Science.gov

Sample records for active comet nuclei

  1. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  2. SEASONAL EFFECTS ON COMET NUCLEI EVOLUTION: ACTIVITY, INTERNAL STRUCTURE, AND DUST MANTLE FORMATION

    SciTech Connect

    De Sanctis, M. C.; Capria, M. T.; Lasue, J.

    2010-07-15

    Rotational properties can strongly influence a comet's evolution in terms of activity, dust mantling, and internal structure. In this paper, we investigate the effects of various rotation axis directions on the activity, internal structure, and dust mantling of cometary nuclei. The numerical code developed is able to reproduce different shapes and spin axis inclinations, taking into account both the latitudinal and the longitudinal variations of illumination, using a quasi-three-dimensional approach. The results obtained show that local variations in the dust and gas fluxes can be induced by the different spin axis directions and completely different behaviors of the comet evolution can result in the same cometary shape by using different obliquities of the models. The internal structures of cometary nuclei are also influenced by comet obliquity, as well as dust mantling. Gas and dust production rates show diversities related to the comet seasons.

  3. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  4. Temperatures within comet nuclei.

    PubMed

    Squyres, S W; McKay, C P; Reynolds, R T

    1985-12-10

    We have performed a theoretical study of temperatures beneath the surface of a comet's nucleus. We solve the one-dimensional heat conduction equation for the outer portion of the comet. The upper boundary condition of the model is given by energy balance at the surface of the nucleus, including conduction of heat inward, radiation, insolation as modified by the coma, and sublimation. Our coma model assumes single scattering and includes attenuation of direct sunlight by dust grains, scattering of light onto the nucleus, and infrared radiation by dust grains. The lower boundary condition is zero net heat flux around an orbit. The thermal conductivity expression for the nucleus includes direct conduction at grain boundaries, radiative conduction, and Knudsen flow vapor diffusion. The thermal diffusivity of the nucleus and the resultant temperature profiles are shown to be strongly dependent on the physical properties of the material, including porosity, pore size, and compaction. The temperature profiles and the equilibrium temperature deep within the comet also depend on the functional relationship between thermal conductivity and temperature; the highest deep equilibrium temperatures are found for models where the thermal conductivity increases strongly with increasing temperature. The dependence of temperatures on the albedo and thermal emissivity of the nucleus is also calculated, as well as the variation of temperature with latitude for a variety of pole orientations. The effect of a dust mantle on subsurface temperatures is also investigated. All calculations are presented for short-period comets with orbits that make them accessible for exploration by spacecraft rendezvous. In situ measurements of the thermal profile in the upper meter of a comet nucleus can substantially constrain the thermal diffusivity of the material, which in turn can provide significant information about the physical properties of the nucleus.

  5. Retrieving samples from comet nuclei

    NASA Astrophysics Data System (ADS)

    Stuhlinger, Ernst; Bassner, Helmut; Fechtig, Hugo; Igenbergs, Eduard; Kuczera, Heribert; Loeb, Horst; Schobert, Detlef

    1987-09-01

    A comet nucleus sampling scenario is proposed. Material samples for analysis in earth-based laboratories should be collected continuously to a depth of 3 m below the surface, and at a solar distance of at least 2.5 AU where the comet surface is inactive. The spacecraft is propelled by chemical and electric thrusters. While hovering above the comet nucleus at an altitude of 500 to 1000 m, the spacecraft will dispatch a rotating drill on a tether. The drill pipe will be driven into the nucleus by a rocket-powered reaction wheel. The inner pipe of the drill, when filled with cometary material, will be withdrawn by the tether, stored on the spacecraft, and transported back to Earth.

  6. On the composition of the dust component of comet nuclei

    NASA Astrophysics Data System (ADS)

    Iavnel', A. A.

    1988-11-01

    This paper considers the composition of the dust component of comet nuclei, with special attention given to Vega mass-spectrometry data on the Comet Halley nucleus and neutron-activation analysis data on magnetite spherules found at the Tungusk site. A comparison of these data with those on the carbonaceous chondrites of the Ornans (CO) and the Ivuna (CI) types and on the particles from the Draconid meteoritic shower suggest that Comet Halley, whose dust-particle composition corresponded to that of the CI type except for a higher content of volatiles, was formed at a greater distance from the sun than the asteroids.

  7. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  8. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  9. Numerical simulation of comet nuclei. I - Water-ice comets

    NASA Technical Reports Server (NTRS)

    Herman, G.; Podolak, M.

    1985-01-01

    A one-dimensional numerical model of pure water-ice cometary nuclei is presented, and the influence of the nuclear interior as a heat reservoir on the behavior of the nuclear surface is examined. It is shown that a number of effects, including the thermal inertia due to heat stored in the core and the release of latent heat, which goes entirely into heating the adjacent layers or into sublimation on passing through a phase transition from amorphous to crystalline ice, can help to explain such characteristics as the asymmetrical lightcurve of Comet Halley. Results are given for the cases of Comet Schwassmann-Wachmann 1 and Comet Encke. Consideration is also given to the insulating effect of an evolving dust mantle. The role of this mantle in determining the surface temperature of the ice core is studied as a function of the mass fraction of the dust in the ice-dust mixture and the thermal conductivity of the nucleus. The loose-lattice model of Mendis and Brin (1977) indicates that both high dust to ice ratios and high-core conductivities inhibit mantle blowoff.

  10. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  11. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed

  12. The Rosetta mission: Clues on the origin of comet nuclei

    NASA Astrophysics Data System (ADS)

    Davidsson, Bjorn; Stern, S. Alan; Kofman, Wlodek; Hilchenbach, Martin; rotundi, alessandra; Bentley, Mark; Hofstadter, Mark; Sierks, Holger; Altwegg, Kathrin; Nilsson, Hans; Burch, James L.; Eriksson, Anders I.; Glassmeier, Karl-Heinz; Henri, Pierre; Carr, Christopher M.; Pätzold, Martin; Capaccioni, Fabrizio; Boehnhardt, Hermann; Bibring, Jean-Pierre; Fulle, Marco; Fulchignoni, Marcello; Gruen, Eberhard; Weissman, Paul R.; Taylor, Matt; Buratti, Bonnie J.; Choukroun, Mathieu; Altobelli, Nicolas; Snodgrass, Colin; Rosetta Science Working Team

    2016-10-01

    The Rosetta mission has been taking measurements of its target Comet 67P/Churyumov-Gerasimenko sinceearly 2014 and will complete operations at the end of September 2016. The mission Science Management Plan,in 1994, laid out the the prime goals and themes of the mission. These five themes were:1) To study the global characterization of the Nucleus, the determination of the dynamics properties ,surface morphology and composition of the comet.2) Examination of the Chemical, Mineralogical and isotopic compositions of volatiles and refractoriesin a cometary nucleus.3) Physical interrelation of volatile and refractories in a cometary nucleus4) Study the development of cometary activity and the process in the surface layer of thenucleus and in the inner coma5) The origins of comets, the relationship between cometary and interstellar material and theimplications for the origin of the solar system,To cover all aspects of the Rosetta mission in this special Show case session, this abstracts isone of 5, with this particular presentation focusing on theme 5.Several scenarios for comet nucleus formation have been proposed, such as hierarchical agglomeration,or gravitational collapse of pebble swarms created either by turbulent eddies or by streaming instabilities.In addition, the question of survival of such primordial nuclei versus severe collisional processinghas been debated. The pros and cons of these hypotheses are discussed in the light of Rosetta's discoveries.

  13. Vaporization of comet nuclei - Light curves and life times

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Ahearn, M. F.

    1979-01-01

    The effects of vaporization from the nucleus of a comet are examined and it is shown that a latitude dependence of vaporization can explain the asymmetries in cometary light curves. An attempt is made to explain the observed variation in molecular production rates with heliocentric distance when employing CO2 and clathrate hydrate ice as cometary nuclei substances. The energy balance equation and the vapor pressure equations of water and CO2 are used in calculating the vaporization from a surface. Calculations were carried out from both dry-ice and water-ice nuclei, using a variety of different effective visual albedos, but primarily for a thermal infrared of 0 (emission). Attention is given to cometary lifetimes and light curves and it was determined that the asymmetry in light curves occurs (occasionally) as a 'seasonal' effect due to a variation in the angle between the comet's rotation axis and the sun-comet line.

  14. Gas, Dust, and Nuclei: Cometary Types in the Largest IR Survey of Comets.

    NASA Astrophysics Data System (ADS)

    Bauer, James; Kramer, Emily; Mainzer, Amy; Grav, Tommy; Masiero, Joseph; Stevenson, Rachel; Nugent, Carrie; Sonnett, Sarah

    2015-08-01

    Space-based infrared (IR) surveys of objects have the potential to yield rich data sets for any particular class of small body. Thermal IR measurements often yield the most fundamental of astrophysical properties, the object’s size. When these data are synergistically combined with shorter-wavelength observations, the albedos of these bodies can be determined. The interpretation of IR observations of cometary bodies are more complicated, since their activity may obscure the bare surfaces of their nuclei. Yet space-based IR surveys provide the opportunity to observe this emitted dust and gas at wavelengths and sensitivities not possible from the ground.With the 163 comets detected during the WISE prime mission, and the more than 60 comets seen in the first year of data since the NEOWISE reactivated mission, the combined sample represents the largest survey of comets in the mid-IR. These data of over 200 comets provide dust particle size constraints and dust reflectance measurements, as well as nucleus size measurements. They are sensitive to the presence of the rarely observed gas species, CO2, directly detectable only from above the Earth’s atmosphere, and to the presence of CO emission, which is difficult to view from the ground. The data contain large samples of major cometary types (long-period and short-period comets), as well as smaller samples of Halley-type comets, Main Belt comets, and Near Earth comets, observed at multiple epochs, and so provide an unprecedentedly comprehensive view of the different comet populations.

  15. When comets get old: A synthesis of comet and meteor observations of the low activity comet 209P/LINEAR

    NASA Astrophysics Data System (ADS)

    Ye (叶泉志), Quan-Zhi; Hui (许文韬), Man-To; Brown, Peter G.; Campbell-Brown, Margaret D.; Pokorný, Petr; Wiegert, Paul A.; Gao (高兴), Xing

    2016-01-01

    It is speculated that some weakly active comets may be transitional objects between active and dormant comets. These objects are at a unique stage of the evolution of cometary nuclei, as they are still identifiable as active comets, in contrast to inactive comets that are observationally indistinguishable from low albedo asteroids. In this paper, we present a synthesis of comet and meteor observations of Jupiter-family Comet 209P/LINEAR, one of the most weakly active comets recorded to-date. Images taken by the Xingming 0.35-m telescope and the Gemini Flamingo-2 camera are modeled by a Monte Carlo dust model, which yields a low dust ejection speed (1/10 of that of moderately active comets), dominance of large dust grains, and a low dust production of 0.4kgs-1 at 19 d after the 2014 perihelion passage. We also find a reddish nucleus of 209P/LINEAR that is similar to D-type asteroids and most Trojan asteroids. Meteor observations with the Canadian Meteor Orbit Radar (CMOR), coupled with meteoroid stream modeling, suggest a low dust production of the parent over the past few hundred orbits, although there are hints of a some temporary increase in activity in the 18th century. Dynamical simulations indicate 209P/LINEAR may have resided in a stable near-Earth orbit for ∼104 yr, which is significantly longer than typical JFCs. All these lines of evidence imply that 209P/LINEAR as an aging comet quietly exhausting its remaining near surface volatiles. We also compare 209P/LINEAR to other low activity comets, where evidence for a diversity of the origin of low activity is seen.

  16. Detecting active comets with SDSS

    SciTech Connect

    Solontoi, Michael; Ivezic, Zeljko; West, Andrew A.; Claire, Mark; Juric, Mario; Becker, Andrew; Jones, Lynne; Hall, Patrick B.; Kent, Steve; Lupton, Robert H.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  17. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  18. Gaseous activity of distant comets

    NASA Astrophysics Data System (ADS)

    Womack, Maria; Sarid, Gal; Wierzchos, Kacper

    2016-10-01

    The activity of most comets within 3AU of the Sun is dominated by the sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit. Studying distantly active comets provides valuable opportunities to explore primitive bodies when water-ice sublimation is largely dormant, which is the case for most of a comet's lifetime. Beyond 4 AU, super-volatiles such as CO or CO2 are thought to play a major role in driving observed activity. Carbon monoxide is of special interest because it is a major contributor to comae and has a very low sublimation temperature. Three bodies dominate the observational record and modeling efforts for distantly active small bodies: the long-period comet C/1995 O1 Hale-Bopp and the short-period comets (with centaur orbits) 29P/Schwassmann Wachmann 1 and 2060 Chiron. Hale-Bopp's long-period orbit means it has experienced very little solar heating in its lifetime and is analogous to dynamically new comets making their first approach to the Sun. Because Chiron and 29P have much smaller orbits closer to the Sun, they have experienced much more thermal processing than Hale-Bopp and this is expected to have changed their chemical composition from their original state. We point out that the observed CO production rates and line-widths in these three distantly active objects are consistent with each other when adjusted for heliocentric distance. This is particularly interesting for Hale-Bopp and 29P, which have approximately the same radius. The consistent CO production rates may point to a similar CO release mechanism in these objects. We also discuss how observed radio line profiles support that the development and sublimation of icy grains in the coma at about 5-6 AU is probably a common feature in distantly active comets, and an important source of other volatiles within 6 AU, including H2O, HCN, CH3OH, and H2CO.

  19. CO in Distantly Active Comets

    NASA Astrophysics Data System (ADS)

    Womack, M.; Sarid, G.; Wierzchos, K.

    2017-03-01

    The activity of most comets near the Sun is dominated by the sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ∼3 au. Three bodies dominate the observational record and modeling efforts for distantly active comets: the long-period comet C/1995 O1 (Hale-Bopp), and the short-period comets (with Centaur orbits) 29P/Schwassmann-Wachmann 1 and 2060 Chiron. We summarize what is known about these three objects with an emphasis on their gaseous comae. We calculate their CN/CO and CO2/CO production rate ratios from the literature and discuss implications, such as HCN and CO2 outgassing are not significant contributors to their comae. Using our own data we derive CO production rates, Q(CO), for all three objects to examine whether there is a correlation between gas production and different orbital histories and/or size. The CO measurements of Hale-Bopp (4–11 AU) and 29P are consistent with a nominal production rate of Q(CO) = 3.5 × 1029 r‑2 superimposed with sporadic outbursts. The similarity of Hale-Bopp CO production rates for pre- and post-perihelion suggests that thermal inertia was not very important and therefore most of the activity is at or near the surface of the comet. We further examine the applicability of existing models in explaining the systematic behavior of our small sample. We find that orbital history does not appear to play a significant role in explaining 29P’s CO production rates. 29P outproduces Hale-Bopp at the same heliocentric distance, even though it has been subjected to much more solar heating. Previous modeling work on such objects predicts that 29P should have been devolatilized over a fresher comet like Hale-Bopp. This may point to 29P having a different orbital history than current models predict, with its current orbit acquired more recently. On the other hand, Chiron’s CO measurements are consistent with it being significantly depleted

  20. A new activity index for comets

    NASA Astrophysics Data System (ADS)

    Whipple, Fred L.

    1992-12-01

    An activity index, AI, is derived from observational data to measure the increase of activity in magnitudes for comets when brightest near perihelion as compared to their inactive reflective brightness at great solar distances. Because the observational data are still instrumentally limited in the latter case and because many comets carry particulate clouds about them at great solar distances, the application of the activity index is still limited. A tentative application is made for the comets observed by Max Beyer over a period of nearly 40 years, providing a uniform magnitude system for the near-perihelion observations. In all, 32 determinations are made for long-period (L-P) comets and 15 for short-period (S-P). Although the correlations are scarcely definitive, the data suggest that the faintest comets are just as active as the brightest and that the S-P comets are almost as active as those with periods (P) exceeding 104 years or those with orbital inclinations of i less than 120 deg. Comets in the range 102 less than P less than 104 yr. or with i greater than 120 deg appear to be somewhat more active than the others. There is no evidence to suggest aging among the L-P comets or to suggest other than a common nature for comets generally.

  1. Long-term Rotation State Evolution of Comet Nuclei Including the Effects of Jet Torques and Internal Dissipation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-05-01

    Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Active areas of the surface and jets torque the nucleus during perihelion passage, while time variable internal stresses dissipate energy in the anelastic comet interior. These competing processes determine the comet’s nuclear rotation state. We developed a model for the evolution of the nuclei due to the reactive torques of a number of discrete jets located on the surface based on Neishtadt et al. [2002]. These jets are active only within a specific distance of the sun according to an empirical law determined by Marsden et al. (1973), however internal dissipation occurs as long as the body is not rotating about a principal axis. This internal dissipation is modeled according to Sharma et al. [2005] and Vokrouhlicky et al. [2009]. We average the full evolutionary equations over the rapidly changing spin angle, precession angle and true anomaly of the orbit. The averaged equations can rapidly calculate the long-term evolution of the nutation angle, cone angle and magnitude of the angular momentum vector over many perihelion passages. The averaged dynamical system is characterized by just two parameters: the first encapsulating the jet geometry and the second the coefficient of energy dissipation. Neishtadt et al. [2002] determined that there exist non-principal axis rotation fixed points, some even stable, for certain jet geometries. With the addition of internal dissipation, some of these fixed points disappear, while others remain but may change locations and classification as a function of the strength of energy dissipation at constant jet geometry. We explore this model of comet nuclei evolution to determine the rotation state of comet nuclei with changing jet geometries and constant coefficients of energy dissipation.

  2. THERMAL SHADOWS AND COMPOSITIONAL STRUCTURE IN COMET NUCLEI

    SciTech Connect

    Guilbert-Lepoutre, Aurelie; Jewitt, David E-mail: jewitt@ucla.edu

    2011-12-10

    We use a fully three-dimensional thermal evolution model to examine the effects of a non-uniform surface albedo on the subsurface thermal structure of comets. Surface albedo markings cast 'thermal shadows' with strong lateral thermal gradients. Corresponding compositional gradients can be strong, especially if the crystallization of amorphous water ice is triggered in the hottest regions. We show that the spatial extent of the structure depends mainly on the obliquity, thermal conductivity, and heliocentric distance. In some circumstances, subsurface structure caused by the thermal shadows of surface features can be maintained for more than 10 Myr, the median transport time from the Kuiper Belt to the inner solar system. Non-uniform compositional structure can be an evolutionary product and does not necessarily imply that comets consist of building blocks accumulated in different regions of the protoplanetary disk.

  3. Comet Shoemaker-Levy 9: An Active Comet

    NASA Technical Reports Server (NTRS)

    Rettig, Terrence W.; Hahn, Joseph M.

    1997-01-01

    The important elements of the debate over the activity versus dormancy of comet Shoemaker Levy 9 (S-L 9) are reviewed. It is argued that the circularity of the isophotes in the inner comae of S-L 9 as well as the spatial dependencies of the comae brightness profiles are indicators of sustained dust production by S-L 9. It is also shown that the westward tail orientations, which were formerly interpreted as a sign of the comet's dormancy, are not a good indicator of either activity or dormancy. Rather, the tail orientations simply place constraints on the dust production rate for grains smaller than approx. equals 5(micron). All the available evidence points to S-L 9 as having been an active, dust-producing comet. Synthetic images of an active comet are fitted to Hubble Space Telescope images of the S-L 9 fragment K, and its grain size and outflow velocity distributions are extracted. These findings show that the appearance of the dust coma was dominated by large grains having radii between approx. equals 30 (micron) and approx. equals 3 mm, produced at a rate of M approx. equals 22 kg/ s, and ejected at outflow velocities of approx. equals 0.5 m/ s. Only upper limits on the production rates of smaller grains are obtained. The nucleus of fragment K was not observed directly but its size is restricted to lie within a rather narrow interval 0.4 less than or equal to Rf less than or equal to 1.2 km.

  4. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  5. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been

  6. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  7. Comets. [IUE

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.

    1988-01-01

    The IUE was used to study comets including the first dynamically new comet to approach closer than 3 AU. Differences between old and new comets are studied. Results relevant to the nature of cometary nuclei are discussed. Identification of species in the spectra; relative abundances; variability of comets; and comet mass are considered.

  8. The forest and the trees. [comments on comet nuclei, cometary origin, and correlations among cometary data

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1991-01-01

    Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.

  9. A Summary of Comet Nuclei Diameters and Dust Photometry from the WISE/NEOWISE Prime Mission

    NASA Astrophysics Data System (ADS)

    Bauer, James M.; Grav, Tommy; Mainzer, Amy K.; Fernandez, Yanga R.; Kramer, Emily A.; Masiero, Joseph R.; Spahr, Timothy; Nugent, Carolyn; Sonnett, Sarah M.; Meech, Karen Jean; Lisse, Casey M.; Cutri, Roc M.; Walker, Russell G.; Rosser, Joshua; Krings, Phillip; Wright, Edward L.; NEOWISE Team

    2016-10-01

    While the ROSETTA mission has shown us for the first time up-close manifestations of cometary behavior over the course of a comet's complete orbit, and so given us new insight into how to interpret cometary phenomena seen from Earth, even the most basic of properties, the distribution of effective nuclear diameters, is not well understood. Milestone surveys in the infrared are significantly advancing the number of measured comet diameters (e.g. Fernandez et al. 2013). Now with the NEOWISE prime mission data, we have new diameter constraints for 155 cometary nuclei, 55 of which are of long-period. This makes the NEOWISE dataset the largest diameter sample size in a single survey. The dataset also provides information on large-grained dust production via measurements of ɛfρ. These data, in concert with parallel studies regarding the ejection times and size distributions of the dust (Kramer et al. 2016), and the gas production (Bauer et al. 2015), yield a remarkable amount of information regarding the correlations amongst these properties and as a function of comet orbital classification. We will summarize the final results of the NEOWISE prime mission (Mainzer et al. 2011) comet nuclei survey, and provide an overview of what the restarted mission (Mainzer et al. 2014) results are yielding in terms of constraints on dust and gas production at these crucial wavelengths.ReferencesBauer, J.M. et al. (2015), ApJ 814, 85.Kramer et al. (2016) 48th AAS Div. of Planetary Science /EPSC 11th Meeting, Pasadena, CAFernández, Y. R. et al. (2013), Icarus, 226, 1138.Mainzer, A.K., et al. (2011). ApJ 731, 53.Mainzer et al. (2014). ApJ, 792, 30.Acknowledgements: This work makes use of data products from the Wide- field Infrared Survey Explorer, a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration, and data products from NEOWISE, which is a

  10. Dust activity of Comet Halley's nucleus

    NASA Technical Reports Server (NTRS)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  11. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  12. Active Asteroids: Main-Belt Comets and Disrupted Asteroids

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.

    2016-10-01

    The study of active asteroids has attracted a great deal of interest in recent years since the recognition of main-belt comets (which orbit in the main asteroid belt, but exhibit comet-like activity due to the sublimation of volatile ices) as a new class of comets in 2006, and the discovery of the first disrupted asteroids (which, unlike MBCs, exhibit comet-like activity due to a physical disruption such as an impact or rotational destabilization, not sublimation) in 2010. In this paper, I will briefly discuss key areas of interest in the study of active asteroids.

  13. Comets

    NASA Video Gallery

    Did you know that comets seen streaking across the night sky may have brought the building blocks of life to our planet billions of years ago? Join NASA in learning more about these fascinating obj...

  14. Comparison of Mass-loading around Active Comets and Planetary Induced Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mazelle, C. X.; Bertucci, C.; Romanelli, N. J.; Andres, N.; Meziane, K.; Delva, M.; Gomez, D. O.

    2015-12-01

    The phenomenon of massloading is ubiquitous in space plasmas. In situ observations in our solar system have shown that massloading is most conspicuous at active comets as their extended exospheres facilitate the implantation of cometary ions up to a few million km away from their nuclei. But massloading is also important in planetary induced magnetospheres as it contributes to the formation of the obstacle to the incoming plasma winds in addition to gravitationally bound ionosphere. In this work we revisit observations around planets, moons, and active comets with different degree of massloading and discuss the importance of planetary exospheres in the formation of induced magnetospheres. In particular, we focus on the formation of plasma boundaries (induced magnetospheric boundary, bow shock) and in particular the phenomena of accreted, 'fossil' magnetic flux tubes fields - first unveiled at comet P/Halley and more recently observed at Titan.

  15. Comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    2006-01-01

    Spectroscopy of comets, in the X-ray and far-ultraviolet from space, and in the near infrared and millimeter from the ground, have revealed a wealth of new information, particularly about the molecular constituents that make up the volatile fraction of the comet s nucleus. Interpretation of these data requires not only proper wavelengths for identification but also information about the photolytic and excitation processes at temperatures typical of the inner coma (70-100 K) that lead to the observed spectral signatures. Several examples, mainly from Far Ultraviolet Spectroscopic Explorer and Hubble Space Telescope spectra of comets observed during the last few years, will be given to illustrate some of the current issues.

  16. Properties of the nuclei and comae of 10 ecliptic comets from Hubble Space Telescope multi-orbit observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; A'Hearn, M. F.; Jorda, L.

    2011-04-01

    We report on our on-going effort to detect and characterize cometary nuclei with the Hubble Space Telescope (HST). During cycle 9 (2000 July to 2001 June), we performed multi-orbit observations of 10 ecliptic comets with the Wide Field Planetary Camera 2. Nominally, eight contiguous orbits covering a time interval of ˜11 h were devoted to each comet but a few orbits were occasionally lost. In addition to the standard R band, we could additionally observe four of them in the V band and the two brightest ones in the B band. Time series photometry was used to constrain the size, shape and rotational period of the 10 nuclei. Assuming a geometric albedo of 0.04 for the R band, a linear phase law with a coefficient of 0.04 mag deg-1 and an opposition effect similar to that of comet 19P/Borrelly, we determined the following mean values of the effective radii 47P/Ashbrook-Jackson: 2.86±0.08 km, 61P/Shajn-Schaldach: 0.62±0.02 km, 70P/Kojima: 1.83±0.05 km, 74P/Smirnova-Chernykh: 2.23±0.04 km, 76P/West-Kohoutek-Ikemura: 0.30±0.02 km, 82P/Gehrels 3: 0.69±0.02 km, 86P/Wild 3: 0.41±0.03 km, 87P/Bus: 0.270.01 km, 110P/Hartley 3: 2.15±0.04 km and 147P/Kushida-Muramatsu: 0.21±0.01 km. Because of the limited time coverage (˜11 h), the rotational periods could not be accurately determined, multiple solutions were sometime found and three periods were not constrained at all. Our estimates range from ˜5 to ˜32 h. The lower limits for the ratio a/b of the semi-axis of the equivalent spheroids range from 1.10 (70P) to 2.20 (87P). The four nuclei for which we could measure (V-R) are all significantly redder than the Sun, with 86P/Wild 3 (V-R) = 0.86 ± 0.10 appearing as an ultrared object. We finally determined the dust activity parameter Afρ of their coma in the R band, the colour indices and the reflectivity spectra of four of them. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at Space Telescope Science Institute, which is operated by the

  17. GIADA: preparatory activities before the comet encounter

    NASA Astrophysics Data System (ADS)

    Della Corte, Vincenzo; Rotundi, Alessandra; Accolla, Mario; Ferrari, Marco; Ivanovski, Stavro; Lucarelli, Francesca; Mazzotta Epifani, Elena; Rietmeijer, Franciscus J. M.; Sordini, Roberto

    2014-05-01

    The whole 2014 will be a pivotal year for the Rosetta mission. In fact, on the 20th January it will be switched on after more than 18 months of hibernation. Then, Rosetta will begin the rendezvous maneuvers to reach and follow the short period comet 67P/Churyumov-Gerasimenko. Among the payloads on-board Rosetta, GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument devoted to measure the dynamical properties of the dust grains emitted by the comet. In preparation of the actual scientific phase of the mission (i.e. the comet phase), the GIADA science team has carried out three major activities to prepare the science operations and the data interpretation: 1)Analysis of the Cruise Phase: a careful analysis of the data collected by GIADA during the seven-year cruise shows that all the GIADA functional and performance parameters maintained nominal behavior during the seven year trek across the Solar System [1]. 2)Extended Calibration using the GIADA Flight Spare Model: taking into account the knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission), we selected some terrestrial materials as cometary dust analogues and we produced grains with sizes ranging from 20 - 500 μm in diameter. These grains were characterized by FE-SEM/EDS and micro-IR spectroscopy. Single grains are then manipulated and shot into the GIADA Flight Spare Model (housed in our laboratory) with velocities in the range of 1 - 100 m/s to obtain calibration curves as a function of chemical-physical grain properties. By means of the on ground calibration data collected during the instrument qualification campaign (performed on Flight and Spare Models), we can rescale the Extended Calibration data to GIADA mounted on board the Rosetta S/C. The calibration curves coupled with the GIADA telemetries collected during the Rosetta Cruise phase constitute a large database of sensors responses that will

  18. What's Causing the Activity on Comet 67P?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Comet 67P/ChuryumovGerasimenko made famous by the explorations of the Rosetta mission has been displaying puzzling activity as it hurtles toward the Sun. However, recent modeling of the comet by a group of scientists from the Cte dAzur University may now explain whats causing 67Ps activity.Shadowed ActivityA model of comet 67P, with the colors indicating the rate of change of the temperature on the comets surface. The most rapid temperature changes are seen at the comets neck, in the same locations as the early activity seen in the Rosetta images. [Al-Lagoa et al. 2015] Between June and September of 2014, Rosetta observed comet 67P displaying early activity in the form of jets of dust emitted from near the neck of the comet (its narrowest point). Such activity is usually driven by the sublimation of volatiles from the comets surface as a result of sun exposure. But the neck of the comet is frequently shadowed as the comet rotates, and it receives significantly less sunlight than the rest of the comet. So why would the early activity originate from the comets neck?The authors of a recent study, led by Victor Al-Lagoa, hypothesize that its precisely because the neck is receiving alternating sunlight/shadows that its displaying activity. They suggest that thermal cracking of the surface of the comet is happening faster in this region, due to the rapid changes in temperature that result from the shadows cast by the surrounding terrain. The cracking exposes subsurface ices in the neck faster than in other regions, and the ensuing sublimation of that ice is what creates the activity were seeing.Temperature Models: To test their hypothesis, the authors study the surface temperatures on comet 67P by means of a thermophysical model a model used to calculate the temperatures on an airless body, both on and below the surface. The model takes into account factors like thermal inertia (how quickly the bodys temperature responds to changes in the incident energy), shadowing, and

  19. Comets

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L. (Editor); Matthews, M. S. (Editor)

    1982-01-01

    Vacuum ultraviolet observations from sounding rockets and satellite observatories of the gaseous comae of several comets are reviewed. The earliest of these led to discovery of the hydrogen envelope extending for millions of km from the nucleus. Subsequent observations of H I Lyman alpha, the OH (0,0 band and the oxygen resonance triplet provided strong evidence for the water-ice model of the cometary nucleus. Several species were discovered in the coma including C, C(+), CO, S, and CS. High resolution spectroscopy and the spatial variation of the observed emissions provide means to elucidate the production and excitation mechanisms of these species. The similarity of the spectra of the half dozen comets observed to date argues for a common, homogeneous composition (with the exception of dust and CO) of the cometary ice and a minimal effect on the neutral species due to molecular collisions in the inner coma.

  20. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  1. Gas-to-Dust Ratio of Two Comets: Implication for Inhomogeneity of Cometary Nuclei?

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Furusho, Reiko; Fujii, Mitsugu; Watanabe, Jun-Ichi

    1997-10-01

    We performed spectroscopic observations of Comet Tabur (C/1996Q1) from 1996 September 14 to October 16, on 9 nights. The gas-to-dust ratio was determined for C/Tabur, and compared with that of Comet Liller (C/1988A1), whose orbital elements are quite similar to those of C/Tabur. The gas-to-dust mass ratio obtained for C/Tabur is one order larger than C/Liller. Because this similarity of the orbits indicates a splitting of these comets in the past, the obtained difference in the gas-to-dust mass ratio should be due to an inhomogeneity of the cometary nucleus.

  2. Sublimation rates of carbon monoxide and carbon dioxide from comet nuclei at large distances from the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.

  3. Outburst activity in comets. I. Continuous monitoring of comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; García-Melendo, E.; Davidsson, B. J. R.; Sánchez, A.; Rodríguez, D.; Lacruz, J.; de Los Reyes, J. A.; Pastor, S.

    2008-07-01

    Aims: We carried out a continuous monitoring of comet 29P/Schwassmann-Wachmann 1 by using medium aperture telescopes with the aim of studying the activity and outburst mechanisms of this comet on the basis of photometric variations. Methods: We used a standardized method to obtain the coma photometry in the R filter of the Johnson-Kron-Cousins system. Some abrupt changes observed in the brightness of SW1 suggest important variations in surface activity with time. Results: During our 2002-2007 observational campaign we detected 28 outbursts (of 1 mag or larger) in 29P/Schwassmann-Wachmann 1. A typical outburst is characterized by a rapid increase towards maximum (in a few hours) and a slower decrease toward the quiescent level (in 3-4 days). Given the effective observing time, the average outburst rate is 7.3 events per year. Despite well-sampled data, no signs of a clear periodicity in the outburst occurrence has been found, thus confirming the unpredictability of the activity of this comet.

  4. Analytical study of comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Albee, A. L.

    1989-01-01

    Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.

  5. The composition and tail activity of Sun-grazing comets

    NASA Astrophysics Data System (ADS)

    Jia, Ying-Dong; Russell, Cristopher; Liu, Wei

    2016-04-01

    Sun-grazing comets dive into the low corona to reveal the ambient plasma and field conditions with its very active EUV and X-ray radiation patterns. In this study we model the charging-balanced cometary plasma, and its transportation in the solar magnetic field. We study the comet C/2011 W3 (Lovejoy) event seen by SDO, Stereo and SOHO. Our model provides line-of-sight integrated emission intensity calculated via each emission lines of each charge state of O, and Fe ions. Such intensity is then compared with the observed EUV and X-ray images. Typical structures of the coronal magnetic field are studied to investigate their effects on the comet tail, and to model the observed tail activity.

  6. Nuclei of two earth-grazing comets of fan-shaped appearance

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1989-01-01

    The conceptual model of a collimated particle flow from isolated sources on the nucleus formulated for comets displaying a persisting sunward fanlike coma is successfully applied to two short-period comets, Pons-Winnecke (PW) and Schwassmann-Wachmann 3 (SW3), observed respectively in 1927 and 1930. For PW, the interpretation of fan-orientation pattern is compatible with the spin axis inertially fixed in May-June 1927, but for SW3 the interpretation requires rapid nucleus precession at a peak rate of about 1.4 deg/day. Both comets satisfy the basic conditions for displaying a fan in the time span covered by the fan observations. The emission sources are situated within 35 deg of the sunlit rotation pole of PW and within 19 deg of the pole of SW 3. A rotation period of 8.2 hr is suggested for PW if the rotation sense is prograde or 5.8 hr if it is retrograde. Water production rates and global loss and erosion rates for the comets are estimated.

  7. Phenomenology of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Leahy, J. P.

    1999-04-01

    I review the observational data on AGN, focusing especially on results that may be relevant to sub-parsec discs. After emphasizing the essential unity of the different AGN, from LINERs to quasars, I review several observational tracers which have been claimed to be produced by accretion discs. In most cases the interpretation of these data is ambiguous, but the recent detections of redshifted Fe K alpha by ASCA provide convincing evidence for discs. I briefly review the phenomenology of jets in AGN, and emphasize that jets are detected in all classes of AGN, and in radio-loud AGN comprise a major component of the energy budget. Evidence that jets are relativistic is now compelling for all types of radio-loud AGN and is accumulating even for radio-quiet objects. Data on jets provide a long-term record of AGN activity which constrains aspects of disc history including start-up times, alignment stability and precession, lifetimes, and recurrent activity. Finally, I discuss the distinction between radio-quiet and radio loud AGN, which is broad enough to suggest two fundamentally different types of central engine, although it may not be as clear-cut as is sometimes claimed. At present there is no consensus on the nature of this difference. I draw attention to the broad absorption line (BAL) phenomenon, which signposts powerful but uncollimated outflows in radio-quiet AGN, which may correspond to the powerful jets in the radio-loud objects.

  8. RELATING CHANGES IN COMETARY ROTATION TO ACTIVITY: CURRENT STATUS AND APPLICATIONS TO COMET C/2012 S1 (ISON)

    SciTech Connect

    Samarasinha, Nalin H.; Mueller, Béatrice E. A.

    2013-09-20

    We introduce a parameter, X, to predict the changes in the rotational period of a comet in terms of the rotational period itself, the nuclear radius, and the orbital characteristics. We show that X should be a constant if the bulk densities and shapes of nuclei are nearly identical and the activity patterns are similar for all comets. For four nuclei for which rotational changes are well documented, despite the nearly factor 30 variation observed among the effective active fractions of these comets, X is constant to within a factor two. We present an analysis for the sungrazing comet C/2012 S1 (ISON) to explore what rotational changes it could undergo during the upcoming perihelion passage where its perihelion distance will be ∼2.7 solar radii. When close to the Sun, barring a catastrophic disruption of the nucleus, the activity of ISON will be sufficiently strong to put the nucleus into a non-principal-axis rotational state and observable changes to the rotational period should also occur. Additional causes for rotational state changes near perihelion for ISON are tidal torques caused by the Sun and the significant mass loss due to a number of mechanisms resulting in alterations to the moments of inertia of the nucleus.

  9. Heat of solution: A new source of thermal energy in the subsurface of cometary nuclei and the gas-exsolution mechanism driving outbursts of Comet 29P/Schwassmann‒Wachmann and other comets

    NASA Astrophysics Data System (ADS)

    Miles, Richard

    2016-07-01

    This paper is a continuation of Miles et al. (2015) [Icarus] and Miles (2015b) [Icarus], which detail new observations of Comet 29P/Schwassmann‒Wachmann, characterise its rotational period (∼57 d), and identify the presence of discrete sources of outburst on its nucleus: the latter ruling out amorphous-to-crystalline H2O ice transitions as the cause of its outbursts. Summary data are presented for 29P and a further 16 non-fragmenting comets which exhibit outbursts of >2 magnitudes. A comprehensive physicochemical mechanism is postulated to account for major outbursts based on melting of cometary ices and the exothermic dissolution of gases, especially CO and CO2 at pressures of 10‒200 kPa. The thermodynamics of enthalpy heating are described and heats of solution are calculated from gas-liquid solubility data yielding -6 kJ mol-1 for CO in CH4, and -15 kJ mol-1 for CO2 in CH3OH close to their freezing point. Heats of solution are ∼6 times greater (per mole) than the enthalpy of fusion of the pure CH4 and CH3OH ices, enabling gas pressures of >∼80 kPa to continually melt these ices. Supervolatile O2 and N2 gases may also participate by dissolving exothermically in liquid CH4 and other hydrocarbons potentially reaching high mixing ratios. H2S and NH3 gases dissolve exothermically in CH3OH liberating up to 20 kJ mol-1 and 13 kJ mol-1, respectively, and all three hydrophilic species facilitate sintering of H2O ice in the near-surface of comets. Localised melting and consolidation is favoured in slowly-rotating cometary nuclei of intermediate dust/gas ratios, at pressures of ∼1 kPa, and temperatures as low as 50‒65 K where O2 and N2 are abundant. Nyctogenic processes on the night-time side of the nucleus restock desiccated surface layers, reseal the crust, enabling fractionation of solutes in sub-crustal liquid phases via fractional sublimation/distillation of non-polar, hydrophobic CH4 and other hydrocarbons; and by fractional crystallisation of polar

  10. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  11. First OSIRIS observations of active areas on comet 67P

    NASA Astrophysics Data System (ADS)

    Vincent, J.-B.; Sierks, H.; Oklay, N.; Agarwal, J.; Güttler, C.; Bodewits, D.; Osiris Team

    2014-04-01

    After a successful exit from hibernation, Rosetta started observing its final target comet 67P in March 2014 with the two OSIRIS cameras WAC and NAC (Wide Angle and Narrow Angle Camera) [1]. By the time of this conference, the spacecraft will have flown from 5 million to 50 km from the nucleus surface, reaching a resolution of 1 meter/pixel in the NAC images. During that period, the comet heliocentric distance varies from 4.3 to 3.2 AU and we will observe how the early activity develops. We know that cometary surfaces are not fully active; only a small fraction of the surface emits gas and dust. However we do not yet understand why it happens in that way, and what to expect on 67P. Recent publications using data from ground-based telescopes have proposed different interpretations for the distribution of active sources, from one to three at various latitudes [2, 3]. There is some evidence for different levels of activity in the northern and southern hemispheres, but these variations can only be constrained with close range data. In August 2014, OSIRIS will map the surface of the comet at high resolution, and perform weekly monitoring of the activity, especially the faintest jets. With these images and the inversion code COSSIM [4], we will be able to link observed features in the coma or on the limb to physical spots on the surface. On other comets visited by spacecrafts the activity has sometimes been associated with smooth areas, rough terrains, or specific morphologic features (cliff, crater, rim, . . . ). We will present a first look at how activity and terrain are linked on 67P, and look at variations of composition, morphology, or both. We will compare this identification of active areas to previous publications.

