Science.gov

Sample records for active compounds present

  1. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    PubMed Central

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  2. In vitro chemo-preventive activities of hydroxytyrosol: the main phenolic compound present in extra-virgin olive oil.

    PubMed

    Rosignoli, Patrizia; Fuccelli, Raffaela; Sepporta, Maria Vittoria; Fabiani, Roberto

    2016-01-01

    The co-incubation in the culture medium with hydroxytyrosol [3,4-dihydroxyphenyl ethanol (3,4-DHPEA)], the main phenolic compound present in extra-virgin olive oil, and H2O2 reduces the oxidative DNA damage in peripheral blood mononuclear cells (PBMC). In this study we investigate, by the comet assay, the ability of 3,4-DHPEA to inhibit the H2O2 induced DNA damage when pre-incubated with PBMC and then removed before the exposure of cells to H2O2. Low doses of 3,4-DHPEA (10-100 μM) pre-incubated for 30 min with PBMC reduced the DNA damage induced by the treatment with H2O2 200 μM for 5 min at 4 °C. Prolonging the exposure time up to 6 h completely prevented the DNA damage. Furthermore we extensively analysed, by the MTT assay, the anti-proliferative activities of 3,4-DHPEA on breast (MDA and MCF-7), prostate (LNCap and PC3) and colon (SW480 and HCT116) cancer cell lines and correlated these effects with the H2O2 accumulation. The concentration of H2O2 in the culture medium was measured by the ferrous ion oxidation-xylenol orange method. The proliferation of all the cell lines was inhibited but at different levels: the prostate cancer cells were more resistant to the growth inhibition with respect to breast and colon cancer cells. The ability of the different cell lines to remove H2O2 from the culture medium was inversely correlated with their sensitivity to the anti-proliferative effect of 3,4-DHPEA. Therefore, 3,4-DHPEA may act as a chemopreventive agent acting on both initiation and promotion/progression phases of carcinogenesis. PMID:26469183

  3. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections.

    PubMed

    Chung, Yi-Ching; Hsieh, Feng-Chia; Lin, Ying-Ju; Wu, Tzong-Yuan; Lin, Cheng-Wen; Lin, Ching-Ting; Tang, Nou-Ying; Jinn, Tzyy-Rong

    2015-05-15

    The aim of this study was to identify the active ingredients responsible for the anti-EV71 activity produced by Salvia miltiorrhiza extracts. A pGS-EV71 IRES-based bicistronic reporter assay platform was used for rapid analysis of compounds that could specifically inhibit EV71 viral IRES-mediated translation. The analysis identified 2 caffeic acid derivatives, magnesium lithospermate B (MLB) and rosmarinic acid (RA), which suppressed EV71 IRES-mediated translation at concentrations of 30μg/ml. We also found that MLB and RA inhibited EV71 infection when they were added to RD cells during the viral absorption stage. MLB had a low IC50 value of 0.09mM and a high TI value of 10.52. In contrast, RA had an IC50 value of 0.50mM with a TI value of 2.97. MLB and RA (100µg/ml) also reduced EV71 viral particle production and significantly decreased VP1 protein production. We propose that these two derivatives inhibit EV71 viral entry into cells and viral IRES activity, thereby reducing viral particle production and viral RNA expression and blocking viral VP1 protein translation. This study provides useful information for the development of anti-EV71 assays and reagents by demonstrating a convenient EV71 IRES-based bicistronic assay platform to screen for anti-EV71 IRES activity, and also reports 2 compounds, MLB and RA, which are responsible for the anti-EV71 activity of S. miltiorrhiza. PMID:25773498

  4. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus.

    PubMed

    Gasparini, R; Amicizia, D; Lai, P L; Bragazzi, N L; Panatto, D

    2014-12-01

    In the first part of this overview, we described the life cycle of the influenza virus and the pharmacological action of the currently available drugs. This second part provides an overview of the molecular mechanisms and targets of still-experimental drugs for the treatment and management of influenza. Briefly, we can distinguish between compounds with anti-influenza activity that target influenza virus proteins or genes, and molecules that target host components that are essential for viral replication and propagation. These latter compounds have been developed quite recently. Among the first group, we will focus especially on hemagglutinin, M2 channel and neuraminidase inhibitors. The second group of compounds may pave the way for personalized treatment and influenza management. Combination therapies are also discussed. In recent decades, few antiviral molecules against influenza virus infections have been available; this has conditioned their use during human and animal outbreaks. Indeed, during seasonal and pandemic outbreaks, antiviral drugs have usually been administered in mono-therapy and, sometimes, in an uncontrolled manner to farm animals. This has led to the emergence of viral strains displaying resistance, especially to compounds of the amantadane family. For this reason, it is particularly important to develop new antiviral drugs against influenza viruses. Indeed, although vaccination is the most powerful means of mitigating the effects of influenza epidemics, antiviral drugs can be very useful, particularly in delaying the spread of new pandemic viruses, thereby enabling manufacturers to prepare large quantities of pandemic vaccine. In addition, antiviral drugs are particularly valuable in complicated cases of influenza, especially in hospitalized patients. To write this overview, we mined various databases, including Embase, PubChem, DrugBank and Chemical Abstracts Service, and patent repositories. PMID:26137785

  5. Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods.

    PubMed

    Stankevičius, Mantas; Akuņeca, Ieva; Jãkobsone, Ida; Maruška, Audrius

    2011-06-01

    Comparative analysis of radical scavenging and antioxidant activities of phenolic compounds present in everyday use spice plants was carried out by means of spectrophotometric and chromatographic methods. Six spice plant samples, namely onion (Allium cepa), parsley (Petroselinum crispum) roots and leaves, celery (Apium graveolens) roots and leaves and leaves of dill (Anethum graveolens) were analyzed. Total amount of phenolic compounds and radical scavenging activity (RSA) was the highest in celery leaves and dill extracts and was the lowest in celery roots. Comparing commonly used spectrophotometric analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) RSA of extracts with the results obtained using reversed-phase chromatographic separation with on-line post-column radical scavenging reaction detection, good correlation was obtained (R(2)=0.848). Studies using HPLC system with electrochemical detector showed that bioactive phytochemicals can be separated and antioxidant activities of individual compounds evaluated without the need of a complex HPLC system with reaction detector. The results obtained using electrochemical detection correlate with the RSA assayed using spectrophotometric method (R(2)=0.893). PMID:21504067

  6. Polyfluorinated Compounds: Past, Present, and Future

    EPA Science Inventory

    Interest and concern about polyfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), erfluorooctanoic acid (PFOA), and an increasing number of other related compounds is growing as more is learned about these ubiquitous anthropogenic substances. Many of these co...

  7. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Chiasson, F.

    2004-09-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5×10 7 CFU/ml). Active compounds were added at the concentration corresponding to {1}/{30} of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.

  8. Identification of the lactogenic compound present in beer.

    PubMed

    Sawagado, L; Houdebine, L M

    1988-01-01

    Lyophylized beer and extracts of plants used to prepare beer have been administered orally to mature virgin rats and intravenously to ewe. After four days of treatment, beta-casein estimated by a radioimmunoassay was present in the mammary glands of the rats to which beer or barley extracts were given. Injections of lyophilised beer, barley or malt extracts triggered the release of prolactin in ewe whereas hop extracts were inactive. The active compound present in beer barley and malt, was insolubilized in 50% ethanol and it is in the aqueous phase in chloroform extraction. The active preparation contained essentially polysaccharides. This suggests that the lactogenic principle belongs to this class of macromolecule. PMID:3382062

  9. Biologically active compounds from Aphyllophorales (polypore) fungi.

    PubMed

    Zjawiony, Jordan K

    2004-02-01

    This review describes biologically active natural products isolated from Aphyllophorales, many of which are known as polypores. Polypores are a large group of terrestrial fungi of the phylum Basdiomycota (basidiomycetes), and they along with certain Ascomycota are a major source of pharmacologically active substances. There are about 25 000 species of basidiomycetes, of which about 500 are members of the Aphyllophorales, a polyphyletic group that contains the polypores. Many of these fungi have circumboreal distributions in North America, Europe, and Asia and broad distributions on all inhabited continents and Africa; only a small number of the most common species with the most obvious fruiting bodies (basidiocarps) have been evaluated for biological activity. An estimated 75% of polypore fungi that have been tested show strong antimicrobial activity, and these may constitute a good source for developing new antibiotics. Numerous compounds from these fungi also display antiviral, cytotoxic, and/or antineoplastic activities. Additional important components of this vast arsenal of compounds are polysaccharides derived from the fungal cell walls. These compounds have attracted significant attention in recent years because of their immunomodulatory activities, resulting in antitumor effects. These high molecular weight compounds, often called biological response modifiers (BRM), or immunopotentiators, prevent carcinogenesis, show direct anticancer effects, and prevent tumor metastasis. Some of the protein-bound polysaccharides from polypores and other basidiomycetes have found their way to the market in Japan as anticancer drugs. Finally, numerous compounds with cardiovascular, phytotoxic, immunomodulatory, analgesic, antidiabetic, antioxidant, insecticidal, and nematocidal activities, isolated from polypores, are also presented. In fact many of the fungi mentioned in this paper have long been used in herbal medicine, including polypores such as Ganoderma lucidum

  10. Deepened Extinction following Compound Stimulus Presentation: Noradrenergic Modulation

    ERIC Educational Resources Information Center

    Janak, Patricia H.; Corbit, Laura H.

    2011-01-01

    Behavioral extinction is an active form of new learning involving the prediction of nonreward where reward has previously been present. The expression of extinction learning can be disrupted by the presentation of reward itself or reward-predictive stimuli (reinstatement) as well as the passage of time (spontaneous recovery) or contextual changes…

  11. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  12. A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.

    ERIC Educational Resources Information Center

    Hendrickson, James B.

    1985-01-01

    Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

  13. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  14. [Platinum compounds in cancer therapy--past, present, and future].

    PubMed

    Akaza, H; Saijo, N; Aiba, K; Isonishi, S; Ohashi, Y; Kawai, K; Konishi, T; Saeki, T; Sone, S; Tsukagoshi, S; Tsuruo, T; Noguchi, S; Miki, T; Mikami, O; Smith, M; Hoctin-Boes, G; Stribling, D

    2001-05-01

    Platinum cytotoxics play an important role globally in the management of solid tumours. Cisplatin sets the standard for efficacy in both regions with careful administration to reduce nephrotoxicity. Carboplatin is associated with neurotoxicity, but has become the leading product in the US due largely to the easier to manage toxicity profile. Both agents have been widely used in both registered and non registered indications and are frequently combined with other cytotoxics. In Japan, cisplatin has been used successfully at low doses in combination with 5-FU based regimens and appears to achieve a synergistic effect, but controlled data are not yet available. More recently oxaliplatin (Europe) and nedaplatin (in Japan) have been introduced, but their clinical roles in therapy have yet to be established. One of the limiting features of the first generation of platinum compounds is that a significant proportion of tumours develop cross resistance to platins due to either changes in uptake or excretion, intracellular detoxification or accelerated DNA repair. The forum discussed the possibility for the development of better new platinum compounds, A new platin agent which had lower toxicity and higher efficacy across a wide range of cancers without the development of resistance would be a significant step forward. If the tolerability profile was suitable, an oral formulation may improve the quality of life for patients but this must not be at the expense of efficacy. Even after the introduction of new target based drugs, platinum cytotoxics are likely to be used to reduce the tumour mass and in some cases can be expected to potentiate the effects of the new agents. In preclinical studies, ZD0473 has been shown to by-pass some major mechanisms of resistance and has the potential to achieve these objectives and is now being evaluated in clinical studies in both Japan and the West. PMID:11383210

  15. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  16. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  17. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  18. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    DOEpatents

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  19. Presentation Capability of Compound Displays for Pressure and Force

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Kato, Keitaro; Fujiwara, Takehiro; Mitsuya, Yasunaga; Miyaoka, Tetsu

    The authors developed advanced haptic displays capable of stimulating the muscles and tendons of the forearms and tactile receptors in fingers to investigate tactile and force effects on simultaneous presentation. Display A is comprised of a master hand with two sets of tactile display with a 4-by-6 array of stimulus pins driven by micro-actuators and an articulated manipulator. Display B is comprised of an articulated manipulator and an 8-by-8 array type tactile display developed in a previous paper. A series of experiments was performed using the above A and B displays to verify the presentation capability of this display type. In Experiment I, subjects grasped virtual pegs and judged their diameters. In Experiment II, subjects tried to insert the pegs into holes. In Experiment III, the crossed-angle of a comparison texture was adjusted to bring it as close as possible to the standard texture fixed during experiments. Since diameter discrimination and insertion precision of the virtual peg were increased by tactile information, tactile-force presentation was effective for peg-in-hole for relatively large clearance. On the other hand, recognition capability for virtual texture was not enhanced compared to a mouse-mounted tactile display previously developed. While the pressure display is effective for instant of touch and peg rotation representations, rotation tactile imaging is not always effective for texture recognitions.

  20. Antitumor activity of chemical modified natural compounds.

    PubMed

    de Oliveira, M M

    1991-01-01

    Search of new activity substances starting from chemotherapeutic agents, continuously appears in international literature. Perhaps this search has been done more frequently in the field of antitumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of super computers and emergence of computer net systems, will open new avenues to rational drug design" (Portoghese, P. S., J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this electronic devices, as traditional medicine has pointed out in many countries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inhibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplastic drugs will be examined, particularly those done by Brazilian researches. PMID:1842015

  1. Biologically active compounds of semi-metals.

    PubMed

    Rezanka, Tomás; Sigler, Karel

    2008-02-01

    Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance. PMID:17991498

  2. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    PubMed

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. PMID:27155370

  3. Prediction of antifungal activity of gemini imidazolium compounds.

    PubMed

    Pałkowski, Łukasz; Błaszczyński, Jerzy; Skrzypczak, Andrzej; Błaszczak, Jan; Nowaczyk, Alicja; Wróblewska, Joanna; Kożuszko, Sylwia; Gospodarek, Eugenia; Słowiński, Roman; Krysiński, Jerzy

    2015-01-01

    The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA), which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds. PMID:25961015

  4. Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    PubMed Central

    Pałkowski, Łukasz; Błaszczyński, Jerzy; Skrzypczak, Andrzej; Błaszczak, Jan; Nowaczyk, Alicja; Wróblewska, Joanna; Kożuszko, Sylwia; Gospodarek, Eugenia; Słowiński, Roman; Krysiński, Jerzy

    2015-01-01

    The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA), which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds. PMID:25961015

  5. Natural products as a resource for biologically active compounds

    SciTech Connect

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  6. Functional Group Composition of Semivolatile Compounds Present in Submicron Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Modini, R. L.; Iannarelli, R.; Rossi, M. J.; Takahama, S.

    2014-12-01

    Semivolatile organic compounds can partition between gas and particle phase in atmospheric conditions and can be volatilized and lost when the aerosol sampling is performed onto PTFE filters (Eatough et al., 1993). In this work, semivolatile compounds are collected onto carbon impregnated glass fiber-cellulose filters placed in series after an activated carbon denuder and PTFE filter which collects submicron aerosol particles of low volatility (Subramanian et al., 2004). The semivolatile compounds accumulated on the cellulose-glass fiber filters are desorbed by vacuum and injected into a stainless steel chamber that enables cold-trapping. The vapors in this chamber are condensed onto a low-temperature silicon window, and the composition of deposited vapors are analysed by transmission-mode Fourier Transform Infrared (FTIR) spectroscopy (Delval and Rossi, 2004). Functional group composition of semivolatile compounds that can be desorbed from the aerosol phase and its relationship with the apparent low-volatile fraction composition will be presented. Eatough, D.J., Wadsworth, A., Eatough, D.A., Crawford, J.W., Hansen, L.D., Lewis, E.A., 1993. A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmospheric Environment. Part A. General Topics 27, 1213-1219. Subramanian, R., Khlystov, A.Y., Cabada, J.C., Robinson, A.L., 2004. Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Science and Technology 38, 27-48. Delval, C., Rossi, M.J., 2004. The kinetics of condensation and evaporation of H2O from pure ice in the range 173-223 K: a quartz crystal microbalance study. Physical Chemistry Chemical Physics 6, 4665-4676.

  7. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds.

    PubMed

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Wilkinson, Shane R; Szular, Joanna; Kaiser, Marcel

    2016-07-19

    A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as antitrypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four of eleven compounds were moderately active against Leishmania donovani axenic parasites while none were deemed active against T. brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against each parasite was observed. There was good correlation between lipophilicity (clogP value) and antileishmanial activity or toxicity against L6 cells. Similarly, good correlation existed between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole but were not activated by the type I nitrorectusase (NTR). PMID:27092415

  8. Evaluation of Natural Compounds for Antimicrobial Activity in the Introductory Microbiology Laboratory.

    ERIC Educational Resources Information Center

    Finer, Kim R.

    1997-01-01

    Presents an experiment that provides students with an opportunity to investigate folk medicine and herbal cures and their accompanying claims. Involves isolating some active compounds from plant materials and demonstrating their antibacterial activity. (JRH)

  9. Fungal proteinaceous compounds with multiple biological activities.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Yau Sang; Dan, Xiuli; Pan, Wenliang; Wang, Hexiang; Guan, Suzhen; Chan, Ki; Ye, Xiuyun; Liu, Fang; Xia, Lixin; Chan, Wai Yee

    2016-08-01

    Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential. PMID:27338574

  10. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  11. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  12. Evaluation of compounds for insecticidal activity on adult mosquitos*

    PubMed Central

    Hadaway, A. B.; Barlow, F.; Grose, J. E. H.; Turner, C. R.; Flower, L. S.

    1970-01-01

    New pyrethrin-like compounds are compared with earlier synthetic pyrethroids and natural pyrethrins for intrinsic toxicity to adult mosquitos and for residual contact activity. Two of the compounds are at least as toxic as pyrethrin I to female Anopheles stephensi and Aedes aegypti. Residues of these compounds are very persistent in the dark or in very subdued lighting but they decompose on exposure to normal intensities of daylight and rapidly lose their insecticidal activity. PMID:4392939

  13. Low molecular carbon compounds present in the rhizosphere control denitrification kinetics

    NASA Astrophysics Data System (ADS)

    Herold, M.; Morley, N.; Baggs, E.

    2013-12-01

    Nitrogen and carbon cycles play key roles in plant-microbe interactions in soils. Carbon is supplied by plants to microbes in the form of root exudates which includes both high and low molecular compounds. Nitrogen in turn is taken up by plants and rhizosphere microbes metabolise nitrogen compounds in several biochemical pathways. The conversion of nitrogen compounds to volatile products in the process of denitrification leads to increasing amounts of nitrous oxide (N2O) in the atmosphere. Nitrous oxide is a potent greenhouse gas and increasing emissions of N2O through intense agriculture have lead to intensified research to find possible mitigation strategies to reduce N2O production from soil. In our study we show the effect of low molecular carbon compounds, typically found in root exudates, on the dynamics of denitrification as well as the dose response effect of the single compounds. The hypothesis was tested that different compound groups change the kinetics of the different reduction steps in the biochemical pathway of denitrification, which results in lower N2O production. Experiments were performed in soil-microcosms using 15N labelling approaches to monitor denitrification products . Microcosms were maintained as slurries in order to create oxygen limiting conditions, which favours denitrification. Carbon dioxide and N2O were monitored throughout the experiments and on three destructive sampling days NO3, NO2, NO and 15N-N2 were measured. Results showed that the denitrification process was differently affected by amino acids and organic acids with higher denitrification activity observed in the presence of organic acids. The dynamics of the single reduction steps were time dependent which indicates that substrate availability plays an important role in soil microbial activity. We concluded that the activity of denitrifiers are significantly influenced by different carbon compounds, and that further studies on the effects of the composition of root

  14. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  15. Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans.

    PubMed

    Covas, M I; Miró-Casas, E; Fitó, M; Farré-Albadalejo, M; Gimeno, E; Marrugat, J; De La Torre, R

    2003-01-01

    Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intima in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. Thus, phenolics, which are able to bind LDL, could be effective in preventing lipid peroxidation and atherosclerotic processes. The ability of tyrosol to bind human LDL has been reported. We have demonstrated the bioavailability of tyrosol in humans from virgin olive oil in its natural form. Urinary tyrosol increased, reaching a peak at 0-4 h after virgin olive oil administration. Men and women showed a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. In summary, our results suggest that tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed in in vivo studies. PMID:15134375

  16. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  17. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    Delegard, Calvin H.; Krot, N N.; Shilov, V P.; Fedoseev, A M.; Budantseva, N A.; Nikonov, M V.; Yusov, A B.; Garnov, A Y.; Charushnikova, I A.; Perminov, V P.; Astafurova, L N.; Lapitskaya, T S.; Makarenkov, V I.

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup -} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported. The present systematic tests investigated oxygen gas, hydrogen peroxide, and sodium persulfate oxidants to dissolve Cr(III) under alkaline conditions to form soluble chromate. Permanganate and ozone also were considered for testing but were thought to be of secondary interest because of the insoluble residue (MnO{sub 2} from permanganate) and complex equipment (necessary to generate ozone) implicit with use of these reagents. The oxygen and hydrogen peroxide reagents leave no condensable residue and sodium persulfate only leaves soluble sodium sulfate. Crystalline Cr(OH){sub 3}, various hydrothermally aged amorphous Cr(III) oxide hydrates, mixed Fe(III)/Cr(III) oxide hydrates, and nickel and iron Cr(III) spinels, all of which have been identified or are likely constituents in Hanford tank wastes, were prepared and characterized for the dissolution tests. The effects of reagent and hydroxide concentrations, reaction temperature, and transition metal catalysts on reaction progress were investigated for each reagent as functions of reaction time. Reaction progress was measured by monitoring chromate concentration. Oxidation of chromium compounds by

  18. Anti-allergic activity of compounds from Kaempferia parviflora.

    PubMed

    Tewtrakul, Supinya; Subhadhirasakul, Sanan; Kummee, Sopa

    2008-02-28

    Kaempferia parviflora is one of the plants in the Zingiberaceae family, locally known in Thai as kra-chai-dam. In Thai traditional medicine, the decoction of Kaempferia parviflora powder with alcohol has been reported to cure allergy, asthma, impotence, gout, diarrhea, dysentery, peptic ulcer and diabetes. Therefore, the present study aimed to investigate anti-allergic substances from this plant. Bioassay-guided fractionation led to the isolation of seven methoxyflavone derivatives (1-7) from Kaempferia parviflora extract and they were identified on the basis of spectroscopic methods. Among the compounds tested, 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5) possessed the highest anti-allergic activity against antigen-induced beta-hexosaminidase release as a marker of degranulation in RBL-2H3 cells with an IC(50) value of 8.0 microM, followed by 5-hydroxy-7-methoxyflavone (2, IC(50)=20.6 microM) and 5-hydroxy-7,4'-dimethoxyflavone (4, IC(50)=26.0 microM), whereas others showed moderate activities (IC(50)=37.5-66.5 microM). Structure-activity trends of 7-methoxyflavone derivatives on anti-allergic activity can be summarized as follows: (1) substitution with vicinal methoxyl groups at positions 3' and 4' conferred higher activity than only one methoxylation, (2) methoxylation at position 3 reduced activity and (3) methoxylation at position 5 showed higher activity than hydroxylation. Compounds 2, 4 and 5 were also determined for their mechanisms on ionomycin-induced beta-hexosaminidase release. The results indicated that the mechanism on inhibition of cell degranulation of compounds 2 and 5 mainly involve the inhibition of Ca(2+) influx to the cells, whereas that of 4 may be partly due to this inhibition. In regards to the active constituents for anti-allergic activity of Kaempferia parviflora, 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5), 5-hydroxy-7-methoxyflavone (2) and 5-hydroxy-7,4'-dimethoxyflavone (4) are responsible for anti-allergic effect of this plant. The

  19. Structure-Activity Relationships in Nitro-Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Vogt, R. A.; Rahman, S.; Crespo-Hernández, C. E.

    Many nitro-aromatic compounds show mutagenic and carcinogenic properties, posing a potential human health risk. Despite this potential health hazard, nitro-aromatic compounds continue to be emitted into ambient air from municipal incinerators, motor vehicles, and industrial power plants. As a result, understanding the structural and electronic factors that influence mutagenicity in nitro-aromatic compounds has been a long standing objective. Progress toward this goal has accelerated over the years, in large part due to the synergistic efforts among toxicology, computational chemistry, and statistical modeling of toxicological data. The concerted influence of several structural and electronic factors in nitro-aromatic compounds makes the development of structure-activity relationships (SARs) a paramount challenge. Mathematical models that include a regression analysis show promise in predicting the mutagenic activity of nitro-aromatic compounds as well as in prioritizing compounds for which experimental data should be pursued. A major challenge of the structure-activity models developed thus far is their failure to apply beyond a subset of nitro-aromatic compounds. Most quantitative structure-activity relationship papers point to statistics as the most important confirmation of the validity of a model. However, the experimental evidence shows the importance of the chemical knowledge in the process of generating models with reasonable applicability. This chapter will concisely summarize the structural and electronic factors that influence the mutagenicity in nitro-aromatic compounds and the recent efforts to use quantitative structure-activity relationships to predict those physicochemical properties.

  20. Radical scavenging activities of niacin-related compounds.

    PubMed

    Ogata, Shin; Takeuchi, Masayo; Teradaira, Shin; Yamamoto, Naokuni; Iwata, Keiko; Okumura, Katsuzumi; Taguchi, Hiroshi

    2002-03-01

    We investigated whether niacin-related compounds had radical-scavenging activity by electron spin resonance methods. Many compounds, but not trigonelline, had radical-scavenging activity against hydroxyl radicals. However, for the nitric oxide radical and 1,1-diphenyl-2-picrylhydrazyl radical, only nicotinic acid hydrazide and isonicotinic acid hydrazide had scavenging activities. These results suggest that the moiety of hydrazide might have an important role in scavenging abilities of various radicals. PMID:12005062

  1. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa).

    PubMed

    Jakobek, Lidija; Seruga, Marijan; Krivak, Petra

    2011-06-01

    In the present work, interactions between phenolic compounds from chokeberries and their influence on the antiradical activity was studied. Three fractions were isolated from chokeberries containing different classes of phenolic compounds. The first fraction contained a major part of phenolic acids and flavonols, the second anthocyanins, and the third insoluble phenols and proanthocyanidins. The phenolic compound content was determined using high-performance liquid chromatography, and the antiradical activity using the DPPH test. In order to evaluate the effects of interactions between phenolic compounds on the antiradical activity, the antiradical activity of individual phenolic fractions was compared with that obtained by mixing phenolic fractions. Phenolic mixtures showed the decrease in the antiradical activity in comparison with the individual phenolic fractions. These results suggest the existence of complex interactions among phenolic compounds that caused the decrease of the antiradical activity. Interactions among chokeberry phenols promoted a negative synergism. PMID:21214419

  2. Phenolic compounds with IL-6 inhibitory activity from Aster yomena.

    PubMed

    Kim, A Ryun; Jin, Qinglong; Jin, Hong-Guang; Ko, Hae Ju; Woo, Eun-Rhan

    2014-07-01

    A new biflavonoid, named asteryomenin (1), as well as six known phenolic compounds, esculetin (2), 4-O-β-D-glucopyranoside-3-hydroxy methyl benzoate (3), caffeic acid (4), isoquercitrin (5), isorhamnetin-3-O-glucoside (6), and apigenin (7) were isolated from the aerial parts of Aster yomena. The structures of compounds (1-7) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 2-7 were isolated from this plant for the first time. For these isolates, the inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell was examined. Among these isolates, compounds 4 and 7 appeared to have potent inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell, while compounds 1-3 and 5-6 showed moderate activity. PMID:24014305

  3. Phenolic compounds characterization and biological activities of Citrus aurantium bloom.

    PubMed

    Karimi, Ehsan; Oskoueian, Ehsan; Hendra, Rudi; Oskoueian, Armin; Jaafar, Hawa Z E

    2012-01-01

    activities against all cell line tested and the compounds present in the extracts are non-toxic which make them suitable as potential therapeutics. PMID:23442980

  4. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  5. Compound Stimulus Presentation and the Norepinephrine Reuptake Inhibitor Atomoxetine Enhance Long-Term Extinction of Cocaine-Seeking Behavior

    PubMed Central

    Janak, Patricia H; Bowers, M Scott; Corbit, Laura H

    2012-01-01

    Drug abstinence is frequently compromised when addicted individuals are re-exposed to environmental stimuli previously associated with drug use. Research with human addicts and in animal models has demonstrated that extinction learning (non-reinforced cue-exposure) can reduce the capacity of such stimuli to induce relapse, yet extinction therapies have limited long-term success under real-world conditions (Bouton, 2002; O'Brien, 2008). We hypothesized that enhancing extinction would reduce the later ability of drug-predictive cues to precipitate drug-seeking behavior. We, therefore, tested whether compound stimulus presentation and pharmacological treatments that augment noradrenergic activity (atomoxetine; norepinephrine reuptake inhibitor) during extinction training would facilitate the extinction of drug-seeking behaviors, thus reducing relapse. Rats were trained that the presentation of a discrete cue signaled that a lever press response would result in cocaine reinforcement. Rats were subsequently extinguished and spontaneous recovery of drug-seeking behavior following presentation of previously drug-predictive cues was tested 4 weeks later. We find that compound stimulus presentations or pharmacologically increasing noradrenergic activity during extinction training results in less future recovery of responding, whereas propranolol treatment reduced the benefit seen with compound stimulus presentation. These data may have important implications for understanding the biological basis of extinction learning, as well as for improving the outcome of extinction-based therapies. PMID:22089320

  6. Cytotoxicity and antiviral activity of the compounds from Euphorbia kansui.

    PubMed

    Zheng, W F; Cui, Z; Zhu, Q

    1998-12-01

    Eleven compounds including four triterpenes, one sterol, and six diterpenes from E kansui had been assayed for their cytotoxicity and activiral activity. The relations between structures and bioactivities have also been noted. PMID:9933994

  7. Compounds with Antifouling Activities from the Roots of Notopterygium franchetii.

    PubMed

    Yu, Chun; Cheng, Liqing; Zhang, Zhongling; Zhang, Yu; Yuan, Chunmao; Liu, Weiwei; Hao, Xiaojiang; Ma, Weiguang; He, Hongping

    2015-12-01

    In antifouling screening, the extract of Notopterygium franchetii de Boiss showed obvious activity. Two new phenylpropanoids (1-2) and five known coumarins (3-7) were isolated from the methanol extract of the roots of this species. The structures of the isolated compounds were determined on the basis of spectroscopic analysis. Compounds 1-2 showed definite antifouling activity against larval settlement of Bugula neritina. PMID:26882679

  8. Activation of shallow dopants in II-VI compounds

    SciTech Connect

    Walukiewicz, W.

    1995-08-01

    The amphoteric native defect model is applied to the understanding of the variations in the dopant activation efficiency in II-VI compounds. It is shown that the location of the common energy reference, the Fermi level stabilization energy, relative to the band edges can be used to determine the doping induced reduction of the formation energy and the enhancement of the concentration of compensating native defects. The model is applied to the most extensively studied compound semiconductors as well as to ternary and quaternary alloys. The effects of the compound ionicity on the dopant activation are briefly discussed.

  9. Selenium compounds activate early barriers of tumorigenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium chemoprevention by apoptosis has been well studied, but it is not clear whether selenium can activate early barriers of tumorigenesis, namely senescence and DNA damage response. To address this issue, we treated normal and cancerous cells with a gradient concentration of sodium selenite, me...

  10. Case study: Comparison of biological active compounds in milk from organic and conventional dairy herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conflicting reports of the quantities of biologically active compounds present in milk from organic grass-fed and conventional herds show that more research is required, especially as these compounds are linked to human health benefits and can improve the health value consumers place on dairy produc...

  11. Bioorthogonal Enzymatic Activation of Caged Compounds.

    PubMed

    Ritter, Cornelia; Nett, Nathalie; Acevedo-Rocha, Carlos G; Lonsdale, Richard; Kräling, Katja; Dempwolff, Felix; Hoebenreich, Sabrina; Graumann, Peter L; Reetz, Manfred T; Meggers, Eric

    2015-11-01

    Engineered cytochrome P450 monooxygenase variants are reported as highly active and selective catalysts for the bioorthogonal uncaging of propargylic and benzylic ether protected substrates, including uncaging in living E. coli. observed selectivity is supported by induced-fit docking and molecular dynamics simulations. This proof-of-principle study points towards the utility of bioorthogonal enzyme/protecting group pairs for applications in the life sciences. PMID:26356324

  12. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach.

    PubMed

    Fernando, I P Shanura; Kim, Misook; Son, Kwang-Tae; Jeong, Yoonhwa; Jeon, You-Jin

    2016-07-01

    Polyphenolic compounds isolated from marine algae exhibit a broad spectrum of beneficial biological properties, including antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic activities, along with several other bioactivities centered on their antioxidant properties. Consequently, polyphenolic compounds are increasingly being investigated for their potential use in food, cosmetic, and pharmaceutical applications. The antioxidant activities of these compounds have been explored widely through experimental studies. Nonetheless, a theoretical understanding of the structural and electronic properties could broaden research perspectives, leading to the identification and synthesis of efficient structural analogs with prophylactic uses. This review briefly summarizes the current state of knowledge regarding antioxidant polyphenolic compounds in marine algae with an attempt to describe the structure-activity relationship. PMID:27332715

  13. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers

    SciTech Connect

    Lin, S.H.; Hsu, F.M.

    1995-06-01

    Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

  14. Identification of Telomerase-activating Blends From Naturally Occurring Compounds.

    PubMed

    Ait-Ghezala, Ghania; Hassan, Samira; Tweed, Miles; Paris, Daniel; Crynen, Gogce; Zakirova, Zuchra; Crynen, Stefan; Crawford, Fiona

    2016-06-01

    Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased

  15. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds.

    PubMed

    Artini, M; Papa, R; Barbato, G; Scoarughi, G L; Cellini, A; Morazzoni, P; Bombardelli, E; Selan, L

    2012-01-15

    Use of herbal plant remedies to treat infectious diseases is a common practice in many countries in traditional and alternative medicine. However to date there are only few antimicrobial agents derived from botanics. Based on microbiological screening tests of crude plant extracts we identified four compounds derived from Krameria, Aesculus hippocastanum and Chelidonium majus that showed a potentially interesting antimicrobial activity. In this work we present an in depth characterization of the inhibition activity of these pure compounds on the formation of biofilm of Staphylococcus aureus as well as of Staphylococcus epidermidis strains. We show that two of these compounds possess interesting potential to become active principles of new drugs. PMID:22182580

  16. [Importance of estrogens and estrogen-active compounds for udder health in cattle. A review].

    PubMed

    Zdunczyk, S; Zerbe, H; Hoedemaker, M

    2003-11-01

    High oestrogen concentrations in blood or high intake of oestrogen-active compounds with forage can be associated with an enhanced occurrence of udder diseases. Mean somatic cell count (MSCC) can increase and milk yield can decrease. Subclinically infected udder quarters can develop clinical mastitis and the rate of new infections can be high. This review describes concentrations of oestrogens in peripheral blood plasma in cattle and occurrence of oestrogen-active compounds in forage. Relationships between oestrogens or oestrogen-active compounds and udder health are presented. The possible mechanisms of enhanced susceptibility of the udder to infection under the influence of oestrogens are discussed. PMID:14679840

  17. Antifungal Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper, ...

  18. Photocatalytic: oxidation of volatile organic compounds present in airborne environment adjacent to sewage treatment plants.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2004-01-01

    Emissions of volatile organic compounds (VOCs) from wastewater in municipal sewage or industrial wastewater treatment plants are often overlooked as sources of exposure to hazardous substances. The impact of such emissions on local airborne environments represents a growing source of scientific, toxicological and public health interest. Actually, VOCs are suspected to be quite dangerous for human health. Some of them belong to the family of odorous compounds and can cause serious annoyance in the neighbourhood of the emission sources. A way to remove VOCs released from sewers and wastewater treatment facilities could be to degrade them by photocatalytic oxidation. TiO2-based photocatalysts are known to be efficient for this kind of application. In the present work TiO2 P25 Degussa was deposited on glass supports. These materials were tested for the degradation of butanone-2 in a photocatalytic reactor. The influence of water vapour (relative humidity) was shown using the Langmuir-Hinshelwood kinetic model. PMID:14979545

  19. 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives.

    PubMed

    Rodríguez, Guillermo; Lama, Antonio; Jaramillo, Sara; Fuentes-Alventosa, José María; Guillén, Rafael; Jiménez-Araujo, Ana; Rodríguez-Arcos, Rocío; Fernández-Bolaños, Juan

    2009-07-22

    The presence of 3,4-dihydroxyphenylglycol (DHPG) was studied in 32 samples and 10 different cultivars of natural table olives, using an accurate method to avoid wrong quantification. Hydroxytyrosol (HT), tyrosol, and verbascoside were also quantified, as these four compounds comprise the majority of the chromatographic profile. Analyses were carried out by HPLC-DAD-UV after extraction of all phenolics, and hydroxytyrosol was the major component in nearly all samples. High levels of DHPG (up to 368 mg/kg of dry weight) were found in the pulp of natural black olives independent of cultivar and processing method, similar to its concentration in the brine in almost all of the samples. The presented data for this antioxidant indicate that natural table olives are a rich source of DHPG and hydroxytyrosol, compounds with interesting nutritional and antioxidant properties. PMID:19545148

  20. Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae)

    PubMed Central

    Kong, Jeong-Ok; Lee, Sang-Myung; Moon, Yil-Seong; Lee, Sang-Gil; Ahn, Young-Joon

    2007-01-01

    The nematicidal activity of two cassia, Cinnamomum cassia, oils (Especial and true), four cinnamon, Cinnamomum zey-lanicum, oils (technical, #500, bark and green leaf), and their compounds (e.g., trans-cinnamaldehyde and trans-cinnamic acid) toward adult Bursaphelenchus xylophilus was examined by a direct contact bioassay. Results were compared with those of 34 related compounds. As judged by 24-hour LC50 values, two cassia oils (0.084–0.085 mg/ml) and four cinnamon oils (0.064–0.113 mg/ml) were toxic toward adult B. xylophilus. Of 45 test compounds, trans-cinnamaldehyde (0.061 mg/ml) was the most active nematicide, followed by ethyl cinnamate, α-methyl-trans-cinnamaldehyde, methyl cinnamate and allyl cinnamate (0.114–0.195 mg/ml). Potent nematicidal activity was also observed with 4-methoxycinnamonitrile, trans-4-methoxycinnamaldehyde, trans-2-methoxy-cinnamaldehyde, ethyl α-cyanocinnamate, cinnamonitrile and cinnamyl bromide (0.224–0.502 mg/ml). Structure-activity relationships indicate that structural characteristics, such as types of functional groups, saturation and carbon skeleton, appear to play a role in determining the toxicities to adult B. xylophilus. Cassia and cinnamon oils and test compounds described merit further study as potential nematicides or leads for the control of pine wilt disease caused by B. xylophilus. PMID:19259472

  1. Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae).

    PubMed

    Kong, Jeong-Ok; Lee, Sang-Myung; Moon, Yil-Seong; Lee, Sang-Gil; Ahn, Young-Joon

    2007-03-01

    The nematicidal activity of two cassia, Cinnamomum cassia, oils (Especial and true), four cinnamon, Cinnamomum zey-lanicum, oils (technical, #500, bark and green leaf), and their compounds (e.g., trans-cinnamaldehyde and trans-cinnamic acid) toward adult Bursaphelenchus xylophilus was examined by a direct contact bioassay. Results were compared with those of 34 related compounds. As judged by 24-hour LC(50) values, two cassia oils (0.084-0.085 mg/ml) and four cinnamon oils (0.064-0.113 mg/ml) were toxic toward adult B. xylophilus. Of 45 test compounds, trans-cinnamaldehyde (0.061 mg/ml) was the most active nematicide, followed by ethyl cinnamate, alpha-methyl-trans-cinnamaldehyde, methyl cinnamate and allyl cinnamate (0.114-0.195 mg/ml). Potent nematicidal activity was also observed with 4-methoxycinnamonitrile, trans-4-methoxycinnamaldehyde, trans-2-methoxy-cinnamaldehyde, ethyl alpha-cyanocinnamate, cinnamonitrile and cinnamyl bromide (0.224-0.502 mg/ml). Structure-activity relationships indicate that structural characteristics, such as types of functional groups, saturation and carbon skeleton, appear to play a role in determining the toxicities to adult B. xylophilus. Cassia and cinnamon oils and test compounds described merit further study as potential nematicides or leads for the control of pine wilt disease caused by B. xylophilus. PMID:19259472

  2. Antimicrobial Activities of Mefloquine and a Series of Related Compounds

    PubMed Central

    Kunin, C. M.; Ellis, W. Y.

    2000-01-01

    Mefloquine was found to have bactericidal activity against methicillin- and fluoroquinolone-susceptible and -resistant strains of Staphylococcus aureus and Staphylococcus epidermidis and gentamicin- and vancomycin-resistant strains of Enterococcus faecalis and Enterococcus faecium. The MICs were 16 μg/ml, and the minimal bactericidal concentrations (MBCs) were 16 to 32 μg/ml. These concentrations cannot be achieved in serum. Mefloquine was active at a more achievable concentration against penicillin-susceptible and -resistant Streptococcus pneumoniae, with MICs of 0.2 to 1.5 μg/ml. Mefloquine was not active against gram-negative bacteria and yeasts. In an attempt to find more active derivatives, 400 mefloquine-related compounds were selected from the chemical inventory of The Walter Reed Army Institute of Research. We identified a series of compounds containing a piperidine methanol group attached to pyridine, quinoline, and benzylquinoline ring systems. These had activities similar to that of mefloquine against S. pneumoniae but were far more active against other gram-positive bacteria (MICs for staphylococci, 0.8 to 6.3 μg/ml). They had activities similar to that of amphotericin B against Candida spp. and Cryptococcus neoformans. Combinations of the compounds with gentamicin and vancomycin were additive against staphylococci and pneumococci. The MIC and MBC of gentamicin were decreased by four- to eightfold when this drug was combined with limiting dilutions of the compounds. There was no antagonism with other antimicrobial drugs. The compounds were rapidly bactericidal. They appear to act by disrupting cell membranes. Combinations of the compounds with aminoglycoside antibiotics may have potential for therapeutic use. PMID:10722480

  3. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    PubMed

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds. PMID:22885596

  4. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication. PMID:26350735

  5. Compounds active against cell walls of medically important fungi.

    PubMed Central

    Hector, R F

    1993-01-01

    A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development. PMID:8457977

  6. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively. PMID:16312946

  7. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander.

    PubMed

    Fujita, Ken-Ichi; Chavasiri, Warinthorn; Kubo, Isao

    2015-07-01

    Essential oil derived from the fresh leaves of Polygonum odoratum Lour was tested for their effects on a foodborne bacterium Salmonella choleraesuis subsp. choleraesuis ATCC 35640 using a broth dilution method. This essential oil showed a significant antibacterial activity against S. choleraesuis at the concentration of 200 µg/mL. Twenty-five volatile compounds were characterized from this essential oil by GC-MS, and aldehyde compounds were found abundant and accounted for more than three-fourths of the essential oil. Among the compounds characterized, dodecanal (C12 ) was the most abundant (55.5%), followed by decanal (C10 ) (11.6%). Both alkanals were effective against S. choleraesuis with the minimum growth inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 100 µg/mL. The most potent antibacterial activity against this bacterium was found with two minor compounds, dodecanol (lauryl alcohol) and 2E-dodecenal, both with each MBC of 6.25 µg/mL. Their primary antibacterial action against S. choleraesuis provably comes from their ability to function as nonionic surface-active agents (surfactants), disrupting the native function of integral membrane proteins nonspecifically. Thus, the antibacterial activity is mediated by biophysical processes. In the case of 2E-alkenals, a biochemical mechanism is also somewhat involved, depending on their alkyl chain length. PMID:25870012

  8. A neural networks study of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; Angelotti, Wagner Fernando Delfino; Romero, Roseli Aparecida Francelin; Montanari, Carlos Alberto; da Silva, Albérico Borges Ferreira

    2008-10-01

    This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency. PMID:18629551

  9. Ingestion and excretion of arsenic compounds present in edible brown algae, Hijikia fusiforme, by mice.

    PubMed

    Ichikawa, Satoshi; Nozawa, Shihoko; Hanaoka, Ken'ichi; Kaise, Toshikazu

    2010-02-01

    The element arsenic is a carcinogen and toxic for humans and other living organisms. Some seaweeds contain high amounts of inorganic arsenic (iAs). In particular, Hijikia fusiforme has a high iAs content of approximately 50%. In this study, we examined the absorption, metabolism, excretion, and accumulation of arsenic compounds in mice after the administration of Hijiki. The single-dose experiment, wherein a single dose of cooked Hijiki was administered to the mice, revealed that the urinary and fecal excretion of arsenic compounds was the highest on the first day of dosing, and it became clear that 66-92% of arsenic was excreted within 3 days after administration of the first dose. The repeated-dose experiment, wherein repeated doses of cooked or dried Hijiki were administered to the mice, arsenic was detected in all the tissues, but only approximately 5% of the administered dose of arsenic was detected as residual arsenic. These results suggest that the arsenic present in cooked Hijiki is accumulated in very small amounts in mice. PMID:19808076

  10. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    PubMed Central

    Klongkumnuankarn, Pornprom; Busaranon, Kesarin; Chanvorachote, Pithi; Sritularak, Boonchoo; Jongbunprasert, Vichien; Likhitwitayawuid, Kittisak

    2015-01-01

    Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8), moscatilin (1), gigantol (3), lusianthridin (4), and dendroflorin (6) showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant. PMID:25685168

  11. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    PubMed

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure. PMID:18618404

  12. Synthesis and antitumor activity of natural compound aloe emodin derivatives.

    PubMed

    Thimmegowda, Naraganahalli R; Park, Chanmi; Shwetha, Bettaswamigowda; Sakchaisri, Krisada; Liu, Kangdong; Hwang, Joonsung; Lee, Sangku; Jeong, Sook J; Soung, Nak K; Jang, Jae H; Ryoo, In-Ja; Ahn, Jong S; Erikson, Raymond L; Kim, Bo Y

    2015-05-01

    In this study, we have synthesized novel water soluble derivatives of natural compound aloe emodin 4(a-j) by coupling with various amino acid esters and substituted aromatic amines, in an attempt to improve the anticancer activity and to explore the structure-activity relationships. The structures of the compounds were determined by (1) H NMR and mass spectroscopy. Cell growth inhibition assays revealed that the aloe emodin derivatives 4d, 4f, and 4i effectively decreased the growth of HepG2 (human liver cancer cells) and NCI-H460 (human lung cancer cells) and some of the derivatives exhibited comparable antitumor activity against HeLa (Human epithelial carcinoma cells) and PC3 (prostate cancer cells) cell lines compared to that of the parent aloe emodin at low micromolar concentrations. PMID:25323822

  13. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

  14. Identification of Oct4-activating compounds that enhance reprogramming efficiency.

    PubMed

    Li, Wendong; Tian, E; Chen, Zhao-Xia; Sun, Guoqiang; Ye, Peng; Yang, Su; Lu, Dave; Xie, Jun; Ho, Thach-Vu; Tsark, Walter M; Wang, Charles; Horne, David A; Riggs, Arthur D; Yip, M L Richard; Shi, Yanhong

    2012-12-18

    One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-β-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation. PMID:23213213

  15. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE PAGESBeta

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  16. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    SciTech Connect

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  17. Structure-activity analysis and antiprion mechanism of isoprenoid compounds.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Teruya, Kenta; Doh-ura, Katsumi

    2015-12-01

    The prion strain-specific mechanism by which normal prion protein is converted to abnormal prion protein remains largely unknown. This study found that insect juvenile hormone III reduced abnormal prion protein levels only in cells infected with the RML prion. We conducted a structure-activity analysis using juvenile hormone III biosynthetic intermediates in the isoprenoid pathway. Both farnesol and geranylgeraniol, the most potent inhibitors of abnormal prion protein formation, behaved in an RML prion-dependent fashion. Neither of them modified cellular and cell surface prion protein levels. Events downstream of this pathway include cholesterol biosynthesis and protein prenylation. However, neither of these isoprenoid compounds modified lipid raft microdomains and cellular cholesterol levels and neither affected the representative prenylated protein expression levels of prenylation pathways. Therefore, these isoprenoid compounds are a new class of prion strain-dependent antiprion compounds. They are useful for exploring strain-specific prion biology. PMID:26402376

  18. Hybrid energy storage systems utilizing redox active organic compounds

    DOEpatents

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  19. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false (Item 1206) Present activities. 229.1206 Section 229.1206 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Gas Producing Activities § 229.1206 (Item 1206) Present activities. (a) Disclose, by geographical...

  20. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false (Item 1206) Present activities. 229.1206 Section 229.1206 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Gas Producing Activities § 229.1206 (Item 1206) Present activities. (a) Disclose, by geographical...

  1. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false (Item 1206) Present activities. 229.1206 Section 229.1206 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Gas Producing Activities § 229.1206 (Item 1206) Present activities. (a) Disclose, by geographical...

  2. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false (Item 1206) Present activities. 229.1206 Section 229.1206 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Gas Producing Activities § 229.1206 (Item 1206) Present activities. (a) Disclose, by geographical...

  3. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false (Item 1206) Present activities. 229.1206 Section 229.1206 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Gas Producing Activities § 229.1206 (Item 1206) Present activities. (a) Disclose, by geographical...

  4. Aldose reductase inhibitory activity of compounds from Zea mays L.

    PubMed

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1-7) and 5 anthocyanins (compound 8-12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC(50), 4.78 μ M). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  5. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain.

    PubMed Central

    Kohen, R; Yamamoto, Y; Cundy, K C; Ames, B N

    1988-01-01

    Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. However, their exact function is not clear. The antioxidant activity of these compounds has been examined by testing their peroxyl radical-trapping ability at physiological concentrations. Carnosine, homocarnosine, anserine, and other histidine derivatives all showed antioxidant activity. All of these compounds showing peroxyl radical-trapping activity were also electrochemically active as reducing agents in cyclic voltammetric measurements. Furthermore, carnosine inhibited the oxidative hydroxylation of deoxyguanosine induced by ascorbic acid and copper ions. Other roles of carnosine, such as chelation of metal ions, quenching of singlet oxygen, and binding of hydroperoxides, are also discussed. The data suggest a role for these histidine-related compounds as endogenous antioxidants in brain and muscle. PMID:3362866

  6. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens.

    PubMed

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem. PMID:26150810

  7. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens

    PubMed Central

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem. PMID:26150810

  8. Compounding pharmacy conundrum: "we cannot live without them but we cannot live with them" according to the present paradigm.

    PubMed

    Guharoy, Roy; Noviasky, John; Haydar, Ziad; Fakih, Mohamad G; Hartman, Christian

    2013-04-01

    Compounding pharmacies serve a critical role in modern health care to meet special patient care needs. Although the US Food and Drug Administration (FDA) has clearly delineated jurisdiction over drug companies and products manufactured under Good Manufacturing Practice (GMP) regulations to ensure quality, potency, and purity, compounding pharmacies are regulated by the State Boards and are not registered by the FDA. In recent years, some compounding pharmacies acted like a manufacturer, preparing large amounts of injectable drugs with interstate activities. Multiple outbreaks have been linked to compounding pharmacies, including a recent outbreak of fungal meningitis related to contaminated methylprednisolone, exposing > 14,000 patients in multiple states. This tragedy underscores the urgency of addressing safety related to compounding pharmacies. There is a call for action at the federal and state levels to set minimum production standards, impose new labeling conditions on compounded drugs, and require large-scale compounders be regulated by the FDA. "Industrial" compounding must come under FDA oversight, require those pharmacies to meet GMP standards, and ensure quality and safe products for patient use. Moreover, compliance with the Institute for Safe Medication Practices 2011 recommendations that any type of sterile compounding must be in compliance with the United States Pharmacopoeia chapter 797 guidelines will reduce the risk of patient harm from microbial contamination. Finally, other critical factors that require close attention include addressing injectable products compounded in hospitals and other outpatient health-care centers. The FDA and State Boards of Pharmacy must be adequately funded to exercise the oversight effectively. PMID:23412546

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  10. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study.

    PubMed

    Siah, Maryam; Farzaei, Mohammad Hosein; Ashrafi-Kooshk, Mohammad Reza; Adibi, Hadi; Arab, Seyed Shahriar; Rashidi, Mohammad Reza; Khodarahmi, Reza

    2016-02-01

    Aldehyde oxidase (AO), a cytosolic molybdenum-containing hydroxylase, is predominantly active in liver and other tissues of mammalian species and involved in the metabolism of extensive range of aldehydes and nitrogen-containing compounds. A wide range of natural components including polyphenols are able to interfere with AO-catalyzed reactions. Polyphenols and flavonoids are one of the extensive secondary plant metabolites ubiquitously present in plants considered an important part of the human diet. The aim of the present study was to investigate inhibitory effect of selected phenolic compounds from three subclasses of aurone, flavanone and phenolic lactone compounds on the activity of AO, spectrophotometrically. AO enzyme was partially purified from liver of guinea pig. Then, inhibitory effects of 10 flavonoid compounds including 8 derivatives of 2-benzylidenebenzofuran-3(2H)-ones, as well as naringenin and ellagic acid on the activity of aldehyde oxidase were assessed compared with the specific inhibitor of AO, menadione. Among the phenolic compounds with inhibitory effects on the enzyme, ellagic acid (IC50=14.47 μM) was the most potent agent with higher inhibitory action than menadione (IC50=31.84 μM). The mechanisms by which flavonoid compounds inhibit AO activity have been also determined. The inhibitory process of the assessed compounds occurs via either a non-competitive or mixed mode. Although flavonoid compounds extensively present in the nature, mainly in dietary regimen, aurones with promising biological properties are not widely distributed in nature, so synthesis of aurone derivatives is of great importance. Additionally, aurones seem to provide a promising scaffold in medicinal chemistry for the skeleton of new developing drugs, so the results of the current study can be valuable in order to better understanding drug-food as well as drug-drug interaction and also appears to be worthwhile in drug development strategies. PMID:26722818

  11. Two new compounds from Crataegus pinnatifida and their antithrombotic activities.

    PubMed

    Zhou, Chen-Chen; Huang, Xiao-Xiao; Gao, Pin-Yi; Li, Fei-Fei; Li, Dian-Ming; Li, Ling-Zhi; Song, Shao-Jiang

    2014-01-01

    One new sesquiterpene, (1α,4aβ,8aα)-1-isopropanol-4a-methyl-8-methylenedecahydronaphthalene (1), with one new phenylpropanoid, threo-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol (2), along with four known phenylpropanoids were isolated from Crataegus pinnatifida. The structures of compounds 1 and 2 were elucidated on the basis of 1D, 2D NMR analyses, and HR-ESI-MS. The antithrombotic activity in vitro of all isolates was assayed, and only compound 1 exhibited potent antithrombotic activity by inhibiting platelet aggregation in rat plasma by 81.4% at 1 mg/ml. PMID:24161196

  12. Antileishmanial Activity of Compounds Isolated from Sassafras albidum.

    PubMed

    Pulivarthi, Divya; Steinberg, Kelly Marie; Monzote, Lianet; Piñón, Abel; Setzer, William N

    2015-07-01

    Leishmaniasis is a neglected tropical disease caused by Leishmania parasitic protozoa, which currently lacks efficient treatment. Natural products have shown promise as a potential source for antiprotozoal drugs. This work focuses on the antileishmanial potential of Sassafras albidum (Lauraceae) bark extract. The crude bark extract of S. albidum showed excellent antileishmanial activity with an IC50 value less than 12.5 μg/mL against promastigotes of L. amazonensis. The chloroform stem bark extract of S. albidum was subjected to preparative column chromatography. Five compounds were isolated, purified by recrystallization, and identified as sesamin, spinescin, β-sitosterol, hexatriacontanal, and 1-triacontanol. Antileishmanial and cytotoxic screening were performed on these compounds. Sesamin exhibited the best activity against L. amazonensis with an IC50 of 15.8 μg/mL and was not cytotoxic to mouse macrophage cells (CC50 > 100 μg/mL). PMID:26411017

  13. Triazolophthalazines: Easily Accessible Compounds with Potent Antitubercular Activity.

    PubMed

    Veau, Damien; Krykun, Serhii; Mori, Giorgia; Orena, Beatrice S; Pasca, Maria R; Frongia, Céline; Lobjois, Valérie; Chassaing, Stefan; Lherbet, Christian; Baltas, Michel

    2016-05-19

    Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug-resistant TB. Herein we explored the potential of an alternative class of molecules as anti-TB agents. Thus, a series of novel 3-substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37 Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL(-1) , whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50 >100 μm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug-resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine-based derivatives promising leads for further development. PMID:27097919

  14. Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria.

    PubMed

    Takara, Kensaku; Ushijima, Kenji; Wada, Koji; Iwasaki, Hironori; Yamashita, Masatsugu

    2007-01-01

    During the course of our research into the use of cane by-products from sugar manufacturing, we have studied the isolation and structural determination of bioactive compounds present in sugarcane molasses. In this study, dehydrodiconiferylalcohol-9'-O-beta-D-glucopyranoside (1) and isoorientin-7, 3'-O-dimethyl ether (2) were isolated as antibacterial active compounds against cariogenic bacteria. Their structures were elucidated by (1)H-NMR, (13)C-NMR and ESI-MS. The activities of these isolated compounds against Streptococcus mutans and Streptococcus sobrinus were assessed by a minimum inhibitory concentration (MIC) test. The MICs of compounds 1 and 2 against both S. mutans and S. sobrinus were >4 mg/mL and 4 mg/mL, respectively. PMID:17938552

  15. [Antibacterial activity of polyphenolic compounds isolated from plants of Geraniaceae and Rosaceae families].

    PubMed

    Nikitina, V S; Kuz'mina, L Iu; Melent'ev, A I; Shendel', G V

    2007-01-01

    Polyphenolic compounds present in extracts of plants belonging to the families Geraniaceae (blood-red cranesbill, wood cranesbill, meadow cranesbill, and alfilaria) and Rosaceae (red raspberry, European dewberry, and tormentil) have been tested for their activity against gram-positive and gram-negative bacteria of the genera Azotobacter, Bacillus, and Pseudomonas. The bacteriostatic activity exhibited some species-related features and depended on the polarity of the extracting agent. The bacteriostatic activity of plant-derived phenolic compounds correlated with their antioxidant potential. The plants of the families Geraniaceae and Rosaceae offer promise as a source of raw material for isolation of polyphenolic compounds exhibiting bactericidal activity, including against opportunistic pathogens (B. cereus, E. coli, P. aeruginosa, and S. aureus strains). PMID:18173115

  16. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  17. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  18. Orally active opioid compounds from a non-poppy source.

    PubMed

    Raffa, Robert B; Beckett, Jaclyn R; Brahmbhatt, Vivek N; Ebinger, Theresa M; Fabian, Chrisjon A; Nixon, Justin R; Orlando, Steven T; Rana, Chintan A; Tejani, Ali H; Tomazic, Robert J

    2013-06-27

    The basic science and clinical use of morphine and other "opioid" drugs are based almost exclusively on the extracts or analogues of compounds isolated from a single source, the opium poppy (Papaver somniferum). However, it now appears that biological diversity has evolved an alternative source. Specifically, at least two alkaloids isolated from the plant Mitragyna speciosa, mitragynine ((E)-2-[(2S,3S)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[3,2-h]quinolizin-2-yl]-3-methoxyprop-2-enoic acid methyl ester; 9-methoxy coryantheidine; MG) and 7-hydroxymitragynine (7-OH-MG), and several synthetic analogues of these natural products display centrally mediated (supraspinal and spinal) antinociceptive (analgesic) activity in various pain models. Several characteristics of these compounds suggest a classic "opioid" mechanism of action: nanomolar affinity for opioid receptors, competitive interaction with the opioid receptor antagonist naloxone, and two-way analgesic cross-tolerance with morphine. However, other characteristics of the compounds suggest novelty, particularly chemical structure and possible greater separation from side effects. We review the chemical and pharmacological properties of these compounds. PMID:23517479

  19. Small Molecule Activation by Constrained Phosphorus Compounds: Insights from Theory.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2016-01-19

    An exciting new development in main group chemistry has been the use of a constrained, "flat", phosphorus-based complex to mediate in reactions such as the dehydrogenation of ammonia borane (AB), and the activation of the N-H bond in primary amines. Its importance is based on the fact that it shows that main group compounds, when properly designed, can be as effective as transition metal complexes for doing significant chemical transformations. What the current computational study, employing density functional theory (DFT), reveals is that a common, general mechanism exists that accounts for the behavior of the flat phosphorus compound in the different reactions that have been experimentally reported to date. This mechanism, which involves the mediation by a base as a proton transfer agent, is simpler and energetically more favorable than the previous mechanisms that have been proposed for the same reactions in the literature. It is likely that the knowledge gained from the current work about the chemical behavior of this phosphorus compound can be utilized to design new constrained phosphorus-based compounds. PMID:26700074

  20. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities.

    PubMed

    Pazhanimurugan, Raasaiyah; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Gopikrishnan, Venugopal; Balagurunathan, Ramasamy

    2016-10-01

    The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources. PMID:27562595

  1. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.

    PubMed

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike

    2016-08-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  2. Analysis of active compounds and antioxidant activity assessment of six popular Chinese Juhua teas.

    PubMed

    Du, Hui; Li, Shan-Shan; Wu, Qian; Ji, Kui-Xian; Wu, Jie; Liu, Yang; Wang, Liang-Sheng

    2015-03-01

    Chrysanthemum is an important traditional Chinese medicine and is drunk daily as a herbal tea. Chlorogenic acids and flavonoids are generally considered as the bioactive compounds. In this work, six kinds of Juhua Tea were analyzed and their active compounds and antioxidant activities were compared. In total, 32 phenolic compounds were profiled and identified using HPLC-DAD/ESI-MSn, composed of chlorogenic acids (10), flavones (8), chalcones (8), flavanones (4) and flavonols (2). Chalcones were the main flavonoids in Kunlun Xueju (Coreopsis tinctoria) extract, while flavones and chlorogenic acids were dominant in the five Chrysanthemum teas. Total chlorogenic acids content (TCA) was highest in Tai Ju (Chrysanthemum morifolium cv. 'Tai Ju') (8.59 ± 0.87 mg/g DW), and total flavonoids content (TF) was highest in Kunlun Xueju (87.2 ± 7.0 mg/g DW), which were both lowest in Ganye Ju (Chrysanthemum eticuspe) (TCA 0.86 ± 0.26 mg/g DW, TF 1.43 ± 0.41 mg/g DW). Huangin Ju (Anthemis tinctoria) possessed the most flavones (19.7 ± 0.6 mg/g DW). Antioxidant capacity of each drink, assessed by Folin-Ciocalteu, DPPH, ABTS and FRAP assays, consistently showed that Kunlun Xueju extract possessed stronger antioxidant activity than the other five, suggesting that the flavonoids content accounted for the free radical scavenging. The present work provides a method for the characterization and quality control of Juhua Tea. Moreover, it is a guideline for consuming choice, due to the different biological functions resulting from chalcones, chlorogenic acids, and flavones. PMID:25924537

  3. Creatinyl amino acids: new hybrid compounds with neuroprotective activity.

    PubMed

    Burov, Sergey; Leko, Maria; Dorosh, Marina; Dobrodumov, Anatoliy; Veselkina, Olga

    2011-09-01

    Prolonged oral creatine administration resulted in remarkable neuroprotection in experimental models of brain stroke. However, because of its polar nature creatine has poor ability to penetrate the blood-brain barrier (BBB) without specific creatine transporter (CRT). Thus, synthesis of hydrophobic derivatives capable of crossing the BBB by alternative pathway is of great importance for the treatment of acute and chronic neurological diseases including stroke, traumatic brain injury and hereditary CRT deficiency. Here we describe synthesis of new hybrid compounds-creatinyl amino acids, their neuroprotective activity in vivo and stability to degradation in different media. The title compounds were synthesized by guanidinylation of corresponding sarcosyl peptides or direct creatine attachment using isobutyl chloroformate method. Addition of lipophilic counterion (p-toluenesulfonate) ensures efficient creatine dissolution in DMF with simultaneous protection of guanidino group towards intramolecular cyclization. It excludes the application of expensive guanidinylating reagents, permits to simplify synthetic procedure and adapt it to large-scale production. The biological activity of creatinyl amino acids was tested in vivo on ischemic stroke and NaNO(2) -induced hypoxia models. One of the most effective compounds-creatinyl-glycine ethyl ester increases life span of experimental animals more than two times in hypoxia model and has neuroprotective action in brain stroke model when applied both before and after ischemia. These data evidenced that creatinyl amino acids can represent promising candidates for the development of new drugs useful in stroke treatment. PMID:21644247

  4. Platelet anti-aggregation activities of compounds from Cinnamomum cassia.

    PubMed

    Kim, Sun Young; Koo, Yean Kyoung; Koo, Ja Yong; Ngoc, Tran Minh; Kang, Sam Sik; Bae, KiHwan; Kim, Yeong Sik; Yun-Choi, Hye Sook

    2010-10-01

    Cinnamomum cassia is a well-known traditional medicine for improvement of blood circulation. An extract of this plant showed both platelet anti-aggregation and blood anti-coagulation effects in preliminary testing. Among the 13 compounds obtained from this plant, eugenol (2), amygdalactone (4), cinnamic alcohol (5), 2-hydroxycinnamaldehyde (7), 2-methoxycinnamaldehyde (8), and coniferaldehyde (9) showed 1.5-73-fold greater inhibitory effects than acetylsalicylic acid (ASA) on arachidonic acid (AA)-induced aggregation (50% inhibitory concentration [IC₅₀] = 3.8, 5.16, 31.2, 40.0, 16.9, and 0.82 μM, respectively, vs. 60.3 μM) and 6.3-730-fold stronger effect than ASA on U46619 (a thromboxane A₂ mimic)-induced aggregation (IC₅₀ = 3.51, 33.9, 31.0, 51.3, 14.6, and 0.44 μM, respectively, vs. 321 μM). The other compounds, coumarin (3), cinnamaldehyde (6), cinnamic acid (10), icariside DC (11), and dihydrocinnacasside (12), also inhibited (2.5 to four times greater than ASA) U46619-induced aggregation. In addition, compounds 2, 4, 5, 6, 7, 8, and 9 were 1.3-87 times more effective than ASA against epinephrine-induced aggregation (IC₅₀ = 1.86, 1.10, 37.7, 25.0, 16.8, 15.3, and 0.57 μM, respectively, vs. 50.0 μM). However, the 13 compounds were only very mildly effective against blood coagulation, if at all. In conclusion, compounds 2, 4, 8, and 9 showed stronger inhibitory potencies than others on AA-, U46619-, and epinephrine-induced platelet aggregation. Eugenol (2) and coniferaldehyde (9) were the two of the most active anti-platelet constituents of C. cassia. PMID:20828311

  5. Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water.

    PubMed

    Khan, Usman; Nicell, Jim

    2015-05-01

    In Canada, as many as 20 pharmaceutically active compounds (PhACs) have been detected in samples of treated drinking water. The presence of these PhACs in drinking water raises important questions as to the human health risk posed by their potential appearance in drinking water supplies and the extent to which they indicate that other PhACs are present but have not been detected using current analytical methods. Therefore, the goal of the current investigation was to conduct a screening-level assessment of the human health risks posed by the aquatic release of an evaluation set of 335 selected PhACs. Predicted and measured concentrations were used to estimate the exposure of Canadians to each PhAC in the evaluation set. Risk evaluations based on measurements could only be performed for 17 PhACs and, of these, all were found to pose a negligible risk to human health when considered individually. The same approach to risk evaluation, but based on predicted rather than measured environmental concentrations, suggested that 322 PhACs of the evaluation set, when considered individually, are expected to pose a negligible risk to human health due to their potential presence in drinking waters. However, the following 14 PhACs should be prioritized for further study: triiodothyronine, thyroxine, ramipril and its metabolite ramiprilat, candesartan, lisinopril, atorvastatin, lorazepam, fentanyl, atenolol, metformin, enalaprilat, morphine, and irbesartan. Finally, the currently available monitoring data for PhACs in Canadian surface and drinking waters was found to be lacking, irrespective of whether their suitability was assessed based on risk posed, predicted exposure concentrations, or potency. PMID:25739816

  6. Activity Profile of an FDA-Approved Compound Library against Schistosoma mansoni

    PubMed Central

    Panic, Gordana; Vargas, Mireille; Scandale, Ivan; Keiser, Jennifer

    2015-01-01

    Background As plans to expand mass drug treatment campaigns to fight schistosomiasis form, worries about reliance on praziquantel as the sole available treatment motivate the investigation for novel antischistosomal compounds. Drug repurposing might be an inexpensive and effective source of novel antischistosomal leads. Methodology 1600 FDA approved compounds were first assayed against Schistosoma mansoni schistosomula at a concentration of 10 µM. Active compounds identified from this screen were advanced to the adult worm screen at 33.33 µM, followed by hit characterization. Leads with complementary pharmacokinetic and toxicity profiles were then selected for in vivo studies. Principal Findings The in vitro screen identified 121 and 36 compounds active against the schistosomula and adult stage, respectively. Further, in vitro characterization and comparison with already available pharmacokinetic and toxicity data identified 11 in vivo candidates. Doramectin (10 mg/kg) and clofazimine (400 mg/kg) were found to be active in vivo with worm burden reductions of 60.1% and 82.7%, respectively. Conclusions/Significance The work presented here expands the knowledge of antischistosomal properties of already approved compounds and underscores variations observed between target-based and phenotypic approaches and among laboratories. The two in vivo-active drugs identified in this study, doramectin and clofazimine are widely available and present as novel drug classes as starting points for further investigation. PMID:26230921

  7. Evaluation of anxiolytic activity of compound Valeriana jatamansi Jones in mice

    PubMed Central

    2012-01-01

    Background Compound Valeriana jatamansi Jones is a formula for treating anxiety-related diseases in the clinic, which is composed of Valeriana jatamansi Rhizoma et Radix, Ziziphi Spinosae Semen, Albiziae Cortex and Junci Medulla. The purpose of this study was to explore the anxiolytic properties of this compound in mice. Methods Male ICR mice were treated with compound Valerianae Jatamansi Jones (1.2 g/kg, 2.4 g/kg, 4.8 g/kg), saline, diazepam (2 mg/kg) orally for 10 days and then exposed to elevated maze-plus (EPM) and light–dark box (LDB). The effects of the compound on spontaneous activity were evaluated by locomotor activity test. We further investigated the mechanism of action underlying the anxiolytic-like effect of compound by pre-treating animals with antagonists of benzodiazepine (flumazenil, 3mg/kg) prior to evaluation using EPM and LDB. Results Compound Valerianae Jatamansi Jones (2.4, 4.8 g/kg, p.o.) significantly increased entries (P<0.05) into and time spent (P<0.05) on the open arms of the EPM, and number of transitions (P<0.05) and time spent (P<0.05) in the light compartment of the LDB. However, the anxiolytic-like effects of compound were significantly reduced by pre-treatment with flumazenil (P>0.05). In addition, compound Valerianae Jatamansi Jones treatment didn’t affect the spontaneous activity in mice (P> 0.05). Conclusions The present study supports the hypothesis that compound Valeriana jatamansi Jones exert anxiolytic action but no sedative effects in mice and that this effect might be mediated by benzodiazepine receptors. PMID:23171285

  8. Studies on the antioxidant activities of some new chromone compounds.

    PubMed

    Kładna, Aleksandra; Berczyński, Paweł; Piechowska, Teresa; Kruk, Irena; Aboul-Enein, Hassan Y; Ceylan-Unlusoy, Meltem; Verspohl, Eugen J; Ertan, Rahmiye

    2014-11-01

    Recent reviews evidence that the naturally occurring compounds containing the chromone skeleton exhibit antiradical activities, providing protection against oxidative stress. The antioxidant activities of 13 new synthesized chromonyl-2,4-thiazolidinediones, chromonyl-2,4-imidazolidinediones and chromonyl-2-thioxoimidzolidine-4-ones were evaluated using in vitro antioxidant assays, including superoxide anion radical (O2(-•)), hydroxyl radical (HO(•)), 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH(•)) scavenging capacity and total antioxidant capacity ferric ion reducing activity. Superoxide anion radical was produced using potassium superoxide/18-crown-6-ether dissolved in dimethylsulfoxide, and the Fenton-like reaction (Fe(II) + H2O2) was a generator of hydroxyl radicals. Chemiluminescence, spectrophotometry, electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin trap were the measurement techniques. The results showed that the majority of the chromone derivatives tested showed a strong scavenging effect towards free radicals, similar to the chemiluminescence reaction with superoxide anion radical with a high activity, inhibition of the DMPO-OOH radical EPR signal (24-58%), the DMPO-OH radical EPR signal (4-75%) and DPPH radical EPR signal (6-100%) at 1 mmol/L. Several of the examined compounds exhibited the high reduction potentials. The results obtained show that the new synthesized chromone derivatives may directly scavenger reactive oxygen species and thus may play a protective role against oxidative damage. PMID:24482260

  9. Using Active Learning Strategies to Present Bloodborne Pathogen Programs

    ERIC Educational Resources Information Center

    Cooper, Leslie; Weaver, Mary G.

    2003-01-01

    Every year, school nurses have the responsibility for developing and presenting a bloodborne pathogen presentation to the education and clerical staff of their buildings. Although the information is similar from year to year, the manner in which the information is presented can be altered. Teachers are using active learning strategies in a variety…

  10. Sorghum flour fractions: correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index.

    PubMed

    Moraes, Érica Aguiar; Marineli, Rafaela da Silva; Lenquiste, Sabrina Alves; Steel, Caroline Joy; de Menezes, Cícero Beserra; Queiroz, Valéria Aparecida Vieira; Maróstica Júnior, Mário Roberto

    2015-08-01

    Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5 ± 0.41; WSF 77.2 ± 0.33; and SB 60.3 ± 0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI. PMID:25766808

  11. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR)

    SciTech Connect

    Jacobs, Miriam N. . E-mail: miriam.jacobs@jrc.it; Nolan, Gail T.; Hood, Steven R.

    2005-12-01

    The pregnane X receptor (PXR) mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The receptor is expressed in liver and intestinal tissues and is activated by a wide range of compounds. The ability of a diverse range of dietary compounds to activate PXR-mediated transcription was assayed in HuH7 cells following transient transfection with human PXR (hPXR). The compounds investigated included phytochemicals such as lignans and phytoestrogens, organochlorine dietary contaminants such as polychlorinated biphenyls (PCBs) and triclosan and selected steroid, drug and herbal compounds. The hPXR activation at the top concentrations tested (10 {mu}M) relative to the positive control 10 {mu}M rifampicin ranged from 1.3% (trans-resveratrol) to 152% (ICI 182780). Hydroxylated compounds were marginally more potent than the parent compounds (tamoxifen activation was 74.6% whereas 4 hydroxytamoxifen activation was 84.2%) or significantly greater (vitamin D{sub 3} activation was 1.6%, while hydroxylated vitamin D{sub 3} activation was 55.6%). Enterolactone, the metabolite of common dietary lignans, was a medium activator of PXR (35.6%), compared to the lower activation of a parent lignan, secoisolariciresinol (20%). Two non-hydroxylated PCB congeners (PCB 118 and 153), which present a larger fraction of the PCB contamination of fatty foods, activated hPXR by 26.6% and 17%, respectively. The pesticide trans-nonachlor activation was 53.8%, while the widely used bacteriocide triclosan was a medium activator of hPXR at 46.2%. The responsiveness of PXR to activation by lignan metabolites suggests that dietary intake of these compounds may affect the metabolism of drugs that are CYP3A substrates. Additionally, the evidence that organochlorine chemicals, particularly the ubiquitous triclosan, activate hPXR suggests that these environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid

  12. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  13. Compounds from Gum Ammoniacum with Acetylcholinesterase Inhibitory Activity

    PubMed Central

    Adhami, Hamid-Reza; Lutz, Johannes; Kählig, Hanspeter; Zehl, Martin; Krenn, Liselotte

    2013-01-01

    The use of herbal medicinal preparations in dementia therapy has been studied based on experience from traditional medicine. A dichloromethane extract of gum ammoniacum, the gum-resin from Dorema ammoniacum D. Don had shown acetylcholinesterase (AChE) inhibitory activity in a previous study. The aim of this study was the isolation and characterization of the active compounds from this resin. The extract was investigated by a respective colorimetric microplate assay and the active zones were identified via TLC bioautography and isolated using several chromatographic techniques. The structures of the active components were characterized by one- and two-dimensional 1H and 13C NMR spectroscopy and mass spectrometry as (2′S,5′S)-2′-ethenyl-5′-(3-hy-droxy-6-methyl-4-oxohept-5-en-2-yl)-7-methoxy-2′-methyl-4H-spiro[chromene-3,1′-cyclopentane]-2,4-dione (1), which is an analogue of doremone A and a new natural compound, and as (2′S,5′R)-2′-ethenyl-5′-[(2R,4R)-4-hydroxy-6-methyl-3-oxohept-5-en-2-yl]-7-methoxy-2′-methyl-4H-spiro[chromene-3,1′-cyclo-pentane]-2,4-dione (2 = doremone A), (4E,8E)-1-(2,4-dihydroxyphenyl)-5,9,13-trimethyltetradeca-4,8,12-trien-1-one (3 = dshamirone), and 4,7-dihydroxy-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-2H-chromen-2-one (4 = am-moresinol). Dshamirone turned out to be the most active compound with an IC50 value for AChE inhibitory activity of 23.5 μM, whereas the other substances showed weak activity. The concentrations of the analytes in the resin were determined by HPLC as 3.1%, 4.6%, 1.9%, and 9.9%, respectively. PMID:24106674

  14. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  15. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity.

    PubMed

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  16. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars.

    PubMed

    Geiss, Otmar; Tirendi, Salvatore; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2009-11-01

    The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 microg m(-3). Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 degrees C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m(-3). PMID:19729200

  17. Prenylated polyphenolic compounds from Glycyrrhiza iconica and their antimicrobial and antioxidant activities.

    PubMed

    Kırmızıbekmez, Hasan; Uysal, Görkem Berk; Masullo, Milena; Demirci, Fatih; Bağcı, Yavuz; Kan, Yüksel; Piacente, Sonia

    2015-06-01

    A new prenylated isoflavan, iconisoflavan (1), and a new prenylated isoflav-3-ene, iconisoflaven (2) were isolated from the roots of Glycyrrhiza iconica together with four known ones namely (3S)-licoricidin (3), licorisoflavan A (4), topazolin (5) and glycycoumarin (6). The structures were elucidated on the basis of extensive spectroscopic analysis including 1D and 2D NMR as well as HR-MS. Furthermore, the absolute configurations of compounds 1, 3 and 4 were established by electronic circular dichroism (ECD). All the isolated compounds (1-6) were evaluated for their in vitro antimicrobial activities against five pathogenic bacteria and one yeast (Candida albicans) using an in vitro microdilution method. Compounds 1 and 3-5 displayed significant activity against Salmonella typhimurium ATCC 13311 with MIC values ranging from 2 to 8 μg/mL. Additionally, all compounds were screened for their in vitro free radical scavenging activities using an in vitro microdilution DPPH assay spectrofotometrically. The tested compounds exhibited IC50 values in the range of 0.18-0.56 mg/mL, suggesting an activity comparable with that of ascorbic acid (IC50: 0.07 mg/mL). To the best of our knowledge, the present study constitutes the first phytochemical and bioactivity investigation on G. iconica. PMID:25963162

  18. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  19. Isolation and identification of active compounds from Drimys winteri barks.

    PubMed

    Cechinel Filho, V; Schlemper, V; Santos, A R; Pinheiro, T R; Yunes, R A; Mendes, G L; Calixto, J B; Delle Monache, F

    1998-10-01

    The barks of Drimys winteri are used in folk medicine as a remedy to treat several diseases, including dolorous processes. Previous pre-clinical experiments carried out in our laboratories revealed that the hydroalcoholic extract of this plant showed anti-allergenic, anti-inflammatory and antinociceptive properties. Such promising results led us to determine the analgesic compounds present in D. winteri. Through conventional chromatographic procedures with fractions of CH2Cl2 and EtOAc obtained from methanolic extract, it was found that polygodial (1), 1-beta-(p-methoxycynnamyl) polygodial (2), taxifolin (3) and astilbin (4), are the main components of these fractions. Compounds 1 and 2 exhibited marked antinociceptive action by intraperitoneal and oral routes against acetic acid-induced abdominal constrictions in mice, suggesting that they are responsible, at least partially, for the antinociceptive effects of this plant. In addition, both compounds were notably more potent than aspirin and acetaminophen, two well-known drugs used here as comparison. PMID:9849632

  20. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    NASA Astrophysics Data System (ADS)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  1. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae)

    PubMed Central

    2012-01-01

    Background Dorstenia mannii (Moraceae) is a medicinal herb used traditionally for the treatment of many diseases. In the present study, the methanol extract of D. mannii and nine of its isolated compounds, namely dorsmanin A (1), B (2), C (3), D (4), E (6), F (7), G (8) dorsmanin I (9) and 6,8-diprenyleriodictyol (5), were tested for their antimicrobial activities against yeast, Mycobacteria and Gram-negative bacteria. Methods The microplate alamar blue assay (MABA) and the broth microdilution method were used to determine the minimal inhibitory concentration (MIC) and minimal microbicidal concentration (MMC) of the above extract and compounds on a panel of bacterial species. Results The results of the MIC determinations demonstrated that the methanol extract as well as compounds 3 and 8 were able to prevent the growth of all the fourteen studied microorganisms within the concentration range of 4 to 1024 μg/ml. The lowest MIC value for the methanol extract (64 μg/ml) was obtained on Candida albicans. The lowest value for individual compounds (4 μg/ml) was recorded with compounds 3 on Pseudomonas aeruginosa PA01 and 7 on Eschericia coli ATCC strain. The MIC values recorded with compounds 3 on P. aeruginosa PA01, 6 on C. albicans,7 on P. aeruginosa PA01 and K. pneumoniae ATCC strain and C. albicans,and 8 on P. aeruginosa PA01, PA124, P. stuartii, M. tuberculosis MTCS1 were lower than or equal to those of the reference drugs. MMC values not greater than 1024 μg/ml were recorded on all studied microorganisms with compounds 3 and 8. Conclusion The overall results of the present investigation provided evidence that the crude extract of D. mannii as well as some of its compounds such compounds 3 and 8 could be a potential source of natural antimicrobial products. PMID:22747736

  2. In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance

    PubMed Central

    2011-01-01

    Background Infections due to parasitic nematodes are common causes of morbidity and fatality around the world especially in developing nations. At present however, there are only three major classes of drugs for treating human nematode infections. Additionally the scientific knowledge on the mechanism of action and the reason for the resistance to these drugs is poorly understood. Commercial incentives to design drugs that are endemic to developing countries are limited therefore, virtual screening in academic settings can play a vital role is discovering novel drugs useful against neglected diseases. In this study we propose to build robust machine learning model to classify and screen compounds active against parasitic nematodes. Results A set of compounds active against parasitic nematodes were collated from various literature sources including PubChem while the inactive set was derived from DrugBank database. The support vector machine (SVM) algorithm was used for model development, and stratified ten-fold cross validation was used to evaluate the performance of each classifier. The best results were obtained using the radial basis function kernel. The SVM method achieved an accuracy of 81.79% on an independent test set. Using the model developed above, we were able to indentify novel compounds with potential anthelmintic activity. Conclusion In this study, we successfully present the SVM approach for predicting compounds active against parasitic nematodes which suggests the effectiveness of computational approaches for antiparasitic drug discovery. Although, the accuracy obtained is lower than the previously reported in a similar study but we believe that our model is more robust because we intentionally employed stringent criteria to select inactive dataset thus making it difficult for the model to classify compounds. The method presents an alternative approach to the existing traditional methods and may be useful for predicting hitherto novel anthelmintic

  3. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    PubMed Central

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  4. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity.

    PubMed

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  5. Naturally Produced Defensive Alkenal Compounds Activate TRPA1.

    PubMed

    Blair, Nathaniel T; Philipson, Benjamin I; Richards, Paige M; Doerner, Julia F; Segura, Abraham; Silver, Wayne L; Clapham, David E

    2016-05-01

    (E)-2-alkenals are aldehydes containing an unsaturated bond between the alpha and beta carbons. 2-alkenals are produced by many organisms for defense against predators and secretions containing (E)-2-alkenals cause predators to stop attacking and allow the prey to escape. Chemical ecologists have described many alkenal compounds with 3-20 carbons common, having varied positions of double bonds and substitutions. How do these defensive alkenals act to deter predators? We have tested the effects of (E)-2-alkenals with 6-12 carbons on transient receptor potential channels (TRP) commonly found in sensory neurons. We find that (E)-2-alkenals activate transient receptor potential ankyrin subtype 1 (TRPA1) at low concentrations-EC50s 10-100 µM (in 0 added Ca(2+) external solutions). Other TRP channels were either weakly activated (TRPV1, TRPV3) or insensitive (TRPV2, TRPV4, TRPM8). (E)-2-alkenals may activate TRPA1 by modifying cysteine side chains. However, target cysteines include others beyond the 3 in the amino-terminus implicated in activation, as a channel with cysteines at 621, 641, 665 mutated to serine responded robustly. Related chemicals, including the aldehydes hexanal and decanal, and (E)-2-hexen-1-ol also activated TRPA1, but with weaker potency. Rat trigeminal nerve recordings and behavioral experiments showed (E)-2-hexenal was aversive. Our results suggest that TRPA1 is likely a major target of these commonly used defensive chemicals. PMID:26843529

  6. Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking.

    PubMed

    Ivanova-Petropulos, Violeta; Durakova, Sanja; Ricci, Arianna; Parpinello, Giuseppina P; Versari, Andrea

    2016-06-01

    Phenolic composition of red wines from Stanušina, a grape variety indigenous of the Republic of Macedonia, was compared with the regional Vranec and the international Cabernet Sauvignon. The extent of skin contact (i.e. maceration time) on levels of phenolic compounds and antioxidant activity of wines was evaluated. A total of 19 phenolic compounds were identified and quantified. Among these malvidin-3-glucoside and its derivatives were the major compounds, while caftaric acid was the predominant cinnamic acid derivative, followed by catechin, the main flavan-3-ol. The concentration of hydroxycinnamic acids, anthocyanins and (+)-catechin ranged from 224 to 511 mg/L, 22 to 360 mg/L and 26 20 to 375 mg/L, respectively and peaked at 3rd, 6th and 9th day of maceration, respectively. However, prolong maceration slightly decreased their concentration. Stanušina wines presented high levels of hydroxycinnamic acids and antioxidant activity. PMID:27478219

  7. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression.

    PubMed

    Kauffmann, Hans Martin; Pfannschmidt, Sylvia; Zöller, Heike; Benz, Anke; Vorderstemann, Birgit; Webster, Jeanette I; Schrenk, Dieter

    2002-02-28

    In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells. However, only tBHQ and quercetin acted as inducers, but not the other compounds investigated. Reporter gene assays demonstrated that proximal promoter regions of the genes contribute to the induction by tBHQ, quercetin (MRP1) and clotrimazol (MRP2). However, the deletion of binding sites supposed to mediate the induction process (a PXR-binding element-like sequence for the clotrimazol effect and an ARE (antioxidative response element) for the tBHQ/quercetin effect) did not result in a significant decrease in the induction factor indicating that other parts of the promoter are probably involved in the induction process. In summary, expression of both genes can be up-regulated by redox-active compounds, while the other compounds tested induced only MRP2 but not MRP1 expression. PMID:11836020

  8. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity.

    PubMed

    You, Yanli; Duan, Xuewu; Wei, Xiaoyi; Su, Xinguo; Zhao, Mouming; Sun, Jian; Ruenroengklin, Neungnapa; Jiang, Yueming

    2007-01-01

    Chinese water chestnut (CWC) is one of the most popular foods among Asian people due to its special taste and medical function. Experiments were conducted to test the antioxidant activity and then determine the major phenolic compound components present in CWC. CWC phenolic extract strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radicals, superoxide anions and hydroxyl radicals, which was superior to ascorbic acid and butylated hydroxytoluene (BHT), two commercial used antioxidants. Furthermore, the CWC extract was found to have a relatively higher reducing power, compared with BHT. The major phenolic compounds present in CWC tissues were extracted, purified and identified by high-performance liquid chromatograph (HPLC) as (-)-gallocatechin gallate, (-)-epicatechin gallate and (+)-catechin gallate. This study suggests that CWC tissues exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions. PMID:17851436

  9. In vitro antileishmanial activity of trans-stilbene and terphenyl compounds.

    PubMed

    Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Roberti, Marinella; Colomba, Claudia; Giacomini, Elisa; Guidotti, Laura; Cascio, Antonio; Tolomeo, Manlio

    2016-07-01

    Leishmaniasis are globally widespread parasitic diseases which often leads to death if left untreated. Currently available drugs present different drawbacks, so there is an urgent need to develop new, safe and cost-effective drugs against leishmaniasis. In this study we tested a small library of trans-stilbene and terphenyl derivatives against promastigote, amastigotes and intramacrophage amastigote forms of Leishmania infantum. Two compounds of the series, the trans-stilbene 3 and the terphenyl 11, presented the best activity and safety profiles. Terphenyl 11 showed a leshmanicidal activity higher than pentostam and the ability to induce apoptosis selectively in Leishmania infantum while saving macrophages and primary epithelial cells. Our data indicate that terphenyl compounds, as well as stilbenes, are endowed with leishmanicidal activity, showing potential for further studies in the context of leishmanial therapy. PMID:26953250

  10. [Estrogenic activity of ultraviolet absorbers and the related compounds].

    PubMed

    Matsumoto, Hisashi; Adachi, Shinichi; Suzuki, Yasuhiko

    2005-08-01

    The estrogenic activities of ultraviolet absorbers and their related compounds were investigated using MCF-7 cell proliferation assay. Nine of 33 chemicals (benzophenone, 2,4-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 4-hydroxybenzophenone, 3-(4-methylbenzylidene) camphor, ethyl 2-cyano-3,3-diphenylacrylate (etocrylene) and 2-ethylhexyl-2-cyano-3,3-diphenylacrylate (octocrylene)) were positive compared with the vehicle control. Benzhydrol, ethyl cinnamate and 2,2'-dihydroxy-4-methoxybenzophenone were weakly active. When each xenoestrogen was added to the cells along with ICI 182780, an estrogen receptor (ER) antagonist, the cell growth was reduced according to its doses. Therefore, the cell proliferation was suggested to generate through ER. Most of these chemicals were also positive using CHOOSER assay, a new method of testing estrogenic activity of xenoestrogen. Each xenoestrogen was also confirmed to bind to ERalpha and ERbeta using a human ER competitive binding assay against 17beta-estradiol. The concentration order of the strength of its inhibitory effect using both ERalpha and ERbeta was similar to that of MCF-7 cell proliferation assay, except for benzyl 4-hydroxybenzoate (B4HB). B4HB showed a stronger activity on CHOOSER assay and the competitive binding assay using both ERalpha and ERbeta, although there was no activity observed on MCF-7 cell proliferation assay. Our findings were to detect the estrogenic activity of etocrylene and octocrylene in vitro, in addition to confirming the activities of some ultraviolet absorbers as previously reported. PMID:16079615

  11. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil.

    PubMed

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Di Maio, Ilona; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  12. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    PubMed Central

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Maio, Ilona Di; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  13. Identification of Volatile Organic Compounds (VOCs) From Photochemical Activity in Snow Samples

    NASA Astrophysics Data System (ADS)

    Kos, G.; Ariya, P. A.

    2004-05-01

    The occurrence of VOCs in snow has been observed and can be related to anthropogenic emissions and biological activity. Photochemistry and microorganisms play a major role in the transformation of compounds in different compartments of the global ecosystem. Studies so far focused on the determination of single analytes or a class of compounds - mainly of anthropogenic origin (e.g. halogenated aromatic hydrocarbons) - that were considered important with regard to health and environmental concerns. Broader studies that describe a range of different compounds with different functionalities are relatively rare, especially for those of biological origin. The presented study investigated the formation of VOCs in snow samples and their connection with microbiological activity. The main aim was to pre-concentrate, identify and quantify volatile organic compounds. Snow samples were collected in an urban environment (Montreal, Canada) with sterilized containers. Samples were transferred into a heated reaction flask, where the sample was melted. A two-trap system was employed for pre-concentration: The first trap was used for water removal. The second trap was used for the collection of expected analytes by removing volatiles from the circulating air. Circulation was maintained with a pump at atmospheric pressure. Adsorption to glass walls of the reaction flask was prevented with halocarbon wax coating. Different sterilization methods were employed to suppress microbiological activity in order to collect background data and identify compounds of biological origin. VOC concentration and compound identification was performed with gas chromatography and mass spectrometric detection (GC-MS) by taking a sample with a gas-tight syringe through a septum-port. The sample was directly injected into the GC system. Compounds were identified by their respective mass spectra and included aldehydes and alcohols.

  14. [The release of biologically active compounds from peat peloids].

    PubMed

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated. PMID:22165149

  15. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  16. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  17. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  18. Antioxidant activity of some foods containing phenolic compounds.

    PubMed

    Karakaya, S; El, S N; Taş, A A

    2001-11-01

    This study was designed to determine the total phenols (TP) and total antioxidant activity (TAA) of some liquid and solid plant foods that are commonly consumed in Turkey. Total phenols were analysed according to the Folin-Ciocalteu method and antioxidant activities of these compounds in aqueous phase were assessed by measuring their direct ABTS.- radical scavenging abilities. Total phenols varied from 68 to 4162 mg/l for liquid foods and from 735 to 3994 mg/kg for solid foods. TAA of liquid and solid foods ranged between 0.61-6.78 mM and 0.63-8.62 mM, respectively. Total antioxidant activities of foods were well correlated with total phenols (r2 = 0.95). According to content of total phenols per serving, liquid foods were in the order of black tea > instant coffee > coke > red wine > violet carrot juice > apricot nectar > Turkish coffee > grape molasses > sage > white wine > linden flower, and solid foods were in the order of red grape > raisins > tarhana > dried black plum > dried apricot > grape > fresh paprika > fresh black plum > Urtica sp. > cherry > fresh apricot > paprika pickle > paprika paste. PMID:11570016

  19. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  20. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    PubMed

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants. PMID:22318745

  1. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil.

    PubMed

    Cañas, Ana I; Alcalde, Miguel; Plou, Francisco; Martínez, Maria Jesús; Martínez, Angel T; Camarero, Susana

    2007-04-15

    Efficient transformation of several polycyclic aromatic hydrocarbons (PAHs) was obtained using a fungal laccase in the presence of phenolic compounds related to those formed in nature during the turnover of lignin and humus. The effect of these natural mediators, namely vanillin, acetovanillone, acetosyringone, syringaldehyde, 2,4,6-trimethylphenol, p-coumaric acid, ferulic acid, and sinapic acid, was compared with that of synthetic mediators such as 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). Anthracene was significantly degraded by laccase in the absence of mediators, whereas benzo[a]pyrene and pyrene were weakly transformed (less than 15% after 24 h). Vanillin, acetovanillone, 2,4,6-trimethylphenol, and, above all, p-coumaric acid strongly promoted the removal of PAHs by laccase. 9,10-Anthraquinone was the main product detected from anthracene oxidation by all the laccase-mediator systems. The yield of anthraquinone formed was directly correlated with the amount of p-coumaric acid used. This compound resulted in a better laccase mediator than ABTS and close similarity to HBT, attaining 95% removal of anthracene and benzo[a]pyrene and around 50% of pyrene within 24 h. Benzo[a]pyrene 1,6-, 3,6-, and 6,12-quinones were produced during benzo[a]pyrene oxidation with laccase and p-coumaric acid, HBT, or ABTS as mediators, although use of the latter mediator gave further oxidation products that were not produced by the two other systems. PMID:17533865

  2. Pharmacologically active compounds in the Anoectochilus and Goodyera species.

    PubMed

    Du, Xiao-Ming; Irino, Nobuto; Furusho, Norihiro; Hayashi, Jun; Shoyama, Yukihiro

    2008-04-01

    The extract of Anoectochilus formosanus showed significant activity in decreasing the levels of the cytosolic enzymes LDH, GOT, and GPT, and the result demonstrated that A. formosanus possessed prominent hepatoprotective activity against CCl(4)-induced hepatotoxicity. Moreover, in the results of the test using aurothioglucose-induced obese mice, the extract showed a significant antihyperliposis effect. A. formosanus grown in the wild and propagated by tissue culture contain ten compounds, including a major known component, (3R)-3-(beta-D-glucopyranosyloxy)butanolide (kinsenoside; 1), and two new components, (3R)-3-(beta-D-glucopyranosyloxy)-4-hydroxybutanoic acid (2) and 2-[(beta-D-glucopyranosyloxy)methyl]-5-hydroxymethylfuran (3), along with the known compounds, isopropyl-beta-D-glucopyranoside (4), (R)-3,4-dihydroxybutanoic acid gamma-lactone (5), 4-(beta-D-glucopyranosyloxy) benzyl alcohol (6), (6R,9S)-9-(beta-D-glucopyranosyloxy)megastigma-4,7-dien-3-one (7), and (3R)-3-(beta-D-glucopyranosyloxy)-4-hydroxybutanolide (8). Since a higher concentration of kinsenoside (1) was detected in the crude drugs A. formosanus and A. koshunensis by high-performance liquid chromatography (HPLC) analysis, we proved a simple purification system for kinsenoside (1), giving 180 mg of kinsenoside (1) from 1 g of dried samples for further pharmacological experiments. In an anti-hyperliposis assay using high-fat-diet rats, 1 significantly reduced the weights of the body and the liver, and also decreased the triglyceride level in the liver compared to those of control rats. On the other hand, the epimer of 1, (3S)-3-(beta-D-glucopyranosyloxy)butanolide, goodyeroside A (9), which was isolated from the Goodyera species, had no effect for anti-hyperliposis. In aurothioglucose-induced obese mice, 1 suppressed the body and liver weight increase, significantly ameliorated the triglyceride level in the liver, and also reduced the deposition of uterine fat pads. The anti

  3. Natural Compounds' Activity against Cancer Stem-Like or Fast-Cycling Melanoma Cells

    PubMed Central

    Majchrzak, Kinga; Hartman, Mariusz; Czyz, Malgorzata

    2014-01-01

    Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem

  4. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    PubMed Central

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  5. Structure-function activity of dehydrozingerone and its derivatives as antioxidant and antimicrobial compounds.

    PubMed

    Kubra, Ismail Rahath; Bettadaiah, Bheemanakere Kempaiah; Murthy, Pushpa Srinivas; Rao, Lingamallu Jagan Mohan

    2014-02-01

    Dehydrozingerone, structural half analogue of curcumin, is a phenolic compound isolated from ginger (Zingiber officinale) rhizomes. Dehydrozingerone and several of its derivatives such as glucopyranosides and its tetra acetate derivative and 4-O-acetyl and methyl derivatives of dehydrozingerone were synthesized in the present study. Dehydrozingerone, synthesised with improved yield was used for the synthesis of Dehydrozingerone 4-O-β-D-glucopyranoside (first time report) by modified Koenigs-Knorr-Zemplén method. Structures of all the compounds have been established using spectroscopic methods. These compounds were tested for radical scavenging activity by DPPH and FRAP method as well as for antibacterial and antifungal activities. The parent molecule exhibited better scavenging activity as compared to its derivatives indicating the significance of free phenolic hydroxyl group. Also, Dehydrozingerone and its derivatives exhibited antibacterial as well as antifungal activity due to the conjugation system present, which includes α,β-unsaturated carbonyl (C = O) group. This study gave an insight into structural requirements for dehydrozingerone activity. PMID:24493881

  6. Antioxidative Activities and Active Compounds of Extracts from Catalpa Plant Leaves

    PubMed Central

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g·DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g·DW) and C. ovata G. Don (24.96 mg/g·DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively. PMID:25431795

  7. Antioxidative activities and active compounds of extracts from Catalpa plant leaves.

    PubMed

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g · DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g · DW) and C. ovata G. Don (24.96 mg/g · DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively. PMID:25431795

  8. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  9. QSAR study of antimicrobial activity of some 3-nitrocoumarins and related compounds.

    PubMed

    Debeljak, Zeljko; Skrbo, Armin; Jasprica, Ivona; Mornar, Ana; Plecko, Vanda; Banjanac, Mihajlo; Medić-Sarić, Marica

    2007-01-01

    A new class of antimicrobial agents, 3-nitrocoumarins and related compounds, has been chosen as a subject of the present study. In order to explore their activity and molecular properties that determine their antimicrobial effects, QSAR models have been proposed. Most of the 64 descriptors used for the development were extracted from semiempirical and density functional theory (DFT) founded calculations. For this study literature data containing results of microbiological activity screening of 33 coumarin derivatives against selected clinical isolates of C. albicans (CA) and S. aureus (SA) have been selected. Multivariate predictive models based on random forests (RF) and two hybrid classification approaches, genetic algorithms (GA) associated with either support vector machines (SVM) or k nearest neighbor (kNN), have been used for establishment of QSARs. An applied feature selection approach enabled two-dimensional linear separation of active and inactive compounds, which was a necessary tool for rational candidate design and descriptor relevance interpretation. Candidate molecules were checked by cross-validated models, and selected derivatives have been synthesized. Their antimicrobial activities were compared to antimicrobial activities of the representative derivatives from the original set in terms of minimal inhibitory concentration (MIC) against chosen SA and CA ATCC strains. High ranking of descriptors consistent with the degree of hydrolytic instability of selected compounds is common to models of antimicrobial activity against both microorganisms. However, descriptor ranking indicates different antimicrobial mechanisms of action of chosen coumarin derivatives against selected microbial species. PMID:17489552

  10. Pomegranate fruit as a rich source of biologically active compounds.

    PubMed

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20-320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17 β -estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  11. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  12. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    PubMed

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease. PMID:26099310

  13. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  14. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper.

    PubMed

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L.) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  15. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    PubMed Central

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  16. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2015-01-01

    Lyme disease is the leading tick-borne disease in the USA. Whereas the majority of Lyme disease patients with early disease can be cured with standard treatment, some patients suffer from chronic fatigue and joint and muscular pain despite treatment, a syndrome called posttreatment Lyme disease syndrome. Although the cause is unclear, ineffective killing of Borrelia burgdorferi persisters by current Lyme disease antibiotics is one possible explanation. We took advantage of our recently developed high-throughput viability assay and screened the National Cancer Institute compound library collection consisting of 2526 compounds against stationary phase B. burgdorferi. We identified the top 30 new active hits, including the top six anthracycline antibiotics daunomycin 3-oxime, dimethyldaunomycin, daunomycin, NSC299187, NSC363998 and nogalamycin, along with other compounds, including prodigiosin, mitomycin, nanaomycin and dactinomycin, as having excellent activity against B. burgdorferi stationary phase culture. The anthracycline or anthraquinone compounds, which are known to have both anti-cancer and antibacterial activities, also had high activity against growing B. burgdorferi with low minimum inhibitory concentration. Future studies on the structure-activity relationship and mechanisms of action of anthracyclines/anthraquinones are warranted. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics to eradicate B. burgdorferi persisters in vitro and in animal models are needed to determine if they improve the treatment of Lyme disease. PMID:26954881

  17. Antioxidant activities and phenolic compounds of date plum persimmon ( Diospyros lotus L.) fruits.

    PubMed

    Gao, Hui; Cheng, Ni; Zhou, Juan; Wang, Bini; Deng, Jianjun; Cao, Wei

    2014-05-01

    In the present study, phenolic compounds are extracted from the date plum persimmon fruits using water, methanol and acetone as solvents. Antioxidant activities of the phenolic extracts are measured using four different tests, namely, DPPH, hydroxyl radical scavenging activities, chelating and reducing power assays. All the extracts show dose dependent DPPH radical scavenging activity, reducing and chelating powers and moreover, they are well correlated with the total phenolic and total flavonoid substances, suggesting direct contribution of phenolic compounds to these activities. In further, the extracts are identified and quantified by HPLC-ECD. Results show that gallic acid is the most abundant phenolic compound, with amounts ranging between 45.49and 287.47 μg/g dry sample. Myricetin is the dominant flavonoid in all extracts. Its level varied from 2.75 μg/g dry sample in acetone extract to 5.28 μg/g dry sample in water extract. On the basis of the results obtained, the date plum persimmon fruits phenolic extract is a potential source of natural antioxidants owing to its significant antioxidant activities. PMID:24803703

  18. Antiherpetic Plants: A Review of Active Extracts, Isolated Compounds, and Bioassays.

    PubMed

    Silva-Mares, David; Torres-López, Ernesto; Rivas-Galindo, Verónica M

    2016-04-01

    Herpes simplex is a disease that is widely distributed throughout the world. It is caused by herpes simplex virus type 1 (HSV-1) and simplex virus type 2 (HSV-2). The drugs of choice for treatment are acyclovir (ACV), Penciclovir (PCV) and other guanine analogues, which have the same mechanism of action. However, due to the constant increase of ACV-resistant strains in immunocompromised patients, it is necessary to find new treatment alternatives. It has been shown that natural products are a good alternative for the treatment of these diseases as well as being an excellent source of compounds with anti-herpetic activity, which may be useful for the development of new drugs and act through a mechanism of action different from ACV and PCV. This paper compiles reports on extracts and compounds isolated from plants that have anti-herpetic activity. We present an analysis of the solvents most widely used for extraction from plants as well as cells and commonly used methods for evaluating cytotoxic and anti-herpetic activity. Families that have a higher number of plants with anti-herpetic activity are evaluated, and we also highlight the importance of studies of mechanisms of action of extracts and compounds with anti-herpetic activity. PMID:27396217

  19. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway.

    PubMed

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  20. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  1. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Gupta, V K; Boopathy, R; Maharaja, P

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were -46.9 kJ mol(-1), -1.19 kJ mol(-1) and -161.36 JK(-1)mol(-1) respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH(0) indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10(-2) min(-1). PMID:25427481

  2. Fate of selected pharmaceutically active compounds during simulated riverbank filtration.

    PubMed

    D'Alessio, Matteo; Yoneyama, Bunnie; Ray, Chittaranjan

    2015-02-01

    The objective of this study was to investigate the effect of temperature, oxygen, and organic matter on the removal of selected pharmaceutically active compounds (PhACs) during simulated riverbank filtration (RBF). The behavior of six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone) was evaluated by small flow-through column experiments. Results from our study showed that RBF can be used to treat many of the PhACs found in environmental waters. Local conditions at the RBF site, however, can affect the removal of PhACs and should be investigated. Biodegradation and sorption represented the predominant mechanisms involved during the removal of the selected PhACs. All selected PhACs showed limited and slower removal during the winter. Phenazone was highly impacted by the level of oxygen; complete depletion of phenazone below the analytical limit occurred only under aerobic conditions (dissolved oxygen >8 mg L(-1)). Caffeine and E2 were highly impacted by the presence of humic acid in the feed water. Caffeine and E2 were depleted below the detection limit in the presence of humic acid regardless of the temperature and the level of oxygen. E1 was impacted by the different environmental conditions and depletion below the detection limit occurred only during the summer under aerobic conditions. Carbamazepine (10%) and gemfibrozil (<30%) showed limited removal regardless of the different levels of temperature, oxygen and humic acid. PMID:25461064

  3. Biological surface-active compounds from marine bacteria.

    PubMed

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  4. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    PubMed Central

    2012-01-01

    Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2) and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1), B (2), C (3), F (4), G (5) and 2,7-dihydroxy-4-methoxyphenanthrene (6), were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR) phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA) and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL) was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL) was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential antimicrobial

  5. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    PubMed Central

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Hashim, Najihah Mohd; Chow, Kit May; Ahmadipour, Fatemeh

    2015-01-01

    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells. PMID:26648695

  6. Biological activity of terpene compounds produced by biotechnological methods.

    PubMed

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-06-01

    Context Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. Objective This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Materials and methods Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. Results trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Discussion and conclusions Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences. PMID:26808720

  7. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    PubMed

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  8. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  9. Geothermal activity in Italy: present status and future prospects

    SciTech Connect

    Carella, R.; Palmerini, C.G.; Stefani, G.C.; Verdiani, G.

    1985-01-01

    In the Italian Peninsula the Apennines separate a relatively cold Po-Adriatic-Ionian ''foredeep'' external belt from a warmer Tyrrhenian ''back-arc'' internal tensional belt. The latter i characterized by high geothermal heat flow together with conspicuous recent or present-day volcani phenomena. In this area, extending from Tuscany to Campania, lie the known steam- and waterdominated fields. Other ''warm'' areas are located on some Tyrrhenian islands. Within the ''cold'' external belt, interesting locations for low enthalpy utilizations can be found in the Po river valley, particularly in the eastern part near Ferrara and Abano. Since 1977 ENEL (National Electri Energy Agency) and AGIP (State Oil Company) have been jointly conducting geothermal activities in Italy, with the exception of the Tuscan geothermal area where ENEL operates on an exclusive basis. At present the areas surveyed cover about 8250 kmS. As of December 1983 the geothermal installed capacity was 456.2 MW (net capacity 340 MW) and low-temperature geothermal resources equivalent to 100,000 OET /yr were being used. The National Energy Plant (PEN), issued on 4 December 1981, forecast for the year 1990 a geothermal power increment of 200 MW /SUB e/ above the 449.1 MW /SUB e/ already installed. The target in the low enthalpy non-electric sector is to save 300,000 OET/yr by 1990. This paper describes the activities carried out from March 1975 to December 1983 and the main projects in progress.

  10. Oleanolic Acid, a Compound Present in Grapes and Olives, Protects against Genotoxicity in Human Mammary Epithelial Cells.

    PubMed

    Sánchez-Quesada, Cristina; López-Biedma, Alicia; Gaforio, José J

    2015-01-01

    Oleanolic acid (AO) and maslinic acid (MA) are constituents of the skins of different fruits, including olives and white or red grapes. Although both compounds are known to have beneficial properties against different types of cancers, thus far, there are no studies about their chemopreventive effects in human breast cancer. Thus, we sought to elucidate whether both compounds possess chemopreventive activity. Two cell lines of human breast cancer cells and one noncancerous human mammary epithelial cells were used to determine the effects of OA and MA. The results showed that OA inhibited the proliferation and increased the oxidative stress of highly invasive cells. Additionally, OA decreased oxidative stress and oxidative damage to the DNA in human mammary epithelial cells. These results suggest that OA could act as a chemopreventive agent in human breast cancer and could inhibit the proliferation of highly invasive breast cancer cells. PMID:26225949

  11. Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for alpha-dicarbonyl compounds as a proof of the mutagenic mechanism.

    PubMed

    Rodríguez Mellado, J M; Ruiz Montoya, M

    1994-01-16

    The mutagenic activities in the Ames test against S. typhimurium TA100 for a series of alpha-dicarbonyl compounds are examined together with the formation constants of the adducts formed between such compounds and guanine and guanosine. Correlations between the equilibrium constants, the apparent reaction enthalpies, and the mutagenic activity are presented. These correlations imply that the mutagenic activity is related to the chemical reactivity of the dicarbonyl compounds with the puric bases. PMID:7506369

  12. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds.

    PubMed

    Aazza, Smail; Lyoussi, Badiâ; Miguel, Maria G

    2011-01-01

    The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L.) Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene. PMID:21900869

  13. Acquisition of Compound Words in Chinese-English Bilingual Children: Decomposition and Cross-Language Activation

    ERIC Educational Resources Information Center

    Cheng, Chenxi; Wang, Min; Perfetti, Charles A.

    2011-01-01

    This study investigated compound processing and cross-language activation in a group of Chinese-English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both languages. The compound words in one language contained…

  14. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  15. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities.

    PubMed

    Zhang, Yu-Bo; Wu, Peng; Zhang, Xiao-Li; Xia, Chao; Li, Guo-Qiang; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2015-01-01

    Three new phenolic compounds 1-3 and twenty known ones 4-23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR) and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin. PMID:26556329

  16. Analysis of coenzyme A activated compounds in actinomycetes.

    PubMed

    Cabruja, Matías; Lyonnet, Bernardo Bazet; Millán, Gustavo; Gramajo, Hugo; Gago, Gabriela

    2016-08-01

    Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate. PMID:27270600

  17. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    PubMed

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. PMID:27612813

  18. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain. PMID:15046718

  19. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  20. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies.

    PubMed

    Lourenço, André Luiz; Saito, Max Seidy; Dorneles, Luís Eduardo Gomes; Viana, Gil Mendes; Sathler, Plínio Cunha; Aguiar, Lúcia Cruz de Sequeira; de Pádula, Marcelo; Domingos, Thaisa Francielle Souza; Fraga, Aline Guerra Manssour; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Castro, Helena Carla; Cabral, Lucio Mendes

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations. PMID:25903367

  1. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  2. Antidiarrheal activity of extracts and compound from Trilepisium madagascariense stem bark

    PubMed Central

    Teke, Gerald Ngo; Kuiate, Jules-Roger; Kueté, Victor; Teponno, Rémy Bertrand; Tapondjou, Léon Azefack; Vilarem, Gerard

    2010-01-01

    Objective: The present study was performed to evaluate the preventive and curative antidiarrheal effects of the methanol extract, fractions and compound from the stem bark of Trilepisium madagascariense in rats. Materials and Methods: The methanol extract from the stem bark of T. madagascariense, its fractions (n-hexane, ethyl acetate, n-butanol and aqueous residue) and compound (obtained from further column chromatography of the ethyl acetate fraction) were evaluated for the antidiarrheal activity in rats. These test samples (at 100, 200 and 400 mg/kg for the extract and fractions and 2.5 mg/kg for compound) were assayed on the latent periods, purging indices and fecal frequencies in castor oil-induced diarrhea. Gastrointestinal transit and castor oil-induced enteropooling assays were conducted. Shigella-induced diarrhea was assayed. Blood chemistry and fecal Shigella load were examined. Results: The fractionation of the ethyl acetate fraction from the methanol extract of T. madagascariense afforded a known compound [isoliquiritigenin (1)]. Compound 1 increased the latent period of diarrhea induction (179.40 min) compared to the saline control (60.80 min). The purging indices, fecal frequencies and intestinal enteropooling decreased with an increase in the dose of test samples. The blood cell counts, sera creatinine and fecal Shigella load decreased significantly (P ≤ 0.05) in the plant extract-treated rats compared to the saline control. Conclusion: The results of our study, being reported for the first time, provide clear evidence that the methanol extract, fractions and isoliquiritigenin from T. madagascariense stem bark possess antidiarrheal activities. PMID:20871767

  3. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    USGS Publications Warehouse

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  4. Global emissions and models of photochemically active compounds

    SciTech Connect

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-05-20

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1{degree} {times} 1{degree} grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings.

  5. Supercritical CO2 extraction and purification of compounds with antioxidant activity.

    PubMed

    Díaz-Reinoso, Beatriz; Moure, Andrés; Domínguez, Herminia; Parajó, Juan Carlos

    2006-04-01

    Supercritical fluid extraction (SCFE), based on the utilization of a fluid under supercritical conditions, is a technology suitable for extraction and purification of a variety of compounds, particularly those that have low volatility and/or are susceptible to thermal degradation. The interest in SCFE is promoted by legal limitations of conventional solvents for food and pharmaceutical uses. The physicochemical properties of supercritical CO2 (higher diffusivity, lower viscosity, and lower surface tension than conventional solvents) facilitate mass transfer and allow an environmentally friendly operation. This article presents a comprehensive compilation of data on the supercritical CO2 extraction of antioxidant compounds from vegetal materials, with particular attention to those of a phenolic nature. Aspects concerning the supercritical operation for extraction and fractionation of antioxidants compounds are considered, including equilibrium solubility of pure compounds and effects of the operational conditions on the antioxidant activity of isolated fractions. The data are compared to those reported for synthetic antioxidants and natural extracts obtained by conventional solvent extraction from vegetal matrices. PMID:16569029

  6. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties.

    PubMed

    Wang, Bao-Lei; Shi, Yan-Xia; Zhang, Shu-Jun; Ma, Yi; Wang, Hong-Xue; Zhang, Li-Yuan; Wei, Wei; Liu, Xing-Hai; Li, Yong-Hong; Li, Zheng-Ming; Li, Bao-Ju

    2016-07-19

    A series of novel carboxamide compounds 19a-19j, 20a-20j and 22a-22d containing piperazine and arylsulfonyl moieties have been synthesized. The bioassay results showed that some compounds exhibited favorable herbicidal activities against dicotyledonous plants and many of them possessed excellent antifungal activities. Among 24 novel compounds, some showed superiority over the commercial fungicides Chlorothalonil, Dimethomorph, Thiophanate-methyl, Iprodione, and Zhongshengmycin at 500 mg/L concentration. Some compounds also exhibited high KARI inhibitory activity at 100 μg/mL concentration and could be used as new KARI lead inhibitors for further studies. Moreover, SAR of these new compounds were comprehensively investigated using different computational methods in which 3D-QSAR model obtained provided useful information for further structural optimization for the discovery of new fungicides. The results of this research will contribute to explore comprehensive biological activities of piperazine-containing compounds in different areas of chemistry. PMID:27092414

  7. Effects of polyhydroxy compounds on beetle antifreeze protein activity

    PubMed Central

    Amornwittawat, Natapol; Wang, Sen; Banatlao, Joseph; Chung, Melody; Velasco, Efrain; Duman, John G.; Wen, Xin

    2016-01-01

    Antifreeze proteins (AFPs) noncolligatively depress the nonequilibrium freezing point of a solution and produce a difference between the melting and freezing points termed thermal hysteresis (TH). Some low-molecular-mass solutes can affect the TH values. The TH enhancement effects of selected polyhydroxy compounds including polyols and carbohydrates on an AFP from the beetle Dendroides canadensis were systematically investigated using differential scanning calorimetry (DSC). The number of hydroxyl groups dominates the molar enhancement effectiveness of polyhydroxy compounds having one to five hydroxyl groups. However, the above rule does not apply for polyhydroxy compounds having more than five hydroxyl groups. The most efficient polyhydroxy enhancer identified is trehalose. In a combination of enhancers the strongest enhancer plays the major role in determining the TH enhancement. Mechanistic insights into identification of highly efficient AFP enhancers are discussed. PMID:19038370

  8. Antihyperlipidemic activity of sesquiterpene lactones and related compounds.

    PubMed

    Hall, I H; Lee, K H; Starnes, C O; Muraoka, O; Sumida, Y; Waddell, T G

    1980-06-01

    Some naturally occurring pseudoguaianolides and germacranolides as well as synthetic related compounds were observed to be antihyperlipidemic agents in mice. Several of these compounds at a dose of 20 mg/kg/day resulted in lowering of serum cholesterol by approximately 30% and of serum triglycerides by approximately 25%. Thiol-bearing enzymes of lipid synthesis, i.e., acetyl-CoA, citrate-lyase, acetyl-CoA synthetase, and beta-hydroxy-beta-methylglutaryl-CoA reductase, were inhibited by these agents in vitro, supporting the premise that these agents alkylate thiol nucleophiles by a Michael-type addition. The alpha-methylene-gamma-lactone moiety, the beta-unsubstituted cyclopentenone ring, and the alpha-epoxycyclopentanone system of these compounds appeared to be responsible for the lowering of serum lipids. PMID:7205585

  9. Inhibition of Peroxidase Activity of Cytochrome c: De Novo Compound Discovery and Validation

    PubMed Central

    Bakan, Ahmet; Kapralov, Alexandr A.; Bayir, Hulya; Hu, Feizhou; Kagan, Valerian E.

    2015-01-01

    Cytochrome c (cyt c) release from mitochondria is accepted to be the point of no return for eliciting a cascade of interactions that lead to apoptosis. A strategy for containing sustained apoptosis is to reduce the mitochondrial permeability pore opening. Pore opening is enhanced by peroxidase activity of cyt c gained upon its complexation with cardiolipin in the presence of reactive oxygen species. Blocking access to the heme group has been proposed as an effective intervention method for reducing, if not eliminating, the peroxidase activity of cyt c. In the present study, using a combination of druggability simulations, pharmacophore modeling, virtual screening, and in vitro fluorescence measurements to probe peroxidase activity, we identified three repurposable drugs and seven compounds that are validated to effectively inhibit the peroxidase activity of cyt c. PMID:26078313

  10. Present Day Activity of South Polar Gullies on Mars

    NASA Astrophysics Data System (ADS)

    Raack, J.; Reiss, D.; Ruesch, O.; Hiesinger, H.

    2012-04-01

    Here we report on clearly identified seasonal changes of gullies observed within the last two martian years (MY) on slopes of a south polar pit, which is located in a filled crater (diameter ~54 km) north of Sisyphi Cavi at ~68.5°S and ~1.5°E. Using new high-resolution imaging (High Resolution Imaging Science Experiment, HiRISE), temperature (Thermal Emission Spectrometer, TES) and spectral data (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM; Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, OMEGA), we analyzed the exact timing of changes of gullies and detect the possible medium (CO2, H2O or dry) and mechanism which initiate present day gully activity. Two locations in the study region with clear modifications of gullies were identified in MY 29 between LS 226° and LS 247° and between LS 209° and LS 247°. In MY 30 changes occur in both locations between LS 218° and LS 249°. Modifications are the formation of a new small apron and new deposits within the channel, both associated with the deposition of dark material. Erosion in gully alcoves or channels was not observed. TES data show temperatures between ~180 and ~240 K within the period of gully modifications. Maximum temperatures in the region rise up to ~285 K between LS ~270° and ~310°. Spectral data show a CO2-cover of the study region until LS 227°. CO2-ice free surface are spectrally observed for the first time at LS 249°. H2O was not spectrally detected in the study region and a mixture of CO2 and H2O as presented in [1] cannot be clearly detected. Unfortunately, there are no spectral data available between LS 227° and 249°. Modifications of gullies imply seasonal volatile activity. The activity can be narrowed down to occur between LS 226° and 247° at mean temperatures between ~180 and ~240 K. This is in the range of temperatures where CO2 sublimates back into the atmosphere. Based on the temperature range, the most likely candidate for the observed new

  11. Hyphenated Analytical Methods in Determination of Biologically Active Compounds in Hen's Eggs.

    PubMed

    Walczak, Justyna; Bocian, Szymon; Trziszka, Tadeusz; Buszewski, Bogusław

    2016-05-01

    Hen's egg is a complete material needed for the development of the embryo; it is an important source of nutraceutical compounds, such as protein, fats, vitamins, trace metals, and minerals. Moreover, avian egg contains biologically active compounds that exhibit antibacterial and antimicrobial activities as well as antitumor, antiviral, antioxidant, immunomodulating, and therapeutic properties. Eggs are mostly very good sources of valuable, easily digestible proteins. This review focuses on the biologically active compounds from hen's egg and applications of these compounds in medicine and the pharmaceutical industry. Additionally, it gives an overview of the hyphenated separation techniques, including sample preparation, analysis, and identification, used in the proteomics and lipidomics analysis. PMID:26186292

  12. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine.

    PubMed

    Mao, Ze-Wei; Zheng, Xi; Lin, Yu-Ping; Hu, Chun-Yan; Wang, Xiu-Li; Wan, Chun-Ping; Rao, Gao-Xiong

    2016-08-01

    A series of novel hybrid compounds between benzofuran and N-aryl piperazine have been designed and prepared. These derivatives were evaluated for their in vitro anti-tumor activity against a panel of human tumor cell lines by MTT assay. The results demonstrated that amide derivatives were more bioactive than sulfonamide compounds in general, and that chloro or trifluoromethyl substituent was vital for modulating cytotoxic activity. In particular, compound 13 was found to be the most potent compound against 4 strains human tumor cell lines, and exhibited cytotoxic activity selectively against Hela (0.03μM). PMID:27371110

  13. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  14. A Practical Strategy to Discover New Antitumor Compounds by Activating Silent Metabolite Production in Fungi by Diethyl Sulphate Mutagenesis

    PubMed Central

    Fang, Shi-Ming; Wu, Chang-Jing; Li, Chang-Wei; Cui, Cheng-Bin

    2014-01-01

    Many fungal biosynthetic pathways are silent in standard culture conditions, and activation of the silent pathways may enable access to new metabolites with antitumor activities. The aim of the present study was to develop a practical strategy for microbial chemists to access silent metabolites in fungi. We demonstrated this strategy using a marine-derived fungus Penicillium purpurogenum G59 and a modified diethyl sulphate mutagenesis procedure. Using this strategy, we discovered four new antitumor compounds named penicimutanolone (1), penicimutanin A (2), penicimutanin B (3), and penicimutatin (4). Structures of the new compounds were elucidated by spectroscopic methods, especially extensive 2D NMR analysis. Antitumor activities were assayed by the MTT method using human cancer cell lines. Bioassays and HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses were used to estimate the activated secondary metabolite production. Compounds 2 and 3 had novel structures, and 1 was a new compound belonging to a class of very rare natural products from which only four members are so far known. Compounds 1–3 inhibited several human cancer cell lines with IC50 values lower than 20 μM, and 4 inhibited the cell lines to some extent. These results demonstrated the effectiveness of this strategy to discover new compounds by activating silent fungal metabolic pathways. These discoveries provide rationale for the increased use of chemical mutagenesis strategies in silent fungal metabolite studies. PMID:24681631

  15. Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers

    SciTech Connect

    Juang, R.S.; Wu, F.C.; Tseng, R.L.

    1996-05-01

    Phenolic compounds exist widely in the industrial effluents such as those from oil refineries and the coal tar, plastics, leather, paint, pharmaceutical, and steel industries. Since they are highly toxic and are, in general, not amenable to biological degradation, methods of treatment are continuously being modified and developed. Liquid-phase adsorption equilibria of eight phenolic compounds onto activated carbon fibers were measured in the concentration range 40--500 g/m{sup 3} at 303 K. High adsorption capacities were observed for the chlorinated phenols compared to the methyl-substituted phenols. Several two- and three-parameter isotherm equations were tested. Among the equations tried, the three-parameter equation of Jossens et al. based on a heterogeneous surface adsorption theory was found to be the most satisfactory over the entire range of concentration. The widely used two-parameter equations of Langmuir and Freundlich were not applicable to the present adsorption systems.

  16. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  17. Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes

    SciTech Connect

    Wu, Xue-Feng; Wu, Xing-Xin; Guo, Wen-Jie; Luo, Qiong; Gu, Yan-Hong; Shen, Yan; Tan, Ren-Xiang; Sun, Yang; Xu, Qiang

    2012-09-15

    In the present paper, we aimed to examine the novel effects of cerebroside D, a glycoceramide compound, on murine experimental colitis. Cerebroside D significantly reduced the weight loss, mortality rate and alleviated the macroscopic and microscopic appearances of colitis induced by dexran sulfate sodium. This compound also decreased the levels of TNF-α, IFN-γ and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner, accompanied with markedly increased serum level of IL-10. Cerebroside D inhibited proliferation and induced apoptosis of T cells activated by concanavalin A or anti-CD3 plus anti-CD28 antibodies. The compound did not show an effect on naive lymphocytes but prevented cells from entering S phase and G2/M phase during T cells activation. Moreover, the treatment of cerebroside D led to apoptosis of activated T cells with the cleavage of caspase 3, 9, 12 and PARP. These results showed multiple effects of cerebroside D against activated T cells for a novel approach to treatment of colonic inflammation. Highlights: ► Cerebroside D, a glycoceramide compound, alleviated DSS induced colitis. ► The mechanism of the compound involved multiple effects against activated T cells. ► It regulated cytokine profiles in mice with experimental colitis. ► It prevented T cells from entering S and G2/M phases during activation. ► It led to apoptosis of activated T cells with the cleavage of caspases and PARP.

  18. Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum.

    PubMed

    Dzoyem, Jean P; Nkuete, Antoine H L; Kuete, Victor; Tala, Michel F; Wabo, Hippolyte K; Guru, Santosh K; Rajput, Vikrant S; Sharma, Akash; Tane, Pierre; Khan, Inshad A; Saxena, Anil K; Laatsch, Hartmut; Tan, Ning-Hua

    2012-05-01

    The present study was designed to investigate the antimicrobial activity and the cytotoxicity of the methanol extract (PLA) as well as fractions (PLA1-4) and compounds [cardamomin (1), (±)-polygohomoisoflavanone (2), (S)-(-)-pinostrobin (3), 2',4'-dihydroxy-3',6'-dimethoxychalcone (4), (2S)-(-)-5-hydroxy-6,7-dimethoxyflavanone (5), and (2S)-(-)-5,7-dimethoxyflavanone (6)] obtained from leaves of Polygonum limbatum. The microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against 11 microbial strains including Candida albicans, C. krusei, C. tropicalis, Aspergillus fumigatus, Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococcus faecalis (VRE), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S.epidermidis, and Mycobacterium tuberculosis H37Rv. The sulphorhodamine B cell growth inhibition assay was used to assess the cytotoxicity of the above samples on lung A549 adenocarcinoma, breast carcinoma MCF-7, prostate carcinoma PC-3, cervical carcinoma HeLa, and the acute monocytic leukemia cell line THP-1. The results of the MIC determination indicated that, apart from fraction PLA3, all other fractions as well as PLA and compound 3 were selectively active. MIC values were noted on 100 % of the 11 tested microorganisms for fraction PLA3, 72.7 % for PLA, fraction PLA2, and compound 4, 63.6 % for PLA1, and 54.5 % for fraction PLA4. The results of the cytotoxicity assay revealed that, except for A459 cells, more than 50 % inhibition of the proliferation was obtained with each of the tested samples on at least one of the four other cell lines. IC₅₀ values below 4 µg/mL were obtained with 1 and 4 on THP-1 cells. The overall results of the present study provided baseline information for the possible use of Polygonum limbatum as well as some of the isolated compounds for the control of cancer diseases and mostly leukemia. PMID:22495442

  19. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases.

    PubMed

    Baraldi, Patrícia T; Magro, Angelo J; Matioli, Fábio F; Marcussi, Silvana; Lemke, Ney; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M; Correa, Arlene G; Fontes, Marcos R M

    2016-02-01

    Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms. PMID:26700145

  20. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  1. Comparative study on the larvicidal activity of drimane sesquiterpenes and nordrimane compounds against Drosophila melanogaster til-til.

    PubMed

    Montenegro, Ivan; Pino, Luis; Werner, Enrique; Madrid, Alejandro; Espinoza, Luis; Moreno, Luis; Villena, Joan; Cuellar, Mauricio

    2013-01-01

    Natural compounds from Drimys winteri Forst and derivatives exhibited larvicidal effects against Drosophila melanogaster til-til. The most active compound was isodrimenin (4). The highest lethal concentration to the larvae of D. melanogaster was 4.5 ± 0.8 mg/L. At very low concentrations drimenol (1), confertifolin (3), and drimanol (5) displayed antifeedant and larvae growth regulatory activity. The antifeedant results of nordrimanic and drimanic compounds were better in first instar larvae. The EC₅₀ value of polygodial (2) was 60.0 ± 4.2 mg/L; of diol 15 45.0 ± 2.8 mg/L, and of diol 17 36.9 ± 3.7 mg/L, while the new nordrimane compound 12 presented a value of 83.2 ± 3.5 mg/L. PMID:23612472

  2. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    NASA Astrophysics Data System (ADS)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  3. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared. PMID:24437577

  4. Inhibitors of 7-Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in Neuro2a Cells.

    PubMed

    Kim, Hye-Young H; Korade, Zeljka; Tallman, Keri A; Liu, Wei; Weaver, C David; Mirnics, Karoly; Porter, Ned A

    2016-05-16

    A small library of pharmacologically active compounds (the NIH Clinical Collection) was assayed in Neuro2a cells to determine their effect on the last step in the biosynthesis of cholesterol, the transformation of 7-dehydrocholesterol (7-DHC) to cholesterol promoted by 7-dehydrocholesterol reductase, DHCR7. Of some 727 compounds in the NIH Clinical Collection, over 30 compounds significantly increased 7-DHC in Neuro2a cells when assayed at 1 μM. Active compounds that increased 7-DHC with a Z-score of +3 or greater generally gave rise to modest decreases in desmosterol and increases in lanosterol levels. Among the most active compounds identified in the library were the antipsychotic, antidepressant, and anxiolytic compounds that included perospirone, nefazodone, haloperidol, aripiprazole, trazodone, and buspirone. Fluoxetine and risperidone were also active at 1 μM, and another 10 compounds in this class of pharmaceuticals were identified in the screen at concentrations of 10 μM. Increased levels of 7-DHC are associated with Smith-Lemli-Opitz syndrome (SLOS), a human condition that results from a mutation in the gene that encodes DHCR7. The SLOS phenotype includes neurological deficits and congenital malformations, and it is linked to a higher incidence of autism spectrum disorder. The significance of the current study is that it identifies common pharmacological compounds that may induce a biochemical presentation similar to SLOS. Little is known about the side effects of elevated 7-DHC postdevelopmentally, and the elevated 7-DHC that results from exposure to these compounds may also be a confounder in the diagnosis of SLOS. PMID:27097157

  5. Follow-up: Prospective compound design using the 'SAR Matrix' method and matrix-derived conditional probabilities of activity.

    PubMed

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  6. Anticancer Activities of Six Selected Natural Compounds of Some Cameroonian Medicinal Plants

    PubMed Central

    Kuete, Victor; Wabo, Hippolyte K.; Eyong, Kenneth O.; Feussi, Michel T.; Wiench, Benjamin; Krusche, Benjamin; Tane, Pierre; Folefoc, Gabriel N.; Efferth, Thomas

    2011-01-01

    Background Natural products are well recognized as sources of drugs in several human ailments. In the present work, we carried out a preliminary screening of six natural compounds, xanthone V1 (1); 2-acetylfuro-1,4-naphthoquinone (2); physcion (3); bisvismiaquinone (4); vismiaquinone (5); 1,8-dihydroxy-3-geranyloxy-6-methylanthraquinone (6) against MiaPaCa-2 pancreatic and CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Compounds 1 and 2 were then tested in several other cancer cells and their possible mode of action were investigated. Methodology/Findings The tested compounds were previously isolated from the Cameroonian medicinal plants Vismia laurentii (1, 3, 4, 5 and 6) and Newbouldia laevis (2). The preliminary cytotoxicity results allowed the selection of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, which were then tested on a panel of cancer cell lines. The study was also extended to the analysis of cell cycle distribution, apoptosis induction, caspase 3/7 activation and the anti-angiogenic properties of xanthone V1 and 2-acetylfuro-1,4-naphthoquinone. IC50 values around or below 4 µg/ml were obtained on 64.29% and 78.57% of the tested cancer cell lines for xanthone V1 and 2-acetylfuro-1,4-naphthoquinone, respectively. The most sensitive cell lines (IC50<1 µg/ml) were breast MCF-7 (to xanthone V1), cervix HeLa and Caski (to xanthone V1 and 2-acetylfuro-1,4-naphthoquinone), leukemia PF-382 and melanoma colo-38 (to 2-acetylfuro-1,4-naphthoquinone). The two compounds showed respectively, 65.8% and 59.6% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail eggs in the anti-angiogenic assay. Upon treatment with two fold IC50 and after 72 h, the two compounds induced cell cycle arrest in S-phase, and also significant apoptosis in CCRF-CEM leukemia cells. Caspase 3/7 was activated by xanthone V1. Conclusions/Significance The overall results of the present study provided evidence for the

  7. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5. PMID:27020521

  8. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. PMID:26041208

  9. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Chiasson, F.; Borsa, J.; Ouattara, B.

    2004-09-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect.

  10. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    SciTech Connect

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  11. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  12. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  13. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl. (Moraceae)

    PubMed Central

    2011-01-01

    Background Many plants of the family Moraceae are used in the treatment of infectious diseases. Ficus polita Vahl., an edible plant belonging to this family is used traditionally in case of dyspepsia, infectious diseases, abdominal pains and diarrhea. The present work was designed to assess the antimicrobial activity of the methanol extract from the roots of F. polita (FPR), as well as that of its fractions (FPR1-5) and two of the eight isolated compounds, namely euphol-3-O-cinnamate (1) and (E)-3,5,4'-trihydroxy-stilbene-3,5-O-β-D-diglucopyranoside (8). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The results of the MIC determination showed that the crude extract, fractions FPR1, FPR2 and compound 8 were able to prevent the growth of the eight tested microorganisms. Other samples showed selective activity. The lowest MIC value of 64 μg/ml for the crude extract was recorded on 50% of the studied microbial species. The corresponding value for fractions of 32 μg/ml was obtained on Salmonella typhi, Escherichia coli and Candida albicans ATCC strains. The MIC values recorded with compound 8 on the resistant Pseudomonas aeruginosa PA01 strain was equal to that of chloramphenicol used as reference antibiotic. Conclusion The obtained results highlighted the interesting antimicrobial potency of F. polita as well as that of compound 8, and provided scientific basis for the traditional use of this taxon in the treatment of microbial infections. PMID:21269424

  14. Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract.

    PubMed

    Singh, Harpal; Dixit, Sameer; Verma, Praveen Chandra; Singh, Pradhyumna Kumar

    2014-03-26

    Tomatoes are one of the most consumed crops in the whole world because of their versatile importance in dietary food as well as many industrial applications. They are also a rich source of secondary metabolites, such as phenolics and flavonoids. In the present study, we described a method to produce these compounds from hairy roots of tomato (THRs). Agrobacterium rhizogenes strain A4 was used to induce hairy roots in the tomato explants. The Ri T-DNA was confirmed by polymerase chain reaction amplification of the rolC gene. Biomass accumulation of hairy root lines was 1.7-3.7-fold higher compared to in vitro grown roots. Moreover, THRs efficiently produced several phenolic compounds, such as rutin, quercetin, kaempferol, gallic acid, protocatechuic acid, ferulic acid, colorogenic acid, and caffeic acid. Gallic acid [34.02 μg/g of dry weight (DW)] and rutin (20.26 μg/g of DW) were the major phenolic acid and flavonoid produced by THRs, respectively. The activities of reactive oxygen species enzymes (catalase, ascorbate peroxidase, and superoxide dismutase) were quantified. The activity of catalase in THRs was 0.97 ± 0.03 mM H2O2 min(-1) g(-1), which was 1.22-fold (0.79 ± 0.09 mM H2O2 min(-1) g(-1)) and 1.59-fold (0.61 ± 0.06 mM H2O2 min(-1) g(-1)) higher than field grown and in vitro grown roots, respectively. At 100 μL/g concentration, the phenolic compound extract caused 53.34 and 40.00% mortality against Helicoverpa armigera and Spodoptera litura, respectively, after 6 days. Surviving larvae of H. armigera and S. litura on the phenolic compound extract after 6 days showed 85.43 and 86.90% growth retardation, respectively. PMID:24635720

  15. Low cost whole-organism screening of compounds for anthelmintic activity.

    PubMed

    Preston, Sarah; Jabbar, Abdul; Nowell, Cameron; Joachim, Anja; Ruttkowski, Bärbel; Baell, Jonathan; Cardno, Tony; Korhonen, Pasi K; Piedrafita, David; Ansell, Brendan R E; Jex, Aaron R; Hofmann, Andreas; Gasser, Robin B

    2015-04-01

    Due to major problems with drug resistance in parasitic nematodes of animals, there is a substantial need and excellent opportunities to develop new anthelmintics via genomic-guided and/or repurposing approaches. In the present study, we established a practical and cost-effective whole-organism assay for the in vitro-screening of compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). The assay is based on the use of exsheathed L3 (xL3) and L4 stages of H. contortus of small ruminants (sheep and goats). Using this assay, we screened a panel of 522 well-curated kinase inhibitors (GlaxoSmithKline, USA; code: PKIS2) for activity against H. contortus by measuring the inhibition of larval motility using an automated image analysis system. We identified two chemicals within the compound classes biphenyl amides and pyrazolo[1,5-α]pyridines, which reproducibly inhibit both xL3 and L4 motility and development, with IC50s of 14-47 μM. Given that these inhibitors were designed as anti-inflammatory drugs for use in humans and fit the Lipinski rule-of-five (including bioavailability), they show promise for hit-to-lead optimisation and repurposing for use against parasitic nematodes. The screening assay established here has significant advantages over conventional methods, particularly in terms of ease of use, throughput, time and cost. Although not yet fully automated, the current assay is readily suited to the screening of hundreds to thousands of compounds for subsequent hit-to-lead optimisation. The current assay is highly adaptable to many parasites of socioeconomic importance, including those causing neglected tropical diseases. This aspect is of major relevance, given the urgent need to deliver the goals of the London Declaration (http://unitingtocombatntds.org/resource/london-declaration) through the rapid and efficient repurposing of compounds in public-private partnerships. PMID:25746136

  16. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities

    PubMed Central

    Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.

    2011-01-01

    Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147

  17. HPLC-Analysis of Polyphenolic Compounds in Gardenia jasminoides and Determination of Antioxidant Activity by Using Free Radical Scavenging Assays

    PubMed Central

    Uddin, Riaz; Saha, Moni Rani; Subhan, Nusrat; Hossain, Hemayet; Jahan, Ismet Ara; Akter, Raushanara; Alam, Ashraful

    2014-01-01

    Purpose: Gardenia jasminoides is a traditional medicinal plant rich in anti-inflammatory flavonoids and phenolic compounds and used for the treatment of inflammatory diseases and pain. In this present study, antioxidant potential of Gardenia jasminoides leaves extract was evaluated by using various antioxidant assays. Methods: Various antioxidant assays such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, reducing power and total antioxidant capacity expressed as equivalent to ascorbic acid were employed. Moreover, phenolic compounds were detected by high-performance liquid chromatography (HPLC) coupled with diode-array detection. Results: The methanol extract showed significant free radical scavenging activities in DPPH radical scavenging antioxidant assays compared to the reference antioxidant ascorbic acid. Total antioxidant activity was increased in a dose dependent manner. The extract also showed strong reducing power. The total phenolic content was determined as 190.97 mg/g of gallic acid equivalent. HPLC coupled with diode-array detection was used to identify and quantify the phenolic compounds in the extracts. Gallic acid, (+)-catechin, rutin hydrate and quercetin have been identified in the plant extracts. Among the phenolic compounds, catechin and rutin hydrate are present predominantly in the extract. The accuracy and precision of the presented method were corroborated by low intra- and inter-day variations in quantitative results in leaves extract. Conclusion: These results suggest that phenolic compounds and flavonoids might contribute to high antioxidant activities of Gardenia jasminoides leaves. PMID:24754012

  18. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts. PMID:16878585

  19. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity

    PubMed Central

    Venugopala, K. N.; Rashmi, V.; Odhav, B.

    2013-01-01

    Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. PMID:23586066

  20. Thiazole compounds with activity against Cryptococcus gattii and Cryptococcus neoformans in vitro.

    PubMed

    Pereira de Sá, Nívea; Lino, Cleudiomar Inácio; Fonseca, Nayara Cristina; Borelli, Beatriz Martins; Ramos, Jonas Pereira; Souza-Fagundes, Elaine Maria; Rosa, Carlos Augusto; Santos, Daniel Assis; Barbosa de Oliveira, Renata; Johann, Susana

    2015-09-18

    Human cryptococcosis can occur as a primary or opportunistic infection and develop as an acute, subacute, or chronic, systemic infection involving different host organs. We evaluated the antifungal activity of thirteen compounds against Cryptococcus gattii and Cryptococcus neoformans in vitro, by assessing the toxicity of the compounds showing the greatest antifungal activity in VERO cells and murine macrophages. From these results, four compounds were considered promising for further studies because they displayed low cytotoxicity and significant antifungal activity. The heterocyclic compounds 1b, 1c, 1d, and 1m have antifungal activity levels between that of amphotericin B and fluconazole in vitro. The death curve of Cryptococcus spp. treated with these four compounds was similar to the curve obtained for amphotericin B, in that we observed a significant reduction in cell viability within the first 24 h of treatment. Additionally, we found that there was no effect when these compounds were combined with amphotericin and fluconazole, except for 1c, which antagonized the effect of amphotericin B against C. gattii, also reflected in the reduction of the post-antifungal effect (PAFE); however, this interaction did not alter the ergosterol content. The results shown in this paper reveal the discovery of novel thiazole compounds, which are easy to synthesize, and with potentially exhibit antifungal activity, and display low cytotoxicity in normal mammalian cells. These compounds can be used as prototypes for the design of new antifungal drugs against C. gattii and C. neoformans. PMID:26276437

  1. Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities.

    PubMed

    Boonphong, Surat; Puangsombat, Pakawan; Baramee, Apiwat; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2007-05-01

    Eleven new secondary metabolites (1-11), together with two known flavanones (12 and 13) and five known bibenzyls (14-18), were isolated from the root extract of Bauhinia purpurea. New compounds include eight dihydrodibenzoxepins (1-8), a dihydrobenzofuran (9), a novel spirochromane-2,1'-hexenedione (10), and a new bibenzyl (11). Antimycobacterial, antimalarial, antifungal, cytotoxic, and anti-inflammatory activities of the isolated compounds are reported, and biosynthetic pathways of these compounds are also discussed. PMID:17480099

  2. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities.

    PubMed

    Kant, Rama; Kumar, Dharmendra; Agarwal, Drishti; Gupta, Rinkoo Devi; Tilak, Ragini; Awasthi, Satish Kumar; Agarwal, Alka

    2016-05-01

    The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells. PMID:26922227

  3. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino.

    PubMed

    Mira, Amira; Yamashita, Shuntaro; Katakura, Yoshinori; Shimizu, Kuniyoshi

    2015-01-01

    Angelica shikokiana is widely marketed in Japan as a dietary food supplement. With a focus on neurodegenerative conditions such as Alzheimer's disease, the aerial part was extracted and through bio-guided fractionation, fifteen compounds [α-glutinol, β-amyrin, kaempferol, luteolin, quercetin, kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, methyl chlorogenate, chlorogenic acid, hyuganin E, 5-(hydroxymethyl)-2-furaldehyde, β-sitosterol-3-O-glucoside, adenosine (isolated for the first time from A. shikokiana), isoepoxypteryxin and isopteryxin] were isolated. Isolated compounds were evaluated for in vitro neuroprotection using acetylcholine esterase inhibitory, protection against hydrogen peroxide and amyloid β peptide (Aβ25-35)-induced neurotoxicity in neuro-2A cells, scavenging of hydroxyl radicals and intracellular reactive oxygen species and thioflavin T assays. Quercetin showed the strongest AChE inhibition (IC50 value = 35.5 µM) through binding to His-440 and Tyr-70 residues at the catalytic and anionic sites of acetylcholine esterase, respectively. Chlorogenic acid, its methyl ester, quercetin and luteolin could significantly protect neuro-2A cells against H2O2-induced neurotoxicity and scavenge hydroxyl radical and intracellular reactive oxygen species. Kaempferol-3-O-rutinoiside, hyuganin E and isoepoxypteryxin significantly decreased Aβ25-35-induced neurotoxicity and Th-T fluorescence. To the best of our knowledge, this is the first report about neuroprotection of hyuganin E and isoepoxypteryxin against Aβ25-35-induced neurotoxicity. PMID:25786165

  4. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin

    PubMed Central

    Araújo, Sthéfane G.; Alves, Lucas F.; Pinto, Maria Eduarda A.; Oliveira, Graziela T.; Siqueira, Ezequias P.; Ribeiro, Rosy I. M. A.; Ferreira, Jaqueline M. S.; Lima, Luciana A. R. S.

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  5. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp. PMID:25062020

  6. Identification of compounds from Paris polyphylla (ChongLou) active against Dactylogyrus intermedius.

    PubMed

    Li, Ze-Hong; Wan, Jia-Yu; Wang, Gui-Qin; Zhao, Fu-Guang; Wen, Ji-Hong

    2013-07-01

    The present study was designated to ascertain the anthelmintic activity of the rhizomes of Paris polyphylla and to isolate and characterize the active constituents. The methanol extract from rhizomes of P. polyphylla showed significant anthelmintic activity against Dactylogyrus intermedius with the median effective concentration (EC50) 22.5 mg L(-1). Based on this finding, the methanol extract was fractionated by silica gel column chromatography in a bioassay-guided fractionation yielding 2 bioactive compounds, the structures of these compounds were elucidated as formosanin C and polyphyllin VII. The in vivo tests revealed that formosanin C and polyphyllin VII were significantly effective against D. intermedius with EC50 values of 0.6 and 1.2 mg L(-1), respectively. The acute toxicities (LC50) of formosanin C and polyphyllin VII for grass carp were 2.8 and 2.9 mg L(-1), respectively. The overall results provide important information for the potential application of formosanin C and polyphyllin VII in the therapy of serious infection caused by D. intermedius. PMID:23552446

  7. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects.

    PubMed

    Watanabe, Fumio; Yabuta, Yukinori; Tanioka, Yuri; Bito, Tomohiro

    2013-07-17

    The usual dietary sources of vitamin B12 are animal-source based foods, including meat, milk, eggs, fish, and shellfish, although a few plant-based foods such as certain types of dried lavers (nori) and mushrooms contain substantial and considerable amounts of vitamin B12, respectively. Unexpectedly, detailed characterization of vitamin B12 compounds in foods reveals the presence of various corrinoids that are inactive in humans. The majority of edible blue-green algae (cyanobacteria) and certain edible shellfish predominately contain an inactive corrinoid known as pseudovitamin B12. Various factors affect the bioactivity of vitamin B12 in foods. For example, vitamin B12 is partially degraded and loses its biological activity during cooking and storage of foods. The intrinsic factor-mediated gastrointestinal absorption system in humans has evolved to selectively absorb active vitamin B12 from naturally occurring vitamin B12 compounds, including its degradation products and inactive corrinoids that are present in daily meal foods. The objective of this review is to present up-to-date information on various factors that can affect the bioactivity of vitamin B12 in foods. To prevent vitamin B12 deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify plant-source foods that contain high levels of bioactive vitamin B12 and, in conjunction, to prepare the use of crystalline vitamin B12-fortified foods. PMID:23782218

  8. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion. PMID:26902395

  9. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    PubMed

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. PMID:27286774

  10. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  11. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and Anticancer Activities

    PubMed Central

    Roth, Howard S.; Hergenrother, Paul J.

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an in-depth discussion of four derivatives on which extensive studies have been performed. PMID:26630918

  12. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their Anticancer Activities.

    PubMed

    Roth, Howard S; Hergenrother, Paul J

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an indepth discussion of four derivatives on which extensive studies have been performed. PMID:26630918

  13. Antimicrobial activities against periodontopathic bacteria of Pittosporum tobira and its active compound.

    PubMed

    Oh, Jung-Hyun; Jeong, Yong Joon; Koo, Hyun Jung; Park, Dae Won; Kang, Se Chan; Khoa, Hoang Viet Bach; Le, Le Ba; Cho, Joon Hyeong; Lee, Jin-Yong

    2014-01-01

    The study of medicinal plants for treatment of periodontitis is of great value to establish their efficacy as sources of new antimicrobial drugs. Five hundred and fifty eight Korean local plant extracts were screened for antibacterial activity against representative periodontopathic bacteria such as Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. Among the various medicinal plants, the alcohol extract of Pittosporum tobira, which significantly exhibited antibacterial effect for all tested strains, showed the highest activity in the antimicrobial assays. NMR analyses revealed that R1-barrigenol, a triterpene sapogenin, was the most effective compound in P. tobira. These results demonstrated that P. tobira possesses antimicrobial properties and would be beneficial for the prevention and treatment of periodontitis. PMID:24662076

  14. Investigation on the activation of coal gangue by a new compound method.

    PubMed

    Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu

    2010-07-15

    In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. PMID:20359819

  15. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    PubMed

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity. PMID:26774583

  16. Structural alerts for predicting clastogenic activity of pro-oxidant flavonoid compounds: quantitative structure-activity relationship study.

    PubMed

    Yordi, Estela Guardado; Pérez, Enrique Molina; Matos, Maria Joao; Villares, Eugenio Uriarte

    2012-02-01

    Flavonoids have been reported to exert multiple biological effects that include acting as pro-oxidants at very high doses. The authors determined a structural alert to identify the clastogenic activity of a series of flavonoids with pro-oxidant activity. The methodology was based on a quantitative structure-activity relationship (QSAR) study. Specifically, the authors developed a virtual screening method for a clastogenic model using the topological substructural molecular design (TOPS-MODE) approach. It represents a useful platform for the automatic generation of structural alerts, based on the calculation of spectral moments of molecular bond matrices appropriately weighted, taking into account the hydrophobic, electronic, and steric molecular features. Therefore, it was possible to establish the structural criteria for maximal clastogenicity of pro-oxidant flavonoids: the presence of a 3-hydroxyl group and a 4-carbonyl group in ring C, the maximal number of hydroxyl groups in ring B, the presence of methoxyl and phenyl groups, the absence of a 2,3-double bond in ring C, and the presence of 5,7 hydroxyl groups in ring A. The presented clastogenic model may be useful for screening new pro-oxidant compounds. This alert could help in the design of new and efficient flavonoids, which could be used as bioactive compounds in nutraceuticals and functional food. PMID:21940715

  17. Screening of Panamanian Plant Extracts for Pesticidal Properties and HPLC-Based Identification of Active Compounds

    PubMed Central

    Guldbrandsen, Niels; De Mieri, Maria; Gupta, Mahabir; Seiser, Tobias; Wiebe, Christine; Dickhaut, Joachim; Reingruber, Rüdiger; Sorgenfrei, Oliver; Hamburger, Matthias

    2015-01-01

    A library of 600 taxonomically diverse Panamanian plant extracts was screened for fungicidal, insecticidal, and herbicidal activities. A total of 19 active extracts were submitted to HPLC-based activity profiling, and extracts of Bocconia frutescens, Miconia affinis, Myrcia splendens, Combretum aff. laxum, and Erythroxylum macrophyllum were selected for the isolation of compounds. Chelerythrine (2), macarpine (3), dihydrosanguinarine (5), and arjunolic acid (8) showed moderate-to-good fungicidal activity. Myricetin-3-O-(6’’-O-galloyl)-β-galactopyranoside (13) showed moderate insecticidal activity, but no compound with herbicidal activity was identified. PMID:26839818

  18. Effect of clay minerals present in aquifer soils on the adsorption and desorption of hydrophobic organic compounds

    SciTech Connect

    Ghosh, D.R. ); Keinath, T.M. )

    1994-02-01

    Adsorption of hydrophobic organic compounds (HOCs) onto clay minerals and organic matter present in soils results in retarding their mobility. To study the impact of clay minerals on HOC sorption, kinetic and equilibrium studies were performed using naphthalene as a test surrogate contaminant. The results of these studies indicated that expandable clay minerals (clays that expand and expose large internal surface area on wetting), such as montmorillonite and vermiculite, had a significant impact on naphthalene partitioning. A mathematical model was developed from the equilibrium data which related clay mineral concentrations with the naphthalene partition coefficient. Equilibrium desorption studies were also performed by adding a micellar solution of a surfactant mixture (50:50) of Tween 20 and Aerosol AY-65 to mobilize the adsorbed naphthalene. The surfactant mixture was generally unable to mobilize the sorbed contaminant due to sorption irreversibility and adsorption hysteresis. 36 refs., 1 fig., 5 tabs.

  19. Physical activity: the present in the context of the past.

    PubMed

    Malina, Robert M; Little, Bertis B

    2008-01-01

    In the broad sense, modern humans have lived in an environment in which physical activity and associated movement skills were central, especially in the context of physical competition with other animals. The physically active lifestyle of earlier human populations has been emphasized, especially the cardiovascular endurance component and energy expenditure, but less attention has been devoted to the gross and fine motor skills that are essential components of this lifestyle. Motor skills developed through practice are important determinants of success and survival in preindustrial societies. In industrial and postindustrial societies, on the other hand, the role of physical activity is different, with prowess in certain areas of physical expertise (e.g., accuracy with projectiles, muscular strength, among others) and prolonged exertion (i.e., cardiovascular endurance) less important for survival. The combined effects of the transition to a sedentary lifestyle and attendant dietary changes have resulted first an epidemic of coronary heart disease and more recently an epidemic of overweight/obesity in postindustrial societies. Although mortality associated with coronary heart disease has declined, due largely to biomedical advances, overweight and obesity have increased concomitantly with population reduction in physical activity (energy expenditure) and increased calorie (energy) consumption. The current scenario begs several questions which have implications for contemporary human biology related to sustaining the pace of cultural change on a biological base that is increasingly being compromised by physical inactivity, overweight, and obesity. PMID:18433002

  20. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    PubMed

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed. PMID:15139308

  1. Antipoliovirus Activity of the Organic Extract of Eupatorium buniifolium: Isolation of Euparin as an Active Compound

    PubMed Central

    Visintini Jaime, María Florencia; Campos, Rodolfo H.; Martino, Virginia S.; Cavallaro, Lucía V.; Muschietti, Liliana V.

    2013-01-01

    The antiviral activity of the organic extract (OE) of Eupatorium buniifolium against poliovirus type 1 was determined by in vitro assays with an effective concentration 50 (EC50) of 23.3 ± 3.3 µg/mL. Bioassay-guided fractionation of the OE allowed the isolation of an active principle that was identified by spectroscopic methods (1H- and 13C-NMR, EI-MS, UV, and IR spectroscopy) as the benzofuran euparin. The plaque reduction assay in Vero cells was used to assess the antiviral activity of euparin against poliovirus types 1, 2, and 3 with EC50 values of 0.47, 0.12, and 0.15 µg/mL, respectively. Moreover, this compound showed high selectivity indexes of 284.9, 1068, and 854.7, respectively. In order to identify the mechanism by which euparin exerts its antiviral activity, the virucidal effect, the pretreatment of Vero cells, and the time of action on one viral replication cycle were evaluated. Results obtained demonstrated that euparin exerts its effect during the early events of the replication cycle, from the virus adsorption to cells up to the first twenty minutes after infection. This is the first report on the presence of euparin in E. buniifolium and its antiviral activity. PMID:23956770

  2. Activated Brain Endothelial Cells Cross-Present Malaria Antigen

    PubMed Central

    Howland, Shanshan W.; Poh, Chek Meng; Rénia, Laurent

    2015-01-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFNγ stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention. PMID:26046849

  3. 6-azacytidine--compound with wide spectrum of antiviral activity.

    PubMed

    Alexeeva, I; Dyachenko, N; Nosach, L; Zhovnovataya, V; Rybalko, S; Lozitskaya, R; Fedchuk, A; Lozitsky, V; Gridina, T; Shalamay, A; Palchikovskaja, L; Povnitsa, O

    2001-01-01

    6-azacytidine demonstrates activity against adenoviruses types 1, 2, 5. It inhibit synthesis of viral DNA and proteins. 6-AC shows antiherpetic and antiinfluenza action during experimental infection in mice. 6-AC is prospective for drug development as an antiviral substance with a wide spectrum of activity. PMID:11562975

  4. Quantitative phase imaging technologies to assess neuronal activity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thouvenin, Olivier; Fink, Mathias; Boccara, Claude

    2016-03-01

    Active neurons tends to have a different dynamical behavior compared to resting ones. Non-exhaustively, vesicular transport towards the synapses is increased, since axonal growth becomes slower. Previous studies also reported small phase variations occurring simultaneously with the action potential. Such changes exhibit times scales ranging from milliseconds to several seconds on spatial scales smaller than the optical diffraction limit. Therefore, QPI systems are of particular interest to measure neuronal activity without labels. Here, we report the development of two new QPI systems that should enable the detection of such activity. Both systems can acquire full field phase images with a sub nanometer sensitivity at a few hundreds of frames per second. The first setup is a synchronous combination of Full Field Optical Coherence Tomography (FF-OCT) and Fluorescence wide field imaging. The latter modality enables the measurement of neurons electrical activity using calcium indicators. In cultures, FF-OCT exhibits similar features to Digital Holographic Microscopy (DHM), except from complex computational reconstruction. However, FF-OCT is of particular interest in order to measure phase variations in tissues. The second setup is based on a Quantitative Differential Interference Contrast setup mounted in an epi-illumination configuration with a spectrally incoherent illumination. Such a common path interferometer exhibits a very good mechanical stability, and thus enables the measurement of phase images during hours. Additionally, such setup can not only measure a height change, but also an optical index change for both polarization. Hence, one can measure simultaneously a phase change and a birefringence change.

  5. Controlling the release of active compounds from the inorganic carrier halloysite

    NASA Astrophysics Data System (ADS)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  6. Controlling the release of active compounds from the inorganic carrier halloysite

    SciTech Connect

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  7. Activities at Fermilab related to collider present and future

    NASA Astrophysics Data System (ADS)

    Goderre, G. P.; Holt, J.

    1992-11-01

    The long-range Fermilab program requires fully capitalizing on the world's highest energy accelerator, the Tevatron, throughout the decade of the 90's. The program calls for increasing the collider luminosity with each successive run until peak luminosities of ≳5×1031 cm-2 s-1 and integrated luminosities of ≳100 pb-1 per run are achieved, effectively doubling the mass range accessible for discovery. If the quark lies at the upper range of the mass of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program as well. In order to achieve these goals, we present a highly challenging upgrade of the present accelerator complex, called Fermilab III. In order to increase this performance level by a factor of 50, many changes are needed. Such a plan, of necessity, has modifications in almost all areas of the accelerator as the present system is reasonably optimized. (AIP)

  8. Antiproliferative activity of Saponaria vaccaria constituents and related compounds.

    PubMed

    Balsevich, J John; Ramirez-Erosa, Irving; Hickie, Robert A; Dunlop, Donna M; Bishop, Greg G; Deibert, Leah K

    2012-01-01

    Total methanolic extracts of Saponaria vaccaria seed derived from several varieties, as well as various purified components obtained through successive chromatographic separations of total extracts were evaluated for their growth inhibitory activity in WiDr (colon), MDA-MB-231 (breast), NCI-417 (lung) and PC-3 (prostate) human cancer cells as well as the non-tumorigenic fibroblast BJ (CRL-2522) cell line using MTT colorimetric assay. Purified bisdesmosidic saponins segetoside H and I were further examined using microscopy and apoptosis assays. Bisdesmosidic saponins exhibited dose-dependent growth inhibitory and selective apoptosis-inducing activity. Growth inhibitory effects were particularly strong in a breast (MDA-MB-231) and a prostate (PC-3) cancer cell line. Total extracts exhibited a different preference being most active against a colon cancer cell line (WiDr). In a comparison of varieties, all of the total seed extracts exhibited similar dose-dependent activities, but with some variation in potency. Monodesmosidic saponins vaccarosides A and B, phenolic vaccarin, and cyclopeptide segetalin A, co-occurring seed substituents, did not exhibit activity. The non-tumorigenic fibroblast cell line BJ (CRL 2522) was growth inhibited but did not undergo apoptosis when treated with bisdesmosidic saponins at low micromolar concentrations. Saponin-rich extracts from Kochia scoparia seed and Chenopodium quinoa were also evaluated alongside Saponaria saponins but did not exhibit activity. Closely related Quillaja saponins exhibited activity but were less potent. PMID:22056663

  9. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation

    PubMed Central

    Kittayaruksakul, Suticha; Zhao, Wenchen; Xu, Meishu; Ren, Songrong; Lu, Jing; Wang, Ju; Downes, Michael; Evans, Ronald M.; Venkataramanan, Raman; Chatsudthipong, Varanuj; Xie, Wen

    2013-01-01

    The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been known to play a role in xenobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters. In addition, PXR agonists were found to exert therapeutic effects through multiple mechanisms, such as detoxification of bile acids and inhibition of inflammation. In this study, we first investigated the effects of three natural product compounds, carapin, santonin and isokobusone, on the activity of PXR and CAR. These compounds activated both PXR and CAR in transient transfection and luciferase reporter gene assays. Mutagenesis studies showed that two amino acid residues, Phe305 of the rodent PXR and Leu308 of the human PXR, are critical for the recognition of these compounds by PXR. Importantly, the activation of PXR and CAR by these compounds induced the expression of drug-metabolizing enzymes in primary human and mouse hepatocytes. Furthermore, activation of PXR by these compounds inhibited the expression of inflammatory mediators in response to lipopolysaccharide (LPS). The effects of these natural compounds on drug metabolism and inflammation were abolished in PXR−/− hepatocytes. These natural compounds can be explored for their potential in the treatment of diseases where the PXR activation has been shown to be beneficial, such as inflammatory bowel disease, cholestasis, and hyperbilirubinemia. PMID:23896737

  10. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    PubMed Central

    Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui

    2016-01-01

    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689

  11. Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer

    PubMed Central

    Nitzsche, B; Gloesenkamp, C; Schrader, M; Hoffmann, B; Zengerling, F; Balabanov, S; Honecker, F; Höpfner, M

    2012-01-01

    Background: Resistance to cisplatin-based chemotherapy is associated with poor prognosis in testicular germ cell cancer, emphasising the need for new therapeutic approaches. In this respect, the therapeutic concept of anti-angiogenesis is of particular interest. In a previous study, we presented two novel anti-angiogenic compounds, HP-2 and HP-14, blocking the tyrosine kinase activity of angiogenic growth factor receptors, such as vascular endothelial growth factor receptor-2 (VEGFR-2), and related signalling pathways in testicular cancer. In this study, we investigated the efficacy of these new compounds in platinum-resistant testicular germ cell tumours (TGCTs), in vitro and in vivo. Methods and results: Drug-induced changes in cell proliferation of the cisplatin-sensitive TGCT cell line 2102EP and its cisplatin-resistant counterpart 2102EP-R, both expressing the VEGFR-2, were evaluated by crystal violet staining. Both compounds inhibited the growth of cisplatin-resistant TGCT cells in a dose-dependent manner. In combination experiments with cisplatin, HP-14 revealed additive growth-inhibitory effects in TGCT cells, irrespective of the level of cisplatin resistance. Anti-angiogenic effects of HP compounds were confirmed by tube formation assays with freshly isolated human umbilical vein endothelial cells. Using TGCT cells inoculated onto the chorioallantoic membrane of fertilised chicken eggs (chicken chorioallantoic membrane assay), the anti-angiogenic and anti-proliferative potency of the novel compounds was also demonstrated in vivo. Gene expression profiling revealed changes in the expression pattern of genes related to DNA damage detection and repair, as well as in chaperone function after treatment with both cisplatin and HP-14, alone or in combination. This suggests that HP-14 can revert the lost effectiveness of cisplatin in the resistant cells by altering the expression of critical genes. Conclusion: The novel compound HP-14 effectively inhibits the

  12. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  13. Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2

    PubMed Central

    Chung, Dong-Hoon; Jonsson, Colleen B.; Tower, Nichole A.; Chu, Yong-Kyu; Sahin, Ergin; Golden, Jennifer E.; Noah, James W.; Schroeder, Chad E.; Sotsky, Julie B.; Sosa, Melinda I.; Cramer, Daniel E.; McKellip, Sara N.; Rasmussen, Lynn; White, E. Lucile; Schmaljohn, Connie S.; Julander, Justin G.; Smith, Jeffrey M.; Filone, Claire Marie; Connor, John H.; Sakurai, Yasuteru; Davey, Robert A.

    2014-01-01

    Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection. PMID:24967809

  14. Present status of clinical deployment of glucokinase activators.

    PubMed

    Nakamura, Akinobu; Terauchi, Yasuo

    2015-03-01

    Glucokinase is one of four members of the hexokinase family of enzymes. Its expression is limited to the major organs (such as the pancreas, liver, brain and the gastrointestinal tract) that are thought to have an integrated role in glucose sensing. In the liver, phosphorylation of glucose by glucokinase promotes glycogen synthesis, whereas in the β-cells, it results in insulin release. Studies of glucokinase-linked genetically-modified mice and mutations in humans have illustrated the important roles played by glucokinase in whole-body glucose homeostasis, and suggest that the use of pharmacological agents that augment glucokinase activity could represent a viable treatment strategy in patients with type 2 diabetes. Since 2003, many glucokinase activators (GKAs) have been developed, and their ability to lower the blood glucose has been shown in several animal models of type 2 diabetes. Also, we and others have shown in mouse models that GKAs also have the effect of stimulating the proliferation of β-cells. However, the results of recent phase II trials have shown that GKAs lose their efficacy within several months of use, and that their use is associated with a high incidence of hypoglycemia; furthermore, patients treated with GKAs frequently developed dyslipidemia. A better understanding of the role of glucokinase in metabolic effects is required to resolve several issues identified in clinical trials. PMID:25802718

  15. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides.

    PubMed

    Mulero, J; Martínez, G; Oliva, J; Cermeño, S; Cayuela, J M; Zafrilla, P; Martínez-Cachá, A; Barba, A

    2015-08-01

    The effect of treating grapes with six fungicides, applied under critical agricultural practices (CAP) on levels of phenolic compounds and antioxidant activity of red wines of Monastrell variety was studied. Vinifications were performed through addition of active dry yeast (ADY). Measurement of phenolic compounds was made with HPLC-DAD. Determination of antioxidant activity was through reaction of the wine sample with the DPPH radical. The wine prepared from grapes treated with quinoxyfen shows a greater increase of phenolic compounds than the control wine. In contrast, the wine obtained from grapes treated with trifloxystrobin showed lower total concentration of phenolic compounds, including stilbenes, whilst treatments with kresoxim-methyl, fluquinconazole, and famoxadone slightly reduced their content. Hence, the use of these last four fungicides could cause a decrease in possible health benefits to consumers. Antioxidant activity hardly varied in the assays with quinoxyfen, fluquinconazole and famoxadone, and decreased in the other wines. PMID:25766797

  16. Acaricidal Activity of Eugenol Based Compounds against Scabies Mites

    PubMed Central

    Pasay, Cielo; Mounsey, Kate; Stevenson, Graeme; Davis, Rohan; Arlian, Larry; Morgan, Marjorie; Vyszenski-Moher, DiAnn; Andrews, Kathy; McCarthy, James

    2010-01-01

    Backgound Human scabies is a debilitating skin disease caused by the “itch mite” Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. Methodology/Principal Findings Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues –acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. Conclusions The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies. PMID:20711455

  17. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria.

    PubMed

    Hamdi, Omer Abdalla Ahmed; Anouar, El Hassane; Shilpi, Jamil A; Trabolsy, Zuhra Bashir Khalifa Al; Zain, Sharifuddin Bin Md; Zakaria, Nur Shahidatul Shida; Zulkefeli, Mohd; Weber, Jean-Frédéric F; Malek, Sri Nurestri A; Rahman, Syarifah Nur Syed Abdul; Awang, Khalijah

    2015-01-01

    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay. PMID:25923077

  18. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. PMID:23899380

  19. Union activity in hospitals: past, present, and future.

    PubMed

    Becker, E R; Sloan, F A; Steinwald, B

    1982-06-01

    Between 1970 and 1980, the percentage of hospitals with one or more collective bargaining contracts increased from 15.7 percent to 27.4 percent. A substantial amount of variation exists in the extent of unionism on the basis of hospital ownership, bed size, and location. Employees are more likely to organize when hospitals in the State are regulated by a mandatory rate-setting program. Unions raise hospital employee's wages--a modal estimate for RNs is about 6 percent; the corresponding figure for nonprofessional employees is about 10 percent. Growth of union activity in hospitals has generally not been a major contributor to hospital wage inflation, and less than 10 percent of the increase in real (relative to the Consumer Price Index) spending for hospital care that occurred during the 1970s can be attributed to union growth. We project that between 45 and 50 percent of all hospitals will have at least one union by 1990. PMID:10309636

  20. Union Activity in Hospitals: Past, Present, and Future

    PubMed Central

    Becker, Edmund R.; Sloan, Frank A.; Steinwald, Bruce

    1982-01-01

    Between 1970 and 1980, the percentage of hospitals with one or more collective bargaining contracts increased from 15.7 percent to 27.4 percent. A substantial amount of variation exists in the extent of unionism on the basis of hospital ownership, bed size, and location. Employees are more likely to organize when hospitals in the State are regulated by a mandatory rate-setting program. Unions raise hospital employee's wages—a modal estimate for RNs is about 6 percent; the corresponding figure for nonprofessional employees is about 10 percent. Growth of union activity in hospitals has generally not been a major contributor to hospital wage inflation, and less than 10 percent of the increase in real (relative to the Consumer Price Index) spending for hospital care that occurred during the 1970s can be attributed to union growth. We project that between 45 and 50 percent of all hospitals will have at least one union by 1990. PMID:10309636

  1. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  2. Fractionation of Phenolic Compounds Extracted from Propolis and Their Activity in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Petelinc, Tanja; Polak, Tomaž; Demšar, Lea; Jamnik, Polona

    2013-01-01

    We have here investigated the activities of Slovenian propolis extracts in the yeast Saccharomyces cerevisiae, and identified the phenolic compounds that appear to contribute to these activities. We correlated changes in intracellular oxidation and cellular metabolic energy in these yeasts with the individual fractions of the propolis extracts obtained following solid-phase extraction. The most effective fraction was further investigated according to its phenolic compounds. PMID:23409133

  3. Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum.

    PubMed

    Gupta, Deepak Kumar; Kaur, Parveen; Leong, See Ting; Tan, Lik Tong; Prinsep, Michèle R; Chu, Justin Jang Hann

    2014-01-01

    Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1), debromoaplysiatoxin (2) and anhydrodebromoaplysiatoxin (3), as well as two new analogues, 3-methoxyaplysiatoxin (4) and 3-methoxydebromoaplysiatoxin (5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2) and 3-methoxydebromoaplysiatoxin (5) exhibited significant anti-CHIKV activities with EC50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively. PMID:24394406

  4. Assessment of wild mint from Tunceli as source of bioactive compounds, and its antioxidant Activity.

    PubMed

    Turkoglu, S

    2015-01-01

    The types of wild mint (Mentha spicata L.) were sampled from different geographical regions in Tunceli (Turkey) in order to find out their vitamin, mineral, phenolic contents and their antioxidant properties. The total phenol varied from 77.7±0.242 to 52.34±0.351 mg of GAEs/g of dry mint. The highest radical effect of scavenging was observed in Mazgirt parting of the ways 7.5 km with 6.17±0.245 mg/mL. The highest reducing power and metal chelating were observed in the mint from Cicekli parting of the ways 6.5 km Demirkapı. Among the various macronutrients which were estimated in the plant samples, potassium was presented in the highest quantity followed by calcium and phosphate. Although rutin and resveratrol were not determined in any samples, kaempferol and catechin levels were found out in almost all samples. The concentrations of vitamin A ranged between 42,14±5.70 and 13.61±3.00 (mg/kg dry weight). These results show that plants of mint are quite rich in phenolic compounds, and these have been appeared to have antioxidant activity, which agrees with this work, since the extract showed a higher content of phenolic compounds and higher antioxidant activity and mint may be considered as a natural alternative source for food, pharmacology and medicine sectors. PMID:26718431

  5. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    PubMed Central

    Dunn, Elyse A.; Cook, Gregory M.; Heikal, Adam

    2015-01-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, “Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins” [2]. PMID:26862571

  6. Generalizing the Concept of Specific Compound Formulation Additives towards Non-Fluorescent Drugs: A Solubilization Study on Potential Anti-Alzheimer-Active Small-Molecule Compounds.

    PubMed

    Lawatscheck, Carmen; Pickhardt, Marcus; Wieczorek, Sebastian; Grafmüller, Andrea; Mandelkow, Eckhard; Börner, Hans G

    2016-07-18

    Tailor-made compound formulation additives enable the testing of potential drugs with undesirable pharmacological profiles. A combinatorial approach using Raman microscopy as the readout method is presented to select peptide sequences from large one-bead-one-compound libraries. The resulting peptide-PEG conjugates solubilize potential prophylactic and therapeutic anti-Alzheimer compounds and can be used as specific additives not only for fluorescent but also for non-fluorescent compounds. PMID:27282127

  7. Dried extracts of Encholirium spectabile (Bromeliaceae) present antioxidant and photoprotective activities in vitro

    PubMed Central

    de Oliveira, Raimundo Gonçalves; Souza, Grasielly Rocha; Guimarães, Amanda Leite; de Oliveira, Ana Paula; Silva Morais, Amanda Caroline; da Cruz Araújo, Edigênia Cavalcante; Nunes, Xirley Pereira; Almeida, Jackson Roberto Guedes da Silva

    2013-01-01

    The antioxidant and photoprotective activities of dried extracts from the leaves of Encholirium spectabile were investigated. It was also evaluated the total phenolic and flavonoid contents by the Folin–Ciocalteu and aluminum chloride methods, respectively. Antioxidant activities of the extracts were evaluated by using of 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging and β-carotene–linoleic acid bleaching and compared with ascorbic acid, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) used as reference compounds. The photoprotective effect was evaluated by the spectrophotometric method. The most significant total phenolic and flavonoid contents was of 188.50 ± 27.50 mg of gallic acid equivalent/g and 129.70 ± 4.59 mg of catechin equivalent/g, respectively, for chloroform fraction (Es-CHCl3). The Es-CHCl3 also presented the best antioxidant activity (IC50 25.35 ± 4.35 μg/ml) for DPPH scavenging. The ethanol extract (Es-EtOH), Es-CHCl3 and the fraction ethyl acetate (Es-AcOEt) showed characteristic absorption bands in regions UVB and UVA in a concentration-dependent manner. Es-CHCl3 presented the highest sun protection factor SPF (8.89 ± 2.11). It shows the possibility to use this extract as sunscreen in pharmaceutical preparations. PMID:24396251

  8. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  9. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    SciTech Connect

    Satoh, Takumi Saitoh, Sachie; Hosaka, Manami; Kosaka, Kunio

    2009-02-06

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activation of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had

  10. Antithrombotic Activity of a New Hypoglycemic Compound Limiglidole in Mouse Model of Cell Thrombosis.

    PubMed

    Kucheryavenko, A F; Spasov, A A; Smirnov, A V

    2015-05-01

    Antithrombotic activity of hypoglycemic compound limiglidole that exhibits antiplatelet activity 2-fold exceeded activity of antiplatelet agent acetylsalicylic acid in the mouse model of systemic collagen-epinephrine thrombosis. Limiglidole signifi cantly reduced the relative and mean area of blood clots in the sections of mouse lungs. PMID:26033587

  11. Present status of some technological activities supporting the MOLCARE project

    SciTech Connect

    Torazza, A.; Rocchini, G.; Scagliotti, M.

    1996-12-31

    The development of MCFC stack technology is carried out at Ansaldo Ricerche in the framework of the MOLCARE project, a cooperation with Spanish companies under a partial UE funding, while a specific research program concerning the physico-chemical characterization of materials is performed jointly by CISE and ENEL. The project includes the development, the construction and the testing of a full scale 100 kW prototype, the assessment of stack technology on subscale stacks, the mathematical modelling of the MCFC based plants and the basic researches. The aim of the basic researches, carried out on single cells, is to improve the effectiveness and durability of both the active and the hardware materials. The Ansaldo stack technology is based on external manifolding. The full scale 100 kW prototype will be integrated with the sensible heat reformer and other ancillary equipments according to the {open_quote}Compact Unit (CU){close_quotes} concept. These technical choices stress requirements for manifold gasket configuration. electrolyte migration control, {Delta}p management and porous component compaction.

  12. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  13. Anti depressant activity of Mamsyadi Kwatha: An Ayurvedic compound formulation.

    PubMed

    Shreevathsa, M; Ravishankar, B; Dwivedi, Rambabu

    2013-01-01

    Depression is a psychiatric condition in which there is loss of interest in all pleasurable outlets, viz. food, sex, work, friends, hobbies and entertainment. The prevalence rate of the disease is 6-8% in women and 3-5% in men. Ayurveda, the science of life, provides systematic management principles for depression. Mamsyadi Kwatha is one such formulation stated by Yadavji Trikamji Acharya in Siddha Yoga Sangraha and Bheshaja Samhita, which is said to be effective in psychiatric conditions. The ingredients are Jatamansi (Nardostachys jatamansi), Ashwagandh (Withania somnifera) and Parasika Yavani (Hyocymus niger) in an 8:4:1 ratio, respectively. The test drug was subjected for antidepressant activity in experimental models. The models selected for anti depressant activity were behavioral despair test, anti-reserpine test and Chronic Fatigue Syndrome (CFS) test in albino mice. The test formulation showed significant inhibition of behavioural despair (P < 0.05), weak to moderate anti-reserpine activity - ptosis (P < 0.001), catatonia (P < 0.01), sedation (P < 0.01) and moderate effect in CFS test (P < 0.050). These effects clearly show that Mamsyadi Kwatha has an anti-depressant activity. PMID:24049416

  14. Solubilities of biologically active phenolic compounds: measurements and modeling.

    PubMed

    Queimada, António J; Mota, Fátima L; Pinho, Simão P; Macedo, Eugénia A

    2009-03-19

    Aqueous solubilities of natural phenolic compounds from different families (hydroxyphenyl, polyphenol, hydroxybenzoic, and phenylpropenoic) were experimentally obtained. Measurements were performed on tyrosol and ellagic, protocatechuic, syringic, and o-coumaric acids, at five different temperatures (from 288.2 to 323.2 K), using the standard shake-flask method, followed by compositional analysis using UV spectrophotometry. To verify the accuracy of the spectrophotometric method, some data points were measured by gravimetry, and in general, the values obtained with the two methods are in good agreement (deviations lower than 11%). To adequately understand the solubilization process, melting properties of the pure phenolics were obtained by differential scanning calorimetry (DSC), and apparent acid dissociation constants were measured by potentiometry titration. The aqueous solubilities followed the expected general exponential trend. The melting temperatures did not follow the same solubility tendency, and for tyrosol and ellagic acid, not only the size and extent of hydrogen bonding, but also the energy associated with their crystal structures, determine the solubility. For these binary systems, acid dissociation is not important. Approaches for modeling the measured data were evaluated. These included an excess Gibbs energy equation, the modified UNIQUAC model, and the cubic-plus-association (CPA) equation of state. Particularly for the CPA approach, a new methodology that explicitly takes into account the number and nature of the associating sites and the prediction of the pure-component parameters from molecular structure is proposed. The results indicate that these are appropriate tools for representing the water solubilities of these molecules. PMID:19243119

  15. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    PubMed

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity. PMID:27273551

  16. Discovery of compounds that protect tyrosine hydroxylase activity through different mechanisms.

    PubMed

    Hole, Magnus; Underhaug, Jarl; Diez, Hector; Ying, Ming; Røhr, Åsmund Kjendseth; Jorge-Finnigan, Ana; Fernàndez-Castillo, Noèlia; García-Cazorla, Angels; Andersson, K Kristoffer; Teigen, Knut; Martinez, Aurora

    2015-09-01

    Pharmacological chaperones are small compounds that correct the folding of mutant proteins, and represent a promising therapeutic strategy for misfolding diseases. We have performed a screening of 10,000 compounds searching for pharmacological chaperones of tyrosine hydroxylase (TH), the tetrahydrobiopterin (BH4)-dependent enzyme that catalyzes the rate-limiting step in the synthesis of catecholamines. A large number of compounds bound to human TH, isoform 1 (hTH1), but only twelve significantly protected wild-type (hTH1-wt) and mutant TH-R233H (hTH1-p.R202H), associated to the rare neurological disorder TH deficiency (THD), from time-dependent loss of activity. Three of them (named compounds 2, 4 and 5) were subjected to detailed characterization of their functional and molecular effects. Whereas compounds 2 and 4 had a characteristic pharmacological chaperone (stabilizing) effect, compound 5 protected the activity in a higher extent than expected from the low conformational stabilization exerted on hTH1. Compounds 4 and 5 were weak competitive inhibitors with respect to the cofactor BH4 and, as seen by electron paramagnetic resonance, they induced small changes to the first coordination sphere of the catalytic iron. Molecular docking also indicated active-site location with coordination to the iron through a pyrimidine nitrogen atom. Interestingly, compound 5 increased TH activity in cells transiently transfected with either hTH1-wt or the THD associated mutants p.L205P, p.R202H and p.Q381K without affecting the steady-state TH protein levels. This work revealed different mechanisms for the action of pharmacological chaperones and identifies a subtype of compounds that preserve TH activity by weak binding to the catalytic iron. This article is part of a Special Issue entitled: Cofactor-dependent proteins: Evolution, chemical diversity and bio-applications. PMID:25960279

  17. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  18. In vitro anti-HIV-1 activity of salicylidene acylhydrazide compounds.

    PubMed

    Forthal, Donald N; Phan, Tran B; Slepenkin, Anatoly V; Landucci, Gary; Chu, Hencelyn; Elofsson, Mikael; Peterson, Ellena

    2012-10-01

    Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 μM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide. PMID:22819150

  19. Phenolic compounds and antioxidant activity of olive leaf extracts.

    PubMed

    Kontogianni, Vassiliki G; Gerothanassis, Ioannis P

    2012-01-01

    The total phenolic content and antioxidant activities of olive leaf extracts were determined. Plant material was extracted with methanol and fractionated with solvents of increasing polarity, giving certain extracts. The qualitative changes in the composition of the extracts were determined after the storage of leaves for 22 h at 37°C, before the extraction. Total polyphenol contents in extracts were determined by the Folin-Ciocalteu procedure. They were also analysed by liquid chromatography-mass spectrometry. Their antioxidant activities were evaluated using the diphenyl picrylhydrazyl method and the β-carotene linoleate model assay. Moreover, the effects of different crude olive leaf extracts on the oxidative stability of sunflower oil at 40°C and sunflower oil-in-water emulsions (10% o/w) at 37°C, at a final concentration of crude extract 200 mg kg(-1) oil, were tested and compared with butylated hydroxyl toluene. PMID:22060136

  20. Present-day aeolian activity in Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Silvestro, Simone; Vaz, David A.; Michaels, Timothy; Bourke, Mary C.; Komatsu, Goro; Marinangeli, Lucia

    2016-02-01

    In this report, we show evidence for ripple and dune migration in Herschel Crater on Mars. We estimate an average dune migration of 0.8 m and a minimum ripple migration of 1.1 m in a time span of 3.7 Earth-years. These dunes and ripples are mainly shaped by prevailing winds coming from the north, however we also report the presence of secondary winds which elongate the barchans' horns. Such a complex wind scenario is likely caused by the influence of winds blowing off the western crater rim as suggested by the Mars Regional Atmospheric Modeling System (MRAMS), an atmospheric mesoscale model. A multi-directional wind regime at the local scale is also supported by the observed bimodal distribution of the ripple trends. For the first time, a survey integrating the assessment of dune and ripple migration is presented, showing how dune topography can influence the migration patterns of ripples and how underlying topography appears to control the rates of dune migration.

  1. Persistence of biologically active compounds in soil: Final report

    SciTech Connect

    Williams, S.E.

    1987-02-01

    This document describes the long-term effects of soil-applied oil shale process water on the VA fungi and Rhizobium bacteria in a native soil. Techniques include assessing the VA fungal activity at field treatment plots and using treated field soils in a bioassay to determine VA infection and Rhizobium-nodulation potentials four years after process water application. 52 refs., 32 figs., 2 tabs.

  2. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    PubMed Central

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  3. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound.

    PubMed

    Ibrahim, Mohammad; Muhammad, Niaz; Naeem, Muhammad; Deobald, Anna Maria; Kamdem, Jean Paul; Rocha, Joao Batista Teixeira

    2015-08-01

    The amine based diselenide, (Z)-N-(4-methylbenzylidene)-1-(2-((2-(1-((E)-4-methyl benzylideneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine ethyl)phenyl) diselanyl) phenyl) ethylimino) methyl)phenol (Compound A) an organoselenium compound that can mimic endogenous antioxidant enzymes, such as glutathione peroxidase (GPx), and diphenyl diselenide (PhSe)2 were tested against lipid peroxidation induced by sodium nitroprusside (SNP) and Fe(II) in rat brain, interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH) and glutathione peroxidase (GPx) like antioxidant activities with H2O2 or tBuOOH as substrates and with PhSH as thiol co-substrates as well as their ability to oxidize thiols were evaluated. From this study, we concluded that Compound A catalyze the reduction of H2O2 with thiol was ∼2-fold more active than (PhSe)2) in both tBuOOH and H2O2 systems when PhSH was used as a substrate. (PhSe)2 exhibited an increased ability to oxidize thiols while Compound A was not a good substrate for the oxidation of thiol used namely DTT and Cystine and showed DPPH radical-scavenging activity, while (PhSe)2 did not present radical scavenging activity. Compound A (amine based diselenide) presented better antioxidant profiles than (PhSe)2 against lipid peroxidation. The results clear showed that nitrogen atom in the Compound A can have a profound effect on their pharmacological properties. PMID:25862122

  4. Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model

    NASA Astrophysics Data System (ADS)

    Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah

    2016-03-01

    The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.

  5. Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds.

    PubMed Central

    Gumila, C; Ancelin, M L; Delort, A M; Jeminet, G; Vial, H J

    1997-01-01

    Large-scale in vitro screening of different types of ionophores previously pinpointed nine compounds that were very active and selective in vitro against Plasmodium falciparum; their in vitro and in vivo antimalarial effects were further studied. Addition of the ionophores to synchronized P. falciparum suspensions revealed that all P. falciparum stages were sensitive to the drugs. However, the schizont stages were three- to ninefold more sensitive, and 12 h was required for complete parasite clearance. Pretreatment of healthy erythrocytes with toxic doses of ionophores for 24 to 48 h showed that the activity was not due to an irreversible effect on the host erythrocyte. No preferential ionophore adsorption in infected or uninfected erythrocytes occurred. On the other hand, ionophore molecules strongly bound to serum proteins since increasing the serum concentration from 2 to 50% led to almost a 25-fold parallel increase in the ionophore 50% inhibitory concentration. Mice infected with the malaria parasites Plasmodium vinckei petteri or Plasmodium chabaudi were successfully treated with eight ionophores in a 4-day suppressive test. The 50% effective dose after intraperitoneal administration ranged from 0.4 to 4.1 mg/kg of body weight, and the therapeutic indices were about 5 for all ionophores except monensin A methyl ether, 5-bromo lasalocid A, and gramicidin D, whose therapeutic indices were 12, 18, and 344, respectively. These three compounds were found to be curative, with no recrudescence. Gramicidin D, which presented impressive antimalarial activity, requires parenteral administration, while 5-bromo lasalocid A has the major advantage of being active after oral administration. Overall, the acceptable levels of toxicity and the good in vivo therapeutic indices in the rodent model highlight the interesting potential of these ionophores for the treatment of malaria in higher animals. PMID:9055986

  6. Effects of sodium lauryl sulphate (SLS), present in dentifrice, on volatile sulphur compound (VSC) formation in morning bad breath.

    PubMed

    Peruzzo, Daiane Cristina; Salvador, Sérgio Luis; Sallum, Antonio Wilson; da Nogueira-Filho, Getúlio Rocha

    2008-10-01

    The purpose of the present investigation was to evaluate the effects of sodium lauryl sulphate (SLS), present in a commercial dentifrice, on the formation of volatile sulphur compounds (VSC) and tongue coating in a panel of periodontally healthy subjects. A two-step blinded, crossover, randomized study was carried out in 25 dental students with healthy periodontium; these were divided into two experimental groups: SLS (dentifrice with SLS) and WSLS (dentifrice without SLS). The volunteers received the designated dentifrice and a new toothbrush for a 3x/day brushing regimen for 2 periods of 30 days. A seven-day washout interval was used between the periods. The assessed parameters were: plaque index (PI), gingival index (GI), organoleptic breath (ORG), VSC levels by portable sulphide monitor before (H1) and after (H2) cleaning of the tongue, tongue coating wet weight (TC) and benzoyl-DL-arginine-naphthylamide (BANA) test from tongue coating samples. The intra-group analysis showed a decrease in the median of organoleptic scores from 3 to 2 after 30 days for the SLS group (p < 0.05). The inter-group analysis showed lower values in ORG and H1 for the SLS group (p < 0.05). There was no difference between the amount of TC in SLS and WSLS groups. In the BANA test, the presence of SLS did not affect the BANA number of +/- results (p > 0.05). These findings suggest that sodium lauryl sulphate (SLS), present in dentifrice, appears to prevent VSC formation in morning bad breath regardless of the amount of tongue coating in periodontally healthy subjects. PMID:19055226

  7. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion.

    PubMed

    Rodríguez-Roque, María Janeth; Rojas-Graü, María Alejandra; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-01-01

    The aim of this research was to evaluate changes in the phenolic compounds, isoflavones and antioxidant activity of soymilk following in vitro gastrointestinal digestion (including dialysis). Gastric digestion significantly influenced the release of bioactive substances from the soymilk matrix, increasing the concentration of total phenolic components (35% as the sum of individuals and 14% by Folin-Ciocalteu [F-C] method), total isoflavone content (22%) and total antioxidant activity (76%). The concentration of all those compounds was reduced significantly in the duodenal fraction in comparison to gastric digestion and their lowest concentration was observed in the dialysed fraction, where phenolic acids were not detected. The bioaccessibility of soymilk phenolic compounds was 15% as the sum of individuals and 20% by F-C assay; isoflavones 36% and constituents with antioxidant activity 27%. Results suggest that most of these compounds were sufficiently available to be absorbed and could contribute health benefits. PMID:23017414

  8. Activity of compound G2 isolated from alfalfa roots against medically important yeasts.

    PubMed Central

    Polacheck, I; Zehavi, U; Naim, M; Levy, M; Evron, R

    1986-01-01

    An antimycotic agent was isolated from roots of alfalfa and further purified to yield a nonhemolytic, homogeneous compound (G2). This compound contained considerable activity against 10 medically important yeasts. MICs obtained by both agar and broth dilution methods ranged from 3 to 15 micrograms/ml. Compound G2 was fungicidal at a relatively low concentration for nine different species of yeasts tested (minimum fungicidal concentrations ranged between 6 and 24 micrograms/ml). The considerable stability of compound G2 and its strong inhibitory and fungicidal activity against a broad range of yeasts suggest that after further development it might be useful as an active agent in the treatment of mycotic infections. PMID:3767342

  9. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  10. Leishmanicidal and cholinesterase inhibiting activities of phenolic compounds from Allanblackia monticola and Symphonia globulifera.

    PubMed

    Lenta, Bruno Ndjakou; Vonthron-Sénécheau, Catherine; Weniger, Bernard; Devkota, Krishna Prasad; Ngoupayo, Joseph; Kaiser, Marcel; Naz, Qamar; Choudhary, Muhammad Iqbal; Tsamo, Etienne; Sewald, Norbert

    2007-01-01

    In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and guttiferone F (4), along with three xanthones: allanxanthone A (5), xanthone V1 (6) and globulixanthone C (7) as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1) and F (4) showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 microM and 0.16 microM, respectively) comparable to that of the reference compound, miltefosine (0.46 microM). Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE) and butylcholinesterase (AChE). For AChE, the IC50 value (0.66 microM) of garcinol (2) was almost equal to that of the reference compound galanthamine (0.50 microM). Furthermore, guttiferone A (1) and guttiferone F (4) (IC50 = 2.77 and 3.50 microM, respectively) were more active than galanthamine (IC50 = 8.5) against BChE. PMID:17960072

  11. Analyzing compound activity records and promiscuity degrees in light of publication statistics

    PubMed Central

    Hu, Ye; Bajorath, Jürgen

    2016-01-01

    For the generation of contemporary databases of bioactive compounds, activity information is usually extracted from the scientific literature. However, when activity data are analyzed, source publications are typically no longer taken into consideration. Therefore, compound activity data selected from ChEMBL were traced back to thousands of original publications, activity records including compound, assay, and target information were systematically generated, and their distributions across the literature were determined. In addition, publications were categorized on the basis of activity records. Furthermore, compound promiscuity, defined as the ability of small molecules to specifically interact with multiple target proteins, was analyzed in light of publication statistics, thus adding another layer of information to promiscuity assessment. It was shown that the degree of compound promiscuity was not influenced by increasing numbers of source publications. Rather, most non-promiscuous as well as promiscuous compounds, regardless of their degree of promiscuity, originated from single publications, which emerged as a characteristic feature of the medicinal chemistry literature. PMID:27347396

  12. Antimicrobial and antioxidant activities of the extracts and compounds from the leaves of Psorospermum aurantiacum Engl. and Hypericum lanceolatum Lam.

    PubMed Central

    2012-01-01

    Background Psorospermun aurantiacum and Hypericum lanceolatum are plants locally used in Cameroon and other parts of Africa for the treatment of gastrointestinal and urinary tract infections, skin infections, venereal diseases, gastrointestinal disorder, infertility, epilepsy as well as microbial infections. The present study was designed in order to investigate the in vitro antimicrobial and radical scavenging activities of the extracts and isolated compounds from the leaves of these plants. Methods The plant extract was prepared by maceration in ethyl acetate and methanol and fractionated by column chromatography. The structures of isolated compounds were elucidated by spectroscopic analyses in conjunction with literature data. The broth microdilution method was used to evaluate the in vitro antimicrobial activity against bacteria, yeasts and dermatophytes. The antioxidant potentials of the extracts and their isolated compounds were evaluated using the DPPH radical scavenging method. Results Five known compounds: physcion (1), 1,8-dihydroxy-3-geranyloxy-6-methylanthraquinone (2), kenganthranol B (3), vismiaquinone (4), and octacosanol (5) were isolated from the leaves of P. aurantiacum while six compounds including friedelin (6), betulinic acid (7), 2,2’,5,6’-tetrahydroxybenzophenone (8), allanxanthone A (9), 1,3,6- trihydroxyxanthone (10) and isogarcinol (11) were isolated from H. lanceolatum. Compound 8 and 4 exhibited the highest antibacterial and antifungal activities with MIC ranges of 2–8 μg/ml and 4–32 μg/ml respectively. P. aurantiacum crude extract (Rsa50 = 6.359 ± 0.101) showed greater radical scavenging activity compared with H. lanceolatum extract (Rsa50 = 30.996 ± 0.879). Compound 11 showed the highest radical scavenging activity (RSa50 = 1.012 ± 0.247) among the isolated compounds, comparable to that of L-arscobic acid (RSa50 = 0.0809 ± 0.045). Conclusions The experimental findings show that the

  13. Selection of desorbing solvents for organic compounds from active carbon tubes.

    PubMed

    Matsumura, Y

    1996-01-01

    To ensure the effective performance of active carbon tubes for working environment measurements, suitable desorbing solvents were selected for 46 kinds of organic compounds by the phase equilibrium method. The criteria for suitable desorbing solvents in this study was desorption of the objective compounds from active carbon at efficiencies greater than 90% and to give good separation between its own peak and that of the objective compound on a gas chromatogram. For most non-polar or hydrophobic compounds, carbon disulfide was a versatile and effective solvent. But for polar and hydrophilic compounds like alcohol, N,N-dimethylformamide and dimethylsulfoxide were good desorbing solvents if their peaks did not overlap with those of the objective compounds. Mixtures of lower molecular weight alcohols with carbon disulfide or dichloromethane could be alternative solvents for hydrophilic compounds as well. A thermodynamic parameter of the solute-solvent system, i.e., the mixing energy derived from the solubility parameter, gave a rough indication of the effectiveness of solvents but it could not be used as a critical indicator for the efficient desorbing solvents for organic vapors collected on active carbon. PMID:8768662

  14. Antioxidant activity and phytochemical compounds of snake fruit (Salacca Zalacca)

    NASA Astrophysics Data System (ADS)

    Suica-Bunghez, I. R.; Teodorescu, S.; Dulama, I. D.; Voinea, O. C.; imionescu, S.; Ion, R. M.

    2016-06-01

    Snake fruit (Salacca zalacca) is a palm tree species, which is found in Malaysia and Indonesia. This study was conducted to investigate and compare the composition, total phenolic, flavonoid, tanins and monoterpenoids contents in the core and shell fruits. Concentration values of extracts were obtained from standard curves obtained. Antioxidant activity was determined using DPPH method. For all methods it was used the UV-VIS Specord M40, using different wavelength. The infrared spectral analysis was carried out to caracterized the type of functional group existent in snake fruit parts (shell and core).

  15. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  16. Phenolic compounds from the bark of Oroxylum indicum activate the Ngn2 promoter.

    PubMed

    Fuentes, Rolly G; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-10-01

    A reporter gene assay that detects neurogenin 2 (Ngn2) promoter activity was utilized to identify compounds that induce neuronal differentiation. Ngn2 is a basic helix-loop-helix transcription factor that activates transcription of pro-neural genes. Using this assay system and an activity-guided approach, seven phenolic compounds were isolated from the methanol extract of Oroxylum indicum: 1 oroxylin A, 2 chrysin, 3 hispidulin, 4 baicalein, 5 apigenin, 6 baicalin, and 7 isoverbascoside. Compounds 1 and 2 induced an estimated 2.7-fold increase in Ngn2 promoter activity, whereas 3 increased the activity by 2.5-fold. Furthermore, 1 and 2 enhanced neuronal differentiation of C17.2 cells, which are multipotent stem cells. PMID:26014045

  17. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  18. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase.

    PubMed

    Eibes, Gemma; Debernardi, Gianfranco; Feijoo, Gumersindo; Moreira, M Teresa; Lema, Juan M

    2011-06-01

    Pharmaceuticals are an important group of emerging pollutants with increasing interest due to their rising consumption and the evidence for ecotoxicological effects associated to trace amounts in aquatic environments. In this paper, we assessed the potential degradation of a series of pharmaceuticals: antibiotics (sulfamethoxazole), antidepressives (citalopram hydrobromide and fluoxetine hydrochloride), antiepileptics (carbamazepine), anti-inflammatory drugs (diclofenac and naproxen) and estrogen hormones (estrone, 17β-estradiol, 17α-ethinylestradiol) by means of a versatile peroxidase (VP) from the ligninolytic fungus Bjerkandera adusta. The effects of the reaction conditions: VP activity, organic acid concentration and H(2)O(2) addition rate, on the kinetics of the VP based oxidation system were evaluated. Diclofenac and estrogens were completely degraded after only 5-25 min even with a very low VP activity (10 U l(-1)). High degradation percentages (80%) were achieved for sulfamethoxazole and naproxen. Low or undetectable removal yields were observed for citalopram (up to 18%), fluoxetine (lower than 10%) and carbamazepine (not degraded). PMID:20972884

  19. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds.

    PubMed

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois; Dymock, Brian W; Tan, Kevin S W

    2016-05-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria. PMID:26953199

  20. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber. PMID:18284136

  1. Leishmanicidal and cytotoxic activities of extracts and naturally-occurring compounds from two Lauraceae species.

    PubMed

    Sánchez-Suárez, Jeysson; Coy-Barrera, Ericsson; Cuca, Luis Enrique; Delgado, Gabriela

    2011-02-01

    The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis. PMID:21425681

  2. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops.

    PubMed

    Dušek, Martin; Jandovská, Vladimíra; Čermák, Pavel; Mikyška, Alexandr; Olšovská, Jana

    2016-08-15

    The phenolic compounds, secondary metabolites of hops represent a large family of compounds that could be subsequently divided into smaller groups based on the similarities between their chemical structures. The antibacterial, antifungal and antiviral properties of hops are well known, but there is a lack of information about antimicrobial activities of individual hop compounds. This study was carried out with an objective to identify compounds present in hops that have potential antibacterial activity. In the first stage of experiment, the active compounds with potential anti-microbial activity had to be extracted from hop cones. Therefore, minced hop cones were applied on solid growth medium inoculated with Staphylococcus aureus. The active substances that migrated into the medium created an inhibition zone. In the second stage of experiment, the inhibition zones were cut out from Petri dishes, active compounds were extracted from these zones and consequently analyzed using LC-HRMS. These complex assays were developed and optimized. The data were acquired by using a quadrupole-orbitrap hybrid mass spectrometer by targeted-MS2 experiment in both ionization modes. The MS method has been developed as a screening method with a subsequent fragmentation of compound of interest on the base of inclusion mass list. The unknown compounds extracted from inhibition zones have been identified either by searching against a database or their structure has been elucidated on the basis of their fragmentation spectra. On the basis of this experiment the list of active compounds with potential anti-microbial activities was enhanced. PMID:27260455

  3. Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme

    PubMed Central

    Lawrence, Sarah H.; Selwood, Trevor; Jaffe, Eileen K.

    2011-01-01

    An in vitro evaluation of the Johns Hopkins Clinical Compound Library demonstrates that certain drugs can alter the quaternary structure of an essential human protein. Human porphobilinogen synthase (HsPBGS) is an essential enzyme involved in heme biosynthesis; it exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. Reduced HsPBGS activity is implicated in toxicities associated with lead poisoning and ALAD porphyria, the latter of which involves hexamer-favoring HsPBGS variants. A medium-throughput native PAGE mobility shift screen, coupled with evaluation of hits as HsPBGS inhibitors, revealed twelve drugs that stabilize the HsPBGS hexamer and inhibit HsPBGS activity in vitro. A detailed characterization of these effects is presented. Drug inhibition of HsPBGS in vivo by inducing hexamer formation would constitute an unprecedented mechanism for side effects. We suggest that small molecule perturbation of quaternary structure equilibria be considered as a general mechanism for drug action and side effects. PMID:21506274

  4. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships.

    PubMed

    Al Shukor, Nadin; Van Camp, John; Gonzales, Gerard Bryan; Staljanssens, Dorien; Struijs, Karin; Zotti, Moises J; Raes, Katleen; Smagghe, Guy

    2013-12-01

    In this study, 22 phenolic compounds were investigated to inhibit the angiotensin-converting enzyme (ACE). Tannic acid showed the highest activity (IC50 = 230 μM). The IC50 values obtained for phenolic acids and flavonoids ranged between 0.41 and 9.3 mM. QSAR analysis confirmed that the numbers of hydroxyl groups on the benzene ring play an important role for activity of phenolic compounds and that substitution of hydroxyl groups by methoxy groups decreased activity. Docking studies indicated that phenolic acids and flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. Other compounds, such as resveratrol and pyrogallol, may inhibit ACE via interactions with amino acids at the active site, thereby blocking the catalytic activity of ACE. These structure-function relationships are useful for designing new ACE inhibitors and potential blood-pressure-lowering compounds based on phenolic compounds. PMID:24219111

  5. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  6. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.

    PubMed

    Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H

    2013-03-20

    Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one. PMID:23414530

  7. Review of the Inhibition of Biological Activities of Food-Related Selected Toxins by Natural Compounds

    PubMed Central

    Friedman, Mendel; Rasooly, Reuven

    2013-01-01

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term ‘chemical genetics’ has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet. PMID:23612750

  8. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    PubMed

    Friedman, Mendel; Rasooly, Reuven

    2013-04-01

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet. PMID:23612750

  9. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  10. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  11. Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds.

    PubMed

    Sawamura, Seishiro; Hatano, Masahiko; Takada, Yoshinori; Hino, Kyosuke; Kawamura, Tetsuya; Tanikawa, Jun; Nakagawa, Hiroshi; Hase, Hideharu; Nakao, Akito; Hirano, Mitsuru; Rotrattanadumrong, Rachapun; Kiyonaka, Shigeki; Mori, Masayuki X; Nishida, Motohiro; Hu, Yaopeng; Inoue, Ryuji; Nagata, Ryu; Mori, Yasuo

    2016-03-01

    Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a

  12. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania.

    PubMed

    Kaškonienė, Vilma; Maruška, Audrius; Akuņeca, Ieva; Stankevičius, Mantas; Ragažinskienė, Ona; Bartkuvienė, Violeta; Kornyšova, Olga; Briedis, Vitalis; Ugenskienė, Rasa

    2016-06-01

    Since biological activity of medicinal plants is dependent on cultivation area, climatic conditions, developmental stage, genetic modifications and other factors, it is important to study flora present in different growing sites and geographical zones. This study was focused on screening of antioxidant activity of C. angustifolium harvested in six different locations in Lithuania. The total contents of phenolic compounds, flavonoids and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were evaluated by spectrophotometric methods. A correlation between radical scavenging activity and total phenolic compounds content was observed (correlation coefficient 0.98). HPLC with online post-column DPPH radical scavenging reaction detection was used for the separation of extracts. Oenothein B, rutin and one unidentified compound were predominant. Volatile compounds were analysed using solid-phase microextraction coupled with gas chromatography-mass spectrometry. Based on the analysis of volatiles, all samples were classified into two chemotypes: (I) with predominant α- and β-caryophyllenes and (II) with predominant anethole. PMID:26222982

  13. Adsorption of volatile sulphur compounds onto modified activated carbons: effect of oxygen functional groups.

    PubMed

    Vega, Esther; Lemus, Jesús; Anfruns, Alba; Gonzalez-Olmos, Rafael; Palomar, José; Martin, María J

    2013-08-15

    The effect of physical and chemical properties of activated carbon (AC) on the adsorption of ethyl mercaptan, dimethyl sulphide and dimethyl disulphide was investigated by treating a commercial AC with nitric acid and ozone. The chemical properties of ACs were characterised by temperature programme desorption and X-ray photoelectron spectroscopy. AC treated with nitric acid presented a larger amount of oxygen functional groups than materials oxidised with ozone. This enrichment allowed a significant improvement on adsorption capacities for ethyl mercaptan and dimethyl sulphide but not for dimethyl disulphide. In order to gain a deeper knowledge on the effect of the surface chemistry of AC on the adsorption of volatile sulphur compounds, the quantum-chemical COSMO-RS method was used to simulate the interactions between AC surface groups and the studied volatile sulphur compounds. In agreement with experimental data, this model predicted a greater affinity of dimethyl disulphide towards AC, unaffected by the incorporation of oxygen functional groups in the surface. Moreover, the model pointed out to an increase of the adsorption capacity of AC by the incorporation of hydroxyl functional groups in the case of ethyl mercaptan and dimethyl sulphide due to the hydrogen bond interactions. PMID:23708449

  14. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-01

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material. PMID:26274450

  15. Novel chimeric immunomodulatory compounds containing short CpG oligodeoxyribonucleotides have differential activities in human cells

    PubMed Central

    Marshall, Jason D.; Hessel, Edith M.; Gregorio, Josh; Abbate, Christina; Yee, Priscilla; Chu, Mabel; Nest, Gary Van; Coffman, Robert L.; Fearon, Karen L.

    2003-01-01

    Immunostimulatory DNA sequences (ISS) containing CpG motifs induce interferon-α (IFN-α) and interferon-γ (IFN-γ) from human peripheral blood mononuclear cells and stimulate human B cells to proliferate and produce IL-6. We studied the motif and structural requirements for both types of activity using novel chimeric immunomodulatory compounds (CICs), which contain multiple heptameric ISS connected by non-nucleoside spacers in both linear and branched configurations. We found that the optimal motifs and structure for IFN-α production versus B cell activation differed. IFN-α production was optimal for CICs containing the sequences 5′-TCGXCGX and 5′-TCGXTCG, where X is any nucleotide. The presentation of multiple copies of these heptameric ISS with free 5′-ends via long, hydrophilic spacers, such as hexaethylene glycol, significantly enhanced the induction of IFN-α. Conversely, human B cell activity was predominately dependent on ISS motif, with 5′-TCGTXXX and 5′-AACGTTC being the most active sequences. Thus, we found CICs could be ‘programmed’ for IFN-α production or B cell activation as independent variables. Additionally, CICs with separate human- and mouse-specific motifs were synthesized and these were used to confirm in vivo activity in mice. CICs may offer unique advantages over conventional ISS because identification of the optimal motifs, spacers and structures for different biological properties allows for the assembly of CICs exhibiting a defined set of activities tailored for specific clinical applications. PMID:12930963

  16. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    PubMed

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  17. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  18. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  19. Anti-inflammatory and antioxidant activities of phenolic compounds from Desmodium caudatum leaves and stems.

    PubMed

    Li, Wei; Sun, Ya Nan; Yan, Xi Tao; Yang, Seo Young; Kim, Sohyun; Chae, Doobyeong; Hyun, Jin Won; Kang, Hee Kyoung; Koh, Young-Sang; Kim, Young Ho

    2014-06-01

    Four flavanonols (1-4), one xanthone (5), and three flavonoid glycosides (6-8), were isolated from the leaves and stems of Desmodium caudatum. Their structures were elucidated by comparing spectroscopic data with reported values. The anti-inflammatory activity of the isolated compounds was investigated in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells. Among them, compounds 1 and 2 exhibited inhibitory effects on LPS-induced IL-6, IL-12 p40, and TNF-α production with IC50 values ranging from 6.0 to 29.4 μM. Compound 5 exhibited 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species scavenging activity in human HaCaT keratinocytes. These results warrant further studies of the potential anti-inflammatory and antioxidant benefits of compounds from D. caudatum. PMID:24026429

  20. 3-Arylidene-N-hydroxyoxindoles: A New Class of Compounds Endowed with Antitumor Activity.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; De Cesare, Michelandrea; Zunino, Franco; Fallacara, Anna Lucia; Botta, Maurizio; Dallavalle, Sabrina

    2016-08-19

    A series of compounds containing the N-hydroxyoxindole scaffold were synthesized and evaluated for antitumor activity. The compounds showed potent antiproliferative activity against the wild-type p53 IGROV-1 ovarian carcinoma cell line and considerably lower efficacy against the mutant IGROV-1/Pt1 subline that lacks p53 function. The differential response of ovarian carcinoma cells depending on p53 status was also reflected in the varied susceptibility to apoptosis of the treated cell lines. These results support a role for the p53 transcription factor as a determinant of cytotoxicity. The therapeutic potential of the most promising compound of the series was evaluated in the treatment of an IGROV-1 xenograft growing as ascitic tumor in mice. Using intraperitoneal administration, daily treatment with the compound for four weeks produced a significant delay in the onset of ascites. PMID:27311681

  1. SYNTHESIS AND IN VITRO ANTIMICROBIAL ACTIVITY OF NOVEL SERIES OF 3,5-DIACETYLPYRIDINE COMPOUNDS.

    PubMed

    Morsy, Eman M H; Kotb, Eman R; Soliman, Hanan A; Sayyed, Hayam H; Abdelwahed, Nayira A M

    2015-01-01

    Bis diacetylpyridine derivative (1) was prepared and reacted with different halo-compounds, namely: epichlorohydrine and dichloroethyl ethyl ether to give 2a,b, respectively, and reacted with morpholine and piperidine to afford Mannich products 3a,b, successively. Compound 4 was synthesized by reaction of 1 with potassium thiocyanate. Reaction of 4 with 4-chlorobenzaldehyde, glucose and phthalic or maleic anhydrides produced 5, 6 and 7a,b. Compound 1 reacted with 4-chlorobenzaldehyde to give bisanylmethylene derivative 8. Also some new compounds 9-11 were prepared from the reaction of compound 8 with nucleophiles, namely: hydrazine hydrate, thiosemicarbazide and hydroxylamine via Michael condensation reaction. On the other hand, compound 8 was reacted with cyclohexanone and cyclopentanone to give 12a,b. The structures of newly synthesized products have been deduced on the basis of elemental analysis and spectral data. Some synthesized compounds were screened for their antimicrobial evaluation. Among the assayed compounds, derivatives 3b and 12a showed the highest antimicrobial activities. PMID:26642655

  2. SYNTHESIS AND BIOLOGICAL ACTIVITY OF SULFUR COMPOUNDS SHOWING STRUCTURAL ANALOGY WITH COMBRETASTATIN A-4

    PubMed Central

    dos Santos, Edson dos A.; Prado, Paulo C.; de Carvalho, Wanderley R.; de Lima, Ricardo V.; Beatriz e, Adilson; de Lima, Dênis P.; Hamel, Ernest; Dyba, Marzena A.; Albuquerque, Sergio

    2013-01-01

    We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15). PMID:23766547

  3. THE SEARCH OF COMPOUNDS WITH ANTIAGGREGATION ACTIVITY AMONG S-ESTERS OF THIOSULFONIC ACIDS.

    PubMed

    Halenova, T I; Nikolaeva, I V; Nakonechna, A V; Bolibrukh, K B; Monka, N Y; Lubenets, V I; Savchuk, O M; Novikov, V P; Ostapchenko, L I

    2015-01-01

    According to the current understanding, the hyperactivation of platelets may lead to increased intravascular coagulation and thrombosis. Today a relevant issue is the search for new anti-thrombotic agents that are able to modulate the activity of platelet receptors, thus, influence the processes of activation and aggregation of platelets. The aim of this study was to investigate the effects of newly synthesized thiosulfonate derivatives on platelet aggregation. The activity of the compounds was tested in vitro using platelet-rich plasma. As a result of the screening test, structural formulas of four agents with high antiaggregative activity were established. These compounds inhibited ADP- and collagen-induced platelet aggregation in a dose-dependent manner. Two of these compounds were shown to be more effective inhibitors of aggregation induced by ADP (IC50 - 8-10 μM), as well as collagen (IC50 - 1.5-2.0 μM). PMID:26717599

  4. Synthesis and biological activities of certain mesoionic sydnone compounds containing chalcone moiety.

    PubMed

    Deshpande, Shreenivas R; Pai, K Vasantakumar

    2010-06-01

    In order to have antibacterial, analgesic and anti-inflammatory activity in the same molecule, 4-[1-oxo-3- (substituted aryl)-2-propenyl]-3-(4-chlorophenyl) sydnones were synthesized by condensing 4-acetyl-3-(4-chlorophenyl)sydnone with various substituted aryl aldehydes and characterized by spectral studies; 4-acetyl-3-(4-chlorophenyl)sydnone itself, was prepared by acetylation of 3-(4-chlorophenyl) sydnone. The newly synthesized compounds were evaluated for antibacterial and anti-inflammatory activities by cup plate and carrageenan induced rat paw edema methods respectively. Some of the compounds showed promising antibacterial and anti-inflammatory activities. PMID:24825982

  5. SYNTHESIS AND BIOLOGICAL ACTIVITIES OF CERTAIN MESOIONIC SYDNONE COMPOUNDS CONTAINING CHALCONE MOIETY

    PubMed Central

    Deshpande, Shreenivas R.; Pai, K. Vasantakumar

    2010-01-01

    In order to have antibacterial, analgesic and anti-inflammatory activity in the same molecule, 4-[1-oxo-3- (substituted aryl)-2-propenyl]-3-(4-chlorophenyl) sydnones were synthesized by condensing 4-acetyl-3-(4-chlorophenyl)sydnone with various substituted aryl aldehydes and characterized by spectral studies; 4-acetyl-3-(4-chlorophenyl)sydnone itself, was prepared by acetylation of 3-(4-chlorophenyl) sydnone. The newly synthesized compounds were evaluated for antibacterial and anti-inflammatory activities by cup plate and carrageenan induced rat paw edema methods respectively. Some of the compounds showed promising antibacterial and anti-inflammatory activities PMID:24825982

  6. Anti-Campylobacter Activities and Resistance Mechanisms of Natural Phenolic Compounds in Campylobacter

    PubMed Central

    Klančnik, Anja; Možina, Sonja Smole; Zhang, Qijing

    2012-01-01

    Background Campylobacter is a major foodborne pathogen and alternative antimicrobials are needed to prevent or decrease Campylobacter contamination in foods or food producing animals. The objectives of this study are to define the anti-Campylobacter activities of natural phenolic compounds of plant origin and to determine the roles of bacterial drug efflux systems in the resistance to these natural phenolics in Campylobacter jejuni. Methodology/Principal Findings Anti-Campylobacter activities were evaluated by an MIC assay using microdilution coupled with ATP measurement. Mutants of the cmeB and cmeF efflux genes and the cmeR transcriptional repressor gene were compared with the wild-type strain for their susceptibilities to phenolics in the absence and presence of efflux-pump inhibitors (EPIs). The phenolic compounds produced significant, but variable activities against both antibiotic-susceptible and antibiotic resistant Campylobacter. The highest anti-Campylobacter activity was seen with carnosic and rosmarinic acids in their pure forms or in enriched plant extracts. Inactivation of cmeB rendered C. jejuni significantly more susceptible to the phenolic compounds, while mutation of cmeF or cmeR only produced a moderate effect on the MICs. Consistent with the results from the efflux pump mutants, EPIs, especially phenylalanine-arginine β-naphthylamide and NMP, significantly reduced the MICs of the tested phenolic compounds. Further reduction of MICs by the EPIs was also observed in the cmeB and cmeF mutants, suggesting that other efflux systems are also involved in Campylobacter resistance to phenolic compounds. Conclusion/Significance Natural phenolic compounds of plant origin have good anti-Campylobacter activities and can be further developed for potential use in controlling Campylobacter. The drug efflux systems in Campylobacter contribute significantly to its resistance to the phenolics and EPIs potentiate the anti-Campylobacter activities of plant phenolic

  7. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, T.

    1994-06-07

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.

  8. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds

  9. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Tuan Vodinh.

    1993-12-21

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.

  10. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1993-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.

  11. Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches

    PubMed Central

    Ferreira, Natalia C.; Marques, Icaro A.; Conceição, Wesley A.; Macedo, Bruno; Machado, Clarice S.; Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Yunes, Rosendo Augusto; Nunes, Ricardo José; Hughson, Andrew G.; Raymond, Lynne D.; Pascutti, Pedro G.; Caughey, Byron; Cordeiro, Yraima

    2014-01-01

    The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are

  12. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    PubMed Central

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  13. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China.

    PubMed

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  14. Antifungal activity of extracts and select compounds in heartwood of seven western conifers toward Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western red cedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper,...

  15. Identification of orthologous target pairs with shared active compounds and comparison of organism-specific activity patterns.

    PubMed

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2015-11-01

    A systematic search for active small molecules shared by orthologous targets was carried out, leading to the identification of 803 compound-based orthologous target pairs covering a total of 938 orthologues, 358 unique targets and 98 organisms. Many orthologous target pairs were found to have substantial compound coverage, enabling the introduction of an orthologous target pairs classification including 'organism cliffs' and 'potency-retaining' pairs. A total of 158 orthologous target pairs involving human orthologues were identified, which were typically associated with drug discovery-relevant targets, organism combinations and compound data. Orthologous target pairs with human orthologues included 83 potency-retaining orthologous target pairs covering a variety of targets and organisms. On the basis of these orthologous target pairs, the compound search was further extended and 1149 potent compounds were identified that only had reported activities for non-human orthologues of 48 therapeutic targets, but not their human counterparts, hence providing a large pool of candidate compounds for further evaluation. The complete set of orthologous target pairs identified in our analysis, the orthologous target pairs classification including associated data and all candidate compounds are made freely available. PMID:25931211

  16. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  17. Antioxidant compounds and antioxidant activity in "early potatoes".

    PubMed

    Leo, Lucia; Leone, Antonella; Longo, Cristiano; Lombardi, Domenico Antonio; Raimo, Francesco; Zacheo, Giuseppe

    2008-06-11

    The antioxidant content and the antioxidant capacity of both hydrophilic and lipophilic antioxidant extracts from four "early potato" cultivars, grown in two different locations (Racale and Monteroni), were examined. There was a considerable variation in carotenoid content and weak differences in the ascorbic acid concentration of the examined cultivars of "early potato" and between the harvested locations. An increase in both methanol/water (8:2 v/v) and phosphate buffer soluble (PBS) free phenols (70%) and bound phenols (28%) in the extracts from the cultivars grown at Racale site was found and discussed. Examination of individual phenols revealed that chlorogenic acid and catechin were the major phenols present in potato tuber extracts; a moderate amount of caffeic acid and ferulic acid was also detected. The total equivalent antioxidant capacity (TEAC) was higher in the Racale extracts and a highly positive linear relationship ( R (2) = 0.8193) between TEAC values and total phenolic content was observed. The oxyradical scavenging capacity (TOSC) of methanol/water and PBS extracts of peel and whole potatoes against the reactive oxygen species (ROS) peroxyl radicals, peroxynitrite, and hydroxyl radicals was also analyzed. A highly significant linear correlation ( R (2) = 0.9613) between total antioxidant capacity (as a sum of peroxyl radicals + peroxynitrite) and total phenol content of methanol/water extracts was established. Moreover, proliferation of human mammalian cancer (MCF-7) cells was significantly inhibited in a dose-dependent manner after exposure to potato extracts. These data can be useful for "early potato" tuber characterization and suggest that the "early potato" has a potential as a dietary source of antioxidants. PMID:18476702

  18. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds.

    PubMed

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  19. Nematicidal activity of natural ester compounds and their analogues against pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Koh, Sang-Hyun; Ahn, Young-Joon; Park, Il-Kwon

    2014-09-17

    In this study, we evaluated the nematicidal activity of natural ester compounds against the pine wood nematode, Bursaphelenchus xylophilus, to identify candidates for the development of novel, safe nematicides. We also tested the nematicidal activity of synthesized analogues of these ester compounds to determine the structure-activity relationship. Among 28 ester compounds tested, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methylbutyl tiglate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate showed strong nematicidal activity against the pine wood nematode at a 1 mg/mL concentration. The other ester compounds showed weak nematicidal activity. The LC50 values of 3-methylbutyl tiglate, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate were 0.0218, 0.0284, 0.0326, 0.0402, and 0.0480 mg/mL, respectively. The ester compounds described herein merit further study as potential nematicides for pine wood nematode control. PMID:25153339

  20. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  1. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer's disease therapy from Ecklonia cava.

    PubMed

    Choi, Byoung Wook; Lee, Hye Sook; Shin, Hyeon-Cheol; Lee, Bong Ho

    2015-04-01

    Five polyphenols were isolated and purified from a brown alga Ecklonia cava. These compounds showed diverse biological activities such as antioxidative, antiinflammatory, and enzyme inhibitory activities. This led us to investigate the potential of these compounds as Alzheimer's disease drugs. All of the compounds showed moderate acetylcholinesterase inhibitory activity in a micromolar range (IC50 from 16.0 to 96.3 μM). For butyrylcholinesterase, a new target for the treatment of Alzheimer's disease, phlorofucofuroeckol-A (PFF-A), showed a particularly potent inhibitory activity (IC50 0.95 μM), which is over 100-fold greater than for acetylcholinesterase. These compounds inhibited glycogen synthase kinase 3 beta, which is related to the formation of hyperphosphorylated tau and generation Aβ. Bieckol and PFF-A inhibited amyloid precursor protein biosynthesis. PFF-A also showed very strong β-secretase inhibitory activity with IC50 of submicromole. These results render these compounds as interesting potential drug candidates for Alzheimer's disease. PMID:25640212

  2. Omega-pyridiniumalkylethers of steroidal phenols: new compounds with potent antibacterial and antiproliferative activities.

    PubMed

    Lange, C; Holzhey, N; Schönecker, B; Beckert, R; Möllmann, U; Dahse, H-M

    2004-06-15

    Novel omega-pyridiniumalkylethers of two steroidal phenols were synthesized as compounds with potential antimicrobial activity. 3-Hydroxy-estra-1,3,5(10)-triene-17-one and 1-hydroxy-4-methyl-estra-1,3,5(10)-triene-17-one were reacted with omega,omega'-dibromoalkanes to omega-bromoalkoxy-estra-1,3,5(10)-trienes followed by reaction with pyridine to obtain the desired steroidal omega-pyridiniumalkoxy compounds as bromides. Their antimicrobial activity against strains of multiresistant Staphylococcus aureus (MRSA), a vancomycin resistant Enterococcus faecalis and fast growing mycobacteria depends clearly on the length of the alkyl chain. A strong broadband activity has been found for the compounds with eight or 10 C-atoms; in some cases better than ciprofloxacin or cetylpyridinium salts. In addition, the antiproliferative and cytotoxic activity depends on the chain length, too. The differentiation between antibacterial and cytotoxic activity is better for the steroid hybrid molecules than the cetylpyridinium salts. These new compounds can serve as lead compounds for further optimization. PMID:15158804

  3. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  4. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites.

    PubMed

    Fernández, Mariana; Arce, Esteban Rodríguez; Sarniguet, Cynthia; Morais, Tânia S; Tomaz, Ana Isabel; Azar, Claudio Olea; Figueroa, Roberto; Diego Maya, J; Medeiros, Andrea; Comini, Marcelo; Helena Garcia, M; Otero, Lucía; Gambino, Dinorah

    2015-12-01

    Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule. PMID:26275470

  5. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume. PMID:24404842

  6. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus

    PubMed Central

    Grice, I. Darren; Rogers, Kelly L.; Griffiths, Lyn R.

    2011-01-01

    Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions. PMID:20047890

  7. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    SciTech Connect

    Zhang, Lianying; Ren, Xiao-Min; Wan, Bin; Guo, Liang-Hong

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  8. Identification of chemical compounds present in different fractions of Annona reticulata L. leaf by using GC-MS.

    PubMed

    Rout, Soumya P; Kar, Durga M

    2014-01-01

    GC-MS analysis of fractions prepared from hydro-alcoholic extract of Annona reticulata Linn (Family Annonaceae) leaf revealed the presence of 9,10-dimethyltricyclo[4.2.1.1(2,5)]decane-9,10-diol; 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one; 3,7-dimethyl-6-nonen-1-ol acetate; 9-octadecenamide,(Z)-; glycerine; D-glucose,6-O-α-D-galactopyranosyl-; desulphosinigrin and α-methyl-D-mannopyranoside as few of the major compounds in different fractions. The presence of these compounds in the plant has been identified for the first time. PMID:25050939

  9. Exploiting uncertainty measures in compounds activity prediction using support vector machines.

    PubMed

    Smusz, Sabina; Czarnecki, Wojciech Marian; Warszycki, Dawid; Bojarski, Andrzej J

    2015-01-01

    The great majority of molecular modeling tasks require the construction of a model that is then used to evaluate new compounds. Although various types of these models exist, at some stage, they all use knowledge about the activity of a given group of compounds, and the performance of the models is dependent on the quality of these data. Biological experiments verifying the activity of chemical compounds are often not reproducible; hence, databases containing these results often possess various activity records for a given molecule. In this study, we developed a method that incorporates the uncertainty of biological tests in machine-learning-based experiments using the Support Vector Machine as a classification model. We show that the developed methodology improves the classification effectiveness in the tested conditions. PMID:25466199

  10. Inhibition of gastric H+, K(+)-ATPase activity by compounds from medicinal plants.

    PubMed

    Freitas, Cristina Setim; Baggio, Cristiane Hatsuko; Mayer, Bárbara; dos Santos, Ana Cristina; Twardowschy, André; Santos, Cid Aimbiré de Moraes; Marques, Maria Consuelo Andrade

    2011-09-01

    H+, K(+)-ATPase enzyme is a therapeutic target for the treatment of gastric disturbances. Several medicinal plants and isolated compounds inhibit the acid gastric secretion through interaction with the proton pump. In order to add new properties to some natural constituents, five compounds, a benzylated derivative of vincoside, a diterpene (abietic acid) and three alkaloids (cephaeline, vinblastine and vindoline), were tested for their activities on gastric H+, K(+)-ATPase isolated from rabbit stomach. All the compounds inhibited H+, K(+)-ATPase activity with varied potency. The IC50 value for benzylvincoside was 121 (50-293) microM, and for abietic acid 177 (148-211) microM. The alkaloids cephaeline, vinblastine and vindoline inhibited the H+, K(+)-ATPase activity with IC50 values of 194, 761 and 846 microM, respectively. The results suggest that benzylvincoside, abietic acid and cephaeline can be important sources for the development of anti-secretor agents. PMID:21941891

  11. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages.

    PubMed

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-09-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  12. Developmental toxicity of thyroid-active compounds in a zebrafish embryotoxicity test.

    PubMed

    Jomaa, Barae; Hermsen, Sanne A B; Kessels, Maurijn Y; van den Berg, Johannes H J; Peijnenburg, Ad A C M; Aarts, Jac M M J G; Piersma, Aldert H; Rietjens, Ivonne M C M

    2014-01-01

    Zebrafish embryos were exposed to concentration ranges of selected thyroid-active model compounds in order to assess the applicability of zebrafish-based developmental scoring systems withinan alternative testing strategy to detect the developmental toxicity ofthyroid-active compounds. Model compounds tested included triiodothyronine (T3), propylthiouracil (PTU), methimazole (MMI), sodium perchlorate (NaClO4) and amiodarone hydrochloride (AMI), selected to represent different modes of action affecting thyroid activity. Tested time windows included 48-120 hours post fertilization (hpf), 0-72 hpf and 0-120 hpf. All tested compounds resulted in developmental changes, with T3 being the most potent. The developmental parameters affected included reflective iridophores, beat and glide swimming, inflated swim bladders, as well as resorbed yolk sacs. These effects are only evident by 120 hpf and therefore an existing General Morphology Score (GMS) system was extended to create a General Developmental Score(GDS) that extends beyond the 72 hpfscoring limit of GMS and includes additional parameters that are affected by exposure to model thyroid-active compounds. Moreover, the GDS is cumulative as it includes not only the scoring of developmental morphologies but also integrates developmental dysmorphologies. Exposures from 48-120 hpf did not provide additional information to exposures from 0-120 hpf. The results indicate that the zebrafish GDS can detect the developmental toxicity of thyroid toxicants and may be of use in an integrated testing strategy to reduce, refine and in certain cases replace animal testing. PMID:24793664

  13. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages

    PubMed Central

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-01-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  14. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection.

    PubMed

    Petrlova, Jitka; Mikelova, Radka; Stejskal, Karel; Kleckerova, Andrea; Zitka, Ondrej; Petrek, Jiri; Havel, Ladislav; Zehnalek, Josef; Vojtech, Adam; Trnkova, Libuse; Kizek, Rene

    2006-05-01

    The most active form of sulfur in biomolecules is the thiol group, present in a number of biologically active compounds. Here we present a comprehensive study of thiol analysis using flow injection analysis/HPLC with electrochemical detection. The effect of different potentials of working electrodes, of organic solvent contents in the mobile phase, and of isocratic and gradient elution on simultaneous determination of thiol compounds (cysteine, cystine, N-acetylcysteine, homocysteine, reduced and oxidised glutathione, desglycinephytochelatin, and phytochelatins) are described and discussed. These thiol compounds were well separated and detected under optimised HPLC-electrochemical detection conditions (mobile phase: 80 mM trifluoroacetic acid and methanol with a gradient profile starting at 97:3 (TFA:methanol), kept constant for the first 8 min, then decreasing to 85:15 during one minute, kept constant for 8 min, and finally increasing linearly up to 97:3 from 17 to 18 min; the flow rate was 0.8 mL/min, column and detector temperature 25 degrees C, and the electrode potential 900 mV). We were able to determine tens of femtomoles (3 S/N) of the thiols per injection (5 microL), except for phytochelatin5 whose detection limit was 2.1 pmole. This technique was consequently used for simultaneous determination of compounds of interest in biological samples (maize tissue and human blood serum). PMID:16830732

  15. Synthesis, characterization, investigation of biological activity and theoretical studies of hydrazone compounds containing choloroacetyl group

    NASA Astrophysics Data System (ADS)

    Cukurovali, Alaaddin; Yilmaz, Engin

    2014-10-01

    In this study, three new hydrazide-hydrazone derivative compounds which contain choloroacetyl group have been synthesized and characterized. In the characterization, spectral techniques such as IR, 1H NMR, 13C NMR and UV-Vis spectroscopy techniques were used. Antibacterial effects of the synthesized compounds were investigated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the theoretical calculations Gaussian 09 software was used with the DFT/6-311+(d,p) basis set. Experimental X-ray analysis of compounds has not been studied. Theoretical bond lengths of synthesized compounds were compared with experimental bond lengths of a similar compound. Theoretical and experimental bond lengths are in good agreement with R2: 0.896, 0.899 and 0.900 for compounds 1, 2, and 3, respectively. For antibacterial activity, the most effective one was found to be N‧-(4-bromobenzylidene)-2-chloro-N-(4-(3-methyl-3-phenylcyclobutyl)-thiazol-2-yl) acetohydrazide against P.aeroginaosa ATTC 27853, among the studied compounds.

  16. Antifungal activity of fractions and two pure compounds of flowers from Wedelia paludosa (Acmela brasiliensis) (Asteraceae).

    PubMed

    Sartori, M R K; Pretto, J B; Cruz, A B; Bresciani, L F V; Yunes, R A; Sortino, M; Zacchino, S A; Cechinel, V Filho

    2003-08-01

    Wedelia paludosa (Acmela brasiliensis) (Asteraceae), a traditionally used native Brazilian medicinal plant, showed antifungal activity against dermatophytes in dilution tests. The hexane, dichloromethane and butanol fractions displayed activity against Epidermophyton floccosum, Trichophyton rubrum and Trichophyton mentagrophytes, with minimal inhibitory concentrations between 250 and 1000 microg/mL. Two pure compounds, identified as kaurenoic acid (1) and luteolin (2), also showed activity against these dermatophytes. PMID:12967035

  17. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity

    PubMed Central

    dos Santos, Edson dos A.; Hamel, Ernest; Bai, Ruoli; Burnett, James C.; Tozatti, Camila Santos Suniga; Bogo, Danielle; Perdomo, Renata T.; Antunes, Alexandra M. M.; Marques, M. Matilde; Matos, Maria de F. C.; de Lima, Dênis P.

    2013-01-01

    We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site. PMID:23810282

  18. Phytogrowth-inhibitory activities of 2-thiophenecarboxylic acid and its related compounds.

    PubMed

    Inamori, Y; Muro, C; Funakoshi, Y; Usami, Y; Tsujibo, H; Numata, A

    1994-01-01

    2-Thiophenecarboxylic acid (I) exhibited growth-inhibitory activity in five kinds of plants. In particular, I strongly inhibited the growth of the roots of Lactuca sativa L. var. longifolia LAM and Echinochloa utilis OHWI et YABUNO, even at the low concentration of 5.0 x 10(-3) M. Furthermore, all of the I-related compounds (II-V and VII-X) except for VI, showed more or less obvious inhibitory activity on the seeds of Sesamum indicum L. Compounds VII-X, in which the carboxyl group of I was replaced by acetic acid, propionic acid, butyric acid and acrylic acid, and exhibited more potent phytogrowth-inhibitory activity than I. Among these compounds, 2-thiophenebutyric acid (IX) showed the strongest activity. Esterification of the carboxyl group in I increased the inhibitory activity relative to that of I, while amidation and reduction of this group markedly decreased its inhibitory activity. The radicles of the plants treated with each of the compounds except for VI showed negative geotropism, even though germination occurred. PMID:8148810

  19. Parallel Synthesis and Biological Evaluation of 837 Analogues of Procaspase-Activating Compound 1 (PAC-1)

    PubMed Central

    Hsu, Danny C.; Roth, Howard S.; West, Diana C.; Botham, Rachel C.; Novotny, Chris J.; Schmid, Steven C.; Hergenrother, Paul J.

    2011-01-01

    Procaspase-Activating Compound 1 (PAC-1) is an ortho-hydroxy N-acyl hydrazone that enhances the enzymatic activity of procaspase-3 in vitro and induces apoptosis in cancer cells. An analogue of PAC-1, called S-PAC-1, was evaluated in a veterinary clinical trial in pet dogs with lymphoma and found to have considerable potential as an anticancer agent. With the goal of identifying more potent compounds in this promising class of experimental therapeutics, a combinatorial library based on PAC-1 was created, and the compounds were evaluated for their ability to induce death of cancer cells in culture. For library construction, 31 hydrazides were condensed in parallel with 27 aldehydes to create 837 PAC-1 analogues, with an average purity of 91%. The compounds were evaluated for their ability to induce apoptosis in cancer cells, and through this work, six compounds were discovered to be substantially more potent than PAC-1 and S-PAC-1. These six hits were further evaluated for their ability to relieve zinc-mediated inhibition of procaspase-3 in vitro. In general, the newly identified hit compounds are two- to four-fold more potent than PAC-1 and S-PAC-1 in cell culture, and thus have promise as experimental therapeutics for treatment of the many cancers that have elevated expression levels of procaspase-3. PMID:22007686

  20. Effect of processing on physicochemical composition, bioactive compounds and enzymatic activity of yellow mombin (Spondias mombin L.) tropical juice.

    PubMed

    de Carvalho, Joelia Marques; Maia, Geraldo Arraes; da Fonseca, Ana Valquíria V; de Sousa, Paulo Henrique M; Rodrigues, Sueli

    2015-02-01

    Yellow mombin (Spondias mombin, L.) is a tropical fruit that presents exotic taste and aroma, being source of carotenoids and phenolics compounds. It presents a good potential for processing, despite some restriction related with the presence of high amounts of peroxidase (POD) and pectinmethylesterase (PME) which can cause sensory changes in the product. This work addresses the evaluation of changes in POD and PME enzyme activity during the traditional industrial processing used to produce tropical juices in Brazil. The enzyme activity was determined after the main steps of the processing: fruit pulping, homogenization and pasteurization. Although both enzymes presented significant activity loss during processing, the final product showed residual activity for PME (25 %) and POD (2.5 %). PME showed to be more thermal resistant than POD in yellow mombin juice. Considering the compounds with antioxidant activity, yellow mombin presented high amounts of carotenoids and phenolics when compared to other tropical fruits such as passion fruit and pineapple. Although the processing of the fruit resulted in significative phenolic loss, the carotenoids content was not affected significantly by the processing. PMID:25694737

  1. A PHARMACOKINETIC MODEL FOR ESTIMATING EXPOSURE OF AMERICANS TO DIOXIN-LIKE COMPOUNDS IN THE PAST, PRESENT, AND FUTURE

    EPA Science Inventory

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 199...

  2. 78 FR 72840 - Drug Products That Present Demonstrable Difficulties for Compounding Under Sections 503A and 503B...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... of June 29, 2000 (65 FR 40104). However, before a list could be developed, the constitutionality of... Difficulties for Compounding Under Sections 503A and 503B of the Federal Food, Drug, and Cosmetic Act; Request... Food, Drug, and Cosmetic Act (FD&C Act) (21 U.S.C. 353a) describes the conditions under which a...

  3. A community computational challenge to predict the activity of pairs of compounds

    PubMed Central

    Bansal, Mukesh; Yang, Jichen; Karan, Charles; Menden, Michael P; Costello, James C; Tang, Hao; Xiao, Guanghua; Li, Yajuan; Allen, Jeffrey; Zhong, Rui; Chen, Beibei; Kim, Minsoo; Wang, Tao; Heiser, Laura M; Realubit, Ronald; Mattioli, Michela; Alvarez, Mariano J; Shen, Yao; Gallahan, Daniel; Singer, Dinah; Saez-Rodriguez, Julio; Xie, Yang; Stolovitzky, Gustavo; Califano, Andrea

    2015-01-01

    Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction. PMID:25419740

  4. SURVEY OF INDUSTRIAL APPLICATIONS OF VAPOR-PHASE ACTIVATED-CARBON ADSORPTION FOR CONTROL OF POLLUTANT COMPOUNDS FROM MANUFACTURE OF ORGANIC COMPOUNDS

    EPA Science Inventory

    This study covers industrial use of activated carbon for vapor-phase applications. A listing of over 700 applications of vapor-phase carbon systems is made available for use in identifying sites where a given compound is being removed.

  5. Comparison of the activity and distribution of analog II and related compounds in the mouse and rat

    SciTech Connect

    Pento, J.T.; Koenig, K.K.; Magarian, R.A.; Shridhar, R.; Griffin, M.

    1986-03-01

    The authors have reported that 1,1-dichloro-Cis-2,3-diphenylcyclopropane (Analog II) is antiestrogenic in the mouse and inhibits the initiation and promotion of DMBA-induced tumors in the rat. Recently the authors have synthesized related cyclopropyl derivative of stilbene and stilbenediol. The object of the present study was to compare the activity of these compounds in the mouse and rat. Estrogenic and antiestrogenic activity of each compound was determined using the 3-day uterotropic assay and uterine histology in immature female Swiss Webster mice and Sprague-Dawley rats. (/sup 3/H)-Analog II was used in the tissue distribution studies. It was found that whereas Analog II was antiestrogenic in the mouse, this compound and related cis-stilbene analogs produced no antiestrogenic activity in the rat. However, trans-stilbenediol derivatives were estrogenic in both the mouse and rat with relatively equivalent activity in both species. In the tissue distribution study (/sup 3/H)-Analog II was found to be specifically concentrated in uterine tissue of the mouse but not the rat. This observation may explain, in part, the difference in antiestrogenic activity of Analog II between these two rodent species.

  6. Procaspase-3 Activation as an Anti-Cancer Strategy: Structure-Activity Relationship of Procaspase-Activating Compound 1 (PAC-1) and its Cellular Co-Localization with Caspase-3

    PubMed Central

    Peterson, Quinn P.; Hsu, Danny C.; Goode, David R.; Novotny, Chris J.; Totten, Ryan K.; Hergenrother, Paul J.

    2009-01-01

    A goal of personalized medicine as applied to oncology is to identify compounds that exploit a defined molecular defect in a cancerous cell. A compound called procaspase-activating compound 1 (PAC-1) was reported that enhances the activity of procaspase-3 in vitro and induces apoptotic death in cancer cells in culture and in mouse xenograft models. Experimental evidence indicates that PAC-1 activates procaspase-3 in vitro through chelation of inhibitory zinc ions. Described herein is the synthesis and biological activity of a family of PAC-1 derivatives where key functional groups have been systematically altered. Analysis of these compounds reveals a strong correlation between the in vitro procaspase-3 activating effect and their ability to induce death in cancer cells in culture. Importantly, we also show that a fluorescently-labeled version of PAC-1 co-localizes with sites of caspase-3 activity in cancer cells. The data presented herein further bolster the hypothesis that PAC-1 induces apoptosis in cancer cells through the direct activation of procaspase-3, has implications for the design and discovery of next-generation procaspase-3 activating compounds, and sheds light on the anti-apoptotic role of cellular zinc. PMID:19708658

  7. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei.

    PubMed

    Tiew, P; Ioset, J R; Kokpol, U; Chavasiri, W; Hostettmann, K

    2003-02-01

    Eleven compounds isolated from the heartwood of Mansonia gagei were tested for their antifungal activities against Cladosporium cucumerinum and Candida albicans, as well as for their larvicidal activities against Aedes aegypti and radical scavenging properties in a DPPH assay. Mansonone C (4) was found to be the most interesting compound with antifungal activities against Cladosporium cucumerinum and Candida albicans as well as for its larvicidal properties against Aedes aegypti. Mansonone E (5) was active against Cladosporium cucumerinum and Candida albicans. Two coumarin derivatives, mansorin A (1) and mansorin B (2) were also found to be active against Cladosporium cucumerinum, while mansonone N (9) was the only isolated product to show radical scavenging properties. PMID:12601687

  8. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.

    PubMed

    Mongkol, Watcharakorn; Arunyawat, Uraiwan; Surat, Wunrada; Kubera, Anchanee

    2015-11-01

    Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity. PMID:26352934

  9. Effects of the compounds 2-methoxynaphthoquinone, 2-propoxynaphthoquinone, and 2-isopropoxynaphthoquinone on ecdysone 20-monooxygenase activity.

    PubMed

    Mitchell, Martin J; Brescia, Aaron I; Smith, Stan L; Morgan, E David

    2007-09-01

    The effects of the natural compound 2-methoxy-1,4-naphthoquinone, isolated from the leaves of Impatiens glandulifera and the synthetic compounds 2-propoxy-1,4-naphthoquinone and 2-isopropoxy-1,4-naphthoquinone on ecdysone 20-monooxygenase (E-20-M) activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from fifth instar larvae of Manduca sexta were incubated with radiolabelled ecdysone and increasing concentrations (from 1 x 10(-8) to 1 x 10(-3) M) of the three compounds. All three compounds were found to inhibit in a dose-dependent fashion the E-20-M activity in the three insect species. The concentration of these compounds required to elicit a 50% inhibition of this steroid hydroxylase activity in the three insect species examined ranged from approximately 3 x 10(-5) to 7 x 10(-4) M. PMID:17694563

  10. Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Wei; Tan, Je-Zhen; Seng, Chye-Eng

    2013-06-01

    The objective of this study was to evaluate the performance of phenol-acclimated activated sludge in the presence of various phenolic compounds in the separated batch reactors. The phenol-acclimated activated sludge was observed to be capable of completely removing phenol, o-cresol, m-cresol, and 4-chlorophenol. Nevertheless, in the presence of 2-chlorophenol and 3-chlorophenol merely at 50 mg/L, incomplete removal of these phenolic compounds were noticed. The specific oxygen uptake rate patterns obtained for phenol, o-cresol, m-cresol, and 4-chlorophenol could be used to approximate the end point of these phenolic compounds removal as well as to monitor the growth of biomass. As the 2-chlorophenol and 3-chlorophenol were only partially removed in the mixed liquor, the patterns of specific oxygen uptake rate attained for these phenolic compounds were not feasible for the similar estimation. The calculated toxicity percentages show the toxicity effects of phenolic compounds on the phenol-acclimated activated sludge followed the order of 2-chlorophenol ≈ 3-chlorophenol > 4-chlorophenol > o-cresol ≈ m-cresol > phenol.

  11. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    PubMed

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-01

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties. PMID:15796598

  12. Flavonoids, Antioxidant Activity and Aroma Compounds Analysis from Different Kinds of Tartary Buckwheat Tea.

    PubMed

    Peng, L X; Zou, L; Wang, J B; Zhao, J L; Xiang, D B; Zhao, G

    2015-01-01

    The rutin, quercetin concentrations, antioxidant activity, and aroma compounds in different commercial tartary buckwheat tea were analyzed in our study. Results revealed that the materials and the processing protocol affected the chemical composition and activity of tartary buckwheat tea. Rutin and quercetin concentrations, antioxidant activity were significantly different in various kinds of tartary buckwheat tea, where the whole bran tea and the whole plant tea had the lower rutin, but higher quercetin concentrations and higher antioxidant activity. The whole embryo tea had the converse results. There was strong correlation between quercetin concentration and antioxidant activity (r>0.98, P<0.05). Meanwhile, Twenty eight different aroma compounds in tartary buckwheat tea were identified by gas chromatography-mass spectrometry. Those compounds were mainly composed of pyrazine, aldehydes, fatty acids and ketones. The main type of aroma compounds in different tartary buckwheat tea were similar, but their relative contents were different. The implications to the quality control of buckwheat tea were extensively discussed. PMID:26997692

  13. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    PubMed

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively. PMID:25173461

  14. Flavonoids, Antioxidant Activity and Aroma Compounds Analysis from Different Kinds of Tartary Buckwheat Tea

    PubMed Central

    Peng, L. X.; Zou, L.; Wang, J. B.; Zhao, J. L.; Xiang, D. B.; Zhao, G.

    2015-01-01

    The rutin, quercetin concentrations, antioxidant activity, and aroma compounds in different commercial tartary buckwheat tea were analyzed in our study. Results revealed that the materials and the processing protocol affected the chemical composition and activity of tartary buckwheat tea. Rutin and quercetin concentrations, antioxidant activity were significantly different in various kinds of tartary buckwheat tea, where the whole bran tea and the whole plant tea had the lower rutin, but higher quercetin concentrations and higher antioxidant activity. The whole embryo tea had the converse results. There was strong correlation between quercetin concentration and antioxidant activity (r>0.98, P<0.05). Meanwhile, Twenty eight different aroma compounds in tartary buckwheat tea were identified by gas chromatography-mass spectrometry. Those compounds were mainly composed of pyrazine, aldehydes, fatty acids and ketones. The main type of aroma compounds in different tartary buckwheat tea were similar, but their relative contents were different. The implications to the quality control of buckwheat tea were extensively discussed. PMID:26997692

  15. Biofiltration of a mixture of volatile organic compounds on granular activated carbon.

    PubMed

    Aizpuru, A; Malhautier, L; Roux, J C; Fanlo, J L

    2003-08-20

    The performance of a biofilter packed with Active Carbon (AC) was evaluated. The effluent (alcohol, ketones, esters, aromatic and chlorinated compounds) treated was a representative mixture of most common industrial emissions. To achieve a better knowledge of multicomponent adsorption mechanisms, and to underline the interest of inoculating AC, a control abiotic humidified filter had been operated in the same conditions as the biofilter. For a load of 110 g VOC m(-3) AC h(-1), after 55 days of operation, the removal efficiency was higher in the biotic than in the abiotic filter (85% vs 55%, respectively). Moreover, in the biofilter, at steady state, the elimination of all compounds was almost complete except for chlorinated compounds and p-xylene (removal efficiency of 25% and 64%, respectively). The microbial colonization of AC involved a decrease of the adsorption sites accessibility and enhanced the treatment of VOCs (volatile organic compounds) having a lower affinity for activated carbon. Moreover, while aromatic compounds and MIBK were eliminated along the overall height of the biofilter, pollutants with reduced affinity for AC, such as methanol, acetone, and halogenated compounds were only treated on the second half of the reactor. Thus, the affinity for activated carbon was an important parameter controlling the biodegradation process. Nevertheless, the use of AC as packing material in biofilters treating complex mixtures of VOCs is limited. Actually, similar removal efficiency could be reached, in the same conditions, for a biofilter packed with granular peat. Furthermore, for the biofilter packed with AC, the column height necessary to remove biodegradable compounds, with reduced affinity for the support, was important. PMID:12800142

  16. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  17. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    PubMed

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8(+) T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+) T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+) T cell immunity. PMID:23940597

  18. Antiandrogenic activity and metabolism of the organophosphorus pesticide fenthion and related compounds.

    PubMed Central

    Kitamura, Shigeyuki; Suzuki, Tomoharu; Ohta, Shigeru; Fujimoto, Nariaki

    2003-01-01

    We investigated the endocrine-disrupting actions of the organophosphorus pesticide fenthion and related compounds and the influence of metabolic transformation on the activities of these compounds. Fenthion acted as an antagonist of the androgenic activity of dihydrotestosterone (10(-7)M) in the concentration range of 10(-6)-10(-4)M in an androgen-responsive element-luciferase reporter-responsive assay using NIH3T3 cells. The antiandrogenic activity of fenthion was similar in magnitude to that of flutamide. Fenthion also tested positive in the Hershberger assay using castrated male rats. Marked estrogenic and antiestrogenic activities of fenthion and related compounds were not observed in MCF-7 cells. When fenthion was incubated with rat liver microsomes in the presence of NADPH, the antiandrogenic activity markedly decreased, and fenthion sulfoxide was detected as a major metabolite. The oxidase activity toward fenthion was exhibited by cytochrome P450 and flavin-containing monooxygenase. Fenthion sulfoxide was negative in the screening test for antiandrogens, as was fenthion sulfone. However, when fenthion sulfoxide was incubated with liver cytosol in the presence of 2-hydroxypyrimidine, an electron donor of aldehyde oxidase, the extract of the incubation mixture exhibited antiandrogenic activity. In this case, fenthion was detected as a major metabolite of the sulfoxide. Metabolic interconversion between fenthion and fenthion sulfoxide in the body seems to maintain the antiandrogenic activity. PMID:12676606

  19. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-01-01

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities. PMID:27331807

  20. Identification of active compounds in vegetal extracts based on correlation between activity and HPLC-MS data.

    PubMed

    Roldán, Cristina; de la Torre, Angel; Mota, Sonia; Morales-Soto, Aránzazu; Menéndez, Javier; Segura-Carretero, Antonio

    2013-01-15

    We propose a method identifying candidates for active compounds in vegetal extracts. From a collection of samples, the method requires, for each sample, a HPLC-MS analysis and a measurement of the activity. By applying a correlation analysis between the activity and the chromatographic area for each interval of elution time and m/z ratio, the peaks corresponding to candidates for active compounds can be identified. Additionally, when peaks are identified, a model can be estimated to predict the activity in new samples. Both methods are evaluated in one experiment involving the phenolic extract (PE) from 22 samples of extra virgin olive oil (EVOO) where the activity is a cytotoxicity index against JIMT-1 breast cancer cells. In this experiment, the samples were separated into two disjunct partitions: one was used for training (identification of candidates and estimation of prediction model), while the other was used for validation (by comparing the predicted and the measured activities). Three compounds were identified as candidates to be responsible for the cytotoxicity of the EVOO-PE against JIMT-1 cells. The prediction model provided an accurate estimation of the activity. PMID:23122076

  1. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits.

    PubMed

    Smejkal, Karel; Babula, Petr; Slapetová, Tereza; Brognara, Eleonora; Dall'acqua, Stefano; Zemlicka, Milan; Innocenti, Gabbriella; Cvacka, Josef

    2008-10-01

    The newly discovered 5,7-dihydroxy-6-geranylchromone ( 1) was isolated from PAULOWNIA TOMENTOSA fruit and subsequently characterized. The structure of the isolated compound was elucidated on the basis of extensive NMR experiments including HMQC, HMBC, COSY, and NOESY, as well as HR-MS, IR, and UV. The cytotoxicity of 1 was evaluated using a plant cell model represented by tobacco BY-2 cells. The other phytoconstituents ( 2 - 8) previously isolated from P. TOMENTOSA were similarly evaluated together with the known flavanones 10 and 11. The cytotoxicity (human erythro-leukaemia cell line K562) and activity on erythroid differentiation of compounds 2 - 9 and 12 and 13 have also been evaluated. Acteoside ( 2) was determined to be the most toxic of the compounds tested on BY-2 cells, diplacone ( 6) on the K562 cell line. Some aspects of the relationship between the flavanone skeleton substitution and the metabolic activation necessary for a toxic effect are discussed. PMID:18729043

  2. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars.

    PubMed

    Kou, Xiaohong; Chen, Qiong; Li, Xianhua; Li, Mianfang; Kan, Cong; Chen, Boru; Zhang, Ying; Xue, Zhaohui

    2015-04-15

    Fifteen jujube cultivars late in their maturation were analysed in the red stage for bioactive compounds; including total phenolics (bound/free), total flavonoids, total polysaccharides, ascorbic acid, total triterpenes, proanthocyanidins and cyclic adenosine monophosphate (cAMP). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydracyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS(+)) scavenging methods and the ferric reducing antioxidant power (FRAP) assay. The Order Performance by Similarity to Ideal Solution method (TOPSIS) was employed to evaluate the nutrition of different jujube cultivars based on their bioactive compounds. The results indicated that the contents of bioactive compounds and antioxidant capacities vary between different jujube cultivars. Correlation analysis revealed that ascorbic acid, polyphenols and proanthocyanidins were the 3 main components responsible for the antioxidant activity of jujubes. TOPSIS analysis indicated that Zyzyphus jujube cv. Nanjingyazao ranks the highest of the 15 jujube fruits with regards to nutritional value. PMID:25466122

  3. A new phenolic compound with antioxidant activity from the branches and leaves of Pyrus pashia.

    PubMed

    Li, Zhen-Jie; Zheng, Xi; Wan, Chun-Ping; Cai, Le; Li, Ying; Huang, Lin; Ding, Zhong-Tao

    2016-05-01

    The branches and leaves of Pyrus pashia are used to cure abdominal pain and diarrhoea in Chinese folk medicine. A new phenilic compound, 4-O-β-d-glucopyranosylbenzyl-benzoate ester (1), along with 21 known ones (2-22) were isolated from the branches and leaves of this plant. Compounds 2 and 3 displayed remarkable antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl radical (IC50 = 13.26 ± 0.04 μM, 13.28 ± 0.11 μM, respectively), which were at the same grade as positive control rutin. The caffeoyl group in compounds 2 and 3 was supposed to play an important role in the antioxidant activities. PMID:26119567

  4. Biological Characterization and in Vivo Assessment of the Activity of a New Synthetic Macrocyclic Antifungal Compound.

    PubMed

    Deodato, Davide; Maccari, Giorgio; De Luca, Filomena; Sanfilippo, Stefania; Casian, Alexandru; Martini, Riccardo; D'Arezzo, Silvia; Bonchi, Carlo; Bugli, Francesca; Posteraro, Brunella; Vandeputte, Patrick; Sanglard, Dominique; Docquier, Jean-Denis; Sanguinetti, Maurizio; Visca, Paolo; Botta, Maurizio

    2016-04-28

    We recently identified a novel family of macrocyclic amidinoureas showing potent antifungal activity against Candida spp. In this study, we demonstrate the fungicidal effect of these compounds as well as their killing activity in a dose-dependent manner. Transcriptional analysis data indicate that our molecules induce a significant change in the transcriptome involving ATP binding cassette (ABC) transporter genes. Notably, experiments against Candida albicans mutants lacking those genes showed resistance to the compound, suggesting the involvement of ABC transporters in the uptake or intracellular accumulation of the molecule. To probe the mode of action, we performed fluorescence microscopy experiments on fungal cells treated with an ad-hoc synthesized fluorescent derivative. Fluorescence microscopy images confirm the ability of the compound to cross the membrane and show a consistent accumulation within the cytoplasm. Finally, we provide data supporting the in vivo efficacy in a systemic infection murine model setup with a drug-resistant strain of C. albicans. PMID:27045868

  5. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits.

    PubMed

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  6. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits

    PubMed Central

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  7. Tyrosinase inhibitory activity of cucumber compounds: enzymes responsible for browning in cucumber.

    PubMed

    Gandía-Herrero, Fernando; Jiménez, Mercedes; Cabanes, Juana; García-Carmona, Francisco; Escribano, Josefa

    2003-12-17

    The inhibition of mushroom tyrosinase by cucumber extracts was evaluated. The inhibitory effect was measured by both polarographic and spectrophotometric methods. The commercial aldehyde, trans,cis-2,6-nonadienal, described as a major volatile compound of cucumber, was characterized as a noncompetitive inhibitor against 4-tert-butylcatechol oxidation by mushroom tyrosinase. The K(I) obtained was 3.4 mM. Polyphenol oxidase (PPO) activity was not detected in cucumber skin extracts. However, the presence of PPO was revealed by Western blot; a single band was found with a M(r) of 53 kDa. These results support the assumption that the enzyme PPO is present in the cucumber skin, but its activity is inhibited. Peroxidase (PO) was also found in cucumber skin extracts. This enzyme was detected in the soluble fraction but not in the membrane fraction. The kinetic characterization of PO was carried out. Native isoelectric focusing revealed several acidic PO isoenzymes with a pI in the range between 5 and 6, a basic isoenzyme, and one principal neutral isoenzyme of pI = 7.2. PMID:14664542

  8. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower

    PubMed Central

    Ahmed, Fouad A.; Ali, Rehab F. M.

    2013-01-01

    Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively. PMID:24171164

  9. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. PMID:26891356

  10. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania

    PubMed Central

    2013-01-01

    Background The theoretical, but especially the practical values of identifying the biochemical compounds from the Rosa canina L. fruits are of present interest, this aspect being illustrated by the numerous researches. It was reported that the Rosa canina L. fruit, with its high ascorbic acid, phenolics and flavonoids contents, have antioxidant, antimutagenic and anticarcinogenic effects. This study was performed on order to evaluate the amount of the main phytochemicals (vitamin C, total polyphenols, and total flavonoids) content and their antioxidant activity. Results The results obtained revealed that the average amounts of vitamin C within the studied genotypes were: 360.22 mg/100 g frozen pulp (var. transitoria f. ramosissima, altitude 1250 m) and 112.20 mg/100 g frozen pulp (var. assiensis, altitude 440 m), giving a good correlation between the vitamin C content of the rosehip and the altitude. The total polyphenols content varied from 575 mg/100 g frozen pulp (var. transitoria f. ramosissima) to 326 mg/100 g frozen pulp (var. lutetiana f. fallens). The total flavonoids content showed the highest value for var. assiensis variant 163.3 mg/100 g frozen pulp and the lowest value attributed to var. transitoria f. montivaga 101.3 mg/100 g frozen pulp. The antioxidant activity of eight rose hip extracts from wild Transylvania populations was investigated through DPPH method. The antioxidant activity revealed a good correlation only with vitamin C content and total polyphenols. Conclusion Eight Rose hip fruit species were compared taking into consideration the ascorbic acid, total polyphenols, total flavonoids contents and their antioxidant activity. Based on these results, two of the rosehip genotypes that were analysed could be of perspective for these species’ amelioration, due to their content of phytochemicals mentioned above. These varieties are var. transitoria f. ramosissima (Bistrita-Nasaud, Agiesel) and var. transitoria f. montivaga (Bistrita

  11. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells

    SciTech Connect

    Read, David J.; Langford, Lynda; Barbour, Helen R.; Forshaw, Philip J.; Glynn, Paul . E-mail: pg8@le.ac.uk

    2007-03-15

    Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [{sup 14}C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [{sup 14}C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTE inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [{sup 14}C]phosphatidylcholine to [{sup 14}C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with > 80% inhibition of [{sup 14}C]GroPCho production, increased [{sup 14}C]phosphatidylcholine was not detected. At concentrations of 1-10 {mu}M, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.

  12. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  13. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  14. Target prediction for an open access set of compounds active against Mycobacterium tuberculosis.

    PubMed

    Martínez-Jiménez, Francisco; Papadatos, George; Yang, Lun; Wallace, Iain M; Kumar, Vinod; Pieper, Ursula; Sali, Andrej; Brown, James R; Overington, John P; Marti-Renom, Marc A

    2013-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects an estimated two billion people worldwide and is the leading cause of mortality due to infectious disease. The development of new anti-TB therapeutics is required, because of the emergence of multi-drug resistance strains as well as co-infection with other pathogens, especially HIV. Recently, the pharmaceutical company GlaxoSmithKline published the results of a high-throughput screen (HTS) of their two million compound library for anti-mycobacterial phenotypes. The screen revealed 776 compounds with significant activity against the M. tuberculosis H37Rv strain, including a subset of 177 prioritized compounds with high potency and low in vitro cytotoxicity. The next major challenge is the identification of the target proteins. Here, we use a computational approach that integrates historical bioassay data, chemical properties and structural comparisons of selected compounds to propose their potential targets in M. tuberculosis. We predicted 139 target--compound links, providing a necessary basis for further studies to characterize the mode of action of these compounds. The results from our analysis, including the predicted structural models, are available to the wider scientific community in the open source mode, to encourage further development of novel TB therapeutics. PMID:24098102

  15. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    PubMed

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol. PMID:25393824

  16. Target Prediction for an Open Access Set of Compounds Active against Mycobacterium tuberculosis

    PubMed Central

    Martínez-Jiménez, Francisco; Papadatos, George; Yang, Lun; Wallace, Iain M.; Kumar, Vinod; Pieper, Ursula; Sali, Andrej; Brown, James R.; Overington, John P.; Marti-Renom, Marc A.

    2013-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects an estimated two billion people worldwide and is the leading cause of mortality due to infectious disease. The development of new anti-TB therapeutics is required, because of the emergence of multi-drug resistance strains as well as co-infection with other pathogens, especially HIV. Recently, the pharmaceutical company GlaxoSmithKline published the results of a high-throughput screen (HTS) of their two million compound library for anti-mycobacterial phenotypes. The screen revealed 776 compounds with significant activity against the M. tuberculosis H37Rv strain, including a subset of 177 prioritized compounds with high potency and low in vitro cytotoxicity. The next major challenge is the identification of the target proteins. Here, we use a computational approach that integrates historical bioassay data, chemical properties and structural comparisons of selected compounds to propose their potential targets in M. tuberculosis. We predicted 139 target - compound links, providing a necessary basis for further studies to characterize the mode of action of these compounds. The results from our analysis, including the predicted structural models, are available to the wider scientific community in the open source mode, to encourage further development of novel TB therapeutics. PMID:24098102

  17. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  18. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide.

    PubMed

    Khan, A I; Lei, L; Norquist, A J; O'Hare, D

    2001-11-21

    A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system. PMID:12240066

  19. Moooving forward on determining biologically active compounds in milk and their impact on health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated that some of the lesser studied components in milk, known as biologically active compounds (BACs), may provide potential benefits to human health. The added health-value of raw milk and milk from organic and grass-fed herds is strongly debated because of limited, an...

  20. Phonological and Semantic Activation in Reading Two-Kanji Compound Words.

    ERIC Educational Resources Information Center

    Morita, Aiko; Matsuda, Fumiko

    2000-01-01

    Examined whether phonological information was activated automatically in processing two kanji compound words. In one experiment, participants judged whether pairs of words were homophones, while others judged whether pairs were synonyms. In the second, participants were asked to make one of the two judgments, as in experiment one. Findings support…

  1. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  2. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  3. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  4. EFFECTIVENESS OF ACTIVATED CARBON FOR REMOVAL OF TOXIC AND/OR CARCINOGENIC COMPOUNDS FROM WATER SUPPLIES

    EPA Science Inventory

    This research addressed quantification of the performance of fixed-bed granular activated carbon processes for treatment of public water supplies. It included evaluation of the adsorption of selected toxic and/or carcinogenic trace compounds of man-related origin, including carbo...

  5. Antibacterial Activities of Naturally occurring Compounds against Mycobacterium avium subspecies paratuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activities of 19 naturally-occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols and other plant extracts) against three strains of Mycobacterium avium subspecies paratuberculosis (Map), a bovine isolate NCTC 8578, a raw ...

  6. α-Acyl lactams in the synthesis of physiologically active compounds

    NASA Astrophysics Data System (ADS)

    Nenajdenko, Valentin G.; Zakurdaev, Eugene P.; Balenkova, Elizabeth S.

    2009-05-01

    Published data on the methods of synthesis and reactivity of α-acyllactams are described systematically and generalized. The attention is focused on the recent achievements in the synthesis of heterocyclic compounds and biologically active products from α-acyllactams and cyclic imines obtained from α-acyllactams. Bibliography — 168 references.

  7. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    PubMed

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. PMID:27211614

  8. Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform

    PubMed Central

    Freitas, Jaime; Miller, Nicole; Mengeling, Brenda J.; Xia, Menghang; Huang, Ruili; Houck, Keith; Rietjens, Ivonne M.C.M.; Furlow, J. David; Murk, Albertinka J.

    2014-01-01

    To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening. PMID:24772387

  9. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae)

    PubMed Central

    2011-01-01

    Background Artocarpus communis is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antimicrobial activities of the methanol extract (ACB) and compounds isolated from the bark of this plant, namely peruvianursenyl acetate C (1), α-amyrenol or viminalol (2), artonin E (4) and 2-[(3,5-dihydroxy)-(Z)-4-(3-methylbut-1-enyl)phenyl]benzofuran-6-ol (5). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The MIC results indicated that ACB as well as compounds 4 and 5 were able to prevent the growth of all tested microbial species. All other compounds showed selective activities. The lowest MIC value of 64 μg/ml for the crude extract was recorded on Staphylococcus aureus ATCC 25922 and Escherichia coli ATCC 8739. The corresponding value of 32 μg/ml was recorded with compounds 4 and 5 on Pseudomonas aeruginosa PA01 and compound 5 on E. coli ATCC 8739, their inhibition effect on P. aeruginosa PA01 being more than that of chloramphenicol used as reference antibiotic. Conclusion The overall results of this study provided supportive data for the use of A. communis as well as some of its constituents for the treatment of infections associated with the studied microorganisms. PMID:21612612

  10. Anti-amoebic activity of plant compounds from Virgilia oroboides and Chlorophora excelsa.

    PubMed

    Padayachee, T; Odhav, B

    2001-11-01

    The anti-amoebic activity of four plant extracts: maackiain and formononetin from Virgilia oroboides and chlorophorin and Iroko from Chlorophora excelsa, were evaluated. Anti-protozoal tests conducted on trophozoites of Entamoeba histolytica established that all four compounds had an affect on the trophozoites to some degree. Chlorophorin showed the highest anti-protozoal activity with an MIC of 0.25 microg/ml followed by maackiain and Iroko with MICs of 1 microg/ml. Chlorophorin and Iroko induced the release of acid phosphatase. Chlorophorin reduced alpha amylase levels by 89%. Formononetin and maackiain had a minimal effect on the enzyme levels. Ultrastructural changes occurred in trophozoites treated with plant compounds. The degree of destruction of the trophozoites increased with an increase in compound concentration. Trophozoite destruction was initiated by the disintegration of the nucleus and culminated with the rupture of the cytoplasmic membrane. Maackiain was the only compound that showed some level of mutagenicity. Formononetin and Iroko were very slightly mutagenic, while chlorophorin was non-mutagenic. In addition, none of the compounds tested showed cytopathic effects on any of the cell lines tested. Chlorophorin and Iroko exhibit the potential to be exploited as natural multi-functional safe control agents in the treatment of bacterial, fungal and protozoal infections. PMID:11585689

  11. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury.

    PubMed

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  12. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury

    PubMed Central

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  13. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds.

    PubMed Central

    Huang, Yi; Davidson, Gerard; Li, Jingxia; Yan, Yan; Chen, Fei; Costa, Max; Chen, Lung Chi; Huang, Chuanshu

    2002-01-01

    The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor KB (NF-kappaB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-kappaB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-kappaB and not AP-1. We also investigated the role of NF-kappaB in the induction of Cap43 by nickel compounds using dominant negative mutant Ikappabeta kinase b-KM BEAS-2B transfectants. PMID:12426142

  14. Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety.

    PubMed

    Wang, Yanwei; Xu, Kehan; Bai, Guojing; Huang, Lei; Wu, Qiuye; Pan, Weihua; Yu, Shichong

    2014-01-01

    Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51). Their structures were characterized by (1)H-NMR, (13)C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. PMID:25090121

  15. Bioassays of Compounds with Potential Juvenoid Activity on Drosophila melanogaster: Juvenile Hormone III, Bisepoxide Juvenile Hormone III and Methyl Farnesoates

    PubMed Central

    Harshman, Lawrence G.; Song, Ki-Duck; Casas, Josephina; Schuurmans, A.; Kuwano, Eichii; Kachman, Stephen D.; Riddiford, Lynn M.; Hammock, Bruce D.

    2010-01-01

    Metabolites of the 6,7,10,11 bisepoxide juvenile hormone III (JHB3), and other potential juvenoids, were tested for juvenile hormone activity using early instar or early stage pupae of Drosophila melanogaster. Importantly, methyl farnesoates were tested as they might have JH-like activity on Dipteran juveniles. Larvae were exposed to compounds in medium, or the compounds were applied to white puparia. In the assays employed in the present study, there was no indication for JH activity associated with the metabolites of JHB3. The activity of methyl farnesoate (MF) was higher than that of JH III and far greater than bisepoxide JH III. As opposed to the two endogenous juvenile hormones, methyl farnesoate has weak activity in the white puparial bioassaay. When fluorinated forms of methyl farnesoate, which is unlikely to be converted to JH, were applied to Drosophila medium to which fly eggs were introduced, there was a high degree of larval mortality, but no evidence of subsequent mortality at the pupal stage. One possible explanation for the results is that methyl farnesoate is active as a hormone in larval stages, but has little activity at the pupal stage where only juvenile hormone has a major effect. PMID:20599543

  16. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  17. [Mutagenic Activity of Four Aminoazo Compounds with Different Carcinogenicity for Rat Liver in the Ames Test].

    PubMed

    Frolova, T S; Sinitsyna, O I; Kaledin, V I

    2015-01-01

    In this paper in the bacterial Ames test we compared the mutagenicity of four aminoazo compounds, previously studied by other researchers and used for activation of rat liver enzymes, with the carcinogenicity in the rat liver. It was found that in the Ames test they have mutagenic activity, however, this activity does not correlate quantitatively with rat sensitivity to their hepatocarcinogenic action. Thus, the most active carcinogen 3'-methyl-4-dimethylaminoazobenzene causes mutations almost 2.5 times less than weakly carcinogenic ortho-aminoazotoluene, and exactly the same number of mutations as non-carcinogenic N,N-diethyl-4-aminoazobenzene. PMID:26591610

  18. Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler-Natta catalyst

    NASA Astrophysics Data System (ADS)

    Tangjituabun, Kitti; Kim, Sang Yull; Hiraoka, Yuichi; Taniike, Toshiaki; Terano, Minoru; Jongsomjit, Bunjerd; Praserthdam, Piyasan

    2008-04-01

    A TiCl4/ethylbenzoate/MgCl2 Ziegler-Natta catalyst was pretreated with chemically different poisoning compounds to investigate their effects on the catalyst activity and stereospecificity for propylene polymerization. The poisoning power on the activity was in the order of methanol > acetone > ethyl acetate. A kinetic analysis using the stopped-flow method revealed that addition of the poisoning materials decreased the activity through the reduction of the number of active sites, whereas the catalyst isospecificity was hardly affected by these materials.

  19. Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    Roberts, Julia; Ling, Yan; Quezada, Landys Lopez; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Warren, J. David; Nathan, Carl

    2015-01-01

    The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days—about 2 weeks sooner than required to count CFU—fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic. PMID:26239979

  20. Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis.

    PubMed

    Gold, Ben; Roberts, Julia; Ling, Yan; Quezada, Landys Lopez; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Warren, J David; Nathan, Carl

    2015-10-01

    The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days-about 2 weeks sooner than required to count CFU-fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic. PMID:26239979

  1. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  2. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  3. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  4. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  5. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  6. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major

    PubMed Central

    Iniguez, Eva A.; Perez, Andrea; Maldonado, Rosa A.; Skouta, Rachid

    2015-01-01

    Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods (1H, 13C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50 = 3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50 = 28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells. PMID:26410073

  7. Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities.

    PubMed

    Li, Wei; Zhou, Wei; Kim, Eun-Ji; Shim, Sang Hee; Kang, Hee Kyoung; Kim, Young Ho

    2015-03-01

    Lion's Mane Mushroom (Hericium erinaceum) is a traditional edible mushroom widely used in culinary applications and as an herbal medicine in East Asian countries. In the present study, two new aromatic compounds, hericerin A (1) and isohericenone J (5), along with five known compounds, isoericerin (2), hericerin (3), N-De phenylethyl isohericerin (4), hericenone J (6), and 4-[3',7'-dimethyl-2',6'-octadienyl]-2-formyl-3-hydroxy-5-methyoxybenzylalcohol (7), were isolated from a methanol extract of the fruiting bodies of H. erinaceum. The chemical structures of the compounds were determined from mass spectra and 1D- and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in HL-60 human acute promyelocytic leukaemia cells. Hericerin A (1) and hericerin (3) significantly reduced cell proliferation with IC50 values of 3.06 and 5.47 μM, respectively. These same compounds also induced apoptosis of HL-60 cells, accompanied by time-dependent down-regulation of p-AKT and c-myc levels. These data suggest that compounds 1 and 3 from H. erinaceum are suitable for use in potential cancer treatments. PMID:25306354

  8. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2015-07-01

    Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available. PMID:25982076

  9. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  10. Adsorption studies of recalcitrant compounds of molasses spentwash on activated carbons.

    PubMed

    Figaro, S; Louisy-Louis, S; Lambert, J; Ehrhardt, J-J; Ouensanga, A; Gaspard, S

    2006-10-01

    Due to high levels of residual chemical oxygen demand (COD) in the effluent of molasses spentwash (MSW) after anaerobic treatment, acceptable COD levels for discharge cannot be achieved without some form of post-treatment. In this study, the particulate composition of molasses spentwash after anaerobic digestion (MSWD), is characterised as to its particle size distribution, using micro- and ultrafiltration and three activated carbons are characterised as to their ability to reduce significantly the COD of MSWD effluent. The activated carbons tested as adsorbent, were characterised by XPS spectroscopy, elemental analysis, surface area, pore size distribution, and acid-base titration using the Boehm's method. Adsorption of phenol, used here as a reference compound, and of some organic compounds contained in MSWD (gallic acid, tannic acid, and melanoidin, respectively), was studied. It was clearly demonstrated that an activated carbon with a significant distribution of both micropores and mesopores and a significant amount of macropores that are assumed to act as conduits providing access to micro- and mesopores, have a good adsorption efficiency for compounds such as tannic acid and melanoidins. It is a good adsorbent for melanoidin and coloured compounds of MSWD, which represents a large source of the aqueous pollution in sugar cane industries. PMID:16987542

  11. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  12. Novel FTY720-Based Compounds Stimulate Neurotrophin Expression and Phosphatase Activity in Dopaminergic Cells

    PubMed Central

    2014-01-01

    α-Synuclein is a chaperone-like protein implicated in Parkinson’s disease (PD). Among α-synuclein’s normal functions is an ability to bind to and stimulate the activity of the protein phosphatase 2A (PP2A) catalytic subunit in vitro and in vivo. PP2A activity is impaired in PD and in dementia with Lewy Bodies in brain regions harboring α-synuclein aggregates. Using PP2A as the readout, we measured PP2A activity in response to α-synuclein, ceramides, and FTY720, and then on the basis of those results, we created new FTY720 compounds. We then measured the effects of those compounds in dopaminergic cells. In addition to stimulating PP2A, all three compounds stimulated the expression of brain derived neurotrophic factor and protected MN9D cells against tumor-necrosis-factor-α-associated cell death. FTY720-C2 appears to be more potent while FTY720-Mitoxy targets mitochondria. Importantly, FTY720 is already FDA approved for treating multiple sclerosis and is used clinically worldwide. Our findings suggest that FTY720 and our new FTY720-based compounds have considerable potential for treating synucleinopathies such as PD. PMID:25050165

  13. Application of Kohonen Neural Networks in classification of biologically active compounds.

    PubMed

    Kirew, D B; Chretien, J R; Bernard, P; Ros, F

    1998-01-01

    Automated data classification is an indispensable tool in Drug Design. It allows to select homogeneous training sets or to distinguish compounds with required biological properties. The Kohonen Neural Networks (KNN) suggest new means for classification of biologically interesting compounds. In this paper, first, capabilities of KNN in data dimensionality reduction are presented as compared with the capabilities of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). The advantages of KNN become evident with increasing data dimensionality and size of the training set. Then, new methods are suggested to evaluate the quality of KNN models. Finally, a case study on chemical and biological data is presented. The database studied includes more than 2000 organophosphorous potent pesticides. The Kohonen maps were obtained which allow to distinguish compounds with different biological behavior. PMID:9517011

  14. Bioassay-Guided Isolation of Compounds from Datura stramonium with TRAIL-Resistance Overcoming Activity.

    PubMed

    Karmakar, Utpal K; Toume, Kazufumi; Ishikawa, Naoki; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2016-02-01

    TRAIL is a potent inducer of apoptosis in most cancer cells, but not in normal cells, and therefore has deserved intense interest as a promising agent for cancer therapy. In the search for bioactive natural products for overcoming TRAIL-resistance, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionation of the MeOH extract of Datura stramonium leaves led to the isolation of three alkaloids--scopolamine (1), trigonelline (2), and tyramine (3). Compounds 1, 2, and 3 exhibited TRAIL-resistance overcoming activity at 50, 150, and 100 µM, respectively in TRAIL-resistant AGS cells. PMID:27032197

  15. Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins content according to the ripening stage.

    PubMed

    Cardeñosa, Vanessa; Barros, Lillian; Barreira, João C M; Arenas, Francisco; Moreno-Rojas, José M; Ferreira, Isabel C F R

    2015-02-01

    "Lane Late" sweet orange grafted on six different citrus rootstocks and grown in the Guadalquivir valley (Seville, Spain) were picked at different ripening stages in two consecutive seasons to characterize their antioxidant activity (free radicals scavenging activity, reducing power and lipid peroxidation inhibition) and quantify their main antioxidant compounds (vitamin E and vitamin C). Linear discriminant analysis and 2-way ANOVA were applied to compare the effects induced by citrus rootstock and ripening stage. The results showed that differences in antioxidant activity and related compounds are mainly dependent on the citrus rootstock, despite ripening stage had also some particular effects. Changes observed in 2012 showed less marked differences among the citrus rootstock. Nevertheless, Cleopatra rootstock showed the highest antioxidant activity in both years, indicating that an increase in its cultivation might be a good solution to sweet orange farmers. Concerning the ripening stage, samples collected in January presented higher vitamin contents, while those collected in April showed higher antioxidant activity. This result allows deciding the harvesting period according to the desired effect. PMID:25462974

  16. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity.

    PubMed

    El-Azaz, Jorge; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2016-07-01

    l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed. PMID:27125254

  17. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities

    PubMed Central

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-01-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products. PMID:25995828

  18. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities.

    PubMed

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-05-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products. PMID:25995828

  19. Comparison of the activity of subsurface and surface microorganisms and their anaerobic transformation of heterocyclic compounds

    SciTech Connect

    Bollag, J.-M.

    1991-02-01

    Our interest in this research was mainly to compare the physiological characteristics of microorganisms derived from subsurface and surface environments and their ability to transform heterocyclic aromatic chemicals. We selected essentially indole and pyridine compounds as representatives of heterocyclic compounds. The samples investigated originated from the subsurface drillings at the Savannah River Plant, from surface samples in Pennsylvania, from municipal sewage of State College, Pennsylvania, and from pyridine-contaminated sites at Indianapolis. At different physiological conditions (aerobic, denitrifying, sulfate-reducing or methanogenic), different groups of microorganisms are active. Not only the thermodynamics of microbial physiology vary, but different metabolic pathways are used by the various types of microbial processes. Therefore, it was important to determine under which physiological conditions a compound was metabolized, and to clarify the metabolic conditions under which intermediate(s) were produced. 29 refs.

  20. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.

    PubMed

    Park, J-H; Goldstein, A H; Timkovsky, J; Fares, S; Weber, R; Karlik, J; Holzinger, R

    2013-08-01

    Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget. PMID:23929979

  1. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. PMID:25976793

  2. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves.

    PubMed

    Pereira, Ana Paula; Ferreira, Isabel C F R; Marcelino, Filipa; Valentão, Patricia; Andrade, Paula B; Seabra, Rosa; Estevinho, Leticia; Bento, Albino; Pereira, José Alberto

    2007-01-01

    We report the determination of phenolic compounds in olive leaves by reversed-phase HPLC/DAD, and the evaluation of their in vitro activity against several microorganisms that may be causal agents of human intestinal and respiratory tract infections, namely gram positive (Bacillus cereus, B. subtilis and Staphylococcus aureus), gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) and fungi (Candida albicans and Cryptococcus neoformans). Seven phenolic compounds were identified and quantified: caffeic acid, verbascoside, oleuropein, luteolin 7-O-glucoside, rutin, apigenin 7-O-glucoside and luteolin 4'-O-glucoside. At low concentrations olive leaves extracts showed an unusual combined antibacterial and antifungal action, which suggest their great potential as nutraceuticals, particularly as a source of phenolic compounds. PMID:17873849

  3. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus).

    PubMed

    Wang, Gao-xue; Han, Jing; Feng, Ting-ting; Li, Fu-yuan; Zhu, Bin

    2009-12-01

    Dactylogyrus intermedius is a significant monogenean parasite on the gills of cyprinid fishes and can cause serious problem in fish aquaculture. In the present study, bioassay-guided fractionation was employed to identify the active compounds from Fructus Arctii against D. intermedius. Five solvents (petroleum ether, chloroform, ethyl acetate, ethanol, and water) were applied for the extraction of Fructus Arctii. Among them, only the chloroform extract exhibited promising anthelmintic efficacy and therefore, subjected to the further isolation and purification using various chromatographic techniques. Two compounds showing potent activity were obtained and identified by spectral data (infrared, nuclear magnetic resonance, and mass spectrometry) as: arctigenin (1) and arctiin (2). They were found to be significantly effective against D. intermedius with median effective concentration (EC(50)) values of 0.62 and 3.55 mg L(-1), respectively. Arctigenin exhibited higher activity as compared with the positive control mebendazole with an EC(50) value of 1.25 mg L(-1). The 48-h acute toxicity tests (LC(50)) of arctigenin and arctiin were found to be 8.47 and 14.14 mg L(-1) for goldfish, respectively. These results provided evidence that the studied plant extract, as well as the isolated compounds, might be potential sources of new antiparasitic drug for the control of Dactylogyrus. PMID:19859737

  4. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  5. Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study

    PubMed Central

    Esmaeili, N; Ebrahimzadeh, H; Abdi, K; Safarian, S

    2011-01-01

    It is well known that phenolic compounds are constituents of many plants. In this study, the total phenolics content in Crocus sativus L. corms in dormancy and waking stages were determined by the Folin-Ciocalteu method. Analysis was carried out by gas chromatography-mass spectrometry (GC-MS) after silylation by N-methyl-N-trimethylsilyl trifluroacetamide (MSTFA) + %1 trimethyl iodosilane (TMIS). Numerous compounds were detected and 11 compounds were identified. The highest phenolics content in waking corms was observed for gentisic acid (5.693 ± 0.057 μg/g) and the lowest for gallic acid (0.416 ± 0.006 μg/g); also these two phenolic compounds are the highest (0.929 ± 0.015 μg/g) and lowest (0.017 ± 0.001 μg/g) phenolics in dormant corms, respectively. The results from quantization and GC-MS analysis showed a high concentration of phenolic compounds in waking corms than the dormant stage. Furthermore, the radical scavenging activities of saffron corms were studied by 1,1-diphenyl-2-pycrylhydrazyl (DPPH) test and EC 50values were determined about 2055 ppm and 8274 ppm for waking and dormant corms, respectively. PMID:21472084

  6. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  7. Active sites in char gasification. Quarterly technical progress report, 1 January 1984-31 March 1984. [Polymers of phenol-formaldehyde family; chars produced from model compounds

    SciTech Connect

    Calo, J.M.; Suubers, E.M.; Wojtowicz, M.; Lilly, W.

    1984-05-01

    This project is concerned with the study of the nature and behavior of active sites in gasification of chars produced from synthesized model compounds, primarily of the phenol-formaldehyde family of resins. The current technical progress report presents further developments on resin synthesis and characterization and the design of a pyro-gasifier reactor for transient kinetic studies of the chars produced from the model compounds. 7 references, 12 figures, 2 tables.

  8. Occurrence of Endocrine Active Compounds and Biological Responses in the Mississippi River - Study Design and Data, June through August 2006

    USGS Publications Warehouse

    Lee, Kathy E.; Yaeger, Christine S.; Jahns, Nathan D.; Schoenfuss, Heiko L.

    2008-01-01

    Concern that selected chemicals in the environment may act as endocrine active compounds in aquatic ecosystems is widespread; however, few studies have examined the occurrence of endocrine active compounds and identified biological markers of endocrine disruption such as intersex occurrence in fish longitudinally in a river system. This report presents environmental data collected and analyzed by the U.S. Geological Survey, Minnesota Pollution Control Agency and St. Cloud State University as part of an integrated biological and chemical study of endocrine disruption in fish in the Mississippi River. Data were collected from water, bed sediment, and fish at 43 sites along the river from the headwaters at Lake Itasca to 14 miles downstream from Brownsville, Minnesota during June through August 2006. Twenty-four individual compounds were detected in water samples, with cholesterol, atrazine, N,N-diethyl-meta-toluamide, metolachlor, and hexahydrohexamethylcyclopentabenzopyran detected most frequently (in at least 10 percent of the samples). The number of compounds detected in water per site ranged from 0 to 8. Forty individual compounds were detected in bed-sediment samples. The most commonly detected compounds (in at least 50 percent of the samples) were indole, beta-sitosterol, cholesterol, beta-stigmastanol, 3-methyl-1H-indole, p-cresol, pyrene, phenol, fluoranthene, 3-beta coprostanol, benzo[a]pyrene, acetophenone, and 2,6-dimethylnaphthalene. The total number of detections in bed sediment (at a site) ranged from 3 to 31. The compounds NP1EO, NP2EO, and 4-nonylphenol were detected in greater than 10 percent of the samples. Most (80 percent) female fish collected had measurable concentrations of vitellogenin. Vitellogenin also was detected in 62, 63, and 33 percent of male carp, smallmouth bass, and redhorse, respectively. The one male walleye sample plasma sample analyzed had a vitellogenin detection. Vitellogenin concentrations were lower in male fish (not

  9. Structural activity of bovidic acid and related compounds as feeding deterrents against Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-(1-hydroxynonyl)-2-tetrahydrofuranpentanoic acid (18-Bovidic acid), a compound recently identified as a mosquito deterrent from the hair of gaur, has been evaluated for its efficacy compared to known synthetic repellents. In the present study we have evaluated analogs of Bovidic acid, related hydr...

  10. Active Compounds of Rhubarb Root and Rhizome in Animal Model Experiments of Focal Cerebral Ischemia

    PubMed Central

    Liu, Ai-ju; Song, Liang; Li, Yan; Zhang, Xiao-guang; Chen, Zi-xian; Huang, Li-bo; Zhang, Hong-feng; Zheng, Guo-qing

    2015-01-01

    Rhubarb root and rhizome (RRR) has been clinically used for stroke at least 2000 years and is still used in modern times in both China and elsewhere worldwide. The objective of present study was to evaluate the efficacy of active compounds of RRR (ACRRR) for experimental ischemic stroke. Studies of ACRRR in animal models of ischemic stroke were identified from 5 databases until April 2014. Study quality for each included article was evaluated according to the CAMARADES 10-item checklist. Outcome measures were neurological deficit score and infarct size. All the data were analyzed using RevMan 5.1 software. As a result, 20 studies were identified describing procedures involving 577 animals. The quality score of studies ranges from 2 to 6, and the median was 3.4. Six studies showed significant effects of ACRRR for improving infarct size compared with model group (P < 0.01). Six studies indicated significant effects of ACRRR for improving the neurological deficit scores according to Zea longa criterion or eight-point criterion (P < 0.01). In conclusion, these findings demonstrated a possible efficacy of ACRRR that have potential neuroprotective effect for experimental ischemic stroke. However, these apparently positive findings should be interpreted with caution because of the methodological flaws. PMID:26495006

  11. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes.

    PubMed

    Baker, Beth H; Martinovic-Weigelt, Dalma; Ferrey, Mark; Barber, Larry B; Writer, Jeffery H; Rosenberry, Donald O; Kiesling, Richard L; Lundy, James R; Schoenfuss, Heiko L

    2014-10-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted. PMID:24974177

  12. Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles.

    PubMed

    Rubió, Laura; Motilva, Maria-José; Romero, Maria-Paz

    2013-01-01

    Spices, like vegetables, fruit, and medicinal herbs, are known to possess a variety of antioxidant effects and other biological activities. Phenolic compounds in these plant materials are closely associated with their antioxidant activity, which is mainly due to their redox properties and their capacity to block the production of reactive oxygen species. More recently, their ability to interfere with signal transduction pathways involving various transcription factors, protein kinases, phosphatases, and other metabolic enzymes has also been demonstrated. Many of the spice-derived compounds which are potent antioxidants are of great interest to biologists and clinicians because they may help protect the human body against oxidative stress and inflammatory processes. It is important to study the bioactive compounds that can modulate target functions related to defence against oxidative stress, and that might be used to achieve health benefits individually. In the present review, an attempt has been made to summarize the most current scientific evidence about the in vitro and in vivo effects of the bioactive compounds derived from herbs and spices, focused on anti-inflammatory and antioxidant effects, in order to provide science-based evidence for the traditional uses and develop either functional foods or nutraceuticals. PMID:23768186

  13. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    PubMed

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases. PMID:26711781

  14. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  15. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  16. Phosphorus-nitrogen compounds. Part 23: Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclotriphosphazenes

    NASA Astrophysics Data System (ADS)

    Asmafiliz, Nuran; Kılıç, Zeynel; Hayvalı, Zeliha; Açık, Leyla; Hökelek, Tuncer; Dal, Hakan; Öner, Yağmur

    2012-02-01

    The Schiff base compounds ( 1 and 2) are synthesized by the condensation reactions of 2-furan-2-yl-methylamine with 2-hydroxy-3-methoxy- and 2-hydroxy-5-methoxy-benzaldehydes and reduced with NaBH 4 to give the new N/O-donor-type ligands ( 3 and 4). The monospirocyclotriphosphazenes containing 1,3,2-oxazaphosphorine rings ( 5 and 6) are prepared from the reactions of N 3P 3Cl 6 with 3 and 4, respectively. The reactions of 5 and 6 with excess pyrrolidine, morpholine, and 1,4-dioxa-8-azaspiro [4,5] decane (DASD) produce tetrapyrrolidino ( 5a and 6a), morpholino ( 5b and 6b), and 1,4-dioxa-8-azaspiro [4,5] deca ( 5c and 6c) spirocyclotriphosphazenes. The structural investigations of the compounds are examined by 1H, 13C, 31P NMR, DEPT, HSQC, and HMBC techniques. The solid-state structures of 5, 5a, and 6 are determined using X-ray crystallography. The compounds 5a, 5b, 5c, 6a, 6b, and 6c are subjected to antimicrobial activity against six patojen bacteria and two yeast strains. In addition, interactions between these compounds and pBR322 plasmid DNA are presented by agarose gel electrophoresis.

  17. Inhibition of human DNA topoisomerase IB by nonmutagenic ruthenium(II)-based compounds with antitumoral activity.

    PubMed

    de Camargo, Mariana S; da Silva, Monize M; Correa, Rodrigo S; Vieira, Sara D; Castelli, Silvia; D'Anessa, Ilda; De Grandis, Rone; Varanda, Eliana; Deflon, Victor M; Desideri, Alessandro; Batista, Alzir A

    2016-02-01

    Herein we synthesized two new ruthenium(II) compounds [Ru(pySH)(bipy)(dppb)]PF6 (1) and [Ru(HSpym)(bipy)(dppb)]PF6 (2) that are analogs to an antitumor agent recently described, [Ru(SpymMe2)(bipy)(dppb)]PF6 (3), where [(Spy) = 2-mercaptopyridine anion; (Spym) = 2-mercaptopyrimidine anion and (SpymMe2) = 4,6-dimethyl-2-mercaptopyrimidine anion]. In vitro cell culture experiments revealed significant anti-proliferative activity for 1-3 against HepG2 and MDA-MB-231 tumor cells, higher than the standard anti-cancer drugs doxorubicin and cisplatin. No mutagenicity is detected when compounds are evaluated by cytokinesis-blocked micronucleus cytome and Ames test in the presence and absence of S9 metabolic activation from rat liver. Interaction studies show that compounds 1-3 can bind to DNA through electrostatic interactions and to albumin through hydrophobic interactions. The three compounds are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (Top1). Compound 3 is the most efficient Top1 inhibitor and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of different steps of Top1 catalytic cycle indicates that 3 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and slows down the religation reaction. Molecular docking shows that 3 preferentially binds closer to the residues of the active site when Top1 is free and lies on the DNA groove downstream of the cleavage site in the Top1-DNA complex. Thus, 3 can be considered in further studies for a possible use as an anticancer agent. PMID:26758075

  18. Simultaneous determination of nineteen major active compounds in Qiangshen tablet by UPLC-ESI-MS/MS.

    PubMed

    Gao, Jinwei; Qiu, Ying; Chen, Jinmei; Mu, Shanxue; Sun, Lixin

    2016-09-01

    An ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry method has been developed to evaluate the quality of a pharmaceutical herbal preparation, Qiangshen tablet, through a simultaneous determination of 19 major active compounds (stachydrine hydrochloride, betaine, gallic acid, sodium danshensu, morroniside, loganin, protocatechuic aldehyde, gardenoside, sweroside, acteoside, paeoniflorin, ginsenoside Re, rosmarinic acid, salvianolic acid B, ginsenoside Rg1, psoralen, isopsoralen, ginsenoside Rb1, paeonol). Chromatographic separation was achieved on an ACQUITY UPLC(®) BEH C18 column (2.1×100mm, 1.7μm) by gradient elution with the mobile phase of 0.1% formic acid aqueous solution (A) and acetonitrile (B). Multiple reaction monitoring (MRM) mode with positive and negative electrospray ionization interface was operated to detect the 19 compounds. All calibration curves showed excellent linear regressions (r>0.999) within the test range. The precision, repeatability and stability of the 19 compounds were below 2.0% in terms of RSD. The recoveries were 97.5-102.2% with RSD of 1.0-1.9% for Qiangshen tablet samples. The method was successfully used for the analysis of samples of Qiangshen tablet. In conclusion, a rapid, sensitive, precise, accurate and reliable UPLC-ESI-MS/MS method has been developed for the simultaneous detection of 19 active compounds with large difference in level of content in the pharmaceutical samples of Qiangshen tablet, which can be applied for the quality control of Qiangshen tablet. PMID:27416474

  19. Development and Validation of Quantitative Structure-Activity Relationship Models for Compounds Acting on Serotoninergic Receptors

    PubMed Central

    Żydek, Grażyna; Brzezińska, Elżbieta

    2012-01-01

    A quantitative structure-activity relationship (QSAR) study has been made on 20 compounds with serotonin (5-HT) receptor affinity. Thin-layer chromatographic (TLC) data and physicochemical parameters were applied in this study. RP2 TLC 60F254 plates (silanized) impregnated with solutions of propionic acid, ethylbenzene, 4-ethylphenol, and propionamide (used as analogues of the key receptor amino acids) and their mixtures (denoted as S1–S7 biochromatographic models) were used in two developing phases as a model of drug-5-HT receptor interaction. The semiempirical method AM1 (HyperChem v. 7.0 program) and ACD/Labs v. 8.0 program were employed to calculate a set of physicochemical parameters for the investigated compounds. Correlation and multiple linear regression analysis were used to search for the best QSAR equations. The correlations obtained for the compounds studied represent their interactions with the proposed biochromatographic models. The good multivariate relationships (R2 = 0.78–0.84) obtained by means of regression analysis can be used for predicting the quantitative effect of biological activity of different compounds with 5-HT receptor affinity. “Leave-one-out” (LOO) and “leave-N-out” (LNO) cross-validation methods were used to judge the predictive power of final regression equations. PMID:22619602

  20. Highly fluorinated 2,2'-biphenols and related compounds: relationship between substitution pattern and herbicidal activity.

    PubMed

    Francke, Robert; Reingruber, Rüdiger; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2013-05-22

    A broad range of halogenated 2,2'-biphenols was tested for applicability as crop protection agents. The activity of these compounds toward four typical pest plants was observed after application by spraying of diluted solutions. Despite their rather simple structure, it was found that the studied compounds reveal a surprisingly high herbicidal impact. To gain a better understanding of the structure-activity relationship, specific sites of the molecule were chemically modified and the core structures thus gradually changed. The influence of the substitution pattern on the herbicidal properties is discussed, and conclusions on the active site of the biphenol structure are drawn. It was observed that type and position of the halogen substituents have a significant influence on the activity of the core structure. The hydroxy functionalities play a crucial role for the effectiveness of the tested compounds. Because the blocking of the hydroxy moiety leads to dramatically deteriorated performances, the presence of these functionalities on the aromatic ring seems to be indispensable. PMID:23641939

  1. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. PMID:26581489

  2. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity

    PubMed Central

    Awadallah, Fadi M.; Piazza, Gary A.; Gary, Bernard D.; Keeton, Adam B.; Canzoneri, Joshua C.

    2016-01-01

    Two series of 2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitriles 5a–h and 4-(4-chlorophenyl)-2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitriles 6a–h were synthesized via a cyclocondensation reaction of the corresponding 2-hydrazinopyrimidines 3a,b with the appropriate 2-propen-1-ones 4a–h. The target compounds were screened for their antiproliferative activity against A 549 (lung), HT 29 (colon), MCF 7 and MDA-MB 231 (breast) cell lines. The two most susceptible cell lines were the colon (HT 29) and breast (MDA-MB 231). Generally, the 4-unsubstitutedphenylpyrimidine derivatives 5a–h were more active than their 4-chlorophenylpyrimidine analogs 6a–h. Compounds 5e and 5g, showed high activity against three of the cell lines. The most active compound 5c possessed IC50 = 1.76 μM against A 549 cell line. PMID:24161704

  3. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination.

    PubMed

    Zhou, Xiaoli; Hao, Tingfeng; Zhou, Yiming; Tang, Wen; Xiao, Ying; Meng, Xiaoxiao; Fang, Xiang

    2015-04-01

    Relationships of changes between major non-enzymatic antioxidant compounds and antioxidant capacities of tartary buckwheat during germination were evaluated by means of correlation analysis and principal component analysis in this paper. The changes of antioxidant compounds, including vitamin C, vitamin E, flavonoids, carotenoids, and chlorophyll, and antioxidant activities were detected. A good accumulation in the content of vitamin C (0.71 mg/g), total flavonoids (19.53 mg rutin/g), and rutin (11.34 mg/g) was found after 7-day germination, but germination decreased the vitamin E activity. Germination improved the activities of buckwheat extracts to scavenge DPPH, ABTS, and superoxide free radicals by 107, 144, and 88 %, respectively. Furthermore, the correlation and principal component analysis showed that the vitamin C, total flavonoids, and rutin contents were closely related positively with free radicals scavenging properties, indicating that the compounds which play a key role in the elevated antioxidant activities during germination consisted of vitamin C, total flavonoids, and rutin, but not vitamin E and quercetin. PMID:25829633

  4. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds

    SciTech Connect

    Lander, H.M.; Sehajpal, P.; Levine, D.M.; Novogrodsky, A. )

    1993-02-15

    Recent work in this laboratory has identified immune-stimulatory properties of the oxidant hemin. In this study, the authors examined whether the nitrogen-based oxidant nitric oxide (NO) had inductive effects on human lymphocytes. They found that the NO-generating compounds sodium nitroprusside and S-nitroso-N acetylpenicillamine rapidly enhanced the rate of glucose transport in resting human PBMC. In addition, NF-[kappa]B binding activity was induced by these agents as was the secretion of TNF-[alpha]. The data suggest that a cGMP-independent mechanism is involved as the cell permeant cGMP analogue, 8-Br-cGMP, had no effect in eliciting these inductive events. Activation of lymphocytes by these NO-generating compounds may be mediated through the protein tyrosine phosphorylation signal transduction pathway. It was found that membrane-associated protein tyrosine phosphatase activity was enhanced in PBMC treated with sodium nitroprusside or S-nitroso-N-acetylpenicillamine and that the src family protein tyrosine kinase p56[sup lck] was activated in these cells. Inasmuch as p56[sup lck] activity is negatively controlled by tyrosine phosphorylation, its activation may be related to the enhancement of protein tyrosine phosphatase activity. 8Br-cGMP had no effect on these enzymes. Taken together, these data suggest that NO may have immune-stimulatory properties and may signal through a hitherto undescribed cGMP-independent pathway. 30 refs., 9 figs., 2 tabs.

  5. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds.

    PubMed

    Kachouri, Faten; Ksontini, Hamida; Kraiem, Manel; Setti, Khaoula; Mechmeche, Manel; Hamdi, Moktar

    2015-12-01

    Eight lactic acid bacteria strains isolated from traditional fermented foods were investigated for their antioxidant activity against DPPH free radicals, β-carotene bleaching assay and linoleic acid test. L. plantarum LAB 1 at a dose of 8.2 10(9) CFU/ml showed the highest DPPH scavenging activity, with inhibition rate of 57.07 ± 0.57 % and an antioxidant activity (TAA = 43.47 ± 0.663 % and AAC = 172.65 ± 5.57), which increase with cell concentrations. When L. plantarum LAB 1 was administered to oxidative enzymes, residual activities decreased significantly with cell concentrations. The use of L. plantarum LAB 1 on olives process, favours the increase of the antioxidant activity (24 %). HPLC results showed a significant increase of orthodiphenols (74 %). Viable cells of strain were implicated directly on minimum media growth with 500 mg/l of olive phenolic compounds. Results showed an increase in their antioxidant activity. CG-SM analysis, identify the presence of compounds with higher antioxidant activity as vinyl phenol and hydroxytyrosol. PMID:26604364

  6. A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns.

    PubMed

    Rupesinghe, Emmanuel Janaka Rochana; Jones, Andrew; Shalliker, Ross Andrew; Pravadali-Cekic, Sercan

    2016-01-01

    Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract. PMID:26805792

  7. Radioprotective effects of active compounds from Acanthopanax senticosus of Lesser Khingan Mountain in China

    NASA Astrophysics Data System (ADS)

    Lu, Weihong; Sun, Yeqing; Shi, Jinming

    Bioactive compounds including polysaccharides, flavones, syringin and eleutheroside E were extracted from wild Acanthopanax senticosus and purified by chromatography. In vitro and in vivo anti-radiation activities of the compounds were compared. In vitro radical scavenging results showed that polysaccharides and flavones were more effective than syringin and eleutheroside E in In vivo study proved that polysaccharides and flavones were effective in protecting mice from heavy ion radiation induced oxidative damages. Also, the activity of polysaccharides and flavones in repressing expression changes of radiation response proteins including heat shock protein, disulfide-isomerase and glutathione S-transferase were also found by our results. Moreover, the radioprotective effects were more significant when polysaccharides and flavones were used together.

  8. Normal coordinate analysis and fungicidal activity study on anilazine and its related compound using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Sheeja Mol, Gilbert Pushpam; Arul Dhas, Deva Dhas; Hubert Joe, Isaac; Balachandran, Sreedharan

    2016-06-01

    The FTIR and FT-Raman spectra of anilazine have been recorded in the range 400-4000 cm-1 and 50-3500 cm-1 respectively. The optimized geometrical parameters of the compound were calculated using B3LYP method with 6-311G(d,p) basis set. The distribution of the vibrational bands were carried out with the help of normal coordinate analysis (NCA). The 1H and 13C nuclear spectra have been recorded and chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-Visible spectrum of the compound was recorded in the region 190-900 nm and the electronic properties were determined by time-dependent DFT (TD-DFT) approach. Anilazine was screened for its antifungal activity. Molecular docking studies are conducted to predict its fungicidal activity.

  9. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds

    PubMed Central

    Nunes, Túlio M.; Mateus, Sidnei; Favaris, Arodi P.; Amaral, Mônica F. Z. J.; von Zuben, Lucas G.; Clososki, Giuliano C.; Bento, José M. S.; Oldroyd, Benjamin P.; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B.; Lopes, Norberto P.

    2014-01-01

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones. PMID:25502598

  10. Antibacterial activities and structure-activity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes.

    PubMed

    Omosa, Leonidah K; Midiwo, Jacob O; Mbaveng, Armelle T; Tankeo, Simplice B; Seukep, Jackson A; Voukeng, Igor K; Dzotam, Joachim K; Isemeki, John; Derese, Solomon; Omolle, Ruth A; Efferth, Thomas; Kuete, Victor

    2016-01-01

    In the current study forty eight compounds belonging to anthraquinones, naphthoquinones, benzoquinones, flavonoids (chalcones and polymethoxylated flavones) and diterpenoids (clerodanes and kauranes) were explored for their antimicrobial potential against a panel of sensitive and multi-drug resistant Gram-negative and Gram-positive bacteria. The minimal inhibitory concentration (MIC) determinations on the tested bacteria were conducted using modified rapid INT colorimetric assay. To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to the most active compounds, they were tested in the presence of phenylalanine arginine β-naphthylamide (PAβN) (at 30 µg/mL) against selected multidrug resistance (MDR) bacteria. The anthraquinone, emodin, naphthaquinone, plumbagin and the benzoquinone, rapanone were active against methicillin resistant Staphylococcus aureus (MRSA) strains of bacteria with MIC values ranging from 2 to 128 μg/mL. The structure activity relationships of benzoquinones against the MDR Gram-negative phenotype showed antibacterial activities increasing with increase in side chain length. In the chalcone series the presence of a hydroxyl group at C3' together with a methoxy group and a second hydroxyl group in meta orientation in ring B of the chalcone skeleton appeared to be necessary for minimal activities against MRSA. In most cases, the optimal potential of the active compounds were not attained as they were extruded by bacterial efflux pumps. However, the presence of the PAβN significantly increased the antibacterial activities of emodin against Gram-negative MDR E. coli AG102, 100ATet; K. pneumoniae KP55 and KP63 by >4-64 g/mL. The antibacterial activities were substantially enhanced and were higher than those of the standard drug, chloramphenicol. These data clearly demonstrate that the active compounds, having the necessary pharmacophores for antibacterial activities, including some quinones and chalcones are

  11. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  12. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    PubMed Central

    2012-01-01

    Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells. PMID:22938042

  13. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  14. Prioritizing testing of organic compounds detected as gas phase air pollutants: structure-activity study for human contact allergens.

    PubMed Central

    Johnson, R; Macina, O T; Graham, C; Rosenkranz, H S; Cass, G R; Karol, M H

    1997-01-01

    Organic compounds that are used or generated anthropogenically in large quantities in cities can be identified through their presence in the urban atmosphere and in air pollutant source emissions. Compounds identified by this method were screened to evaluate their potential to act as contact allergens. The CASE and MULTICASE computer programs, which are based on the detection of structure-activity relationships (SAR), were used to evaluate this potential. These relationships first are determined by comparing chemical structures to biological activity within a learning set comprised of 458 compounds, each of which had been tested experimentally in human trials for its sensitization potential. Using the information contained in this learning set, CASE and MULTICASE predicted the activity of 238 compounds found in the atmosphere for their ability to act as contact allergens. The analysis finds that 21 of 238 compounds are predicted to be active contact allergens (probability >0.5), with potencies ranging from mild to very strong. The compounds come from chemical classes that include chlorinated aromatics and chlorinated hydrocarbons, N-containing compounds, phenols, alkenes, and an S-containing compound. Using the measured airborne concentrations or emission rates of these compounds as an indication of the extent of their use, together with their predicted potencies, provides an efficient method to prioritize the experimental assessment of contact sensitization of untested organic compounds that can be detected as air pollutants. Images Figure 1. PMID:9300925

  15. Merging the Structural Motifs of Functionalized Amino Acids and α-Aminoamides: Compounds with Significant Anticonvulsant Activities

    PubMed Central

    Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P.; Kohn, Harold

    2010-01-01

    Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases. PMID:20394379

  16. Cytokinin Nucleosides - Natural Compounds with a Unique Spectrum of Biological Activities.

    PubMed

    Drenichev, Mikhail S; Oslovsky, Vladimir E; Mikhailov, Sergey N

    2016-01-01

    Cytokinin nucleosides exhibit antitumor, antiviral, antiprotozoal, blood pressure reducing, anti-inflammatory, and antipsychotic activity. These compounds also influence platelet aggregation and exhibit some other biological activities. Cytokinins are N6-substituted adenines and represent an important group of phytohormones with diverse biochemical functions in plants, stimulating cell division and plant growth. The main structural feature of cytokinin nucleosides is the presence of a hydrophobic hydrocarbon moiety at the N6-position of adenosine. This moiety is responsible for a difference in physicochemical and biological properties as compared to adenosine. 1-N-Tuberculosinyladenosine and N6-tuberculosinyladenosine are specifically produced by Mycobacterium tuberculosis as components of the plasmatic membrane, thus making them attractive targets for clinical test development. Structurally related compounds were found in marine organisms. It has been shown also that tRNA contains N6-isoprenyladenosine and some other related compounds. This review summarizes the structural features, biological activity, and the synthesis of cytokinin nucleosides and some of their closely related derivatives such as cytokinins and terpene derivatives of adenine. PMID:27086793

  17. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    PubMed

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P < 0.05). The first and the second segments from the tip significantly increased with the increase of catalase (CAT). It was interesting to investigate in vitro how human serum albumin (HSA) interacts with polyphenols extracted from investigated vegetables. Therefore the functional properties of asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity. PMID:24793354

  18. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds

    PubMed Central

    Mathew, Shilu; Faheem, Muhammad; Al-Malki, Abdulrahman L; Kumosani, Taha A; Qadri, Ishtiaq

    2015-01-01

    Epilepsy is a neurological disorder affecting more than 50 million people worldwide. It can be controlled by antiepileptic drugs (AEDs) but more than 30% patients are still resistant to AEDs. To overcome this problem, researchers are trying to develop novel approaches to treat epilepsy including the use of herbal medicines. The γ-amino butyric acid type-A receptor associated protein (GABARAP) is ubiquitin-like modifier implicated in the intracellular trafficking of GABAAR. An in silico mutation was created at 116 amino acid position G116A, and an in silico study was carried out to identify the potential binding inhibitors (with antiepileptic properties) against the active sites of GABARAP. Five different plant derived compounds namely (a) Aconitine (b) Berberine (c) Montanine (d) Raubasine (e) Safranal were selected, and their quantitative structure-activity relationships (QSAR) have been conducted to search the inhibitory activity of the selected compounds. The results have shown maximum number of hydrogen bond (H-bond) interactions of Raubasine with highest interaction energy among all of the five compounds. So, Raubasine could be the best fit ligand of GABARAP but in vitro, and in vivo studies are necessary for further confirmation. PMID:26124559

  19. Hydraphiles: A Rigorously Studied Class of Synthetic Channel Compounds with In Vivo Activity

    PubMed Central

    Negin, Saeedeh; Smith, Bryan A.; Unger, Alexandra; Leevy, W. Matthew; Gokel, George W.

    2013-01-01

    Hydraphiles are a class of synthetic ion channels that now have a twenty-year history of analysis and success. In early studies, these compounds were rigorously validated in a wide range of in vitro assays including liposomal ion flow detected by NMR or ion-selective electrodes, as well as biophysical experiments in planar bilayers. During the past decade, biological activity was observed for these compounds including toxicity to bacteria, yeast, and mammalian cells due to stress caused by the disruption of ion homeostasis. The channel mechanism was verified in cells using membrane polarity sensitive dyes, as well as patch clamping studies. This body of work has provided a solid foundation with which hydraphiles have recently demonstrated acute biological toxicity in the muscle tissue of living mice, as measured by whole animal fluorescence imaging and histological studies. Here we review the critical structure-activity relationships in the hydraphile family of compounds and the in vitro and in cellulo experiments that have validated their channel behavior. This report culminates with a description of recently reported efforts in which these molecules have demonstrated activity in living mice. PMID:23401675

  20. Discovery and Canine Preclinical Assessment of a Non-Toxic Procaspase-3-Activating Compound

    PubMed Central

    Peterson, Quinn P.; Hsu, Danny C.; Novotny, Chris J.; West, Diana C.; Kim, Dewey; Schmit, Joanna M.; Dirikolu, Levent; Hergenrother, Paul J.; Fan, Timothy M.

    2010-01-01

    A critical event in the apoptotic cascade is the proteolytic activation of procaspases to active caspases. The caspase auto-activating compound PAC-1 induces cancer cell apoptosis and exhibits antitumor activity in murine xenograft models when administered orally as a lipid-based formulation or implanted subcutaneously as a cholesterol pellet. However, high doses of PAC-1 were found to induce neurotoxicity, prompting us to design and assess a novel PAC-1 derivative called S-PAC-1. Similar to PAC-1, S-PAC-1 activated procaspase-3 and induced cancer cell apoptosis. However, S-PAC-1 did not induce neurotoxicity in mice or dogs. Continuous intravenous infusion of S-PAC-1 in dogs led to a steady state plasma concentration of ~10 µM for 24–72 hours. In a small efficacy trial of S-PAC-1, evaluation of six pet dogs with lymphoma revealed that S-PAC-1 was well-tolerated and that the treatments induced partial tumor regression or stable diseasein 4 / 6 subjects. Our results support this canine setting for further evaluation of small molecule procaspase-3 activators, including S-PAC-1, a compound that is an excellent candidate for further clinical evaluation as a novel cancer chemotherapeutic. PMID:20823163

  1. Frontal immunoaffinity chromatography with mass spectrometric detection: a method for finding active compounds from traditional Chinese herbs.

    PubMed

    Luo, Hongpeng; Chen, Lirong; Li, Zhengquan; Ding, Zhensheng; Xu, Xiaojie

    2003-08-15

    Frontal affinity chromatography (FAC) using immobilized polyclone antibodies of compound A coupled with mass spectrometry was used for the screening of affinity compounds from an extract of Phyllanthus urinaria L. Mass spectrometry was used as an analyzer of FAC. It can analyze the frontal affinity chromatogram of each compound of the extract in one program. The extract was dissolved in 2 mM NH4OAc at a concentration of 10 microg/ mL, then loaded on the immobilized antibody column, and data were collected from mass spectrometry to get a frontal affinity chromatogram. The screening of extract resulted in brevifolin, brevifolin carboxylic acid, corilagin, ellagic acid, and phyllanthusiin U. Activity analyses give high inhibitory activities to these compounds. This research work afforded us a new approach to find new leading compounds from nature or a man-made combinatorial library that have different structure styles or to find substitutes for the synthetic active compound that has high toxicity. PMID:14632110

  2. SETI-Italia: Present Activities and Future Real Time Data Processing System

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Bianchi, G.; Bartolini, M.; Mattana, A.; Monari, J.; Naldi, G.; Perini, F.; Pluchino, S.; Pupillo, G.

    2010-04-01

    A complete review of present SETI-Italia activities and data processing systems are presented. The future plan is to develop a new very powerful data processing reconfigurable platform (based on FPGAs) to implement even more powerful real time algorithms.

  3. Dehydrogenative Coupling Reactions with Oxidized Guanidino-Functionalized Aromatic Compounds: Novel Options for σ-Bond Activation.

    PubMed

    Wild, Ute; Federle, Stefanie; Wagner, Arne; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2016-08-16

    We present a new option for metal-free σ-bond activation, making use of oxidized, guanidino-functionalized aromatic compounds (GFAs). We demonstrate this new option by the homocoupling reactions of thiols and phosphines. The kinetics and the reaction pathway were studied by a number of experiments (including heterocoupling of thiols and phosphines), supported by quantum-chemical computations. Reaction of the oxidized GFA with p-dihydrobenzoquinone to give p-benzoquinone shows that typical proton-coupled electron-transfer reactions are also possible. PMID:27430589

  4. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays.

    PubMed

    Legler, Juliette; Dennekamp, Martine; Vethaak, A Dick; Brouwer, Abraham; Koeman, Jan H; van der Burg, Bart; Murk, Albertinka J

    2002-07-01

    Sediments may be the ultimate sink for persistent (xeno-)estrogenic compounds released into the aquatic environment. Sediment-associated estrogenic potency was measured with an estrogen receptor-mediated luciferase reporter gene (ER-CALUX) assay and compared with a recombinant yeast screen. The ER-CALUX assay was more sensitive to 17beta-estradiol (E2) than the recombinant yeast screen, with an EC50 of 6 pM E2 compared to 100 pM in the yeast screen. Yeast cells were unable to distinguish the anti-estrogens ICI 182,780 and (4-hydroxy)tamoxifen, which were agonistic in the yeast. Acetone-soluble fractions of hexane/acetone extracts of sediments showed higher estrogenic potency than hexane-soluble extracts in the ER-CALUX assay. Sediments obtained from industrialized areas such as the Port of Rotterdam showed the highest estrogenic potency of the 12 marine sediments tested (up to 40 pmol estradiol equivalents per gram sediment). The estrogenic activity of individual chemicals that can be found in sediments including: alkylphenol ethoxylates and carboxylates; phthalates; and pesticides, was tested. Increasing sidechain length of various nonylphenol ethoxylates resulted in decreased estrogenic activity. Of the phthalates tested, butylbenzylphthalate was the most estrogenic, though with a potency approximately 100,000 times less than E2. The organochlorine herbicides atrazine and simazine failed to induce reporter gene activity. As metabolic activation may be required to induce estrogenic activity, a metabolic transformation step was added to the ER-CALUX assay using incubation of compounds with liver microsomes obtained from PCB-treated rats. Results indicate that metabolites of E2, NP and bisphenol A were less active than the parent compounds, while metabolites of methoxychlor were more estrogenic following microsomal incubations. PMID:12109482

  5. Follow-up: Prospective compound design using the ‘SAR Matrix’ method and matrix-derived conditional probabilities of activity

    PubMed Central

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the ‘Structure-Activity Relationship (SAR) Matrix’ (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a “chemical space envelope” around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  6. Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris

    PubMed Central

    Pearson, Mark S.; Giacomin, Paul R.; Becker, Luke; Sotillo, Javier; Pickering, Darren

    2016-01-01

    Background Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. Methodology/Principal Findings Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds—luteolin (3) and (3R,6R)-linalool oxide acetate (1)—showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8–36.9 μg/mL) and T. muris (IC50 range = 9.7–20.4 μg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 μg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. Conclusions/Significance Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths—T. muris and S. mansoni—and was

  7. A new flavonol glycoside and activity of compounds from the flower of Nymphaea candida.

    PubMed

    Liu, R-N; Wang, W; Ding, Y; Xie, W-D; Ma, C; Du, L-J

    2007-01-01

    A new compound, kaempferol 3-O-(2''-O-galloylrutinoside) (1), was isolated from the white flower of Nymphaea candida, together with nine known flavonol glycosides, kaempferol (2), kaempferol 3-O-beta-D-glucopyranoside (3), kaempferol 3-O-alpha-l-rhamnopyranoside (4), kaempferol 3-O-alpha-l-rhamnopyranosylglucopyranoside (5), kaempferol 7-O-beta-D-glucopyranoside 3-(O-alpha-l-rhamnopyranosylglucopyranoside) (6), quercetin (7), quercetin 3-O-beta-D-xylopyranoside (8), myricetin (9), myricetin 3'-O-beta-D-xylopyranoside (10). The structure of 1 was established on the basis of the analysis of its 1D and 2D NMR spectral data. Compounds 1-7 and 9 exhibited moderate to significant antioxidant activities, which were evaluated by measurement of low-density lipoprotein (LDL) and malondialdehyde (MDA) levels in vitro. Compounds 1, 3, 4, 6 and 9 exhibited promising neuroprotective effects on ischemic injury model of cultured rat cortical neurons treated with sodium dithionite in glucose-free medium. Furthermore, compounds 1, 5, and 9 had distinct cytotoxicity to adrenal gland pheochromocytoma, PC12 cells, being treated by the same way. PMID:17613618

  8. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound

    PubMed Central

    Smith, Kahli A.; Lin, Xionghao; Bolshakov, Oleg; Griffin, James; Niu, Xiaomei; Kovalskyy, Dmytro; Ivanov, Andrey; Jerebtsova, Marina; Taylor, Robert E.; Akala, Emmanuel; Nekhai, Sergei

    2015-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics. PMID:26839837

  9. Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity.

    PubMed

    Singh, Vijay P; Poon, Jia-Fei; Butcher, Ray J; Engman, Lars

    2014-09-22

    One of the vitamin B6 vitamers, pyridoxine, was modified to incorporate selenium in various oxidation states in place of the methyl group in position 2. Such compounds were conveniently accessed by treatment of bis-4,5-(carboethoxy)-2-iodo-3-pyridinol with disodium diselenide and LiAlH4 -reduction. After work-up, selone 7 was isolated in good yield as an air-stable crystalline material. Hydrogen bonding to the neighboring hydroxyl group, as revealed by the short intramolecular Se⋅⋅⋅H distance in the crystal structure is likely to provide extra stabilization to the compound. Computational studies showed that selone 7 is more stable than the corresponding selenol tautomer by 12.2 kcal mol(-1) . Hydrogen peroxide oxidation of the selone 7 afforded diselenide 12, and, on further oxidation, seleninic acid 13. Treatment of the seleninic acid with thiophenol provided an isolable selenosulfide 14. The glutathione peroxidase-like properties of the pyridoxine-derived compounds were assessed by using the coupled reductase method. Seleninic acid 13 was found to be twofold more active than ebselen. The chain-breaking capacity of the pyridoxine compounds were studied in a water/chlorobenzene membrane model containing linoleic acid as an oxidizable substrate and N-acetylcysteine as a thiol reducing agent. Diselenide 15 could match α-tocopherol when it comes to reactivity towards peroxyl radicals and inhibition time. PMID:25123932

  10. Antiplasmodial activity of compounds from the surface exudates of Senecio roseiflorus.

    PubMed

    Kerubo, Leonidah Omosa; Midiwo, Jacob Ogweno; Derese, Solomon; Langat, Moses K; Akala, Hosea M; Waters, Norman C; Peter, Martin; Heydenreich, Matthias

    2013-02-01

    From the surface exudates of Senecio roseiflorus fourteen known methylated flavonoids and one phenol were isolated and characterized. The structures of these compounds were determined on the basis of their spectroscopic analysis. The surface exudate and the flavonoids isolated showed moderate to good antiplasmodial activity with 5,4'-dihydroxy-7-dimethoxyflavanone having the highest activity against chloroquine-sensitive (D6) and resistant (W2) strains of Plasmodium falciparum, with IC50 values of 3.2 +/- 0.8 and 4.4 +/- 0.01 microg/mL respectively. PMID:23513721

  11. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening. PMID:26226740

  12. Use of depuration compounds in passive air samplers: results from active sampling-supported field deployment, potential uses, and recommendations.

    PubMed

    Moeckel, Claudia; Harner, Tom; Nizzetto, Luca; Strandberg, Bo; Lindroth, Anders; Jones, Kevin C

    2009-05-01

    Depuration compounds (DCs) are added to passive air samplers (PAS) prior to deployment to account for the wind-dependency of the sampling rate for gas-phase compounds. This correction is particularly useful for providing comparable data for samplers that are deployed in different environments and subject to different meteorological conditions such as wind speeds. Two types of PAS--the polyurethane foam (PUF) disk sampler and semipermeable membrane devices (SPMDs)--were deployed at eight heights on a 100 m tower to test whether the DC approach could yield air concentrations profiles for PCBs and organochlorine pesticides and account for the wind speed gradient with height. Average wind speeds ranged from 0.3 to 4.5 m s(-1) over the 40 day deployment, increasing with height Two low volume active air samples (AAS), one collected at 25 m and one at 73 m over the 40 day deployment showed no significant concentration differences for target compounds. As expected, the target compounds taken up by PAS reflected the wind profile with height This wind-dependency of the PAS was also reflected in the results of the DCs. A correction based on the DC approach successfully accounted for the effect of wind on PAS sampling rates, yielding a profile consistent with the AAS. Interestingly, in terms of absolute air concentrations, there were differences between the AAS and PAS-derived values for some target compounds. These were attributed to different sampling characteristics of the two approaches that may have resulted in slightly different air masses being sampled. Based on the results of this study, guidelines are presented for the use of DCs and for the calibration of PAS using AAS. PMID:19534139

  13. Modulation of Histone Deacetylase Activity by Dietary Isothiocyanates and Allyl Sulfides: Studies with Sulforaphane and Garlic Organosulfur Compounds

    PubMed Central

    Nian, Hui; Delage, Barbara; Ho, Emily; Dashwood, Roderick H.

    2009-01-01

    Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur