Kenneth W; Liu, Yun; Smith, Gregory Scott; Shew, Chwen-Yang; Pynn, Roger; Robertson, J. L.; Liu, Emily; Li, Xin

    2010-01-01

    Theoretical calculations based on integral equation theory have been carried out to elucidate the real-space correlation function obtained from the novel Spin-Echo Small Angle Neutron Scattering (SESANS) technique. Several potential models are investigated to mimic various interacting colloidal particles. A general discussion regarding the profiles of the real-space SESANS correlation functions corresponding to different model systems is presented. In the conventional elastic scattering tools, the spectral signature to differentiate attractive and repulsive molecular forces is found at small angels, which may impose technical difficulties to exact such information. Whereas, in SESANS, the characteristic feature occurs at the lengthscale near particle size, and is quite sensitive to interaction potentials and their strength. Besides the model monodisperse spherical colloidal systems, our calculation is extended to study the binary hard sphere mixture in which the attractive depletion forces between larger particles, induced by smaller particles, is reflected in the characteristic feature of the SESANS correlation function. Our model studies show that the real-space measurement SESANS presents a powerful probe in discerning intercolloid potential.

  1. Screening for enzyme activity in turbid suspensions with scattered light.

    PubMed

    Huber, Robert; Wulfhorst, Helene; Maksym, Lukas; Stehr, Regina; Pöhnlein, Martin; Jäger, Gernot; Spiess, Antje C; Büchs, Jochen

    2011-01-01

    New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition. PMID:21302369

  2. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  3. A colloidal suspension of nanostructured poly(N-butyl benzimidazole)-graphene sheets with high oxidase yield for analytical glucose and choline detections.

    PubMed

    Chen, Hsiao-Chien; Tsai, Rung-Ywan; Chen, Yen-Hsuan; Lee, Ren-Shen; Hua, Mu-Yi

    2013-08-20

    A colloidal suspension of nanostructured poly(N-butyl benzimidazole)-graphene sheets (PBBIns-Gs) was used to modify a gold electrode to form a three-dimensional PBBIns-Gs/Au electrode that was sensitive to hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). The positively charged nanostructured poly(N-butyl benzimidazole) (PBBIns) separated the graphene sheets (Gs) and kept them suspended in an aqueous solution. Additionally, graphene sheets (Gs) formed "diaphragms" that intercalated Gs, which separated PBBIns to prevent tight packing and enhanced the surface area. The PBBIns-Gs/Au electrode exhibited superior sensitivity toward H2O2 relative to the PBBIns-modified Au (PBBIns/Au) electrode. Furthermore, a high yield of glucose oxidase (GOD) on the PBBIns-Gs of 52.3mg GOD per 1mg PBBIns-Gs was obtained from the electrostatic attraction between the positively charged PBBIns-Gs and negatively charged GOD. The non-destructive immobilization of GOD on the surface of the PBBIns-Gs (GOD-PBBIns-Gs) retained 91.5% and 39.2% of bioactivity, respectively, relative to free GOD for the colloidal suspension of the GOD-PBBIns-Gs and its modified Au (GOD-PBBIns-Gs/Au) electrode. Based on advantages including a negative working potential, high sensitivity toward H2O2, and non-destructive immobilization, the proposed glucose biosensor based on an GOD-PBBIns-Gs/Au electrode exhibited a fast response time (5.6s), broad detection range (10μM to 10mM), high sensitivity (143.5μAmM(-1)cm(-2)) and selectivity, and excellent stability. Finally, a choline biosensor was developed by dipping a PBBIns-Gs/Au electrode into a choline oxidase (ChOx) solution for enzyme loading. The choline biosensor had a linear range of 0.1μM to 0.83mM, sensitivity of 494.9μAmM(-1)cm(-2), and detection limit of 0.02μM. The results of glucose and choline measurement indicate that the PBBIns-Gs/Au electrode provides a useful platform for the development of oxidase-based biosensors. PMID:23910974

  4. Active Control of Airspring Secondary Suspension for Improving Ride Comfort in Presence of Random Track Irregularity

    NASA Astrophysics Data System (ADS)

    Alfi, Stefano; Bruni, Stefano; Gialleonardo, Egidio Di; Facchinetti, Alan

    The aim of this paper is to explore the possible benefits brought by the use of active control of the airspring secondary suspension for high speed railway vehicles; in this regard, active control is applied to reduce the vertical and pitch carbody oscillations in the low frequency range, according to the concept of skyhook damping. A concept is developed for the active airspring suspension, and a numerical model is derived for the vehicle equipped with the active suspension. The results obtained show that the use of active suspension control offers an important improvement of ride quality, by far larger than that achievable with semi-active suspensions. On the other hand, the issue of air consumption is outlined as a critical point of the proposed concept, requiring further research.

  5. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a cover sheet…

  6. Escherichia coli as a model active colloid: A practical introduction.

    PubMed

    Schwarz-Linek, Jana; Arlt, Jochen; Jepson, Alys; Dawson, Angela; Vissers, Teun; Miroli, Dario; Pilizota, Teuta; Martinez, Vincent A; Poon, Wilson C K

    2016-01-01

    The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, 'tune' and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E. coli cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force. PMID:26310235

  7. Beyond the "coffee ring": re-entrant ordering in an evaporation-driven self-assembly in a colloidal suspension on a substrate.

    PubMed

    Mukherjee, Sumanta; Saha, Arnab; Santra, Pralay K; Sengupta, Surajit; Sarma, D D

    2014-03-01

    We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order-disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory. PMID:24490898

  8. Role of detergents in driving complex structural arrangements in colloidal suspensions of Photosystem I (PS I) via charge stabilization and neutralization

    NASA Astrophysics Data System (ADS)

    Niroomand, Hanieh; Mukherjee, Dibyendu; Khomami, Bamin

    2012-02-01

    Specific concentrations of detergents such as DM (n-Dodecyl-β-D-Maltoside) and Triton X-100 (TX-100) used for Photosystem I (PS I) stabilization in buffer solutions play significant roles in controlling the solution-phase protein-protein interactions. Such control on PS I-PS I interactions facilitates uniform monolayer deposition of PS I on self-assembled monolayer (SAM)/Au substrates, a critical step for their future incorporation into bio-hybrid photovoltaic devices. Moreover, electric-field assisted assembly from PS I solutions with TX-100 as the detergent facilitates the formation of uniform PS I monolayer. But, the same phenomenon is not observed for PS I suspensions with DM as the detergent. To explain the underlying colloidal physics of these systems, in-situ dynamic light scattering experiments under various incubation times and applied voltages reveal the role of DM in charge neutralization and in turn, significant reduction of the PS I dipole moment in solution. Furthermore, small angle X-ray scattering measurements provide the much-needed structural information for a detailed understanding of the protein-detergent complexation process. These detailed investigations point towards the use of random sequential adsorption techniques in creating systematic dense monolayers of PS I.

  9. Colloidal Suspensions of Rodlike Nanocrystals and Magnetic Spheres under an External Magnetic Stimulus: Experiment and Molecular Dynamics Simulation.

    PubMed

    May, Kathrin; Eremin, Alexey; Stannarius, Ralf; Peroukidis, Stavros D; Klapp, Sabine H L; Klein, Susanne

    2016-05-24

    Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research. PMID:27119202

  10. Reading a Suspenseful Literary Text Activates Brain Areas Related to Social Cognition and Predictive Inference

    PubMed Central

    Lehne, Moritz; Engel, Philipp; Rohrmeier, Martin; Menninghaus, Winfried; Jacobs, Arthur M.; Koelsch, Stefan

    2015-01-01

    Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc.) is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI) data while participants read a suspenseful literary text (E.T.A. Hoffmann's “The Sandman”) subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus), lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference. PMID:25946306

  11. Removing grain boundaries from three-dimensional colloidal crystals using active dopants.

    PubMed

    van der Meer, B; Dijkstra, M; Filion, L

    2016-07-01

    Using computer simulations we explore how grain boundaries can be removed from three-dimensional colloidal crystals by doping with a small fraction of active colloids. We show that for sufficient self-propulsion, the system is driven into a crystal-fluid coexistence. In this phase separated regime, the active dopants become mobile and spontaneously gather at the grain boundaries. The resulting surface melting and recrystallization of domains result in the motion of the grain boundaries over time and lead to the formation of a large single crystal. However, when the self-propulsion is too low to cause a phase separation, we observe no significant enhancement of grain growth. PMID:27257054

  12. Unusually high thermal stability and peroxidase activity of cytochrome c in ionic liquid colloidal formulation.

    PubMed

    Bharmoria, Pankaj; Kumar, Arvind

    2016-01-11

    Ionic liquid (IL) surfactant choline dioctylsulfosuccinate, [Cho][AOT], formed polydispersed vesicular structures in the IL, ethylmethylimidazolium ethylsulfate, [C2mim][C2OSO3]. Cytochrome c dissolved in such a colloidal medium has shown very high peroxidase activity (∼2 times to that in neat IL and ∼4 times to that in an aqueous buffer). Significantly, the enzyme retained both structural stability and functional activity in IL colloidal solutions up to 180 °C, demonstrating the suitability of the system as a high temperature bio-catalytic reactor. PMID:26529242

  13. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension.

    PubMed

    Wang, Ting; Chen, Xiaojin; Lu, Mengmeng; Li, Xihe; Zhou, WenZhong

    2015-12-01

    A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo. The results showed that the mean diameter, polydispersity index and zeta potential of the nanoparticles were 253 ± 3 nm, 0.409 ± 0.022 and 47.5 ± 0.21 mV, respectively. In vitro release profile showed the FFC-SLN suspension had sustained release effect. The minimum inhibition concentration values of the FFC-SLN suspension were 6 and 3 µg/mL against Staphylococcus aureus and Escherichia coli respectively, compared with 3.5 and 2 µg/mL of native florfenicol. The suspension was relatively stable at 4°C and less stable at room temperature during 9 months storage. Although the nanoparticle carriers exhibited cytotoxicity in cell cultures, the LD50 of the lyophilised dry power of the suspension was higher than 5 g/kg body weight. Mortality protection against E. coli lethal infection in mice showed that the nanoparticle suspension had much better efficacy (6/10) than native drug (1/10). These results indicate that FFC-SLN suspension could be a promising formulation in veterinary medicine. PMID:26647811

  14. On-track tests of active vertical suspension on a passenger train

    NASA Astrophysics Data System (ADS)

    Qazizadeh, Alireza; Persson, Rickard; Stichel, Sebastian

    2015-06-01

    The classic way to design the suspension of a rail vehicle is to use passive elements such as dampers and springs; however, as sensors and actuators are getting more affordable and reliable, their potential benefit in the suspension system is increasingly studied. Active suspension can be used to keep ride comfort at an acceptable level or even improve it, while allowing tougher operation conditions or usage of lighter carbodies. Tougher conditions could be interpreted as higher speed or lower track quality, and lighter carbody means higher level of elastic vibrations. This paper is focused on the implementation and tests of active vertical suspension on the secondary suspension of a high-speed passenger electric multiple unit using hydraulic actuators and the skyhook method as the controller. Results from on-track tests indicate large ride comfort improvements.

  15. Frequency analysis of a semi-active suspension with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Andronic, Florin; Mihai, Ioan; Suciu, Cornel; Beniuga, Marius

    2015-02-01

    Suspension systems for motor vehicles are constantly evolving in order to ensure vehicle stability and traffic safety under all driving conditions. The present work aims to highlight the influence factors in the case of a quarter car model for semi-active suspensions. The functions that must be met by such suspension systems are first presented. Mathematical models for passive systems are first illustrated and then customized for the semi-active case. A simulation diagram was conceived for Matlab Simulink. The obtained simulation results allow conducting a frequency analysis of the passive and semi-active cases of the quarter car model. Various charts for Passive Suspension Transmissibility and for the Effect of Damping on Vertical Acceleration Response were obtained for both passive and semi-active situations. Analysis of obtained results allowed evaluating of the suspension systems behavior and their frequency dependence. Significant differences were found between the behaviors of passive and semi-active suspensions. It was found that semi-active suspensions ensure damping in accordance to the chosen control method, and are much more efficient than passive ones.

  16. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  17. Mycobactericidal activity of selected disinfectants using a quantitative suspension test.

    PubMed

    Griffiths, P A; Babb, J R; Fraise, A P

    1999-02-01

    In this study, a quantitative suspension test carried out under both clean and dirty conditions was used to assess the activity of various instrument and environmental disinfectants against the type strain NCTC 946 and an endoscope washer disinfector isolate of Mycobacterium chelonae, Mycobacterium fortuitum NCTC 10,394, Mycobacterium tuberculosis H37 Rv NCTC 7416 and a clinical isolate of Mycobacterium avium-intracellulare (MAI). The disinfectants tested were; a chlorine releasing agent, sodium dichloroisocyanurate (NaDCC) at 1000 ppm and 10,000 ppm av Cl; chlorine dioxide at 1100 ppm av ClO2 (Tristel, MediChem International Limited); 70% industrial methylated spirits (IMS); 2% alkaline glutaraldehyde (Asep, Galan); 10% succinedialdehyde and formaldehyde mixture (Gigasept, Schulke & Mayr); 0.35% peracetic acid (NuCidex, Johnson & Johnson); and a peroxygen compound at 1% and 3% (Virkon, Antec International). Results showed that the clinical isolate of MAI was much more resistant than M. tuberculosis to all the disinfectants, while the type strains of M. chelonae and M. fortuitum were far more sensitive. The washer disinfector isolate of M. chelonae was extremely resistant to 2% alkaline activated glutaraldehyde and appeared to be slightly more resistant than the type strain to Nu-Cidex, Gigasept, Virkon and the lower concentration of NaDCC. This study has shown peracetic acid (Nu-Cidex), chlorine dioxide (Tristel), alcohol (IMS) and high concentrations of a chlorine releasing agent (NaDCC) are rapidly mycobactericidal. Glutaraldehyde, although effective, is a slow mycobactericide. Gigasept and Virkon are poor mycobactericidal agents and are not therefore recommended for instruments or spillage if mycobacteria are likely to be present. PMID:10063473

  18. Semi-active sliding mode control of vehicle suspension with magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Zhang, Ning; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2015-01-01

    The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity ( F- v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.

  19. Analysis of Semi-Active and Passive Suspensions System for Off-Road Vehicles

    NASA Astrophysics Data System (ADS)

    BenLahcene, Zohir; Faris, Waleed F.; Khan, M. D. Raisuddin

    2009-03-01

    The speed of off-road vehicles over rough terrain is generally determined by the ride quality not by the engine power. For this reason, researches are currently being undertaking to improve the ride dynamics of these vehicles using an advanced suspension system. This study intends to provide a preliminary evaluation of whether semi-active suspensions are beneficial to improving ride and handling in off-road vehicles. One of the greatest challenges in designing off-road vehicle suspension system is maintaining a good balance between vehicle ride and handling. Three configurations of these vehicles; 2-axle, 3-xle and 4-axles have been studied and their performances are compared. The application of several control policies of semi-active suspension system, namely skyhook; ground-hook and hybrid controls have been analyzed and compared with passive systems. The results show that the hybrid control policy yields better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement. The hybrid control policy is also shown to be a better compromise between comfort, road-holding and suspension displacement than the skyhook and ground-hook control policies. Results show an improvement in ride comfort and vehicle handling using 4-axle over 3-axle and 2-axle when emphasis is placed on the response of the vehicle body acceleration, suspension and tyre deflection.

  20. Analysis of semi-active vehicle suspension system using airspring and MR damper

    NASA Astrophysics Data System (ADS)

    Tesfay, A. H.; Goel, V. K.

    2015-12-01

    With the new advancements in vibration control strategies and controllable actuator manufacturing, semi-active actuators and dampers are finding their way as an essential part of vibration isolators, particularly in vehicle suspension systems. This is attributed to the fact that in a semi-active system, the damping coefficients can be adjusted to improve ride comfort and road handling performances. The currently available semi-active damper technology uses MR fluid to control the damping characteristics of the suspension system. In addition to MR dampers, combining air springs in a semi-active suspension system leads to better handling and ride performance in vehicles. Furthermore, the use of air spring in semi-active suspension system helps to ease design of variable spring stiffness. This easy design opportunity leads to independent control of stiffness and ride height of the vehicle. This paper deals with the design and modelling of variable stiffness air spring for semi-active suspension system, modelling of semi-active suspension systems with variable stiffness and MR damper, and study their

  1. Polyphenoloxidase-activity and -activation in embryogenic and non-embryogenic suspension cultures of Euphorbia pulcherrima.

    PubMed

    Grotkass, C; Lieberei, R; Preil, W

    1995-04-01

    The activity and activation potential of polyphenoloxidase (PPO, E.C. 1.10.3.1.) of tissue from shoot tips, adult leaves and embryogenic and non-embryogenic cell suspension cultures of Euphorbia pulcherrima was investigated using an oxygen probe technique. PPO derived from differentiated in vivo plant tissue (shoot tips, leaves) cannot be activated either by storage at 0-4°, freezing and thawing, incubation with CaCl2, sodium dodecyl sulfate or by incubation with trypsin. Embryogenic cells are characterized by high initial PPO activity and strong activation potential of membrane bound enzyme. Non-embryogenic material reveals low phenolase activity and low activation potential. An activation quotient (based on the ratio between "PPO-activity determined after sodium dodecyl sulfate incubation" to "PPO-activity determined after CaCl2-incubation") was calculated. This is independent of absolute enzyme activity and can be used for characterization of the embryogenic status of cells. PMID:24185450

  2. Impact-activated solidification of cornstarch and water suspensions

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott Russell

    Liquids typically offer little resistance to impacting objects . Surprisingly, dense suspensions of liquids mixed with micron-sized particles can provide tremendous impact resistance, even though they appear liquid like when left at rest or perturbed lightly. The most well-known example is a dense mixture of cornstarch and water, which can easily provide enough impact resistance to allow a full-grown person to run across its surface. Previous studies have linked this so-called ``shear thickening'' to experiments carried out under steady state shear and attributed it to hydrodynamic interactions or granular dilation. However, neither of these explanations alone can account for the stress scales required to keep a running person above the free surface. This thesis investigates the mechanism for this impact resistance in dense suspensions. We begin by studying impact directly and watching a rod as it strikes the surface of a dense suspension of cornstarch and water. Using high-speed video and embedded force and acceleration sensing, we show that the rod motion leads to the rapid growth of a solid-like object below the impact site. With X-ray videography to see the dynamics of the suspension interior and laser sheet measurements of the surface profile, we show how this solid drags on the surrounding suspension, creating substantial peripheral flow and leading to the rapid extraction of the impactor's momentum. Suspecting that the solidification below the rod may be related to jamming of the particle sub-phase, we carry out 2D experiments with macroscopic disks to show how uniaxial compression of an initially unjammed system can lead to dynamic jamming fronts. In doing so, we show how these fronts are sensitive to the system's initial packing fraction relative to the point at which it jams and also discover that the widths of these fronts are related to a diverging correlation length. Finally, we take these results back to the suspension, where we perform careful, speed

  3. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    PubMed

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production. PMID:26028773

  4. Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering.

    PubMed

    Hornfeck, Wolfgang; Menke, Dirk; Forthaus, Martin; Subatzus, Sebastian; Franke, Markus; Schöpe, Hans-Joachim; Palberg, Thomas; Perlich, Jan; Herlach, Dieter

    2014-12-01

    A suspension of charged colloidal silica spheres exhibiting a bi-modal size distribution of particles, thereby mimicking a binary mixture, was studied using time-resolved ultra-small-angle synchrotron X-ray scattering (USAXS). The sample, consisting of particles of diameters d(A) = (104.7 ± 9.0) nm and d(B) = (88.1 ± 7.8) nm (d(A)/d(B) ≈ 1.2), and with an estimated composition A(0.6(1))B(0.4(1)), was studied with respect to its phase behaviour in dependance of particle number density and interaction, of which the latter was modulated by varying amounts of added base (NaOH). Moreover, its short-range order in the fluid state and its eventual solidification into a long-range ordered colloidal crystal were observed in situ, allowing the measurement of the associated kinetics of nucleation and crystal growth. Key parameters of the nucleation kinetics such as crystallinity, crystallite number density, and nucleation rate density were extracted from the time-resolved scattering curves. By this means an estimate on the interfacial energy for the interface between the icosahedral short-range ordered fluid and a body-centered cubic colloidal crystal was obtained, comparable to previously determined values for single-component colloidal systems. PMID:25481168

  5. Simulation and comparison of quarter-car passive suspension system with Bingham and Bouc-Wen MR semi-active suspension models

    NASA Astrophysics Data System (ADS)

    Perescu, A.; Bereteu, L.

    2013-11-01

    In this paper we want to transposion the suspension system in MATLAB, Simulink®, based on equation of motion. Consider only vertical movement of the car, neglecting roll and pitch. All movements of the car axes are modeled as having equal amplitude. The characteristic equations that describe the behavior of dynamical systems based on FBD (Free Body Diagram) of automotive suspension. It will make two models, one passive and one Bingham semi-active. Their responses will be compared between them, and with another Bouc-Wen semi-active model, more complex. Semi-active suspension systems have received significant attention in recent years because they offer the adaptability of active control devices without requiring large power sources. Given that both passive and semi-active dampers are in mass production will follow the normal parameters and their economic efficiency. These models are used for initial design of suspension system.

  6. Deposition of photocatalytically active TiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained from microwave-assisted hydrothermal synthesis.

    PubMed

    Arin, Melis; Lommens, Petra; Hopkins, Simon C; Pollefeyt, Glenn; Van der Eycken, Johan; Ricart, Susagna; Granados, Xavier; Glowacki, Bartek A; Van Driessche, Isabel

    2012-04-27

    In this paper, we present an inkjet printing approach suited for the deposition of photocatalytically active, transparent titanium oxide coatings from an aqueous, colloidal suspension. We used a bottom-up approach in which a microwave-assisted hydrothermal treatment of titanium propoxide aqueous solutions in the presence of ethylenediaminetetraacetic acid and triethanolamine was used to create suspensions containing titania nanoparticles. Different inkjet printing set-ups, electromagnetic and piezoelectric driven, were tested to deposit the inks on glass substrates. The presence of preformed titania nanoparticles was expected to make it possible to reduce the heating temperature necessary to obtain the functionality of photocatalysis which can widen the application range of the approach to heat-sensitive substrates. We investigated the crystallinity and size of the obtained nanoparticles by electron microscopy and dynamic light scattering. The rheological properties of the suspensions were evaluated against the relevant criteria for inkjet printing and the jettability was analyzed. The photocatalytic activity of the obtained layers was analyzed by following the decomposition of a methylene blue solution under UV illumination. The influence of the heat treatment temperature on the film roughness, thickness and photocatalytic activity was studied. Good photocatalytic performance was achieved for heat treatments at temperatures as low as 150 °C, introducing the possibility of using this approach for heat-sensitive substrates. PMID:22460736

  7. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  8. Modeling of Semi-Active Vehicle Suspension with Magnetorhological Damper

    NASA Astrophysics Data System (ADS)

    Hasa, Richard; Danko, Ján; Milesich, Tomáš; Magdolen, Ľuboš

    2014-12-01

    Modeling of suspension is a current topic. Vehicle users require both greater driving comfort and safety. There is a space to invent new technologies like magnetorheological dampers and their control systems to increase these conflicting requirements. Magnetorheological dampers are reliably mathematically described by parametric and nonparametric models. Therefore they are able to reliably simulate the driving mode of the vehicle. These simulations are important for automotive engineers to increase vehicle safety and passenger comfort.

  9. A comparison of the pharmacological activity in cows of two suspensions of betamethasone alcohol.

    PubMed

    MacDiarmid, S C; Cooper, B S

    1982-12-01

    The activity of two betamethasone (BM) suspensions, which differed only in their solids:vehicle ratio, was examined in cattle. Two groups of 10 cows received by subcutaneous injection either 20 ml of a 2 mg/ml aqueous suspension of BM alcohol or 2 ml of a 20 mg/ml aqueous suspension. A further 10 cows served as a saline-treated control group. The mean peak plasma BM concentration was significantly higher in cows treated with 2 mg/ml suspension. However, plasma BM levels tended to be maintained for longer by the 20 mg/ml suspension. A depression of early morning cortisol levels, similar to that seen with other synthetic glucocorticoids, was recorded with both BM preparations; the depression outlasted the presence of BM. Plasma glucose levels and circulating neutrophil numbers were elevated by BM treatment, and the magnitude and duration of these changes was related to the solids:vehicle ratio of the injected suspensions. The more concentrated suspension was absorbed more slowly and thus produced effects of greater duration. PMID:16030844

  10. Fabricating large two-dimensional single colloidal crystals by doping with active particles.

    PubMed

    van der Meer, B; Filion, L; Dijkstra, M

    2016-04-14

    Using simulations we explore the behaviour of two-dimensional colloidal (poly)crystals doped with active particles. We show that these active dopants can provide an elegant new route to removing grain boundaries in polycrystals. Specifically, we show that active dopants both generate and are attracted to defects, such as vacancies and interstitials, which leads to clustering of dopants at grain boundaries. The active particles both broaden and enhance the mobility of the grain boundaries, causing rapid coarsening of the crystal domains. The remaining defects recrystallize upon turning off the activity of the dopants, resulting in a large-scale single-domain crystal. PMID:26936131

  11. Robust H∞ control of active vehicle suspension under non-stationary running

    NASA Astrophysics Data System (ADS)

    Guo, Li-Xin; Zhang, Li-Ping

    2012-12-01

    Due to complexity of the controlled objects, the selection of control strategies and algorithms in vehicle control system designs is an important task. Moreover, the control problem of automobile active suspensions has been become one of the important relevant investigations due to the constrained peculiarity and parameter uncertainty of mathematical models. In this study, after establishing the non-stationary road surface excitation model, a study on the active suspension control for non-stationary running condition was conducted using robust H∞ control and linear matrix inequality optimization. The dynamic equation of a two-degree-of-freedom quarter car model with parameter uncertainty was derived. The H∞ state feedback control strategy with time-domain hard constraints was proposed, and then was used to design the active suspension control system of the quarter car model. Time-domain analysis and parameter robustness analysis were carried out to evaluate the proposed controller stability. Simulation results show that the proposed control strategy has high systemic stability on the condition of non-stationary running and parameter uncertainty (including suspension mass, suspension stiffness and tire stiffness). The proposed control strategy can achieve a promising improvement on ride comfort and satisfy the requirements of dynamic suspension deflection, dynamic tire loads and required control forces within given constraints, as well as non-stationary running condition.

  12. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  13. Activation energies of colloidal particle aggregation: towards a quantitative characterization of specific ion effects.

    PubMed

    Tian, Rui; Yang, Gang; Li, Hang; Gao, Xiaodan; Liu, Xinmin; Zhu, Hualing; Tang, Ying

    2014-05-21

    A quantitative description of specific ion effects is an essential and focused topic in colloidal and biological science. In this work, the dynamic light scattering technique was employed to study the aggregation kinetics of colloidal particles in the various alkali ion solutions with a wide range of concentrations. It indicated that the activation energies could be used to quantitatively characterize specific ion effects, which was supported by the results of effective hydrodynamic diameters, aggregation rates and critical coagulation concentrations. At a given concentration of 25 mmol L(-1), the activation energies for Li(+) are 1.2, 5.7, 28, and 126 times as much for Na(+), K(+), Rb(+), and Cs(+), respectively. Most importantly, the activation energy differences between two alkali cation species increase sharply with decrease of electrolyte concentrations, implying the more pronounced specific ion effects at lower concentrations. The dominant role of electrolyte cations during the aggregation of negatively charged colloidal particles was confirmed by alternative anions. Among the various theories, only the polarization effect can give a rational interpretation of the above specific ion effects, and this is substantially supported by the presence of strong electric fields from montmorillonite surfaces and its association mainly with electrolyte cations and montmorillonite particles. The classical induction theory, although with inclusion of electric field, requires significant corrections because it predicts an opposite trend to the experimentally observed specific ion effects. PMID:24603654

  14. Modification of hybrid active bilayer for enhanced efficiency and stability in planar heterojunction colloidal quantum dot photovoltaics

    PubMed Central

    2013-01-01

    Solution-processed planar heterojunction colloidal quantum dot photovoltaics with a hybrid active bilayer is demonstrated. A power conversion efficiency of 1.24% under simulated air mass 1.5 illumination conditions is reported. This was achieved through solid-state treatment with cetyltrimethylammonium bromide of PbS colloidal quantum dot solid films. That treatment was used to passivate Br atomic ligands as well as to engineer the interface within the hybrid active bilayer. PMID:24252664

  15. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  16. Phase separation of biphasic mixture of active Janus colloids

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Han, Ming; Luijten, Erik; Granick, Steve

    2014-03-01

    Recently there is a surge of interest in the phase behavior of active matter in which building blocks display self-propelling motion. Although much has been known from theory and simulation, experimental examples are very rare. Specifically, the epitomic problem of a binary mixture of active matter defies any experiment or theory so far. Here we present an experimental realization of binary mixture of particles, which only acquires activity when they collisionally interact with the opposite kind. We used a system in which the only difference in the two particles is the phase in their cyclic motion, precluding any artifact due to difference in interparticle potential. We observe phenomena strikingly similar to spinodal decomposition of molecular system, in addition to new features due to the nonequilibrium nature of the system. We derived a general, effective Flory-Huggins theory for spinodal decomposition of bicomponent active system, and rationalized the 1/3 power law growth of the domain size in regions where thermodynamic analogy is valid. The system also presents a plethora of nonequilibrium phenomena such as critical fluctuation, lane formation, and dynamic absorbing state in different parameter space.

  17. Tuning the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids by tungsten doping

    SciTech Connect

    Xu, Haiping; Liao, Jianhua; Yuan, Shuai; Zhao, Yin; Zhang, Meihong; Wang, Zhuyi; Shi, Liyi

    2014-03-01

    Graphical abstract: - Highlights: • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO{sub 2} nanocrystal colloids can be tuned by tungsten doping. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher stability and dispersity. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO{sub 2} samples were investigated carefully by TEM, XRD, XPS, UV–vis, PL and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO{sub 2} nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO{sub 2} colloid combines the characters of high dispersity and high photocatalytic activity.

  18. Directed Self-Assembly Pathways of Active Colloidal Clusters.

    PubMed

    Zhang, Jie; Yan, Jing; Granick, Steve

    2016-04-18

    Despite the mounting interest in synthetic active particles, too little is known about their assembly into higher-order clusters. Here, mixing bare silica particles with Janus particles that are self-propelled in electric fields, we assemble rotating chiral clusters of various sorts, their structures consisting of active particles wrapped around central "hub" particles. These clusters self-assemble from the competition between standard energetic interactions and the need to be stable as the clusters rotate when the energy source is turned on, and fall apart when the energy input is off. This allows one to guide the formation of intended clusters, as the final structure depends notably on the sequence of steps in which the clusters form. PMID:27010594

  19. A new active variable stiffness suspension system using a nonlinear energy sink-based controller

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D.

    2013-10-01

    This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.

  20. Hydraulic actuation technology for full- and semi-active railway suspensions

    NASA Astrophysics Data System (ADS)

    Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger

    2014-12-01

    The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.

  1. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  2. Active dynamics of colloidal particles in time-varying laser speckle patterns

    PubMed Central

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  3. Active dynamics of colloidal particles in time-varying laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; di Leonardo, Roberto

    2016-06-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles.

  4. Active dynamics of colloidal particles in time-varying laser speckle patterns.

    PubMed

    Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540

  5. Extraction and Analysis of C60, C70 and PCBM in Aqueous Suspensions

    EPA Science Inventory

    The goal of this work is to develop sampling and analytical methodologies for extracting and quantifying fullerenes in aqueous colloidal suspensions. Sampling and analysis of colloidal suspensions pose some unique challenges not encountered when working with true solutions. For...

  6. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    PubMed

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. PMID:26776045

  7. Wall-induced self-diffusiophoresis of active isotropic colloids

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud

    2016-07-01

    While chemically active homogeneous spherical particles do not undergo self-diffusiophoresis in free solution, they may do so when suspended in the vicinity of a solid boundary. We explore this possibility using a first-order kinetic model of solute absorption, where the relative magnitude of reaction to diffusion is characterized by the Damköhler number Da . When the particle is remote from the wall, it is repelled from it with a velocity that scales inversely with the square of distance. The opposite extreme, when the ratio δ of separation distance to particle size is small, results in the anomalous scaling δ√{1/+2 Da }-1 2 of the solute concentration in the narrow gap separating the particle and wall. This irrational power may only be obtained by asymptotic matching with solute transport outside the gap. For Da <4 the self-propulsion speed possesses the same scaling, being set by the large pressures forming in the gap through a lubrication-type mechanism. For Da >4 the particle velocity is O (δ ) , set by the flow in the region outside the gap. Solute advection is subdominant to diffusion in both the remote and near-contact limits and accordingly affects neither the above scaling nor the resulting approximations.

  8. Multi-objective control for active vehicle suspension with wheelbase preview

    NASA Astrophysics Data System (ADS)

    Li, Panshuo; Lam, James; Cheung, Kie Chung

    2014-10-01

    This paper presents a multi-objective control method with wheelbase preview for active vehicle suspension. A four-degree-of-freedom half-car model with active suspension is considered in this study. H∞ norm and generalized H2 norm are used to improve ride quality and ensure that hard constraints are satisfied. Disturbances at the front wheel are obtained as preview information for the rear wheel. Static output-feedback is utilized in designing controllers, the solution is derived by iterative linear matrix inequality (ILMI) and cone complementarity linearization (CCL) algorithms. Simulation results confirm that multi-objective control with wheelbase preview achieves a significant improvement of ride quality (a maximum 27 percent and 60 percent improvement on vertical and angular acceleration, respectively) comparing with that of control without preview, while suspension deflections, tyre deflections and actuator forces remaining within given bounds. The extent of the improvement on the ride quality for different amount of preview information used is also illustrated.

  9. Applications of magneto-rheologic fluids in semi-active suspension systems

    NASA Astrophysics Data System (ADS)

    Andronic, Florin; Mihai, Ioan; Suciu, Cornel; Beniuga, Marius

    2015-02-01

    The present paper aims to investigate the impact of using magneto-rheologic fluids in semi-active suspension systems. For that purpose, the suspension system behavior will be analyzed in the case of dynamic control. It is verified whether a semi-active suspension system that uses magneto-rheologic fluids offers significant advantages by report to passive suspension systems. Two approaches were considered. The first one consisted of simulating both passive and semiactive suspension systems using Matlab Simulink. The conducted simulations yielded results for motion, speed, and accelerations of sprung and un-sprung masses. The second approach consisted of building an experimental set-up that uses a damper that is constructively contains a magneto-rheologic fluid, to which an adjustable variable magnetic field can be applied by means of a coil, in its turn controlled in current by a driver. The driver receives its excitation signals from sensors put in contact to the road surface model. The experimental set-up was conceived so that the un-sprung mass follows the road bumps. Simulation results were then compared to experimental ones.

  10. Pro-active optimal control for semi-active vehicle suspension based on sensitivity updates

    NASA Astrophysics Data System (ADS)

    Michael, Johannes; Gerdts, Matthias

    2015-12-01

    This article suggests a strategy to control semi-active suspensions of vehicles in a pro-active way to adapt to future road profiles. The control strategy aims to maximise comfort while maintaining good handling properties. It employs suitably defined optimal control problems in combination with a parametric sensitivity analysis. The optimal control techniques are used to optimise the time-dependent damper coefficients in an electro-rheological damper for given nominal road profiles. The parametric sensitivity analysis is used to adapt the computed nominal optimal controls to perturbed road profiles in real time. The method is particularly useful for events with a low excitation frequency such as ramps, bumps, or potholes. For high-frequency excitations standard controllers are preferable; so we propose a switched open-closed-loop controller design. Various examples demonstrate the performance of the approach.

  11. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  12. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  13. On the achievable performance using variable geometry active secondary suspension systems in commercial vehicles

    NASA Astrophysics Data System (ADS)

    Evers, Willem-Jan; Besselink, Igo; Teerhuis, Arjan; Nijmeijer, Henk

    2011-10-01

    There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter truck model are adopted. The results show that the classic skyhook controller gives a relatively poor performance while a comfort increase of 17-28% can be obtained with the LQ optimal controller, depending on the chosen energy weighting. Furthermore, an additional 75% comfort increase and 77% energy cost reduction can be obtained, with respect to the fixed gain energy optimal controller, using condition-dependent control gains. So, it is concluded that the performance potential using condition-dependent controllers is huge, and that the use of the classic skyhook control strategy should, in general, be avoided when designing active secondary suspensions for commercial vehicles.

  14. Magnetic manipulation of self-assembled colloidal asters

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  15. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  16. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics.

    PubMed

    Rahmani, Amir M; Wang, Anna; Manoharan, Vinothan N; Colosqui, Carlos E

    2016-08-14

    The adsorption of single colloidal microparticles (0.5-1 μm radius) at a water-oil interface has been recently studied experimentally using digital holographic microscopy [Kaz et al., Nat. Mater., 2012, 11, 138-142]. An initially fast adsorption dynamics driven by capillary forces is followed by an unexpectedly slow relaxation to equilibrium that is logarithmic in time and can span hours or days. The slow relaxation kinetics has been attributed to the presence of surface "defects" with nanoscale dimensions (1-5 nm) that induce multiple metastable configurations of the contact line perimeter. A kinetic model considering thermally activated transitions between such metastable configurations has been proposed [Colosqui et al., Phys. Rev. Lett., 2013, 111, 028302] to predict both the relaxation rate and the crossover point to the slow logarithmic regime. However, the adsorption dynamics observed experimentally before the crossover point has remained unstudied. In this work, we propose a Langevin model that is able to describe the entire adsorption process of single colloidal particles by considering metastable states produced by surface defects and thermal motion of the particle and liquid interface. Invoking the fluctuation dissipation theorem, we introduce a drag term that considers significant dissipative forces induced by thermal fluctuations of the liquid interface. Langevin dynamics simulations based on the proposed adsorption model yield close agreement with experimental observations for different microparticles, capturing the crossover from (fast) capillary driven dynamics to (slow) thermally activated kinetics. PMID:27373956

  17. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  18. Controlling Defects and Flow in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Shankar, Suraj; Guillamat Bassedas, Pau; Ignés-Mullol, Jordi; Sagués, Francesc; Marchetti, M. Cristina

    Experiments on active nematics composed of cytoskeletal biopolymers activated by molecular motors have shown that in these systems topological defects drive self-sustained flows and the transition to spatio-temporal chaos. In active nematics, defects become dynamical entities and behave like self-propelled particles. In a freely suspended nematic layer the defect speed is controlled by the activity and the viscosity of the active fluid that is so far unknown. Experiments, however, are carried out on very thin nematic layers at an oil-water interface. Our collaborators in Barcelona have shown that increasing the viscosity of the oil can substantially slow down the defects and increase their number. Considering a model of an active nematic at an oil-water interface, we have calculated the defect speed as a function of oil viscosity and find that theory and experiments agree well when the oil viscosity is changed over four orders of magnitude. Importantly, by combining theory and experiments these results provide a parameter-free estimate for the interfacial viscosity of the active nematic layer, which has never been measured before. This research was supported by the Grants NSF-DMR-1305184 and MINECO FIS 2013-41144P.

  19. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    PubMed

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-01

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment. PMID:26713453

  20. Discontinuous fluidization transition in dense suspensions of actively deforming particles

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    Collective dynamics of self-propelled particles at high density have been shown to display a glass-like transition with a critical slowing down of 2 to 4 orders of magnitude. In this talk, we propose a new mechanism of injecting energy or activity via volume fluctuations. We show that the behaviour of actively deforming particles is strikingly different from that of self-propelled particles. In particular, we find a discontinuous non-equilibrium phase transition from a flowing state to an arrested state. Our minimal model might also explain the collective dynamics in epithelial tissues. In particular, without needing self-propulsion or cell-cell adhesion, volume fluctuations of individual cells alone might be sufficient to give rise to an active fluidization and collective dynamics in densely packed tissues.

  1. Compartmentalization of metals within the diverse colloidal matrices comprising activated sludge microbial flocs.

    PubMed

    Leppard, Gary G; Droppo, Ian G; West, M Marcia; Liss, Steven N

    2003-01-01

    Activated sludge floc from a wastewater treatment system was characterized, with regard to principal structural, chemical, and microbiological components and properties, in relation to contaminant-colloid associations and settling. Multiscale analytical microscopies, in conjunction with multimethod sample preparations, were used correlatively to characterize diverse colloidal matrices within microbial floc. Transmission electron microscopy, in conjunction with energy dispersive spectroscopy (EDS), revealed specific associations of contaminant heavy metals with individual bacterial cells and with extracellular polymeric substances (EPS). Floc structure was mapped from the level of gross morphology down to the nano-scale, and flocs were described with respect to settling properties, size, shape, density, porosity, bound water content, and EPS chemical composition; gross surface properties were also measured for correlation with principal floc features. Compartmentalization results based on 171 EDS analyses and representative high-resolution images showed that nano-scale agglomerations of (i) silver (100%) and (ii) zinc (91%) were confined almost entirely to EPS matrices while (iii) Pb (100%) was confined to intracellular granules and (iv) aluminum was partitioned between EPS matrices (41%) and intracellular matrices (59%). The results suggest that engineered changes in microbial physiology and/or in macromolecular EPS composition may influence metal removal efficiencies. PMID:14674532

  2. 45 CFR 30.29 - Suspension of collection activity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... debtor, the Secretary may suspend collection activity on a debt when the debtor's future prospects... 30.29 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CLAIMS COLLECTION... debtor; (2) The debtor's financial condition is expected to improve; or (3) The debtor has requested...

  3. Semi-active H∞ control of high-speed railway vehicle suspension with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zong, Lu-Hang; Gong, Xing-Long; Xuan, Shou-Hu; Guo, Chao-Yang

    2013-05-01

    In this paper, semi-active H∞ control with magnetorheological (MR) dampers for railway vehicle suspension systems to improve the lateral ride quality is investigated. The proposed semi-active controller is composed of a H∞ controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse MR damper model as the damper controller. First, a 17-degree-of-freedom model for a full-scale railway vehicle is developed and the random track irregularities are modelled. Then a modified Bouc-Wen model is built to characterise the forward dynamic characteristics of the MR damper and an inverse MR damper model is built with the ANFIS technique. Furthermore, a H∞ controller composed of a yaw motion controller and a rolling pendulum motion (lateral motion+roll motion) controller is established. By integrating the H∞ controller with the ANFIS inverse model, a semi-active H∞ controller for the railway vehicle is finally proposed. Simulation results indicate that the proposed semi-active suspension system possesses better attenuation ability for the vibrations of the car body than the passive suspension system.

  4. Active vibration attenuating seat suspension for an armored helicopter crew seat

    NASA Astrophysics Data System (ADS)

    Sztein, Pablo Javier

    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.

  5. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    third conference in a series that began in 2004 [2] and was continued in 2008 [3]. The CODEF meeting series is held in conjunction with the German Dutch Transregional Collaborative Research Centre SFB TR6 with the title Physics of Colloidal Dispersions in External Fields. Papers from scientists working within this network as well as those from further invited contributors are summarized in this issue. They are organized according to the type of field applied, namely: shear flow electric field laser-optical and magnetic field confinement other fields and active particles To summarize the highlights of this special issue as regards shear fields, the response of depletion-induced colloidal clusters to shear is explored in [4]. Soft particles deform under shear and their structural and dynamical behaviour is studied both by experiment [5] and theory [6]. Transient dynamics after switching on shear is described by a joint venture of theory, simulation and experiment in [7]. Colloids provide the fascinating possibility to drag single particles through the suspension, which gives access to microrheology (as opposed to macrorheology, where macroscopic boundaries are moved). Several theoretical aspects of microrheology are discussed in this issue [8-10]. Moreover, a microscopic theory for shear viscosity is presented [11]. Various aspects of colloids in electric fields are also included in this issue. Electrokinetic phenomena for charged suspensions couple flow and electric phenomena in an intricate way and are intensely discussed both by experiment and simulation in contributions [12-14]. Dielectric phenomena are also influenced by electric fields [15]. Electric fields can induce effective dipolar forces between colloids leading to string formation [16]. Finally, binary mixtures in an electric driving field exhibit laning [17]. Simulation [18] and theoretical [19] studies of this nonequilibrium phenomenon are also discussed in this issue. Laser-optical fields can be used to

  6. SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Stiufiuc, Rares; Iacovita, Cristian; Lucaciu, Constantin M.; Stiufiuc, Gabriela; Dutu, Alina G.; Braescu, Cristiana; Leopold, Nicolae

    2013-01-01

    We report a fast, one-step, facile, and green preparation method that yields very stable and biocompatible silver colloids that are highly active as surface-enhanced Raman spectroscopy (SERS) platforms that has a possible application in biomedicine. Reduction of silver nitrate has been carried out using polyethylene glycol (PEG) which acts as both reducing agent and stabilizer. It turned out that the -OH groups provided by the addition of NaOH represent a key element in the successful synthesis of PEG-coated silver nanoparticles (AgNPs). The as-obtained silver colloids have been characterized by UV-visible spectroscopy, transmission electron spectroscopy, and SERS using 532- and 633-nm laser lines on a dispersive Raman spectrometer. Several analytes as methylene blue, p-aminothiophenol, amoxicillin, and Cu(PAR)2 were used to prove SERS enhancement of the obtained silver colloid. It has been found that the PEGylated AgNPs provide SERS signals comparable to those achieved using classical hydroxylamine and citrate-reduced silver colloids, thus demonstrating the ability of this new method to prepare biocompatible silver colloids.

  7. Semi-active magnetorheological seat suspensions for enhanced crashworthiness and vibration isolation of rotorcraft seats

    NASA Astrophysics Data System (ADS)

    Hiemenz, Gregory J.

    current state-of-the-art rotorcraft seat suspensions which can provide no better than 20% risk of occupant injury. Finally, an MR-based seat suspension designed solely for the purposes of vibration isolation was designed, analyzed, and experimentally demonstrated. MR dampers were integrated into the current crashworthy SH-60 crew seat with minimal weight impact such that the original crashworthy capabilities were maintained. Then, utilizing semi-active control, experimental vibration testing demonstrated that the system reduced vertical cockpit vibrations transmitted to the occupant by 76%. This is a significant advance over current state-of-the-art rotorcraft seats which provide no attenuation of cockpit vibrations.

  8. Non-dimensionalised closed-form parametric analysis of semi-active vehicle suspensions using a quarter-car model

    NASA Astrophysics Data System (ADS)

    Ahmadian, Mehdi; Blanchard, Emmanuel

    2011-02-01

    This article provides a non-dimensionalised closed-form analysis of semi-active vehicle suspensions, using a quarter-car model. The derivation of the closed-form solutions for three indices that can be used for ride comfort, vehicle handling, and stability are presented based on non-dimensionalised suspension parameters. The behaviour of semi-active vehicle suspensions is evaluated using skyhook, groundhook, and hybrid control policies, and compared with passive suspensions. The relationship between vibration isolation, suspension deflection, and road holding is studied, using three performance indices based on the mean square of the sprung mass acceleration, rattle space, and tyre deflection, respectively. The results of the study indicate that the hybrid control policy yields significantly better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement for typical passenger cars. The results also indicate that for typical passenger cars, the hybrid control policy results in a better compromise between comfort, road holding and suspension travel requirements than both the skyhook and groundhook control methods.

  9. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  10. Using the lead vehicle as preview sensor in convoy vehicle active suspension control

    NASA Astrophysics Data System (ADS)

    Rahman, Mustafizur; Rideout, Geoff

    2012-12-01

    Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.

  11. Active seat suspension for a small vehicle: considerations for control system including observer

    NASA Astrophysics Data System (ADS)

    Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko

    2007-12-01

    We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.

  12. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

    PubMed Central

    Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik; Lasanta, Tania; Navickaite, Gabriele; Koppens, Frank H. L.; Konstantatos, Gerasimos

    2016-01-01

    The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 105 and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics. PMID:27311710

  13. Direct visualization of free-volume-triggered activation of β relaxation in colloidal glass.

    PubMed

    Lu, Yunzhuo; Lu, Xing; Qin, Zuoxiang; Shen, Jun

    2016-07-01

    β relaxation, which is predicted by mode coupling theory and involves the localized motions of particles, initiates in a supercooled liquid and continues into glassy state. It correlates essentially with many fundamental properties of amorphous materials. Despite its importance, the underlying mechanisms leading to the β relaxation have remained elusive. As natural heterogeneity, the original distributed free volume has been supposed to be associated with the activation of β relaxation in amorphous solids. However, there has been no direct experimental proof for this hypothesis. Here we used a colloidal glass to directly observe the β relaxation and free-volume distribution. We found a spatial correlation between the β relaxation and free volume. The large free volume regions were observed to possess a low-energy cost of relaxation-induced strain, indicating that the large free volume region presenting a low-energy barrier for structural relaxation benefits the β relaxation. PMID:27575178

  14. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor.

    PubMed

    Nikitskiy, Ivan; Goossens, Stijn; Kufer, Dominik; Lasanta, Tania; Navickaite, Gabriele; Koppens, Frank H L; Konstantatos, Gerasimos

    2016-01-01

    The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector device by integrating a colloidal quantum dot photodiode atop a graphene phototransistor. Our hybrid detector overcomes the limitations of a phototransistor in terms of speed, quantum efficiency and linear dynamic range. We report quantum efficiencies in excess of 70%, gain of 10(5) and linear dynamic range of 110 dB and 3 dB bandwidth of 1.5 kHz. This constitutes a demonstration of an optoelectronically active device integrated directly atop graphene and paves the way towards a generation of flexible highly performing hybrid two-dimensional (2D)/0D optoelectronics. PMID:27311710

  15. Direct visualization of free-volume-triggered activation of β relaxation in colloidal glass

    NASA Astrophysics Data System (ADS)

    Lu, Yunzhuo; Lu, Xing; Qin, Zuoxiang; Shen, Jun

    2016-07-01

    β relaxation, which is predicted by mode coupling theory and involves the localized motions of particles, initiates in a supercooled liquid and continues into glassy state. It correlates essentially with many fundamental properties of amorphous materials. Despite its importance, the underlying mechanisms leading to the β relaxation have remained elusive. As natural heterogeneity, the original distributed free volume has been supposed to be associated with the activation of β relaxation in amorphous solids. However, there has been no direct experimental proof for this hypothesis. Here we used a colloidal glass to directly observe the β relaxation and free-volume distribution. We found a spatial correlation between the β relaxation and free volume. The large free volume regions were observed to possess a low-energy cost of relaxation-induced strain, indicating that the large free volume region presenting a low-energy barrier for structural relaxation benefits the β relaxation.

  16. Crack formation and prevention in colloidal drops.

    PubMed

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  17. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  18. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  19. Off-road motorbike performance analysis using a rear semi-active suspension

    NASA Astrophysics Data System (ADS)

    Lozoya-Santos, Jorge de J.; Cervantes-Muñoz, Damián.; Ramírez Mendoza, Ricardo

    2015-04-01

    The topic of this paper is the analysis of a control system for a semi active rear suspension in an off-road 2-wheel vehicle. Several control methods are studied, as well as the recently proposed Frequency Estimation Based (FEB) algorithm. The test motorcycle dynamics, as well as the passive, semi active, and the algorithm controlled shock absorber models are loaded into BikeSim, a professional two-wheeled vehicle simulation software, and tested in several road conditions. The results show a detailed comparison of the theoretical performance of the different control approaches in a novel environment for semi active dampers.

  20. Muscle Activation during Push-Ups with Different Suspension Training Systems

    PubMed Central

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C.; Martín, Fernando F; Rogers, Michael E.; Behm, David G.; Andersen, Lars L.

    2014-01-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key Points Compared with standard push-ups on the floor, suspended push-ups increase core muscle activation. A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity. More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation. A suspended push-up is an effective method to achieve high muscle activity levels in the ABS. PMID:25177174

  1. Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Jing, Hui; Karimi, Hamid Reza; Chen, Nan

    2015-10-01

    In this paper, the robust fault-tolerant (FT) H∞ control problem of active suspension systems with finite-frequency constraint is investigated. A full-car model is employed in the controller design such that the heave, pitch and roll motions can be simultaneously controlled. Both the actuator faults and external disturbances are considered in the controller synthesis. As the human body is more sensitive to the vertical vibration in 4-8 Hz, robust H∞ control with this finite-frequency constraint is designed. Other performances such as suspension deflection and actuator saturation are also considered. As some of the states such as the sprung mass pitch and roll angles are hard to measure, a robust H∞ dynamic output-feedback controller with fault tolerant ability is proposed. Simulation results show the performance of the proposed controller.

  2. Active vibration control for nonlinear vehicle suspension with actuator delay via I/O feedback linearization

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin

    2014-10-01

    The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.

  3. Performance analysis of a semi-active railway vehicle suspension featuring MR dampers

    NASA Astrophysics Data System (ADS)

    Kim, Hwan-Choong; Choi, Seung-Bok; Lee, Gyu-Seop; An, Chae-Hun; You, Won-Hee

    2014-03-01

    This paper presents performance analysis of semi-active railway vehicle suspension system using MR damper. In order to achieve this goal, a mathematical dynamic model of railway vehicle is derived by integrating car body, bogie frame and wheel-set which can be able to represent lateral, yaw and roll motion. Based on this model, the dynamic range of MR damper at the railway secondary suspension system and design parameters of MR damper are calculated. Subsequently, control performances of railway vehicle including car body lateral motion and acceleration of MR damper are evaluated through computer simulations. Then, the MR damper is manufactured to be retrofitted with the real railway vehicle and its characteristics are experimentally measured. Experimental performance of MR damper is assessed using test rig which is composed of a car body and two bogies.

  4. Colloidal Aggregation and the in Vitro Activity of Traditional Chinese Medicines

    PubMed Central

    Duan, Da; Doak, Allison K.; Nedyalkova, Lyudmila; Shoichet, Brian K.

    2015-01-01

    Traditional Chinese Medicines (TCMs) have been the sole source of therapeutics in China for two millennia. In recent drug discovery efforts, purified components of TCM formulations have shown activity in many in vitro assays, raising concerns of promiscuity. Here, we investigated 14 bioactive small molecules isolated from TCMs for colloidal aggregation. At concentrations commonly used in cell-based or biochemical assay conditions, eight of these compounds formed particles detectable by dynamic light scattering and showed detergent-reversible inhibition against β-lactamase and malate dehydrogenase, two counter-screening enzymes. When tested against their literature-reported molecular targets, three of these eight compounds showed similar reversal of their inhibitory activity in the presence of detergent. For three of the most potent aggregators, contributions to promiscuity via oxidative cycling were investigated; addition of 1 mM DTT had no effect on their activity, which is inconsistent with an oxidative mechanism. TCMs are often active at micromolar concentrations; this study suggests that care must be taken to control for artifactual activity when seeking their primary targets. Implications for the formulation of these molecules are considered. PMID:25606714

  5. Evaluation of Colloids and Activation Agents for Determination of Melamine Using UV-SERS

    PubMed Central

    2012-01-01

    UV-SERS measurements offer a great potential for environmental or food (detection of food contaminats) analytics. Here, the UV-SERS enhancement potential of various kinds of metal colloids, such as Pd, Pt, Au, Ag, Au–Ag core–shell, and Ag–Au core–shell with different shapes and sizes, were studied using melamine as a test molecule. The influence of different activation (KF, KCl, KBr, K2SO4) agents onto the SERS activity of the nanomaterials was investigated, showing that the combination of a particular nanoparticle with a special activation agent is extremely crucial for the observed SERS enhancement. In particular, the size dependence of spherical nanoparticles of one particular metal on the activator has been exploited. By doing so, it could be shown that the SERS enhancement increases or decreases for increasing or decreasing size of a nanoparticle, respectively. Overall, the presented results demonstrate the necessity to adjust the nanoparticle size and the activation agent for different experiments in order to achieve the best possible UV-SERS results. PMID:22428076

  6. Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Fu; Wei, Hsien-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-04-01

    The diffusive behaviors of active colloids with run-and-tumble movement are explored by dissipative particle dynamics simulations for self-propelled particles (force dipole) and external field-driven particles (point force). The self-diffusion of tracers (solvent) is investigated as well. The influences of the active force, run time, and concentration associated with active particles are studied. For the system of self-propelled particles, the normal diffusion is observed for both active particles and tracers. The diffusivity of the former is significantly greater than that of the latter. For the system of field-driven particles, the superdiffusion is seen for both active particles and tracers. In contrast, it is found that the anomalous diffusion exponent of the former is slightly less than that of the latter. The anomalous diffusion is caused by the many-body, long-range hydrodynamic interactions. In spite of the superdiffusion, the sedimentation equilibrium of field-driven particles can be acquired and the density profile is still exponentially decayed. The sedimentation length of field-driven particles is always greater than that of self-propelled particles.

  7. Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium.

    PubMed

    Chen, Yen-Fu; Wei, Hsien-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-04-01

    The diffusive behaviors of active colloids with run-and-tumble movement are explored by dissipative particle dynamics simulations for self-propelled particles (force dipole) and external field-driven particles (point force). The self-diffusion of tracers (solvent) is investigated as well. The influences of the active force, run time, and concentration associated with active particles are studied. For the system of self-propelled particles, the normal diffusion is observed for both active particles and tracers. The diffusivity of the former is significantly greater than that of the latter. For the system of field-driven particles, the superdiffusion is seen for both active particles and tracers. In contrast, it is found that the anomalous diffusion exponent of the former is slightly less than that of the latter. The anomalous diffusion is caused by the many-body, long-range hydrodynamic interactions. In spite of the superdiffusion, the sedimentation equilibrium of field-driven particles can be acquired and the density profile is still exponentially decayed. The sedimentation length of field-driven particles is always greater than that of self-propelled particles. PMID:27176356

  8. Colloidal aggregation and the in vitro activity of traditional Chinese medicines.

    PubMed

    Duan, Da; Doak, Allison K; Nedyalkova, Lyudmila; Shoichet, Brian K

    2015-04-17

    Traditional Chinese Medicines (TCMs) have been the sole source of therapeutics in China for two millennia. In recent drug discovery efforts, purified components of TCM formulations have shown activity in many in vitro assays, raising concerns of promiscuity. Here, we investigated 14 bioactive small molecules isolated from TCMs for colloidal aggregation. At concentrations commonly used in cell-based or biochemical assay conditions, eight of these compounds formed particles detectable by dynamic light scattering and showed detergent-reversible inhibition against β-lactamase and malate dehydrogenase, two counter-screening enzymes. When three of these compounds were tested against their literature-reported molecular targets, they showed similar reversal of their inhibitory activity in the presence of detergent. For three of the most potent aggregators, contributions to promiscuity via oxidative cycling were investigated; addition of 1 mM DTT had no effect on their activity, which is inconsistent with an oxidative mechanism. TCMs are often active at micromolar concentrations; this study suggests that care must be taken to control for artifactual activity when seeking their primary targets. Implications for the formulation of these molecules are considered. PMID:25606714

  9. Phase separation and rotor self-assembly in active particle suspensions

    PubMed Central

    Schwarz-Linek, J.; Valeriani, C.; Cacciuto, A.; Cates, M. E.; Marenduzzo, D.; Morozov, A. N.; Poon, W. C. K.

    2012-01-01

    Adding a nonadsorbing polymer to passive colloids induces an attraction between the particles via the “depletion” mechanism. High enough polymer concentrations lead to phase separation. We combine experiments, theory, and simulations to demonstrate that using active colloids (such as motile bacteria) dramatically changes the physics of such mixtures. First, significantly stronger interparticle attraction is needed to cause phase separation. Secondly, the finite size aggregates formed at lower interparticle attraction show unidirectional rotation. These micro-rotors demonstrate the self-assembly of functional structures using active particles. The angular speed of the rotating clusters scales approximately as the inverse of their size, which may be understood theoretically by assuming that the torques exerted by the outermost bacteria in a cluster add up randomly. Our simulations suggest that both the suppression of phase separation and the self-assembly of rotors are generic features of aggregating swimmers and should therefore occur in a variety of biological and synthetic active particle systems. PMID:22392986

  10. Skyhook-based semi-active control of full-vehicle suspension with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wang, Enrong; Min, Fuhong; Subash, Rakheja; Su, Chunyi

    2013-05-01

    The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) full-vehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Bouc-wen hysteretic force-velocity ( F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and

  11. Optimization and static output-feedback control for half-car active suspensions with constrained information

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2016-09-01

    In this paper, the static output-feedback control problem of active suspension systems with information structure constraints is investigated. In order to simultaneously improve the ride comfort and stability, a half car model is used. Other constraints such as suspension deflection, actuator saturation, and controller constrained information are also considered. A novel static output-feedback design method based on the variable substitution is employed in the controller design. A single-step linear matrix inequality (LMI) optimization problem is solved to derive the initial feasible solution with a sparsity constraint. The initial infeasibility issue of the static output-feedback is resolved by using state-feedback information. Specifically, an optimization algorithm is proposed to search for less conservative results based on the feasible controller gain matrix. Finally, the validity of the designed controller for different road profiles is illustrated through numerical examples. The simulation results indicate that the optimized static output-feedback controller can achieve better suspension performances when compared with the feasible static output-feedback controller.

  12. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.

    PubMed

    Huang, Yingbo; Na, Jing; Wu, Xing; Liu, Xiaoqin; Guo, Yu

    2015-01-01

    This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes. PMID:25034649

  13. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  14. Engineering of Novel Biocolloid Suspensions

    NASA Technical Reports Server (NTRS)

    Hammer, D. A.; Rodges, S.; Hiddessen, A.; Weitz, D. A.

    1999-01-01

    Colloidal suspensions are materials with a variety of uses from cleaners and lubricants to food, cosmetics, and coatings. In addition, they can be used as a tool for testing the fundamental tenets of statistical physics. Colloidal suspensions can be synthesized from a wide variety of materials, and in the form of monodisperse particles, which can self-assemble into highly ordered colloidal crystal structures. As such they can also be used as templates for the construction of highly ordered materials. Materials design of colloids has, to date, relied on entropic self-assembly, where crystals form as result of lower free energy due to a transition to order. Here, our goal is to develop a completely new method for materials fabrication using colloidal precursors, in which the self-assembly of the ordered colloidal structures is driven by a highly controllable, attractive interaction. This will greatly increase the range of potential structures that can be fabricated with colloidal particles. In this work, we demonstrate that colloidal suspensions can be crosslinked through highly specific biological crosslinking reactions. In particular, the molecules we use are protein-carbohydrate interactions derived from the immune system. This different driving force for self-assembly will yield different and novel suspensions structures. Because the biological interactions are heterotypic (A binding to B), this chemical system can be used to make binary alloys in which the two colloid subpopulations vary in some property - size, density, volume fraction, magnetic susceptibility, etc. An additional feature of these molecules which is unique - even within the realm of biological recognition - is that the molecules bind reversibly on reasonable time-scales, which will enable the suspension to sample different configurations, and allow us to manipulate and measure the size of the suspension dynamically. Because of the wide variety of structures that can be made from these novel

  15. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  16. Colloidal carbon stimulation of Kupffer cells triggers Nrf2 activation in the isolated perfused rat liver.

    PubMed

    Núñez, Bárbara; Vargas, Romina; Castillo, Iván; Videla, Luis A

    2012-06-01

    Activation of transcription factor Nrf2 was investigated in the isolated perfused rat liver infused with 0.5 mg of colloidal carbon (CC)/ml for 5-15 min to stimulated Kupffer cell function. Infusion of CC enhanced liver O(2) consumption over basal levels, with a time-dependent increase in CC-induced O(2) uptake, at constant rates of CC phagocytosis by Kupffer cells, as assessed histologically, and adequate viability conditions of the livers, as shown by the marginal (0.34 %) total sinusoidal lactate dehydrogenase (LDH) efflux over intrahepatic LDH activity. Under these conditions, cytosolic protein levels of Nrf2 (Western blot) and inhibitor of Nrf2 Keap1 progressively declined by CC infusion, those of nuclear Nrf2 increased, leading to enhancement in the nuclear/cytosolic Nrf2 ratios. It is concluded that the respiratory burst of CC-stimulated Kupffer cells triggers Nrf2 activation in the perfused liver, a response that may afford cellular protection under pro-oxidant conditions underlying Kupffer cell stimulation. PMID:22461194

  17. Ethylene activates a plasma membrane Ca(2+)-permeable channel in tobacco suspension cells.

    PubMed

    Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2007-01-01

    Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants. PMID:17447907

  18. Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles.

    PubMed

    Khashan, Khawlah Salah; Sulaiman, Ghassan Mohammad; Abdul Ameer, Farah Abdul Kareem; Napolitano, Giuliana

    2016-03-01

    The Colloidal solutions of nickel oxide (NiO) nanoparticles synthesized via Nd-Yag pulse ablation of nickel immersed in H2O were studied. The created nanoparticles were characterized by UV-VIS absorption, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). FTIR characterization confirms the formation of nickel oxide nanoparticles. The optical band gap values, determined by UV-VIS absorption measurements, are found to be (4.5 ev). TEM shows that nanoparticles size ranged from 2-21 nm. The antimicrobial activity was carried out against pseudomonas aurogenisa, Escherichia coli (gram negative bacteria), Staphylococcus aureus and Streptococcus pneumonia (gram positive bacteria). The NiO nanoparticles showed inhibitory activity in both strains of bacteria with best selectivity against gram-positive bacteria. The findings of present study indicate that NiO nanoparticles could potentiate the permeability of bacterial cell wall, and remarkably increase the accumulation of amoxicillin in bacteria, suggesting that NiO nanoparticles together with amoxicillin would facilitate the synergistic impact on growth inhibition of bacterial strains. PMID:27087098

  19. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  20. Polymeric stabilization of colloidal asphaltenes

    NASA Astrophysics Data System (ADS)

    Hashmi, Sara; Firoozabadi, Abbas

    2010-03-01

    Asphaltenes, the heaviest component of crude oil, cause many problems in petroleum extraction and recovery. Operationally defined as insoluble in long chain alkanes but soluble in toluene, asphaltenes have been described by bulk thermodynamic models such as the Flory-Huggins theory. However, bulk models work well only for asphaltenes in good solvents. Characterization of asphaltenes in poor solvents remains elusive: molecular scale asphaltenes readily aggregate to the colloidal scale and become highly unstable in solution. We investigate the ability of polymers to stabilize colloidal asphaltene suspensions in heptane. In the absence of added polymer, sedimentation measurements reveal dynamics reminiscent of collapsing gels. Adding polymers to colloidal asphaltene suspensions can delay the characteristic sedimentation time by orders of magnitude. Light scattering results suggest that the mechanism of stabilization may be related to a decrease in both particle size and polydispersity as a function of added polymer.

  1. Dynamics of inert spheres in active suspensions of micro-rotors.

    PubMed

    Yeo, Kyongmin; Lushi, Enkeleida; Vlahovska, Petia M

    2016-07-01

    Inert particles suspended in active fluids of self-propelled particles are known to often exhibit enhanced diffusion and novel coherent structures. Here we numerically investigate the dynamical behavior and self-organization in a system consisting of passive and actively rotating spheres of the same size. The particles interact through direct collisions and the fluid flows generated as they move. In the absence of passive particles, three states emerge in a binary mixture of spinning spheres depending on particle fraction: a dilute gas-like state where the rotors move chaotically, a phase-separated state where like-rotors move in lanes or vortices, and a jammed state where crystals continuously assemble, melt and move (K. Yeo, E. Lushi, and P. M. Vlahovska, Phys. Rev. Lett., 2015, 114, 188301). Passive particles added to the rotor suspension modify the system dynamics and pattern formation: while states identified in the pure active suspension still emerge, they occur at different densities and mixture proportions. The dynamical behavior of the inert particles is also non-trivially dependent on the system composition. PMID:27265340

  2. 234U /238U and 230Th /234U activity ratios in the colloidal phases of aquifers in lateritic weathered zones

    NASA Astrophysics Data System (ADS)

    Short, Stephen A.; Lowson, Richard T.; Ellis, John

    1988-11-01

    A procedure was developed for comparing solute and colloid phases of groundwaters in contact with uranium ore bodies at Nabarlek and Koongarra in the Alligator Rivers region, Northern Territory, Australia. Single-pass ultrafiltration of large volumes with cut-offs of 18 nm and 1 μm was used. Colloids were composed of Fe and Si species with sorbed U and U daughters. Uranium isotopes were mostly present as soluble species. Thorium was significantly associated with the colloids. The 234U /238U activity ratios (ARs) were similar in solute and colloid phases close to the ore bodies but further down-gradient colloids were generally more depleted of 234U than the solute. The 230Th /234U ARs rose from very low values for both solute and colloid phases close to the ore bodies through several orders of magnitude to much higher values further down-gradient. Colloid 230Th /234U ARs were always significantly greater than solute ARs. Results were consistent with a systematic leaching of U from colloids going down-gradient and very little mobilization of ore-body 230Th relative to U. Ubiquitous complexed 232Th appeared to suppress the solubility of 230Th.

  3. Active suspension design for a Large Space Structure ground test facility

    NASA Technical Reports Server (NTRS)

    Lange, Thomas J. H.; Schlegel, Clemens

    1993-01-01

    The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing.

  4. Synthesis, photocatalytic activity, and photogenerated hydroxyl radicals of monodisperse colloidal ZnO nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Chong; Li, Qingsong; Tang, Limei; Xin, Kun; Bai, Ailing; Yu, Yingmin

    2015-12-01

    In the present study, monodisperse colloidal zinc oxide (ZnO) nanospheres were successfully synthesized via a newly developed two-stage solution method followed by facile calcination at various temperatures. The effects of calcination temperature on the structure, morphology, and optical properties as well as the photocatalytic activity of the as-made ZnO samples were investigated systematically by Fourier transform infrared spectrometry, X-ray diffraction, field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, diffuse reflectance UV-visible spectroscopy (DRS), photoluminescence, and related photocatalytic activity tests. The thermal decomposition was analyzed by thermogravimetric analysis. The crystallinity was found to gradually increase with increasing calcination temperature, whereas the decrease in the Brunauer-Emmett-Teller specific surface area of the samples with calcination may be ascribed to the increased particle size. The DRS results provided clear evidence for the decrease in band gap energy of ZnO samples with an increase in calcination temperature. The photoluminescence spectra demonstrated the calcination-dependent emission features, especially the UV emission intensity. In particular, the ZnO product calcined at 400 °C exhibited the highest photocatalytic activity, degrading methylene blue by almost 99.1% in 70 min, which is ascribed to the large specific surface area and pore volume, high electron-hole pair separation efficient, and great redox potential of the obtained ZnO nanoparticles. In addition, the production of photogenerated hydroxyl radicals (•OH) was consistent with the methylene blue degradation efficiency over the as-made ZnO nanoparticles. Using isopropanol as a hydroxyl radical scavenger, •OH was determined to be the main active oxygen species in the photocatalytic process. A possible mechanism of photodegradation under UV light irradiation also is proposed.

  5. A study on self-assembled activation by Pd/Sn colloids

    NASA Astrophysics Data System (ADS)

    Wang, Guixiang; Li, Ning; Dong, Guojun

    2007-07-01

    3-Aminopropyltriethoxysilane (APTS) was used to form self-assembled molecular layers on ABS plastics surface and changed surface electrification. The processes were investigated by X-ray photoelectron spectra (XPS). After APTS treatment, the surface has some hydroxyl group which has hydrophilicity and the contact angle of ABS surface reduced. APTS-modified ABS surface has C, O, N and Si element and the results show that APTS was bonded on ABS surface. It was turned out that N and O element formed chemical bond with the ABS surface. The outermost electron configuration of Pd 2+ is 4d 85s 0p 0 and adopted dsp 2 hybridization commonly. The electron wasn't filled with d orbital. O has two lone pair electrons while N has one lone pair electron, which can place the Pd vacancy orbital forming O-Pd or N-Pd σcoordinate bond. Based on XPS result, we proposed the mechanism for hydrolyzing of APTS in alcohol solution, APTS adsorbing on ABS plastics surface and its effect in activation process. After APTS hydrolyzed in water solution and forms 3-Aminopropyltrihydroxysilane which condensed in alcohol solution at 65°C and forming copolymer. The copolymer self-assembled on ABS surface and after hydrolyzing can form --O-- bond which react with Pd 0 in succedent steps. After modification with APTS, the amount of adsorption of Pd/Sn colloids increased from 0.95mg/dm2 to 1.07mg/dm2.

  6. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals.

    PubMed

    Javaux, C; Mahler, B; Dubertret, B; Shabaev, A; Rodina, A V; Efros, Al L; Yakovlev, D R; Liu, F; Bayer, M; Camps, G; Biadala, L; Buil, S; Quelin, X; Hermier, J-P

    2013-03-01

    Applications of semiconductor nanocrystals such as biomarkers and light-emitting optoelectronic devices require that their fluorescence quantum yield be close to 100%. However, such quantum yields have not been obtained yet, in part, because non-radiative Auger recombination in charged nanocrystals could not be suppressed completely. Here, we synthesize colloidal core/thick-shell CdSe/CdS nanocrystals with 100% quantum yield and completely quenched Auger processes at low temperatures, although the nanocrystals are negatively photocharged. Single particle and ensemble spectroscopy in the temperature range 30-300 K shows that the non-radiative Auger recombination is thermally activated around 200 K. Experimental results are well described by a model suggesting a temperature-dependent delocalization of one of the trion electrons from the CdSe core and enhanced Auger recombination at the abrupt CdS outer surface. These results point to a route for the design of core/shell structures with 100% quantum yield at room temperature. PMID:23396313

  7. Formation of Aqueous Suspensions of Fullerenes

    EPA Science Inventory

    Colloidal suspensions of C60, C70 and a derivative of C60, PCBM ([6,6]-Phenyl C61-butyric acid methyl ester) were produced by extended mixing in water. We examined the contribution of background solution chemistry (pH, ionic strength) on the formation kinetics of colloidal suspe...

  8. Parameters Influencing the Photocatalytic Activity of Suspension-Sprayed TiO2 Coatings

    NASA Astrophysics Data System (ADS)

    Toma, Filofteia-Laura; Berger, Lutz-Michael; Shakhverdova, Irina; Leupolt, Beate; Potthoff, Annegret; Oelschlägel, Kathrin; Meissner, Tobias; Gomez, José Antonio Ibáñez; de Miguel, Yolanda

    2014-10-01

    Photocatalytic properties of titania have been studied very intensively for a variety of applications, including air and water purification. In order to clarify the influence of the phase composition and other parameters, thermal spraying with suspensions was applied to produce photocatalytically active titania coatings starting from two commercially available anatase and rutile submicron powders. Aqueous suspensions containing 40% solids by weight were sprayed with an HVOF process using ethylene as the fuel gas. The spray parameters were chosen in order to produce mechanically stable coatings and to preserve a high content of the initial crystalline phases of the powders. The coating microstructures, phase compositions, and surface properties were characterized. The photocatalytic performance was evaluated by degradation of the pink dye Rhodamine B (RB) using two techniques: degradation of an aqueous solution of RB and discoloration of impregnated RB. All the coatings exhibited photocatalytic activity to varying degrees, depending on the phase composition as well as other factors, namely, the coating microstructure, surface morphology, surface hydroxylation, light absorption, and interaction with the pollutant.

  9. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  10. Robust system state estimation for active suspension control in high-speed tilting trains

    NASA Astrophysics Data System (ADS)

    Zhou, Ronghui; Zolotas, Argyrios; Goodall, Roger

    2014-05-01

    The interaction between the railway vehicle body roll and lateral dynamics substantially influences the tilting system performance in high-speed tilting trains, which results in a potential poor ride comfort and high risk of motion sickness. Integrating active lateral secondary suspension into the tilting control system is one of the solutions to provide a remedy to roll-lateral interaction. It improves the design trade-off for the local tilt control (based only upon local vehicle measurements) between straight track ride comfort and curving performance. Advanced system state estimation technology can be applied to further enhance the system performance, i.e. by using the estimated vehicle body lateral acceleration (relative to the track) and true cant deficiency in the configuration of the tilt and lateral active suspension controllers, thus to further attenuate the system dynamics coupling. Robust H∞ filtering is investigated in this paper aiming to offer a robust estimation (i.e. estimation in the presence of uncertainty) for the required variables, In particular, it can minimise the maximum estimation error and thus be more robust to system parametric uncertainty. Simulation results illustrate the effectiveness of the proposed schemes.

  11. Multiphysics modelling of multibody systems: application to car semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Docquier, N.; Poncelet, A.; Delannoy, M.; Fisette, P.

    2010-12-01

    The goal of the present article is to analyse the performances of a modern vehicle equipped with a novel suspension system linking front, rear, right and left cylinders via a semi-active hydraulic circuit, developed by the Tenneco Automotive company. In addition to improving the vehicle's vertical performances (in terms of comfort), both the stiff roll motion of the carbody and the soft wrap motion of the rear/front wheel-axle units can be obtained and tuned via eight electrovalves. The proposed system avoids the use of classical anti-roll bars, which would be incompatible with the wrap performance. A major problem of the project is to produce a realistic and efficient 3D multibody dynamic model of an Audi A6 coupled, at the equational level, with an hydraulic model of the suspension including cylinders, accumulators, valve characteristics, oil compressibility and pipe dynamics. As regards the hydraulic submodel, a particular attention is paid to assemble resistive components properly without resorting to the use of artificial volumes, as proposed by some software dealing with the dynamics of hydraulic systems. According to Tenneco Automotive requirements, this model must be produced in a Matlab/Simulink form, in particular for control purposes. Thanks to the symbolic approach underlying our multibody program; a unified hybrid model can be obtained as a unique plant dynamic block to be real-time integrated in the Simulink environment on a standard computer. Simulation results highlight the advantages of this new suspension system, in particular regarding the behaviour of the car which can remain stiff in roll for curve negotiation, while maintaining a soft wrap behaviour on uneven surfaces.

  12. Hydrodynamic length-scale selection in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Heidenreich, Sebastian; Dunkel, Jörn; Klapp, Sabine H. L.; Bär, Markus

    2016-08-01

    A universal characteristic of mesoscale turbulence in active suspensions is the emergence of a typical vortex length scale, distinctly different from the scale invariance of turbulent high-Reynolds number flows. Collective length-scale selection has been observed in bacterial fluids, endothelial tissue, and active colloids, yet the physical origins of this phenomenon remain elusive. Here, we systematically derive an effective fourth-order field theory from a generic microscopic model that allows us to predict the typical vortex size in microswimmer suspensions. Building on a self-consistent closure condition, the derivation shows that the vortex length scale is determined by the competition between local alignment forces, rotational diffusion, and intermediate-range hydrodynamic interactions. Vortex structures found in simulations of the theory agree with recent measurements in Bacillus subtilis suspensions. Moreover, our approach yields an effective viscosity enhancement (reduction), as reported experimentally for puller (pusher) microorganisms.

  13. Pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer.

    PubMed

    Yoshimura, Toshio; Takagi, Atsushi

    2004-09-01

    This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and functions by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model. PMID:15323000

  14. Combined control effects of brake and active suspension control on the global safety of a full-car nonlinear model

    NASA Astrophysics Data System (ADS)

    Tchamna, Rodrigue; Youn, Edward; Youn, Iljoong

    2014-05-01

    This paper focuses on the active safety of a full-vehicle nonlinear model during cornering. At first, a previously developed electronic stability controller (ESC) based on vehicle simplified model is applied to the full-car nonlinear model in order to control the vehicle yaw rate and side-slip angle. The ESC system was shown beneficial not only in tracking the vehicle path as close as possible, but it also helped in reducing the vehicle roll angle and influences ride comfort and road-holding capability; to tackle that issue and also to have better attitude motion, making use of optimal control theory the active suspension control gain is developed from a vehicle linear model and used to compute the active suspension control force of the vehicle nonlinear model. The active suspension control algorithm used in this paper includes the integral action of the suspension deflection in order to make zero the suspension deflection steady state and keep the vehicle chassis flat. Keeping the chassis flat reduces the vehicle load transfer and that is helpful for road holding and yaw rate tracking. The effects of the two controllers when they work together are analysed using various computer simulations with different steering wheel manoeuvres.

  15. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with

  16. Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing.

    PubMed

    Li, Jianlin; Armstrong, Beth L; Kiggans, Jim; Daniel, Claus; Wood, David L

    2012-02-28

    Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO(4) is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO(4) active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO(4) and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO(4) and super P C45 suspension, respectively. LiFePO(4) cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO(4) performance. PMID:22292836

  17. Bilinear Robust Control for Vertical Vibration in Railway Vehicle with Semi-Active Suspensions

    NASA Astrophysics Data System (ADS)

    Umehara, Ryuichi; Otsuki, Masatsugu; Yoshida, Kazuo

    It is well known that the vibration control problem for automobiles and railway vehicles with semi-active suspensions is classified as a control problem in a bilinear system. Bullet trains and railway vehicles have lighter body in order to improve acceleration; these vibrations in the body are easily induced by various disturbances due to rigid and elastic dynamics. Currently, passive dampers such as air suspensions and axle springs are installed on railway vehicle trucks as countermeasures for such vibrations. This study presents an effective controller, based on the H∞ theory, for vibration suppression in railway vehicles and describes a method of synthesizing this robust controller by considering unstructured and structured uncertainties that are applicable to a bilinear system. The performance of the proposed controller and its robustness toward uncertainties are examined by numerical calculations that simulate a railway vehicle subjected to disturbances due to vertical uneven railway tracks, the variations in its mass due to boarding passengers, and the modeling errors caused by non-controlled modes. This enables a comparison of the proposed control method with the conventional one in terms of the robustness toward parameter variation. Thus, this result shows the high robustness and usefulness of the proposed controller.

  18. Lipoxygenase activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.).

    PubMed

    Kollárová, R; Oblozinský, M; Kováciková, V; Holková, I; Balazová, A; Pekárová, M; Hoffman, P; Bezáková, L

    2014-08-01

    In this study we investigated the influence of biotic elicitor (phytopathogenic fungus Botrytis cinerea) and abiotic elicitors (methyljasmonate [MJ] and salicylic acid [SA]) on lipoxygenase (LOX) activity and sanguinarine production in cell suspension cultures of California poppy (Eschscholtzia californica CHAM.). We have observed different time effects of elicitors (10, 24, 48 and 72 h) on LOX activity and production of sanguinarine in in vitro cultures. All elicitors used in the experiments evidently increased the LOX activity and sanguinarine production in contrast to control samples. The highest LOX activities were determined in samples elicitated by MJ after 48 h and 72 h and the lowest LOX activities (in contrast to control samples) were detected after biotic elicitation by Botrytis cinerea. These activities showed about 50% lower level against the activities after MJ elicitation. The maximal amount of sanguinarine was observed after 48 h in MJ treated cultures (429.91 mg/g DCW) in comparision with control samples. Although all elicitors affect the sanguinarine production, effect of SA and biotic elicitor on sanguinarine accumulation in in vitrocultures was not so significant than after MJ elicitation. PMID:25158577

  19. An Active Suspension Controller Achieving the Best Ride Comfort at Any Specified Location on A Vehicle

    NASA Astrophysics Data System (ADS)

    Oya, Masahiro; Harada, Hiroshi; Araki, Yoshiaki

    In this paper, a new active suspension control scheme is developed so that ride comfort becomes best at any specified location on vehicle body. To achieve this end, two ideal vehicles are designed in which ride comfort becomes best at each different location. Then, linearly combining the two ideal vehicles, a combined ideal vehicle is constructed. It should be noted that we can easily force ride comfort at a specified location become best in the proposed combined ideal vehicle by setting only one design parameter. To achieve the good property stated above in actual vehicles, a robust tracking controller is proposed. It is shown by carrying out numerical simulations that ride comfort at a specified location can be easily improved in the closed loop system using the proposed combined ideal vehicle.

  20. VFC - Variational Feedback Controller and its application to semi-active suspensions

    NASA Astrophysics Data System (ADS)

    Pepe, G.; Carcaterra, A.

    2016-08-01

    Active and semi-active control of oscillating devices and structures is a challenging field and this paper proposes an original investigation based on variational controls that can be successfully applied to mechanical systems. The method produces a general class of new controllers, named VFC - Variational Feedback Controllers, that is the main theoretical contribution of the paper. The value of the theory relies on using a reformulation of the Variational Optimal Control Theory, that has in general the limit of producing control program strategies and not directly feedback control methods. The difficulties are in fact related to the intrinsic nature of the variational optimal control, that must solve initial and final boundary conditions. A special definition of the class of the considered objective functions, permits to skip this difficulty, producing a pure feedback control. The presented theory goes beyond with respect to the most acknowledged LQR variational-based techniques, in that VFC can be applied to more general nonlinear dynamical systems, even with finite time horizon. To test the effectiveness of the novel approach in real engineering problems, a deep investigation on nonlinear suspension systems treated by VFC is proposed in this paper. To this aim, VFC is systematically compared with the most recent methods available in this field and suitable to deal with nonlinear system control of car suspensions. In particular, the comparative analysis is made in terms of both comfort and handling key performance indexes, that permits to easily and significantly compare different control logics, such as the Sky-hook and Ground-hook control families, the Acceleration and Power Driven Dampers. The results of this comparison are collected in a performance plane, having comfort and handling indexes as coordinate axes, showing that VFC controllers completely cover the regions reached by the other mentioned control logics in this plane, but reveal to have access to

  1. 43 CFR 2886.16 - Under what conditions may BLM order an immediate temporary suspension of my activities?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Under what conditions may BLM order an immediate temporary suspension of my activities? 2886.16 Section 2886.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RIGHTS-OF-WAY...

  2. 43 CFR 2807.16 - Under what conditions may BLM order an immediate temporary suspension of my activities?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Under what conditions may BLM order an immediate temporary suspension of my activities? 2807.16 Section 2807.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) RIGHTS-OF-WAY...

  3. 76 FR 22423 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Suspension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... Federal Register on November 10, 2010 (75 FR 69130). Interested parties are encouraged to send comments to...; Suspension of Pension Benefits ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the..., ``Suspension of Pension Benefits,'' to the Office of Management and Budget (OMB) for review and approval...

  4. Preparation of stable colloidal dispersions in fluorinated liquids

    NASA Technical Reports Server (NTRS)

    Kaiser, R.

    1972-01-01

    Chemical method for separating oil from water by liquid barrier which can be positioned magnetically is described. Fluorocarbon liquids containing colloidal suspension of magnetite is proposed. Chemical composition of magnetite and fluorinated ether polymer are presented.

  5. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  6. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  7. Hexadecapolar colloids

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  8. Hexadecapolar colloids.

    PubMed

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M; Chernyshuk, Stanislav B; Smalyukh, Ivan I

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of 'colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  9. Hexadecapolar Colloids

    DOE PAGESBeta

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  10. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    SciTech Connect

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  11. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts

    PubMed Central

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T.; Lorenzo, Óscar; Revuelta, José L.; McCabe, Paul F.; Arellano, Juan B.

    2014-01-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined. PMID:24723397

  12. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    PubMed

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong. PMID:26169540

  13. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions

    NASA Astrophysics Data System (ADS)

    Gazzillo, Domenico; Pini, Davide

    2013-10-01

    We focus on the second virial coefficient B2 of fluids with molecules interacting through hard-sphere potentials plus very short-ranged attractions, namely, with a range of attraction smaller than half hard-sphere diameter. This kind of interactions is found in colloidal or protein suspensions, while the interest in B2 stems from the relation between this quantity and some other properties of these fluid systems. Since the SCOZA (Self-Consistent Ornstein-Zernike Approximation) integral equation is known to yield accurate thermodynamic and structural predictions even near phase transitions and in the critical region, we investigate B2^{ SCOZA} and compare it with B2^{exact}, for some typical potential models. The aim of the paper is however twofold. First, by expanding in powers of density the condition of thermodynamic consistency included in the SCOZA integral equation, a general analytic expression for B2^{ SCOZA} is derived. For a given potential model, a comparison between B2^{SCOZA} and B2^{exact} may help to estimate the regimes where the SCOZA closure is reliable. Second, following the Vliegenthart-Lekkerkerker (VL) and Noro-Frenkel suggestions, the relationship between the critical B2 and the critical temperature Tc is discussed in detail for two prototype models: the square-well (SW) potential and the hard-sphere attractive Yukawa (HSY) one. The known simulation data for the SW model are revisited, while for the HSY model new SCOZA results have been generated. Although B2^{HSY} at the critical temperature is found to be a slowly varying function of the range of Yukawa attraction ΔY over a wide interval of ΔY, it turns out to diverge as ΔY vanishes. For fluids with very short-ranged attractions, such a behavior contrasts with the VL assumption that B2 at the critical temperature should be nearly independent of the range of attraction. A very simple analytic representation is found for the available Monte Carlo data for Tc^{HSY} and B2^{HSY} as functions

  14. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  15. Transport in charged colloids driven by thermoelectricity.

    PubMed

    Würger, Alois

    2008-09-01

    We study the thermal diffusion coefficient D{T} of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions. PMID:18851262

  16. Topological colloids.

    PubMed

    Senyuk, Bohdan; Liu, Qingkun; He, Sailing; Kamien, Randall D; Kusner, Robert B; Lubensky, Tom C; Smalyukh, Ivan I

    2013-01-10

    Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres). Although toroidal DNA condensates and vesicles with different numbers of handles can exist and soft matter defects can be shaped as rings and knots, the role of particle topology in colloidal systems remains unexplored. Here we fabricate and study colloidal particles with different numbers of handles and genus g ranging from 1 to 5. When introduced into a nematic liquid crystal--a fluid made of rod-like molecules that spontaneously align along the so-called 'director'--these particles induce three-dimensional director fields and topological defects dictated by colloidal topology. Whereas electric fields, photothermal melting and laser tweezing cause transformations between configurations of particle-induced structures, three-dimensional nonlinear optical imaging reveals that topological charge is conserved and that the total charge of particle-induced defects always obeys predictions of the Gauss-Bonnet and Poincaré-Hopf index theorems. This allows us to establish and experimentally test the procedure for assignment and summation of topological charges in three-dimensional director fields. Our findings lay the groundwork for new applications of colloids and liquid crystals that range from

  17. Feasibility of colloidal silver SERS for rapid bacterial screening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrate-reduced silver colloids have been used extensively for surface-enhanced Raman scattering (SERS) study and are commonly characterized by UV-visible spectroscopy. In this work, relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of SERS peaks from sma...

  18. Optimisation of active suspension control inputs for improved vehicle ride performance

    NASA Astrophysics Data System (ADS)

    Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor

    2016-07-01

    A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis.

  19. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    SciTech Connect

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90{degrees}C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport.

  20. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid.

    PubMed

    Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don

    2016-01-01

    This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms. PMID:27533865

  1. Effect of corticosteroid binding proteins on the steroidogenic activity of bovine adrenocortical cell suspensions.

    PubMed

    Basset, M; Rostaing-Metz, B; Chambaz, E M

    1982-07-01

    The possible role of steroid binding proteins in the hormonal secretion process of a steroidogenic tissue was examined using bovine adrenocortical cell suspensions, either under basal conditions or in the presence of half-maximally active concentration (1 x 10(-9) M) of synthetic adrenocorticotropic hormone (ACTH). Three types of plasma cortisol binding proteins were used, namely bovine serum albumine (BSA), purified transcortin (CBG) and purified anticortisol immunoglobulins (IgG). When added to the incubation medium, CBG (at 1 x 10(-10) to 2 x 10(-9) M cortisol binding sites) and anticortisol IgG (at 4.8 x 10(-10) to 3 x 10(-9) M cortisol binding sites) did not influence either the basal nor the ACTH-stimulated net cortisol production of the cell preparations. Whereas crystallized and delipidated BSA showed also no effect, crude commercial BSA preparation (Cohn fraction V) exhibited an ACTH-like cofactor effect which resulted in a marked increase in the net cortisol production by stimulated cells. These observations might be explained by the presence in crude BSA of lipoprotein-cholesterol complexes, possibly acting as an extracellular source of cholesterol available for corticosteroidogenesis. It may be concluded that specific high affinity cortisol binding systems present outside adrenocortical steroidogenic cells do not influence their secretory activity under short term in vitro condition. In addition, it can be stressed that use of ill defined protein preparations (e.g. crude BSA) may lead to artifactual observations in the study of the differentiated functions of isolated steroidogenic cells. PMID:6287106

  2. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu.; Shtompel, G.; Ostapenko, E.; Leonov, V.

    2014-07-01

    The influence of the suspension of positive active mass particles in the electrolyte on the performance of the negative electrode in a lead-acid battery is studied. A significant increase in the rate of corrosion of the lead electrode is shown when slime particles get in contact with its surface, which may result in the rise of macro-defects on the lugs of the negative electrodes.

  3. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  4. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankar, Renu; Rizwana, Kadarmohideen; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-08-01

    Titanium dioxide nanoparticles were effectively synthesized from aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition. 5 mM titanium isopropoxide solution worked as a primary source for the synthesis of titanium dioxide nanoparticles. The green synthesized titanium dioxide nanoparticles were confirmed by UV-Vis spectroscopy. Fourier transform infrared spectrum of synthesized titanium dioxide nanoparticles authorized the presence of bioactive compounds in the leaf extract, which may play a role as capping and reducing agent. The high-resolution scanning electron microscopy and dynamic light scattering analyses results showed the interconnected spherical in shape titanium dioxide nanoparticles having a mean particle size of 124 nm and a zeta potential of -24 mV. Besides, the colloidal titanium dioxide nanoparticles energetically degrade the industrially harmful methyl red dye under bright sunlight.

  5. SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Mabbott, Samuel; Jackson, George W.; Graham, Duncan; Cote, Gerard L.

    2015-03-01

    Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored

  6. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. PMID:27183207

  7. Formation Kinetics of Aqueous Suspensions of Fullerenes:Meeting in New Orleans.

    EPA Science Inventory

    Stable colloidal suspension of C60 is commonly achieved through various solvent exchange techniques. Nevertheless, the additives such as tetrahydrofuran may be retained in the C60 aggregates, which may influence the surface properties of the suspension. In this study, colloidal...

  8. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-01-01

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer. PMID:27168201

  9. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  10. Statistical effects in the absorption and optical activity of particulate suspensions.

    PubMed Central

    Bustamante, C; Maestre, M F

    1988-01-01

    The phenomenon of Duysens flattening of the absorption spectra resulting from the inhomogeneous distribution of the chromophores in the solution is analyzed. These inhomogeneities are treated as localized statistical fluctuations in the concentration of the absorbing species, by using the Gaussian distribution. A law of absorbance is obtained, and the effect of light scattering on the flattening is also characterized. The flattening in the circular dichroism spectra of particulate suspensions is then analyzed. It is shown that the degree of flattening of the circular dichroism of a suspension is, in general, different from the corresponding flattening of its absorption spectrum. A quantitative relationship between the two effects is established. PMID:3186738

  11. Proteome-Based Analysis of Colloidal Instability Enables the Detection of Haze-Active Proteins in Beer.

    PubMed

    Schulte, Fabian; Flaschel, Erwin; Niehaus, Karsten

    2016-09-01

    Colloidal haze is a serious quality defect of bright beers that considerably reduces their shelf life and is thought to be triggered by hordeins, a class of proline-rich barley proteins. In this work, the proteomes of fresh and old beers were investigated in bottled pilsners and compared to the protein inventory of haze to identify specific haze-active proteins. Haze isolates dissolved in rehydration buffer contained high concentrations of proteins and sugars but provided protein gels with weak spot signals. Consequently, a treatment for the chemical deglycation with trifluoromethanesulfonic acid was applied, which resulted in the identification of protein Z4, LTP1, CMb, CMe, pUP13, 3a, and Bwiph as constituents of the haze proteome. Because only one hordein was detectable and the proline content in haze hydrolysates was lower than those of barley prolamins, our results suggest that this class of proteins is of minor importance for haze development. PMID:27515584

  12. Acoustic Effects on Colloid/Surface Interactions and Porous-Media Permeability

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Abdel-Fattah, A. I.; Duran, J.

    2004-12-01

    Acoustic and seismic waves have been observed to influence porous fluid-flow behavior in the Earth and geomaterials over a wide range of scale lengths (microns to kilometers). Examples include oil reservoir production increases induced by seismic (1 to 500 Hz) waves, and mobilizing colloidal clays in sandstone cores by ultrasonic (10 to 50 kHz) energy. The effects of stress-wave propagation on both colloid electrokinetics and fluid-flow dynamics in porous media are not understood. In particular, the coupling of acoustic and seismic waves with colloid behavior is an important mechanism to understand because the distribution of colloids in a porous medium will directly affect its permeability. Recent experimental observations indicate that very-high-frequency (0.5 to 5 MHz) acoustic energy can induce attachment and detachment of micron-size colloids at solid surfaces. Using a microscopic, video image-processing system focused on a glass flow-visualization cell, the behavior of 0.5- to 3-micron diameter polystyrene spheres suspended in 0 to 0.1 M aqueous solution was observed. Initial image-processing-based analysis of acoustically-induced colloid/surface detachment events indicates that very-high-frequency acoustics not only increases particle detachment, but may also permanently "deactivate" colloid attachment (or "active") sites on the glass cell surface. The ability of acoustics to attach or detach colloids also appears to depend on the colloid size and ionic strength of the suspending solution. Other experiments show that seismic-band (1 to 1000 Hz) mechanical stress oscillations can change the permeability of centimeter-size sandstone cores due to mobilization of micron-size colloids contained in the pore space. A unique core-holder apparatus that mechanically strains 2.54-cm-diameter porous rock samples during constant-rate fluid flow was used for these experiments. During single-phase brine flow through sandstone, axial stress oscillations at 50 Hz mobilized

  13. Collective dynamics of rotating colloidal particles

    NASA Astrophysics Data System (ADS)

    Magkiriadou, Sofia; Soni, Vishal; van Zuiden, Benny; Bartolo, Denis; Vitelli, Vincenzo; Irvine, William T. M.

    We study magnetic colloidal particles in suspension under the influence of a rotating magnetic field. When in aggregates, these particles show rich dynamics that are governed by magnetic and hydrodynamic interactions. By tuning these interactions, we probe the phase diagram of this system and study the emergent collective dynamics. Finally, we begin to investigate whether we can control this phase diagram with geometry.

  14. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  15. Carbon starvation increases endoglycosidase activities and production of "unconjugated N-glycans" in Silene alba cell-suspension cultures.

    PubMed Central

    Lhernould, S; Karamanos, Y; Priem, B; Morvan, H

    1994-01-01

    We previously reported the occurrence of oligomannosides and xylomannosides corresponding to unconjugated N-glycans (UNGs) in the medium of a white campion (Silene alba) cell suspension. Attention has been focused on these oligosaccharides since it was shown that they confer biological activities in plants. In an attempt to elucidate the origin of these oligosaccharides, we studied two endoglycosidase activities, putative enzymes involved in their formation. The previously described peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activity and the endo-N-acetyl-beta-D-glucosaminidase activity described in this paper were both quantified in white campion cells during the culture cycle with variable initial concentrations of sucrose. The lower the sucrose supply, the higher the two activities. Furthermore, endoglycosidase activities were greatly enhanced after the disappearance of sugar from the medium. The production of UNGs in the culture medium rose correlatively. These data strongly suggest that the production of UNGs in our white campion cell-suspension system is due to the increase of these endoglycosidase activities, which reach their highest levels of activity during conditions of carbon starvation. PMID:7991689

  16. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    third conference in a series that began in 2004 [2] and was continued in 2008 [3]. The CODEF meeting series is held in conjunction with the German Dutch Transregional Collaborative Research Centre SFB TR6 with the title Physics of Colloidal Dispersions in External Fields. Papers from scientists working within this network as well as those from further invited contributors are summarized in this issue. They are organized according to the type of field applied, namely: shear flow electric field laser-optical and magnetic field confinement other fields and active particles To summarize the highlights of this special issue as regards shear fields, the response of depletion-induced colloidal clusters to shear is explored in [4]. Soft particles deform under shear and their structural and dynamical behaviour is studied both by experiment [5] and theory [6]. Transient dynamics after switching on shear is described by a joint venture of theory, simulation and experiment in [7]. Colloids provide the fascinating possibility to drag single particles through the suspension, which gives access to microrheology (as opposed to macrorheology, where macroscopic boundaries are moved). Several theoretical aspects of microrheology are discussed in this issue [8-10]. Moreover, a microscopic theory for shear viscosity is presented [11]. Various aspects of colloids in electric fields are also included in this issue. Electrokinetic phenomena for charged suspensions couple flow and electric phenomena in an intricate way and are intensely discussed both by experiment and simulation in contributions [12-14]. Dielectric phenomena are also influenced by electric fields [15]. Electric fields can induce effective dipolar forces between colloids leading to string formation [16]. Finally, binary mixtures in an electric driving field exhibit laning [17]. Simulation [18] and theoretical [19] studies of this nonequilibrium phenomenon are also discussed in this issue. Laser-optical fields can be used to

  17. Boundaries Matter for Confined Colloidal Glasses

    NASA Astrophysics Data System (ADS)

    Hunter, Gary L.; Edmond, Kazem V.; Weeks, Eric R.

    2012-02-01

    We confine dense colloidal suspensions within emulsion droplets to examine how confinement and properties of the confining medium affect the colloidal glass transition. Samples are imaged via fast confocal microscopy. By observing a wide range of droplet sizes and varying the viscosity of the external continuous phase, we separate finite size and boundary effects on particle motions within the droplet. Suspensions are composed of binary PMMA spheres in organic solvents while the external phases are simple mixtures of water and glycerol. In analogy with molecular super-cooled liquids and thin-film polymers, we find that confinement effects in colloidal systems are not merely functions of the finite size of the system, but are strongly dependent on the viscosity of the confining medium and interactions between particles and the interface of the two phases.

  18. A Photosynthesis Lab. Response of Algal Suspensions to a Gradient of Photosynthetically Active Radiation (PAR).

    ERIC Educational Resources Information Center

    Zee, Delmar Vander

    1995-01-01

    This photosynthesis exercise is intended for introductory college biology or botany courses. It is based on the principle that a closed suspension of algal cells may be expected to produce more dissolved oxygen with a greater photon fluence rate, but within limits of the photosynthetic capacity of the system. Describes materials and methods. (LZ)

  19. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  20. Regulation of thyroid peroxidase activity by thyrotropin, epidermal growth factor and phorbol ester in porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Hiraiwa, Masaki; Emoto, Tatsushi; Hattori, Yoshiyuki; Shimoda, Shin-Ichi ); Ohmori, Takeshi; Koizumi, Narumi; Hosoya, Toichiro )

    1989-01-01

    The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03 - 0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor and phorbol 12-myristate 13-acetate completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.

  1. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  2. Analysis and testing of an integrated semi-active seat suspension for both longitudinal and vertical vibration control

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Jiang, Peng; Pan, Hui; Qian, Li-Jun

    2016-04-01

    An integrated semi-active seat suspension for both longitudinal and vertical vibration control is analyzed and tested in this paper. The seat suspension consists of a switching mechanism transforming both longitudinal and vertical motions into a rotary motion and a real-time damping-controllable system-a rotary magnetorheological (MR) damper working in pure shear mode and its corresponding control system. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. At the same time, both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. Both the longitudinal and vertical vibrations can be attenuated in real time through controlling the damping force (or torque) of the rotary MR damper. The mathematical model of the seat suspension system is established, simulated, and analyzed. The experimental test based on the test rig in Hefei University of Technology is implemented, and the results of simulation and experimental test are compared and analyzed.

  3. Nonlinear dynamics of a magnetorheological-fluid-based active suspension system for a neonatal transport

    NASA Astrophysics Data System (ADS)

    Shukla, Amit; Bailey Van Kuren, Michael

    2004-07-01

    A neonatal transport cart is used by hospitals to transport critical infants. The ride during ground transportation generates severe vibrations which have been found to adversely affect the infant's physiological symptoms. This work is the first attempt to design a vibration isolation system using magneto-rheological fluid damper-based suspension system for the neonatal transport cart. In this paper the effect of various system and control parameters on the two-degree-of-freedom model are numerically studied for parametric bifurcation stability behavior. It is shown that system can undergo loss of stability via Hopf bifurcation and exhibit limit cycle oscillations which is counter to the goal of the proposed suspension design.

  4. Controls of maglev suspension systems

    SciTech Connect

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  5. Rethinking Suspensions

    ERIC Educational Resources Information Center

    Stetson, Frank H.; Collins, Betty J.

    2010-01-01

    The overrepresentation of the Black and Hispanic subgroups in suspension data is a national problem and a troubling issue for schools and school systems across the United States. In Maryland, an analysis of student suspensions by school districts for the 2006-2007 school year revealed disproportionality issues. In 23 of the 24 jurisdictions,…

  6. Soil colloidal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  7. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  8. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  9. Effective SERS-active substrates composed of hierarchical micro/nanostructured arrays based on reactive ion etching and colloidal masks.

    PubMed

    Zhang, Honghua; Liu, Dilong; Hang, Lifeng; Li, Xinyang; Liu, Guangqiang; Cai, Weiping; Li, Yue

    2016-09-30

    A facile route has been proposed for the fabrication of morphology-controlled periodic SiO2 hierarchical micro/nanostructured arrays by reactive ion etching (RIE) using monolayer colloidal crystals as masks. By effectively controlling the experimental conditions of RIE, the morphology of a periodic SiO2 hierarchical micro/nanostructured array could be tuned from a dome-shaped one to a circular truncated cone, and finally to a circular cone. After coating a silver thin layer, these periodic micro/nanostructured arrays were used as surface-enhanced Raman scattering (SERS)-active substrates and demonstrated obvious SERS signals of 4-Aminothiophenol (4-ATP). In addition, the circular cone arrays displayed better SERS enhancement than those of the dome-shaped and circular truncated cone arrays due to the rougher surface caused by physical bombardment. After optimization of the circular cone arrays with different periodicities, an array with the periodicity of 350 nm exhibits much stronger SERS enhancement and possesses a low detection limit of 10(-10) M 4-ATP. This offers a practical platform to conveniently prepare SERS-active substrates. PMID:27573436

  10. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    PubMed Central

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  11. Melting in temperature sensitive suspensions

    NASA Astrophysics Data System (ADS)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  12. Automated video-microscopic imaging and data acquisition system for colloid deposition measurements

    DOEpatents

    Abdel-Fattah, Amr I.; Reimus, Paul W.

    2004-12-28

    A video microscopic visualization system and image processing and data extraction and processing method for in situ detailed quantification of the deposition of sub-micrometer particles onto an arbitrary surface and determination of their concentration across the bulk suspension. The extracted data includes (a) surface concentration and flux of deposited, attached and detached colloids, (b) surface concentration and flux of arriving and departing colloids, (c) distribution of colloids in the bulk suspension in the direction perpendicular to the deposition surface, and (d) spatial and temporal distributions of deposited colloids.

  13. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    PubMed Central

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  14. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    PubMed

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  15. Partial rejuvenation of a colloidal glass.

    PubMed

    Ozon, F; Narita, T; Knaebel, A; Debrégeas, G; Hébraud, P; Munch, J-P

    2003-09-01

    We study the effect of shear on the aging dynamics of a colloidal suspension of synthetic clay particles. We find that a shear of amplitude gamma reduces the relaxation time measured just after the cessation of shear by a factor exp(-gamma/gamma(c)), with gamma(c) approximately 5%, and is independent of the duration and the frequency of the shear. This simple law for the rejuvenation effect shows that the energy involved in colloidal rearrangements is proportional to the shear amplitude gamma rather than gamma(2), leading to an Eyring-like description of the dynamics of our system. PMID:14524814

  16. Viscosity of Sheared Helical filament Suspensions

    NASA Astrophysics Data System (ADS)

    Sartucci, Matthew; Urbach, Jeff; Blair, Dan; Schwenger, Walter

    The viscosity of suspensions can be dramatically affected by high aspect ratio particles. Understanding these systems provides insight into key biological functions and can be manipulated for many technological applications. In this talk, the viscosity as a function of shear rate of suspensions of helical filaments is compared to that of suspensions of straight rod-like filaments. Our goal is to determine the impact of filament geometry on low volume fraction colloidal suspensions in order to identify strategies for altering viscosity with minimal volume fraction. In this research, the detached flagella of the bacteria Salmonella Typhimurium are used as a model system of helical filaments and compared to mutated straight flagella of the Salmonella. We compare rheological measurements of the suspension viscosity in response to shear flow and use a combination of the rheology and fluorescence microscopy to identify the microstructural changes responsible for the observed rheological response.

  17. Collective motion in populations of colloidal bots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis

    One of the origins of active matter physics was the idea that flocks, herds, swarms and shoals could be quantitatively described as emergent ordered phases in self-driven materials. From a somehow dual perspective, I will show how to engineer active materials our of colloidal flocks. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors and how to handle them in microfluidic chips. These populations of colloidal bots display a non-equilibrium transition toward collective motion. A special attention will be paid to the robustness of the resulting colloidal flocks with respect to geometrical frustration and to quenched disorder.

  18. Chancellor Water Colloids: Characterization and Radionuclide Association

    SciTech Connect

    Abdel-Fattah, Amr I.

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  19. Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers

    NASA Astrophysics Data System (ADS)

    Keaveny, Eric Edward

    Micron-size paramagnetic particles suspended in viscous fluid will aggregate to form linear chains when subject to a uniform magnetic field. This process provides a way of changing the rheological properties of a suspension or building structures for microfluidic devices. We present a method to efficiently and accurately quantify the magnetic interactions between these particles. With this model and the force-coupling method, we perform simulations of both small ensembles and suspensions of thousands of paramagnetic particles subject to shear flows or rotating applied magnetic fields and demonstrate that in these situations an accurate representation of the fluid forces is necessary to estimate chain length. The artificial micro-swimmer is a device constructed from a flagellum-like tail of chemically linked paramagnetic beads tethered to a human red blood cell. To simulate this device, we develop an elastic coupling model that treats each chemical link as an inextensible, flexible rod. We demonstrate that when this device is subject to a rotating applied magnetic field, the filament tail will deform into a helical shape rotating with the field and propel the swimmer through the viscous fluid. Using a continuous elastica/resistive force model, we explore further the dependence of the swimming speed on the magnetic forces and swimmer geometry in the low frequency limit. We then examine the interactions between two comoving swimmers and ascertain at what separation distance a far-field approximation of the hydrodynamics is sufficient to reproduce the swimmers' dynamics. We also provide simulations of a single swimmer near a rigid surface and demonstrate that under certain conditions the presence of a wall can enhance the swimming speed. We determine further the height dependence of the repulsion from the surface, and, in the case of the spiral swimmer, the lateral drift speed. Finally, we consider a "squirmer" model for a swimming microorganism, appropriate for

  20. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Activity kinetics, conformation, and energetics.

    PubMed

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2016-05-01

    This study seeks to examine the ability of non-ionic/non-polar Colloidial Liquid Aphrons (CLAs) to preserve enzyme functionality upon immobilization and release. CLAs consisting of micron-sized oil droplets surrounded by a thin aqueous layer stabilized by a mixture of surfactants, were formulated by direct addition (pre-manufacture addition) using 1% Tween 80/mineral oil and 1% Tween 20 and the enzymes lipase, aprotinin and α-chymotrypsin. The results of activity assays for both lipase and α-chymotrypsin showed that kinetic activity increased upon immobilization by factors of 7 and 5.5, respectively, while aprotinin retained approximately 85% of its native activity. The conformation of the enzymes released through desorption showed no significant alterations compared to their native state. Changes in pH and temperature showed that optimum conditions did not change after immobilization, while analysis of activation energy for the immobilized enzyme showed an increase in activity at higher temperatures. Furthermore, the effect of bound water within the aphron structure allowed for some degree of enzyme hydration, and this hydration was needed for an active conformation with results showing a decrease in ΔH* for the immobilized system compared to its native counterpart. PMID:26497856

  1. Effect of Solar Particle Event Radiation and Hindlimb Suspension on Gastrointestinal Tract Bacterial Translocation and Immune Activation

    PubMed Central

    Zhou, Yu; Ni, Houping; Li, Minghong; Sanzari, Jenine K.; Diffenderfer, Eric S.; Lin, Liyong; Kennedy, Ann R.; Weissman, Drew

    2012-01-01

    The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth's magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures. PMID:23028522

  2. Fiber coating with suspensions

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Nunes, Janine K.; Stone, Howard A.

    2003-11-01

    The basic features of fiber coating with Newtonian fluids are well characterized at low capillary numbers by the Landau-Levich-Derjaguin analysis. Several extensions have been reported including studies of the influence of polymers, surfactants, and emulsions. Here we present an experimental study of fiber coating with suspensions of micron-sized particles where we perform direct visualization of the coating process using fluorescent particles. The addition of particles to the coating liquid produce several novel effects including (a) accumulation of particles in the neighborhood of the meniscus, which changes the dynamics of the coating process, and (b) crystallization can occur on the fiber, in some cases in the form of a continuous film that is at most a few particles thick, and which depends on capillary number. These results using continuous withdrawal will be contrasted with those reported in the literature for colloidal cystallization produced by evaporative processes.

  3. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems). PMID:26427370

  4. Antidepressant-like activity of liposomal formulation containing nimodipine treatment in the tail suspension test, forced swim test and MAOB activity in mice.

    PubMed

    Moreno, Lina Clara Gayoso E Almendra Ibiapina; Rolim, Hercília Maria Lins; Freitas, Rivelilson Mendes; Santos-Magalhães, Nereide Stela

    2016-09-01

    Previous studies have shown that intracellular calcium ion dysfunction may be an etiological factor in affective illness. Nimodipine (NMD) is a Ca(2+) channel blocker that has been extensively investigated for therapy of central nervous system (CNS) disorders. In this work, we have evaluated the antidepressant-like activity of nimodipine encapsulated into liposomes (NMD-Lipo) in mice through tail suspension and forced swim assays, as well as MAOB activity. During the tail suspension test, the administration of NMD-Lipo at 0.1, 1 and 10mg/kg was able to promote a reduction in the immobility time of animals greater than the positive control (imipramine). In the forced swim test, the immobility time of mice treated with NMD-Lipo was reduced. This reduction was significantly greater than that found in the animals treated with imipramine and paroxetine. This may suggest that NMD-Lipo provides more antidepressant-like activity than in positive controls. The groups that received a combination of liposomal NMD and antidepressant drugs showed lower immobility time than the groups, which were treated only with imipramine or paroxetine. The mice treated with the combination of NMD-Lipo and reserpine presented an increase in the time of immobility compared with animals treated only with NMD-Lipo. There was a significant decrease in MAOB activity in animals treated with NMD-Lipo compared with untreated animals. The results of the tail suspension test, forced swim test and MAOB activity suggested that the antidepressant activity of NMD-Lipo may be related to an increase in the cerebral monoamine concentrations. PMID:27270234

  5. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    NASA Astrophysics Data System (ADS)

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  6. Study on the colloids generated from testing of high-level nuclear waste glasses

    SciTech Connect

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.J.

    1993-03-01

    The generation of colloids in the interaction of high-level nuclear waste glasses with groundwater at 90{degrees}C has been investigated. The stability of the colloidal suspensions has been characterized with respect to salt concentration, pH time, particle size, and zeta potential. The compositions and the morphology of the colloids have also been determined with transmission electron microscopy (TEM). From ourtest results combined with earlier ones, we conclude that the waste glass may contribute to the colloid formation by increasing ion concentration in groundwater, which causes nucleation of colloids; by releasing radionuclides that adsorb onto existing groundwater colloids; and by spalling colloidal-size fragments from the surface layer of the reacted glass. The colloids are silicon-rich particles, such as smectites and uranium silicates. When the salt concentration in the solution is high the colloidal suspensions agglomerate. However, the agglomerated particles can be resuspended if the salt concentration is lowered by dilution with groundwater. The colloids agglomerate quickly after the leachate is cooled to room temperature. Most of the colloids settle out of the solution within a few days at ambient temperature. The isoelectric point is at a pH of approximately 1.0. Between pH 1 and 10.5, the colloids are negatively charged, which suggests that they will deposit readily on, positively charged surfaces. The average particle size islargest at the isoelectric point and is smallest around pH 6.

  7. Study on the colloids generated from testing of high-level nuclear waste glasses

    SciTech Connect

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.J.

    1993-01-01

    The generation of colloids in the interaction of high-level nuclear waste glasses with groundwater at 90[degrees]C has been investigated. The stability of the colloidal suspensions has been characterized with respect to salt concentration, pH time, particle size, and zeta potential. The compositions and the morphology of the colloids have also been determined with transmission electron microscopy (TEM). From ourtest results combined with earlier ones, we conclude that the waste glass may contribute to the colloid formation by increasing ion concentration in groundwater, which causes nucleation of colloids; by releasing radionuclides that adsorb onto existing groundwater colloids; and by spalling colloidal-size fragments from the surface layer of the reacted glass. The colloids are silicon-rich particles, such as smectites and uranium silicates. When the salt concentration in the solution is high the colloidal suspensions agglomerate. However, the agglomerated particles can be resuspended if the salt concentration is lowered by dilution with groundwater. The colloids agglomerate quickly after the leachate is cooled to room temperature. Most of the colloids settle out of the solution within a few days at ambient temperature. The isoelectric point is at a pH of approximately 1.0. Between pH 1 and 10.5, the colloids are negatively charged, which suggests that they will deposit readily on, positively charged surfaces. The average particle size islargest at the isoelectric point and is smallest around pH 6.

  8. Foam analogy in charged colloidal crystals.

    PubMed

    Kung, William; Ziherl, P; Kamien, Randall D

    2002-05-01

    We model charged colloidal suspensions using an analogy with foams. We study the solid-solid phase transitions of these systems as a function of particle volume fraction and ionic strength. The screened-Coulomb interaction is replaced by an interaction between walls of the Voronoi cells around each particle. We fit the surface charge to reproduce the phase diagram for the charged suspension studied by Sirota et al. [Phys. Rev. Lett. 62, 1524 (1989)]. With this fit parameter we are able to calculate the elastic moduli of the system and find good agreement with the available data. PMID:12059512

  9. Sterically stabilized colloids with tunable repulsions.

    PubMed

    van Gruijthuijsen, Kitty; Obiols-Rabasa, Marc; Heinen, Marco; Nägele, Gerhard; Stradner, Anna

    2013-09-10

    When studying tunable electrostatic repulsions in aqueous suspensions of charged colloids, irreversible colloid aggregation or gelation may occur at high salt concentrations. For many commonly used synthetic colloids, such as polystyrene and silica particles, the reason for coagulation is the presence of unbalanced, strongly attractive, and short-ranged van der Waals (VDW) forces. Here, we present an aqueous polystyrene model colloid that is sterically stabilized against VDW attractions. We show that the synthesis procedure, based on a neutral initiator couple and a nonionic surfactant, introduces surface charges that can be further increased by the addition of charged comonomer methacrylic acid. Thus, the interactions between the polystyrene spheres can be conveniently tuned from hard-sphere-like to charge-stabilized with long-ranged electrostatic repulsions described by a Yukawa-type pair potential. The particle size, grafting density, core-shell structure, and surface charge are characterized by light and neutron scattering. Using X-ray and neutron scattering in combination with an accurate analytic integral equation scheme for the colloidal static structure factor, we deduce effective particle charges for colloid volume fractions ≥0.1 and salt concentrations in the range of 1.5 to 50 mM. PMID:23937718

  10. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  11. Manipulation of long-term dynamics in a colloidal active matter system using speckle light fields

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomena. Examples can be given from organelles performing tasks in the cytoplasm to large animals moving in patchy environment. Here, we use speckle light fields to study the anomalous diffusion in an active matter system consisting of micron-sized silica particles(diameter 5 μm) and motile bacterial cells (E. coli). The speckle light fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power is needed to obtain an effective disordered optical landscape for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the long-term dynamics of the active matter system and observed an enhanced diffusion of particles interacting with the active bacterial bath in the speckle light fields. We showed that this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interest.

  12. FINAL REPORT. COLLOIDAL AGGLOMERATES IN TANK SLUDGE: IMPACT ON WASTE PROCESSING

    EPA Science Inventory

    Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, andsolidification processes. Properties of sediment layers and sludge suspensions such as slurryviscosit...

  13. Controlling the Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Dunning, Peter David

    . Implementation of this technique requires that the colloidal droplet be separated from the active electrode by a dielectric layer to prevent electrolysis. A variety of polymer layers have been used in EWOD devices for a variety of applications. In applications that involve desiccation of colloidal suspensions, the material for this layer should be chosen carefully as it can play an important role in the resulting deposition pattern. An experimental method to monitor the transient evolution of the shape of an evaporating colloidal droplet and optically quantify the resultant deposition pattern is presented. Unactuated colloidal suspensions will be desiccated on a variety of substrates commonly used in EWOD applications. Transient image profiles and particle deposition patterns are examined for droplets containing fluorescent micro-particles. Qualitative and quantitative comparisons of these results will be used to compare multiple different cases in an effort to provide insight into the effects of polymer selection on the drying dynamics and resultant deposition patterns of desiccated colloidal materials. It was found that the equilibrium and receding contact angles between the surface and the droplet play a key role in the evaporation dynamics and the resulting deposition patterns left by a desiccated colloidal suspension. The equilibrium contact angle controls the initial contact diameter for a droplet of a given volume. As a droplet on a surface evaporates, the evolution of the interface shape and the contact diameter can generally be described by three different regimes. The Constant Contact Radius (CCR) regime occurs when the contact line is pinned while the contact angle decreases. The Constant Contact Angle (CCA) regime occurs when the contact line recedes while the contact angle remains constant. The Mixed regime occurs when the contact radius and angle both reduce over time. The presence of the CCA regime allows the contact line to recede creating a more uniform

  14. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  15. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  16. Materials for suspension (semi-solid) electrodes for energy and water technologies.

    PubMed

    Hatzell, Kelsey B; Boota, Muhammad; Gogotsi, Yury

    2015-12-01

    Suspension or semi-solid electrodes have recently gained increased attention for large-scale applications such as grid energy storage, capacitive water deionization, and wastewater treatment. A suspension electrode is a multiphase material system comprised of an active (charge storing) material suspended in ionic solution (electrolyte). Gravimetrically, the electrolyte is the majority component and aids in physical transport of the active material. This principle enables, for the first time, scalability of electrochemical energy storage devices (supercapacitors and batteries) previously limited to small and medium scale applications. This critical review describes the ongoing material challenges encompassing suspension-based systems. The research described here combines classical aspects of electrochemistry, colloidal science, material science, fluid mechanics, and rheology to describe ion and charge percolation, adsorption of ions, and redox charge storage processes in suspension electrodes. This review summarizes the growing inventory of material systems, methods and practices used to characterize suspension electrodes, and describes universal material system properties (rheological, electrical, and electrochemical) that are pivotal in the design of high performing systems. A discussion of the primary challenges and future research directions is included. PMID:26412441

  17. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates

    SciTech Connect

    Hennebert, Pierre; Avellan, Astrid; Yan, Junfang; Aguerre-Chariol, Olivier

    2013-09-15

    Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular

  18. Effective Viscosity of Microswimmer Suspensions

    NASA Astrophysics Data System (ADS)

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-01

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  19. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  20. A randomized controlled clinical study to evaluate the effectiveness of an active moisturizing lotion with colloidal oatmeal skin protectant versus its vehicle for the relief of xerosis.

    PubMed

    Kalaaji, Amer N; Wallo, Warren

    2014-10-01

    Xerosis is a common skin condition, occurring most often in the winter and in low relative humidity, which results in loss of moisture, cracking, and desquamation. Many emollient creams and lotions are available for use as preventive moisturizers. However, few controlled experiments have been published comparing the efficacy of active moisturizing products versus the vehicle used to deliver the products to the skin. Therefore, we conducted this randomized, double-blind, controlled clinical study to objectively compare a commercially available moisturizing product against its own vehicle. The active colloidal oatmeal moisturizer used in this study showed significant benefits versus its vehicle control in several dermatological parameters used to measure skin dryness. PMID:25607563

  1. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  2. Rheology of Soft Suspensions near Jamming

    NASA Astrophysics Data System (ADS)

    Nordstrom, Kerstin; Verneuil, Emilie; Arratia, Paulo; Gollub, Jerry; Durian, Douglas

    2009-03-01

    The rheology of a suspension of soft colloidal particles is investigated using a pressure-driven flow in a deep 25 μm wide microchannel. The system is composed of N-isopropylacrylamide (NIPA) colloidal microgel particles, suspended in aqueous solution. NIPA is temperature-sensitive in that the hydrodynamic radius decreases as temperature increases [1]. Therefore, colloidal suspensions of different packing fraction can be obtained simply by varying the temperature using a temperature-controlled stage. We determine the velocity profile and the local shear rate of the suspension using particle image velocimetry (PIV). We have developed methods to accurately infer the suspension shear viscosity and shear stress as a function of shear rate. The dynamical range of shear rates probed is approximately 5 orders of magnitude, ranging from 10-4 to 10^1 s-1. Results show that as the packing fraction is increased towards the jamming point, the velocity profiles are markedly non-Newtonian. Further, above the jamming point, the stress versus shear rate curves show yield stress behavior. [1] Alsayed, A.M.;Islam, M.F.;Zhang, J.;Collings, P.J.;Yodh, A.J., Science 2005.

  3. Lactobionic acid as antioxidant and moisturizing active in alkyl polyglucoside-based topical emulsions: the colloidal structure, stability and efficacy evaluation.

    PubMed

    Tasic-Kostov, M; Pavlovic, D; Lukic, M; Jaksic, I; Arsic, I; Savic, S

    2012-10-01

    Cosmeceutical antioxidants may protect the skin against oxidative injury, involved in the pathogenesis of many skin disorders. However, an unsuitable topical delivery system with compromising safety profile can affect the efficacy of an antioxidant active. This study investigated the antioxidant potential of lactobionic acid (LA), a newer cosmeceutical active, per se (in solution) and incorporated into natural alkyl polyglucoside (APG) emulsifier-based system using 1,1-diphenyl-2-picrylhydrazyl free radical scavenging and lipid peroxidation inhibition assays. The α-tocopherol was used as a reference compound. The physical stability (using rheology, polarization microscopy, pH and conductivity measurements) of an Alkyl glucoside-based emulsion was evaluated with and without the active (LA); colloidal structure was assessed using polarization and transmission electron microscopy, rheology, thermal and texture analysis. Additionally, the safety profile and moisturizing potential were investigated using the methods of skin bioengineering. Good physical stability and applicative characteristics were obtained although LA strongly influenced the colloidal structure of the vehicle. LA per se and in APG-based emulsion showed satisfying antioxidant activity that promotes it as mild multifunctional cosmeceutical efficient in the treatment and prevention of the photoaged skin. Employed assays were shown as suitable for the antioxidant activity evaluation of LA in APG-based emulsions, but not for α-tocopherol in the same vehicle. PMID:22691034

  4. [Impact of SDBS/Na+ on red soil colloidal stability].

    PubMed

    Tang, Ying; Li, Hang; Zhu, Hua-Ling; Tian, Rui; Gao, Xiao-Dan

    2014-04-01

    The interactions between soil colloidal-sized particles and organic contaminants or inorganic ions profoundly affect numerous soil physical, chemical and biological processes. The coupling effect of sodium dodecylbenzene sulfonate (SDBS) and Na+ on the aggregation process of red soil colloid was studied using the dynamic light scattering method, and the mechanism of interactions between soil colloidal-sized particles and SDBS/Na+ was analyzed according to the pH and Zeta potential of suspension during the aggregation process. Results show that, (1) under a given concentration of Na+, the soil colloidal suspension becomes more stable with increasing SDBS concentrations. For example, under 120 mmol x L(-1) Na+, as the concentrations of SDBS increase from 0 mmol x L(-1) to 10 mmol x L(-1), the effective diameters of aggregates decrease from 702 nm to 193 nm, and the total average aggregation rates of aggregates decrease from 28.6 nm x min(-1) to 3.36 nm x min(-1). (2) Under a given concentration of SDBS, as the concentrations of Na+ increase, the Zeta potential of suspension sharply decreases, while the effective diameters and the total average aggregation rates of aggregates gradually increase. (3) The absolute values of Zeta potential for suspensions without adding NaNO3 solution increase from 47.6 mV to 62.2 mV as the SDBS concentrations increase, and the pH of the suspensions increase from 6.17 to 6.76, although these pH values are lower than that of initial soil colloidal suspension (6.89). Therefore, the adsorption of SDBS onto soil colloidal-sized particles, which is attributed to the hydrophobic effect and electrostatic effect, results in the increment of surface charge number, as well as the decrease in effective concentration of Na+ around colloidal-sized particles' surface (resulting from the steric hindrance of long hydrophobic chain of adsorbed SDBS and adsorption of Na+ by SDBS micelle). As a result, soil colloidal suspension becomes more stable and

  5. Microfluidic bead suspension hopper.

    PubMed

    Price, Alexander K; MacConnell, Andrew B; Paegel, Brian M

    2014-05-20

    Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution. PMID:24761972

  6. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films.

    PubMed

    Cossu, Andrea; Wang, Min S; Chaudhari, Amol; Nitin, Nitin

    2015-09-30

    Conventional antifungal treatments against Candida albicans in the oral cavity often result in increased cytotoxicity. The goal of this study was to determine the potential of starch Pickering emulsion as a delivery vehicle for an antifungal natural phenolic compound such as thymol in simulated saliva fluid (SSF) compared to amphotericin B. An oil-in-water (o/w) emulsion was stabilized using starch particles. Physical stability of the emulsion and disruption induced by α-amylase activity in SSF was evaluated. Encapsulated thymol in o/w emulsion was compared to encapsulated amphotericin B for antifungal activity against C. albicans in suspension using emulsions or zone inhibition assay on agar plates using emulsions dispersed in alginate films. Results showed that the emulsions were stable for at least three weeks. Digestion of the emulsion by α-amylase led to coalescence of emulsion droplets. The antifungal activity of thymol and amphotericin B in emulsion formulation was enhanced upon incubation with α-amylase. Results from the zone inhibition assay demonstrated efficacy of the emulsions dispersed in alginate films. Interestingly, addition of α-amylase to the alginate films resulted in a decreased inhibitory effect. Overall, this study showed that starch Pickering emulsions have a potential to deliver hydrophobic antifungal compounds to treat oral candidiasis. PMID:26231107

  7. Active colloidal microdrills.

    PubMed

    Gibbs, J G; Fischer, P

    2015-03-11

    We demonstrate a chemically driven, autonomous catalytic microdrill. An asymmetric distribution of catalyst causes the helical swimmer to twist while it undergoes directed propulsion. A driving torque and hydrodynamic coupling between translation and rotation at low Reynolds number leads to drill-like swimming behaviour. PMID:25672601

  8. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  9. Colloidal Silver Products

    MedlinePlus

    ... can be dangerous to your health. What the Science Says About the Safety and Side Effects of ... homemade and commercial colloidal silver products. What the Science Says About the Effectiveness of Colloidal Silver Scientific ...

  10. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions.

    PubMed Central

    Savouré, A; Magyar, Z; Pierre, M; Brown, S; Schultze, M; Dudits, D; Kondorosi, A; Kondorosi, E

    1994-01-01

    We have shown that treatment of Medicago microcallus suspensions with the cognate Rhizobium meliloti Nod signal molecule NodRm-IV(C16:2,S) can modify gene expression both qualitatively and quantitatively. At concentrations of 10(-6) - 10(-9) M, this host specific plant morphogen but not the inactive non-sulfated molecule stimulated cell cycle progression as indicated by the significantly enhanced thymidine incorporation, elevated number of S phase cells, increase in kinase activity of the p34cdc2-related complexes and enhancement of the level of expression of several cell cycle marker genes, the histone H3-1, the cdc2Ms and the cyclin cycMs2. The presented data suggest that at least part of the physiological role of the Nod factor may be linked to molecular events involved in the control of the plant cell division cycle. In situ hybridization experiments with antisense H3-1 RNA probe indicated that only certain cells of the calli were able to respond to the Nod factor. High (10(-6) M) but not low (10(-9) M) concentrations of the active Nod factors induced the expression of the isoflavone reductase gene (IFR), a marker gene of the isoflavonoid biosynthesis pathway in most callus cells. Our results indicate that Medicago cell responses to the Nod signal molecules can be investigated in suspension cultures. Images PMID:8131743

  11. The Rheology of Concentrated Suspensions

    SciTech Connect

    Andreas Acrivos

    2004-09-07

    Research program on the rheological properties of flowing suspensions. The primary purpose of the research supported by this grant was to study the flow characteristics of concentrated suspensions of non-colloidal solid particles and thereby construct a comprehensive and robust theoretical framework for modeling such systems quantitatively. At first glance, this seemed like a modest goal, not difficult to achieve, given that such suspensions were viewed simply as Newtonian fluids with an effective viscosity equal to the product of the viscosity of the suspending fluid times a function of the particle volume fraction. But thanks to the research findings of the Principal Investigator and of his Associates, made possible by the steady and continuous support which the PI received from the DOE Office of Basic Energy Sciences, the subject is now seen to be more complicated and therefore much more interesting in that concentrated suspensions have been shown to exhibit fascinating and unique rheological properties of their own that have no counterpart in flowing Newtonian or even non-Newtonian (polymeric) fluids. In fact, it is generally acknowledged that, as the result of these investigations for which the PI received the 2001 National Medal of Science, our understanding of how suspensions behave under flow is far more detailed and comprehensive than was the case even as recently as a decade ago. Thus, given that the flow of suspensions plays a crucial role in many diverse physical processes, our work has had a major and lasting impact in a subject having both fundamental as well as practical importance.

  12. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  13. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes.

    PubMed

    Zakharova, Olga V; Godymchuk, Anna Yu; Gusev, Alexander A; Gulchenko, Svyatoslav I; Vasyukova, Inna A; Kuznetsov, Denis V

    2015-01-01

    Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu(2+) and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed. PMID:26339611

  14. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes

    PubMed Central

    Zakharova, Olga V.; Godymchuk, Anna Yu.; Gusev, Alexander A.; Gulchenko, Svyatoslav I.; Vasyukova, Inna A.; Kuznetsov, Denis V.

    2015-01-01

    Suspensions of Cu nanoparticles are promising for creating the new class of alternative antimicrobial products. In this study we examined copper nanoparticles of various sizes obtained by the method of wire electric explosion: nanopowder average size 50 nm (Cu 50) and 100 nm (Cu 100). The paper presents the complex study of the influence of physicochemical properties such as particle size and concentration of the freshly prepared and 24-hour suspensions of Cu nanoparticles in distilled water and physiological solution upon their toxicity to bacteria E. coli M-17. Ionic solution of Cu2+ and sodium dichloroisocyanurate was used for comparison study. It has been shown that decrease in the nanoparticle size leads to changes in the correlation between toxicity and concentration as toxicity peaks are observed at low concentrations (0.0001⋯0.01 mg/L). It has been observed that antibacterial properties of Cu 50 nanoparticle suspensions are ceased after 24-hour storage, while for Cu 100 suspensions no correlation between antibacterial properties and storage time has been noted. Cu 100 nanoparticle suspensions at 10 mg/L concentration display higher toxicity at substituting physiological solution for water than Cu 50 suspensions. Dependence of the toxicity on the mean particle aggregates size in suspension was not revealed. PMID:26339611

  15. Entropy favours open colloidal lattices

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  16. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  17. Scattering from correlations in colloidal systems

    SciTech Connect

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10/sup 4/ A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10/sup -8/-10/sup -3/ sec) than those found in simple atomic or small molecular systems (10/sup -13/-10/sup -10/ sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest.

  18. Statistical thermodynamics of charge-stabilized colloids

    NASA Astrophysics Data System (ADS)

    Torres Valderrama, A.

    2008-06-01

    This thesis is a theoretical study of equilibrium statistical thermodynamic properties of colloidal systems in which electrostatic interactions play a dominant role, namely, charge-stabilized colloidal suspensions. Such systems are fluids consisting of a mixture of a large number of mesoscopic particles and microscopic ions which interact via the Coulomb force, suspended in a molecular fluid. Quantum statistical mechanics is essential to fully understand the properties and stability of such systems. A less fundamental but for many purposes, sufficient description, is provided by classical statistical mechanics. In such approximation the system is considered as composed of a great number of charged classical particles with additional hard-core repulsions. The kinetic energy or momentum integrals become independent Gaussians, and hence their contribution to the free energy can be trivially evaluated. The contribution of the potential energy to the free energy on the other hand, depends upon the configuration of all the particles and becomes highly non-trivial due to the long-range character of the Coulomb force and the extremely different length scales involved in the problem. Using the microscopic model described above, we focus on the calculation of equilibrium thermodynamic properties (response functions), correlations (structure factors), and mechanical properties (forces and stresses), which can be measured in experiments and computed by Monte Carlo simulations. This thesis is divided into three parts. In part I, comprising chapters 2 and 3, we focus on finite-thickness effects in colloidal platelets and rigid planar membranes. In chapter 2 we study electrolyte-mediated interactions between two of such colloidal objects. Several aspects of these interactions are considered including the nature (attractive or repulsive) of the force between the objects, the osmotic properties for different types of surfaces and image charge effects. In part II, which includes

  19. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  20. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles. PMID:25768506

  1. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  2. Saturated Zone Colloid Transport

    SciTech Connect

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  3. Microfluidic colloid filtration.

    PubMed

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J C; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today's water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a "cake layer" - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  4. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  5. Colloidal deposition and aggregation in the presence of charged collectors

    NASA Astrophysics Data System (ADS)

    Sadri, Behnam; Rajendran, Arvind; Bhattacharjee, Subir; Colloids; complex fluid laboratory Team

    2014-11-01

    The transport of colloidal particles in porous media is of great importance in sub-surface environments. These colloidal particles facilitate transport of contaminants, low-soluble compounds and metals in groundwater. Here, we have studied transport dynamics of colloids inside porous medium using a combination of column experiments and batch studies. Polystyrene latex beads (100 nm), as colloidal agents, and soda lime glass beads, as porous medium, are employed in this work. On the one hand, batch experiments are undertaken to better understand concurrent aggregation and deposition of particles. On the other hand, column experiments are performed to understand the flow induced deposition of colloidal particles in the interstitial voids. Effect of collector surface preparation, pH, colloidal suspension concentration and collector beads mass is studied. Chemical release and shear field are revealed as two significant factors lying behind the coagulation of colloidal particles. These findings help us to better distinguish mechanisms responsible for the transport of colloids inside porous medium. We are collaborators. Behnam Sadri is master of science student while two other professor are supervising his research work.

  6. Critical Casimir interactions and colloidal self-assembly in near-critical solvents.

    PubMed

    Tasios, Nikos; Edison, John R; van Roij, René; Evans, Robert; Dijkstra, Marjolein

    2016-08-28

    A binary solvent mixture close to critical demixing experiences fluctuations whose correlation length, ξ, diverges as the critical point is approached. The solvent-mediated (SM) interaction that arises between a pair of colloids immersed in such a near-critical solvent can be long-ranged and this so-called critical Casimir interaction is well-studied. How a (dense) suspension of colloids will self-assemble under these conditions is poorly understood. Using a two-dimensional lattice model for the solvent and hard disks to represent the colloids, we perform extensive Monte Carlo simulations to investigate the phase behaviour of this model colloidal suspension as a function of colloid size and wettability under conditions where the solvent reservoir is supercritical. Unlike most other approaches, where the solvent is modelled as an implicit background, our model employs an explicit solvent and treats the suspension as a ternary mixture. This enables us to capture important features, including the pronounced fractionation of the solvent in the coexisting colloidal phases, of this complex system. We also present results for the partial structure factors; these shed light on the critical behaviour in the ternary mixture. The degree to which an effective two-body pair potential description can describe the phase behaviour and structure of the colloidal suspension is discussed briefly. PMID:27586941

  7. Photophysical effects between spirobenzopyran-methylmethacrylate functionalized colloidal particles.

    SciTech Connect

    Piech, Marcin; Bell, Nelson Simmons

    2005-06-01

    Colloidal particles were derivatized with end-grafted polymethylmethacryate polymer brushes containing varying concentrations of spirobenzopyran photochromic molecules. The polymers were grown from initiator-functionalized silica partilces by an atom-transfer radical polymerization (ATRP). These core-shell colloids formed stable suspensions in toluene with the spirobenzopyran in its closed, nonpolar form. However, UV-induced photoswitching of the photochrome to its open, polar merocyanine isomer caused rapid aggregation. The nature of this colloidal stability transition was examined with respect to the spirobenzopyran content in the polymeric brush and solvent polarity. Turbidimetry, wettability studies, UV-vis spectroscopy, suspension rheology, SEM, and visual inspection were utilized to characterize the system photoswitchability. It was found that the system exhibiting the greatest transition in toluene was the copolymer brush composed of 20% spirobenzopyran and 80% methyl methacrylate.

  8. Size-dependent Turbidimatric Quantification of Mobile Colloids in Field Samples

    NASA Astrophysics Data System (ADS)

    Yan, J.; Meng, X.; Jin, Y.

    2015-12-01

    Natural colloids, often defined as entities with sizes < 1.0 μm, have attracted much research attention because of their ability to facilitate the transport of contaminants in the subsurface environment. However, due to their small size and generally low concentrations in field samples, quantification of mobile colloids, especially the smaller fractions (< 0.45 µm), which are operationally defined as dissolved, is largely impeded and hence the natural colloidal pool is greatly overlooked and underestimated. The main objectives of this study are to: (1) develop an experimentally and economically efficient methodology to quantify natural colloids in different size fractions (0.1-0.45 and 0.45-1 µm); (2) quantify mobile colloids including small colloids, < 0.45 µm particularly, in different natural aquatic samples. We measured and generated correlations between mass concentration and turbidity of colloid suspensions, made by extracting and fractionating water dispersible colloids in 37 soils from different areas in the U.S. and Denmark, for colloid size fractions 0.1-0.45 and 0.45-1 µm. Results show that the correlation between turbidity and colloid mass concentration is largely affected by colloid size and iron content, indicating the need to generate different correlations for colloids with constrained size range and iron content. This method enabled quick quantification of colloid concentrations in a large number of field samples collected from freshwater, wetland and estuaries in different size fractions. As a general trend, we observed high concentrations of colloids in the < 0.45 µm fraction, which constitutes a significant percentage of the total mobile colloidal pool (< 1 µm). This observation suggests that the operationally defined cut-off size for "dissolved" phase can greatly underestimate colloid concentration therefore the role that colloids play in the transport of associated contaminants or other elements.

  9. Heteropolar Magnetic Suspension

    NASA Technical Reports Server (NTRS)

    Misovec, Kathleen; Johnson, Bruce; Downer, James; Eisenhaure, David; Hockney, Richard

    1990-01-01

    Compact permanent-magnet/electromagnet actuator has six degrees of freedom. Heteropolar magnetic actuator conceived for use as actively controlled vibration-isolating suspension device. Exerts forces along, and torques about, all three principal coordinate axes to resist all three components of translational vibration and all three components of rotational vibration. Inner cylinder suspended magnetically within outer cylinder. Electro-magnet coils interact with fields of permanent magnets to provide active control of suspending force and torque.

  10. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Hansong; Chen, Wuwei; Zhou, HuiHui; Zu, Jean W.

    2011-02-01

    Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability, and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of the active suspension system (ASS) and the electronic stability programme (ESP). The upper-layer controller is designed to coordinate the interactions between the ASS and the ESP. While in the lower layer, the two controllers including the ASS and the ESP are developed independently to achieve their local control objectives. Both a simulation investigation and a hardware-in-the-loop experimental study are performed. Simulation results demonstrate that the proposed hierarchical control system is able to improve the multiple vehicle performance indices including both the ride comfort and the lateral stability, compared with the non-integrated control system. Moreover, the experimental results verify the effectiveness of the design of the hierarchical control system.

  11. [Effect of abiotic elicitation on the sanguinarine production and polyphenol oxidase activity in the suspension culture of Eschscholtzia californica CHAM].

    PubMed

    Bilka, František; Balážová, Andrea; Bilková, Andrea; Holková, Ivana

    2013-08-01

    Elicitation of plant in vitro cultures represents a biotechnological tool to improve the production of secondary metabolites. In this study, the effect of AgNO3 and CdCl2 on the sanguinarine production by the suspension culture of Eschscholtzia californica CHAM. was investigated. Elicitors were added to the cultures at the 14th day of subcultivation and their effect on the sanguinarine production was evaluated after a 48 h exposure. AgNO3 at the concentration of 0.075 mmol.l-1 and CdCl2 at the concentration of 4 mmol.l-1 induced a ca. 5.2- and 5.6-multiple increase in sanguinarine synthesis, respectively. This amount represents probably the maximal production, because a further increase in the elicitors concentrations did not increase sanguinarine production. Both abiotic elicitors induced a polyphenol oxidase specific activity increase. Polyphenol oxidase is probably involved in the biosynthesis of sanguinarine at the level of dopamine formation. Dopamine is a precursor of (S)-norcoclaurine, the first intermediate with the benzylisoquinoline structure. PMID:24047145

  12. Highly uniform polyhedral colloids formed by colloidal crystal templating

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; McGinley, James; Crocker, John; Crocker Research Group Team

    2015-03-01

    We seek to create polyhedral solid particles by trapping oil droplets in a colloidal crystal, and polymerizing them in situ, resulting in polyhedral particles containing spherical dimples in an ordered arrangement. Specifically, highly monodisperse, micron-sized droplets of 3-methacryloxypropyl trimethoxysilane (TPM) were first prepared through a poly condensation reaction, following well established methods. The droplets were mixed with an excess of polystyrene(PS) particles (diameter in 2.58 μm), which formed close packed (FCC or HCP) colloidal crystals by natural sedimentation and compression under partial drying to an extent, with TPM oil droplets trapped into their tetrahedral and octahedral interstitial sites and wet PS particles. Depending on the initial particle volume fraction and extent of drying, a high yield of dimpled particles having different shapes including tetrahedra and cubes were obtained after oil initiated polymerization and dissolution of the host PS particles, as seen under SEM. The effects of TPM to PS particles size ratio, drying time, and other factors in relation to the yield of tetrahedral and cubic dimpled particles will be presented. Finally, fractionation techniques were used to obtain suspensions of uniform polyhedral particles of high purity.

  13. Capillary suspensions: Particle networks formed through the capillary force

    PubMed Central

    Koos, Erin

    2014-01-01

    The addition of small amounts of a secondary fluid to a suspension can, through the attractive capillary force, lead to particle bridging and network formation. The capillary bridging phenomenon can be used to stabilize particle suspensions and precisely tune their rheological properties. This effect can even occur when the secondary fluid wets the particles less well than the bulk fluid. These materials, so-called capillary suspensions, have been the subject of recent research studying the mechanism for network formation, the properties of these suspensions, and how the material properties can be modified. Recent work in colloidal clusters is summarized and the relationship to capillary suspensions is discussed. Capillary suspensions can also be used as a pathway for new material design and some of these applications are highlighted. Results obtained to date are summarized and central questions that remain to be answered are proposed in this review. PMID:25729316

  14. Phosphate binding by natural iron-rich colloids in streams.

    PubMed

    Baken, Stijn; Moens, Claudia; van der Grift, Bas; Smolders, Erik

    2016-07-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 μm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals. PMID:27110889

  15. Non-equilibrium phenomena in disordered colloidal solids

    NASA Astrophysics Data System (ADS)

    Yunker, Peter

    Colloidal particles are a convenient tool for studying a variety of non-equilibrium phenomena. I will discuss experiments that investigate the aging and non-equilibrium growth of disordered solids. In the first set of experiments, colloidal glasses are rapidly formed to study aging in jammed packings. A colloidal fluid, composed of micron-sized temperature-sensitive pNIPAM particles, is rapidly quenched into a colloidal glass. After the glass is formed, collective rearrangements occur as the glass ages. Particles that undergo irreversible rearrangements, which break nearest-neighbor pairings and allow the glass to relax, are identified. These irreversible rearrangements are accompanied by large clusters of fast moving particles; the number of particles involved in these clusters increases as the glass ages, leading to the slowing of dynamics that is characteristic of aging. In the second set of experiments, we study the role particle shape, and thus, interparticle interaction, plays in the formation of disordered solids with different structural and mechanical properties. Aqueous suspensions of colloidal particles with different shapes evaporate on glass slides. Convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow heterogeneously from the edge on the air-water interface. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Mechanical testing of these particulate deposits reveals that the deposit bending rigidity increases as particles become more anisotropic in shape.

  16. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  17. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  18. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  19. Injection of colloidal Fe{sup 0} particles in sand with shear-thinning fluids

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-08-01

    A novel approach to emplacing chemically reactive barriers is the injection of zero-valent iron (Fe{sup 0}) colloids into the subsurface. A difficulty encountered in this approach is that the dense Fe{sup 0} colloids settle out of solution with time, decreasing the distance the colloids can be injected into the subsurface. Studies were conducted to evaluate if several viscous shear-thinning fluids could enhance Fe{sup 0} colloid emplacement in porous media. Aqueous solutions of three nontoxic polymers at different concentrations were investigated: a synthetic high molecular weight polymer [vinyl polymer, (VP)], a biopolymer (gum xanthan, GX), and a cellulose-type polymer (carboxymethyl cellulose, CMC). The use of shear-thinning fluids greatly increases the mobility of the colloidal Fe{sup 0} suspensions in porous media. VP was superior to GX and GMC because the VP suspensions produced the lowest back pressures, resulting in the highest hydraulic conductivities.

  20. Re-entrant melting as a design principle for DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan

    2012-06-01

    Colloids functionalized with DNA hold great promise as building blocks for complex self-assembling structures. However, the practical use of DNA-coated colloids (DNACCs) has been limited by the narrowness of the temperature window where the target structures are both thermodynamically stable and kinetically accessible. Here we propose a strategy to design DNACCs, whereby the colloidal suspensions crystallize on cooling and then melt on further cooling. In a phase diagram with such a re-entrant melting, kinetic trapping of the system in non-target structures should be strongly suppressed. We present model calculations and simulations that show that real DNA sequences exist that should bestow this unusual phase behaviour on suitably functionalized colloidal suspensions. We present our results for binary systems, but the concepts that we develop apply to multicomponent systems and should therefore open the way towards the design of truly complex self-assembling colloidal structures.