  12. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  13. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; Schultz, Peter H.; Sunshine, Jessica M.; Thomas, Peter C.; Veverka, Joseph; Wellnitz, Dennis D.; Yeomans, Donald K.; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J.; Carcish, Brian T.; Collins, Steven M.; Farnham, Tony F.; Groussin, Oliver; Hermalyn, Brendan; Kelley, Michael S.

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  14. Water outburst activity in Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    de Almeida, Amaury A.; Boice, Daniel C.; Picazzio, Enos; Huebner, Walter F.

    2016-08-01

    Cometary outbursts are sporadic events whose mechanisms are not well known where the activity and consequently the brightness can increase hundreds of thousands of times within a few hours to several days. This indicates a dramatic departure from thermal equilibrium between the comet and interplanetary space and is usually documented by ;light curves;. In a typical cometary outburst, the brightness can increase by 2-5 magnitudes (Whitney, 1955; Gronkowski and Wesolowski, 2015). In only 42 h, Comet 17P/Holmes was reported to brighten from a magnitude of about 17 to about 2.4 at the height of the burst, representing the largest known outburst by a comet. We present the H2O production rate of Holmes for the megaburst occurring between 23 and 24 October 2007. For this, we selected more than 1900 photometric observations from the International Comet Quarterly Archive of Photometric Data (Green, 2007) and use the Semi-Empirical Method of Visual Magnitudes (SEMVM; de Almeida et al., 2007). We clearly show that the comet achieved an average water production rate of 5 × 1029 molecules s-1, corresponding to a water gas loss rate of 14,960 kg s-1, in very good agreement with Schleicher (2009) who derived the water production rate using OH measurements on 1 Nov 2007 (about 8 days after the outburst). We discuss possible physical processes that might cause cometary outbursts and propose a new qualitative mechanism, the Pressurized Obstructed Pore (POP) model. The key feature of POP is the recrystallization of water in the surface regolith as it cools, plugging pores and blocking the release of subsurface gas flow. As the interior gas pressure increases, an outburst is eventually triggered. POP is consistent with current observations and can be tested in the future with observations (e.g., Rosetta in situ measurements) and detailed simulations.

  15. Comet Kohoutek, 1973-1974, A Teachers' Guide with Student Activities.

    ERIC Educational Resources Information Center

    Chapman, Robert D.

    This teacher's guide provides background information, curriculum source materials, and suggested class activities for class discussion and study. Information related to the discovery of the comet is presented as well as photographic and schematic pictures showing the sky through which the comet travels. Historical data regarding comets of the past…

  16. Active Galactic Nuclei and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Giebels, Berrie; Aharonian, Felix; Sol, Hélène

    The supermassive black holes harboured in active galactic nuclei are at the origin of powerful jets which can emit copious amounts of γ-rays. The exact interplay between the infalling matter, the black hole and the relativistic outflow is still poorly known, and this parallel session of the 12th Marcel Grossman meeting intended to offer the most up to date status of observational results with the latest generation of ground and space-based instruments, as well as the theoretical developments relevant for the field.

  17. Several twilight bolides over Kiev in 2013-2015 - fragments of comets nuclei

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, G. N.

    2016-06-01

    During the short period of our observations (from March 2013 to 2015), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.

  18. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  19. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  20. Observation of the activity of selected Oort Cloud comets with perihelia at large distances from the Sun

    NASA Astrophysics Data System (ADS)

    Kulyk, Iryna; Rousselot, Philippe; Korsun, Pavlo

    2016-10-01

    Many comets exhibit considerable level of activity at large distances from the Sun, where sublimation of crystalline water ice cannot account for observable comae. Different patterns of physical activity already observed at large heliocentric distances may be related to the primordial differences in the composition of comet nuclei. Therefore, monitoring of physical activity in the wide range of heliocentric distances can potentially contribute to understanding of internal structure of comet-like bodies. We have observed ten long periodic comets with orbital perihelia lying beyond the "water ice sublimation zone" to quantify the level of physical activity in the wide range of heliocentric distances. Pre-perihelion observations were made when targets moved between 16.7 and 6.5 au from the Sun; post perihelion activity was monitored between 5.2 and 10.6 au. The bulk of the data were gathered with the 2-m Robotic Liverpool Telescope (Observatorio del Roque de Los Muchachos, La Palma, Spain). Some targets were observed with the 2-m RC Telescope located at Peak Terskol Observatory and the 6-m Telescope of the Special Astrophysical Observatory (Northern Caucasus, Russia). Since most of recently obtained spectra of distant active objects are continuum dominated, we use B, V, R images to estimate dust production rates, an upper limit on nucleus radii, and color indices of near nucleus region. The comets C/2005 L3 (McNaught) and C/2006 S3 (Boattini), which exhibit the considerable level of activity, have been repeatedly observed. This enables us to infer the heliocentric dependence of dust production rates, perihelion brightness asymmetries, and color variations over the comae caused possibly by small changes in dust particle properties.

  1. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  2. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  3. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  4. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  5. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  6. Activity of 50 Long-period Comets Beyond 5.2 au

    NASA Astrophysics Data System (ADS)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Marschalkó, G.; Pál, A.; Szakáts, R.; Szalai, T.; Szegedi-Elek, E.; Székely, P.; Vida, K.; Vinkó, J.; Kiss, L. L.

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3-4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  7. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  8. Forecast of the Comet 46P/Wirtanen Meteor Shower Activity in 2017 and 2019

    NASA Astrophysics Data System (ADS)

    Maslov, M. P.; Muzyko, E. I.

    2016-12-01

    The article presents the description of possible activity from the comet 46P/Wirtanen meteor shower. The proximity of this comet to the Earth orbit in 1984-2042 increases probabily for the Earth to encounter meteoroid particles released by this comet. For the nearest years two cases of such activity are found—in 2017 and 2019 and their characteristics and circumstances are presented.

  9. Forecast of the Comet 46P/Wirtanen Meteor Shower Activity in 2017 and 2019

    NASA Astrophysics Data System (ADS)

    Maslov, M. P.; Muzyko, E. I.

    2017-01-01

    The article presents the description of possible activity from the comet 46P/Wirtanen meteor shower. The proximity of this comet to the Earth orbit in 1984-2042 increases probabily for the Earth to encounter meteoroid particles released by this comet. For the nearest years two cases of such activity are found—in 2017 and 2019 and their characteristics and circumstances are presented.

  10. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  11. Fueling active galactic nuclei by magnetic braking

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Meiksin, Avery

    1990-01-01

    Recent detections of massive concentrations of molecular gas near the centers of galaxies hosting active nuclei suggest that these concentrations may be the source of accretion fuel for the nucleus. However, for that to be true, an angular momentum barrier must be overcome before the material in such a cloud can reach the nucleus. It is suggested that magnetic braking of the cloud may remove sufficient angular momentum to permit its material to draw considerably closer to the central object. The mechanism is particularly effective in the limit that the gas becomes self-gravitating because removal of a fraction of the initial angular momentum can lead to dynamical instability and collapse. Any small misalignment between the initial rotation axis of the cloud and the rotation axis of the galaxy can be substantially amplified as a result of the braking. It is argued that mass accretion onto the central object may occur in episodes, in some cases with a constant mass accretion rate during each episode.

  12. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  13. Dielectronic Recombination In Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Müller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between ˜ 15-17 Å. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  14. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  15. Warped Circumbinary Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-07-01

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10-2 pc to 10-4 pc for 107 M ⊙ black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  16. TESTING TESTS ON ACTIVE GALACTIC NUCLEI MICROVARIABILITY

    SciTech Connect

    De Diego, Jose A.

    2010-03-15

    Literature on optical and infrared microvariability in active galactic nuclei (AGNs) reflects a diversity of statistical tests and strategies to detect tiny variations in the light curves of these sources. Comparison between the results obtained using different methodologies is difficult, and the pros and cons of each statistical method are often badly understood or even ignored. Even worse, improperly tested methodologies are becoming more and more common, and biased results may be misleading with regard to the origin of the AGN microvariability. This paper intends to point future research on AGN microvariability toward the use of powerful and well-tested statistical methodologies, providing a reference for choosing the best strategy to obtain unbiased results. Light curves monitoring has been simulated for quasars and for reference and comparison stars. Changes for the quasar light curves include both Gaussian fluctuations and linear variations. Simulated light curves have been analyzed using {chi}{sup 2} tests, F tests for variances, one-way analyses of variance and C-statistics. Statistical Type I and Type II errors, which indicate the robustness and the power of the tests, have been obtained in each case. One-way analyses of variance and {chi}{sup 2} prove to be powerful and robust estimators for microvariations, while the C-statistic is not a reliable methodology and its use should be avoided.

  17. Bimodal Active Nuclei in Bimodal Galaxies

    NASA Astrophysics Data System (ADS)

    Cavaliere, A.; Menci, N.

    2007-07-01

    By their star content, the galaxies split out into a red and a blue population; their color index peaked around u-r~2.5 or u-r~1, respectively, quantifies the ratio of the blue stars newly formed from cold galactic gas, to the redder ones left over by past generations. On the other hand, on accreting substantial gas amounts the central massive black holes energize active galactic nuclei (AGNs); here we investigate whether these show a similar, and possibly related, bimodal partition as for current accretion activity relative to the past. To this aim we use an updated semianalytic model; based on Monte Carlo simulations, this follows with a large statistics the galaxy assemblage, the star generations, and the black hole accretions in the cosmological framework over the redshift span from z=10 to z=0. We test our simulations for yielding in close detail the observed split of galaxies into a red, early and a blue, late population. We find that the black hole accretion activities likewise give rise to two source populations: early, bright quasars and later, dimmer AGNs. We predict for their Eddington parameter λE-the ratio of the current to the past black hole accretions-a bimodal distribution; the two branches sit now under λE~0.01 (mainly contributed by low-luminosity AGNs) and around λE~0.3-1. These not only mark out the two populations of AGNs, but also will turn out to correlate strongly with the red or blue color of their host galaxies.

  18. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  19. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bodewits, Dennis; Feaga, Lori; Knight, Matthew; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2016-08-01

    Carbon dioxide is a primary volatile in comet nuclei, and potentially a major contributor to comet activity (i.e., the process of mass loss). However, CO2 cannot be observed directly from the ground, and past surveys of this molecule in comets were limited to space-borne snapshot observations. This situation limits our understanding of the behavior of CO2 in comets, and its role in driving comet mass loss. To address this deficiency, we were awarded a Cy11 Spitzer program designed to quantify the production rate of CO2 on >month-long timescales for 21 comets. We request an additional 269~hr in Cy13 to complete the Spitzer portion of our survey, and to add three more comets (46P/Wirtanen and 2 Target of Opportunity Oort cloud comets). Our survey is designed to probe the orbital trends of CO2 production in the comet population. We aim to: 1) examine the role of CO2 in the persistent post-perihelion activity observed in Jupiter-family comets; 2) measure the seasonal variations of CO2/H2O as a proxy for nucleus heterogeneity, when possible; 3) search for orbital trends sensitive to cumulative insolation as a proxy for nucleus layering; and 4) examine how Oort cloud comets evolve by comparing dynamically new and old targets. The final data set will allow us to investigate the effects of heating on the evolution of comets, if nucleus structures can be inferred through activity, and set the stage for JWST investigations into comet activity and composition.

  20. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  1. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (i.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ∼1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ∼ 270 K, the ∼5–8 μm continuum emission is mostly from carbon dust of T ∼ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  2. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  3. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  4. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  5. Active Galactic Nuclei Feedback and Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  6. GIADA: extended calibration activities before the comet encounter

    NASA Astrophysics Data System (ADS)

    Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra

    2014-05-01

    The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected

  7. Dense Clouds near the Central Engine of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Sivron, R.; Tsuruta, S

    1993-01-01

    A model is presented which assumes the existence of cold dense clouds near the central engine of Active Galactic Nuclei (AGNs). The effects of such clouds on the observed spectrum are explored. It is shown that this model is consistent with the complicated observed spectra and variability behavior of most extensively studied Seyfert nuclei. The results are compared with other proposed models. The existing observational evidence appears to support the "cloud-model."

  8. Megamaser Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kartje, John F.; Königl, Arieh; Elitzur, Moshe

    1999-03-01

    Recent spectroscopic and VLBI-imaging observations of bright extragalactic H2O maser sources have revealed that the megamaser emission often originates in thin circumnuclear disks near the centers of active galactic nuclei (AGNs). Using general radiative and kinematic considerations and taking account of the observed flux variability, we argue that the maser emission regions are clumpy, a conclusion that is independent of the detailed mechanism (X-ray heating, shocks, etc.) driving the collisionally pumped masers. We examine scenarios in which the clumps represent discrete gas condensations (i.e., clouds) and do not merely correspond to velocity irregularities in the disk. We show that even two clouds that overlap within the velocity-coherence length along the line of sight could account (through self-amplification) for the entire maser flux of a high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and we suggest that cloud self-amplification likely contributes also to the flux of the background-amplifying ``systemic'' features in these objects. Analogous interpretations have previously been proposed for water maser sources in Galactic star-forming regions. We argue that this picture provides a natural explanation of the time-variability characteristics of extragalactic megamaser sources and of their apparent association with Seyfert 2-like galaxies. We also show that the requisite cloud space densities and internal densities are consistent with the typical values of nuclear (broad emission line region type) clouds. We examine two scenarios of clumpy disks in which the maser emission is excited by a central continuum source. This excitation mechanism was first considered in the context of megamaser disks by Neufeld & Maloney, but our proposed models are clearly distinct from their warped, homogeneous disk interpretation. In our first scenario we consider an annular disk (or ``ring'') whose inner edge corresponds to the innermost radius of the

  9. Meteoroid streams and comet disintegration

    NASA Astrophysics Data System (ADS)

    Guliyev, A.

    2016-01-01

    The results of the statistical analysis of the dynamic parameters of 114 comets that have undergone nuclear splitting are presented in the article. The list of the objects contains: comets that have split in the period of the observation; data of twin-comets; lost comets with designation D; comets with large-scale structure in the coma. We will describe these comets as "splitted". Some aspects of the following hypothesis are studied: disintegration of comet nuclei happens as the result of their collision with meteoroid streams. For the verification of this hypothesis, the position of splitted comet orbits relatively to 125 meteor streams from Kronk's list is analyzed. It was found that the total number of comet orbit nodes located close to the meteor stream planes (for the distances up to 0.1 AU) is N = 1041. It is shown that if these comets are replaced by randomly selected different comets, N will be reduced by a factor of approximately three.

  10. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    SciTech Connect

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah; Grav, Tommy; Fernández, Yan R.; Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew; Meech, Karen J.; Walker, Russel; Lisse, C. M.; McMillan, Robert S.; Wright, Edward L.; Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  11. Comprehensive model for the nucleus of Periodic Comet Tempel 2 and its activity

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    A comprehensive synergistic physical model for the nucleus of Periodic Comet Tempel 2 was developed on the basis of observations carried out in 1988. The model includes the best possible estimates of the comet's bulk properties (including the dimensions and the approximate shape), information on its state of rotation, and the characterization of its activity. The model is shown to be consistent with all lines of evidence that are currently available, including relevant information from earlier apparitions.

  12. Activity of Comet Hale-Bopp (1995 01) Beyond 6 AU From the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1996-01-01

    The physical evolution of comet Hale-Bopp is investigated along the preperihelic arc of its orbit at heliocentric distances larger than 6 AU. The comet's considerable intrinsic brightness and activity are explained by the existence of a relatively larg area on its nucleus surface that is a resevoir of both carbon monoxide and dust particulates. Three recuring dust emission events observed in August-October 1995 are studied in some detail.

  13. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  14. Active and passive electromagnetic sounding on comets and moons

    NASA Astrophysics Data System (ADS)

    Przyklenk, Anita; Auster, Hans-Ulrich

    We want to present the method of electromagnetic sounding on small extraterrestrial bodies to determine interior structures of those. Our sensors are perfectly suited for rover or lander missions, because they do not weight much (sum of all devices is approximately 600g) and can be easily installed at the bottom of a rover or at lander feet. The aim is to measure the material-specific complex resistivity, which depends on the electrical resistivity and electrical permittivity, for various sounding depth. This penetration depth depends on the 2 different operating modes. In the active mode, that is the so called Capacitive Resistivity (CR) method, the sounding depth is around a few meters. The CR is a purely electrical field measurement and works with a 4 electrode array. 2 of them are transmitter electrodes. They inject AC signals with frequencies between 100 Hz and 100 kHz into the subsurface. Then 2 receiver electrodes pick up the generated potentials. And a 4-point impedance can be calculated that depends on the electrical parameters among others [Grard, 1990a and b] [Kuras, 2002]. The second operating mode is the passive one. In the so called magneto telluric method the penetration depth depends on electrical parameters and can be in range of several 100m to km. Here, for excitation natural magnetic field variations are used. The magnetic field components are measured with our Fluxgate Magnetometer (FGM) (flight heritage: Rosetta, Venus Express, Themis,…). Induced electrical field components are measured again with the CR electrode array. Then the electromagnetic impedance can be derived, which depends on electrical resistivity among others. In the end, we want to discuss advantages and disadvantages of investigations during space missions compared to surveys on earth. As examples we have a closer look at the jovian moon Ganymede, the earth moon and the comet 67P/Churyumov-Gerasimenko and consider the applicability of electromagnetic sounding on this objects

  15. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  16. Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past.

    PubMed

    El-Maarry, M Ramy; Groussin, O; Thomas, N; Pajola, M; Auger, A-T; Davidsson, B; Hu, X; Hviid, S F; Knollenberg, J; Güttler, C; Tubiana, C; Fornasier, S; Feller, C; Hasselmann, P; Vincent, J-B; Sierks, H; Barbieri, C; Lamy, P; Rodrigo, R; Koschny, D; Keller, H U; Rickman, H; A'Hearn, M F; Barucci, M A; Bertaux, J-L; Bertini, I; Besse, S; Bodewits, D; Cremonese, G; Da Deppo, V; Debei, S; De Cecco, M; Deller, J; Deshapriya, J D P; Fulle, M; Gutierrez, P J; Hofmann, M; Ip, W-H; Jorda, L; Kovacs, G; Kramm, J-R; Kührt, E; Küppers, M; Lara, L M; Lazzarin, M; Lin, Z-Yi; Lopez Moreno, J J; Marchi, S; Marzari, F; Mottola, S; Naletto, G; Oklay, N; Pommerol, A; Preusker, F; Scholten, F; Shi, X

    2017-03-31

    The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet's landscape. This suggests that most of the major landforms were created early in the comet's current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.

  17. P/2008 CL94 (Lemmon) and P/2011 S1 (Gibbs): comet-like activity at large heliocentric distances

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Korsun, P.; Rousselot, P.; Afanasiev, V.; Ivanova, O.

    2016-06-01

    Based on spectroscopic and photometric observations we analyzed the dust environment of two minor distant objects, P/2008 CL94 (Lemmon) and P/2011 S1 (Gibbs). Both targets demonstrated the comet-like activity beyond the "zone of water-ice sublimation". Meanwhile the spectrum of P/2008 CL94 (Lemmon) did not reveal molecular emission features above reflected continuum in a spectral region of 4100-6800Å. Reddening of the continuum is linear along the dispersion with the mean normalized reflectivity gradient equals to 2.0% ± 0.4%. The normalized reflectivity of P/2011 S1 (Gibbs) derived from the V-R and R-I color indices equals 11% ± 9% and 26% ± 6% respectively. Both objects have likely small nuclei (about 2 and 4 km in the radii for P/2008 CL94 and P/2011 S1 respectively), which are consistent with nucleus sizes of 'Jupiter-family' comets. The level of physical activity of P/2008 CL94 and S/2011 S1 is characterized by R-Afρ quantity of 106 ± 3 cm and 76 ± 8 cm respectively. The Afρ values are resulted in dust production rates of about 1-2 kg/s, assuming the average geometric albedo of grains of 0.1 and the dust outflow velocities between 1 and 10 m/s.

  18. The Physics and Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai

    2013-11-01

    Preface; 1. Observations of active galactic nuclei; 2. Nonthermal radiation processes; 3. Black holes; 4. Accretion disks; 5. Physical processes in AGN gas and dust; 6. The AGN family; 7. Main components of AGN; 8. Host galaxies of AGN; 9. Formation and evolution of AGN; 10. Outstanding questions; References; Index.

  19. COLOR SYSTEMATICS OF COMETS AND RELATED BODIES

    SciTech Connect

    Jewitt, David

    2015-12-15

    Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived “small body” populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (∼10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.

  20. The mass disruption of Jupiter Family comets

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  1. New southern galaxies with active nuclei

    SciTech Connect

    Maia, M.A.G.; Da costa, L.N.; Willmer, C.; Pellegrini, P.S.; Rite, C.

    1987-03-01

    A list of AGN candidates, identified from optical spectra taken as part of an ongoing redshift survey of southern galaxies, is presented. The identification, coordinates, morphological type, measured heliocentric radial velocity, and proposed emission type are given for the galaxies showing evidence of nonstellar nuclear activity. Using standard diagnostics, several new Seyferts and low-ionization nuclear-emission regions (LINERs) are identified among the emission-line galaxies observed. 14 references.

  2. On the evolution and activity of cometary nuclei.

    PubMed

    Prialnik, D; Bar-Nun, A

    1987-02-15

    The thermal evolution of a spherical cometary nucleus (initial radius of 2.5 km), composed initially of very cold amorphous ice and moving in comet Halley's orbit, is simulated numerically for 280 revolutions. It is found that the phase transition from amorphous to crystalline ice constitutes a major internal heat source. The transition does not occur continuously, but in five distinct rounds, during the following revolutions: 1, 7, 40-41, 110-112, and 248-252. Due to the (slow) heating of the amorphous ice between crystallization rounds, the phase transition front advances into the nucleus to progressively greater depths: 36 m on the first round, and then 91 m, 193 m, 381 m, and 605 m respectively. Each round of crystallization starts when when the boundary between amorphous and crystalline ice is brought to approximately 15 m below the surface, as the nucleus radius decreases due to sublimation. At the time of crystallization, the temperature of the transformed ice rises to 180 K. According to experimental studies of gas-laden amorphous ice, a large fraction of the gas trapped in the ice at low temperatures is released. Whereas some of the released gas may find its way out through cracks in the crystalline ice layer, the rest is expected to accumulate in gas pockets that may eventually explode, forming "volcanic calderas." The gas-laden amorphous ice thus exposed may be a major source of gas and dust jets into the coma, such as those observed on comet Halley by the Giotto spacecraft. The activity of new comets and, possibly, cometary outbursts and splits may also be explained in terms of explosive gas release following the transition from amorphous to crystalline ice.

  3. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Marsden, B. G.; Sekanina, Z.

    1976-01-01

    A semiannual progress report describing the work completed during the period 1 September 1975 to 29 February 1976 on the physics of cometary nuclei was given. The following items were discussed: (1) a paper entitled ""A speculation about comets and the earth'', (2) a chapter entitled"" The physics of comets'' for ""Reviews of Astronomy and Astrophysics'', (3) continuing work on split comets, and (4) results dealing with a new application of nongravitational solar-radial forces as a measure of comet nucleus dimensions and activity.

  4. A Comparative Study of the Dust Environment near the Nuclei of Comets 1P/Halley, 19P/Borrelly, 81P/Wild 2 & 9P/Tempel1

    NASA Astrophysics Data System (ADS)

    Ho, Tra-Mi; Knollenberg, Joerg; Hoekzema, N.; Boice, Daniel; Kuehrt, Ekkehard; Schulz, Rita; Stuewe, J.; Thomas, Nicolas

    There have been four comets imaged by spacecrafts: 19P/Halley (HMC on Giotto); 19P/Borrelly (MICAS on DS1); 81P/Wild 2 (NavCam on Stardust); and 9P/Tempel 1 (MIR & HIR on Deep Impact). This paper presents a comparative studies of the dust emission within the first 30 - 40 km of the nuclei of these four comets. On March 14, 1986, Giotto encountered comet 1P/Halley's nucleus at a distance of 596km carrying the Halley Multicolour Camera (HMC) [1]. Five years later, Deep Space 1 obtained images of the nucleus of comet 19P/Borrelly with the Miniature Integrated Camera and Spectrometer (MICAS) at a closest distance of 2174km [2]. The next cometary flyby occurred when Stardust approached comet 81P/Wild 2 at 236km on January 2, 2004, tracking its nucleus with its optical navigation camera (NavCam) [3]. The latest close encounter occurred in July 4, 2005, when Deep Impact flew by 9P/Tempel 1 at 500km [4] carrying the Medium Resolution Instrument (MIR). Since the nuclei of 1P/Halley, 19P/Borrelly, 81P/Wild 2 and 9P/Tempel 1 have been observed under similar phase angles (108° , 88° , 73° , and 63° , respectively), we can do a comparative analysis of the inner dust environment of these data sets. The inner dust coma morphology, particularly dust jets and broader fans, of these four comets has been investigated by several authors [5]-[8]. We concentrate on the comparative study of their dust emission. The outflow of dust particles is force-free at large radial distance from the comet nucleus. Thus, integrating the intensity Ids [9] around a comet results in constant Ids. However, the integrated intensities of comets 1P/Halley and 19P/Borrelly indicate deviation from the expected behavior within the first 50 km from their nuclei [10]. 1P/Halley's Ids decreases near the nucleus surface whereas comet 19P/Borrelly's Ids increases. But at large distances, they both converge to constant values. These opposite effects in the first 50km indicate that different mechanisms dominate

  5. Active galactic nuclei and their panchromatic beauty.

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta

    2016-08-01

    The rapid development of new observational capabilities provides the ability to detect both the obscured (Type 2) and the unobscured (Type 1) flavours of active galaxies. In particular, the combination of sensitive observations from mid-IR to X-rays allows us to pierce through large columns of gas and dust hiding the Type 2 obscured AGN nuclear region. The study of the relative AGN/host-galaxy contribution over different portions of the broad-band Spectral Energy Distribution (SED) is fundamental to constrain the physical evolution of AGN and how to place them into the context of galaxy evolution.I will discuss a study of the multi-wavelength properties of an X-ray selected sample of both obscured and unobscured AGN using the XMM-Newton wide field survey in the COSMOS field. I will focus on their SEDs, the morphology of the host-galaxies, the stellar masses, the bolometric luminosities and bolometric corrections. Finally, I will briefly discuss what are the perspectives of AGN in the context of observational cosmology.

  6. Nucleus of Comet P/Arend-Rigaux

    SciTech Connect

    Brooke, T.Y.; Knacke, R.F.

    1986-07-01

    Photometry data at 1-20 microns taken of Comet P/Arend-Rigaux are reported. The observations were carried out to test the possibility of observing the nuclei of low activity, nearly extinct comets at visible and IR wavelengths. The data were collected in February 1985 using the NASA 3 m IR telescope on Mauna Kea. The comet was at 1.67 AU heliocentric distance at the time. Attempts were made to detect rotation of the core on the bases of variations in the J, H and K light curves. The images obtained were those of a rotating nucleus with a radius of 4.0-6.2 km surrounded by a faint coma. The comet had a geometric albedo of 0.01-0.03 and a near-IR red slope that exhibited no evidence of the presence of ice. 32 references.

  7. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2001-11-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically using dynamical systems theory. We develop a general theory for the averaged evolution of a comet nucleus rotation state assuming that the nucleus is a spheroid (either prolate or oblate) and that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the comet outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. Specifically, we find that a comet nucleus with a uniformly active surface will tend towards a rotation state with a nutation angle of ~ 55 degrees and an angular momentum perpendicular to the sun-perihelion direction. Conversely, a comet nucleus with an isolated active region will tend towards a zero nutation angle with its symmetry axis and angular momentum aligned parallel to the sun-perihelion direction. For active surface regions between these extremes we find 4 qualitatively different dynamical outcomes. In all cases, the theory predicts that the comet nucleus angular momentum will have a secular increase, a phenomenon that could contribute to nucleus splitting of active comets. These results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5-8715. AIN, AAV and VVS acknowledge support from Russian Foundation for Basic research via Grants 00-01-00538 and 00-01-0174 respectively. DJS acknowledges support from the PG&G program via Grant NAG5-9017.

  8. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  9. On the Anisotropy of Nuclei Mid-Infrared Radiation in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Wang, JunXian; Liu, Teng

    2015-01-01

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  10. Nuclear pore ion channel activity in live syncytial nuclei.

    PubMed

    Bustamante, Jose Omar

    2002-05-01

    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  11. Comets: Gases, ices, grains and plasma

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1981-01-01

    The program and abstracts of the 97 papers delivered at the colloquium are presented. Cometary nuclei, comet dust, the coma, ion tails, several comet missions, and cometary origin and evolution were discussed.

  12. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  13. The evolving activity of the dynamically young comet C/2009 P1 (Garradd)

    SciTech Connect

    Bodewits, D.; Farnham, T. L.; A'Hearn, M. F.; Feaga, L. M.; Sunshine, J. M.; McKay, A.; Schleicher, D. G.

    2014-05-01

    We used the Ultraviolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the highest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate that this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km{sup 2}, estimated to be >20% of the surface. Based on our measurements, the comet lost 4 × 10{sup 11} kg of ice and dust during this apparition, corresponding to at most a few meters of its surface. Even though this was likely not the comet's first passage through the inner solar system, the activity of Garradd was complex and changed significantly during the time it was observed.

  14. The Extremely Low Activity Comet 209P/LINEAR During Its Extraordinary Close Approach in 2014

    NASA Astrophysics Data System (ADS)

    Schleicher, David G.; knight, Matthew m.

    2016-10-01

    We present results from our observing campaign of Comet 209P/LINEAR during its exceptionally close approach to Earth during 2014 May, the third smallest perigee of any comet in two centuries. These circumstances permitted us to pursue several studies of this intrinsically faint object, including measurements of gas and dust production rates, searching for coma morphology, and direct detection of the nucleus to measure its properties. Indeed, we successfully measured the lowest water production rates of an intact comet in over 35 years and a corresponding smallest active area, ∼0.007 km2. When combined with the nucleus size found from radar, this also yields the smallest active fraction for any comet, ∼0.024%. In all, this strongly suggests that 209P/LINEAR is on its way to becoming an inert object. The nucleus was detected but could not easily be disentangled from the inner coma due to seeing variations and changing spatial scales. Even so, we were able to measure a double-peaked lightcurve consistent with the shorter of two viable rotational periods found by Hergenrother. Radial profiles of the dust coma are quite steep, similar to that observed for some other very anemic comets, and suggest that vaporizing icy grains are present.

  15. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  16. Infrared-ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Malkan, M. A.; These corrected SEDs are shown.

    1987-01-01

    Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown.

  17. Physical aging in comets

    NASA Technical Reports Server (NTRS)

    Meech, Karen J.

    1991-01-01

    The question of physical aging in cometary nuclei is addressed in order to elucidate the relationship between the past conditions in the protosolar nebula and the present state of the cometary nucleus, and to understand the processes that will physically and chemically alter the nucleus as a function of time. Attention is given to some of the processes that might be responsible for causing aging in comets, namely, radiation damage in the upper layers of the nucleus during the long residences in the Oort cloud, processing from heating and collisions within the Oort cloud, loss of highly volatile species from the nucleus on the first passage through the inner solar system, buildup of a dusty mantle, which can eventually prohibit further sublimation, and a change in the porosity, and hence the thermal properties, of the nucleus. Recent observations suggest that there are distinct differences between 'fresh' Oort cloud comets and thermally processed periodic comets with respect to intrinsic brightness and rate of change of activity as a function of distance.

  18. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  19. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  20. A catalogue of quasars and active nuclei (8th edition).

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    1998-03-01

    Because of the fast increase in the number of known quasars, the authors have prepared an updated version of their catalogue of quasars and active nuclei (Véron-Cetty & Véron, 1984, 1985, 1987, 1989, 1991, 1993, 1996) which now contains 11358 quasars, 357 BL Lac objects and 3334 active galaxies (of which 1111 are Seyfert 1), compared with 8609 quasars, 220 BL Lac objects and 2833 Seyfert and related galaxies in the seventh edition. Like the seventh edition, it includes positions and redshift as well as photometry (U,B,V) and 6 and 11 cm flux densities when available.

  1. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  2. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  3. Statistics of Superluminal Motion in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Wei; Fan, Jun-Hui

    2008-08-01

    We have collected an up-to-date sample of 123 superluminal sources (84 quasars, 27 BL Lac objects and 12 galaxies) and calculated the apparent velocities (βapp) for 224 components in the sources with the Λ-CDM model. We checked the relationships between their proper motions, redshifts, βapp and 5 GHz flux densities. Our analysis shows that the radio emission is strongly boosted by the Doppler effect. The superluminal motion and the relativistic beaming boosting effect are, to some extent, the same in active galactic nuclei.

  4. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  5. Physics and structure of photoionised outflows in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kaastra, Jelle

    2012-07-01

    I discuss the recent progress in the study of outflows from active galactic nuclei. Using long and deep monitoring observations, it is now possible to get a detailed view on the structure and location of the outflow, as well as its impact on the environment of the AGN. Focus will be on the nature of the outflow components in terms of number of components, and on time-dependent photoionisation modeling as a tool to constrain the location of these components. I will illustrate this using the results of a large monitoring campaign on Mrk 509 with XMM-Newton, Integral, Chandra, HST, Swift and ground-based observatories.

  6. The chemistry of comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1988-01-01

    Comets appear to represent a population of rather homogeneous objects. In particular, the original size distribution peaks at a mean diameter of the order of 10 km. Cometary dust grains appear to be made of clusters of extremely fine particles (0.1-1.0 micron) sintered by heat at a variable degree during their perihelion passages. The brightness laws of comets appear to be derived only by the sublimation of water ice or at least of gas hydrates of the clathrate type. Pristine nuclei are likely to be radially undifferentiated; only their crustal surface must be outgassed and sintered by the heat of perihelion passages. Comet Halley is confirmed to be in the same general class as the bright comets of the 1970s. With an organic fraction of 33 percent in the cometary dust, the carbon of Comet Halley is close to cosmic abundances.

  7. Evidence for geologic processes on comets

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Thomas, Nicolas; El-Maarry, Mohamed Ramy; Farnham, Tony L.

    2016-11-01

    Spacecraft missions have resolved the nuclei of six periodic comets and revealed a set of geologically intriguing and active small bodies. The shapes of these cometary nuclei are dominantly bilobate reflecting their formation from smaller cometesimals. Cometary surfaces include a diverse set of morphologies formed from a variety of mechanisms. Sublimation of ices, driven by the variable insolation over the time since each nucleus was perturbed into the inner Solar System, is a major process on comets and is likely responsible for quasi-circular depressions and ubiquitous layering. Sublimation from near-vertical walls is also seen to lead to undercutting and mass wasting. Fracturing has only been resolved on one comet but likely exists on all comets. There is also evidence for mass redistribution, where material lifted off the nucleus by subliming gases is deposited onto other surfaces. It is surprising that such sedimentary processes are significant in the microgravity environment of comets. There are many enigmatic features on cometary surfaces including tall spires, kilometer-scale flows, and various forms of depressions and pits. Furthermore, even after accounting for the differences in resolution and coverage, significant diversity in landforms among cometary surfaces clearly exists. Yet why certain landforms occur on some comets and not on others remains poorly understood. The exploration and understanding of geologic processes on comets is only beginning. These fascinating bodies will continue to provide a unique laboratory for examining common geologic processes under the uncommon conditions of very high porosity, very low strength, small particle sizes, and near-zero gravity.

  8. The volatile composition of comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.

    1988-01-01

    Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.

  9. Outburst activity in comets - II. A multiband photometric monitoring of comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, Josep M.; García-Hernández, D. A.; Sánchez, Albert; Lacruz, Juan; Davidsson, Björn J. R.; Rodríguez, Diego; Pastor, Sensi; de Los Reyes, José A.

    2010-12-01

    We have carried out a continuous multiband photometric monitoring of the nuclear activity of comet 29P/Schwassmann-Wachmann 1 from 2008 to 2010. Our main aim has been to study the outburst mechanism on the basis of a follow-up of the photometric variations associated with the release of dust. We have used a standardized method to obtain the 10-arcsec nucleus photometry in the V, R and I filters of the Johnson-Kron-Cousins system, which are accurately calibrated with standard Landolt stars. The production of dust in the R and I bands during the 2010 February 3 outburst has been also computed. We conclude that the massive ejection of large (optically thin) particles from the surface at the time of the outburst is the triggering mechanism to produce the outburst. The ulterior sublimation of these ice-rich dust particles during the following days induces fragmentation, generating micrometre-sized grains, which increase the dust spatial density to produce the outburst in the optical range as a result of the scattering of sunlight. The material leaving the nucleus adopts a fan-like dust feature, formed by micrometre-sized particles that decay in brightness as it evolves outwards. By analysing the photometric signal measured in a standardized 10-arcsec aperture using the phase dispersion minimization technique, we have found a clear periodicity of 50 d. Remarkably, this value is also consistent with an outburst frequency of 7.4 outbursts per yr deduced from the number of outbursts noticed during the effective observing time.

  10. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  11. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  12. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  13. DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    SciTech Connect

    Kozlowski, Szymon; Kochanek, Christopher S. E-mail: ckochanek@astronomy.ohio-state.edu

    2009-08-10

    We show that using mid-IR color selection to find active galactic nuclei (AGNs) is as effective in dense stellar fields such as the Magellanic Clouds as it is in extragalactic fields with low stellar densities using comparisons between the Spitzer Deep Wide Field Survey data for the NOAO Deep Wide Field Survey Boeotes region and the SAGE Survey of the Large Magellanic Cloud. We use this to build high-purity catalogs of {approx}5000 AGN candidates behind the Magellanic Clouds. Once confirmed, these quasars will expand the available astrometric reference sources for the Clouds and the numbers of quasars with densely sampled, long-term (>decade) monitoring light curves by well over an order of magnitude and potentially identify sufficiently bright quasars for absorption line studies of the interstellar medium of the Clouds.

  14. Variability Analysis and the Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1998-01-01

    This five-year Long-Term Space Astrophysics grant provided the support for several major steps in advancing our knowledge of the internal structure of active galactic nuclei. The single largest portion of this program had to do with the development and application of techniques for "reverberation mapping", the use of spectral monitoring of several different bands related by radiation reprocessing to infer the internal geometry of sources. Major steps were taken in this regard, particularly in establishing the distribution in radius of emission line material, and in relating the apparent reprocessing of continuum bands to the underlying structure of the accretion disk. Another major effort built directly upon these results. Once the case for continuum reprocessing was made by the monitoring, it next behooved us to understand the spectral output of AGN as a result of this reprocessing. As a result, our view of continuum production in AGN is now much better focussed on the key problems. A third focus of effort had to do with the nature of X-ray variability in AGN, and what it can tell us about the dynamics of extremely hot material in the immediate outskirts of the supermassive black holes that form the central engines of active galactic nuclei. In addition to these primary efforts, this grant also supported many other, smaller projects. Several of these were demonstrations of how the material spewed out of AGN in relativistic.ets generate the radiation by which we observe them. J Finally, the portion of this study that had to do with continuum production by accretion disks in AGN led naturally to several papers in which new developments were presented having to do with "advection-dominated accretion disks", those disks in which accretion appears to proceed at a substantial rate, but in which radiation processes are weak.

  15. Testing Unification Models in Dual Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Muller-Sanchez, Francisco

    Dual active galactic nuclei (AGNs), which are kpc-scale separation AGN pairs in galaxy mergers, are ideal targets for testing unification models and models of galaxy evolution. By definition, the AGN nature of the two nuclei suggests that they must be consistent with standard unification models (i.e, a dusty torus obscures the central engine in type 2 AGN). At the same time, they are the result of merger-induced nuclear activity. Galaxy evolution models suggest that merger-induced AGNs are heavily obscured for long periods by the high gas densities powering them. Eventually, feedback drives away material, creating a brief window in time in which the AGN is not obscured. Therefore, in these models, there is no need for a small-scale torus. We are constructing for the first time the spectral energy distributions (SEDs) of the two AGNs in dual AGN systems using data from Hubble and Chandra telescopes, in combination with VLA, Keck and VLT data. However, a critical missing component is dust emission at 30-40 microns, which can only be achieved by SOFIA. We propose FORCAST 31.5 and 37.1 microns observations of the complete sample of 5 confirmed dual AGNs with angular separations >3.5". As suggested by current models, the best wavelength to detect thermal emission from a torus would be between 30-40 microns, where both the non-thermal core and the stellar emission sharply decline, and the torus emission peaks. Thus, FORCAST provides 1) the best angular resolution between 30-40 microns of the current suite of instruments, crucial to separate the emission from the two AGNs, and 2) the largest constraining power for torus models, crucial to characterize the properties of the torus in AGNs.

  16. OBSERVABILITY OF DUAL ACTIVE GALACTIC NUCLEI IN MERGING GALAXIES

    SciTech Connect

    Van Wassenhove, Sandor; Volonteri, Marta; Bellovary, Jillian; Mayer, Lucio; Callegari, Simone; Dotti, Massimo

    2012-03-20

    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are not only the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGNs are scant, being just a few percent of all AGNs. In this Letter, we investigate the triggering of AGN activity in merging galaxies via a suite of high-resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling, and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, focusing on AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGNs are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.

  17. Unusual Water Production Activity of Comet C/2012 S1 (ISON): Outbursts and Continuous Fragmentation

    NASA Astrophysics Data System (ADS)

    Combi, M. R.; Fougere, N.; Mäkinen, J. T. T.; Bertaux, J.-L.; Quémerais, E.; Ferron, S.

    2014-06-01

    The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyα camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2012 S1 (ISON) for most of the last month of its activity from 2013 October 24 to November 24, ending just 4 days before perihelion and its final disruption. The water production rate of the comet was determined from these observations. SOHO has been operating in a halo orbit around the Earth-Sun L1 Lagrange point since its launch in late 1995. Most water vapor produced by comets is ultimately photodissociated into two H atoms and one O atom producing a huge hydrogen coma that is routinely observed in the daily SWAN images in comets of sufficient brightness. Water production rates were calculated from 22 images over most of the last month of the pre-perihelion apparition. The water production rate increased very slowly on average from October 24.9 until November 12.9, staying between 1.8 and 3.4 × 1028 s-1, after which it increased dramatically, reaching 1.6 to 2 × 1030 s-1 from November 21.6 to 23.6. It was not detected after perihelion on December 3.7 when it should have been visible. We examine the active surface area necessary to explain the water production rate and its variation and are able to place constraints on the physical size of the original nucleus necessary to account for the large amount of activity from November 12.9 and until just before perihelion.

  18. UNUSUAL WATER PRODUCTION ACTIVITY OF COMET C/2012 S1 (ISON): OUTBURSTS AND CONTINUOUS FRAGMENTATION

    SciTech Connect

    Combi, M. R.; Fougere, N.; Mäkinen, J. T. T.; Bertaux, J.-L.; Quémerais, E.

    2014-06-10

    The Solar Wind ANisotropies (SWAN) all-sky hydrogen Lyα camera on the SOlar and Heliospheric Observer (SOHO) satellite observed the hydrogen coma of comet C/2012 S1 (ISON) for most of the last month of its activity from 2013 October 24 to November 24, ending just 4 days before perihelion and its final disruption. The water production rate of the comet was determined from these observations. SOHO has been operating in a halo orbit around the Earth-Sun L1 Lagrange point since its launch in late 1995. Most water vapor produced by comets is ultimately photodissociated into two H atoms and one O atom producing a huge hydrogen coma that is routinely observed in the daily SWAN images in comets of sufficient brightness. Water production rates were calculated from 22 images over most of the last month of the pre-perihelion apparition. The water production rate increased very slowly on average from October 24.9 until November 12.9, staying between 1.8 and 3.4 × 10{sup 28} s{sup –1}, after which it increased dramatically, reaching 1.6 to 2 × 10{sup 30} s{sup –1} from November 21.6 to 23.6. It was not detected after perihelion on December 3.7 when it should have been visible. We examine the active surface area necessary to explain the water production rate and its variation and are able to place constraints on the physical size of the original nucleus necessary to account for the large amount of activity from November 12.9 and until just before perihelion.

  19. The evolving activity of the Dynamically Young Comet C/2009 P1 (Garradd)

    NASA Astrophysics Data System (ADS)

    Bodewits, Dennis; Farnham, T. L.; A'Hearn, M. F.; Feaga, L. M.; McKay, A.; Schleicher, D. G.; Sunshine, J.

    2013-10-01

    Comet C/2009 P1 (Garradd) was a dynamically young comet that was bright and well-observable from a heliocentric distance of 3.5 AU pre-perihelion until 4.5 AU outbound. The development of its activity was observed by many different observatories and instruments, both on the ground and in space (Deep Impact, Swift, SOHO-SWAN, VLT-UVES, IRTF, and many more). Because of this observing campaign, Garradd is the first comet for which production rates of all three main volatiles (H2O, CO, and CO2) were measured during a significant part of its passage through the inner solar system. These observations provide an invaluable key to how comets work. At -3.5 AU, Garradd had one of the highest dust-to-gas ratios ever observed, matched only by Hale-Bopp. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between -3 AU and -2 AU a significant extended source started producing water in the coma (Combi et al. 2013, Paganini et al. 2012, Villanueva et al. 2012). This source, likely icy grains, disappeared quickly around perihelion (Bodewits et al. in prep.). The other volatiles observed in Garradd’s coma indicate an even more complex story. Relative abundances measured with large apertures were lowered significantly by the extended water source, indicating that these icy grains were depleted of ices more volatile than water. Differences in the volatility of cometary ices may further explain the observed trends in the abundances of CN and CO2 (mostly observed through [OI]; Decock et al. 2013). These effects do not explain the strange behavior of CO, whose production rate increased monotonically from -2 AU to +2AU (Feaga et al. submitted, and references therein). The activity of Garradd was complex and changed significantly during the time it was observed. We will discuss how these different sublimation processes fit into our understanding of cometary activity and evolution in general.

  20. Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past

    NASA Astrophysics Data System (ADS)

    El-Maarry, M. Ramy; Groussin, O.; Thomas, N.; Pajola, M.; Auger, A.-T.; Davidsson, B.; Hu, X.; Hviid, S. F.; Knollenberg, J.; Güttler, C.; Tubiana, C.; Fornasier, S.; Feller, C.; Hasselmann, P.; Vincent, J.-B.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Keller, H. U.; Rickman, H.; A’Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Besse, S.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Deshapriya, J. D. P.; Fulle, M.; Gutierrez, P. J.; Hofmann, M.; Ip, W.-H.; Jorda, L.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lin, Z.-Yi; Lopez Moreno, J. J.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pommerol, A.; Preusker, F.; Scholten, F.; Shi, X.

    2017-03-01

    The Rosetta spacecraft spent ~2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet’s landscape. This suggests that most of the major landforms were created early in the comet’s current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.

  1. On the Radio Dichotomy of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu

    2016-12-01

    It is still a mystery why only a small fraction of active galactic nuclei (AGNs) contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation, however, the advection of the external field in a geometrically thin disk is inefficient. Gas with a small angular velocity may fall from the Bondi radius {R}{{B}} nearly freely to the circularization radius {R}{{c}}, and a thin accretion disk is formed within {R}{{c}}. We suggest that the external magnetic field is substantially enhanced in this region, and the magnetic field at {R}{{c}} can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at {R}{{B}}. The magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. We suggest that the radio dichotomy of AGNs predominantly originates from the angular velocity of the circumnuclear gas. An AGN will appear as a radio-loud (RL) one if the angular velocity of the circumnuclear gas is lower than a critical value at the Bondi radius, otherwise, it will appear as a radio-quiet (RQ) AGN. This is supported by the observations that RL nuclei are invariably hosted by core galaxies. Our model suggests that the mass growth of the black holes in RL quasars is much faster than that in RQ quasars with the same luminosity, which is consistent with the fact that the massive black holes in RL quasars are systematically a few times heavier than those in their RQ counterparts.

  2. Cloud condensation nuclei activity of isoprene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Engelhart, Gabriella J.; Moore, Richard H.; Nenes, Athanasios; Pandis, Spyros N.

    2011-01-01

    This work explores the cloud condensation nuclei (CCN) activity of isoprene secondary organic aerosol (SOA), likely a significant source of global organic particulate matter and CCN, produced from the oxidation with OH from HONO/HOOH photolysis in a temperature-controlled SOA chamber. CCN concentrations, activation diameter, and droplet growth kinetic information were monitored as a function of supersaturation (from 0.3% to 1.5%) for several hours using a cylindrical continuous-flow streamwise thermal gradient CCN counter connected to a scanning mobility particle sizer. The initial SOA concentrations ranged from 2 to 30 μg m-3 and presented CCN activity similar to monoterpene SOA with an activation diameter of 35 nm for 1.5% supersaturation and 72 nm for 0.6% supersaturation. The CCN activity improved slightly in some experiments as the SOA aged chemically and did not depend significantly on the level of NOx during the SOA production. The measured activation diameters correspond to a hygroscopicity parameter κ value of 0.12, similar to κ values of 0.1 ± 0.04 reported for monoterpene SOA. Analysis of the water-soluble carbon extracted from filter samples of the SOA suggest that it has a κ of 0.2-0.3 implying an average molar mass between 90 and 150 g mol-1 (assuming a zero and 5% surface tension reduction with respect to water, respectively). These findings are consistent with known oxidation products of isoprene. Using threshold droplet growth analysis, the CCN activation kinetics of isoprene SOA was determined to be similar to pure ammonium sulfate aerosol.

  3. Autonomous Onboard Science Data Analysis for Comet Missions

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  4. Cometary cores with multiple structure from the oort cloud and the general scheme of origin of unusually active comets

    SciTech Connect

    Davydov, V.D.

    1986-03-01

    A newly conceived scheme is constructed which synthesizes consistent solutions to several principal problems concerning multiple-core comets: a power mechanism, a place and epoch of formation of the multiple core structure, the qualitative differences between current structure and younger structure, the origin of two types of cometary orbits, and a trigger mechanism for recent ignition of cometary activity of a multiple core. This scheme uses a new explanation of the ejection of dust (including icy dust) from various cometary cores as evidence that the material of multiple-core comets may be collisionally ablated at the expense of the comet-centered orbital energy of a multitude of massive boulders (see Kosm. Issled., No. 6 (1984)). Natural mechanisms are shown which preserve this important feature of multiple cores. The concept consists of the following elements: evolution of a system of satellites of the core toward a colli sionless structure; preservation of internal kinetic energy in the collisionless system over astro nomically lengthy time scales; tidal initiation of a collisional mechanism with the first revolution of the ancient multiple core in the zone of visibility. It is possible that such revoltions correspond to the existence of especially active comets in nearly parabolic orbits. Multiple structure in the core of active short-period comets might be descended from a nearly parabolic comet (if the theory holds on perturbational multistage transformation of near-parabolic orbits into contemporary short-period orbits).

  5. A catalogue of quasars and active nuclei: 11th edition

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    2003-12-01

    The recent release of the final installement of the 2dF quasar catalogue and of the first part of the Sloan catalogue, almost doubling the number of known QSOs, led us to prepare an updated version of our Catalogue of quasars and active nuclei which now contains 48 921 quasars, 876 BL Lac objects and 15 069 active galaxies (including 11 777 Seyfert 1s). Like the tenth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. We also give a list of all known lensed and double quasars. The catalogue (Table_QSO, Table_BL, Table_AGN and Table_reject) and the list of references are only available in electronic form at the CDS via anomymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/399 or at the Observatoire de Haute Provence (http://www.obs-hp.fr/).

  6. A catalogue of quasars and active nuclei: 10th edition

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    2001-07-01

    The recent publication of the first release of the 2dF quasar catalogue (Croom et al. \\cite{croom}) containing nearly 10 000 new QSOs, almost doubling the number of known such objects, led us to prepare an updated version of our catalogue of quasars and active nuclei which now contains 23 760 quasars, 608 BL Lac objects and 5751 active galaxies (of which 2765 are Seyfert 1s). Like the ninth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. We also give a list of all known lensed and double quasars. The catalogue (Tables I to V) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/92 or at the Observatoire de Haute Provence http://www.obs-hp.fr).

  7. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    SciTech Connect

    Hsieh, Henry H.; Hainaut, Olivier; Novaković, Bojan; Bolin, Bryce; Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J.; Fitzsimmons, Alan; Kokotanekova, Rosita; Snodgrass, Colin; Lacerda, Pedro; Micheli, Marco; Moskovitz, Nick; Wasserman, Lawrence; Waszczak, Adam

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  8. Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Fornasier, S.; Pajola, M.; Besse, S.; Davidsson, B. J. R.; Lara, L. M.; Mottola, S.; Naletto, G.; Sierks, H.; Barucci, A. M.; Scholten, F.; Preusker, F.; Pommerol, A.; Masoumzadeh, N.; Lazzarin, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Moreno, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-02-01

    Aims.We carried out an investigation of the surface variegation of comet 67P/Churyumov-Gerasimenko, the detection of regions showing activity, the determination of active and inactive surface regions of the comet with spectral methods, and the detection of fallback material. Methods: We analyzed multispectral data generated with Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) narrow angle camera (NAC) observations via spectral techniques, reflectance ratios, and spectral slopes in order to study active regions. We applied clustering analysis to the results of the reflectance ratios, and introduced the new technique of activity thresholds to detect areas potentially enriched in volatiles. Results: Local color inhomogeneities are detected over the investigated surface regions. Active regions, such as Hapi, the active pits of Seth and Ma'at, the clustered and isolated bright features in Imhotep, the alcoves in Seth and Ma'at, and the large alcove in Anuket, have bluer spectra than the overall surface. The spectra generated with OSIRIS NAC observations are dominated by cometary emissions of around 700 nm to 750 nm as a result of the coma between the comet's surface and the camera. One of the two isolated bright features in the Imhotep region displays an absorption band of around 700 nm, which probably indicates the existence of hydrated silicates. An absorption band with a center between 800-900 nm is tentatively observed in some regions of the nucleus surface. This absorption band can be explained by the crystal field absorption of Fe2+, which is a common spectral feature seen in silicates.

  9. Active galactic nuclei at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Dermer, Charles Dennison; Giebels, Berrie

    2016-06-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV γ rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of γ-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called ;blazars;. The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with γ-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling the broadband spectral energy distributions of blazars. However, many fundamental issues remain, including the role of hadronic processes and the rapid variability of a few FSRQs and several BL Lac objects whose synchrotron spectrum peaks at UV or X-ray frequencies. A class of γ-ray-emitting radio galaxies, which are thought to be the misaligned counterparts of blazars, has emerged from the results of the Fermi-Large Area Telescope and of ground-based Cherenkov telescopes. Soft γ-ray emission has been detected from a few nearby Seyfert galaxies, though it is not clear whether those γ rays originate from the nucleus. Blazars and their misaligned counterparts make up most of the ≳100 MeV extragalactic γ-ray background (EGB), and are suspected of being the sources of ultra-high energy cosmic rays. The future ;Cherenkov Telescope Array;, in synergy with the Fermi-Large Area Telescope and a wide range of telescopes in space and on the ground, will write the next chapter

  10. A study of warm absorbers in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ashton, Ceri Ellen

    This thesis explores the 'warm absorber' phenomenon observed in Active Galactic Nuclei (AGN). Warm absorbers are clouds of ionised gas within AGN, that cause absorption at soft X-ray wavelengths. They are observed in half of all Type 1 AGN, hence they play an important part in the framework of our under standing of Active Galactic Nuclei. Observations with the satellite XMM-Newton have given us the highest signal-to-noise data yet. XMM-Newton observations of the quasars PG 1114+445 and PG 1309+355 are studied. Both quasars exhibit evidence for absorption by warm material in the line-of-sight. We define a 'phase' of absorption to have a single ionisation param eter and column density. From fits to the data, the absorption in PG 1114+445 is found to be in two phases, a 'hot' phase with a log ionisation parameter f of 2.57 and a column of 1022 cm-2, and a 'cooler' one with log f of 0.83 and a column of 1021 cm-2. The absorption in PG 1309+355 consists of a single phase, with log f of 1.87 and a column of 1021 cm-2. The absorbing gas lies at distances of 1019 - 1022 cm from the continuum radiation sources in these AGN, suggesting origins in a wind emanating from a molecular torus, according to the 'Standard Model' of AGN. The kinetic luminosities of the outflowing absorbers represent insignificant fractions (< 10 3) of the energy budgets of the AGN. Using data for the Seyfert 1 H 0557 385, the warm absorption is characterised by two phases, a phase with log £ of 0.48 and a column of 1021 cm-2, and a phase with log f of 1.63 and a column of 1022 cm-2. Neutral absorption is also present in the source, and possible origins for this are discussed. For a large sample, observations of warm absorbers are collated and compared with models.

  11. Color Systematics of Comets and Related Bodies

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2015-12-01

    Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived "small body" populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (˜10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  12. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  13. Active galactic nuclei activity: self-regulation from backflow

    NASA Astrophysics Data System (ADS)

    Antonuccio-Delogu, V.; Silk, Joseph

    2010-06-01

    We study the internal circulation within the cocoon carved out by the relativistic jet emanating from an active galactic nucleus (AGN) within the interstellar medium (ISM) of its host galaxy. First, we develop a model for the origin of the internal flow, noticing that a significant increase of large-scale velocity circulation within the cocoon arises as significant gradients in the density and entropy are created near the hotspot (a consequence of Crocco's vorticity generation theorem). We find simple and accurate approximate solutions for the large-scale flow, showing that a backflow towards the few inner parsec region develops. We solve the appropriate fluid dynamic equations, and we use these solutions to predict the mass inflow rates towards the central regions. We then perform a series of 2D simulations of the propagation of jets using FLASH 2.5, in order to validate the predictions of our model. In these simulations, we vary the mechanical input power between 1043 and 1045 ergs-1, and assume a Navarro-Frenk-White (NFW) density profile for the dark matter halo, within which an isothermal diffuse ISM is embedded. The backflows which arise supply the central AGN region with very low angular-momentum gas, at average rates of the order of , the exact value seen to be strongly dependent on the central ISM density (for fixed input jet power). The time-scales of these inflows are apparently weakly dependent on the jet/ISM parameters, and are of the order of . We then argue that these backflows could (at least partially) feed the AGN, and provide a self-regulatory mechanism of AGN activity, that is not directly controlled by, but instead controls, the star formation rate within the central circumnuclear disc.

  14. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  15. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  16. Mass Loss from the Nuclei of Active Galaxies

    NASA Technical Reports Server (NTRS)

    Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.

    2003-01-01

    Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .

  17. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-07

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  18. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  19. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  20. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  1. High-energy spectra of active nuclei. 1: The catalog

    NASA Technical Reports Server (NTRS)

    Malaguti, G.; Bassani, L.; Caroli, E.

    1994-01-01

    This paper presents a catalog of high-energy spectra (E is greater than or equal to 0.01 keV) of active galactic nuclei (AGNs). The catalog contains 209 objects (140 Seyfert galaxies, 65 quasars, and 4 objects otherwise classified), for a total of 1030 spectra. Most of the data have been collected from the literature over a period spanning more than 20 yr starting from the early 1970s up to the end of 1992. For a numbner of objects (17), EXOSAT/ME data have been extracted and analyzed, and the 27 spectra obtained have been added to the database. For each object we report individual observation spectral fit parameters using a power-law model corrected for cold gas absorption along the line of sight (photon index, 1 keV intensity and hydrogen column density), plus other relevant data. It is hoped that this database can become a useful tool for the study of the AGN phenomenon in its various aspects.

  2. Relativistic Jets in Active Galactic Nuclei and Microquasars

    NASA Astrophysics Data System (ADS)

    Romero, Gustavo E.; Boettcher, M.; Markoff, S.; Tavecchio, F.

    2017-01-01

    Collimated outflows (jets) appear to be a ubiquitous phenomenon associated with the accretion of material onto a compact object. Despite this ubiquity, many fundamental physics aspects of jets are still poorly understood and constrained. These include the mechanism of launching and accelerating jets, the connection between these processes and the nature of the accretion flow, and the role of magnetic fields; the physics responsible for the collimation of jets over tens of thousands to even millions of gravitational radii of the central accreting object; the matter content of jets; the location of the region(s) accelerating particles to TeV (possibly even PeV and EeV) energies (as evidenced by γ-ray emission observed from many jet sources) and the physical processes responsible for this particle acceleration; the radiative processes giving rise to the observed multi-wavelength emission; and the topology of magnetic fields and their role in the jet collimation and particle acceleration processes. This chapter reviews the main knowns and unknowns in our current understanding of relativistic jets, in the context of the main model ingredients for Galactic and extragalactic jet sources. It discusses aspects specific to active Galactic nuclei (especially blazars) and microquasars, and then presents a comparative discussion of similarities and differences between them.

  3. High energy neutrinos from radio-quiet active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Mészáros, Peter

    2004-12-01

    Most active galactic nuclei (AGN) lack prominent jets, and show modest radio emission and significant x-ray emission which arises mainly from the galactic core, very near the central black hole. We use a quantitative scenario of such core-dominated radio-quiet AGN, which attributes a substantial fraction of the x-ray emission to the presence of abortive jets involving the collision of gas blobs in the core. Here we investigate the consequences of the acceleration of protons in the shocks from such collisions. We find that protons will be accelerated up to energies above the pion photoproduction threshold on both the x rays and the UV photons from the accretion disk. The secondary charged pions decay, producing neutrinos. We predict significant fluxes of TeV-PeV neutrinos, and show that the AMANDA II detector is already constraining several important astrophysical parameters of these sources. Larger cubic kilometer detectors such as IceCube will be able to detect such neutrinos in less than one year of operation, or otherwise rule out this scenario.

  4. Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models

    NASA Astrophysics Data System (ADS)

    Hönig, Sebastian F.; Kishimoto, Makoto

    2017-04-01

    This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3–5 μm bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3–5 μm near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.

  5. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  6. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  7. VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS

    SciTech Connect

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-20

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  8. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  9. Water Production Rates from SOHO/SWAN H Lyman-alpha Observations of Active and Moderately Active Comets

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Makinen, J. T.; Henry, N. J.; Bertaux, J. L.; Quemerais, E.

    2006-09-01

    SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft makes routine all-sky images of the interplanetary neutral hydrogen around the sun and thus monitors the effect of the variable solar wind on its distribution. SWAN has an ongoing campaign to make special observations of comets, both short and long period ones, in addition to making serendipitous observations of comets as part of the all-sky monitoring program. We report here on a study of the moderately active comets observed by SWAN during the period of 1999-2004: 1999 H1 Lee, 1999 T1 McNaught Hartley, 2000 WM1 LINEAR, 2001 A2 LINEAR, 2002 C1 Ikeya Zhang, and 2004 Q4 NEAT. SWAN is able to observe comets almost continuously over their whole visible apparition and provide excellent temporal coverage of the gas production. In addition to calculating production rates from each image, we also present some preliminary results using our time-resolved model (TRM) that analyzes an entire sequence of images over many days to several weeks, and from which 1-day or 2-day average water production rates can be extracted over continuous periods of several days to weeks. We also present single image results for comet 1995 O1 Hale-Bopp extending our previous work from 5 months around perihelion to over a year, as well as preliminary results from the TRM. This work was partially supported by grant NNG05GF06G from the NASA Planetary Astronomy Program. SOHO is a mission of international cooperation between ESA and NASA. SWAN was financed in France by CNES with support from CNRS for staff salaries and in Finland by TEKES and the Finnish Meteorological Institute.

  10. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  11. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  12. Spatially Offset Active Galactic Nuclei. I. Selection and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2016-09-01

    We present a sample of 18 optically selected and X-ray-detected spatially offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey (SDSS). In nine systems, the X-ray active galactic nucleus (AGN) is spatially offset from the galactic stellar core that is located within the 3″ diameter SDSS spectroscopic fiber. In 11 systems, the X-ray AGN is spatially offset from a stellar core that is located outside the fiber, with an overlap of two. To build the sample, we cross-matched Type II AGNs selected from the SDSS galaxy catalog with archival Chandra imaging and employed our custom astrometric and registration procedure. The projected angular (physical) offsets span a range of 0.″6 (0.8 kpc) to 17.″4 (19.4 kpc), with a median value of 2.″7 (4.6 kpc). The offset nature of an AGN is an unambiguous signature of a galaxy merger, and these systems can be used to study the properties of AGNs in galaxy mergers without the biases introduced by morphological merger selection techniques. In this paper (Paper I), we use our sample to assess the kinematics of AGN photoionized gas in galaxy mergers. We find that spectroscopic offset AGN selection may be up to {89}-16+7% incomplete due to small projected velocity offsets. We also find that the magnitude of the velocity offsets are generally larger than expected if our spatial selection introduces a bias toward face-on orbits, suggesting the presence of complex kinematics in the emission line gas of AGNs in galaxy mergers.

  13. Unwrapping the X-ray spectra of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C. S.

    2016-05-01

    Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v˜ (0.1-0.3)c, highly-ionized (mainly visible in Fe XXV and Fe XXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.

  14. Rosetta/VIRTIS investigation of the chemistry and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bockelee-Morvan, Dominique; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra; Erard, Stéphane; Capaccioni, Fabrizio; Filacchione, Gianrico; Fougere, Nicolas; Leyrat, Cedric; Crovisier, Jacques; Capaccioni, Fabrizio

    2016-07-01

    The composition of cometary ices inside cometary nuclei provides clues to the chemistry of the protoplanetary disk where they formed, 4.6 Gyr ago. These ices sublimate when the body approches the Sun, so that the coma molecular species give insights on the nucleus surface and sub-surface composition. So far, most investigations of the coma chemical composition were performed from telescopic observations from the ground or space plateforms. Since August 2014, the ESA/Rosetta spacecraft has been investigating the nucleus and inner coma of 67P/Churyumov-Gerasimenko. This talk will present an overview of the results obtained by the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard Rosetta, focussing on observations of molecular species. VIRTIS is composed of two channels. The VIRTIS-M channel is a spectro-imager covering the 0.27-5.1 microns range, which allowed us to map the spatial distribution of H2O and CO2 (Migliorini et al. 2016, A&A in press). VIRTIS-H is a high-spectral resolution spectrometer covering the 2-5 microns range. Spectra obtained with VIRTIS-H show signatures of H2O, CO2 (both fundamental and hot bands), 13CO2, CH4 and other C-H bearing species (Bockelee-Morvan et al. A&A, 583, A6,2015). VIRTIS is a key instrument to investigate regional, diurnal and seasonal variations of the comet outgassing.

  15. The location of Asteroidal Belt Comets (ABCs), in a comet's evolutionary diagram: The Lazarus Comets

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio; Zuluaga, Jorge; Cuartas, Pablo

    2013-09-01

    There is a group of newly recognized asteroids in the main belt that are exhibiting cometary characteristics. We will call them Asteroidal Belt Comets or ABCs for short. The surprising property of these objects is that their orbits are entirely asteroidal while their behaviour is entirely cometary, with Tisserand invariants larger than 3.0, while all Jupiter family comets have Tisserand invariants smaller than 3.0. An analysis of their orbital and physical properties has resulted in the following conclusion. (1) We define the `detached group (DG)' as those objects that exhibit cometary characteristics (sublimating water) and have aphelion distances Q < 4.5 au. The DG contains all the ABCs traditionally recognized, plus a few other members not traditionally recognized like 2P and 107P. With the above definition there are 11 members of the ABC group: 2P, 107P, 133P, 176P, 233P, 238P, C/2008 R1, C/2010 R2, 2011 CR42, 3200 and 300163 = 2006 VW139. And there are three members of the collisioned asteroids, CA, P/2010 A2, 596 Scheila and P/2012 F5 Gibbs. (2) In the literature a common reason for activity is interplanetary collisions. Active objects sublimate ices except for the CA that have exhibited dust tails due to collisions and 3200 Phaethon activated by solar wind sputtering. In this work, we will trace the origin of activity to a diminution of their perihelion distances, a hypothesis that has not been previously explored in the literature. (3) We have calibrated the blackbody (colour) temperature of comets versus perihelion distance, R, regardless of class. We find T = 325 ± 5 K/√R. (4) Using a mathematical model of the thermal wave we calculate the thickness of the crust or dust layer on comet nuclei. We find a thickness of 2.0 ± 0.5 m for comet 107P, 4.7 ± 1.2 m for comet 133P and 1.9 ± 0.5 m for a sample of nine comets. Note the small errors. (5) We have located three ABCs in an evolutionary diagram of Remaining Revolutions (RR) versus Water-Budget Age (WB

  16. Galaxy interactions and active galactic nuclei in the local universe

    NASA Astrophysics Data System (ADS)

    Ryan, Christopher J.

    2009-06-01

    It has been suggested that galaxy interactions may be the principal mechanism responsible for triggering non-thermal activity in galactic nuclei. This thesis investigates the possible role of interactions in the local Universe by searching for evidence of a causal relationship between major interactions and the initiation of activity in Seyfert galaxies using high-quality, multiwavelength imaging data. The connection between interacting galaxies and Seyferts is explored by comparing the clustering properties of their environments, as quantified by the spatial cross-correlation function amplitude. If a direct evolutionary relationship exists, the objects should be located in environments that are statistically similar. It was previously demonstrated that Seyferts are found in fields comparable to isolated galaxies. The analysis presented in this work reveals that interacting galaxies are preferentially situated in regions consistent with Abell Richness Classes of 0 to 1. The apparent dissimilarity of their environments provides a strong argument against a link between major interactions and Seyfert galaxies. An examination of the photometric and morphological properties of the interacting systems does not uncover any trends that could be associated with the initiation of nuclear activity. The role of major interactions in triggering low-redshift AGNs is then assessed using near-infrared imagery of a sample of Narrow-Line Seyfert 1 galaxies. It has been postulated that these objects are evolutionarily young AGNs, powered by accretion onto supermassive black holes that are considerably lower in mass than those found in typical broad-line Seyferts. By employing the correlation between black hole mass and host galaxy bulge luminosity, the mean black hole mass, [Special characters omitted.] BH , in solar units for the sample is found to be [left angle bracket]log [Special characters omitted.] ( BH )[right angle bracket] = 7.7 ± 0.1, consistent with typical broad

  17. Dust tail of the active distant Comet C/2003 WT42 (LINEAR) studied with photometric and spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Korsun, Pavlo P.; Kulyk, Irina V.; Ivanova, Oleksandra V.; Afanasiev, Viktor L.; Kugel, Francois; Rinner, Claudine; Ivashchenko, Yuriy M.

    2010-12-01

    We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg's interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20

  18. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  19. Ultrafast outflows in radio-loud active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.

    2014-09-01

    Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.

  20. IUEAGN: A database of ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.

    1993-01-01

    In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.

  1. The Evolution of Active Galactic Nuclei and their Spins

    NASA Astrophysics Data System (ADS)

    Volonteri, M.; Sikora, M.; Lasota, J.-P.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ~ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  2. Surface Photometry of Reverberation-Mapped Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bower, Gary A.

    2015-01-01

    I present a statistical analysis of the surface photometry obtained for a sample of Hubble Space Telescope (HST) archival images of the host galaxies containing active galactic nuclei (AGN), whose time-delay between continuum and broad emission line variations have been analyzed (i.e., reverberation mapping). For quiescent galaxies, strong correlations exist between central black hole mass and host galaxy structure. If there are similar correlations for AGN between central black hole masses derived from reverberation mapping and the host galaxy structure that I have derived from archival HST images, this would imply some validation of the assumptions underlying reverberation mapping concerning the structure, kinematics, and orientation of the broad line regions in AGN.The correlations for quiescent galaxies bewteen central black hole mass and host galaxy structure imply that there might be a strong causal connection between the formation and evolution of the black hole and the galaxy bulge. A current hypothesis is that bulges, black holes, and quasars formed, grew, or turned on as parts of the same process, in part because the collapse or merger of bulges might provide a rich fuel supply to a central black hole. One way of testing this hypothesis would be to plot AGN as a function of redshift on these correlations. However, two severe obstacles limit the ability to measure black hole masses in AGN using HST to analyze the central stellar and/or gas dynamics: (1) since spatial resolution becomes more limited at larger distances, only two reverberation-mapped AGN are close enough to Earth to render the analysis feasible, and (2) it isdifficult to obtain useful spectra of the stars and/or gas in the presence of the bright nonstellar nucleus. The most useful alternative is to exploit reverberation mapping, which uses the time delay in a given AGN between variations in the continuum emission and broad emission lines.

  3. THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS

    SciTech Connect

    Volonteri, M.; Lasota, J.-P.; Sikora, M.; Merloni, A.

    2013-10-01

    Massive black holes (MBHs), in contrast to stellar mass black holes, are expected to substantially change their properties over their lifetime. MBH masses increase by several orders of magnitude over a Hubble time, as illustrated by Sołtan's argument. MBH spins also must evolve through the series of accretion and mergers events that increase the masses of MBHs. We present a simple model that traces the joint evolution of MBH masses and spins across cosmic time. Our model includes MBH-MBH mergers, merger-driven gas accretion, stochastic fueling of MBHs through molecular cloud capture, and a basic implementation of accretion of recycled gas. This approach aims at improving the modeling of low-redshift MBHs and active galactic nuclei (AGNs), whose properties can be more easily estimated observationally. Despite the simplicity of the model, it does a good job capturing the global evolution of the MBH population from z ∼ 6 to today. Under our assumptions, we find that the typical spin and radiative efficiency of MBHs decrease with cosmic time because of the increased incidence of stochastic processes in gas-rich galaxies and MBH-MBH mergers in gas-poor galaxies. At z = 0, the spin distribution in gas-poor galaxies peaks at spins 0.4-0.8 and is not strongly mass dependent. MBHs in gas-rich galaxies have a more complex evolution, with low-mass MBHs at low redshift having low spins and spins increasing at larger masses and redshifts. We also find that at z > 1 MBH spins are on average the highest in high luminosity AGNs, while at lower redshifts these differences disappear.

  4. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  5. New Insights of Comets from the EPOXI Mission

    NASA Astrophysics Data System (ADS)

    Meech, Karen J.; A'Hearn, M. F.

    2013-01-01

    Comet missions are changing the paradigm for understanding comet activity, composition, and the formation of planetesimals in the protoplanetary disk. Each encounter has shown the diversity of surface morphologies and new insights into comet chemistry, formation scenarios, activity mechanisms and geology. Prior to the comet 103P/Hartley 2 EPOXI encounter, the prevailing view was that H 2O-ice sublimation controlled most comet activity. Differences in the amounts of minor parent/daughter photodissociation species are attributed to differences in formation location, temperature and disk chemistry. However, reconstructing the protoplanetary disk dynamics and chemistry consistent with observations hasn’t yet been achieved. The EPOXI mission flew past the nucleus of comet 103P/Hartley 2 on 11/4/2010. This small nucleus was known to be exceptionally active prior to the encounter, by virtue of a very large water production rate relative to its surface area. EPOXI provided stunning images of a small nucleus with strong chemical heterogeneity and a swarm of large icy chunks driven from the nucleus by CO2 jets. The EPOXI ground-based campaign provided a long-term baseline of observations of the pre-perihelion brightening of the comet which also showed that comet Hartley 2’s perihelion activity was dominated by sub-surface CO2 outgassing. The nucleus morphology was different from that of other nuclei visited by spacecraft; some rough topographic regions showed visible surface ice. Because the Earth’s atmosphere is opaque at the wavelengths for CO2 emission, there is only a little information about CO2 abundance in comets (primarily from space missions), yet CO, CO2 and H2O are likely key tracers of the chemistry in the protoplanetary disk. EPOXI has shown the crucial role that CO2 plays in comet activity. Further, CO2 abundance does not appear to be correlated with other parent volatiles, nor with dynamical classes suggesting that we need to revise our understanding of

  6. Dynamical evolution of comet nucleus rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Sidorenko, V. V.; Neishtadt, A. I.; Vasiliev, A. A.

    2002-09-01

    The rotational dynamics of outgassing cometary nuclei are investigated analytically. We develop a general theory for the evolution of a comet nucleus' rotation state using averaging theory and assuming that the outgassing torques are a function of solar insolation and heliocentric distance. The resulting solutions are a function of the nucleus inertia ellipsoid, its outgassing properties, its heliocentric orbit, and the assumed distribution of active regions on its surface. We find that the long-term evolution of the comet nucleus rotation is a strong function of the distribution of active regions over its surface. In particular, we find that nuclei with nearly axisymmetric inertia ellipsoids and a uniformly active surface will tend towards a rotation state that has a nutation angle of ~ 55 degrees and its angular momentum perpendicular to the sun-perihelion direction. If such a comet nucleus has only one isolated active region, it will tend towards a zero nutation angle with its approximate symmetry axis and rotational angular momentum aligned parallel to the sun-perihelion direction. In the general case for an inertia ellipsoid that is not close to being axisymmetric we find a much richer set of possible steady-state solutions that are stable, ranging from rotation about the maximum moment of the inertia axis, to SAM and LAM non-principal axis rotation states. The resulting stable rotation states are a strong function of outgassing activity distribution, which we show using a simplified model of the comet Halley nucleus. Also, we demonstrate that comet Borrely observations are consistent with a stable rotation state. Our results can be used to discriminate between competing theories of comet outgassing based on a nucelus' rotation state. They also allow for a range of plausible a priori constraints to be placed on a comet's rotation state to aid in the interpretation of its outgassing structure. This work was supported by the NASA JURRISS program under Grant NAG5

  7. Making an Impact with Public Outreach Activities on Asteroids, Comets, and Meteorites

    NASA Astrophysics Data System (ADS)

    White, V.; Gurton, S.; Berendsen, M.; Dusenbery, P.

    2010-12-01

    The Night Sky Network is a collaboration of close to 350 astronomy clubs across the US that actively engage in public outreach within their communities. Since 2004, the Astronomical Society of the Pacific has been creating outreach ToolKits filled with carefully crafted sets of physical materials designed to help these volunteer clubs explain the wonders of the night sky to the public. The effectiveness of the ToolKit activities and demonstrations is the direct result of a thorough testing and vetting process. Find out how this iterative assessment process can help other programs create useful tools for both formal and informal educators. The current Space Rocks Outreach ToolKit focuses on explaining asteroids, comets, and meteorites to the general public using quick, big-picture activities that get audiences involved. Eight previous ToolKits cover a wide range of topics from the Moon to black holes. In each case, amateur astronomers and the public helped direct the development the activities along the way through surveys, focus groups, and active field-testing. The resulting activities have been embraced by the larger informal learning community and are enthusiastically being delivered to millions of people across the US and around the world. Each ToolKit is delivered free of charge to active Night Sky Network astronomy clubs. All activity write-ups are available free to download at the website listed here. Amateur astronomers receive frequent questions from the public about Earth impacts, meteors, and comets so this set of activities will help them explain the dynamics of these phenomena to the public. The Space Rocks ToolKit resources complement the Great Balls of Fire museum exhibit produced by Space Science Institute’s National Center for Interactive Learning and scheduled for release in 2011. NSF has funded this national traveling exhibition and outreach ToolKit under Grant DRL-0813528.

  8. Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb

    SciTech Connect

    Kerr, G.D.; Emery, J.F.; Pace, J.V. III

    1985-04-01

    Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the point of explosion. 37 refs., 5 figs., 6 tabs.

  9. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  10. Seasonal evolution of comet 67P activity from Rosetta/VIRTIS-H observations

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, D.; Crovisier, J.; Erard, S.; Capaccioni, F.; Leyrat, C.; Filacchione, G.; Drossart, P.; Encrenaz, T.; Biver, N.; De Sanctis, M. C.; Schmitt, B.; Kührt, E.; Capria, M. T.; Combes, M.; Combi, M.; Fougere, N.; Arnold, G.; Fink, U.; Ip, W.-H.; Migliorini, A.; Piccioni, G.; Tozzi, G.

    2016-11-01

    Spectroscopic infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out with the VIRTIS-H instrument onboard Rosetta. Vibrational bands of H2O, CO2, 13CO2, OCS, and CH4 were detected, from which column densities and abundance ratios were measured. The data set show that seasons play an important role in the activity of the comet. We report here on data obtained from July 2015 to the end of the Rosetta mission. Raster maps obtained from July to November 2015 show prominent CO2 and H2O outgassing from the southern regions. The abundance ratios relative to water strongly increased 6 days after perihelion, reaching 32%, 0.5%, and 0.2% for CO2, CH4, and OCS, respectively. This is interpreted as resulting from the ablation of devolatilized surface layers in the southern hemisphere, and the subsequent exposure of non-differentiated volatile-rich material to solar heat. Comparison with data obtained pre-equinox suggests that the low CO2/H2O values measured above the illuminated northern hemisphere during pre-equinox are characteristics of outgassing from differentiated, dust-covered regions. Unexpectedly, the CO2 outgassing remained high long after perihelion. A strong pre/post perihelion asymmetry in CO2 activity is observed on both the southern and northern hemispheres. The large CO2/H2O ratio measured around perihelion indicates that 67P is a CO2-rich comet.

  11. The Asymmetric Coma of Comets. I. Asymmetric Outgassing from the Nucleus of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Barale, O.

    2000-06-01

    Very little is known about how outgassing regions are distributed over the nucleus of comets. In periodic comets, active regions are believed to be few and of small extent. Since periodic comets are notorious for their lack of (small) solid particles that efficiently scatter sunlight, we try to find traces of the existence of production sites by examining the morphology of the gas coma. We use a new coma model in which results from hydrodynamics calculations describing the inner coma are used as limit conditions for a collisionless description of the outer coma. The production pattern of the parent species mainly depends on the extent and location of the production region(s) and on the rotational state of the nucleus. Analyzing 1980 observations of comet 2P/Encke, we find that free emission from a single, small, active region located near the subsolar point of a nonrotating nucleus is excluded. But such an active region on a rotating nucleus produces well the observed coma morphology. Our data then allow us to determine the orientation of the comet spin axis and the cometocentric latitude of the source. Emission from a few small production regions spread over the sunward part of a nonrotating nucleus or emission at a very low rate from a larger subsolar area could also fit the data. Although we do not find a unique solution to our problem, the excellent quality of our fits indicates that our approach, if used with enough care, can provide a new tool to investigate the properties of comet nuclei when the coma is far from spherically symmetric and, ultimately, to study the effects of the nongravitational force that is acting on comet nuclei.

  12. Report of the Comet Science Working Group

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General scientific questions and measurement objectives that can be addressed on a first comet mission relate to: (1) the chemical nature and the physical structure of comet nuclei as well as the changes that occur as functions of time and orbital position; (2) the chemical and physical nature of the atmospheres and ionospheres of comets, the processes which occur in them, and the development of these atmospheres and ionospheres as functions of time and orbital position; and (3) the nature of comet tails, the processes by which they are formed, and the interaction of comets with the solar wind. Capabilities of the various instruments required are discussed.

  13. APPLICATION OF THE DISK EVAPORATION MODEL TO ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, B. F.

    2009-12-10

    The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to active galactic nuclei (AGNs). Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high-luminosity AGNs and the hard spectrum in low-luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard-to-soft transition and from the soft-to-hard transition occurs at 0.027 and 0.005, respectively. The differing Eddington ratios result from the importance of Compton cooling in the latter transition, in which the cooling associated with soft photons emitted by the optically thick inner disk in the soft spectral state inhibits evaporation. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad-line region, R {sub BLR}. The absence of an optically thick inner disk at low luminosities (L) gives rise to region in the R {sub BLR}-L plane for which the relation R {sub BLR} propor to L {sup 1/2} inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad-line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of

  14. Characterizing the population of active galactic nuclei in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-01-01

    Clues to super-massive black hole (BH) formation and growth reside in the population and properties of BHs in local dwarf galaxies. The masses of BHs in these systems are our best observational constraint on the masses of the first BH "seeds" at high redshift. Moreover, present-day dwarf galaxies are unlikely to have undergone major mergers, making them a relatively pristine testbed for studying triggers of BH accretion. However, in order to find BHs in dwarf galaxies outside the Local Group, it is necessary to search for signatures of accretion, i.e., active galactic nuclei (AGN). Until recently, only a handful of dwarf galaxies were known to contain AGN. However, large surveys such as the SDSS have led to the production of samples of over a hundred dwarf galaxies with AGN signatures (see e.g., Reines et al. 2013). My dissertation work has involved in-depth, multi-wavelength follow-up of nearby (z<0.055) dwarf galaxies with optical spectroscopic AGN signatures in SDSS.I analyzed high resolution spectra of dwarf galaxies with narrow-line AGN, which led to the discovery of a 50,000 MSun BH in the nucleus of RGG 118 - the smallest BH yet reported in a galaxy nucleus (Baldassare et al. 2015). I also used multi-epoch optical spectroscopy to study the nature of broad H-alpha emission in dwarf galaxies. A characteristic signature of dense gas orbiting around a BH, broad emission can also be produced by transient stellar processes. I showed that broad H-alpha in star-forming dwarf galaxies fades over a baseline of 5-10 years, and is likely produced by e.g., a Type II SN as opposed to an AGN. However, broad emission in dwarf galaxies with AGN/composite narrow lines is persistent and consistent across observations, suggesting an AGN origin (Baldassare et al. 2016). Finally, I analyzed X-ray and UV observations of dwarf galaxies with broad and narrow-line AGN signatures. All targets had nuclear X-ray detections at levels significantly higher than expected from X-ray binaries

  15. CCD photometry of distant comets. III. Ensemble properties of Jupiter-family comets

    NASA Astrophysics Data System (ADS)

    Lowry, S. C.; Fitzsimmons, A.; Collander-Brown, S.

    2003-01-01

    We describe the results of a ground-based observational ``snapshot'' study of Jupiter-family comets in the heliocentric range 2.29 AU <= Rh <= 5.72 AU. Results are presented based on observations from the 1m JKT on the island of La Palma. A total of 25 comets were targeted with 15 being positively detected. Broad-band VRI photometry was performed to determine dimensions, colour indices, and dust production rates in terms of the ``Afrho '' formalism. The results for selected comets are compared with previous investigations. Ensemble properties of the Jupiter-family population have been investigated by combining the results presented here with those of Lowry et al. (\\cite{Lowry1999}), and Lowry & Fitzsimmons (\\cite{Lowry2001}). We find that the cumulative size distribution of the Jupiter-family comets can be described by a power law of the form; Sigma (> r)~ r-1.6 +/- 0.1. This size distribution is considerably shallower than that found for the observed Edgeworth-Kuiper belt objects, which may reflect either an intrinsic difference at small km-sizes in the belt, or the various processes affecting the nuclei of comets as their orbits evolve from the Edgeworth-Kuiper belt to the inner Solar system. Also, there would appear to be no correlation between nuclear absolute magnitude and perihelion distance. Finally, for the sample of active comets, there is a distinct correlation between absolute R band magnitude and perihelion distance, which can be explained by either a discovery bias towards brighter comets or in terms of ``rubble'' mantle formation.

  16. Comet 17P/Holmes: contrast in activity between before and after the 2007 outburst

    SciTech Connect

    Ishiguro, Masateru; Kim, Yoonyoung; Warjurkar, Dhanraj S.; Ham, Ji-Beom; Kim, Junhan; Usui, Fumihiko; Vaubaillon, Jeremie J.; Ishihara, Daisuke; Hanayama, Hidekazu; Sarugaku, Yuki; Hasegawa, Sunao; Kasuga, Toshihiro; Watanabe, Jun-ichi; Pyo, Jeonghyun; Kuroda, Daisuke; Ootsubo, Takafumi; Sakamoto, Makoto; Narusawa, Shin-ya; Takahashi, Jun; Akisawa, Hiroki

    2013-11-20

    A Jupiter-family comet, 17P/Holmes, underwent outbursts in 1892 and 2007. In particular, the 2007 outburst is known as the greatest outburst over the past century. However, little is known about the activity before the outburst because it was unpredicted. In addition, the time evolution of the nuclear physical status has not been systematically studied. Here, we study the activity of 17P/Holmes before and after the 2007 outburst through optical and mid-infrared observations. We found that the nucleus was highly depleted in its near-surface icy component before the outburst but that it became activated after the 2007 outburst. Assuming a conventional 1 μm sized grain model, we derived a surface fractional active area of 0.58% ± 0.14% before the outburst whereas the area was enlarged by a factor of ∼50 after the 2007 outburst. We also found that large (≥1 mm) particles could be dominant in the dust tail observed around aphelion. Based on the size of the particles, the dust production rate was ≳170 kg s{sup –1} at a heliocentric distance of r{sub h} = 4.1 AU, suggesting that the nucleus was still active around the aphelion passage. The nucleus color was similar to that of the dust particles and average for a Jupiter-family comet but different from that of most Kuiper Belt objects, implying that color may be inherent to icy bodies in the solar system. On the basis of these results, we concluded that more than 76 m of surface material was blown off by the 2007 outburst.

  17. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  18. A continuous follow-up of Centaurs, and dormant comets: looking for cometary activity.

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; García Melendo, E.; García-Hernández, D. A.; Davidsson, B.; Sánchez, A.; Rodríguez, D.

    2008-09-01

    MOTIVATION FOR THIS MONITORING To better understand the origin, nature and evolution of the Kuiper Belt Objects (hereafter KBOs) it is needed a characterization of the physical properties of these primitive bodies. We expect that these remote and pristine bodies are rich in ice and other volatiles. They also probably played an important role in the enrichment in volatiles of the solar system inner planets. In fact, the dynamic patterns and the structure of the KB, populated by large ice-rich bodies probably subjected to complex collisional histories are opening new questions. They are for example suspicious of being the source of Centaurs, and Jupiter Family Comets (JFCs) [1]. In fact, the present day known Centaurs are ice-rich bodies that follow unstable orbits crossing those of Saturn, Uranus, and Neptune. On the other hand, modelling of JFCs evolution suggests that some are able to get incorporated into the NEO population via a close encounter with Jupiter. These presumably weak bodies are subjected during their inner solar system stays to solar irradiation, collisions, and close approaches that are probably disrupting them in short timescales [2, 3]. To perform a continuous monitoring of Centaurs, and other unusual bodies is interesting because they are little-studied bodies that are probably representing a transition among the different populations [4, 5]. The recent discovery of the activity of some Centaurs (like e.g. C/NEAT 2001T4, 174P/2000 EC98, P/2004 A1 (LONEOS), and 2004 PY42) suggests that many of these bodies exhibit cometary activity [6, 7, 8]. As they are located to moderately large heliocentric distances, the detection of activity can provide interesting constrains on the sublimation mechanisms that originated such activity. During the last 6 years we have been monitoring one of the most famous Centaurs, comet 29P/Schwassmann-Wachmann 1, that exhibits unusual changes in their coma appearance and brightness [9]. Encouraged by our previous results

  19. Infrared observations of comets

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    1991-01-01

    Selected comets are observed in the near infrared (1 to 2.2 micron) and thermal infrared (3.5 to 20 micron) with the NASA Infrared Telescope Facility (IRTF) and other telescopes as appropriate, in order to characterize the physical properties of the dust grains; their composition, size distribution, emissivity, and albedo. Systematic variations in these properties among comets are looked for, in order to understand the heterogeneity of comet nuclei. Spectrophotometry of the 10 micron silicate emission feature is particularly emphasized. The rate of dust production from the nucleus and its temporal variability are also determined. Knowledge of the dust environment is essential to S/C design and mission planning for NASA's CRAF mission.

  20. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  1. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  2. Outflow and Accretion Physics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    McGraw, Sean Michael

    This dissertation focuses on placing observational constraints on outflows and accretion disks in active galactic nuclei (AGN) for the purpose of better understanding the physics of super-massive black holes (SMBHs) and their evolution with the host galaxy over cosmic time. Quasar outflows and their importance in SMBH-host galaxy co-evolution can be further understood by analyzing broad absorption lines (BALs) in rest-frame UV spectra that trace a range of wind conditions. We quantify the properties of the flows by conducting BAL variability studies using multiple-epoch spectra acquired primarily from MDM Observatory and from the Sloan Digital Sky Survey. Iron low-ionization BALs (FeLoBALs) are a rare type of outflow that may represent a transient phase in galaxy evolution, and we analyze the variations in 12 FeLoBAL quasars with redshifts between 0.7 ≤ z ≤ 1.9 and rest frame timescales between ˜10 d to 7.6 yr. We investigate BAL variability in 71 quasar outflows that exhibit P V absorption, a tracer of high column density gas (i.e. NH ≥ 1022 cm -2), in order to quantify the energies and momenta of the flows. We also characterize the variability patterns of 26 quasars with mini-BALs, an interesting class of absorbers that may represent a distinct phase in the evolution of outflows. Low-luminosity AGN (LLAGN) are important objects to study since their prominence in the local Universe suggest a possible evolution from the quasar era, and their low radiative outputs likely indicate a distinct mode of accretion onto the SMBH. We probe the accretion conditions in the LLAGN NGC 4203 by estimating the SMBH mass, which is obtained by modeling the 2-dimensional velocity field of the nebular gas using spectra from the Hubble Space Telescope. We detect significant BAL and mini-BAL variability in a subset of quasars from each of our samples, with measured rest-frame variability time-scales from days to years and over multiple years on average. Variable wavelength

  3. Activity and jets of comet 67P, as observed by OSIRIS since August 2014

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste; Oklay, Nilda; Pajola, Maurizio; Höfner, Sebastian; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Rickman, Hans; Koschny, Detlef

    2015-11-01

    Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solutions have been proposed, from localized physical mechanisms on the surface/sub-surface to purely dynamical processes involving the focusing of gas flows by the local topography. While the latter seems to be responsible forthe larger features, high resolution imagery has shown that broad streams are composed of many smaller features (a few meters wide) that connect directly to the nucleus surface.The OSIRIS cameras on board Rosetta are monitoring these jets in high resolution images since August 2014. We followed this type of activity from 3.6 AU to perihelion (1.23 AU). We have traced the jets back to their sources on the surface and noticed a good correlation with sub-solar latitude, surface morphologies, and color variations. As the comet receives more insolation, we observed different type of jets, some of them sustained beyond the local sunset, and an increasing number of transient events with sudden release of gas and dust.We will present here how activity changes with local seasons and how it contributes to the erosion of the surface.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofi­sica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. We

  4. Periodic variations in the activity of Comet P/Halley during the 1985/1986 apparition

    NASA Technical Reports Server (NTRS)

    Schleicher, David G.; Millis, Robert L.; Thompson, Don T.; Birch, Peter V.; Martin, Ralph; Tholen, David J.; Piscitelli, Joseph R.; Lark, Neil L.; Hammel, Heidi B.

    1990-01-01

    A search for periodic variation in the production of gas and dust by Comet Halley has been performed using narrowband photometric measurements from four sites - Lowell Observatory, Mauna Kea Observatory, Perth Observatory, and Cerro Tololo Inter-American Observatory. The method of phase dispersion minimization was applied to observations made during 164 observing nights between September 1985 and June 1986. A clear-cut variation, with a period near 7.4 days, was present throughout the postperihelion window. Less conclusive evidence of a similar period has been found in the pre-perihelion data. No indication of a shorter period or of strong sporadic activity exists in the data. The observations require that Halley's nucleus returns to essentially the same orientation with respect to the sun approximately every 7.4 days except for longer-timescale seasonal evolution. This fact precludes certain proposed models of nuclear motion.

  5. WATER-ICE-DRIVEN ACTIVITY ON MAIN-BELT COMET P/2010 A2 (LINEAR)?

    SciTech Connect

    Moreno, F.; Ortiz, J. L.; Cabrera-Lavers, A.; Augusteijn, T.; Liimets, T.; Lindberg, J. E.; Pursimo, T.; RodrIguez-Gil, P.; Vaduvescu, O.

    2010-08-01

    The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with several telescopes at the Observatorio del Roque de los Muchachos on La Palma, Spain. Application of an inverse dust tail Monte Carlo method to the images of the dust ejecta from the object indicates that a sustained, likely water-ice-driven, activity over some eight months is the mechanism responsible for the formation of the observed tail. The total amount of the dust released is estimated to be 5 x 10{sup 7} kg, which represents about 0.3% of the nucleus mass. While the event could have been triggered by a collision, this cannot be determined from the currently available data.

  6. Periodic variations in the activity of Comet P/Halley during the 1985/1986 apparition

    SciTech Connect

    Schleicher, D.G.; Millis, R.L.; Thompson, D.T.; Birch, P.V.; Martin, R.; Tholen, D.J.; Piscitelli, J.R.; Lark, N.L.; Hammel, H.B. Perth Observatory, Bickley Hawaii Univ., Honolulu Univ. of the Pacific, Stockton, CA JPL, Pasadena, CA )

    1990-09-01

    A search for periodic variation in the production of gas and dust by Comet Halley has been performed using narrowband photometric measurements from four sites - Lowell Observatory, Mauna Kea Observatory, Perth Observatory, and Cerro Tololo Inter-American Observatory. The method of phase dispersion minimization was applied to observations made during 164 observing nights between September 1985 and June 1986. A clear-cut variation, with a period near 7.4 days, was present throughout the postperihelion window. Less conclusive evidence of a similar period has been found in the pre-perihelion data. No indication of a shorter period or of strong sporadic activity exists in the data. The observations require that Halley's nucleus returns to essentially the same orientation with respect to the sun approximately every 7.4 days except for longer-timescale seasonal evolution. This fact precludes certain proposed models of nuclear motion. 53 refs.

  7. Comets, Asteroids, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  8. Great Comets

    NASA Astrophysics Data System (ADS)

    Burnham, Robert

    2000-05-01

    Spectacular and mysterious objects that come and go in the night sky, comets have dwelt in our popular culture for untold ages. As remnants from the formation of the Solar system, they are objects of key scientific research and space missions. As one of nature's most potent and dramatic dangers, they pose a threat to our safety--and yet they were the origin of our oceans and perhaps even life itself. This beautifully illustrated book tells the story of the biggest and most awe-inspiring of all comets: those that have earned the title "Great." Robert Burnham focuses on the Great comets Hyakutake in 1996 and Hale-Bopp in 1997, which gripped attention worldwide because, for many, they were the first comets ever seen. He places these two recent comets in the context of their predecessors from past ages, among them the famous Comet Halley. Great Comets explains the exciting new discoveries that have come from these magnificent objects and profiles the spaceprobes to comets due for launch in the next few years. The book even takes a peek behind Hollywood's science-fiction fantasies to assess the real risks humanity faces from potential impacts of both comets and asteroids. For everyone interested in astronomy, this exciting book reveals the secrets of the Great Comets and provides essential tools for keeping up to date with comet discoveries in the future. Robert Burnham has been an amateur astronomer since the mid-1950s. He has been a senior editor of Astronomy magazine (1986-88) and is the author of many books and CD-ROMS, including Comet Hale-Bopp: Find and Enjoy the Great Comet and Comet Explorer.

  9. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content.

    PubMed

    Schoft, Vera K; Chumak, Nina; Bindics, János; Slusarz, Lucyna; Twell, David; Köhler, Claudia; Tamaru, Hisashi

    2015-03-01

    Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.

  10. Unveiling the formation and evolution of comets

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Levasseur-Regourd, A. C.; Botet, R.; Coradini, A.; Desanctis, M. C.; Kofman, W.

    2007-08-01

    energy of the cometesimals and their probable re-accretion after collision events in the Kuiper Belt can be used to interpret the typical layered structure observed for comet 9P/Tempel 1 [10] and evaluate the tensile strengths inside the nucleus. Thermal evolution models of comet nuclei explain the current comet observations with the presence of primordial volatiles [11]. A quasi-3D approach (for non-spherically shaped comet nuclei) is used to interpret the current activity of comets in terms of initial characteristics, and to predict shape and internal stratification evolution of the nucleus. Tensile strength indications and activity predictions from such simulations will provide vital clues for the international Rosetta mission landing on the nucleus of comet 67P/Churyumov-Gerasimenko. During the Rosetta rendezvous, the CONSERT experiment will investigate the deep interior of the nucleus from measurements of the propagation delay of long wavelength radio waves [12]. The analysis and 3D reconstruction of the waves passing through the nucleus will put constraints on the materials constituting the comet and the inhomogeneities within the nucleus. While it is now established that nuclei have low densities and are significantly fragile, it will then be possible to better constrain their formation process and their evolution. [1] A'Hearn et al., Science 310, 258 (2005) [2] Samarasinha, Icarus 154, 540 (2001) [3] Trigo-Rodriguez and Llorca, Mon. Not. R. Astron. Soc. 372, 655 (2006) [4] A'Hearn and Combi, Icarus 187, 1 (2007) [5] Hanner and Bradley, In: Comets II, Festou, Keller, Weaver (eds), pp 555 (2004) [6] Brownlee et al., Science 314, 1711 (2006) [7] Lasue and Levasseur-Regourd, J. Quant. Spectros. Radiat. Transfer 100, 220-236 (2006) [8]Levasseur-Regourd et al., (2007), Planet Space Sci., doi:10.1016/j.pss.2006.11.014 in press. [9] Hörz et al., Science 314, 1716 (2006) [10] Belton et al., Icarus 187, 332 (2007) [11] DeSanctis et al., Astron. Astrophys. 444, 605 (2005

  11. [Typical Patterns of Neuronal Activity in Relay and Nonspecific Thalamic Nuclei in Patients with Spasmodic Torticollis].

    PubMed

    Devetiarov, D A; Semenova, U N; Butiaeva, L I; Sedov, A S

    2015-01-01

    Neuronal activity of 50 neurons in nonspecific (Rt, MD) and relay (Voi, Voa) thalamic nuclei was analyzed. Data were obtained by microelectrode technique during 14 stereotactic operations in patients with spasmodic torticollis. Application of Poincare maps and Gap-statistics allowed to reveal 3 main patterns of neuronal activity: irregular single spikes, low-threshold Ca(2+)-dependent rhythmic (3-5 Hz) bursts and combination of bursts and single spikes. In some cases, grouping (in Voi and Rt nuclei) and long burst (in Voa nucleus) patterns were observed. Grouping pattern consist of low-density groups of spikes with tendency to periodicity in range 1-1.5 Hz. Long burst pattern consist of long dense groups of spikes with random length and invariant interburst intervals. Main numerical estimations of 3 most spread patterns of neuronal activity were obtained by parametric analysis. In results, investigated thalamic nuclei significantly distinguished from each other by characteristics of burst activity but average firing rate of these nuclei hadn't significant differences. These data may be useful for functional identification of thalamic nuclei during stereotactic neurosurgery operation in patients with movement disorders.

  12. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  13. Physical properties of asteroids in comet-like orbits in infrared asteroid survey catalogs

    SciTech Connect

    Kim, Yoonyoung; Ishiguro, Masateru; Usui, Fumihiko

    2014-07-10

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have a size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.

  14. CCD observations of distant comets from Palomar and Steward Observatories

    NASA Astrophysics Data System (ADS)

    Lowry, Stephen C.; Weissman, Paul R.

    2003-08-01

    We are conducting a ground-based observational study of distant cometary nuclei with the aim of increasing the current database of physical parameters of individual objects, and to estimate the overall distributions of size, rotation period, axial ratio, and color indices. Additionally, we are obtaining CCD spectroscopy and photometry of established and potential targets of current and future spacecraft missions. The results presented here are derived from CCD imaging obtained using the 2.3-m Bok telescope of Steward Observatory (Arizona), obtained in May 2001, and the 5-m Hale telescope at Palomar Observatory (California), obtained in May 2000 and March 2001. Comets observed include 4P/Faye, 6P/d'Arrest, 22P/Kopff, 36P/Whipple, 50P/Arend, 78P/Gehrels 2, 92P/Sanguin, 107P/Wilson-Harrington, and 128P/Shoemaker-Holt 1-A. Of the nine comets observed, only Comets 4P/Faye and 50P/Arend displayed visible coma activity. We have performed either single R filter or multi-filter ( BVRI) measurements on these comets, from which we obtain radius and broadband color estimates as well as Afρ values for the active comets. For selected objects we have performed time-series R filter imaging from which we have derived the rotation period and lower limits on the nuclear axial ratio and density. The radius results obtained are included in the cometary nucleus size distribution estimate by Weissman and Lowry (2003).

  15. Spectral components at visual and infrared wavelengths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Tokunaga, A. T.; Rudy, R. J.

    1984-01-01

    Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed.

  16. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  17. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  18. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  19. Comets in the near-Earth object population

    NASA Astrophysics Data System (ADS)

    DeMeo, Francesca; Binzel, Richard P.

    2008-04-01

    Because the lifespan of near-Earth objects (NEOs) is shorter than the age of the Solar System, these objects originate elsewhere. Their most likely sources are the main asteroid belt and comets. Through physical observations we seek to identify potential dormant or extinct comets among "asteroids" catalogued as NEOs and thereby determine the fraction of "comet candidates" within the total NEO population. Both discovery statistics and dynamical models indicate that candidate cometary objects in near-Earth space are predominantly found among those having a jovian Tisserand parameter T<3. Therefore, we seek to identify comet candidates among asteroid-like NEOs using three criteria: T<3, spectral parameters (C, D, T, or P taxonomic types), and/or low (<0.075) albedos. We present new observations for 20 NEOs having T<3, consisting of visible spectra, near-infrared spectra, and/or albedo measurements obtained using the NASA Infrared Telescope Facility, the Kitt Peak National Observatory 4 m, and the Magellan Observatory 6.5-m. Four of our "asteroid" targets have been subsequently confirmed as low activity comets. Thus our sample includes spectra of the nuclei of Comets 2002 EX12 = 169P (NEAT), 2001 WF2 = 182P (LONEOS), 2003 WY25 = D/1891 W1 (Blanplain), and Halley Family Comet 2006 HR30 = P/2006 HR30 (Siding Spring). From the available literature, we tabulate physical properties for 55 NEOs having T<3, and after accounting for possible bias effects, we estimate that 54±10% of NEOs in T<3 orbits have "comet-like" spectra or albedos. Bias corrected discovery statistics [Stuart, J.S., Binzel, R.P., 2004. Icarus 170, 295-311] estimate 30±5% of the entire NEO population resides in orbits having T<3. Combining these two factors suggests that 16±5% of the total discovered "asteroid-like" NEO population has "comet-like" dynamical and physical properties. Outer main-belt asteroids typically have similar taxonomic and albedo properties as our "comet candidates." Using the model

  20. Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa

    2012-12-01

    Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the

  1. Comets, asteroids, meteorites, and the origin of the Biosphere

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.

    2006-08-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (~350-400 K) can be reached on the surface of the very black (albedo~0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 +/-8 K the 330K (57 °C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic photoautotrophs and

  2. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  3. Physical properties of asteroids in comet-like orbits in the infrared asteroidal survey catalogs

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ishiguro, M.; Usui, F.

    2014-07-01

    orbital uncertainties. - Majority (˜80 %) of ACOs have low albedo (p_{v}<0.1), showing similar albedo distribution to active comet nuclei. - Low-albedo ACOs have the cumulative size distribution shallower than that of active comet nuclei. - High-albedo (p_{v}≥0.1) ACOs consist of small (D<3 km) bodies are concentrated in near-Earth space. - We suggest that such high-albedo, small near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.

  4. Rosetta/OSIRIS: Nucleus morphology and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Sierks, Holger

    2015-08-01

    Introduction: The Rosetta mission of the European Space Agency arrived on August 6, 2014, at the target comet 67P/Churyumov-Gerasimenko after 10 years of cruise. OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) is the scientific imaging system onboard Rosetta. It comprises a Narrow Angle Camera (NAC) for broad-band nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field coma investigations.OSIRIS images the nucleus and the coma of comet 67P/C-G from the arrival throughout early mapping phase, PHILAE landing, and escort phase with close fly-by beginning of the year 2015.The team paper presents the surface morphology and activity of the nucleus as seen in gas, dust, and local jets and the larger scale coma studied by OSIRIS.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.Additional Information: The OSIRIS team is H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M. A'Hearn, I. Bertini, F. Angrilli, M. A. Barucci, J. L. Bertaux, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, P. Gutierrez, S. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez, S. Lowry, S. Marchi, F. Marzari, H. Michalik, S. Mottola, G. Naletto, N. Oklay, L

  5. On the pre-perihelion temporal activity of comet 9P/Tempel 1 during the favorable apparition of 2005

    NASA Astrophysics Data System (ADS)

    de Almeida, A.; Serrano, G.; Sanzovo, G.; Trevisan Sanzovo, D.

    2014-07-01

    The short-period (5.5 years) comet 9P/Tempel 1 was revisited by NASA's Stardust-NExT probe in 2011 February 15, in a flyby at a distance of only about 181 km. This is the first time a comet is visited twice by two different probes (the first visit in 2005 July 4, by NASA's Deep Impact probe). Tempel 1 is not a bright or very active comet. The brightest apparent magnitude in 25 appearances, since the discovery (1867), has been m=9.5, well below the limit of visibility to the naked eye. Here, we study the temporal activity, based on 495 apparent visual magnitude estimates (ICQ), obtained during the very favorable apparition of 2005 (the comet passed at 0.71 au from the Earth in 2005 May 3) by the Semi-Empirical Method of Visual Magnitudes (SEMVM, de Almeida, Singh&Huebner, 1997). We determine a model dependent activity at the time immediately before the Deep Impact (4 July 2005 at 5:52 UTC) in fairly good agreement with Schleicher et al. (2006), Feaga et al. (2007) and Gicquel et al. (2012) from the Spitzer spacecraft observations, and a day later, at the time of the perihelion passage (5 July 2005 at 5:31 UTC), also in good agreement with Biver et al. (2007) and Farnham et al. (2010), most likely powered by water-ice sublimation. Our results are consistent, for an active area of 10% and a minimum nuclear radius of 2.5 km , with the radio OH observations in 18-cm (Howell et al., 2007; Biver et al., 2007), and the H_2O observations by satellites SWAN (Mäkinen et al., 2007; Bensch et al., 2007) and Odin (Biver et al., 2007), in the pre-perihelion phase.

  6. Secular variation of activity in comets 2P/Encke and 9P/Tempel 1

    NASA Technical Reports Server (NTRS)

    Haken, Michael; AHearn, Michael F.; Feldman, Paul D.; Budzien, Scott A.

    1995-01-01

    We compare production rates of H20 derived from International Ultraviolet Explorer (IUE) spectra from multiple apparitions of 2 comets, 2P/Encke and 9P/Tempel 1, whose orbits are in near-resonance with that of the Earth. Since model-induced errors are primarily a function of observing geometry, the close geometrical matches afforded by the resonance condition results in the cancellation of such errors when taking ratios of production rates. Giving careful attention to the variation of model parameters with solar activity, we find marginal evidence of change in 2P/Encke: a 1-sigma pre-perihelion decrease averaging 4%/revolution over 4 apparitions from 1980-1994, and a 1-sigma post-perihelion increase of 16%/revolution for 2 successive apparitions in 1984 and 1987. We find for 9P/Tempel 1, however, a 7-sigma decrease of 29%/revolution over 3 apparitions from 1983-1994, even after correcting for a tracking problem which made the fluxes systematically low. We speculate on a possible association of the character of long-term brightness variations with physical properties of the nucleus, and discuss implications for future research.

  7. Recent Cryovolcanic Activity of Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Miles, Richard; Soulier, Jean-François; Camilleri, Paul; Drummond, John; Dymock, Roger; Hills, Kevin; Mattiazzo, Michael; Maury, Alain; Las Cumbres Observatory Global Telescope Team

    2016-10-01

    The centaur Comet 29P/SW1 is a large 60-km object which appears to be uniquely active, almost certainly as a consequence of an extremely slow (57-d) rotation rate of its nucleus. It exhibits outbursts, which are explosive by nature and some of which appear to be associated with enduring cryovolcanoes. High-cadence precision photometry during 2014-2016 has quantified its recent behaviour in unprecedented detail. Photometry of the inner coma showing more than 20 discrete outbursts will be presented and discussed in relation to a gas-exsolution mechanism involving sub-crustal liquid phases. The results to be shown confirm earlier findings that a single outburst can trigger one or more follow-up outbursts from other sources within a few days of the initial event. Given that this object is most probably a recent interloper into the inner solar system, having originated from the trans-Neptunian region, it is a worthy target for further investigation. Its large nucleus and Hill sphere radius of ~30000 km would facilitate an orbiting probe, and with an escape velocity of ~20 m/s, its inner coma would be expected to clear relatively rapidly during quiescent intervals that can last for several months. Given its likely provenance as a TNO, prompt ground-based spectroscopic observation of its expanding coma following bright outbursts, which appear to arise from various locations on its nucleus, is to be encouraged.

  8. Hartley 2 and Tempel 1 comet nuclei demonstrate shapes and structurizations revealing an action of inertia-gravity forces exited by non-circular orbits

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    Recently obtained images of Hartley 2 and Tempe l 1 co mets ( NASA's EPOXI and NEXT missions) reveal unprecedented details of the comets shaping and structurizat ion helping understand making them forces. The wave planetology [1-6 & others ] long ago s tated that "orbits make s tructures '. This as s ertion was bas ed on recognition of ine rtiagravity forces aroused in any cosmic body because of its movement in non-circular keplerian orbit. Such an orbit implies periodically changing accelerations causing inertia-gravity forces absorbed by a cosmic body by its warping, undulations. These standing wave warpings in rotating bodies have four interfering ortho- and diagonal direct ions producing uplifted (+), subsided (-) and neutral compensated (0) tectonic blocks. The blocks sizes depend on warping wavelengths the longest and most amplitudinal of which is the fundamental wave 1 long 2πR. Thes e waves produce inevitable tectonic dichotomy - a body division in two opposite segments -hemispheres: one uplifted, another subsided (an example is Earth with its uplifted continental and subsided oceanic hemispheres). In small bodies with a weak gravity one often observes oblong convexoconcave shapes so typical for the Main Belt asteroids.

  9. Radiation-induced DNA double-strand breaks produced in histone-depleted tumor cell nuclei measured using the neutral comet assay

    SciTech Connect

    Olive, P.L.; Banath, J.P.

    1995-05-01

    Removal of histones and other nuclear proteins greatly enhances the sensitivity of mammalian cells to DNA damage by ionizing radiation. We examined the possibility that the ease of dissociation of histones, or the association of other nuclear proteins with DNA, may differ between radioresistant and sensitive human tumor cells. Cells embedded in agarose were exposed to increasing salt concentrations prior to irradiation and examination using a microscopic gel electrophoresis method, the neutral comet assay. Induction of double-strand breaks increased by a factor of about 20 when cells of four human tumor cell line HT144 melanoma, HT29 adenocarcinoma, DU145 prostate carcinoma and U87 glioma, were exposed to 2 M NaCl; however, no correlation with radiosensitivity was apparent. While a significant number of histone and non-histone proteins are present after extraction with 1.2 M NaCL, these proteins apparently have only a minor influence on radiosensitivity. However, if they are allowed to remain with DNA during electrophoresis, about 15 times more strand breaks are required to produce a similar amount of DNA migration in both DU145 and HT144 cells. These results suggest that the association between proteins and DNA within the nucleus, as probed by extraction with sodium chloride, does not help to explain differences in intrinsic radiosensitivity among cells of these diverse tumor cell lines. 33 refs., 11 figs.

  10. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpc< z <3.0 Mpc. We find a very mild evolution in the clustering amplitude, which show the same evolution trend found in optically selected quasars in the 2dF survey. We estimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject headings: cosmology: observations - large-scale structure of the universe - x-rays: diffuse background - galaxies: nuclei

  11. Diatoms in comets

    NASA Technical Reports Server (NTRS)

    Hoover, R.; Hoyle, F.; Wallis, M. K.; Wickramasinghe, N. C.

    1986-01-01

    The fossil record of the microscopic algae classified as diatoms suggests they were injected to earth at the Cretaceous boundary. Not only could diatoms remain viable in the cometary environment, but also many species might replicate in illuminated surface layers or early interior layers of cometary ice. Presumably they reached the solar system on an interstellar comet as an already-evolved assemblage of organisms. Diatoms might cause color changes to comet nuclei while their outgassing decays and revives around highly elliptical orbits. Just as for interstellar absorption, high-resolution IR observations are capable of distinguishing whether the 10-micron feature arises from siliceous diatom material or mineral silicates. The 10-30-micron band and the UV 220-nm region can also provide evidence of biological material.

  12. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  13. Reversible, activity-dependent targeting of profilin to neuronal nuclei

    SciTech Connect

    Birbach, Andreas . E-mail: andreas.birbach@lbicr.lbg.ac.at; Verkuyl, J. Martin; Matus, Andrew . E-mail: aim@fmi.ch

    2006-07-15

    The actin cytoskeleton in pyramidal neurons plays a major role in activity-dependent processes underlying neuronal plasticity. The small actin-binding protein profilin shows NMDA receptor-dependent accumulation in dendritic spines, which is correlated with suppression of actin dynamics and long-term stabilization of synaptic morphology. Here we show that following NMDA receptor activation profilin also accumulates in the nucleus of hippocampal neurons via a process involving rearrangement of the actin cytoskeleton. This simultaneous targeting to dendritic spines and the cell nucleus suggests a novel mechanism of neuronal plasticity in which profilin both tags activated synapses and influences nuclear events.

  14. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    SciTech Connect

    Teng, Stacy H.; Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J.; Oh, Kyuseok; Cardamone, Carolin N.; Keel, William C.; Simmons, Brooke D.; Treister, Ezequiel

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  15. Anticorrelation of Variability Amplitude with X-Ray Luminosity for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Abramowicz, Marek A.

    1996-07-01

    The bright-spot model for the short-term X-ray variability of active galactic nuclei predicts that, statistically, sources with larger luminosities should have smaller variability amplitudes. This quantitatively agrees with the analysis of the observational data from 12 high-quality EXOSAT long looks performed by Lawrence & Papadakis.

  16. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  17. Comet LINEAR Splits Further

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  18. Physical Characteristics of Asteroid-like Comet Nucleus C/2001 OG108 (LONEOS)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Fernandez, Y. R.; Pravec, P.; French, L. M.; Farnham, T. L.; Gaffey, M. J.; Hardersen, P. S.; Kusnirak, P.; Sarounova, L.; Sheppard, S. S.

    2003-01-01

    For many years several investigators have suggested that some portion of the near-Earth asteroid population may actually be extinct cometary nuclei. Evidence used to support these hypotheses was based on: observations of asteroid orbits and associated meteor showers (e.g. 3200 Phaethon and the Geminid meteor shower); low activity of short period comet nuclei, which implied nonvolatile surface crusts (e.g. Neujmin 1, Arend-Rigaux); and detections of transient cometary activity in some near-Earth asteroids (e.g. 4015 Wilson-Harrington). Recent investigations have suggested that approximately 5-10% of the near- Earth asteroid population may be extinct comets. However if members of the near-Earth asteroid population are extinct cometary nuclei, then there should be some objects within this population that are near their final stages of evolution and so should demonstrate only low levels of activity. The recent detections of coma from near-Earth object 2001 OG108 have renewed interest in this possible comet-asteroid connection. This paper presents the first high quality ground-based near-infrared reflectance spectrum of a comet nucleus combined with detailed lightcurve and albedo measurements.

  19. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Lindstrom, Richard M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.

  20. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.

    PubMed Central

    Spiker, S; Murray, M G; Thompson, W F

    1983-01-01

    We have investigated the DNase I sensitivity of transcriptionally active DNA sequences in intact nuclei and isolated chromatin from embryos of wheat (Triticum aestivum L.). Nuclei or isolated chromatin was incubated with DNase I, and the extent of DNA digestion was monitored as percentage acid solubility. The resistant DNA and DNA from sham-digested controls were used to drive reassociation reactions with cDNA populations corresponding to either total poly(A)+RNA from unimbibed wheat embryos or polysomal poly(A)+RNA from embryos that had imbibed for 3 hr. Sequences complementary to either probe were depleted in DNase I-resistant DNA from nuclei and from chromatin isolated under low-ionic-strength conditions. This indicates that transcriptionally active sequences are preferentially DNase I sensitive in plants. In chromatin isolated at higher ionic strength, cDNA complementary sequences were not preferentially depleted by DNase I treatment. Therefore, the chromatin structure that confers preferential DNase I sensitivity to transcriptionally active genes appears to be lost when the higher-ionic-strength method of preparation is used. Treatment of wheat nuclei with DNase I causes the release of four prominent nonhistone chromosomal proteins that comigrate with wheat high mobility group proteins on NaDodSO4 gels. Images PMID:6219388

  1. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  2. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  3. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  4. Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gulkis, Samuel; Allen, Mark; von Allmen, Paul; Beaudin, Gerard; Biver, Nicolas; Bockelée-Morvan, Dominique; Choukroun, Mathieu; Crovisier, Jacques; Davidsson, Björn J. R.; Encrenaz, Pierre; Encrenaz, Therese; Frerking, Margaret; Hartogh, Paul; Hofstadter, Mark; Ip, Wing-Huen; Janssen, Michael; Jarchow, Christopher; Keihm, Stephen; Lee, Seungwon; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Schloerb, F. Peter; Spilker, Thomas

    2015-01-01

    Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s-1 in early June 2014 to 1.2 kg s-1 in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the “neck” region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K-1 m-2 s-0.5), consistent with a thermally insulating powdered surface, is inferred.

  5. Searching for evidence for different activity drivers in long- and short-period comets from the WISE/NEOWISE data set

    NASA Astrophysics Data System (ADS)

    Kramer, E.; Fernandez, Y.; Bauer, J.; Stevenson, R.; Mainzer, A.; Grav, T.; Masiero, J.; Walker, R.; Lisse, C.; WISE Team

    2014-07-01

    Introduction: The Wide-field Infrared Survey Explorer (WISE) mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22 μ m) between January 2010 and February 2011 [1,2]. During the mission, WISE serendipitously observed over 150 comets, including 21 newly discovered objects. About half of the comets observed by WISE displayed a significant dust tail in the 12 and 22 μ m (thermal emission) bands. The Figure below shows a sampling of six comets in the 22 μ m band, showing the range of activity levels and dust morphology present in the data. Since the observed objects are a mix of both long-period (LP) and short-period (SP) comets, differences in activity can be used to better understand the thermal processing that each of these populations has undergone. Approach: For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method [3,4]. The main parameter in these models is the ratio of solar radiation pressure to solar gravity, called β. We have then compared these models to the data using a novel tail-fitting method that allows the best-fit model to be chosen analytically rather than subjectively. For comets that were observed multiple times by WISE, the particle properties were estimated separately, and then compared. Results: The ages of the dust tails seen vary in age from a few months to several years, with the average for both SP and LP comets being between 1--2 years. While many of the dust tails are comprised of grains emitted near perihelion, several comets exhibit tails that depart from this trend significantly. For both the SP and LP comets, the median β value was about 0.01, suggesting that the tail particles are on the order of tens of microns in size. Our preliminary analysis suggests that while the sizes and ages of the particles that comprise the dust tails of LP and SP comets are similar, the heliocentric distance at which

  6. Variegation of active regions on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Vincent, Jean-Baptiste; Fornasier, Sonia; Pajola, Maurizio; Besse, Sebastien; Lara, Luisa M.; Barucci, Maria Antonietta; Mottola, Stefano; Sierks, Holger; Pommerol, Antoine; Masoumzadeh, Nafiseh; Lazzarin, Monica; Scholten, Frank; Preusker, Frank; Hall, Ian

    2015-11-01

    Since Rosetta spacecraft’s arrival to the comet 67P, the OSIRIS scientific imager (Optical, Spectroscopic, and Infrared Remote Imaging System, Keller et al. 2007) is successfully observing the nucleus with high spatial resolution in the 250-1000 nm range thanks to set of 26 dedicated filters.While 67P has a typical red spectral slope, the active areas tend to display bluer spectra (Sierks et al. 2015, Fornasier et al. 2015). We performed a spectral analysis of the active areas and derived spectral characteristics of them, possibly indicating the presence of material enriched in volatiles.The ‘activity thresholds’ spectral method (Oklay et al, 2015) is used for the identification of the active areas. In most cases, areas detected with this technique have been later on confirmed as active sources (Lara et al. 2015, Lin et al. 2015, Vincent et al. 2015) by direct detection of dust jets. This technique is therefore able to identify currently active areas, but also predicts which regions of the surface are likely to become activated once they receive enough insolation.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofi­sica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain, the Universidad Politechnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany. We thank the Rosetta Science Ground Segment at ESAC, the Rosetta Mission Operations Centre at ESOC and the Rosetta Project at ESTEC for their outstanding work enabling the science return of the Rosetta Mission.Keller, et al

  7. Sulfides and oxides in comets

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1988-01-01

    Metal abundances associated with Sun-grazing P/comet Ikeya-Seki 1965f, the mineralogy of chrondritic interplanetary dust particles and cosmochemical affinities of Co, V, Cr, and Ni in extraterrestrial materials and probable vaporization data for nonsilicate minerals are used to evaluate the putative dearth of nonsilicates in short-period comets. It is concluded that sulfides and oxides are common, albeit minor, constituents of these comets. Sulfides and oxides can form in situ during perihelion passage in the nucleus of active short-period comets by sulfidation of Mg, Fe-silicates.

  8. The OPTX Project. V. Identifying Distant Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.; Tremonti, C.

    2011-11-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/Hβ versus [N II]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]λ3869, and [O II]λλ3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (langΓeffrang = 1.0+0.4 -0.4) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  9. Fluorescence-activated sorting of fixed nuclei: a general method for studying nuclei from specific cell populations that preserves post-translational modifications.

    PubMed

    Marion-Poll, Lucile; Montalban, Enrica; Munier, Annie; Hervé, Denis; Girault, Jean-Antoine

    2014-04-01

    Long-lasting brain alterations that underlie learning and memory are triggered by synaptic activity. How activity can exert long-lasting effects on neurons is a major question in neuroscience. Signalling pathways from cytoplasm to nucleus and the resulting changes in transcription and epigenetic modifications are particularly relevant in this context. However, a major difficulty in their study comes from the cellular heterogeneity of brain tissue. A promising approach is to directly purify identified nuclei. Using mouse striatum we have developed a rapid and efficient method for isolating cell type-specific nuclei from fixed adult brain (fluorescence-activated sorting of fixed nuclei; FAST-FIN). Animals are quickly perfused with a formaldehyde fixative that stops enzymatic reactions and maintains the tissue in the state it was at the time of death, including nuclear localisation of soluble proteins such as GFP and differences in nuclear size between cell types. Tissue is subsequently dissociated with a Dounce homogeniser and nuclei prepared by centrifugation in an iodixanol density gradient. The purified fixed nuclei can then be immunostained with specific antibodies and analysed or sorted by flow cytometry. Simple criteria allow distinction of neurons and non-neuronal cells. Immunolabelling and transgenic mice that express fluorescent proteins can be used to identify specific cell populations, and the nuclei from these populations can be efficiently isolated, even rare cell types such as parvalbumin-expressing interneurons. FAST-FIN allows the preservation and study of dynamic and labile post-translational protein modifications. It should be applicable to other tissues and species, and allow study of DNA and its modifications.

  10. Asteroid and comet surfaces

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann

    1988-01-01

    Photometric and spectrophotometric studies of asteroids and comets are in progress to address questions about the mineralogical relationship between asteroids near the 3:1 Kirkwood gap and ordinary chondrite meteorites and between cometary nuclei and the surface of asteroids. Progress was made on a method to convert the measured excess UV flux in the spectrum of 2201 Oljato to column abundance of OH and CN. Spectral reflectance measurements of large asteroids near the 3:1 Kirkwood gap, which is expected to be the source of ordinary chondrite meteorites, were briefly examined and show no spectral signatures that are characteristic of ordinary chondrite meteorite powders measured in the lab.

  11. Sketching Comets

    NASA Astrophysics Data System (ADS)

    Perez, Jeremy

    Comets add a sense of surprise and freshness to the predictability and seeming timelessness of the visible cosmos. Some of these mists of dust and fl uorescing gas sail through the inner solar system at regular intervals, such as the famous comet 1P/Halley. Many other comets are discovered yearly as they make their first observed descent to our vicinity. Depending on their distance, composition, and intrinsic brightness, comets can present a variety of appearances—from almost stellar objects, to soft round patches, to majestic, tailed plumes that are sometimes visible to the naked eye. Because these are fl eeting, transitory objects, time spent observing and sketching them is all the more precious.

  12. Comet culture

    NASA Astrophysics Data System (ADS)

    Lusher, Rebekah

    2011-10-01

    Rebekah Lusher describes an exhibition in the new Caroline Lucretia Gallery at the Herschel Museum of Astronomy in Bath: Omens and Inspirations: Ice, Dust and Fire - the Story of the Great Comet of 1811.

  13. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed

    Miller, J S

    1995-12-05

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution.

  14. In vivo metabolic activity of hamster suprachiasmatic nuclei: use of anesthesia

    SciTech Connect

    Schwartz, W.J.

    1987-02-01

    In vivo glucose utilization was measured in the suprachiasmatic nuclei (SCN) of Golden hamsters using the /sup 14/C-labeled deoxyglucose technique. A circadian rhythm of SCN metabolic activity could be measured in this species, but only during pentobarbital sodium anesthesia when the surrounding background activity of adjacent hypothalamus was suppressed. Both the SCN's metabolic oscillation and its time-keeping ability are resistant to general anesthesia.

  15. Astrophysical bags - A new paradigm for active galactic nuclei?

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1992-01-01

    Active galaxies are believed to consist of a compact nucleus, the standard model for which is a massive black hole or a cluster of black holes. A different paradigm is considered here, deriving from quark confinement theory in QCD. It is an 'astrophysical bag', modelled after the 'hadron bags' of particle physics which have already been studied in astrophysics as quark stars. Another interpretation of the cosmological constant in general relativity, and possibly a new quasar redshift formula, are introduced. As a highly-energetic object, this model may resolve the baryonic matter problem for fuelling AGN accretion processes which black hole paradigms cannot account for. Here, baryons, cosmic rays, and neutrinos are free.

  16. Phenomenology of Broad Emission Lines in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.

    Broad emission lines hold fundamental clues about the kinematics and structure of the central regions in AGN. In this article we review the most robust line profile properties and correlations emerging from the best data available. We identify fundamental differences between the profiles of radio-quiet and radio-loud sources as well as differences between the high- and low-ionization lines, especially in the radio-quiet majority of AGN. An Eigenvector 1 correlation space involving FWHM Hβ, W(FeIIopt)/W(Hβ), and the soft X-ray spectral index provides optimal discrimination between all principal AGN types (from narrow-line Seyfert 1 to radio galaxies). Both optical and radio continuum luminosities appear to be uncorrelated with the E1 parameters. We identify two populations of radio-quiet AGN: Population A sources (with FWHM(Hβ) <~ 4000 km s-1, generally strong FeII emission and a soft X-ray excess) show almost no parameter space overlap with radio-loud sources. Population B shows optical properties largely indistinguishable from radio-loud sources, including usually weak FeII emission, FWHM(Hβ) >~ 4000 km s-1 and lack of a soft X-ray excess. There is growing evidence that a fundamental parameter underlying Eigenvector 1 may be the luminosity-to-mass ratio of the active nucleus (L/M), with source orientation playing a concomitant role.

  17. Gamma-Ray Observations of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  18. SPECTROSCOPICALLY SELECTED SPITZER 24 {mu}m ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Choi, P. I.; Yan Lin; Helou, G.; Storrie-Lombardi, L. J.; Shim, H.; Fadda, D.; Im, M.

    2011-05-01

    We investigate the active galactic nucleus (AGN) sub-population of a 24 {mu}m flux-limited galaxy sample in the Spitzer Extragalactic First Look Survey. Using deep Keck optical spectroscopy and a series of emission-line diagnostics, we identify AGN-dominated systems over broad redshift 0 < z < 3.5 and luminosity 9 < log (L{sub TIR}) < 14 ranges, with sample means of (z) = 0.85 and (log (L{sub TIR})) = 11.5. We find that down to the flux limits of our Spitzer MIPS sample (f{sub 24} > 200 {mu}Jy), 15%-20% of sources exhibit strong AGN signatures in their optical spectra. At this flux limit, the AGN population accounts for as much as 25%-30% of the integrated 24 {mu}m flux. This corresponds to an MIR AGN contribution {approx}2-3 x greater than that found in ISOCAM 15 {mu}m studies that used X-ray AGN identifications. Based on our spectroscopically selected AGN sample, we also investigate the merits of Infrared Array Camera (IRAC) color selection for AGN identification. Our comparison reveals that although there is considerable overlap, a significant fraction of spectroscopic AGNs are not identifiable based on their MIR colors alone. Both the measured completeness and reliability of the IRAC color selections are found to be strongly dependent on the MIR flux limit. Finally, our spectroscopic AGN sample implies as much as a 3 x higher AGN surface density at high redshift (z > 1.2) than that of recent optical surveys at comparable optical flux limits, suggestive of a population of heavily obscured, optical/UV reddened AGNs.

  19. Anatomy of outbursts and quiescent activity of Comet 29P/Schwassmann-Wachmann

    NASA Astrophysics Data System (ADS)

    Miles, Richard; Faillace, George A.; Mottola, Stefano; Raab, Herbert; Roche, Paul; Soulier, Jean-François; Watkins, Americo

    2016-07-01

    'plate' when dislodged by pressure build-up in the subsurface. Pairs of outbursts separated in time by 52-65 d took place in 2010, 2011, and 2012 exhibiting similar coma outflow patterns indicative of outbursts repeating a second time from the same source, and suggesting a nuclear rotation period of 59 ± 4 (s.e.) d. The escape velocity of the nucleus is sufficiently high (0.013-0.023 km s-1) that a significant fraction of ejecta falls back onto its surface, the action of which, we suggest, re-forms the crust and may trigger outbursts from nearby sites (e.g. triple events of February 2010, and May 2014). A short-lived (<1 d) anomalous brightening of 0.36 ± 0.12 mag observed on 2014 July 21 during quiescence may have arisen from an especially weak mini-outburst in which most of the ejected material failed to reach escape velocity. During quiescence in 2014, Comet 29P fluctuated in brightness over time-scales of 2-10 d by up to ±0.25 mag, probably via local jet activity continuing to feed the faint persistent inner coma. 29P also exhibited weak outbursts of <1 mag amplitude during quiescence and these will generally be missed by observers. Image analysis methodology tracking the locus of the coma photocentre with increasing photometric aperture size is used to quantify the directional motion of cometary haloes within 1-2 d of an outburst.

  20. Comets and nongravitational forces. IV.

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.; Sekanina, Z.

    1971-01-01

    Orbital elements and nongravitational parameters are derived from observations at every apparition of the periodic comets Honda-Mrkos-Pajdusakova, Faye, Tempel 2, Biela, Brorsen, and Tempel-Swift. For all except the first comet, the observations go back a century and more, although the last three comets have failed to reappear for some considerable time. The circumstances of the splitting of P/Biela are studied, and it is shown that the motion of the primary component was scarcely affected; it is also demonstrated that, if the primary still exists, it may pass only 0.05 AU from the earth in November 1971. An up-to-date list of mass-loss rates from comets is presented. It is found that, while most of the reliable determinations indicate that the cometary nongravitational effects decrease with time, there are a few cases where the effects increase slightly. The former situation is discussed in terms of a nuclear core-mantle model, implying that these comets will eventually evolve into inert, asteroidal objects, while the nuclei of the other comets are interpreted as coreless, eventually to disappear completely (or almost completely).

  1. The Onset of Comet C/2012 S1 ISON's Volatile Activity as Observed by the Deep Impact HRI-IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Feaga, Lori M.; Sunshine, J. M.; A'Hearn, M. F.; Farnham, T. L.; Protopapa, S.; Wellnitz, D. D.; Klaasen, K. P.; Himes, T. W.

    2013-10-01

    In February 2013, the Deep Impact Flyby (DIF) spacecraft observed comet C/2012 S1 ISON when the comet was ~4.7 AU from the Sun. As expected, the High Resolution Instrument Infrared Spectrometer (HRI-IR) did not detect the comet between 1.05 and 4.85 microns, a wavelength range where ro-vibrational bands of H2O, CO2, and CO, can be measured simultaneously. These measurements provide upper limits for the volatile activity. Additional pre-perihelion observations are scheduled for July/August 2013 when ISON is visible to the DIF, but unobservable from Earth. During this window, ISON is close to the water snow line 2.5 AU) and measurable activity is predicted. ISON, a dynamically new Oort Cloud comet, will be compared to the dynamically young comet C/2009 P1 Garradd, which was observed in March 2012. In those observations, HRI-IR detected H2O, CO2, and an unusually high abundance of CO post-perihelion at 2 AU. Results will also be compared to DI narrow-band measurements acquired in the same time period for both comets.

  2. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of

  3. Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Hill, T. C. J.

    2015-12-01

    Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.

  4. Multi-fluid MHD model for Sun-grazing comets

    NASA Astrophysics Data System (ADS)

    Jia, Y.-D.; Russell, C. T.; Liu, W.; Gombosi, T. I.

    2013-09-01

    Sun-grazing comets are comets that dive into the lower corona. Recent advances in spacecraft capabilities have enabled us to observe these comets with high resolution both in time and space. These comets exhibit rich tail activity, even multiple tails. This study investigates a collection of these activities, models the cometary plasma with model-generated coronal conditions.

  5. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons

    PubMed Central

    Zhang, Fan; Pomerantz, Jason H.; Sen, George; Palermo, Adam T.; Blau, Helen M.

    2007-01-01

    DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types. PMID:17360535

  6. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  7. Some Predictions on the Nature of Comet Halley

    NASA Astrophysics Data System (ADS)

    Hoyle, Fred; Wickramasinghe, N. C.

    Visible comets like Halley's differ from the great majority of comets in that they exist in adjacent pieces in gentle motion with respect to each other. From time to time the pieces rub together, causing a dusty surface which otherwise would be very dark and difficult to observe to be temporarily swept clean. The cleansed patches are then subject to evaporation, so making such multinuclear comets visible, unlike the majority of comets which have single nuclei and which stay dark. The existence of a large number of dark comets could have an interesting relation to the past history of the Earth.

  8. STEPS TOWARD UNVEILING THE TRUE POPULATION OF ACTIVE GALACTIC NUCLEI: PHOTOMETRIC CHARACTERIZATION OF ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Schneider, Evan E.; Impey, Christopher D.; Trump, Jonathan R.

    2013-04-01

    Using a physically motivated, model-based active galactic nucleus (AGN) characterization technique, we fit a large sample of X-ray-selected AGNs with known spectroscopic redshifts from the Cosmic Evolution Survey field. We identify accretion disks in the spectral energy distributions of broad- and narrow-line AGNs, and infer the presence or absence of host galaxy light in the SEDs. Based on infrared and UV excess AGN selection techniques, our method involves fitting a given SED with a model consisting of three components: infrared power-law emission, optical-UV accretion disk emission, and host galaxy emission. Each component can be varied in relative contribution, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this technique, both broad- and narrow-line AGNs fall within well-defined and plausible bounds on the physical parameters of the model, allowing trends with luminosity and redshift to be determined. In particular, based on our sample of spectroscopically confirmed AGNs, we find that approximately 95% of the broad-line AGNs and 50% of the narrow-line AGNs in our sample show evidence of an accretion disk, with maximum disk temperatures ranging from 1 to 10 eV. Because this fitting technique relies only on photometry, we hope to apply it in future work to the characterization and eventually the selection of fainter AGNs than are accessible in wide-field spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects without prior redshift or X-ray data. With the abundant availability of photometric data from large surveys, the ultimate goal is to use this technique to create large samples that will complement and complete AGN catalogs selected by X-ray emission alone.

  9. The constitution of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    The nongravitational term in the expression for the total force acting on a comet is calculated, and an upper limit is obtained for the product of the radial nongravitational term times the radius times the square root of the albedo. This condition is satisfied for ten periodic comets with q no greater than 1.5 AU, and the activity of these comets is consistent with control by H2O ice. Some of the comets must be spotty to account for their low albedo values. The effect of cosmic rays on comets, leading to frosting of their surface, is discussed.

  10. CCD-photometry of comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Mueller, Beatrice E. A.

    1992-01-01

    CCD imaging and time series photometry are used to determine the state of activity, nuclear properties and eventually the rotational motion of cometary nuclei. Cometary activity at large heliocentric distances and mantle evolution are not yet fully understood. Results of observations carried out at the 2.1 telescope on Kitt Peak April 10-12 and May 15-16, 1991 are discussed. Color values and color-color diagrams are presented for several comets and asteroids. Estimations of nuclear radii and shapes are given.

  11. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    SciTech Connect

    Wang, J.; Martin, S. T.; Kleinman, L.; Thalman, R. M.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical and microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.

  12. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  13. Toxicity effect of dichlorvos on loach (Misgurnus anguillicaudatus) assessed by micronucleus test, hepatase activity analysis and comet assay.

    PubMed

    Nan, Ping; Yan, Shuaiguo; Li, Li; Chen, Jianjun; Du, Qiyan; Chang, Zhongjie

    2015-06-01

    Pesticides and other chemicals at environmental concentrations often have detrimental effects. Many aquatic species are particularly threatened because of their susceptibility and also because water environment are often polluted. This study preliminarily evaluated the toxicity effect of dichlorvos (DDVP) on loach (Misgurnus anguillicaudatus) using the methods of micronucleus (MN) test, hepatase activity and comet assay. The tested results showed that indeed very little DDVP had strong toxicity effect on loach and its 50% lethal concentration (LC50) at 24 h, 48 h and 96 h was 8.38 μg l(-1), 7.168 μg l(-1) and 6.411 μg l(-1), respectively; The glutamic-pyruvic transaminase (GPT) and glutamic-oxalacetic transaminase (GOT) activity of loach liver decreased; meanwhile, the GPT and GOT activity of loach serum, the MN rate (‰) and three comet parameters of tested fish increased with the increase in the treatment concentration and treatment time of DDVP, and there was significant difference between control group and each treatment group (p < 0.05). These results suggested that DDVP residues might become toxic chemical contaminant in environment and would threaten aquatic and other organisms.

  14. A Creaking and Cracking Comet

    NASA Astrophysics Data System (ADS)

    Faurschou Hviid, Stubbe; Hüttig, Christian; Groussin, Olivier; Mottola, Stefano; Keller, Horst Uwe; OSIRIS Team

    2016-10-01

    Since the middle of 2014 the OSIRIS cameras on the ESA Rosetta mission have been monitoring the evolution of the comet 67P/Churyumov-Gerasimenko as it passed through perihelion. During the perihelion passage several change events have been observed on the nucleus surface. For example existing large scale cracks have expanded and new large scale cracks have been created. Also several large scale "wave pattern" like change events have been observed in the Imhotep and Hapi regions. These are events not directly correlated with any normal visible cometary activity. One interpretation is that these are events likely caused by "seismic" activity. The seismic activity is created by the self-gravity stress of the non-spherical comet nucleus and stress created by the non-gravitational forces acting on the comet. The non-gravitational forces are changing the rotation period of the comet (~20min/perihelion passage) which induces a changing mechanical stress pattern through the perihelion passage. Also the diurnal cycle with its changing activity pattern is causing a periodic wobble in the stress pattern that can act as a trigger for a comet quake. The stress pattern has been modeled using a finite element model that includes self-gravity, the comet spin and the non-gravitational forces based on a cometary activity model. This paper will discuss what can be learned about the comet nucleus structure and about the cometary material properties from these events and from the FEM model.

  15. The gas production rate of periodic comet d'Arrest

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.; Feldman, Paul D.; Ahearn, Michael F.

    1992-01-01

    Comet P/d'Arrest is a potential target for a rendezvous mission to a short period comet. Its light curve is rather peculiar, the comet being active only after perihelion passage. One apparition out of two is easy to observe from the ground. The 1995 apparition of the comet will offer a unique opportunity to characterize the outgassing properties of its nucleus.

  16. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  17. The Comet Radar Explorer Mission

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  18. Thermal model of water and CO activity of Comet C/1995 O1 (Hale-Bopp)

    NASA Astrophysics Data System (ADS)

    Gortsas, N.; Kührt, E.; Motschmann, U.; Keller, H. U.

    2011-04-01

    An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m -1 K -1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A'Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K

  19. Near-nucleus photometry of comets using archived NEAT data

    NASA Astrophysics Data System (ADS)

    Hicks, Michael D.; Bambery, Raymond J.; Lawrence, Kenneth J.; Kollipara, Priya

    2007-06-01

    Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets ( Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].

  20. Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-01

    We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.

  1. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  2. Ensemble X-ray variability of active galactic nuclei at intermediate and long time lags

    NASA Astrophysics Data System (ADS)

    Vagnetti, Fausto; Middei, Riccardo

    2016-08-01

    We present a variability analysis for a sample of 2700 active galactic nuclei extracted from the latest release of the XMM-Newton serendipitous source catalogue. The structure function of this sample increases up to rest-frame time lags of about 5 years. Moreover, comparing observations performed by the XMM-Newton and ROSAT satellites, we are able to extend the X-ray structure function to 20 years rest-frame, showing a further increase of variability without any evidence of a plateau. Our results are compared with similar analyses in the optical band, and discussed in relation to the physical sizes of the emitting regions.

  3. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  4. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  5. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  6. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 {times} 10{sup {minus}14} cm{sup {minus}2}s{sup {minus}1}.

  7. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    Not Available

    1993-01-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 [times] 10[sup [minus]14] cm[sup [minus]2]s[sup [minus]1].

  8. Caroline Lucretia Herschel -- Comet Huntress

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    1999-04-01

    Caroline Herschel (1750-1848) was an active astronomer at a time when discovering comets, and calculating their orbits, was one of the main astronomical activities. She discovered eight comets and held the ladies' world record in this field until April 1987 when she was toppled from the podium by Carolyn S. Shoemaker. This paper places the Herschel cometary discoveries into the context of the contemporary cometary astronomy.

  9. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles; Fernández, Yanga; Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Sarid, Gal; Meech, Karen Jean; Woodney, Laura

    2016-01-01

    We present results from our effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). In a nearly circular orbit around 6 AU, outside of the water-sublimation zone, SW1 is continuously active and experiences frequent outbursts. Our group's effort is focusing on finding constraints on physical and dynamical properties of SW1's nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. We are currently analyzing coma morphology of SW1 before, during, and after outburst placing constraints on the spin-pole direction, spin period, and surface areas of activity. In addition, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices. The supervolatile ices may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet. [1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2, No

  10. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles Alfred; Fernandez, Yanga; Samarasinha, Nalin; Sarid, Gal; Mueller, Beatrice; Meech, Karen; Woodney, Laura

    2015-11-01

    We present results from our continuing effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). While being in a nearly circular orbit around 6 AU, SW1 is continuously active and experiences frequent outbursts. Our group’s effort is focusing on finding constraints on physical and dynamical properties of SW1’s nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. Now we are analyzing coma morphology of SW1 before, during, and after outburst to place constraints on the spin-pole direction, spin period, and surface areas of activity (a spin period lower limit has been measured). Also, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices, which may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet.[1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2

  11. Maverick Comet Splits during Dramatic Outburst

    NASA Astrophysics Data System (ADS)

    1996-01-01

    this process is almost always accompanied by a significant brightening. For instance, the nucleus of comet Shoemaker-Levy 9 broke up into at least 21 individual pieces when it passed very close to Jupiter on July 8, 1992; this was the reason that it became bright enough to be detected some eight months later. In the case of SW-3, the opening of rifts and the subsequent splitting took place far from any planet and must in some way have been caused by increased solar heating. Nevertheless, it is not yet known exactly which physical and chemical processes are involved. It will now be interesting to continue the observations of the individual nuclei as long as possible. From accurate positional measurements, it may later become possible to perform a backwards extrapolation and determine the exact conditions of the splitting process (time, involved forces) and thereby cast more light on the physical aspects of this event. SW-3: Still a Possible Rosetta Target? The break-up of a solar system object is a dramatic and relatively rare event. We are here directly witnessing the ageing of a comet, perhaps even the prelude to its death. Earlier measurements indicate that the diameter of SW-3's nucleus is smaller than about 3 kilometres, but since we do not know the size of the pieces that broke off (this may be indicated by how long they will remain active), nor their number (we may only see the largest), we cannot yet determine with any certainty the remaining lifetime of the main nucleus. At the first glance, this seems to indicate that SW-3 must be removed from the list of potential targets for the Rosetta mission - we cannot risk that it no longer exists when the space probe arrives ! On the other hand, due to the break-up there is now a lot of ``fresh'' cometary material on the surface of the nucleus and around it, i.e. matter that has remained unchanged since the beginning of the solar system, some 4,500 million years ago. The possibility to gain direct access to a sample of

  12. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna

    PubMed Central

    Burkart, J.; Steiner, G.; Reischl, G.; Hitzenberger, R.

    2011-01-01

    During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.22 nm and 929 nm were also measured with a scanning mobility particle spectrometer (SMPS). Activation ratios (i.e. CCN/CN ratios) were calculated and apparent activation diameters obtained by integrating the SMPS size distributions. Variations in all CCN parameters (concentration, activation ratio, apparent activation diameter) are quite large on timescales of days to weeks. Passages of fronts influenced CCN parameters. Concentrations decreased with the passage of a front. No significant differences were found for fronts from different sectors (for Vienna mainly north to west and south to east). CCN concentrations at 0.5% S ranged from 160 cm−3 to 3600 cm−3 with a campaign average of 820 cm−3. Activation ratios were quite low (0.02–0.47, average: 0.13) and comparable to activation ratios found in other polluted regions (e.g. Cubison et al., 2008). Apparent activation diameters were found to be much larger (campaign average: 169 nm, range: (69–370) nm) than activation diameters for single-salt particles (around 50 nm depending on the salt). Contrary to CN concentrations, which are influenced by source patterns, CCN concentrations did not exhibit distinct diurnal patterns. Activation ratios showed diurnal variations counter-current to the variations of CN concentrations. PMID:21977003

  13. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H-beta in luminosity. We show how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of Ne v emission in particular will distinguish shrouded AGNs from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  14. Differential Activation of Pontomedullary Nuclei by Acid Perfusion of Different Regions of the Esophagus

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    The objective of this study was to determine the brain stem nuclei and physiological responses activated by esophageal acidification. The effects of perfusion of the cervical (ESOc), or thoracic (ESOt) esophagus with PBS or HCl on c-fos immunoreactivity of the brain stem or on physiological variables, and the effects of vagotomy were examined in anesthetized cats. We found that acidification of the ESOc increased the number of c-fos positive neurons in the area postrema (AP), vestibular nucleus (VN), parabrachial nucleus (PBN), nucleus ambiguus (NA), dorsal motor nucleus (DMN), and all subnuclei of the nucleus tractus solitarius (NTS), but one. Acidification of the ESOt activated neurons in the central (CE), caudal (CD), dorsomedial (DM), dorsolateral (DL), ventromedial (VM) subnuclei of NTS, and the DMN. Vagotomy blocked all c-fos responses to acid perfusion of the whole esophagus (ESOw). Perfusion of the ESOc or ESOt with PBS activated secondary peristalsis (2P), but had no effect on blood pressure, heart rate, or respiratory rate. Perfusion of the ESOc, but not ESOt, with HCL activated pharyngeal swallowing (PS), profuse salivation, or physiological correlates of emesis. Vagotomy blocked all physiological effects of ESOw perfusion. We conclude that acidification of the ESOc and ESOt activate different sets of pontomedullary nuclei and different physiological responses. The NTSce, NTScom, NTSdm, and DMN are associated with activation of 2P, the NTSim and NTSis, are associated with activation of PS, and the AP, VN, and PBN are associated with activation of emesis and perhaps nausea. All responses to esophageal fluid perfusion or acidification are mediated by the vagus nerves. PMID:20655885

  15. The Size Distribution of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Lowry, S. C.

    2001-11-01

    We are conducting a program of ground-based CCD photometry of distant cometary nuclei, in order to estimate their sizes, shapes, rotation periods and axial ratios. We have combined our data with that reported in the literature by other observers to obtain an estimate of the size distribution of observed Jupiter-family and Halley-type comets. The catalog consists of 79 measurements of 52 JF and HT comets using a variety of techniques, including CCD photometry, IR photometry, and HST imaging. The data has been normalized to an assumed albedo of 0.04 except in cases where the albedo was directly measured. We find that the cumulative number of comets at or larger than a given radius can be described by a power law function with a slope of --1.40 +/- 0.03. This corresponds to a slope of --0.28 +/- 0.01 for the cumulative luminosity function, close to the slope of --0.32 +/- 0.02 found by Lowry (2001), derived from a homogeneously reduced CCD survey of distant JF comets. Both values are considerably less than the slope of --0.53 +/- 0.05 found by Fernández et al. (1999). This inconsistency is most likely attributed to the inhomogeneous nature of the Fernández et al. dataset, and the inclusion of active comets within their sample. Typical values of the CLF slope for Kuiper belt objects are --0.64 to --0.69 (Gladman et al. 2001; Trujillo et al. 2001). The shallower slope of the JF and HT comets, which are considerably smaller than the measured Kuiper belt objects, may be due to intrinsic differences in the KBO size distribution at the different size ranges (Weissman & Levison 1998) or to the physical evolution of JF and HT comets as they lose mass through sublimation and fragmentation (Lowry 2001). This work was supported by the NASA Planetary Astronomy and Planetary Geology & Geophysics Programs. Support from the National Research Council is also gratefully acknowledged.

  16. Double-face activity of resveratrol in voluntary runners: assessment of DNA damage by comet assay.

    PubMed

    Tomasello, Barbara; Grasso, Salvatore; Malfa, Giuseppe; Stella, Stefania; Favetta, Marco; Renis, Marcella

    2012-05-01

    Voluntary runners are subjected to a massive increase in reactive oxygen/nitrogen species production, which can promote different oxidative stress-related diseases such as premature aging, neurodegenerative disorders, and cancer. The aims of this work were to evaluate the following in peripheral blood cells of voluntary runners: (i) DNA status; (ii) susceptibility to the in vitro insult induced by hydrogen peroxide (H(2)O(2)) as a breaking agent; (iii) capabilities of 3,5,4'-trihydroxystilbene (RESV) in counteracting DNA damage. Twenty-five male voluntary runners were compared with 20 sedentary men, as age-matched controls, and DNA status was evaluated with different versions of comet assay: alkaline, neutral, and Fpg enzyme-modified version to measure 8-OH-deoxyguanosine (8-oxo-dG) levels. The H(2)O(2) and/or RESV treatments were performed directly on agarose-embedded cells (atypical comet assay). The results evidenced DNA damage and levels of 8-oxo-dG higher in runners than in sedentary control subjects. The runners' DNA was more prone to the in vitro-induced oxidative insult (200 μM H(2)O(2)) than that of the control group. Resveratrol (100 μM), depending on the individual basal DNA status, was able to switch from antioxidant to pro-oxidant. Our results, on the one hand, validated the proposed in vitro experimental protocol in order to measure individual DNA status. On the other hand, our data point out the importance of monitoring the athletes' redox status before subjecting them to dietary supplementation treatment.

  17. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  18. The evolution of radio-loud active galactic nuclei as a function of black hole spin

    NASA Astrophysics Data System (ADS)

    Garofalo, D.; Evans, D. A.; Sambruna, R. M.

    2010-08-01

    Recent work on the engines of active galactic nuclei jets suggests that their power depends strongly and perhaps counter-intuitively on black hole spin. We explore the consequences of this on the radio-loud population of active galactic nuclei and find that the time evolution of the most powerful radio galaxies and radio-loud quasars fits into a picture in which black hole spin varies from retrograde to prograde with respect to the accreting material. Unlike the current view, according to which jet powers decrease in tandem with a global downsizing effect, we argue for a drop in jet power resulting directly from the paucity of retrograde accretion systems at lower redshift z caused by a continuous history of accretion dating back to higher z. In addition, the model provides simple interpretations for the basic spectral features differentiating radio-loud and radio-quiet objects, such as the presence or absence of disc reflection, broadened iron lines and signatures of disc winds. We also briefly describe our models' interpretation of microquasar state transitions. We highlight our result that the most radio-loud and most radio-quiet objects both harbour highly spinning black holes but in retrograde and prograde configurations, respectively.

  19. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    SciTech Connect

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David; Alexander, David M.; Mullaney, James R.; Magnelli, Benjamin; Hwang, Ho Seong; Willner, S. P.; Coil, Alison L.; Rosario, David J.; Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D.; Cooper, Michael C.; Frayer, David T.; and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  20. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  1. Neutrino-heated stars and broad-line emission from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  2. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response.

    PubMed

    Galvão, Milene de Oliveira Lara; Sinigaglia-Coimbra, Rita; Kawakami, Suzi Emiko; Tufik, Sergio; Suchecki, Deborah

    2009-09-01

    A large body of evidence has shown that prolonged paradoxical sleep deprivation (PSD) results in hypothalamic-pituitary-adrenal (HPA) axis activation, and in loss of body weight despite an apparent increase of food intake, reflecting increased energy expenditure. The flowerpot technique for PSD is an efficient paradigm for investigating the relationships among metabolic regulation and stress response. The purpose of the present study was to examine the mechanisms involved in the effects of 96 h of PSD on metabolism regulation, feeding behaviour and stress response by studying corticotrophin-releasing hormone (CRH) and orexin (ORX) immunoreactivity in specific hypothalamic nuclei. Once-daily assessments of body weight, twice-daily measurements of (spillage-corrected) food intake, and once-daily determinations of plasma adrenocorticotropic hormone (ACTH) and corticosterone were made throughout PSD or at corresponding times in control rats (CTL). Immunoreactivity for CRH in the paraventricular nucleus of the hypothalamus and for ORX in the hypothalamic lateral area was evaluated at the end of the experimental period. PSD resulted in increased diurnal, but not nocturnal, food intake, producing no significant changes in global food intake. PSD augmented the immunoreactivity for CRH and plasma ACTH and corticosterone levels, characterizing activation of the HPA axis. PSD also markedly increased the ORX immunoreactivity. The average plasma level of corticosterone correlated negatively with body weight gain throughout PSD. These results indicate that augmented ORX and CRH immunoreactivity in specific hypothalamic nuclei may underlie some of the metabolic changes consistently described in PSD.

  3. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  4. Modulation of neuronal activity in dorsal column nuclei by upper cervical spinal cord stimulation in rats

    PubMed Central

    Qin, Chao; Yang, Xiaoli; Wu, Mingyuan; Farber, Jay P.; Linderoth, Bengt; Foreman, Robert D.

    2009-01-01

    Clinical human and animal studies show that upper cervical spinal cord stimulation (cSCS) has beneficial effects in treatment of some cerebral disorders, including those due to deficient cerebral circulation. However, the underlying mechanisms and neural pathways activated by cSCS using clinical parameters remain unclear. We have shown that a cSCS-induced increase in cerebral blood flow is mediated via rostral spinal dorsal column fibers implying that the dorsal column nuclei (DCNs) are involved. The aim of this study was to examine how cSCS modulated neuronal activity of DCNs.. A spring-loaded unipolar ball electrode was placed on the left dorsal column at cervical (C2) spinal cord in pentobarbital anesthetized, ventilated and paralyzed male rats. Stimulation with frequencies of 1, 10, 20, 50 Hz (0.2 ms, 10 s) and an intensity of 90% of motor threshold was applied. Extracellular potentials of single neurons in DCNs were recorded and examined for effects of cSCS. In total, 109 neurons in DCNs were isolated and tested for effects of cSCS. Out of these, 56 neurons were recorded from the cuneate nucleus and 53 from the gracile nucleus. Mechanical somatic stimuli altered activity of 87/109 (83.2%) examined neurons. Of the neurons receiving somatic input, 62 were classified as low-threshold and 25 as wide dynamic range. The cSCS at 1 Hz changed the activity of 96/109 (88.1%) of the neurons. Neuronal responses to cSCS exhibited multiple patterns of excitation and/or inhibition: excitation (E, n=21), inhibition (I, n=19), E-I (n=37), I-E (n=8) and E-I-E (n=11). Furthermore, cSCS with high-frequency (50 Hz) altered the activity of 92.7% (51/55) of tested neurons, including 30 E, 24 I, and 2 I-E responses to cSCS. These data suggested that cSCS significantly modulates neuronal activity in dorsal column nuclei. These nuclei might serve as a neural relay for cSCS-induced effects on cerebral dysfunction and diseases. PMID:19665525

  5. Coma Morphology Due to an Extended Active Region and Implications for the Spin State of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2000-01-01

    We show that the circular character of continuum structures observed in the coma of comet Hale-Bopp around the perihelion passage is most likely due to a dust jet from a large extended active region on the surface. Coma morphology due to a wide jet is different from that due to a narrow jet. The latter shows foreshortening effects due to observing geometry, wider jet produces more circular features. This circularization effect provides a self-consistent explanation for the evolution of near-perihelion coma morphology. No changes in the direction of the rotational angular momentum vector are required during this period in contrast to the models of Schleicher et al. This circularization effect also enables us to produce near-circular coma features in the S-E quadrant during 1997 late February and therefore questions the basic premise on which Sekanina bases his morphological arguments for a gravitationally bound satellite nucleus.

  6. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  7. VizieR Online Data Catalog: Quasars and Active Galactic Nuclei (11th Ed.) (Veron+, 2003)

    NASA Astrophysics Data System (ADS)

    Veron-Cetty, M. P.; Veron, P.

    2003-08-01

    This catalogue is an update of the previous versions. The recent release of the final release of the 2dF quasar catalogue and of the first part of the SLOAN catalogue, almost doubling the number of known QSOs, led us to prepare an updated version of our Catalogue of quasars and active nuclei, which now contains 48921 quasars, 876 BL Lac objects and 15069 active galaxies (including 11777 Seyfert 1). Like the tenth edition, it includes position and redshift as well as photometry (U, B, V) and 6 and 11 cm flux densities when available. The present edition this catalogue contains the quasars with measured redshift known prior to August 1st, 2003. (5 data files).

  8. Outflow and Metallicity in the Broad-Line Region of Low-Redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Jaejin; nagao, Tohru; Woo, Jong-Hak

    2017-01-01

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE, we investigate outflows in the broad-line region (BLR) in low-redshift AGNs (z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which is consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.

  9. Nearby active galactic nuclei seen via adaptive optics at the Keck Telescope

    NASA Astrophysics Data System (ADS)

    Max, Claire

    2004-02-01

    In recent years it has become increasingly clear that mergers between galaxies play a critical role in galaxy evolution, in the formation of central black holes, and in the phenomena of active galactic nuclei (AGNs) and quasar activity. The advent of adaptive optics on the new generation of 6-10 m telescopes is making it possible to study nearby AGNs and merging galaxies with spatial resolutions of10 - 100 pc. In this talk I will describe and discuss observations of NGC 6240 and Cygnus A, archetypes of merging disk galaxies and of powerful radiogalaxies respectively. I will make use of infrared observations using the adaptive optics system on the 10-m Keck Telescope, as well as visible-light observations from the Hubble Space Telescope.

  10. Penrose photoproduction processes - A high efficiency energy mechanism for active galactic nuclei and quasars

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Kafatos, M.

    1979-01-01

    Recent observations of NGC 4151 and 3C273 suggest that the nuclei of active galaxies have very high gamma ray efficiencies. In addition, optical studies of M87 have indicated the possibility of a massive black hole in its central region. The above facts have led to study of a new physical mechanism, Penrose Photoproduction Processes, in the ergospheres of massive Kerr black holes, as a way to account for the fluctuating, high efficiency, energy production associated with active galaxies and quasars. Observational signatures, associated with this mechanism, occur in the form of approximately 2 MeV and approximately 2 GeV gamma ray cutoffs which might be corroborated by the observed spectra of NGC 4151 and 3C273, respectively.

  11. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs

    2017-02-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (∼ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ∼20 such gas-induced binary mergers per year.

  12. Transcription is Associated with Z-DNA Formation in Metabolically Active Permeabilized Mammalian Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Wittig, Burghardt; Dorbic, Tomislav; Rich, Alexander

    1991-03-01

    Mammalian cells have been encapsulated in agarose microbeads, and from these cells metabolically active permeabilized nuclei were prepared. Previously, we showed that biotin-labeled monoclonal antibodies against Z-DNA can be diffused into the nuclei and, over a specific concentration range, they will bind to Z-DNA within the nucleus in a concentration-independent manner. By using radiolabeled streptavidin, we showed that the amount of Z-DNA antibody bound is related to the torsional strain of the DNA in the nucleus. Relaxation of the DNA results in a decrease of Z-DNA formation, whereas increasing torsional strain through inhibiting topoisomerase I results in increased Z-DNA formation. Here we measure the influence of RNA transcription and DNA replication. Transcription is associated with a substantial increase in the binding of anti-Z-DNA antibodies, paralleling the increased level of RNA synthesized as the level of ribonucleoside triphosphate in the medium is increased. DNA replication yields smaller increases in the binding of Z-DNA antibodies. Stopping RNA transcription with inhibitors results in a large loss of Z-DNA antibody binding, whereas only a small decrease is associated with inhibition of DNA replication.

  13. Striatum and globus pallidus control the electrical activity of reticular thalamic nuclei.

    PubMed

    Villalobos, Nelson; Oviedo-Chávez, Aldo; Alatorre, Alberto; Ríos, Alain; Barrientos, Rafael; Delgado, Alfonso; Querejeta, Enrique

    2016-08-01

    Through GABAergic fibers, globus pallidus (GP) coordinates basal ganglia global function. Electrical activity of GP neurons depends on their membrane properties and afferent fibers, including GABAergic fibers from striatum. In pathological conditions, abnormal electrical activity of GP neurons is associated with motor deficits. There is a GABAergic pathway from the GP to the reticular thalamic nucleus (RTn) whose contribution to RTn neurons electrical activity has received little attention. This fact called our attention because the RTn controls the overall information flow of thalamic nuclei to cerebral cortex. Here, we study the spontaneous electrical activity of RTn neurons recorded in vivo in anesthetized rats and under pharmacological activation or inhibition of the GP. We found that activation of GP predominantly diminishes the spontaneous RTn neurons firing rate and its inhibition increases their firing rate; however, both activation and inhibition of GP did not modified the burst index (BI) or the coefficient of variation (CV) of RTn neurons. Moreover, stimulation of striatum predominantly diminishes the spiking rate of GP cells and increases the spiking rate in RTn neurons without modifying the BI or CV in reticular neurons. Our data suggest a GP tight control over RTn spiking activity.

  14. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    SciTech Connect

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A.; Maciejewski, W.; Hicks, E. K. S.; Emsellem, E.; Dumas, G.; Malkan, M. A.; Müller-Sánchez, F.; Tran, A.

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  15. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  16. THE PRE-PERIHELION ACTIVITY OF DYNAMICALLY NEW COMET C/2013 A1 (SIDING SPRING) AND ITS CLOSE ENCOUNTER WITH MARS

    SciTech Connect

    Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.; A’Hearn, Michael F.; Li, Jian-Yang E-mail: msk@astro.umd.edu E-mail: ma@astro.umd.edu

    2015-03-20

    We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet. Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.

  17. A close look at Halley's comet

    SciTech Connect

    Balsiger, H.; Fechtig, H.; Geiss, J.

    1988-09-01

    Halley's comet is not only the most famous and historically the most important of comets, but also one of the best-suited to space probe encounters. Halley's comet has an orbit that is sufficiently well known for a probe to be directed close enough to the nucleus to obtain good data. Moreover, the strong emission of gas and dust from the comet suggests that it retains much of its original icy and dusty components. In other words, the comet probably consists of pristine material, and so it reflects the conditions prevailing when the solar system was born. This paper is based primarily on the results obtained by the Giotto space probe. The Giotto mission made particularly significant contributions in determining the composition of the neutral and ionized gases in the coma. Undoubtedly the highlight of the Giotto voyage was the close approach of the spacecraft to the nucleus itself. Now the missions to Halley's comet have confirmed the essential features of the accepted model of cometary nuclei: the dirty snowball model. The dimensions of the nucleus have been estimated to be roughly 16-by-eight-by-eight kilometers. The surface area of the nucleus is approximately four times larger than had been thought. A further surprise is that the jets appear to be emitted from a relatively small fraction of the comet's total surface. 7 figs.

  18. THE SPATIAL CLUSTERING OF ROSAT ALL-SKY SURVEY ACTIVE GALACTIC NUCLEI. III. EXPANDED SAMPLE AND COMPARISON WITH OPTICAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Krumpe, Mirko; Coil, Alison L.; Miyaji, Takamitsu; Aceves, Hector

    2012-02-10

    This is the third paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07 < z < 0.50 and measure the clustering amplitudes of both X-ray-selected and optically selected SDSS broad-line AGNs with and without radio detections as well as for X-ray-selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray-selected and optically selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low-redshift optically selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio detection. The typical dark matter halo masses of our broad-line AGNs are log (M{sub DMH}/[h{sup -1} M{sub Sun }]) {approx} 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray-selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a {approx}2{sigma} level. Finally, we summarize the current picture of AGN clustering to z {approx} 1.5 based on three-dimensional clustering measurements.

  19. X-ray and infrared diagnostics of nearby active galactic nuclei with MAXI and AKARI

    NASA Astrophysics Data System (ADS)

    Isobe, Naoki; Kawamuro, Taiki; Oyabu, Shinki; Nakagawa, Takao; Baba, Shunsuke; Yano, Kenichi; Ueda, Yoshihiro; Toba, Yoshiki

    2016-12-01

    Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. One hundred of the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog are currently identified as non-blazar-type active galactic nuclei. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 μm. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, Γ = 1.9, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed, at least in the Compton-thin regime. In contrast, NGC 1365, the only Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei are briefly discussed.

  20. Dynamic sublimation pressure and the catastrophic breakup of Comet ISON

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Johnson, Brandon C.; Bowling, Timothy; Jay Melosh, H.; Minton, David; Lisse, Carey M.; Battams, Karl

    2015-09-01

    Previously proposed mechanisms have difficulty explaining the disruption of Comet C/2012 S1 (ISON) as it approached the Sun. We describe a novel cometary disruption mechanism whereby comet nuclei fragment and disperse through dynamic sublimation pressure, which induces differential stresses within the interior of the nucleus. When these differential stresses exceed its material strength, the nucleus breaks into fragments. We model the sublimation process thermodynamically and propose that it is responsible for the disruption of Comet ISON. We estimate the bulk unconfined crushing strength of Comet ISON's nucleus and the resulting fragments to be 0.5 Pa and 1-9 Pa, respectively, assuming typical Jupiter Family Comet (JFC) albedos. However, if Comet ISON has an albedo similar to Pluto, this strength estimate drops to 0.2 Pa for the intact nucleus and 0.6-4 Pa for its fragments. Regardless of assumed albedo, these are similar to previous strength estimates of JFCs. This suggests that, if Comet ISON is representative of dynamically new comets, then low bulk strength is a primordial property of some comet nuclei, and not due to thermal processing during migration into the Jupiter Family.

  1. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  2. The enigmatic object 2201 Oljato - Is it an asteroid or an evolved comet?

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Cochran, Anita L.; Barker, Edwin S.; Cruikshank, Dale P.; Hartmann, William K.

    1993-01-01

    The orbital properties of near-earth object 2201 have been associated with meteor showers, and its modeled orbital evolution is chaotic - a property which might indicate a history related to comets. Telescopic observations of its visible and near-infrared spectral reflectance, broad-band visible and near-infrared photometry, infrared radiometric measurements, and radar echoes are reported here from two apparitions, 1979 and 1983. This asteroid has a high radiometric albedo, a property not associated with comet nuclei. In certain wavelength regimes it is classified as an S-type asteroid, in others, an E-type, but its overall spectral reflectance is not typical of either taxonomic type, and neither type is thought of as cometlike. Unexpectedly high ultraviolet reflectance at the 1979 apparition was suggested to be the result of residual outgassing as in a comet. The UV photometric data are modeled as fluorescent emission from neutral species found in comets. The resulting calculations indicate a plausible value for OH and CN emission at 0.3085 and 0.38 micron relative to the observed range of active comets.

  3. The enigmatic object 2201 Oljato - Is it an asteroid or an evolved comet?

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.; Cochran, A. L.; Barker, E. S.; Cruikshank, D. P.; Hartmann, W. K.

    1993-02-01

    The orbital properties of near-earth object 2201 have been associated with meteor showers, and its modeled orbital evolution is chaotic - a property which might indicate a history related to comets. Telescopic observations of its visible and near-infrared spectral reflectance, broad-band visible and near-infrared photometry, infrared radiometric measurements, and radar echoes are reported here from two apparitions, 1979 and 1983. This asteroid has a high radiometric albedo, a property not associated with comet nuclei. In certain wavelength regimes it is classified as an S-type asteroid, in others, an E-type, but its overall spectral reflectance is not typical of either taxonomic type, and neither type is thought of as cometlike. Unexpectedly high ultraviolet reflectance at the 1979 apparition was suggested to be the result of residual outgassing as in a comet. The UV photometric data are modeled as fluorescent emission from neutral species found in comets. The resulting calculations indicate a plausible value for OH and CN emission at 0.3085 and 0.38 micron relative to the observed range of active comets.

  4. Antigenotoxic activity of watercress extract in an in vitro mammalian system using comet assay.

    PubMed

    Casanova, Natalia A; Carballo, Marta A

    2011-12-01

    Watercress (Cruciferae), an integral part of Mediterranean diets, is a nutritive food which is used in the treatment of several diseases. Oxidative DNA damage seems to play a crucial role in chronic, aging-related diseases and it is considered an important and probably carcinogenic factor. The aim of this work was to determine the impact of watercress extract on cell viability and its potential antigenotoxic properties against induced oxidative damage, using a comet assay and peripheral blood cells as an in vitro model. An aqueous extract of the leaves was prepared using a juice processor, centrifuged, filtered and preserved at -20 °C. Two concentrations of the aqueous extract (13.2 and 26.4 mg/mL) were assayed. No differences were found in cell viability between the control and treated groups at any time. Significant antigenotoxic effects were observed for both concentrations, expressed as the damage index (p = 0.005 at 30 min; p < 0.001 at 60 and 90 min), the percentage reductions in damage being similar between them (67.1-75.2% respectively). These results suggest that the consumption watercress in the diet is a powerful tool for improving health and the quality of life.

  5. The Role of Amygdala Nuclei in the Expression of Auditory Signaled Two-Way Active Avoidance in Rats

    ERIC Educational Resources Information Center

    Choi, June-Seek; Cain, Christopher K.; LeDoux, Joseph E.

    2010-01-01

    Using a two-way signaled active avoidance (2-AA) learning procedure, where rats were trained in a shuttle box to avoid a footshock signaled by an auditory stimulus, we tested the contributions of the lateral (LA), basal (B), and central (CE) nuclei of the amygdala to the expression of instrumental active avoidance conditioned responses (CRs).…

  6. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  7. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  8. THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Elitzur, M.; Aretxaga, I.; Roche, P. F.; Oi, N.

    2012-07-15

    We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear

  9. On the X-Ray Low- and High-Velocity Outflows in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Tombesi, F.

    2012-01-01

    An exploration of the relationship between bolometric luminosity and outflow velocity for two classes of X-ray outflows in a large sample of active galactic nuclei has been performed. We find that line radiation pressure could be one physical mechanism that might accelerate the gas we observe in warm absorber, v approx. 100-1000 km/s, and on comparable but less stringent grounds the ultrafast outflows, v approx. 0.03-0.3c. If comparable with the escape velocity of the system, the first is naturally located at distances of the dusty torus, '" I pc, and the second at subparsec scales, approx.0.01 pc, in accordance with large set of observational evidence existing in the literature. The presentation of this relationship might give us key clues for our understanding of the different physical mechanisms acting in the centre of galaxies, the feedback process and its impact on the evolution of the host galaxy.

  10. Nonthermal electron-positron pairs and cold matter in the central engines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.

    1992-01-01

    The nonthermal e(+/-) pair model of the central engine of active galactic nuclei (AGNs) is discussed. The model assumes that nonthermal e(+/-) pairs are accelerated to highly relativistic energies in a compact region close to the central black hole and in the vicinity of some cold matter. The model has a small number of free parameters and explains a large body of AGN observations from EUV to soft gamma-rays. In particular, the model explains the existence of the UV bump, the soft X-rays excess, the canonical hard X-ray power law, the spectral hardening above about 10 keV, and some of the variability patterns in the soft and hard X-rays. In addition, the model explains the spectral steepening above about 50 keV seen in NGC 4151.

  11. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    NASA Astrophysics Data System (ADS)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  12. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    NASA Astrophysics Data System (ADS)

    Marin, F.; Grosset, L.; Goosmann, R.; Gratadour, D.; Rouan, D.; Clénet, Y.; Pelat, D.; Rojas Lobos, P. A.

    2016-12-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 μm) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. tet{Gratadour2015} found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  13. THE EVOLUTION AND EDDINGTON RATIO DISTRIBUTION OF COMPTON THICK ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2010-06-01

    Previous studies of the active galactic nuclei (AGNs) contribution to the cosmic X-ray background (CXB) consider only observable parameters such as luminosity and absorbing column. Here, for the first time, we extend the study of the CXB to physical parameters including the Eddington ratio of the sources and the black hole mass. In order to calculate the contribution to the CXB of AGN accreting at various Eddington ratios, an evolving Eddington ratio space density model is calculated. In particular, Compton thick (CT) AGNs are modeled as accreting at specific, physically motivated Eddington ratios instead of as a simple extension of the Compton thin type 2 AGN population. Comparing against the observed CT AGN space densities and log N-log S relation indicates that CT AGNs are likely a composite population of AGNs made up of sources accreting either at >90% or <1% of their Eddington rate.

  14. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  15. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  16. Scientific Highlights from Observations of Active Galactic Nuclei with the MAGIC Telescope

    SciTech Connect

    Wagner, Robert

    2008-12-24

    Since 2004, the MAGIC {gamma}-ray telescope has newly discovered 6 TeV blazars. The total set of 13 MAGIC-detected active galactic nuclei includes well-studied objects at other wavelengths like Markarian 501 and the giant radio galaxy M 87, but also the distant the flat-spectrum radio quasar 3C 279, and the newly discovered TeV {gamma}-ray emitter S5 0716+71. In addition, also long-term and multi-wavelength studies on well-known TeV blazars and systematic searches for new TeV blazars have been carried out. Here we report selected highlights from recent MAGIC observations of extragalactic TeV {gamma}-ray sources, emphasizing the new physics insights MAGIC was able to contribute.

  17. RELATIVISTIC BROADENING OF IRON EMISSION LINES IN A SAMPLE OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brenneman, Laura W.; Reynolds, Christopher S.

    2009-09-10

    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K{alpha} feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.

  18. Correlation Analysis of Optical and Radio Light Curves for a Large Sample of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Smith, A. G.; Aller, H. D.; Aller, M. F.

    1995-08-01

    The Rosemary Hill Observatory has accumulated internally consistent light curves extending over as much as 26 years for a large sample of active galactic nuclei. Forty-six of these optical records have been compared with similar radio records from the University of Michigan Radio Astronomy Observatory and the Algonquin Radio Observatory. For 18 objects, pairs of records were sufficiently long and unconfused to allow reliable application of the Discrete Correlation Function analysis; this group included 8 BL Lacertids, 8 quasars, and 2 Seyfert galaxies. Nine of the 18 sources showed positive radio-optical correlations, with the radio events lagging the optical by intervals ranging from 0 to 14 months. Consistent with the relativistic beaming model of the BL Lacertids, the group displaying correlations was dominated by this type of object.

  19. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    PubMed

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  20. The prospects of X-ray polarimetry for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, René W.

    2016-08-01

    Polarimetry at optical and other wavelength continues to play an important role in our struggle to develop (super-)unification schemes for active galactic nuclei (AGN). Therefore, radio-loud and radio-quiet AGN are important targets for the future small and medium-size X-ray polarimetry missions that are currently under phase A study at NASA and ESA. After briefly pointing out the detection principle of polarization imaging in the soft X-ray band, I am going to review the prospects of X-ray polarimetry for our understanding of AGN ejection (winds and blazar jets) and accretion flows (accretion disk and corona). The X-ray polarimetry signal between 2 and 8 keV is going to give us important new constraints on the geometry of the central engine as well as on the acceleration effects in AGN jets, in particular when combined with spectral and/or polarization information at other wavelengths.

  1. Cosmic rays and the emission line regions of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Mushotzky, R. F.

    1984-01-01

    The effects that the synchrotron emitting relativistic electrons could have on the emission line regions which characterize active nuclei are discussed. Detailed models of both the inner, dense, broad line region and the outer, lower density, narrow line region are presented, together with the first models of the optically emitting gas often found within extended radio lobes. If the relativistic gas which produces the synchrotron radio emission is mixed with the emission line region gas then significant changes in the emission line spectrum will result. The effects of the synchrotron emitting electrons on filaments in the Crab Nebula are discussed in an appendix, along with a comparison between the experimental calculations, which employ the mean escape probability formalism, and recent Hubbard and Puetter models.

  2. Difficulties in Estimating the Physical Parameters of Compact Radio Sources in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.

    2016-12-01

    The various factors influencing estimates of the physical parameters of compact radio sources in active galactic nuclei (AGN) using a methods based on uniform models of synchrotron radiation sources are analyzed. It is found that the form of the relativistic electron energy density distribution as a function of magnetic energy density (Ee-EH) in the radio sources is determined by the shape of the electron energy spectrum. It is shown that the very large observed deviations of the estimated energies of the field and relativistic particles from equipartition are mainly caused by nonuniformity of the radio sources. In order to obtain correct estimates of the physical parameters of nonuniform radio sources, it is necessary to know their angular sizes at low frequencies (in the opaque region) and their Doppler factors.

  3. Very-High-Energy Gamma-Ray Observations of Active Galactic Nuclei with VERITAS

    NASA Astrophysics Data System (ADS)

    Quinn, John

    2016-08-01

    VERITAS is an array of four imaging atmospheric Cherenkov telescopes for very-high-energy (VHE, E>100 GeV) gamma-ray astronomy that has been in full scientific operation since 2007. The VERITAS collaboration is conducting several key science projects, one of which is the study of active galactic nuclei (AGN). So far, VERITAS has invested more than 3000 hours in observations of AGN, with approximately 150 objects observed. The program has resulted in the successful detection of 34 AGN as VHE gamma-ray sources, with the majority belonging to the blazar AGN subclass. Significant effort is made to acquire multiwavelength data coincident with the VERITAS observations. An overview of the VERITAS AGN program and its key results will be presented.

  4. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  5. Cloud Condensation Nuclei Activity Associated with Chemical Composition and Precipitation Events

    NASA Astrophysics Data System (ADS)

    Corrigan, C.; Roberts, G. C.; Zauscher, M.; Suski, K.; Noblitts, S.; Sullivan, A. P.; Collett, J. L.

    2010-12-01

    Measurements of ambient cloud condensation nuclei (CCN) concentrations can be improved by simultaneously collecting information on the activation size of the CCN along with chemical composition of the ambient aerosol. A size scanning CCN instrument developed at Scripps Institution of Oceanography was deployed as part of the Calwater project in the Sierra Nevada foothills of California during February and March of 2010. The instrument was capable of determining the critical diameter of activation for the ambient aerosol during a 20 minute scan. During the study period, the CCN activation size increased after each rain event and the activity slowly returned over the next few days. The critical diameter of the overall aerosol was largest (least active) immediately following precipitation events. The average critical diameter would typically decrease by 20% in the time between major precipitation events. This regeneration of the CCN activity can be partially attributed to the transport of sulfate and nitrate pollution to replace the particles that were washed out by the rain, but it may also be due to chemical changes via aging and oxidation mechanisms. Since CCN activity is determined by the particles size and chemical composition, the changes in critical diameter indicate a change in the chemical composition of the available CCN particles. By comparing the critical diameters with aerosol chemical data from a semi-real time aerosol ion chromatograph, the CCN activity was generally correlated with the mass loading of sulfate and nitrate. Deviations from the expected activity of sulfate and nitrate indicate the existence of other compounds that contribute to activity through additional dissolution and by reducing the surface tension. The contribution to CCN activity from additional compounds, including organic surfactants, can be estimated by observing the deviation of the measured critical diameters from values calculated using only the measured nitrate+sulfate mass

  6. NEAR-INFRARED REVERBERATION BY DUSTY CLUMPY TORI IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kawaguchi, Toshihiro; Mori, Masao

    2011-08-20

    According to recent models, the accretion disk and black hole in active galactic nuclei (AGNs) are surrounded by a clumpy torus. We investigate the NIR flux variation of the torus in response to a UV flash for various geometries. Anisotropic illumination by the disk and the torus self-occultation contrast our study with earlier works. Both the waning effect of each clump and the torus self-occultation selectively reduce the emission from the region with a short delay. Therefore, the NIR delay depends on the viewing angle (where a more inclined angle leads to a longer delay), and the time response shows an asymmetric profile with negative skewness, opposing the results for optically thin tori. The range of the computed delay coincides with the observed one, suggesting that the viewing angle is primarily responsible for the scatter of the observed delay. We also propose that the red NIR-to-optical color of type 1.8/1.9 objects is caused not only by the dust extinction but also the intrinsically red color. Compared with the modest torus thickness, both a thick and a thin tori display weaker NIR emission. A selection bias is thus expected such that NIR-selected AGNs tend to possess moderately thick tori. A thicker torus shows a narrower and more heavily skewed time profile, while a thin torus produces a rapid response. A super-Eddington accretion rate leads to much weaker NIR emission due to the disk self-occultation and the disk truncation by self-gravity. A long delay is expected from an optically thin and/or a largely misaligned torus. Very weak NIR emission, such as in hot-dust-poor active nuclei, can arise from a geometrically thin torus, a super-Eddington accretion rate, or a slightly misaligned torus.

  7. An Investigation into Cloud Condensation Nuclei (CCN) Activation in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Crosbie, E. C.; Youn, J.; Wonaschuetz, A.; Sorooshian, A.

    2013-12-01

    Cloud condensation nuclei (CCN) comprise a key component of the total aerosol with critical influences on weather and climate. The importance of CCN concentration is often linked to radiative feedbacks associated with cloud albedo, which has important consequences for climate sensitivity, however the importance of CCN may also extend to cloud dynamics in convective environments and atmospheric electricity. We present data from fifteen months of field measurements taken in an urban environment on a rooftop of a building at the University of Arizona campus in Tucson, Arizona. CCN were measured at high temporal resolution concurrently with measurements of particle size distributions, meteorological parameters, and the composition of the organic fraction of the aerosol. We investigate monthly, weekly, and diurnal patterns in the data along with activation ratio and apparent activation diameter, which provide important insight into the micro-scale dependencies of cloud activation. Furthermore, we examine the relationship between CCN and local and regional meteorology, with particular focus on the North American Monsoon season, to investigate feedback and response mechanisms relating to dynamics, microphysics, and chemistry. Monsoon aerosol are shown to have favorable composition to allow for higher CCN activity and thus lower apparent activation diameters. This finding coincides with enhanced aqueous-phase chemistry to produce more hygroscopic aerosol constituents such as sulfate and water-soluble organic compounds.

  8. Helium and Neon in Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1996-01-01

    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  9. Observational Evidence for Active Galactic Nuclei Feedback at the Parsec Scale

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Li, Miao

    2011-08-01

    In a hot accretion flow, the radiation from the innermost region of the flow propagates outward and heats the electrons at large radii via Compton scattering. It has been shown in previous works that if the radiation is strong enough, L >~ 2%L Edd, the electrons at the Bondi radius (rB ~ 105 rs ) will be heated to above the virial temperature; thus, the accretion will be stopped. The accretion will recover after the gas cools down. This results in the oscillation of the black hole activity. In this paper, we show that this mechanism is the origin of the intermittent activity of some compact young radio sources. Such intermittency is required to explain the population of these sources. We calculate the timescales of the black hole oscillation and find that the durations of active and inactive phases are 3 × 104(0.1/α)(M/108 M sun)(L/2%L Edd)-1/2 yr and 105(α/0.1)(M/108 M sun) yr, respectively, consistent with those required to explain observations. Such feedback occurring at the parsec scale should be common in low-luminosity active galactic nuclei and should be considered when we consider their matter and energy output.

  10. Infrared fine-structure line diagnostics of shrouded active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1993-01-01

    Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.

  11. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  12. Obscuring Fraction of Active Galactic Nuclei: Implications from Radiation-driven Fountain Models

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi

    2015-10-01

    Active galactic nuclei (AGNs) are believed to be obscured by an optical thick “torus” that covers a large fraction of solid angles for the nuclei. However, the physical origin of the tori and the differences in the tori among AGNs are not clear. In a previous paper based on three-dimensional radiation-hydorodynamic calculations, we proposed a physics-based mechanism for the obscuration, called “radiation-driven fountains,” in which the circulation of the gas driven by central radiation naturally forms a thick disk that partially obscures the nuclear emission. Here, we expand this mechanism and conduct a series of simulations to explore how obscuration depends on the properties of AGNs. We found that the obscuring fraction fobs for a given column density toward the AGNs changes depending on both the AGN luminosity and the black hole mass. In particular, fobs for NH ≥ 1022 cm-2 increases from ˜0.2 to ˜0.6 as a function of the X-ray luminosity LX in the LX = 1042-44 erg s-1 range, but fobs becomes small (˜0.4) above a luminosity (˜1045 erg s-1). The behaviors of fobs can be understood by a simple analytic model and provide insight into the redshift evolution of the obscuration. The simulations also show that for a given LAGN, fobs is always smaller (˜0.2-0.3) for a larger column density (NH ≥ 1023 cm-2). We also found cases that more than 70% of the solid angles can be covered by the fountain flows.

  13. Investigating the correlations between water coma emissions and active regions in comet 67P/ Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; Combi, Michael R.; Fougere, Nicolas; Rinaldi, Giovanna; VIRTIS Team

    2016-10-01

    Vibrational emission lines of H2O and CO2 at 2.67 and 4.27 μm, respectively, were identified by the VIRTIS spectrometer (Bockelée-Morvan et al., 2015; Migliorini et al., 2016; Fink et al., 2016) and mapped from the surface up to about 10 km altitude with a spatial resolution on the order of tens of meters per pixel (Migliorini et al., 2016).Data acquired in April 2015 with the VIRTIS spectrometer on board the Rosetta mission, provided information on the possible correlation between the H2O emission in the inner coma and the exposed water deposits detected in the Hapi region on the 67P/Churyumov-Gerasimenko surface (Migliorini et al., 2106; De Sanctis et al., 2015). Further bright spots attributed to exposed water ice have been identified in other regions by OSIRIS at visible wavelengths (Pommerol, et al., 2015) and confirmed in the infrared by VIRTIS-M in the Imothep region (Filacchione et al., 2016). The small dimensions of these icy spots - approximately 100x100 m (Filacchione et al., 2016) - and the relatively small amount of water ice (about 5%) make uncertain the correlation with the strong emissions in the coma.However, VIRTIS data show that the distribution of jet-like emissions seems to follow the distribution of cliffs and exposed areas identified in the North hemisphere with OSIRIS camera (Vincent et al., 2015). These areas are mainly concentrated in correspondence of comet's rough terrains, while a lack of active regions is observed in the comet's neck. Nevertheless, strong H2O emission is observed above the neck with VIRTIS. This might be a consequence of gas jets that are originated in the surrounding of the neck but converging towards the neck itself. This gaseous activity is the main driver of the dust upwelling (Migliorini et al, 2016; Rinaldi et al., in preparation)In this paper, we investigate the relationship between H2O vapour observed with VIRTIS within 5 km from the 67P/C-G nucleus and the exposed regions identified by OSIRIS on the surface

  14. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    PubMed

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells.

  15. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  16. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions.

    PubMed

    Che, H C; Zhang, X Y; Wang, Y Q; Zhang, L; Shen, X J; Zhang, Y M; Ma, Q L; Sun, J Y; Zhang, Y W; Wang, T T

    2016-04-14

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  17. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    NASA Astrophysics Data System (ADS)

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-04-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate.

  18. Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions

    PubMed Central

    Che, H. C.; Zhang, X. Y.; Wang, Y. Q.; Zhang, L.; Shen, X. J.; Zhang, Y. M.; Ma, Q. L.; Sun, J. Y.; Zhang, Y. W.; Wang, T. T.

    2016-01-01

    To better understand the cloud condensation nuclei (CCN) activation capacity of aerosol particles in different pollution conditions, a long-term field experiment was carried out at a regional GAW (Global Atmosphere Watch) station in the Yangtze River Delta area of China. The homogeneity of aerosol particles was the highest in clean weather, with the highest active fraction of all the weather types. For pollution with the same visibility, the residual aerosol particles in higher relative humidity weather conditions were more externally mixed and heterogeneous, with a lower hygroscopic capacity. The hygroscopic capacity (κ) of organic aerosols can be classified into 0.1 and 0.2 in different weather types. The particles at ~150 nm were easily activated in haze weather conditions. For CCN predictions, the bulk chemical composition method was closer to observations at low supersaturations (≤0.1%), whereas when the supersaturation was ≥0.2%, the size-resolved chemical composition method was more accurate. As for the mixing state of the aerosol particles, in haze, heavy haze, and severe haze weather conditions CCN predictions based on the internal mixing assumption were robust, whereas for other weather conditions, predictions based on the external mixing assumption were more accurate. PMID:27075947

  19. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  20. Landslides and impacts on comets.

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek

    2016-07-01

    The recent landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 106 - 108 Pa. We considered a simple model of two spheres (with radius 1400 m each) connected by cylinder (with radius of 200 m and length of 200 m). Density is 470 kg m-3. This shape corresponds approximately to shape of some comets. A few vibration modes are possible. In present research we consider 3 modes: bending, lengthening-shortening along axis of symmetry, and torsion. Let assume that comets are hit by small meteoroid of the mass of 1 kg and velocity 20 km s-1. The maximum values of acceleration of the surface resulting from this impact are given in Table 1. Note that these values are higher than acceleration of the gravity of the comet. Consequently, these vibrations could be an important factor of surface evolution, e.g. they could trigger landslides. It could be alternative mechanism to that presented in [4] (i.e. fluidization). Acknowledgement: The research is partly supported by Polish National Science Centre (decision 2014/15/B/ST 10/02117) References [1] T. Spohn, J. Knollenberg, A. J. Ball, M. Ba-naszkiewicz, J. Benkhoff, M. Grott, J. Gry-gorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K. J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin. (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov- Gera-simenko Science 31 July 2015: Vol. 349 no. 6247 DOI: 10.1126/science.aab0464 [2] Reuter B. (2013) On how to measure snow mechanical properties relevant to slab avalanche release. International Snow Science Workshop Grenoble - Chamonix Mont-Blanc - 2013 007 [3] Ball A.J. (1997) Ph. D. Thesis: Measuring Physical Properties at the Surface of a Comet Nu-cleus, Univ.of Kent U.K. [4] Belton M. J.S., Melosh J. (2009). Fluidization and multiphase transport of

  1. A census of gas outflows in type 2 active galactic nuclei

    SciTech Connect

    Bae, Hyun-Jin; Woo, Jong-Hak E-mail: woo@astro.snu.ac.kr

    2014-11-01

    We perform a census of ionized gas outflows using a sample of ∼23,000 type 2 active galactic nuclei (AGNs) out to z ∼ 0.1. By measuring the velocity offset of narrow emission lines, i.e., [O III] λ5007 and Hα, with respect to the systemic velocity measured from the stellar absorption lines, we find that 47% of AGNs display an [O III] line-of-sight velocity offset ≥ 20 km s{sup –1}. The fraction of the [O III] velocity offset in type 2 AGNs is comparable to that in type 1 AGNs after considering the projection effect. AGNs with a large [O III] velocity offset preferentially have a high Eddington ratio, implying that the detected velocity offsets are related to black hole activity. The distribution of the host galaxy inclination is clearly different between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the combined model of the biconical outflow and dust obscuration. In addition, for ∼3% of AGNs, [O III] and Hα show comparable large velocity offsets, indicating a more complex gas kinematics than decelerating outflows in a stratified narrow-line region.

  2. ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Li, Yan-Rong; Wang, Jian-Min; Qiu, Jie; Cheng, Cheng

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  3. Galaxy and Mass Assembly (GAMA): active galactic nuclei in pairs of galaxies

    NASA Astrophysics Data System (ADS)

    Gordon, Yjan A.; Owers, Matt S.; Pimbblet, Kevin A.; Croom, Scott M.; Alpaslan, Mehmet; Baldry, Ivan K.; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Conselice, Christopher J.; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M.; Gunawardhana, Madusha L. P.; Loveday, Jonathan; Taylor, Edward N.; Wang, Lingyu

    2017-03-01

    There exist conflicting observations on whether or not the environment of broad- and narrow-line active galatic nuclei (AGN) differ and this consequently questions the validity of the AGN unification model. The high spectroscopic completeness of the Galaxy and Mass Assembly (GAMA) survey makes it ideal for a comprehensive analysis of the close environment of galaxies. To exploit this, and conduct a comparative analysis of the environment of broad- and narrow-line AGN within GAMA, we use a double-Gaussian emission line fitting method to model the more complex line profiles associated with broad-line AGN. We select 209 type 1 (i.e. unobscured), 464 type 1.5-1.9 (partially obscured), and 281 type 2 (obscured) AGN within the GAMA II data base. Comparing the fractions of these with neighbouring galaxies out to a pair separation of 350 kpc h-1 and Δz < 0.012 shows no difference between AGN of different type, except at separations less than 20 kpc h-1 where our observations suggest an excess of type 2 AGN in close pairs. We analyse the properties of the galaxies neighbouring our AGN and find no significant differences in colour or the star formation activity of these galaxies. Further to this, we find that Σ5 is also consistent between broad- and narrow-line AGN. We conclude that the observations presented here are consistent with AGN unification.

  4. CAN WE REPRODUCE THE X-RAY BACKGROUND SPECTRAL SHAPE USING LOCAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Gandhi, Poshak

    2013-06-20

    The X-ray background (XRB) is due to the aggregate of active galactic nuclei (AGNs), which peak in activity at z {approx} 1 and is often modeled as the sum of different proportions of unabsorbed, moderately, and heavily absorbed AGN. We present the summed spectrum of a complete sample of local AGN (the Northern Galactic Cap of the 58 month Swift/BAT catalog, z < 0.2) using 0.4-200 keV data and directly determine the different proportions of unabsorbed, moderately and heavily absorbed AGN that make up the summed spectrum. This stacked low redshift AGN spectrum is remarkably similar in shape to the XRB spectrum (when shifted to z {approx} 1), but the observed proportions of different absorption populations differ from most XRB synthesis models. AGN with Compton-thick absorption account for only {approx}12% of the sample, but produce a significant contribution to the overall spectrum. We confirm that Compton reflection is more prominent in moderately absorbed AGN and that the photon index differs intrinsically between unabsorbed and absorbed AGN. The AGN in our sample account for only {approx}1% of the XRB intensity. The reproduction of the XRB spectral shape suggests that strong evolution in individual AGN properties is not required between z {approx} 0 and 1.

  5. NGC 5252: a pair of radio-emitting active galactic nuclei?

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong; Yang, Jun; Paragi, Zsolt; Liu, Xiang; An, Tao; Bianchi, Stefano; Ho, Luis C.; Cui, Lang; Zhao, Wei; Wu, Xiaocong

    2017-01-01

    The X-ray source CXO J133815.6+043255 has counterparts in the UV, optical, and radio bands. Based on the multiband investigations, it has been recently proposed by Kim et al. as a rarely seen off-nucleus ultraluminous X-ray (ULX) source with a black hole mass of ≥104 M⊙ in the nearby Seyfert galaxy NGC 5252. To explore its radio properties at very high angular resolution, we performed very long-baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.7 GHz. We find that the radio counterpart is remarkably compact among the known ULXs. It does not show a resolved structure with a resolution of a few milliarcsecond (mas), and the total recovered flux density is comparable to that measured in earlier sub-arcsecond-resolution images. The compact radio structure, the relatively flat spectrum, and the high radio luminosity are consistent with a weakly accreting supermassive black hole in a low-luminosity active galactic nucleus. The nucleus of NGC 5252 itself has similar radio properties. We argue that the system represents a relatively rare pair of active galactic nuclei, where both components emit in the radio.

  6. Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Wong, J. P. S.; Lee, A. K. Y.; Slowik, J. G.; Cziczo, D. J.; Leaitch, W. R.; Macdonald, A.; Abbatt, J. P. D.

    2011-11-01

    Changes in the hygroscopicity of ambient biogenic secondary organic aerosols (SOA) due to controlled OH oxidation were investigated at a remote forested site at Whistler Mountain, British Columbia during July of 2010. Coupled photo-oxidation and cloud condensation nuclei (CCN) experiments were conducted on: i) ambient particles exposed to high levels of gas-phase OH, and ii) the water-soluble fraction of ambient particles oxidized by aqueous-phase OH. An Aerodyne Aerosol Mass Spectrometer (AMS) monitored the changes in the chemical composition and degree of oxidation (O:C ratio) of the organic component of ambient aerosol due to OH oxidation. The CCN activity of size-selected particles was measured to determine the hygroscopicity parameter ($\\kappa$org,CCN) for particles of various degrees of oxygenation. In both cases, the CCN activity of the oxidized material was higher than that of the ambient particles. In general, $\\kappa$org,CCN of the aerosol increases with its O:C ratio, in agreement with previous laboratory measurements.

  7. The Complete Infrared View of Active Galactic Nuclei from the 70 Month Swift/BAT Catalog

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kohei; Ricci, Claudio; Ueda, Yoshihiro; Matsuoka, Kenta; Toba, Yoshiki; Kawamuro, Taiki; Trakhtenbrot, Benny; Koss, Michael J.

    2017-01-01

    We systematically investigate the near- to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra-hard X-ray (14–195 keV) survey. Out of 606 non-blazar AGNs in the Swift/BAT 70 month catalog at high galactic latitudes of | b| > 10^\\circ , we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR luminosities over five orders of magnitude (41< {log}{L}14{--195}< 46). Informed by previous measurements of the intrinsic spectral energy distribution of AGNs, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low star-formation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent unified scheme. We also show that the completeness of the WISE color–color cut in selecting Swift/BAT AGNs increases strongly with 14–195 keV luminosity.

  8. Alignments Of Black Holes with Their Warped Accretion Disks and Episodic Lifetimes of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2015-05-01

    Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

  9. MID- AND FAR-INFRARED PROPERTIES OF A COMPLETE SAMPLE OF LOCAL ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ichikawa, Kohei; Ueda, Yoshihiro; Terashima, Yuichi; Oyabu, Shinki; Gandhi, Poshak; Nakagawa, Takao; Matsuta, Keiko

    2012-07-20

    We investigate the mid- (MIR) to far-infrared (FIR) properties of a nearly complete sample of local active galactic nuclei (AGNs) detected in the Swift/Burst Alert Telescope (BAT) all-sky hard X-ray (14-195 keV) survey, based on the cross correlation with the AKARI infrared survey catalogs complemented by those with Infrared Astronomical Satellite and Wide-field Infrared Survey Explorer. Out of 135 non-blazer AGNs in the Swift/BAT nine-month catalog, we obtain the MIR photometric data for 128 sources either in the 9, 12, 18, 22, and/or 25 {mu}m band. We find good correlation between their hard X-ray and MIR luminosities over three orders of magnitude (42 < log {lambda}L{sub {lambda}}(9, 18 {mu}m) < 45), which is tighter than that with the FIR luminosities at 90 {mu}m. This suggests that thermal emission from hot dusts irradiated by the AGN emission dominate the MIR fluxes. Both X-ray unabsorbed and absorbed AGNs follow the same correlation, implying isotropic infrared emission, as expected in clumpy dust tori rather than homogeneous ones. We find excess signals around 9 {mu}m in the averaged infrared spectral energy distribution from heavy obscured 'new type' AGNs with small scattering fractions in the X-ray spectra. This could be attributed to the polycyclic aromatic hydrocarbon emission feature, suggesting that their host galaxies have strong starburst activities.

  10. The different neighbours around Type-1 and Type-2 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Villarroel, Beatriz; Korn, Andreas J.

    2014-06-01

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super massive black hole. To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles. This model--called AGN unification--has been successful in predicting, for example, the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged and it is debatable whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS; ref. ) Data Release 7 (DR7; ref. ) and Galaxy Zoo. We find strong differences in the colour and AGN activity of the neighbours to Type-1 and Type-2 AGN and in how the fraction of AGN residing in spiral hosts changes depending on the presence or not of a neighbour. These findings suggest that an evolutionary link between the two major AGN types might exist.

  11. Tracing the Physical Conditions in Active Galactic Nuclei with Time-Dependent Chemistry

    NASA Astrophysics Data System (ADS)

    Meijerink, Rowin; Spaans, Marco; Kamp, Inga; Aresu, Giambattista; Thi, Wing-Fai; Woitke, Peter

    2013-10-01

    We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+, and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+, and H3O+; and HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in the active galactic nucleus (AGN). The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 104 years. Through Atacama large millimeter array observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the supermassive black hole accretion rate. Strong evolutionary trends, on time scales of 104-108 years are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time-dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.

  12. 3200 Phaethon, Asteroid or Comet Nucleus?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Benkhoff, Johannes

    2015-08-01

    Physico-chemical modeling is central to understand the important physical processes in small solar system bodies. We have developed a computer simulation, SUISEI, that includes the physico-chemical processes relevant to comets within a global modeling framework. Our goals are to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a 3-D model of gas and heat transport in porous sub-surface layers in the interior of the nucleus.We present results on the application of SUISEI to the near-Sun object, Phaethon. Discovered in 1983 and classified as an asteroid, it has recently exhibited an active dust coma. Phaethon has long been associated as the source of the Geminids meteor shower so the dust activity provides a clear link to the meteor shower. The observed dust activity would traditionally lead to Phaethon being also classified as a comet (e.g., 2060-95P/Chiron, 133P/Elst-Pizarro). This is unusual since the orbit of Phaethon has a perihelion of 0.14 AU, resulting in surface temperatures of more than 1025K, much too hot for water ice or other volatiles to exist near the surface and drive the activity. This situation and others such as the “Active Asteroids” necessitates a revision of how we understand and classify these small asteroid-comet transition objects.We conclude the following for Phaethon:1. It is likely to contain relatively pristine volatiles in its interior despite repeated near perihelion passages of 0.14 AU during its history in its present orbit,2. Steady water gas fluxes at perihelion and throughout its orbit are insufficient to entrain the currently observed dust production,3. Thermal gradients into the surface as well as those caused by diurnal rotation are consistent with the mechanism of dust release due to thermal fracture,4. The initial large gas release during the first perihelion passage may be sufficient to produce enough dust to explain

  13. Active Galactic Nuclei In Cosmological Simulations - I. Formation of black holes and spheroids through mergers

    NASA Astrophysics Data System (ADS)

    Cattaneo, A.; Blaizot, J.; Devriendt, J.; Guiderdoni, B.

    2005-12-01

    This is the first paper of a series on the methods and results of the Active Galactic Nuclei In Cosmological Simulations (AGNICS) project, which incorporates the physics of active galactic nuclei (AGNs) into Galaxies In Cosmological Simulations (GalICS), a galaxy formation model that combines large cosmological N-body simulations of dark matter hierarchical clustering and a semi-analytic approach to the physics of the baryons. The project explores the quasar-galaxy link in a cosmological perspective, in response to growing observational evidence for a close relation between supermassive black holes (SMBHs) and spheroids. The key problems are the quasar fuelling mechanism, the origin of the black hole (BH)-to-bulge mass relation, the causal and chronological link between BH growth and galaxy formation, the properties of quasar hosts and the role of AGN feedback in galaxy formation. This first paper has two goals. The first is to describe the general structure and assumptions that provide the framework for the AGNICS series. The second is to apply AGNICS to studying the joint formation of SMBHs and spheroids in galaxy mergers. We investigate under what conditions this scenario can reproduce the local distribution of SMBHs in nearby galaxies and the evolution of the quasar population. AGNICS contains two star formation modes: a quiescent mode in discs and a starburst mode in proto-spheroids, the latter triggered by mergers and disc instabilities. Here we assume that BH growth is linked to the starburst mode. The simplest version of this scenario, in which the BH accretion rate and the star formation rate in the starburst component are simply related by a constant of proportionality, does not to reproduce the cosmic evolution of the quasar population. A model in which , where ρburst is the density of the gas in the starburst and ζ~= 0.5, can explain the evolution of the quasar luminosity function in B band and X-rays (taking into account the presence of obscured AGNs

  14. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  15. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  16. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  17. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  18. Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

    NASA Astrophysics Data System (ADS)

    Leng, C.; Zhang, Q.; Zhang, D.; Zhang, H.; Xu, C.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C.

    2014-07-01

    New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.

  19. The C shell, an active detector of UH nuclei. [in cosmic radiation

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Clinton, Robert R.

    1990-01-01

    This paper gives a brief description of the current status of the present program to develop a modular array of large electronic particle detectors. These modules were designed to study the UH nuclei in the cosmic radiation with eventual deployment on the Space Station or at a lunar base. This array would determine the abundances of elements from iron to the actinides and directly measure the energies of the lower energy nuclei. If the array was deployed on the Space Station, it would use the geomagnetic threshold to place limits on the higher energy nuclei, thus studying the energy spectrum up to about 10 GeV/n. Deployed at a lunar base, it would detect nuclei with energies down to the instrumental limit. Smaller versions could be flown on balloons to test and refine the modules.

  20. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement.

    PubMed

    Soechting, J F; Burton, J E; Onoda, N

    1978-08-18

    The relationship between unit activity in interpositus (8 units) and red nuclei (11 units) and the EMG activity of the biceps during intentional elbow flexion movements was investigated by means of cross-correlation analysis. This analysis showed that there were long-lasting (200 msec) changes in the probability of EMG activity both before and after a single spike in neurons which covaried with the motor output. The dependence of the activity of these units on sensory inputs was investigated by (1) calculating the quantitative relationship between angular displacement and unit activity and (2) recording unit activity after the sensory input from peripheral afferents had been eliminated by dorsal rhizotomy.

  1. Piecing together the X-ray background: bolometric corrections for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.

    2007-11-01

    The X-ray background can be used to constrain the accretion history of supermassive black holes (SMBHs) in active galactic nuclei (AGN), with the SMBH mass density related to the energy density due to accretion. A knowledge of the hard X-ray bolometric correction, κ2-10keV, is a vital input into these studies, as it allows us to constrain the parameters of the accretion responsible for SMBH growth. Earlier studies assumed a constant bolometric correction for all AGN, and more recent work has suggested accounting for a dependence on AGN luminosity. Until recently, the variations in the disc emission in the ultraviolet (UV) have not been taken into account in this calculation; we show that such variations are important by construction of optical-to-X-ray spectral energy distributions for 54 AGN. In particular, we use Far Ultraviolet Spectroscopic Explorer (FUSE) UV and X-ray data from the literature to constrain the disc emission as well as possible. We find evidence for very significant spread in the bolometric corrections, with no simple dependence on luminosity being evident. Populations of AGN such as narrow-line Seyfert 1 nuclei, radio-loud and X-ray-weak AGN may have bolometric corrections which differ systematically from the rest of the AGN population. We identify other sources of uncertainty including intrinsic extinction in the optical-UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between the bolometric correction and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15-25, and above which it is typically 40-70. We consider the potential-implied parallels with the low/hard and high/soft states in Galactic black hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multistate description of AGN

  2. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  3. Signatures of large-scale magnetic fields in active galactic nuclei jets: transverse asymmetries

    NASA Astrophysics Data System (ADS)

    Clausen-Brown, E.; Lyutikov, M.; Kharb, P.

    2011-08-01

    We investigate the emission properties that a large-scale helical magnetic field imprints on active galactic nuclei (AGN) jet synchrotron radiation. A cylindrically symmetric relativistic jet and large-scale helical magnetic field produce significant asymmetrical features in transverse profiles of fractional linear polarization, intensity, the Faraday rotation and spectral index. The asymmetrical features of these transverse profiles correlate with one another in ways specified by the handedness of the helical field, the jet viewing angle (θob) and the bulk Lorentz factor of the flow (Γ). Thus, these correlations may be used to determine the structure of the magnetic field in the jet. In the case of radio galaxies (θob˜ 1 rad) and a subclass of blazars with particularly small viewing angles (θob≪ 1/Γ), we find an edge-brightened intensity profile that is similar to that observed in the radio galaxy M87. We present observations of the AGNs 3C 78 and NRAO 140 that display the type of transverse asymmetries that may be produced by large-scale helical magnetic fields.

  4. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  5. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  6. A multizone model for composite disk-corona structure and spectral formation in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Shimura, Toshiya; Mineshige, Shin; Takahara, Fumio

    1995-01-01

    We study a composite disk-corona structure in active galactic nuclei (AGN) by solving for radiative transfer, hydrostatic balance, and energy balance at each layer with a different vertical height. A key assumption is that a fraction f of total energy is dissipated in a corona with a Thomson optical depth of tauC, and a remaining fraction, 1-f, within a main body of the disk. As f increases, a two-phased structure grows with an abrupt temperature jump at the interface. As a result, the emergent spectrum varies from a blackbody-like spectrum to a power-law spectrum with a high-energy cutoff. The power-law index is insensitive to a mass of a central black hole, accretion rate, and tauC, and decreases with an increase of f, reaching approximately 0.9 for f approximately = 1. The cutoff energy (Ecutoff) is, on the other hand, related to tauC as tauC Ecutoff approximately = 90 keV. The radiative field is a blackbody at the midplane of the disk, but has a power-law energy distribution near the surface due to a reflection of high-energy photons emanating from the corona. The resultant spectra thus produce litle UV bumps. To account for the observed AGN spectra, therefore, we should consider more complicated situations such as a partial coverage of hot corona and an effect of absorption by heavy elements.

  7. First direct comparison of high and low ionization line kinematics in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.

    1995-01-01

    We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.

  8. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  9. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  10. Long-term variability of active galactic nuclei from the "Planck" catalog

    NASA Astrophysics Data System (ADS)

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-07-01

    A complete sample of 104 bright active galactic nuclei (AGNs) from the "Planck" catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.

  11. Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Lott, B.; Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.

    2015-03-01

    The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.

  12. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  13. Constraining black hole masses in low-accreting active galactic nuclei using X-ray spectra

    NASA Astrophysics Data System (ADS)

    Jang, I.; Gliozzi, M.; Hughes, C.; Titarchuk, L.

    2014-09-01

    In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BHs), can be reliably extended to estimate the mass of supermassive BHs accreting at a moderate to high level. Here we investigate the limits of applicability of this method to low-accreting active galactic nuclei (AGN), using a control sample with good-quality X-ray data and dynamically measured mass. For low-accreting AGN (LX/LEdd ≤ 10-4), because the basic assumption that the photon index positively correlates with the accretion rate no longer holds the X-ray scaling method cannot be used. Nevertheless, the inverse correlation in the Γ-LX/LEdd diagram, found in several low-accreting BHs and confirmed by this sample, can be used to constrain MBH within a factor of ˜10 from the dynamically determined values. We provide a simple recipe to determine MBH using solely X-ray spectral data, which can be used as a sanity check for MBH determination based on indirect optical methods.

  14. Obscured active galactic nuclei triggered in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; Le Floc'h, Emeric; Juneau, Stéphanie; da Cunha, Elisabete; Salvato, Mara; Civano, Francesca; Marchesi, Stefano; Gabor, J. M.; Ilbert, Olivier; Laigle, Clotilde; McCracken, H. J.; Hsieh, Bau-Ching; Capak, Peter

    2017-03-01

    We present a structural study of 182 obscured active galactic nuclei (AGNs) at z ≤ 1.5, selected in the Cosmic Evolution Survey field from their extreme infrared to X-ray luminosity ratio and their negligible emission at optical wavelengths. We fit optical to far-infrared spectral energy distributions and analyse deep Hubble Space Telescope imaging to derive the physical and morphological properties of their host galaxies. We find that such galaxies are more compact than normal star-forming sources at similar redshift and stellar mass, and we show that it is not an observational bias related to the emission of the AGN. Based on the distribution of their UVJ colours, we also argue that this increased compactness is not due to the additional contribution of a passive bulge. We thus postulate that a vast majority of obscured AGNs reside in galaxies undergoing dynamical compaction, similar to processes recently invoked to explain the formation of compact star-forming sources at high redshift.

  15. The effects of irradiation on cloud evolution in active galactic nuclei

    SciTech Connect

    Proga, Daniel; Smith, Daniel; Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-01-01

    We report on the first phase of a study of cloud irradiation. We study irradiation by means of numerical, two-dimensional, time-dependent radiation hydrodynamic simulations of a strongly irradiated cloud. We adopt a very simple treatment of the opacity, neglect photoionization and gravity, and focus instead on assessing the role of the type and magnitude of the opacity on the cloud evolution. Our main result is that even relatively dense clouds that are radiatively heated (i.e., with significant absorption opacity) do not move as a whole; instead, they undergo very rapid and major evolution in shape, size, and physical properties. In particular, the cloud and its remnants become optically thin in less than 1 sound-crossing time and before they can travel a significant distance (a few initial-cloud radii). We also find that a cloud can be accelerated as a whole under quite extreme conditions, i.e., the opacity must be dominated by scattering. However, the acceleration due to the radiation force is relatively small, and unless the cloud is optically thin, it quickly undergoes changes in size and shape. We discuss implications for the modeling and interpretation of the broad-line regions of active galactic nuclei.

  16. Upper Limits to the Diffuse Neutrino Emission from Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Bolesta, Jeffery W.

    1997-07-01

    In November of 1987 a muon detector dubbed the Short Prototype String (SPS) was successfully operated for about 30 hours in the deep ocean approximately 35 km west of the big island of Hawaii. The original purpose of the experiment was to demonstrate the technical feasibility of conducting neutrino astronomy in the deep ocean, and to serve as the prototype to the DUMAND experiment. Hence, the data were originally analyzed to measure the deep ocean flux of atmospheric muons as a proof of concept. The more recent theoretical investigations of neutrino production in Active Galactic Nuclei (AGN) has motivated a search of the data for the unique signature of neutrino-induced particle cascades. The optical properties of the deep ocean allows for surprisingly large detection volumes that grow with incident neutrino energy. It is found through Monte Carlo simulation that the fiducial mass for this type of search is ~7 × 106 tons of water at incident neutrino energies of 1 PeV (1015eV). This results in an exposure of 19.2 kton-years (kty) at this energy for 24 hours of operation. No evidence for neutrino-induced cascades was found in ~20 hours of detector livetime. This leads to the most stringent limits of AGN neutrino fluxes above the PeV scale yet published.

  17. DETECTING ACTIVE GALACTIC NUCLEI USING MULTI-FILTER IMAGING DATA. II. INCORPORATING ARTIFICIAL NEURAL NETWORKS

    SciTech Connect

    Dong, X. Y.; De Robertis, M. M.

    2013-10-01

    This is the second paper of the series Detecting Active Galactic Nuclei Using Multi-filter Imaging Data. In this paper we review shapelets, an image manipulation algorithm, which we employ to adjust the point-spread function (PSF) of galaxy images. This technique is used to ensure the image in each filter has the same and sharpest PSF, which is the preferred condition for detecting AGNs using multi-filter imaging data as we demonstrated in Paper I of this series. We apply shapelets on Canada-France-Hawaii Telescope Legacy Survey Wide Survey ugriz images. Photometric parameters such as effective radii, integrated fluxes within certain radii, and color gradients are measured on the shapelets-reconstructed images. These parameters are used by artificial neural networks (ANNs) which yield: photometric redshift with an rms of 0.026 and a regression R-value of 0.92; galaxy morphological types with an uncertainty less than 2 T types for z ≤ 0.1; and identification of galaxies as AGNs with 70% confidence, star-forming/starburst (SF/SB) galaxies with 90% confidence, and passive galaxies with 70% confidence for z ≤ 0.1. The incorporation of ANNs provides a more reliable technique for identifying AGN or SF/SB candidates, which could be very useful for large-scale multi-filter optical surveys that also include a modest set of spectroscopic data sufficient to train neural networks.

  18. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  19. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.-Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L.

    2016-12-01

    We provide a novel, unifying physical interpretation on the origin, average shape, scatter, and cosmic evolution for the main sequences of star-forming galaxies and active galactic nuclei (AGNs) at high redshift z≳ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent star formation rate functions based on the latest UV/far-IR data from HST/Herschel, and related statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time-coordinated processes.

  20. A Simple test for the existence of two accretion modes in active galactic nuclei

    SciTech Connect

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.

  1. Ultraviolet and X-ray variability of active galactic nuclei with Swift

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Fabian, A. C.

    2017-01-01

    We analyse a sample of 21 active galactic nuclei using data from the Swift satellite to study the variability properties of the population in the X-ray, UV and optical band. We find that the variable part of the UV-optical emission has a spectrum consistent with a power law, with an average index of -2.21 ± 0.13, as would be expected from central illumination of a thin disc (index of -7/3). We also calculate the slope of a power law from UV to X-ray variable emission, αOX, Var; the average for this sample is αOX, Var = -1.06 ± 0.04. The anticorrelation of αOX with the UV luminosity, LUV, previously found in the average emission is also present in the variable part: αOX, Var = ( - 0.177 ± 0.083)log (Lν, Var(2500 Å)) + (3.88 ± 2.33). Correlated variability between the emission in X-rays and UV is detected significantly for 9 of the 21 sources. All these cases are consistent with the UV lagging the X-rays, as would be seen if the correlated UV variations were produced by the reprocessing of X-ray emission. The observed UV lags are tentatively longer than expected for a standard thin disc.

  2. A SEARCH FOR FAST X-RAY VARIABILITY FROM ACTIVE GALACTIC NUCLEI USING SWIFT

    SciTech Connect

    Pryal, Matthew; Falcone, Abe; Stroh, Michael

    2015-03-20

    Blazars are a class of active galactic nuclei (AGNs) known for their very rapid variabilty in the high energy regions of the electromagnetic spectrum. Despite this known fast variability, X-ray observations have generally not revealed variability in blazars with rate doubling or halving timescales less than approximately 15 minutes. Since its launch, the Swift X-ray Telescope has obtained 0.2–10 keV X-ray data on 143 AGNs, including blazars, through intense target of opportunity observations that can be analyzed in a multiwavelength context and used to model jet parameters, particularly during flare states. We have analyzed this broad Swift data set in a search for short timescale variability in blazars that could limit the size of the emission region in the blazar jet. While we do find several low-significance possible flares with potential indications of rapid variability, we find no strong evidence for rapid (<15 minutes) doubling or halving times in flares in the soft X-ray energy band for the AGNs analyzed.

  3. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    SciTech Connect

    Hao Heng; Elvis, Martin; Civano, Francesca; Lanzuisi, Giorgio; Brusa, Marcella; Bongiorno, Angela; Lusso, Elisabeta; Zamorani, Gianni; Comastri, Andrea; Impey, Chris D.; Trump, Jonathan R.; Koekemoer, Anton M.; Le Floc'h, Emeric; Sanders, David; Salvato, Mara; Vignali, Cristian E-mail: elvis@cfa.harvard.ed

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energy distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.

  4. The First Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Celotti, A.; Charles, E.; Chekhtman, A.; Chen, A. W.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cotter, G.; Cutini, S.; D'Elia, V.; Dermer, C. D.; de Angelis, A.; de Palma, F.; De Rosa, A.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grandi, P.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Healey, S. E.; Hill, A. B.; Horan, D.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lavalley, C.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Malaguti, G.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piranomonte, S.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Rodriguez, A. Y.; Romani, R. W.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stawarz, Ł.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Taylor, G. B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Ubertini, P.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-05-01

    We present the first catalog of active galactic nuclei (AGNs) detected by the Large Area Telescope (LAT), corresponding to 11 months of data collected in scientific operation mode. The First LAT AGN Catalog (1LAC) includes 671 γ-ray sources located at high Galactic latitudes (|b|>10°) that are detected with a test statistic greater than 25 and associated statistically with AGNs. Some LAT sources are associated with multiple AGNs, and consequently, the catalog includes 709 AGNs, comprising 300 BL Lacertae objects, 296 flat-spectrum radio quasars, 41 AGNs of other types, and 72 AGNs of unknown type. We also classify the blazars based on their spectral energy distributions as archival radio, optical, and X-ray data permit. In addition to the formal 1LAC sample, we provide AGN associations for 51 low-latitude LAT sources and AGN "affiliations" (unquantified counterpart candidates) for 104 high-latitude LAT sources without AGN associations. The overlap of the 1LAC with existing γ-ray AGN catalogs (LBAS, EGRET, AGILE, Swift, INTEGRAL, TeVCat) is briefly discussed. Various properties—such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities—and their correlations are presented and discussed for the different blazar classes. We compare the 1LAC results with predictions regarding the γ-ray AGN populations, and we comment on the power of the sample to address the question of the blazar sequence.

  5. FINE STRUCTURAL ALTERATIONS OF INTERPHASE NUCLEI OF LYMPHOCYTES STIMULATED TO GROWTH ACTIVITY IN VITRO

    PubMed Central

    Tokuyasu, K.; Madden, S. C.; Zeldis, L. J.

    1968-01-01

    This report describes fine structural changes of interphase nuclei of human peripheral blood lymphocytes stimulated to growth by short-term culture with phytohemagglutinin. Chromatin is found highly labile, its changes accompanying the sequential increases of RNA and DNA synthesis which are known to occur in lymphocyte cultures. In "resting" lymphocytes, abundant condensed chromatin appears as a network of large and small aggregates. Early in the response to phytohemagglutinin, small aggregates disappear during increase of diffuse chromatin regions. Small aggregates soon reappear, probably resulting from disaggregation of large masses of condensed chromatin. Loosened and highly dispersed forms then appear prior to the formation of prophase chromosomes. The loosened state is found by radioautography to be most active in DNA synthesis. Small nucleoli of resting lymphocytes have concentric agranular, fibrillar, and granular zones with small amounts of intranucleolar chromatin. Enlarging interphase nucleoli change chiefly (1) by increase in amount of intranucleolar chromatin and alteration of its state of aggregation and (2) by increase in granular components in close association with fibrillar components. PMID:5699935

  6. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  7. Black hole mass estimation from X-ray variability measurements in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nikolajuk, M.; Papadakis, I. E.; Czerny, B.

    2004-05-01

    We propose a new method of estimation of the black hole masses in active galactic nuclei (AGN) based on the normalized excess variance, σ2nxs. We derive a relation between σ2nxs, the length of the observation, T, the light-curve bin size, Δt, and the black hole mass, assuming that (i) the power spectrum above the high-frequency break, νbf, has a slope of -2, (ii) the high-frequency break scales with black hole mass, (iii) the power-spectrum amplitude (in frequency-power space) is universal and (iv) σ2nxs is calculated from observations of length T < 1/νbf. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the MBH-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass, but the use of σ2nxs has the big advantage of being applicable to relatively low-quality data.

  8. Precise Masses of Black Holes in the Nuclei of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Braatz, James A., III; Kuo, C.; Greene, J.; Condon, J.; Schenker, M.; Reid, M.; Impellizzeri, V.; Henkel, C.; Zaw, I.; Lo, K. Y.

    2010-01-01

    Most elliptical and bulged spiral galaxies contain a nuclear black hole having a mass that correlates with the bulge velocity dispersion (σ). This M-σ relation suggests there is a strong link between the formation of the nuclear black hole and the formation of its host galaxy. The relationship, however, is poorly constrained for low-mass (< 107.5 solar mass) black holes, where there are few measurements. In addition, optically measured BH masses can be uncertain by a factor of a few. Water vapor masers in the nuclei of AGN can trace the rotation curve of gas directly in the black hole's sphere of influence, and provide precise black hole masses (uncertainty < 20%). We are mapping circumnuclear masers in nearby active galaxies with the goal of assembling a statistically meaningful set of maser-determined black hole masses. In addition to constraining the M-σ relation at low mass, our observations will also help calibrate optical measurements of black hole masses. Here we present recent VLBI maser maps and black hole masses measured as part of this program.

  9. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  10. Measurements of M-Shell Dielectronic Recombination for Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lukic, D.; Schnell, M.; Savin, D. W.; Mueller, A.; Schippers, S.; Schmidt, E. W.; Brandau, C.; Lestinsky, M.; Sprenger, F.; Wolf, A.

    2005-05-01

    XMM-Newton and Chandra spectroscopy of active galactic nuclei (AGNs) shows a rich spectrum of X-ray absorption lines. These AGN observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner shell photoexcitation of M-shell iron. Modeling these UTA features is currently limited by uncertainties in the low temperature DR data for M-shell iron. In order to resolve this issue and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Other commonly used laboratory methods for studying DR (e.g., electron beam ion traps [EBITs]) are unable to measure the relevant low energy DR resonances. Storage rings are currently the only laboratory method capable of studying low temperature DR. We are also providing our data to atomic theorist to benchmark their modern DR calculations. Our initial results indicate that state-of-the-art theory cannot reliably predict the needed low temperature M-shell DR rate coefficients. Here we will report our recent results for DR of Fe XIV and Fe XIII and plans for future work. This work is supported part by NASA, the German Federal Ministry for Education and Research, and the German Research Council.

  11. Changing-Look Active Galactic Nuclei With The Time Domain Spectroscopic Survey (TDSS)

    NASA Astrophysics Data System (ADS)

    Runnoe, J.

    2015-09-01

    Changing-look active galactic nuclei (CL-AGNs) present a unique opportunity to study AGN unification and physics. They are observed to transformation between the Type 1 and 2 classifications, supporting a picture in which both orientation to the observer and intrinsic spectral and luminosity evolution can play important roles in unification. In the same spirit, CL-AGNs also offer a way to study behavior brought about by abrupt changes in the accretion rate and may represent a previously unappreciated mode of quasar variability: prolonged "on-" and "off-states". CL-AGNs are uncommon, with only a handful identified to date, but several have been discovered in the Time Domain Spectroscopic Survey (TDSS), and these are likely just the tip of the iceberg. The TDSS offers a promising way of discovering substantial numbers of CL-AGN because it will revisit several thousand objects with previous spectra from the SDSS, many of which are selected based on substantial photometric variability. A statistical sample of these objects will allow us to move beyond the detailed case studies and start to understand the underlying physical mechanisms responsible for these dramatic spectral changes. I will describe our systematic search for CL-AGN in the TDSS and discuss what we have learned from a growing sample of these objects.

  12. The standard model and some new directions. [for scientific theory of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Rees, M. J.

    1992-01-01

    A 'standard' model of Active Galactic Nuclei (AGN), based upon a massive black hole surrounded by a thin accretion disk, is defined. It is argued that, although there is good evidence for the presence of black holes and orbiting gas, most of the details of this model are either inadequate or controversial. Magnetic field may be responsible for the confinement of continuum and line-emitting gas, for the dynamical evolution of accretion disks and for the formation of jets. It is further argued that gaseous fuel is supplied in molecular form and that this is responsible for thermal re-radiation, equatorial obscuration and, perhaps, the broad line gas clouds. Stars may also supply gas close to the black hole, especially in low power AGN and they may be observable in discrete orbits as probes of the gravitational field. Recent observations suggest that magnetic field, stars, dusty molecular gas and orientation effects must be essential components of a complete description of AGN. The discovery of quasars with redshifts approaching 5 is an important clue to the mechanism of galaxy formation.

  13. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  14. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-11-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific subclass of AGN for which an increased neutrino production is expected. This subclass contains AGN for which their high-energy jet is pointing toward Earth. Furthermore, we impose the condition that the jet is obscured by gas or dust surrounding the AGN. A method is presented to determine the total column density of the obscuring medium, which is probed by determining the relative x-ray attenuation with respect to the radio flux as obtained from the AGN spectrum. The total column density allows us to probe the interaction of the jet with the surrounding matter, which leads to additional neutrino production. Finally, starting from two different source catalogs, this method is applied to specify a sample of low redshift radio galaxies for which an increased neutrino production is expected.

  15. X-ray flux variability of active galactic nuclei observed using NuSTAR

    NASA Astrophysics Data System (ADS)

    Rani, Priyanka; Stalin, C. S.; Rakshit, Suvendu

    2017-04-01

    We present results of a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of four BL Lac objects (BL Lacs), three flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and eight narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65 per cent of the sources in our sample show significant variations on hourly time-scales. Using the Mann-Whitney U-test and the Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87 per cent), followed by BL Lacs (82 per cent), Seyfert galaxies (56 per cent) and FSRQs (23 per cent). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.

  16. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  17. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  18. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  19. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  20. LOW-MASS ACTIVE GALACTIC NUCLEI WITH RAPID X-RAY VARIABILITY

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2016-04-10

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median M{sub BH} = 1.2 × 10{sup 6} M{sub ⊙} and median L{sub bol}/L{sub Edd} = 0.44. The sample follows the M{sub BH}–σ{sub *} relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  1. Study of torus structure of low-luminosity active galactic nuclei with Suzaku

    NASA Astrophysics Data System (ADS)

    Kawamuro, T.

    2015-09-01

    We investigate the nature of the torus structure of eight low-luminosity active galactic nuclei (LLAGNs; NGC 1566, NGC 2655, NGC 3718, NGC 3998, NGC 4138, NGC 4941, NGC 5273 and NGC 5643) based on the broad band X-ray spectra (0.5-200 keV) obtained with Suzaku and Swift/BAT. Their X-ray luminosities are smaller than 1e 42 erg/s, while the Eddington ratios span a range from 1e-4 to 1e-2. No significant iron- Kalpha line is detected in the spectra of two LLAGNs with the lowest Eddington ratios (<3e-4) in our sample (NGC 3718 and NGC 3998), suggesting that their tori are little developed. The others show the iron-Kalpha equivalent widths larger than 100 eV. For these six LLAGNs, we utilize the Monte-Carlo based simulation code by Ikeda 09 to constrain the torus parameters by assuming a nearly spherical geometry. The torus solid- angles in three sources (NGC 2655, NGC 4138, and NGC 4941) are constrained to be Omega/2pi > 0.34, and the rest are found to have torus column-densities of logNrmH > 22.7. These results suggest that there are two types of LLAGNs, (1) those where the torus is very small and little mass accretion takes place, and (2) those where the torus is moderately developed and a sufficient amount of gas is supplied to the black hole.

  2. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  3. The SAMI Galaxy Survey: unveiling the nature of kinematically offset active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Schaefer, A. L.; Scott, N.; Fogarty, L. M. R.; Ho, I.-T.; Medling, A. M.; Leslie, S. K.; Bland-Hawthorn, J.; Bryant, J. J.; Croom, S. M.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J. S.; Owers, M. S.; Richards, S. N.; Sharp, R.

    2015-08-01

    We have observed two kinematically offset active galactic nuclei (AGN), whose ionized gas is at a different line-of-sight velocity to their host galaxies, with the Sydney-AAO Multi-object Integral field spectrograph (SAMI). One of the galaxies shows gas kinematics very different from the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionized gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but integral field spectroscopy or other data are required to determine their true nature.

  4. Jet signatures of black holes: From Sgr A* to active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Eckart, A.; Lämmerzahl, C.; Roland, J.; Brockamp, M.; Hackmann, E.; Kunz, J.; Macias, A.; Malchow, R.; Sabha, N.; Shahzamanian, B.

    2015-06-01

    Detailed and long-term VLBI (Very Long Baseline Interferometry) studies of the variable jets of supermassive black holes helps us to understand the emission processes of these fascinating phenomena. When observed and traced precisely, jet component kinematics reveals details about the potential motion of the jet base. Following this motion over decades with VLBI monitoring reveals - in some cases - the signatures of precession. While several processes can cause precession, the most likely cause seems to be a supermassive binary black hole in the central region of the AGN. We present examples of the analysis of high-resolution VLBI observations which provides us with insight into the physics of these objects and reveals evidence for the presence of double black hole cores. EHT (Event Horizon Telescope) observations will probably soon tell us more about the jet origin and launching mechanism at the very centers of nearby active galactic nuclei. An important question to be addressed by the EHT and related observations will be whether Sgr A\\star, the supermassive black hole in the Galactic Center, has a jet as well.

  5. Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Algaba, J. C.; Nakamura, M.; Asada, K.; Lee, S. S.

    2017-01-01

    In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.

  6. Submillimeter recombination lines in dust-obscured starbursts and active galactic nuclei

    SciTech Connect

    Scoville, N.; Murchikova, L.

    2013-12-10

    We examine the use of submillimeter (submm) recombination lines of H, He, and He{sup +} to probe the extreme ultraviolet (EUV) luminosity of starbursts (SBs) and active galactic nuclei (AGNs). We find that the submm recombination lines of H, He, and He{sup +} are in fact extremely reliable and quantitative probes of the EUV continuum at 13.6 eV to above 54.6 eV. At submm wavelengths, the recombination lines originate from low energy levels (n = 20-50). The maser amplification, which poses significant problems for quantitative interpretation of the higher n, radio frequency recombination lines, is insignificant. Lastly, at submm wavelengths, the dust extinction is minimal. The submm line luminosities are therefore directly proportional to the emission measures (EM{sub ION} = n{sub e} × n {sub ion} × volume) of their ionized regions. We also find that the expected line fluxes are detectable with ALMA and can be imaged at ∼0.''1 resolution in low redshift ultraluminous infrared galaxies. Imaging of the H I lines will provide accurate spatial and kinematic mapping of the star formation distribution in low-z IR-luminous galaxies, and the relative fluxes of the H I and He II recombination lines will strongly constrain the relative contributions of SBs and AGNs to the luminosity. The H I lines should also provide an avenue to constraining the submm dust extinction curve.

  7. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  8. The optical polarization signatures of fragmented equatorial dusty structures in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Marin, F.; Stalevski, M.

    2015-12-01

    If the existence of an obscuring circumnuclear region around the innermost regions of active galactic nuclei (AGN) has been observationally proven, its geometry remains highly uncertain. The morphology usually adopted for this region is a toroidal structure, but other alternatives, such as flared disks, can be a good representative of equatorial outflows. Those two geometries usually provide very similar spectroscopic signatures, even when they are modeled under the assumption of fragmentation. In this lecture note, we show that the resulting polarization signatures of the two models, either a torus or a flared disk, are quite different from each other. We use a radiative transfer code that computes the 2000 -- 8000 Å polarization of the two morphologies in a clumpy environment, and show that varying the sizes of a toroidal region has deep impacts onto the resulting polarization, while the polarization of flared disks is independent of the outer radius. Clumpy flared disks also produce higher polarization degrees (˜ 10 % at best) together with highly variable polarization position angles.

  9. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    SciTech Connect

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J.; Wehrle, Ann E.; Unwin, Stephen C.

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  10. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argirò, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Blümer, H.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Engel, R.; Epele, L.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fracchiolla, C. E.; Fulgione, W.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Herrero, R.; Gonçalves, P.; Gonçalves Do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; González, M.; Góra, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J.; Horneffer, A.; Horvat, M.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; Lebrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Lozano Bahilo, J.; García, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Manceñido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PȩKala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovánek, P.; Schüssler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; de Grande, N. Smetniansky; Smiałkowski, A.; Šmída, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vázquez, R. A.; Veberič, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    2008-04-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ˜6 × 1019 eV and AGN at a distance less than ˜75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen Zatsepin Kuz’min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  11. Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.; Beskin, V. S.; Kovalev, Y. Y.; Zheltoukhov, A. A.

    2015-03-01

    The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich-Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.

  12. Multi-wavelength polarimetry: a powerful tool to study the physics of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.

    2009-11-01

    Accreting supermassive black holes reside in a very complex environment and the inner structure and dynamics of active galactic nuclei (AGN) are not well understood yet. In this note, I point out the important role that multi-wavelength polarimetry can play in understanding AGN. In addition to spectroscopy, the measurement of the polarization percentage and position angle provides two more observables that are sensitive to the geometry and kinematics of emission and scattering regions. Furthermore, time-dependent polarimetry allows to measure spatial distances between emission regions and scattering mirrors by applying a reverberation technique. For radiation coming from the direct vicinity of the black hole, the polarization also contains information about the space-time metric. Spectropolarimetry observations of AGN are obtained in the radio, the infrared, the optical, and the ultraviolet wave bands and in the future they are going be available also in the X-ray range. To interpret these observations in a coherent way, it is necessary to study models that do not only reproduce the broad-band spectroscopy properties of AGN but also their multi-wavelength polarization signature. I present a first step towards such models for the case of radio-quiet AGN. The modeling reveals the optical/UV and X-ray polarization properties of the reprocessed radiation coming from the obscuring torus. The discussion about the implications of such models includes prospects for the up-coming technique of X-ray (spectro-)polarimetry.

  13. Physical properties of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ilić, Dragana; Popović, Luka Č.; Ciroi, Stefano; La Mura, Giovanni; Rafanelli, Piero

    2010-11-01

    We present here the study of the plasma in the broad line region (BLR) of active galactic nuclei (AGN). In order to probe the physical properties of the emitting plasma in the BLR we analyze the fluxes of the following broad emission lines (BELs): the hydrogen Balmer lines (Hα to Hɛ) and the helium lines from two subsequent ionization levels (He II λ4686 and He I λ5876). The BELs are obtained from the spectral synthesis photoionization code CLOUDY. We investigate these BELs in order to find conditions in the BLR where so-called Boltzmann-plot (BP) can be applied, and we found that in a number of modeled spectra it is working. We used these spectra to explore the dependence between plasma parameters (e.g. the averaged temperature, hydrogen density, etc.) and the ratio of He II λ4686 and He I λ5876 lines. In this progress report we present our investigation of the emitting plasma in the BLR using the most intensive broad spectral lines in AGN spectra.

  14. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  15. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko.

    PubMed

    De Sanctis, M C; Capaccioni, F; Ciarniello, M; Filacchione, G; Formisano, M; Mottola, S; Raponi, A; Tosi, F; Bockelée-Morvan, D; Erard, S; Leyrat, C; Schmitt, B; Ammannito, E; Arnold, G; Barucci, M A; Combi, M; Capria, M T; Cerroni, P; Ip, W-H; Kuehrt, E; McCord, T B; Palomba, E; Beck, P; Quirico, E

    2015-09-24

    Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.

  16. Nongravitational forces on comets

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.

    1976-01-01

    Methods are presented and discussed for determining the effects of nongravitational forces on the orbits of comets. These methods are applied to short-period and long-period comets. Results are briefly described.

  17. Flight of the Comet

    NASA Video Gallery

    This video clip was compiled from images taken by NASA's EPOXI mission spacecraft during its flyby of comet Hartley 2 on Nov. 4, 2010. During the encounter, the spacecraft and comet whisked past ea...

  18. Bye, Bye Comet

    NASA Video Gallery

    SOHO watched as a fairly bright comet dove towards the Sun in a white streak and was not seen again after its close encounter (May 10-11, 2011). The comet, probably part of the Kreutz family of com...

  19. Discovery of five low-luminosity active galactic nuclei at the centre of the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Park, Songyoun; Yang, Jun; Oonk, J. B. Raymond; Paragi, Zsolt

    2017-03-01

    According to optical stellar kinematics observations, an overmassive black hole candidate has been reported by van den Bosch et al. in the normal early-type galaxy NGC 1277. This galaxy is located in the central region of the Perseus cluster. Westerbork Synthesis Radio Telescope observations have shown that NGC 1277 and other early-type galaxies in the neighbourhood have radio counterparts. These nuclear radio sources have stable flux densities on a time-scale of years. In order to investigate the origin of the radio emission from these normal galaxies, we selected five sources (NGC 1270, NGC 1272, NGC 1277, NGC 1278 and VZw 339) residing in the central 10-arcmin region of the Perseus cluster and requested to re-correlate the data of an existing very long baseline interferometry (VLBI) experiment at these new positions. With the re-correlation data provided by the European VLBI Network (EVN), we imaged the five sources with a resolution of about 8 mas and detected all of them with a confidence level above 5σ at 1.4 GHz. They show compact structure and brightness temperatures above 107 K, which implies that the radio emission is non-thermal. We rule out ongoing nuclear star formation and conclude that these VLBI-detected radio sources are parsec-scale jet activity associated with the supermassive black holes in low-luminosity active galactic nuclei, although there are no clear signs of nuclear activity observed in the optical and infrared bands. Using the Fundamental Plane relation in black holes, we find no significant evidence for or against an extremely massive black hole hiding in NGC 1277.

  20. AGN III—primordial activity in the nuclei of disk galaxies with pseudobulges

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Ermash, A. A.

    2013-06-01

    Observational data on the evolution of quasars and galaxies of various morphological types and numerical simulations carried out by various groups are used to argue that low-redshift ( z < 0.5) quasars of types I and II, identified with massive elliptical and spiral galaxies with classical bulges, cannot be undergoing a single, late phase of activity; i.e., their activity cannot be "primordial," and must have "flared up" at multiple times in the past. This means that their appearance at low z is associated with recurrence of their activity—i.e., with major mergers of gas-rich galaxies (so-called wet major mergers)—since their lifetimes in the active phase do not exceed a few times 107 yrs. Only objects we have referred to earlier as AGN III, which are associated with the nuclei of isolated, late-type spiral galaxies with low-mass, rapidly-rotating "pseudobulges," could represent primordial AGNs at low z. The black holes in such galaxies have masses M BH < 107 M ⊙, and the peculiarities of their nuclear spectra suggest that they may have very high specific rotational angular momenta per unit mass. Type I narrow-line (widths less than 2000 km/s) Seyfert galaxies (NLSyIs) with pseudobulges and black-hole masses M BH < 107 M ⊙ may be characteristic representatives of the AGN III population. Since NLSyI galaxies have pseudobulges while Type I broad-line Seyfert galaxies have classical bulges, these two types of galaxies cannot represent different evolutionary stages of a single type of object. It is possible that the precursors of NLSyIs are "Population A" quasars.

  1. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  2. The comets of 1999

    NASA Astrophysics Data System (ADS)

    Shanklin, J.

    2009-12-01

    This report is the tenth in the annual series which gives for each comet: the discovery details, orbital data and general information, magnitude parameters and BAA Comet Section observations. Further details of the analysis techniques used in this report are given in an earlier paper. Ephemerides for the comets predicted to return during the year can be found in the BAA or ICQ Handbooks.

  3. The comets of 2000

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2010-08-01

    This report is the eleventh in the annual series which gives for each comet: the discovery details, orbital data and general information, magnitude parameters and BAA Comet Section observations. Further details of the analysis techniques used in this report are given in an earlier paper. Ephemerides for the comets predicted to return during the year can be found in the BAA or ICQ Handbooks.

  4. Newton and comets

    NASA Astrophysics Data System (ADS)

    Bork, Alfred

    1987-12-01

    The publication of Isaac Newton's ``notions about motion'' 300 years ago was a major moment in the history of science. In the period just before 1687 Newton's correspondence was much concerned with comets. In this period two bright comets were seen. These comets appear to have been a major stimulation to Newton's work on mechanics.

  5. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  6. Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns.

    PubMed

    Tellmann, Stefanie; Bludau, Sebastian; Eickhoff, Simon; Mohlberg, Hartmut; Minnerop, Martina; Amunts, Katrin

    2015-01-01

    The cerebellar nuclei are involved in several brain functions, including the modulation of motor and cognitive performance. To differentiate their participation in these functions, and to analyze their changes in neurodegenerative and other diseases as revealed by neuroimaging, stereotaxic maps are necessary. These maps reflect the complex spatial structure of cerebellar nuclei with adequate spatial resolution and detail. Here we report on the cytoarchitecture of the dentate, interposed (emboliform and globose) and fastigial nuclei, and introduce 3D probability maps in stereotaxic MNI-Colin27 space as a prerequisite for subsequent meta-analysis of their functional involvement. Histological sections of 10 human post mortem brains were therefore examined. Differences in cell density were measured and used to distinguish a dorsal from a ventral part of the dentate nucleus. Probabilistic maps were calculated, which indicate the position and extent of the nuclei in 3D-space, while considering their intersubject variability. The maps of the interposed and the dentate nuclei differed with respect to their interaction patterns and functions based on meta-analytic connectivity modeling and quantitative functional decoding, respectively. For the dentate nucleus, significant (p < 0.05) co-activations were observed with thalamus, supplementary motor area (SMA), putamen, BA 44 of Broca's region, areas of superior and inferior parietal cortex, and the superior frontal gyrus (SFG). In contrast, the interposed nucleus showed more limited co-activations with SMA, area 44, putamen, and SFG. Thus, the new stereotaxic maps contribute to analyze structure and function of the cerebellum. These maps can be used for anatomically reliable and precise identification of degenerative alteration in MRI-data of patients who suffer from various cerebellar diseases.

  7. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * < 3 × 109 M ⊙, z < 0.055) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages, and large specific star formation rates. These results indicate that great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  8. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    SciTech Connect

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-12-13

    The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. In this paper, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 1043 ergs s-1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  9. The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bufanda, E.; Hollowood, D.; Jeltema, T. E.; Rykoff, E. S.; Rozo, E.; Martini, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rooney, P.; Sanchez, E.; Santiago, B.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; DES Collaboration

    2017-03-01

    The correlation between active galactic nuclei (AGNs) and environment provides important clues to AGN fuelling and the relationship of black hole growth to galaxy evolution. In this paper, we analyse the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray-detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGNs with LX > 1043 erg s-1 in non-central, host galaxies with luminosity greater than 0.5L* from a total sample of 432 clusters in the redshift range of 0.1 < z < 0.95. Analysis of the present sample reveals that the AGN fraction in red-sequence cluster members has a strong positive correlation with redshift such that the AGN fraction increases by a factor of ∼8 from low to high redshift, and the fraction of cluster galaxies hosting AGN at high redshifts is greater than the low-redshift fraction at 3.6σ. In particular, the AGN fraction increases steeply at the highest redshifts in our sample at z > 0.7. This result is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. However, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.

  10. Binary Active Galactic Nuclei in Stripe 82: Constraints on Synchronized Black Hole Accretion in Major Mergers

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Wrobel, J. M.; Myers, A. D.; Djorgovski, S. G.; Yan, Lin

    2015-12-01

    Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method for identifying a large and uniform sample of binary AGNs because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kiloparsec-scale binaries over the 92 deg2 of the Sloan Digital Sky Survey Stripe 82 area with 2″-resolution Very Large Array (VLA) images. Here we present 0.″3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line of sight projections of radio structures from single AGNs. The four binary AGNs at z ˜ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between 10.3\\lt {{log}}({M}\\star /{M}⊙ )\\lt 11.5 and velocity dispersions between 120\\lt {σ }\\star \\lt 320 km s-1. The radio emission is compact (≲0.″4) and shows a steep spectrum (-1.8\\lt α \\lt -0.5) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs ≥slant {23}-8+15% of the time when a kiloparsec-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.

  11. DO MOST ACTIVE GALACTIC NUCLEI LIVE IN HIGH STAR FORMATION NUCLEAR CUSPS?

    SciTech Connect

    Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael

    2014-02-01

    We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are ''point-like'' at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M {sub ☉} yr{sup –1} using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ∼3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M {sub ☉} yr{sup –1} kpc{sup –2}) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M {sub ☉} yr{sup –1} kpc{sup –2})

  12. COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD

    SciTech Connect

    Smolcic, V.; Salvato, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Ciliegi, P.; Schinnerer, E.; Bondi, M.; BIrzan, L.; Carilli, C. L.; Elvis, M.; Impey, C. D.; Trump, J. R.; Koekemoer, A. M.; Merloni, A.; Scodeggio, M.; Paglione, T

    2009-05-01

    We explore the cosmic evolution of radio luminous active galactic nuclei (AGNs) with low radio powers (L {sub 1.4GHz} {approx}< 5 x 10{sup 25} W Hz{sup -1}) out to z = 1.3 using to date the largest sample of {approx}600 low-luminosity radio AGN at intermediate redshift drawn from the VLA-COSMOS survey. We derive the radio-luminosity function for these AGNs, and its evolution with cosmic time assuming two extreme cases: (1) pure luminosity and (2) pure density evolution. The former and latter yield L {sub *} {proportional_to} (1 + z){sup 0.8} {sup {+-}} {sup 0.1}, and {phi}{sub *} {proportional_to} (1 + z){sup 1.1} {sup {+-}} {sup 0.1}, respectively, both implying a fairly modest change in properties of low-radio-power AGNs since z = 1.3. We show that this is in stark contrast with the evolution of powerful (L {sub 1.4GHz} > 5 x 10{sup 25} W Hz{sup -1}) radio AGN over the same cosmic time interval, constrained using the 3CRR, 6CE, and 7CRS radio surveys by Willot et al. We demonstrate that this can be explained through differences in black hole fueling and triggering mechanisms, and a dichotomy in host galaxy properties of weak and powerful AGNs. Our findings suggest that high- and low-radio-power AGN activities are triggered in different stages during the formation of massive red galaxies. We show that weak radio AGN occur in the most massive galaxies already at z {approx} 1, and they may significantly contribute to the heating of their surrounding medium and thus inhibit gas accretion onto their host galaxies, as recently suggested for the 'radio mode' in cosmological models.

  13. The host galaxies of active galactic nuclei with powerful relativistic jets

    NASA Astrophysics Data System (ADS)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 < z < 1.0) radio-loud active galactic nuclei (AGN) with powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  14. A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wu Qingwen; Wang Dingxiong; Cao Xinwu; Ho, Luis C. E-mail: dxwang@hust.edu.cn E-mail: lho@obs.carnegiescience.edu

    2013-06-10

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of {approx}1%, the radio emission-a measure of the jet power-varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L{sub R} {proportional_to} L{sub X}{sup 0.6-0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  15. The relationship of active galactic nuclei & quasars with their local galaxy environment

    NASA Astrophysics Data System (ADS)

    Strand, Natalie Erin

    We explore how the local environment is related to properties of active galactic nuclei (AGNs) of various luminosities. Recent simulations and observations are converging on the view that the extreme luminosity of quasars, the brightest of AGNs, is fueled in major mergers of gas-rich galaxies. In such a picture, quasars, the highest luminosity AGNs, are expected to be located in regions with a higher density of galaxies on small scales where mergers are more likely to take place. However, in this picture, the activity observed in low-luminosity AGNs is due to secular processes that are less dependent on the local galaxy density. To test this hypothesis, we compare the local photometric galaxy density on kiloparsec scales around spectroscopic type I and type II quasars to the local density around lower-luminosity spectroscopic type I and type II AGNs. To minimize projection effects and evolution in the photometric galaxy sample we use to characterize AGN environments, we place our random control sample at the same redshift as our AGNs and impose a narrow redshift window around both the AGNs and control targets. Our results support these merger models for bright AGN origins. We find that the brightest sources have overdensities that increase on the smallest scales compared to dimmer sources. In addition, we investigate the nature of the quasar and AGN environments themselves and find that the increased overdensity of early-type galaxies in the environments of bright type I sources suggests that they are located in richer cluster environments than dim sources. We measure increased environment overdensity with increased quasar black hole mass, consistent with the well- known M DMH - M BH relationship, and find evidence for quenching in the environments of high accretion efficiency type I quasars.

  16. HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Treister, Ezequiel; Sanders, David B.; Urry, C. Megan; Cardamone, Carolin N.; Schawinski, Kevin

    2010-10-20

    We take advantage of the rich multiwavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Ms Chandra observations (the deepest X-ray data to date), in order to search for heavily obscured low-luminosity active galactic nuclei (AGNs) among infrared-luminous galaxies. In particular, we obtained a stacked rest-frame X-ray spectrum for samples of galaxies binned in terms of their IR luminosity or stellar mass. We detect a significant signal at E {approx} 1-8 keV, which we interpret as originating from a combination of emission associated with star formation processes at low energies combined with a heavily obscured AGN at E > 5 keV. We further find that the relative strength of this AGN signal decays with decreasing IR luminosity, indicating a higher AGN fraction for more luminous IR sources. Together, these results strongly suggest the presence of a large number of obscured AGNs in IR-luminous galaxies. Using samples binned in terms of stellar mass in the host galaxy, we find a significant excess at E = 6-7 keV for sources with M > 10{sup 11} M {sub sun}, consistent with a large obscured AGN population in high mass galaxies. In contrast, no strong evidence of AGN activity was found for less-massive galaxies. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, {approx}22%, occurs in heavily obscured systems that are not individually detected in even the deepest X-ray observations. There are also indications that the number of low-luminosity, heavily obscured AGNs does not evolve significantly with redshift, in contrast to the strong evolution seen in higher luminosity sources.

  17. How Complete is Mid-Infrared Selection of Active Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Grae Short, Miona; Diamond-Stanic, Aleks

    2015-01-01

    Essentially every galaxy hosts a supermassive black hole, and roughly 10% of those black holes are currently growing as active galactic nuclei (AGNs). Given the compelling evidence that galaxies and black holes co-evolve, there is strong motivation to study how black holes assemble their mass through cosmic time. However, this is challenging because a large fraction of black hole growth is enshrouded by gas and dust. Deep and wide surveys at X-ray and infrared wavelengths offer a powerful way to study the obscured AGN population, but an important caveat is that X-ray surveys are not complete for the most highly absorbed sources and infrared surveys are not able to distinguish low-luminosity AGNs from normal galaxies. To help address these outstanding issues and to analyze the completeness of mid-infrared AGN selection, we use Spitzer and WISE photometry to study the mid-infrared colors of a complete sample of local AGNs. The sample is drawn from the revised Shapley-Ames galaxy catalog and includes every galaxy in the sky brighter than B=13 that is known to host Seyfert activity. This sample is unique in its sensitivity to low-luminosity and highly obscured sources. Our main result is that most of these known AGNs would be classified as normal galaxies on the basis of their mid-infrared colors, implying that analogs to local Seyfert galaxies would not be identified as AGNs in existing surveys. We find that this a strong function of AGN luminosity, and we also present trends as a function of AGN obscuration, galaxy luminosity, and stellar mass. These results provide important insights into the AGN population that is missing from our census of black hole growth in the distant universe. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881. We also acknowledge support from The Grainger Foundation and from gifts made to the Department of Astronomy at UW-Madison.

  18. ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C. E-mail: vester@dark-cosmology.dk E-mail: peterson@astronomy.ohio-state.edu

    2015-03-01

    We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.

  19. Physical properties of FeII emission in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Marinello, M. A. O.; Rodríguez-Ardila, A.; Garcia-Rissman, A.

    2014-10-01

    Among the spectral lines emitted by the broad line region (BLR) in active galactic nuclei (AGN) the FeII emission is the most prominent one and therefore constitutes one of the most important contributors to the cooling of that region. In the near infra-red (NIR) the FeII emission is intense but free of blending effects opening a window to a more consistent analysis of that emission. With the aim of studying the FeII in the range 0.8-1.2 μ m in a sample of 21 AGNs we utilize a semi-empirical template obtained from IZw1, which is considered the prototype of FeII active galaxy emitter. That particular template reproduces accurately the FeII in IZw1 and it is now applied, by the first time in other AGNs. In this work we made a analysis of the width and intensity of the FeII lines in order to derive the most probable location of the emitting region and to study the formation mechanisms of that ion, respectively. We compare the width of the individual FeII lines with that of other lines emitted in BLR. Our results show that the FWHM of iron systematically approaches to that of OI and CaII and is considerably smaller than that of Hydrogen, confirming previous assumptions that the gas responsible for the FeII emission is the outer portion of the BLR. We correlate the strength of the NIR and optical iron lines to derive the relative contribution of the different mechanisms that produces that emission. We found that in all cases the Lyα fluorescence plays an important role.

  20. A Physical Link between Jet Formation and Hot Plasma in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Cao, Xinwu; Ho, Luis C.; Wang, Ding-Xiong

    2013-06-01

    Recent observations suggest that in black hole X-ray binaries jet/outflow formation is related to the hot plasma in the vicinity of the black hole, either in the form of an advection-dominated accretion flow at low accretion rates or in a disk corona at high accretion rates. We test the viability of this scenario for supermassive black holes using two samples of active galactic nuclei distinguished by the presence (radio-strong) and absence (radio-weak) of well-collimated, relativistic jets. Each is centered on a narrow range of black hole mass but spans a very broad range of Eddington ratios, effectively simulating in a statistical manner the behavior of a single black hole evolving across a wide spread in accretion states. Unlike the relationship between the radio and optical luminosity, which shows an abrupt break between high- and low-luminosity sources at an Eddington ratio of ~1%, the radio emission—a measure of the jet power—varies continuously with the hard X-ray (2-10 keV) luminosity, roughly as L_R \\propto L_X^{0.6{--}0.75}. This relation, which holds for both radio-weak and radio-strong active galaxies, is similar to the one seen in X-ray binaries. Jet/outflow formation appears to be closely linked to the conditions that give rise to the hot, optically thin coronal emission associated with accretion flows, both in the regime of low and high accretion rates.

  1. The Hubble Space Telescope (HST) observing campaign on comet Shoemaker-Levy 9.

    PubMed

    Weaver, H A; A'Hearn, M F; Arpigny, C; Boice, D C; Feldman, P D; Larson, S M; Lamy, P; Levy, D H; Marsden, B G; Meech, K J

    1995-03-03

    The Hubble Space Telescope made systematic observations of the split comet P/Shoemaker-Levy 9 (SL9) (P designates a periodic comet) starting in July 1993 and continuing through mid-July 1994 when the fragments plunged into Jupiter's atmosphere. Deconvolutions of Wide Field Planetary Camera images indicate that the diameters of some fragments may have been as large as approximately 2 to 4 kilometers, assuming a geometric albedo of 4 percent, but significantly smaller values (that is, < 1 kilometer) cannot be ruled out. Most of the fragments (or nuclei) were embedded in circularly symmetric inner comae from July 1993 until late June 1994, implying that there was continuous, but weak, cometary activity. At least a few nuclei fragmented into separate, condensed objects well after the breakup of the SL9 parent body, which argues against the hypothesis that the SL9 fragments were swarms of debris with no dominant, central bodies. Spectroscopic observations taken on 14 July 1994 showed an outburst in magnesium ion emission that was followed closely by a threefold increase in continuum emission, which may have been caused by the electrostatic charging and subsequent explosion of dust as the comet passed from interplanetary space into the jovian magnetosphere. No OH emission was detected, but the derived upper limit on the H2O production rate of approximately 10(27) molecules per second does not necessarily imply that the object was water-poor.

  2. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  3. Comets as collisional fragments of a primordial planetesimal disk

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.; Rickman, H.

    2015-11-01

    Context. The Rosetta mission and its exquisite measurements have revived the debate on whether comets are pristine planetesimals or collisionally evolved objects. Aims: We investigate the collisional evolution experienced by the precursors of current comet nuclei during the early stages of the solar system in the context of the so-called Nice model. Methods: We considered two environments for the collisional evolution: (1) the transplanetary planetesimal disk, from the time of gas removal until the disk was dispersed by the migration of the ice giants; and (2) the dispersing disk during the time that the scattered disk was formed. We performed simulations using different methods in the two cases to determine the number of destructive collisions typically experienced by a comet nucleus of 2 km radius. Results: In the widely accepted scenario, where the dispersal of the planetesimal disk occurred at the time of the Late Heavy Bombardment about 4 Gy ago, comet-sized planetesimals have a very low probability of surviving destructive collisions in the disk. On the extreme assumption that the disk was dispersed directly upon gas removal, a significant fraction of the planetesimals might have remained intact. However, these survivors would still bear the marks of many nondestructive impacts. Conclusions: The Nice model of solar system evolution predicts that typical km-sized comet nuclei are predominantly fragments resulting from collisions experienced by larger parent bodies. An important goal for future research is to investigate whether the observed properties of comet nuclei are compatible with such a collisional origin.

  4. Lightcurves and revised masses of the large particles at comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S.; Farnham, Tony L.; Hermalyn, Brendan; Bodewits, Dennis; A'Hearn, Michael F.

    2015-11-01

    Comet 103P/Hartley 2 is a hyperactive comet. Such comets have nuclei with surface areas comparable to the surface area required to sustain their water production rates, implying the surface is near 100% active. However, images of the nucleus and inner coma by the Deep Impact Flyby spacecraft show signficant localized activity, dominated by a single strong active area (A'Hearn et al. 2011, Science 332, 1396). This active area seems to be driven by carbon dioxide ice sublimation, which releases water ice into the coma (Protopapa et al. 2014, Icarus 238, 191). It has been hypothesized that this water-ice-rich material is the origin of the comet's hyperactivity, but this has not yet been definitively demonstrated.The Deep Imact spacecraft also imaged thousands of point sources surrounding the nucleus of the comet (A'Hearn et al. 2011). These sources are particles ejected by the comet, the largest of which is estimated to have a radius between 30 and 400 cm. The wide range in the radius estimate is due to the unknown photometric properties of the particles. If the particles are icy, they may contribute a significant fraction of the comet's water production rate (Kelley et al. 2013, Icarus 222, 634).To better elucidate the physical properties of the particles, we generated particle lightcurves, based on the identifications of Hermalyn et al. (2013, Icarus 222, 625) and a an independent (manual) particle search. We find no clear correlation with time or phase angle, suggesting the lightcurves are primarily driven by particle shape rather than sublimation, fragmentation, or phase effects. Three lightcurves are double-peaked, indicating rotation periods near 75 to 300 s. At least one other lightcurve suggests a rotation period of order 20 s.We also present corrections to the analysis of Kelley et al. (2013) that decrease the total large particle population mass estimates by two orders of magnitude. Despite the revision, the large particles may still account for the comet

  5. The seeding of life by comets.

    PubMed

    Greenberg, J M; Mendoza-Gomez, C X

    1992-01-01

    The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic

  6. The TRAPPIST comet survey

    NASA Astrophysics Data System (ADS)

    Jehin, E.; Opitom, C.; Manfroid, J.; Hutsemékers, D.; Gillon, M.

    2014-07-01

    distribution of several species among which OH, NH, CN, C2 and C3 as well as ions like CO+. The dust production rates (Afrho) and color of the dust are determined through four dust continuum bands (UC, BC, GC, RC). Such regular measurements are rare because of the lack of observing time on larger telescopes. Yet they are very valuable as they show how the gas production rate of each species evolves with respect to the distance to the Sun. Those observations allow to determine the composition of the comets and the chemical class to which they belong (rich or poor in carbon for instance [3]), possibly revealing the origin of those classes but also if there are some changes of the abundance ratios along the orbit (evolutionary effects). Indeed with half a dozen of comets observed each year --- and as long as possible along their orbit --- this program will provide a good statistical sample after a few years. We will present the results of this monitoring after three years of operations. Thanks to the way the telescope is operated, follow-up of split comets and of special outburst events is possible right after an alert is given and can bring important information on the nature of comets. In addition to providing the productions rates of the different species through a proper photometric calibration, image analysis can reveal coma features (jets, fans, tails), that can lead to the detection of active regions and measure the rotation period of the nucleus. The monitoring is also useful to assess the gas and dust activity of a given comet in order to prepare more detailed observations with larger telescopes. Such data can be obtained at any time under request. Finally a dozen of faint comets (V < 20) are monitored once a week through B, V, Rc, Ic filters and magnitudes and positions are sent to the MPC.

  7. Reality of comet nucleus.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.

  8. Composition, size and cloud condensation nuclei activity of biomass burning aerosol from northern Australian savannah fires

    NASA Astrophysics Data System (ADS)

    Mallet, Marc D.; Cravigan, Luke T.; Milic, Andelija; Alroe, Joel; Ristovski, Zoran D.; Ward, Jason; Keywood, Melita; Williams, Leah R.; Selleck, Paul; Miljevic, Branka

    2017-03-01

    The vast majority of Australia's fires occur in the tropical north of the continent during the dry season. These fires are a significant source of aerosol and cloud condensation nuclei (CCN) in the region, providing a unique opportunity to investigate the biomass burning aerosol (BBA) in the absence of other sources. CCN concentrations at 0.5 % supersaturation and aerosol size and chemical properties were measured at the Australian Tropical Atmospheric Research Station (ATARS) during June 2014. CCN concentrations reached over 104 cm-3 when frequent and close fires were burning - up to 45 times higher than periods with no fires. Both the size distribution and composition of BBA appeared to significantly influence CCN concentrations. A distinct diurnal trend in the proportion of BBA activating to cloud droplets was observed, with an activation ratio of 40 ± 20 % during the night and 60 ± 20 % during the day. BBA was, on average, less hygroscopic during the night (κ = 0. 04 ± 0.03) than during the day (κ = 0.07 ± 0.05), with a maximum typically observed just before midday. Size-resolved composition of BBA showed that organics comprised a constant 90 % of the aerosol volume for aerodynamic diameters between 100 and 200 nm. While this suggests that the photochemical oxidation of organics led to an increase in the hygroscopic growth and an increase in daytime activation ratios, it does not explain the decrease in hygroscopicity after midday. Modelled CCN concentrations assuming typical continental hygroscopicities produced very large overestimations of up to 200 %. Smaller, but still significant, overpredictions up to ˜ 100 % were observed using aerosol mass spectrometer (AMS)- and hygroscopicity tandem differential mobility analyser (H-TDMA)-derived hygroscopicities as well as campaign night and day averages. The largest estimations in every case occurred during the night, when the small variations in very weakly hygroscopic species corresponded to large

  9. ROTATION STATE OF COMET 103P/HARTLEY 2 FROM RADIO SPECTROSCOPY AT 1 mm

    SciTech Connect

    Drahus, Michal; Jewitt, David; Guilbert-Lepoutre, Aurelie; Waniak, Waclaw; Hoge, James; Lis, Dariusz C.; Yoshida, Hiroshige; Peng, Ruisheng; Sievers, Albrecht

    2011-06-10

    The nuclei of active comets emit molecules anisotropically from discrete vents. As the nucleus rotates, we expect to observe periodic variability in the molecular emission line profiles, which can be studied through millimeter/submillimeter spectroscopy. Using this technique we investigated the HCN atmosphere of comet 103P/Hartley 2, the target of NASA's EPOXI mission, which had an exceptionally favorable apparition in late 2010. We detected short-term evolution of the spectral line profile, which was stimulated by the nucleus rotation, and which provides evidence for rapid deceleration and excitation of the rotation state. The measured rate of change in the rotation period is +1.00 {+-} 0.15 minutes day{sup -1} and the period itself is 18.32 {+-} 0.03 hr, both applicable at the epoch of the EPOXI encounter. Surprisingly, the spin-down efficiency is lower by two orders of magnitude than the measurement in comet 9P/Tempel 1 and the best theoretical prediction. This secures rotational stability of the comet's nucleus during the next few returns, although we anticipate a catastrophic disruption from spin-up as its ultimate fate.

  10. Line-driven disc wind model for ultrafast outflows in active galactic nuclei - scaling with luminosity

    NASA Astrophysics Data System (ADS)

    Nomura, M.; Ohsuga, K.

    2017-03-01

    In order to reveal the origin of the ultrafast outflows (UFOs) that are frequently observed in active galactic nuclei (AGNs), we perform two-dimensional radiation hydrodynamics simulations of the line-driven disc winds, which are accelerated by the radiation force due to the spectral lines. The line-driven winds are successfully launched for the range of MBH = 106-9 M⊙ and ε = 0.1-0.5, and the resulting mass outflow rate (dot{M_w}), momentum flux (dot{p_w}), and kinetic luminosity (dot{E_w}) are in the region containing 90 per cent of the posterior probability distribution in the dot{M}_w-Lbol plane, dot{p}_w-Lbol plane, and dot{E}_w-Lbol plane shown in Gofford et al., where MBH is the black hole mass, ε is the Eddington ratio, and Lbol is the bolometric luminosity. The best-fitting relations in Gofford et al., d log dot{M_w}/d log {L_bol}˜ 0.9, d log dot{p_w}/d log {L_bol}˜ 1.2, and d log dot{E_w}/d log {L_bol}˜ 1.5, are roughly consistent with our results, d log dot{M_w}/d log {L_bol}˜ 9/8, d log dot{p_w}/d log {L_bol}˜ 10/8, and d log dot{E_w}/d log {L_bol}˜ 11/8. In addition, our model predicts that no UFO features are detected for the AGNs with ε ≲ 0.01, since the winds do not appear. Also, only AGNs with MBH ≲ 108 M⊙ exhibit the UFOs when ε ∼ 0.025. These predictions nicely agree with the X-ray observations. These results support that the line-driven disc wind is the origin of the UFOs.

  11. Active Galactic Nuclei Selected from GALEX Spectroscopy: The Ionizing Source Spectrum at z ~ 1

    NASA Astrophysics Data System (ADS)

    Barger, Amy J.; Cowie, Lennox L.

    2010-08-01

    We use a complete sample of Lyα-emission-line-selected active galactic nuclei (AGNs) obtained from nine deep blank fields observed with the grism spectrographs on the Galaxy Evolution Explorer (GALEX) satellite to measure the normalization and the spectral shape of the AGN contribution to the ionizing background (rest-frame wavelengths 700-900 Å) at z ~ 1. Our sample consists of 139 sources selected in the redshift range z = 0.65-1.25 in the near-ultraviolet (NUV; 2371 Å central wavelength) channel. The area covered is 8.2 deg2 to a NUV magnitude of 20.5 (AB) and 0.92 deg2 at the faintest magnitude limit of 21.8. The GALEX AGN luminosity function agrees well with those obtained using optical and X-ray AGN samples, and the measured redshift evolution of the ionizing volume emissivity is similar to that previously obtained by measuring the GALEX far-ultraviolet (FUV; 1528 Å central wavelength) magnitudes of an X-ray-selected sample. For the first time, we are able to construct the shape of the ionizing background at z ~ 1 in a fully self-consistent way. Based in part on data obtained from the Multimission Archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for Multimission Archive at STScI (MAST) for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening r