Science.gov

Sample records for active compounds present

  1. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    PubMed Central

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  2. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva.

    PubMed

    Cordeiro, Francielle A; Amorim, Fernanda G; Anjolette, Fernando A P; Arantes, Eliane C

    2015-01-01

    Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.

  3. In vitro chemo-preventive activities of hydroxytyrosol: the main phenolic compound present in extra-virgin olive oil.

    PubMed

    Rosignoli, Patrizia; Fuccelli, Raffaela; Sepporta, Maria Vittoria; Fabiani, Roberto

    2016-01-01

    The co-incubation in the culture medium with hydroxytyrosol [3,4-dihydroxyphenyl ethanol (3,4-DHPEA)], the main phenolic compound present in extra-virgin olive oil, and H2O2 reduces the oxidative DNA damage in peripheral blood mononuclear cells (PBMC). In this study we investigate, by the comet assay, the ability of 3,4-DHPEA to inhibit the H2O2 induced DNA damage when pre-incubated with PBMC and then removed before the exposure of cells to H2O2. Low doses of 3,4-DHPEA (10-100 μM) pre-incubated for 30 min with PBMC reduced the DNA damage induced by the treatment with H2O2 200 μM for 5 min at 4 °C. Prolonging the exposure time up to 6 h completely prevented the DNA damage. Furthermore we extensively analysed, by the MTT assay, the anti-proliferative activities of 3,4-DHPEA on breast (MDA and MCF-7), prostate (LNCap and PC3) and colon (SW480 and HCT116) cancer cell lines and correlated these effects with the H2O2 accumulation. The concentration of H2O2 in the culture medium was measured by the ferrous ion oxidation-xylenol orange method. The proliferation of all the cell lines was inhibited but at different levels: the prostate cancer cells were more resistant to the growth inhibition with respect to breast and colon cancer cells. The ability of the different cell lines to remove H2O2 from the culture medium was inversely correlated with their sensitivity to the anti-proliferative effect of 3,4-DHPEA. Therefore, 3,4-DHPEA may act as a chemopreventive agent acting on both initiation and promotion/progression phases of carcinogenesis. PMID:26469183

  4. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus.

    PubMed

    Gasparini, R; Amicizia, D; Lai, P L; Bragazzi, N L; Panatto, D

    2014-12-01

    In the first part of this overview, we described the life cycle of the influenza virus and the pharmacological action of the currently available drugs. This second part provides an overview of the molecular mechanisms and targets of still-experimental drugs for the treatment and management of influenza. Briefly, we can distinguish between compounds with anti-influenza activity that target influenza virus proteins or genes, and molecules that target host components that are essential for viral replication and propagation. These latter compounds have been developed quite recently. Among the first group, we will focus especially on hemagglutinin, M2 channel and neuraminidase inhibitors. The second group of compounds may pave the way for personalized treatment and influenza management. Combination therapies are also discussed. In recent decades, few antiviral molecules against influenza virus infections have been available; this has conditioned their use during human and animal outbreaks. Indeed, during seasonal and pandemic outbreaks, antiviral drugs have usually been administered in mono-therapy and, sometimes, in an uncontrolled manner to farm animals. This has led to the emergence of viral strains displaying resistance, especially to compounds of the amantadane family. For this reason, it is particularly important to develop new antiviral drugs against influenza viruses. Indeed, although vaccination is the most powerful means of mitigating the effects of influenza epidemics, antiviral drugs can be very useful, particularly in delaying the spread of new pandemic viruses, thereby enabling manufacturers to prepare large quantities of pandemic vaccine. In addition, antiviral drugs are particularly valuable in complicated cases of influenza, especially in hospitalized patients. To write this overview, we mined various databases, including Embase, PubChem, DrugBank and Chemical Abstracts Service, and patent repositories.

  5. Analysis and anti-Helicobacter activity of sulforaphane and related compounds present in broccoli ( Brassica oleracea L.) sprouts.

    PubMed

    Moon, Joon-Kwan; Kim, Jun-Ran; Ahn, Young-Joon; Shibamoto, Takayuki

    2010-06-01

    A crude methanol extract prepared from fresh broccoli sprouts was extracted with hexane, chloroform, ethyl acetate, and butanol sequentially. Residual water fraction was obtained from the residual aqueous layer. The greatest inhibition zones (>5 cm) were noted for Helicobacter pylori strain by the chloroform extract, followed by the hexane extract (5.03 cm), the ethyl acetate extract (4.90 cm), the butanol extract (3.10 cm), and the crude methanol extract (2.80 cm), whereas the residual water fraction did not show any inhibition zone. Including sulforaphane, five sulforaphane-related compounds were positively identified in the chloroform extract, of which 5-methylsulfinylpentylnitrile was found in the greatest concentration (475.7 mg/kg of fresh sprouts), followed by sulforaphane (222.6 mg/kg) and 4-methylsulfinylbutylnitrile (63.0 mg/kg). Among 18 sulforaphane and related compounds synthesized (6 amines, 6 isothiocyanates, and 6 nitriles), 2 amines, 6 isothiocyanates, and 1 nitrile exhibited >5 cm inhibitory zones for H. pylori strain. The results indicate that broccoli sprouts can be an excellent food source for medicinal substances.

  6. Comparative analysis of radical scavenging and antioxidant activity of phenolic compounds present in everyday use spice plants by means of spectrophotometric and chromatographic methods.

    PubMed

    Stankevičius, Mantas; Akuņeca, Ieva; Jãkobsone, Ida; Maruška, Audrius

    2011-06-01

    Comparative analysis of radical scavenging and antioxidant activities of phenolic compounds present in everyday use spice plants was carried out by means of spectrophotometric and chromatographic methods. Six spice plant samples, namely onion (Allium cepa), parsley (Petroselinum crispum) roots and leaves, celery (Apium graveolens) roots and leaves and leaves of dill (Anethum graveolens) were analyzed. Total amount of phenolic compounds and radical scavenging activity (RSA) was the highest in celery leaves and dill extracts and was the lowest in celery roots. Comparing commonly used spectrophotometric analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) RSA of extracts with the results obtained using reversed-phase chromatographic separation with on-line post-column radical scavenging reaction detection, good correlation was obtained (R(2)=0.848). Studies using HPLC system with electrochemical detector showed that bioactive phytochemicals can be separated and antioxidant activities of individual compounds evaluated without the need of a complex HPLC system with reaction detector. The results obtained using electrochemical detection correlate with the RSA assayed using spectrophotometric method (R(2)=0.893).

  7. Polyfluorinated Compounds: Past, Present, and Future

    EPA Science Inventory

    Interest and concern about polyfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS), erfluorooctanoic acid (PFOA), and an increasing number of other related compounds is growing as more is learned about these ubiquitous anthropogenic substances. Many of these co...

  8. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Chiasson, F.

    2004-09-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5×10 7 CFU/ml). Active compounds were added at the concentration corresponding to {1}/{30} of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.

  9. Deepened Extinction following Compound Stimulus Presentation: Noradrenergic Modulation

    ERIC Educational Resources Information Center

    Janak, Patricia H.; Corbit, Laura H.

    2011-01-01

    Behavioral extinction is an active form of new learning involving the prediction of nonreward where reward has previously been present. The expression of extinction learning can be disrupted by the presentation of reward itself or reward-predictive stimuli (reinstatement) as well as the passage of time (spontaneous recovery) or contextual changes…

  10. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  11. Active magnetoplasmonic ruler (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zubritskaya, Irina

    2016-04-01

    Plasmon rulers are an emerging concept in which the strong near-field coupling of plasmon nanoantenna elements is employed to obtain structural information at the nanoscale. Here, we combine nanoplasmonics and nanomagnetism to conceptualize a magnetoplasmonic dimer nanoantenna that would be able to report nanoscale distances while optimizing its own spatial orientation. The latter constitutes an active operation in which a dynamically optimized optical response per measured unit length allows for the measurement of small and large nanoscale distances with about 2 orders of magnitude higher precision than current state-of-the-art plasmon rulers. We further propose a concept to optically measure the nanoscale response to the controlled application of force with a magnetic field.

  12. A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.

    ERIC Educational Resources Information Center

    Hendrickson, James B.

    1985-01-01

    Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

  13. New biologically active compounds from Kenyan propolis.

    PubMed

    Petrova, Assya; Popova, Milena; Kuzmanova, Christina; Tsvetkova, Iva; Naydenski, Hristo; Muli, Eliud; Bankova, Vassya

    2010-09-01

    From propolis samples from Kenya, two new arylnaphtalene lignans were isolated, tetrahydrojusticidin B 1 and 6-methoxydiphyllin 2, along with four known phenolic compounds 5-8, found for the first time in propolis. The structures of the compounds were elucidated based on their spectral properties. The geranylstilbenes 7 and 8 demonstrated antibacterial activity against S. aureus, and the geranylflavon macarangin 6 possessed antiradical activity against DPPH radicals.

  14. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  15. 2-Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities.

    PubMed

    Sieveking, Ivan; Thomas, Pablo; Estévez, Juan C; Quiñones, Natalia; Cuéllar, Mauricio A; Villena, Juan; Espinosa-Bustos, Christian; Fierro, Angélica; Tapia, Ricardo A; Maya, Juan D; López-Muñoz, Rodrigo; Cassels, Bruce K; Estévez, Ramon J; Salas, Cristian O

    2014-09-01

    A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.

  16. [Platinum compounds in cancer therapy--past, present, and future].

    PubMed

    Akaza, H; Saijo, N; Aiba, K; Isonishi, S; Ohashi, Y; Kawai, K; Konishi, T; Saeki, T; Sone, S; Tsukagoshi, S; Tsuruo, T; Noguchi, S; Miki, T; Mikami, O; Smith, M; Hoctin-Boes, G; Stribling, D

    2001-05-01

    Platinum cytotoxics play an important role globally in the management of solid tumours. Cisplatin sets the standard for efficacy in both regions with careful administration to reduce nephrotoxicity. Carboplatin is associated with neurotoxicity, but has become the leading product in the US due largely to the easier to manage toxicity profile. Both agents have been widely used in both registered and non registered indications and are frequently combined with other cytotoxics. In Japan, cisplatin has been used successfully at low doses in combination with 5-FU based regimens and appears to achieve a synergistic effect, but controlled data are not yet available. More recently oxaliplatin (Europe) and nedaplatin (in Japan) have been introduced, but their clinical roles in therapy have yet to be established. One of the limiting features of the first generation of platinum compounds is that a significant proportion of tumours develop cross resistance to platins due to either changes in uptake or excretion, intracellular detoxification or accelerated DNA repair. The forum discussed the possibility for the development of better new platinum compounds, A new platin agent which had lower toxicity and higher efficacy across a wide range of cancers without the development of resistance would be a significant step forward. If the tolerability profile was suitable, an oral formulation may improve the quality of life for patients but this must not be at the expense of efficacy. Even after the introduction of new target based drugs, platinum cytotoxics are likely to be used to reduce the tumour mass and in some cases can be expected to potentiate the effects of the new agents. In preclinical studies, ZD0473 has been shown to by-pass some major mechanisms of resistance and has the potential to achieve these objectives and is now being evaluated in clinical studies in both Japan and the West. PMID:11383210

  17. Auxin Activity: Past, present, and Future1

    PubMed Central

    Enders, Tara A.; Strader, Lucia C.

    2016-01-01

    Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny–Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled “The relative activities of different auxins” from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin—including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances. PMID:25667071

  18. Auxin activity: Past, present, and future.

    PubMed

    Enders, Tara A; Strader, Lucia C

    2015-02-01

    Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.

  19. Synthesis and Assay of SIRT1-Activating Compounds.

    PubMed

    Dai, H; Ellis, J L; Sinclair, D A; Hubbard, B P

    2016-01-01

    The NAD(+)-dependent deacetylase SIRT1 plays key roles in numerous cellular processes including DNA repair, gene transcription, cell differentiation, and metabolism. Overexpression of SIRT1 protects against a number of age-related diseases including diabetes, cancer, and Alzheimer's disease. Moreover, overexpression of SIRT1 in the murine brain extends lifespan. A number of small-molecule sirtuin-activating compounds (STACs) that increase SIRT1 activity in vitro and in cells have been developed. While the mechanism for how these compounds act on SIRT1 was once controversial, it is becoming increasingly clear that they directly interact with SIRT1 and enhance its activity through an allosteric mechanism. Here, we present detailed chemical syntheses for four STACs, each from a distinct structural class. Also, we provide a general protocol for purifying active SIRT1 enzyme and outline two complementary enzymatic assays for characterizing the effects of STACs and similar compounds on SIRT1 activity. PMID:27423864

  20. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  1. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    SciTech Connect

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  2. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  3. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    DOEpatents

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  4. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    DOEpatents

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  5. Antimicrobial activities of single aroma compounds.

    PubMed

    Schmidt, Erich; Bail, Stefanie; Friedl, Susanne Mirjam; Jirovetz, Leopold; Buchbauer, Gerhard; Wanner, Jürgen; Denkova, Zapryana; Slavchev, Alexander; Stoyanova, Albena; Geissler, Margit

    2010-09-01

    Commercially available aroma samples were evaluated for their olfactory quality by professional perfumers and tested for their antimicrobial activity. Agar diffusion and agar-dilution were used as test methods and a set of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and four Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris G, Klebsiella pneumoniae and Salmonella abony) and a yeast, Candida albicans, were the test microorganisms. All the investigated compounds were active against Gram-positive bacteria, especially beta-caryophyllene against Enterococcus faecalis (MIC 6 ppm), but only few substances showed activity towards Gram-negative bacteria, except for cinnamic acid, which was active against all (MIC 60 ppm) and Candida albicans, against which cinnamic acid and caryophyllene oxide showed high activity (MIC < 60 ppm).

  6. Presentation Capability of Compound Displays for Pressure and Force

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Kato, Keitaro; Fujiwara, Takehiro; Mitsuya, Yasunaga; Miyaoka, Tetsu

    The authors developed advanced haptic displays capable of stimulating the muscles and tendons of the forearms and tactile receptors in fingers to investigate tactile and force effects on simultaneous presentation. Display A is comprised of a master hand with two sets of tactile display with a 4-by-6 array of stimulus pins driven by micro-actuators and an articulated manipulator. Display B is comprised of an articulated manipulator and an 8-by-8 array type tactile display developed in a previous paper. A series of experiments was performed using the above A and B displays to verify the presentation capability of this display type. In Experiment I, subjects grasped virtual pegs and judged their diameters. In Experiment II, subjects tried to insert the pegs into holes. In Experiment III, the crossed-angle of a comparison texture was adjusted to bring it as close as possible to the standard texture fixed during experiments. Since diameter discrimination and insertion precision of the virtual peg were increased by tactile information, tactile-force presentation was effective for peg-in-hole for relatively large clearance. On the other hand, recognition capability for virtual texture was not enhanced compared to a mouse-mounted tactile display previously developed. While the pressure display is effective for instant of touch and peg rotation representations, rotation tactile imaging is not always effective for texture recognitions.

  7. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part I: Influenza life-cycle and currently available drugs.

    PubMed

    Gasparini, R; Amicizia, D; Lai, P L; Bragazzi, N L; Panatto, D

    2014-09-01

    Influenza is a contagious respiratory acute viral disease characterized by a short incubation period, high fever and respiratory and systemic symptoms. The burden of influenza is very heavy. Indeed, the World Health Organization (WHO) estimates that annual epidemics affect 5-15% of the world's population, causing up to 4-5 million severe cases and from 250,000 to 500,000 deaths. In order to design anti-influenza molecules and compounds, it is important to understand the complex replication cycle of the influenza virus. Replication is achieved through various stages. First, the virus must engage the sialic acid receptors present on the free surface of the cells of the respiratory tract. The virus can then enter the cells by different routes (clathrin-mediated endocytosis or CME, caveolae-dependent endocytosis or CDE, clathrin-caveolae-independent endocytosis, or macropinocytosis). CME is the most usual pathway; the virus is internalized into an endosomal compartment, from which it must emerge in order to release its nucleic acid into the cytosol. The ribonucleoprotein must then reach the nucleus in order to begin the process of translation of its genes and to transcribe and replicate its nucleic acid. Subsequently, the RNA segments, surrounded by the nucleoproteins, must migrate to the cell membrane in order to enable viral assembly. Finally, the virus must be freed to invade other cells of the respiratory tract. All this is achieved through a synchronized action of molecules that perform multiple enzymatic and catalytic reactions, currently known only in part, and for which many inhibitory or competitive molecules have been studied. Some of these studies have led to the development of drugs that have been approved, such as Amantadine, Rimantadine, Oseltamivir, Zanamivir, Peramivir, Laninamivir, Ribavirin and Arbidol. This review focuses on the influenza life-cycle and on the currently available drugs, while potential antiviral compounds for the prevention and

  8. Biologically active compounds of semi-metals.

    PubMed

    Rezanka, Tomás; Sigler, Karel

    2008-02-01

    Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance. PMID:17991498

  9. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    PubMed

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  10. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    PubMed

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts.

  11. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    PubMed

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. PMID:27155370

  12. Effect of ionizing radiation on antioxidant compounds present in cork wastewater.

    PubMed

    Madureira, J; Melo, R; Botelho, M L; Leal, J P; Fonseca, I M

    2013-01-01

    A preliminary study of the gamma radiation effects on the antioxidant compounds present in cork cooking water was carried out. Radiation studies were performed using radiation between 20 and 50 kGy at 0.4 and 2.4 kGy h(-1). The radiation effects on organic matter content were evaluated by chemical oxygen demand. The antioxidant activity was measured by ferric reducing power assay. The total phenolic content was studied using the Folin-Ciocalteau method. Results show that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. These results highlight the potential of this technology for increasing the added value of cork waters.

  13. Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    PubMed Central

    Pałkowski, Łukasz; Błaszczyński, Jerzy; Skrzypczak, Andrzej; Błaszczak, Jan; Nowaczyk, Alicja; Wróblewska, Joanna; Kożuszko, Sylwia; Gospodarek, Eugenia; Słowiński, Roman; Krysiński, Jerzy

    2015-01-01

    The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA), which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds. PMID:25961015

  14. Natural products as a resource for biologically active compounds

    SciTech Connect

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  15. 2-Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities.

    PubMed

    Sieveking, Ivan; Thomas, Pablo; Estévez, Juan C; Quiñones, Natalia; Cuéllar, Mauricio A; Villena, Juan; Espinosa-Bustos, Christian; Fierro, Angélica; Tapia, Ricardo A; Maya, Juan D; López-Muñoz, Rodrigo; Cassels, Bruce K; Estévez, Ramon J; Salas, Cristian O

    2014-09-01

    A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds. PMID:25127463

  16. Functional Group Composition of Semivolatile Compounds Present in Submicron Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Modini, R. L.; Iannarelli, R.; Rossi, M. J.; Takahama, S.

    2014-12-01

    Semivolatile organic compounds can partition between gas and particle phase in atmospheric conditions and can be volatilized and lost when the aerosol sampling is performed onto PTFE filters (Eatough et al., 1993). In this work, semivolatile compounds are collected onto carbon impregnated glass fiber-cellulose filters placed in series after an activated carbon denuder and PTFE filter which collects submicron aerosol particles of low volatility (Subramanian et al., 2004). The semivolatile compounds accumulated on the cellulose-glass fiber filters are desorbed by vacuum and injected into a stainless steel chamber that enables cold-trapping. The vapors in this chamber are condensed onto a low-temperature silicon window, and the composition of deposited vapors are analysed by transmission-mode Fourier Transform Infrared (FTIR) spectroscopy (Delval and Rossi, 2004). Functional group composition of semivolatile compounds that can be desorbed from the aerosol phase and its relationship with the apparent low-volatile fraction composition will be presented. Eatough, D.J., Wadsworth, A., Eatough, D.A., Crawford, J.W., Hansen, L.D., Lewis, E.A., 1993. A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmospheric Environment. Part A. General Topics 27, 1213-1219. Subramanian, R., Khlystov, A.Y., Cabada, J.C., Robinson, A.L., 2004. Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations. Aerosol Science and Technology 38, 27-48. Delval, C., Rossi, M.J., 2004. The kinetics of condensation and evaporation of H2O from pure ice in the range 173-223 K: a quartz crystal microbalance study. Physical Chemistry Chemical Physics 6, 4665-4676.

  17. Biological active compounds from Georgian Galanthus shaoricus.

    PubMed

    Jokhadze, M; Kuchukhidze, J; Chincharadze, D; Murtazashvili, T

    2011-10-01

    Amaryllidaceae alkaloids exhibit antitumour, antiviral and anticholinergic activities. Some of them have been used in the treatment of myasthenia gravis, myopathy and diseases of the nervous system. In this study, the characterization of these compounds from Amaryllidaceae plants along with some biological activities and some regulations to conserve the native flora will be reviewed. Plants materials: Galanthus shaoricus Kem.-Nath., were collected in 2007-2008 during the flowering period in Georgia. The preparation of extracts and fractions were obtained using methanolic maceration. Crude alkaloidal extracts were typically purified by liquid-liquid partitioning of their basic forms in chloroform. Lycorine, galantamine and tazettine has been found as one of the major alkaloid from Amaryllidaceae plants. Galanthus shaoricus have shown good antimalarial and cytotoxic activity in a dose-dependent manner. Methanolic extracts from bulbs demonstrated significant growth inhibition on human Hela and HCT-116 cells lines with IC50 (μg/mL) 16.3±1.8; 22.1±2.9 (aerial parts) and 12.8±1.7; 16.5±1.9 (Bulbs), respectively. Concerning the Amaryllidaceae alkaloids, lycorine with IC50 (μM) 0.8±0.5 and 2.6±0.2, haemantaimene (IC50=1.1±0.7 and 2.7±0.8 μM), hamaine (IC50=3.4±1.0 and 6.2 ±1.4 μM), homolycorine (IC50=1.4±0.9 and 3.3±1.0 μM), hipeastrine (IC50=2.8±1.0 and 7.5±1.8 μM) were found to be responsible for the cytotoxic activity on HCT-116 and Hela cell lines, respectively.

  18. Insilico studies of organosulfur-functional active compounds in garlic.

    PubMed

    Singh, Yogendra P; Singh, Ram A

    2010-01-01

    Garlic has been used medicinally since antiquity because of its antimicrobial activity, anticancer activity, antioxidant activity, ability to reduce cardiovascular diseases, improving immune functions, and antidiabetic activities and also in reducing cardiovascular diseases and improving immune functions. Recent studies identify that the wide variety of medicinal functions are attributed to the sulfur compounds present in garlic. Epidemiological observations and laboratory studies in animal models have also showed anticarcinogenic potential of organosulfur compounds of garlic. In this study, in silico analysis of organosulfur compounds is reported using the methods of theoretical chemistry to elucidate the molecular properties of garlic as it is more time and cost efficient, reduces the number of wet experiments, and offers the possibility of replacing some animal tests with suitable in silico models. The analysis of molecular descriptors defined by Lipinski has been done. The solubility of drug in water has been determined as it is of useful importance in the process of drug discovery from molecular design to pharmaceutical formulation and biopharmacy. All toxicities associated with candidate drug have been calculated. P-Glycoprotein expressed in normal tissues as a cause of drug pharmacokinetics and pharmacodynamics has been examined. Drug-plasma protein binding and volume of distribution have also been calculated. To avoid rejection of drugs, it is becoming more important to determine pK(a), absorption, polar surface area, and other physiochemical properties associated with a drug, before synthetic work is undertaken. The present in silico study is aimed at examining these compounds of garlic to evaluate its possible efficacy and toxicity under conditions of actual use in humans. PMID:20641079

  19. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds.

    PubMed

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Wilkinson, Shane R; Szular, Joanna; Kaiser, Marcel

    2016-07-19

    A small series of 5-nitro-2-aminothiazole-based amides containing arylpiperazine-, biphenyl- or aryloxyphenyl groups in their core were synthesized and evaluated as antitrypanosomatid agents. All tested compounds were active or moderately active against Trypanosoma cruzi amastigotes in infected L6 cells and Trypanosoma brucei brucei, four of eleven compounds were moderately active against Leishmania donovani axenic parasites while none were deemed active against T. brucei rhodesiense. For the most active/moderately active compounds a moderate selectivity against each parasite was observed. There was good correlation between lipophilicity (clogP value) and antileishmanial activity or toxicity against L6 cells. Similarly, good correlation existed between clogP values and IC50 values against T. cruzi in structurally related subgroups of compounds. Three compounds were more potent as antichagasic agents than benznidazole but were not activated by the type I nitrorectusase (NTR). PMID:27092415

  20. Evaluation of Natural Compounds for Antimicrobial Activity in the Introductory Microbiology Laboratory.

    ERIC Educational Resources Information Center

    Finer, Kim R.

    1997-01-01

    Presents an experiment that provides students with an opportunity to investigate folk medicine and herbal cures and their accompanying claims. Involves isolating some active compounds from plant materials and demonstrating their antibacterial activity. (JRH)

  1. Fungal proteinaceous compounds with multiple biological activities.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Chan, Yau Sang; Dan, Xiuli; Pan, Wenliang; Wang, Hexiang; Guan, Suzhen; Chan, Ki; Ye, Xiuyun; Liu, Fang; Xia, Lixin; Chan, Wai Yee

    2016-08-01

    Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential. PMID:27338574

  2. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb

    PubMed Central

    2014-01-01

    Background In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Methods Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. Results The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. Conclusion These results

  3. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds.

    PubMed

    Alves, Maria José; Ferreira, Isabel C F R; Dias, Joana; Teixeira, Vânia; Martins, Anabela; Pintado, Manuela

    2013-01-01

    The present review reports the antifungal activity of mushroom extracts and isolated compounds including high (e.g. peptides and proteins) and low (e.g. sesquiterpenes and other terpenes, steroids, organic acids, acylcyclopentenediones and quinolines) molecular weight compounds. Most of the studies available on literature focused on screening of antifungal activity of mushroom extracts, rather than of isolated compounds. Data indicate that mushroom extracts are mainly tested against different Candida species, while mushroom compounds are mostly tested upon other fungi. Therefore, the potential of these compounds might be more useful in food industry than in clinics. Oudemansiella canarii and Agaricus bisporus methanolic extracts proved to be the most active mushroom extracts against Candida spp. Grifolin, isolated from Albatrellus dispansus, seemed to be the most active compound against phytopathogenic fungi. Further studies should be performed in order to better understand the mechanism of action of this and other antifungal compounds as well as safety issues.

  4. Flavor-active compounds potentially implicated in cooked cauliflower acceptance.

    PubMed

    Engel, Erwan; Baty, Céline; Le Corre, Daniel; Souchon, Isabelle; Martin, Nathalie

    2002-10-23

    The aim of the present study was to determine the flavor-active compounds responsible for the "sulfur" and "bitter" flavors of cooked cauliflower potentially implicated in cauliflower rejection by consumers. Eleven varieties of cauliflower were cooked and assessed by a trained sensory panel for flavor profile determination. Among the 13 attributes, the varieties differed mainly according to their "cauliflower odor note" and their "bitterness". Various glucosinolates were quantified by HPLC and correlated with bitterness intensity. The results showed that neoglucobrassicin and sinigrin were responsible for the bitterness of cooked cauliflower. Application of Dynamic Headspace GC-Olfactometry and DH-GC-MS showed that allyl isothiocyanate (AITC), dimethyl trisulfide (DMTS), dimethyl sulfide (DMS), and methanethiol (MT) were the key odorants of cooked cauliflower "sulfur" odors. Moreover, these volatile compounds corresponded to the main compositional differences observed between varieties. Finally, AITC, DMTS, DMS, MT, sinigrin, and neoglucobrassicin were shown to be potential physicochemical determinants of cooked cauliflower acceptance.

  5. Evaluation of compounds for insecticidal activity on adult mosquitos*

    PubMed Central

    Hadaway, A. B.; Barlow, F.; Grose, J. E. H.; Turner, C. R.; Flower, L. S.

    1970-01-01

    New pyrethrin-like compounds are compared with earlier synthetic pyrethroids and natural pyrethrins for intrinsic toxicity to adult mosquitos and for residual contact activity. Two of the compounds are at least as toxic as pyrethrin I to female Anopheles stephensi and Aedes aegypti. Residues of these compounds are very persistent in the dark or in very subdued lighting but they decompose on exposure to normal intensities of daylight and rapidly lose their insecticidal activity. PMID:4392939

  6. Low molecular carbon compounds present in the rhizosphere control denitrification kinetics

    NASA Astrophysics Data System (ADS)

    Herold, M.; Morley, N.; Baggs, E.

    2013-12-01

    Nitrogen and carbon cycles play key roles in plant-microbe interactions in soils. Carbon is supplied by plants to microbes in the form of root exudates which includes both high and low molecular compounds. Nitrogen in turn is taken up by plants and rhizosphere microbes metabolise nitrogen compounds in several biochemical pathways. The conversion of nitrogen compounds to volatile products in the process of denitrification leads to increasing amounts of nitrous oxide (N2O) in the atmosphere. Nitrous oxide is a potent greenhouse gas and increasing emissions of N2O through intense agriculture have lead to intensified research to find possible mitigation strategies to reduce N2O production from soil. In our study we show the effect of low molecular carbon compounds, typically found in root exudates, on the dynamics of denitrification as well as the dose response effect of the single compounds. The hypothesis was tested that different compound groups change the kinetics of the different reduction steps in the biochemical pathway of denitrification, which results in lower N2O production. Experiments were performed in soil-microcosms using 15N labelling approaches to monitor denitrification products . Microcosms were maintained as slurries in order to create oxygen limiting conditions, which favours denitrification. Carbon dioxide and N2O were monitored throughout the experiments and on three destructive sampling days NO3, NO2, NO and 15N-N2 were measured. Results showed that the denitrification process was differently affected by amino acids and organic acids with higher denitrification activity observed in the presence of organic acids. The dynamics of the single reduction steps were time dependent which indicates that substrate availability plays an important role in soil microbial activity. We concluded that the activity of denitrifiers are significantly influenced by different carbon compounds, and that further studies on the effects of the composition of root

  7. Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences.

    PubMed

    López-Berenguer, Carmen; Carvajal, Micaela; Moreno, Diego A; García-Viguera, Cristina

    2007-11-28

    Cooking as a domestic processing method has a great impact on food nutrients. Most Brassica (Brassicaceae, Cruciferae) vegetables are mainly consumed after being cooked, and cooking considerably affects their health-promoting compounds (specifically, glucosinolates, phenolic compunds, minerals, and vitamin C studied here). The microwave cooking process presents controversial results in the literature due to the different conditions that are employed (time, power, and added water). Therefore, the aim of this work was to study the influence of these conditions during microwave cooking on the human bioactive compounds of broccoli. The results show a general decrease in the levels of all the studied compounds except for mineral nutrients which were stable under all cooking conditions. Vitamin C showed the greatest losses mainly because of degradation and leaching, whereas losses for phenolic compounds and glucosinolates were mainly due to leaching into water. In general, the longest microwave cooking time and the higher volume of cooking water should be avoided to minimize losses of nutrients.

  8. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  9. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  10. Structure-Activity Relationships in Nitro-Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Vogt, R. A.; Rahman, S.; Crespo-Hernández, C. E.

    Many nitro-aromatic compounds show mutagenic and carcinogenic properties, posing a potential human health risk. Despite this potential health hazard, nitro-aromatic compounds continue to be emitted into ambient air from municipal incinerators, motor vehicles, and industrial power plants. As a result, understanding the structural and electronic factors that influence mutagenicity in nitro-aromatic compounds has been a long standing objective. Progress toward this goal has accelerated over the years, in large part due to the synergistic efforts among toxicology, computational chemistry, and statistical modeling of toxicological data. The concerted influence of several structural and electronic factors in nitro-aromatic compounds makes the development of structure-activity relationships (SARs) a paramount challenge. Mathematical models that include a regression analysis show promise in predicting the mutagenic activity of nitro-aromatic compounds as well as in prioritizing compounds for which experimental data should be pursued. A major challenge of the structure-activity models developed thus far is their failure to apply beyond a subset of nitro-aromatic compounds. Most quantitative structure-activity relationship papers point to statistics as the most important confirmation of the validity of a model. However, the experimental evidence shows the importance of the chemical knowledge in the process of generating models with reasonable applicability. This chapter will concisely summarize the structural and electronic factors that influence the mutagenicity in nitro-aromatic compounds and the recent efforts to use quantitative structure-activity relationships to predict those physicochemical properties.

  11. DEVELOPMENT OF ANALYTICAL STANDARDS FOR THE ANALYSIS OF ORGANIC COMPOUNDS PRESENT IN PM2.5

    EPA Science Inventory

    The paper discusses the development of analytical standards for the analysis of organic compounds present in particulate matter with aerodynamic diameters < 2.5 micrometers (PM2.5). The methods and analytical standards described in the paper are designed to be implemented in a b...

  12. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.

    PubMed

    Paricharak, Shardul; IJzerman, Adriaan P; Jenkins, Jeremy L; Bender, Andreas; Nigsch, Florian

    2016-09-26

    Despite the usefulness of high-throughput screening (HTS) in drug discovery, for some systems, low assay throughput or high screening cost can prohibit the screening of large numbers of compounds. In such cases, iterative cycles of screening involving active learning (AL) are employed, creating the need for smaller "informer sets" that can be routinely screened to build predictive models for selecting compounds from the screening collection for follow-up screens. Here, we present a data-driven derivation of an informer compound set with improved predictivity of active compounds in HTS, and we validate its benefit over randomly selected training sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range of assay biology. The informer compound set showed improvement in BEDROC(α = 100), PRAUC, and ROCAUC values averaged over all assays of 0.024, 0.014, and 0.016, respectively, compared to randomly selected training sets, all with paired t-test p-values <10(-15). A per-assay assessment showed that the BEDROC(α = 100), which is of particular relevance for early retrieval of actives, improved for 38 out of 46 assays, increasing the success rate of smaller follow-up screens. Overall, we showed that an informer set derived from historical HTS activity data can be employed for routine small-scale exploratory screening in an assay-agnostic fashion. This approach led to a consistent improvement in hit rates in follow-up screens without compromising scaffold retrieval. The informer set is adjustable in size depending on the number of compounds one intends to screen, as performance gains are realized for sets with more than 3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our results indicate that random sampling may not adequately cover descriptor space, drawing attention to the importance of the composition of the training set for predicting actives. PMID:27487177

  13. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.

    PubMed

    Paricharak, Shardul; IJzerman, Adriaan P; Jenkins, Jeremy L; Bender, Andreas; Nigsch, Florian

    2016-09-26

    Despite the usefulness of high-throughput screening (HTS) in drug discovery, for some systems, low assay throughput or high screening cost can prohibit the screening of large numbers of compounds. In such cases, iterative cycles of screening involving active learning (AL) are employed, creating the need for smaller "informer sets" that can be routinely screened to build predictive models for selecting compounds from the screening collection for follow-up screens. Here, we present a data-driven derivation of an informer compound set with improved predictivity of active compounds in HTS, and we validate its benefit over randomly selected training sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range of assay biology. The informer compound set showed improvement in BEDROC(α = 100), PRAUC, and ROCAUC values averaged over all assays of 0.024, 0.014, and 0.016, respectively, compared to randomly selected training sets, all with paired t-test p-values <10(-15). A per-assay assessment showed that the BEDROC(α = 100), which is of particular relevance for early retrieval of actives, improved for 38 out of 46 assays, increasing the success rate of smaller follow-up screens. Overall, we showed that an informer set derived from historical HTS activity data can be employed for routine small-scale exploratory screening in an assay-agnostic fashion. This approach led to a consistent improvement in hit rates in follow-up screens without compromising scaffold retrieval. The informer set is adjustable in size depending on the number of compounds one intends to screen, as performance gains are realized for sets with more than 3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our results indicate that random sampling may not adequately cover descriptor space, drawing attention to the importance of the composition of the training set for predicting actives.

  14. Active Power Control from Wind Power (Presentation)

    SciTech Connect

    Ela, E.; Brooks, D.

    2011-04-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  15. Phenolic compounds with IL-6 inhibitory activity from Aster yomena.

    PubMed

    Kim, A Ryun; Jin, Qinglong; Jin, Hong-Guang; Ko, Hae Ju; Woo, Eun-Rhan

    2014-07-01

    A new biflavonoid, named asteryomenin (1), as well as six known phenolic compounds, esculetin (2), 4-O-β-D-glucopyranoside-3-hydroxy methyl benzoate (3), caffeic acid (4), isoquercitrin (5), isorhamnetin-3-O-glucoside (6), and apigenin (7) were isolated from the aerial parts of Aster yomena. The structures of compounds (1-7) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 2-7 were isolated from this plant for the first time. For these isolates, the inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell was examined. Among these isolates, compounds 4 and 7 appeared to have potent inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell, while compounds 1-3 and 5-6 showed moderate activity.

  16. Feasibility of Active Machine Learning for Multiclass Compound Classification.

    PubMed

    Lang, Tobias; Flachsenberg, Florian; von Luxburg, Ulrike; Rarey, Matthias

    2016-01-25

    A common task in the hit-to-lead process is classifying sets of compounds into multiple, usually structural classes, which build the groundwork for subsequent SAR studies. Machine learning techniques can be used to automate this process by learning classification models from training compounds of each class. Gathering class information for compounds can be cost-intensive as the required data needs to be provided by human experts or experiments. This paper studies whether active machine learning can be used to reduce the required number of training compounds. Active learning is a machine learning method which processes class label data in an iterative fashion. It has gained much attention in a broad range of application areas. In this paper, an active learning method for multiclass compound classification is proposed. This method selects informative training compounds so as to optimally support the learning progress. The combination with human feedback leads to a semiautomated interactive multiclass classification procedure. This method was investigated empirically on 15 compound classification tasks containing 86-2870 compounds in 3-38 classes. The empirical results show that active learning can solve these classification tasks using 10-80% of the data which would be necessary for standard learning techniques.

  17. Silicosis: a disease with an active present.

    PubMed

    Martínez, Cristina; Prieto, Amador; García, Laura; Quero, Aida; González, Susana; Casan, Pere

    2010-02-01

    Silicosis, an interstitial lung disease caused by the inhalation of crystalline silica powder, despite being one of the oldest occupational diseases, continues being a cause of morbidity and mortality all over the world. The World Health Organisation and the International Labour Organisation (OMS/ILO), aware of the current problem, have designed the World Programme for the Elimination of Silicosis, which includes the identification of occupational groups at risk amongst its actions. We present 3 cases of silicosis in young workers in the construction sector, with exposure to high concentrations of silica due to handling artificial silica conglomerates. The main interest of this observation lies in the identification of new risk sources, in the need to draw attention to the dangers involved in its use without prevention measures, and in the importance of the occupational history to avoid under-diagnosis. PMID:19818543

  18. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives.

    PubMed

    Kumar, N Vijendra; Murthy, Pushpa S; Manjunatha, J R; Bettadaiah, B K

    2014-09-15

    Phenolic components of ginger (Zingiber officinale Roscoe) viz. [6]-gingerol, [6]-shogaol and zingerone exhibited quorum sensing inhibitory activity (QSI) against Chromobacterium violaceum and Pseudomonas aeruginosa. The inhibitory activity of all the compounds was studied by zone inhibition, pyocyanin, and violacein assay. All the compounds displayed good inhibition at 500ppm. [6]-Azashogaol, a new derivative of [6]-shogaol has been synthesized by Beckmann rearrangement of its oxime in the presence of ZnCl2. The structure elucidation of this new derivative was carried out by 1D ((1)H NMR and (13)C NMR) and 2D-NMR (COSY, HSQC and NOESY) spectral studies. This compound showed good QSI activity against P. aeruginosa. An isoxazoline derivative of [6]-gingerol was prepared and it exhibited good QSI activity. Present study illustrated that, the phenolic compounds of ginger and their derivatives form a class of compounds with promising QSI activity. PMID:24767081

  19. [Antibacterial activity of natural compounds - essential oils].

    PubMed

    Hassan, Sherif T S; Majerová, Michaela; Šudomová, Miroslava; Berchová, Kateřina

    2015-12-01

    Since the problem of bacterial resistance has become a serious problem worldwide, it was necessary to search for new active substances that can overcome the problem and enhance the treatment efficacy of bacterial infections. Numerous plant-derived essential oils exhibited significant antibacterial activities. This review aimed to summarize the most promising essential oils that exhibited remarkable antibacterial activities against various bacterial infections, including staphylococcal infections, Helicobacter pylori infections, skin infections, tuberculosis infection and dental bacterial infection. The synergy effect of essential oils in combination with antibiotics, as well as their role in the treatment of bacterial infections have been discussed. Essential oils can be used as models for further studies in vivo and clinical trials.

  20. Compounds with Antifouling Activities from the Roots of Notopterygium franchetii.

    PubMed

    Yu, Chun; Cheng, Liqing; Zhang, Zhongling; Zhang, Yu; Yuan, Chunmao; Liu, Weiwei; Hao, Xiaojiang; Ma, Weiguang; He, Hongping

    2015-12-01

    In antifouling screening, the extract of Notopterygium franchetii de Boiss showed obvious activity. Two new phenylpropanoids (1-2) and five known coumarins (3-7) were isolated from the methanol extract of the roots of this species. The structures of the isolated compounds were determined on the basis of spectroscopic analysis. Compounds 1-2 showed definite antifouling activity against larval settlement of Bugula neritina. PMID:26882679

  1. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.

    PubMed

    Kim, Seokwon; Kubec, Roman; Musah, Rabi A

    2006-03-01

    A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed.

  2. [Antioxidant and antibacterial activities of dimeric phenol compounds].

    PubMed

    Ogata, Masahiro

    2008-08-01

    We studied the antioxidant and antibacterial activities of monomeric and dimeric phenol compounds. Dimeric compounds had higher antioxidant activities than monomeric compounds. Electron spin resonance spin-trapping experiments showed that phenol compounds with an allyl substituent on their aromatic rings directly scavenged superoxide, and that only eugenol trapped hydroxyl radicals. We developed a generation system of the hydroxyl radical without using any metals by adding L-DOPA and DMPO to PBS or MiliQ water in vitro. We found that eugenol trapped hydroxyl radicals directly and is metabolized to a dimer. On the other hand, dipropofol, a dimer of propofol, has strong antibacterial activity against Gram-positive bacteria. However, it lacks solubility in water and this property is assumed to limit its efficacy. We tried to improve the solubility and found a new solubilization method of dipropofol in water with the addition of a monosaccharide or ascorbic acid.

  3. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach.

    PubMed

    Fernando, I P Shanura; Kim, Misook; Son, Kwang-Tae; Jeong, Yoonhwa; Jeon, You-Jin

    2016-07-01

    Polyphenolic compounds isolated from marine algae exhibit a broad spectrum of beneficial biological properties, including antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic activities, along with several other bioactivities centered on their antioxidant properties. Consequently, polyphenolic compounds are increasingly being investigated for their potential use in food, cosmetic, and pharmaceutical applications. The antioxidant activities of these compounds have been explored widely through experimental studies. Nonetheless, a theoretical understanding of the structural and electronic properties could broaden research perspectives, leading to the identification and synthesis of efficient structural analogs with prophylactic uses. This review briefly summarizes the current state of knowledge regarding antioxidant polyphenolic compounds in marine algae with an attempt to describe the structure-activity relationship. PMID:27332715

  4. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers

    SciTech Connect

    Lin, S.H.; Hsu, F.M.

    1995-06-01

    Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

  5. Photocatalytic: oxidation of volatile organic compounds present in airborne environment adjacent to sewage treatment plants.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2004-01-01

    Emissions of volatile organic compounds (VOCs) from wastewater in municipal sewage or industrial wastewater treatment plants are often overlooked as sources of exposure to hazardous substances. The impact of such emissions on local airborne environments represents a growing source of scientific, toxicological and public health interest. Actually, VOCs are suspected to be quite dangerous for human health. Some of them belong to the family of odorous compounds and can cause serious annoyance in the neighbourhood of the emission sources. A way to remove VOCs released from sewers and wastewater treatment facilities could be to degrade them by photocatalytic oxidation. TiO2-based photocatalysts are known to be efficient for this kind of application. In the present work TiO2 P25 Degussa was deposited on glass supports. These materials were tested for the degradation of butanone-2 in a photocatalytic reactor. The influence of water vapour (relative humidity) was shown using the Langmuir-Hinshelwood kinetic model. PMID:14979545

  6. Identification of Telomerase-activating Blends From Naturally Occurring Compounds.

    PubMed

    Ait-Ghezala, Ghania; Hassan, Samira; Tweed, Miles; Paris, Daniel; Crynen, Gogce; Zakirova, Zuchra; Crynen, Stefan; Crawford, Fiona

    2016-06-01

    Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased

  7. Identification of Telomerase-activating Blends From Naturally Occurring Compounds.

    PubMed

    Ait-Ghezala, Ghania; Hassan, Samira; Tweed, Miles; Paris, Daniel; Crynen, Gogce; Zakirova, Zuchra; Crynen, Stefan; Crawford, Fiona

    2016-06-01

    Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased

  8. [Importance of estrogens and estrogen-active compounds for udder health in cattle. A review].

    PubMed

    Zdunczyk, S; Zerbe, H; Hoedemaker, M

    2003-11-01

    High oestrogen concentrations in blood or high intake of oestrogen-active compounds with forage can be associated with an enhanced occurrence of udder diseases. Mean somatic cell count (MSCC) can increase and milk yield can decrease. Subclinically infected udder quarters can develop clinical mastitis and the rate of new infections can be high. This review describes concentrations of oestrogens in peripheral blood plasma in cattle and occurrence of oestrogen-active compounds in forage. Relationships between oestrogens or oestrogen-active compounds and udder health are presented. The possible mechanisms of enhanced susceptibility of the udder to infection under the influence of oestrogens are discussed. PMID:14679840

  9. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    PubMed

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity.

  10. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    PubMed

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds.

  11. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon--a review.

    PubMed

    Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine

    2012-10-01

    This paper provides a review of recent scientific research on the removal by activated carbon (AC) in drinking water (DW) treatment of 1) two classes of currently unregulated trace level contaminants with potential chronic toxicity-pharmaceutically activate compounds (PhACs) and endocrine disrupting compounds (EDCs); 2) cyanobacterial toxins (CyBTs), which are a group of highly toxic and regulated compounds (as microcystin-LR); and 3) the above mentioned compounds by the hybrid system powdered AC/membrane filtration. The influence of solute and AC properties, as well as the competitive effect from background natural organic matter on the adsorption of such trace contaminants, are also considered. In addition, a number of adsorption isotherm parameters reported for PhACs, EDCs and CyBTs are presented herein. AC adsorption has proven to be an effective removal process for such trace contaminants without generating transformation products. This process appears to be a crucial step in order to minimize PhACs, EDCs and CyBTs in finished DW, hence calling for further studies on AC adsorption removal of these compounds. Finally, a priority chart of PhACs and EDCs warranting further study for the removal by AC adsorption is proposed based on the compounds' structural characteristics and their low removal by AC compared to the other compounds. PMID:22885596

  12. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  13. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    PubMed Central

    Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang

    2016-01-01

    Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes. PMID:27649250

  14. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids.

    PubMed

    Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang

    2016-09-14

    Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of "Chian Xen Queen" contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes.

  15. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids.

    PubMed

    Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang

    2016-01-01

    Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of "Chian Xen Queen" contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes. PMID:27649250

  16. Compounds active against cell walls of medically important fungi.

    PubMed Central

    Hector, R F

    1993-01-01

    A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development. PMID:8457977

  17. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  18. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively. PMID:16312946

  19. Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Graham, Bim; Guyon, Pascal; Taylor, Philip E.; Artaxo, Paulo; Maenhaut, Willy; Glovsky, M. Michael; Flagan, Richard C.; Andreae, Meinrat O.

    2003-12-01

    As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural "background" aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 μm) and coarse (AD > 2.5 μm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2-10 μm size range (predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 μm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are

  20. Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods

    PubMed Central

    Wale, Nikil; Karypis, George

    2009-01-01

    In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745

  1. A neural networks study of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; Angelotti, Wagner Fernando Delfino; Romero, Roseli Aparecida Francelin; Montanari, Carlos Alberto; da Silva, Albérico Borges Ferreira

    2008-10-01

    This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

  2. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander.

    PubMed

    Fujita, Ken-Ichi; Chavasiri, Warinthorn; Kubo, Isao

    2015-07-01

    Essential oil derived from the fresh leaves of Polygonum odoratum Lour was tested for their effects on a foodborne bacterium Salmonella choleraesuis subsp. choleraesuis ATCC 35640 using a broth dilution method. This essential oil showed a significant antibacterial activity against S. choleraesuis at the concentration of 200 µg/mL. Twenty-five volatile compounds were characterized from this essential oil by GC-MS, and aldehyde compounds were found abundant and accounted for more than three-fourths of the essential oil. Among the compounds characterized, dodecanal (C12 ) was the most abundant (55.5%), followed by decanal (C10 ) (11.6%). Both alkanals were effective against S. choleraesuis with the minimum growth inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 100 µg/mL. The most potent antibacterial activity against this bacterium was found with two minor compounds, dodecanol (lauryl alcohol) and 2E-dodecenal, both with each MBC of 6.25 µg/mL. Their primary antibacterial action against S. choleraesuis provably comes from their ability to function as nonionic surface-active agents (surfactants), disrupting the native function of integral membrane proteins nonspecifically. Thus, the antibacterial activity is mediated by biophysical processes. In the case of 2E-alkenals, a biochemical mechanism is also somewhat involved, depending on their alkyl chain length.

  3. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander.

    PubMed

    Fujita, Ken-Ichi; Chavasiri, Warinthorn; Kubo, Isao

    2015-07-01

    Essential oil derived from the fresh leaves of Polygonum odoratum Lour was tested for their effects on a foodborne bacterium Salmonella choleraesuis subsp. choleraesuis ATCC 35640 using a broth dilution method. This essential oil showed a significant antibacterial activity against S. choleraesuis at the concentration of 200 µg/mL. Twenty-five volatile compounds were characterized from this essential oil by GC-MS, and aldehyde compounds were found abundant and accounted for more than three-fourths of the essential oil. Among the compounds characterized, dodecanal (C12 ) was the most abundant (55.5%), followed by decanal (C10 ) (11.6%). Both alkanals were effective against S. choleraesuis with the minimum growth inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 100 µg/mL. The most potent antibacterial activity against this bacterium was found with two minor compounds, dodecanol (lauryl alcohol) and 2E-dodecenal, both with each MBC of 6.25 µg/mL. Their primary antibacterial action against S. choleraesuis provably comes from their ability to function as nonionic surface-active agents (surfactants), disrupting the native function of integral membrane proteins nonspecifically. Thus, the antibacterial activity is mediated by biophysical processes. In the case of 2E-alkenals, a biochemical mechanism is also somewhat involved, depending on their alkyl chain length. PMID:25870012

  4. Synthesis and Antimalarial Activity of Mallatojaponin C and Related Compounds.

    PubMed

    Eaton, Alexander L; Dalal, Seema; Cassera, M Belen; Zhao, Shuqi; Kingston, David G I

    2016-06-24

    The phloroglucinol mallotojaponin C (1) from Mallotus oppositifolius, which was previously shown by us to have both antiplasmodial and cytocidal activities against the malaria parasite Plasmodium falciparum, was synthesized in three steps from 2',4',6'-trihydroxyacetophenone, and various derivatives were synthesized in an attempt to improve the bioactivity of this class of compounds. Two derivatives, the simple prenylated phloroglucinols 12 and 13, were found to have comparable antiplasmodial activities to that of mallotojaponin C. PMID:27228055

  5. Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes

    PubMed Central

    Jiménez-Arellanes, Adelina; León-Díaz, Rosalba; Meckes, Mariana; Tapia, Amparo; Molina-Salinas, Gloria María; Luna-Herrera, Julieta; Yépez-Mulia, Lilián

    2012-01-01

    We analyzed the antimycobacterial activity of the hexane extract of rhizomes from Aristolochia elegans. Some compounds of this extract were purified and tested against a group of drug-resistant Mycobacterium tuberculosis strains. We also evaluated their antiprotozoal activities. The hexane extract was active against M. tuberculosis H37Rv at a MIC = 100 μg mL−1; the pure compounds eupomatenoid-1, fargesin, and (8R,8′R,9R)-cubebin were active against M. tuberculosis H37Rv (MIC = 50 μg mL−1), while fargesin presented activity against three monoresistant strains of M. tuberculosis H37Rv and a MDR clinical isolate of M. tuberculosis (MIC < 50 μg mL−1). Both the extract and eupomatenoid-1 were very active against E. histolytica and G. lamblia (IC50 < 0.624 μg mL−1); in contrast, fargesin and (8R,8′R,9R)-cubebin were moderately active (IC50 < 275 μg mL−1). In this context, two compounds responsible for the antimycobacterial presented by A. elegans are fargesin and cubebin, although others may exert this activity also. In addition to the antimycobacterial activity, the hexane extract has important activity against E. histolytica and G. lamblia, and eupomatenoid-1 is one of the compounds responsible for the antiparasite activity. PMID:22454670

  6. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    SciTech Connect

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon the ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.

  7. Aromatic-Hydroxyl Interaction of a Lignin Model Compound on SBA-15, Present at Pyrolysis Temperatures

    DOE PAGES

    Kandziolka, III, Michael V.; Kidder, Michelle; Gill, Lance W.; Wu, Zili; Savara, Aditya Ashi

    2014-07-14

    An aromatic alpha-aryl ether compound (a benzyl phenyl ether analogue) was covalently grafted to mesoporous silica SBA-15, to create BPEa-SBA-15. The BPEa-SBA-15 was subjected to successive heating cycles up to 600 °C, with in situ monitoring by DRIFTS. It was found that the toluene moiety coordinates to SBA-15 surface silanol hydroxyl groups via an aromatic–hydroxyl interaction. This interaction is evidenced by a red-shift of the aromatic C–H stretches, as well as a red-shift and broadening of the surface hydroxyl O–H stretches, which are features characteristic of a hydrogen bond. These features remain present during heating until ~400 °C whereupon themore » ether linkage of BPEa-SBA-15 is cleaved, accompanied by loss of the toluene moiety.« less

  8. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    PubMed

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  9. Structure-activity analysis and antiprion mechanism of isoprenoid compounds.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Teruya, Kenta; Doh-ura, Katsumi

    2015-12-01

    The prion strain-specific mechanism by which normal prion protein is converted to abnormal prion protein remains largely unknown. This study found that insect juvenile hormone III reduced abnormal prion protein levels only in cells infected with the RML prion. We conducted a structure-activity analysis using juvenile hormone III biosynthetic intermediates in the isoprenoid pathway. Both farnesol and geranylgeraniol, the most potent inhibitors of abnormal prion protein formation, behaved in an RML prion-dependent fashion. Neither of them modified cellular and cell surface prion protein levels. Events downstream of this pathway include cholesterol biosynthesis and protein prenylation. However, neither of these isoprenoid compounds modified lipid raft microdomains and cellular cholesterol levels and neither affected the representative prenylated protein expression levels of prenylation pathways. Therefore, these isoprenoid compounds are a new class of prion strain-dependent antiprion compounds. They are useful for exploring strain-specific prion biology. PMID:26402376

  10. Identification of Oct4-activating compounds that enhance reprogramming efficiency.

    PubMed

    Li, Wendong; Tian, E; Chen, Zhao-Xia; Sun, Guoqiang; Ye, Peng; Yang, Su; Lu, Dave; Xie, Jun; Ho, Thach-Vu; Tsark, Walter M; Wang, Charles; Horne, David A; Riggs, Arthur D; Yip, M L Richard; Shi, Yanhong

    2012-12-18

    One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-β-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation. PMID:23213213

  11. Identification of Oct4-activating compounds that enhance reprogramming efficiency

    PubMed Central

    Li, Wendong; Tian, E; Chen, Zhao-Xia; Sun, GuoQiang; Ye, Peng; Yang, Su; Lu, Dave; Xie, Jun; Ho, Thach-Vu; Tsark, Walter M.; Wang, Charles; Horne, David A.; Riggs, Arthur D.; Yip, M. L. Richard; Shi, Yanhong

    2012-01-01

    One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-β-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation. PMID:23213213

  12. Hybrid energy storage systems utilizing redox active organic compounds

    SciTech Connect

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  13. Aldose reductase inhibitory activity of compounds from Zea mays L.

    PubMed

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1-7) and 5 anthocyanins (compound 8-12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC(50), 4.78 μ M). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  14. Electrochemical screening of biomembrane-active compounds in water.

    PubMed

    Mohamadi, Shahrzad; Tate, Daniel J; Vakurov, Alexander; Nelson, Andrew

    2014-02-27

    Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds' effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the-(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health. PMID:24528664

  15. Compounding pharmacy conundrum: "we cannot live without them but we cannot live with them" according to the present paradigm.

    PubMed

    Guharoy, Roy; Noviasky, John; Haydar, Ziad; Fakih, Mohamad G; Hartman, Christian

    2013-04-01

    Compounding pharmacies serve a critical role in modern health care to meet special patient care needs. Although the US Food and Drug Administration (FDA) has clearly delineated jurisdiction over drug companies and products manufactured under Good Manufacturing Practice (GMP) regulations to ensure quality, potency, and purity, compounding pharmacies are regulated by the State Boards and are not registered by the FDA. In recent years, some compounding pharmacies acted like a manufacturer, preparing large amounts of injectable drugs with interstate activities. Multiple outbreaks have been linked to compounding pharmacies, including a recent outbreak of fungal meningitis related to contaminated methylprednisolone, exposing > 14,000 patients in multiple states. This tragedy underscores the urgency of addressing safety related to compounding pharmacies. There is a call for action at the federal and state levels to set minimum production standards, impose new labeling conditions on compounded drugs, and require large-scale compounders be regulated by the FDA. "Industrial" compounding must come under FDA oversight, require those pharmacies to meet GMP standards, and ensure quality and safe products for patient use. Moreover, compliance with the Institute for Safe Medication Practices 2011 recommendations that any type of sterile compounding must be in compliance with the United States Pharmacopoeia chapter 797 guidelines will reduce the risk of patient harm from microbial contamination. Finally, other critical factors that require close attention include addressing injectable products compounded in hospitals and other outpatient health-care centers. The FDA and State Boards of Pharmacy must be adequately funded to exercise the oversight effectively. PMID:23412546

  16. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens

    PubMed Central

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem. PMID:26150810

  17. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    DOEpatents

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  18. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    PubMed

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  19. Antileishmanial Activity of Compounds Isolated from Sassafras albidum.

    PubMed

    Pulivarthi, Divya; Steinberg, Kelly Marie; Monzote, Lianet; Piñón, Abel; Setzer, William N

    2015-07-01

    Leishmaniasis is a neglected tropical disease caused by Leishmania parasitic protozoa, which currently lacks efficient treatment. Natural products have shown promise as a potential source for antiprotozoal drugs. This work focuses on the antileishmanial potential of Sassafras albidum (Lauraceae) bark extract. The crude bark extract of S. albidum showed excellent antileishmanial activity with an IC50 value less than 12.5 μg/mL against promastigotes of L. amazonensis. The chloroform stem bark extract of S. albidum was subjected to preparative column chromatography. Five compounds were isolated, purified by recrystallization, and identified as sesamin, spinescin, β-sitosterol, hexatriacontanal, and 1-triacontanol. Antileishmanial and cytotoxic screening were performed on these compounds. Sesamin exhibited the best activity against L. amazonensis with an IC50 of 15.8 μg/mL and was not cytotoxic to mouse macrophage cells (CC50 > 100 μg/mL).

  20. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    PubMed

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future. PMID:20514391

  1. Anticancer activity of new compounds using benzimidazole as a scaffold.

    PubMed

    Rashid, Mohd; Husain, Asif; Shaharyar, Mohammad; Sarafroz, Mohd

    2014-01-01

    The design and synthesis of substituted 1-(1-ethy-1H-benzimidazol-2-yl) ethanone (3a-f) and substituted 1-(2-bromoethyl)-2- (1-hydrazinylidene or ethylidene)-1H-benzimidazole (3g-j) have been successfully achieved under microwave irradiation with an aim for finding promising anticancer agents. Among the synthetic compounds, those with potential activity were selected and evaluated in-vitro for anticancer activity at the National Cancer Institute (NCI), USA, against 60 cancer cell lines from nine types of human cancer. The title compound 3e (NSC: 765733/1) exhibited notable growth inhibition that satisfies threshold criteria at single dose (10 µM) on all human cell lines of NCI. This compound was considered for further study at five dose levels (0.01, 0.1, 1, 10 and 100 µM) with GI50 values ranging from 0.19 to 92.7 µM. Compound 3e was found superior for Non-small cell lung cancer cell lines (HOP-92) and calculated end points (GI50 0.19, TGI 1.45, LC50 >100 and Log10GI50 -6.70, Log10TGI -5.84, Log10LC50 >-4.00). Docking study was performed using Maestro 9.0 to provide binding mode into binding sites of topoisomerase enzyme (PDB ID: 1SC7). Hopefully in the future, compound 3e could be used as novel template for the development of potential anticancer agents.

  2. Triazolophthalazines: Easily Accessible Compounds with Potent Antitubercular Activity.

    PubMed

    Veau, Damien; Krykun, Serhii; Mori, Giorgia; Orena, Beatrice S; Pasca, Maria R; Frongia, Céline; Lobjois, Valérie; Chassaing, Stefan; Lherbet, Christian; Baltas, Michel

    2016-05-19

    Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug-resistant TB. Herein we explored the potential of an alternative class of molecules as anti-TB agents. Thus, a series of novel 3-substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37 Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL(-1) , whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50 >100 μm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug-resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine-based derivatives promising leads for further development.

  3. Triazolophthalazines: Easily Accessible Compounds with Potent Antitubercular Activity.

    PubMed

    Veau, Damien; Krykun, Serhii; Mori, Giorgia; Orena, Beatrice S; Pasca, Maria R; Frongia, Céline; Lobjois, Valérie; Chassaing, Stefan; Lherbet, Christian; Baltas, Michel

    2016-05-19

    Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug-resistant TB. Herein we explored the potential of an alternative class of molecules as anti-TB agents. Thus, a series of novel 3-substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37 Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL(-1) , whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50 >100 μm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug-resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine-based derivatives promising leads for further development. PMID:27097919

  4. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens.

    PubMed

    Kusano, Maiko; Mendez, Eladio; Furton, Kenneth G

    2011-06-01

    In recent years, interest has increased regarding the identification of volatile organic compounds (VOCs) for metabolic profiling, human scent identification of the living and deceased, and diagnostic potentials for certain diseases that are known for its association with distinct odor. In this study, a method has been developed that is capable of sampling, identifying, and differentiating the VOCs present in various biological specimens of forensic importance (blood, breath, buccal cells, and urine) taken from the same individuals. The developed method requires a pretreatment step to remove targeted VOCs from the sampling apparatus prior to sampling of the individual specimens. The VOCs collected from the biological specimens were characterized by solid-phase microextraction and gas chromatography/mass spectrometry with ratios of the most abundant and frequent VOCs compared using qualitative and semiquantitative methods. Blood, breath, and buccal cells required extraction procedures ranging from 18 to 21 h in order to optimize the limit of detection, which averaged 5-15 ng across these specimens. The optimal method for measuring urine VOCs was complete in less than an hour; however, the limit of detection was higher with a range of 10-40 ng quantifiable. The demonstrated sensitivity and reproducibility of the methods developed allow for population studies of human scent VOCs from various biological specimen collection kits used in the forensic and clinical fields.

  5. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis.

    PubMed

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 μM) and a lower effect against CML cells (IC50 = 27.5-30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  6. Orally active opioid compounds from a non-poppy source.

    PubMed

    Raffa, Robert B; Beckett, Jaclyn R; Brahmbhatt, Vivek N; Ebinger, Theresa M; Fabian, Chrisjon A; Nixon, Justin R; Orlando, Steven T; Rana, Chintan A; Tejani, Ali H; Tomazic, Robert J

    2013-06-27

    The basic science and clinical use of morphine and other "opioid" drugs are based almost exclusively on the extracts or analogues of compounds isolated from a single source, the opium poppy (Papaver somniferum). However, it now appears that biological diversity has evolved an alternative source. Specifically, at least two alkaloids isolated from the plant Mitragyna speciosa, mitragynine ((E)-2-[(2S,3S)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[3,2-h]quinolizin-2-yl]-3-methoxyprop-2-enoic acid methyl ester; 9-methoxy coryantheidine; MG) and 7-hydroxymitragynine (7-OH-MG), and several synthetic analogues of these natural products display centrally mediated (supraspinal and spinal) antinociceptive (analgesic) activity in various pain models. Several characteristics of these compounds suggest a classic "opioid" mechanism of action: nanomolar affinity for opioid receptors, competitive interaction with the opioid receptor antagonist naloxone, and two-way analgesic cross-tolerance with morphine. However, other characteristics of the compounds suggest novelty, particularly chemical structure and possible greater separation from side effects. We review the chemical and pharmacological properties of these compounds. PMID:23517479

  7. Small Molecule Activation by Constrained Phosphorus Compounds: Insights from Theory.

    PubMed

    Pal, Amrita; Vanka, Kumar

    2016-01-19

    An exciting new development in main group chemistry has been the use of a constrained, "flat", phosphorus-based complex to mediate in reactions such as the dehydrogenation of ammonia borane (AB), and the activation of the N-H bond in primary amines. Its importance is based on the fact that it shows that main group compounds, when properly designed, can be as effective as transition metal complexes for doing significant chemical transformations. What the current computational study, employing density functional theory (DFT), reveals is that a common, general mechanism exists that accounts for the behavior of the flat phosphorus compound in the different reactions that have been experimentally reported to date. This mechanism, which involves the mediation by a base as a proton transfer agent, is simpler and energetically more favorable than the previous mechanisms that have been proposed for the same reactions in the literature. It is likely that the knowledge gained from the current work about the chemical behavior of this phosphorus compound can be utilized to design new constrained phosphorus-based compounds. PMID:26700074

  8. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    PubMed Central

    Joray, Mariana Belén; Trucco, Lucas Daniel; González, María Laura; Napal, Georgina Natalia Díaz; Palacios, Sara María; Bocco, José Luis; Carpinella, María Cecilia

    2015-01-01

    The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4′-dihydroxy-3′-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM) and a lower effect against CML cells (IC50 = 27.5–30.0 μM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound. PMID:26819623

  9. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities.

    PubMed

    Pazhanimurugan, Raasaiyah; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Gopikrishnan, Venugopal; Balagurunathan, Ramasamy

    2016-10-01

    The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources. PMID:27562595

  10. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.

    PubMed

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike

    2016-08-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  11. Analysis of active compounds and antioxidant activity assessment of six popular Chinese Juhua teas.

    PubMed

    Du, Hui; Li, Shan-Shan; Wu, Qian; Ji, Kui-Xian; Wu, Jie; Liu, Yang; Wang, Liang-Sheng

    2015-03-01

    Chrysanthemum is an important traditional Chinese medicine and is drunk daily as a herbal tea. Chlorogenic acids and flavonoids are generally considered as the bioactive compounds. In this work, six kinds of Juhua Tea were analyzed and their active compounds and antioxidant activities were compared. In total, 32 phenolic compounds were profiled and identified using HPLC-DAD/ESI-MSn, composed of chlorogenic acids (10), flavones (8), chalcones (8), flavanones (4) and flavonols (2). Chalcones were the main flavonoids in Kunlun Xueju (Coreopsis tinctoria) extract, while flavones and chlorogenic acids were dominant in the five Chrysanthemum teas. Total chlorogenic acids content (TCA) was highest in Tai Ju (Chrysanthemum morifolium cv. 'Tai Ju') (8.59 ± 0.87 mg/g DW), and total flavonoids content (TF) was highest in Kunlun Xueju (87.2 ± 7.0 mg/g DW), which were both lowest in Ganye Ju (Chrysanthemum eticuspe) (TCA 0.86 ± 0.26 mg/g DW, TF 1.43 ± 0.41 mg/g DW). Huangin Ju (Anthemis tinctoria) possessed the most flavones (19.7 ± 0.6 mg/g DW). Antioxidant capacity of each drink, assessed by Folin-Ciocalteu, DPPH, ABTS and FRAP assays, consistently showed that Kunlun Xueju extract possessed stronger antioxidant activity than the other five, suggesting that the flavonoids content accounted for the free radical scavenging. The present work provides a method for the characterization and quality control of Juhua Tea. Moreover, it is a guideline for consuming choice, due to the different biological functions resulting from chalcones, chlorogenic acids, and flavones. PMID:25924537

  12. Screening of natural compounds as activators of the keap1-nrf2 pathway.

    PubMed

    Wu, Kai C; McDonald, Peter R; Liu, Jie; Klaassen, Curtis D

    2014-01-01

    Nuclear factor erythroid 2-related factor 2 is a master regulator that promotes transcription of cytoprotective genes in response to oxidative/electrophilic stress. A large number of natural dietary compounds are thought to protect against oxidative stress, and a few have been reported to induce genes involved in antioxidant defense through activating nuclear factor erythroid 2-related factor 2. Therefore, a library of 54 natural compounds were collected to determine whether they are nuclear factor erythroid 2-related factor 2 activators and to compare their efficacy and potency to activate nuclear factor erythroid 2-related factor 2. The assay utilized AREc32 cells that contain a luciferase gene under the control of antioxidant response element promoters. Each natural compound was tested at 13 concentrations between 0.02 and 30 µM. Known nuclear factor erythroid 2-related factor 2 activators tert-butylhydroquinone and 2-cyano-3,12-dioxooleana-1,9-diene-28-imidazolide were used as positive controls in parallel with the natural compounds. Among the 54 tested natural compounds, andrographolide had the highest efficacy, followed by trans-chalcone, sulforaphane, curcumin, flavone, kahweol, and carnosol, all of which had better efficacy than tert-butylhydroquinone. Among the compounds tested, 2-cyano-3,12-dioxooleana-1,9-diene-28-imidazolide was the most potent, having an EC50 of 0.41 µM. Seven of the natural compounds, namely andrographolide, trans-chalcone, sulforaphane, curcumin, flavone, kahweol, and cafestol had lower EC50 values than tert-butylhydroquinone but higher than 2-cyano-3,12-dioxooleana-1,9-diene-28-imidazolide. The present study provides insights into which natural compounds activate the Keap1-nuclear factor erythroid 2-related factor 2 pathway and thus might be useful for detoxifying oxidative/electrophilic stress.

  13. Using Active Learning Strategies to Present Bloodborne Pathogen Programs

    ERIC Educational Resources Information Center

    Cooper, Leslie; Weaver, Mary G.

    2003-01-01

    Every year, school nurses have the responsibility for developing and presenting a bloodborne pathogen presentation to the education and clerical staff of their buildings. Although the information is similar from year to year, the manner in which the information is presented can be altered. Teachers are using active learning strategies in a variety…

  14. Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water.

    PubMed

    Khan, Usman; Nicell, Jim

    2015-05-01

    In Canada, as many as 20 pharmaceutically active compounds (PhACs) have been detected in samples of treated drinking water. The presence of these PhACs in drinking water raises important questions as to the human health risk posed by their potential appearance in drinking water supplies and the extent to which they indicate that other PhACs are present but have not been detected using current analytical methods. Therefore, the goal of the current investigation was to conduct a screening-level assessment of the human health risks posed by the aquatic release of an evaluation set of 335 selected PhACs. Predicted and measured concentrations were used to estimate the exposure of Canadians to each PhAC in the evaluation set. Risk evaluations based on measurements could only be performed for 17 PhACs and, of these, all were found to pose a negligible risk to human health when considered individually. The same approach to risk evaluation, but based on predicted rather than measured environmental concentrations, suggested that 322 PhACs of the evaluation set, when considered individually, are expected to pose a negligible risk to human health due to their potential presence in drinking waters. However, the following 14 PhACs should be prioritized for further study: triiodothyronine, thyroxine, ramipril and its metabolite ramiprilat, candesartan, lisinopril, atorvastatin, lorazepam, fentanyl, atenolol, metformin, enalaprilat, morphine, and irbesartan. Finally, the currently available monitoring data for PhACs in Canadian surface and drinking waters was found to be lacking, irrespective of whether their suitability was assessed based on risk posed, predicted exposure concentrations, or potency.

  15. Phenolic compounds from leaves of Casimiroa edulis showed adipogenesis activity.

    PubMed

    Nagai, Hiroyuki; Tanaka, Toshiyuki; Goto, Tsuyoshi; Kusudo, Tatsuya; Takahashi, Nobuyuki; Kawada, Teruo

    2014-01-01

    Casimiroa edulis is known as cochitzapotl, and it belongs to a species of tropical fruiting tree in the family Rutaceae, native to eastern Mexico and Central America south to Costa Rica. In this study, we isolated two furocoumarins and two polymethoxyflavones from leaves of C. edulis and evaluated the functions of glucose and lipid metabolism activity with 3T3-L1 adipocytes. We discovered that the addition of furocoumarins increased glucose uptake and lipid accumulation in 3T3-L1 adipocyte. These results suggest that furocoumarin compounds can be used as functional food-derived compounds, to regulate adipocyte functioning for the management of metabolic syndrome, which is associated with dysfunctions of glucose and lipid metabolism. PMID:25036684

  16. Natural Product Compounds with Aromatase Inhibitory Activity: An Update

    PubMed Central

    Balunas, Marcy J.; Kinghorn, A. Douglas

    2010-01-01

    Several synthetic aromatase inhibitors are currently in clinical use for the treatment of postmenopausal women with hormone-receptor positive breast cancer. However, these treatments may lead to untoward side effects and so a search for new aromatase inhibitors continues, especially those for which the activity is promoter-specific, targeting the breast-specific promoters I.3 and II. Recently, numerous natural product compounds have been found to inhibit aromatase in non-cellular, cellular, and in vivo studies. These investigations, covering the last two years, as well as additional studies that have focused on the evaluation of natural product compounds as promoter-specific aromatase inhibitors or as aromatase inducers, are described in this review. PMID:20635310

  17. Activity Profile of an FDA-Approved Compound Library against Schistosoma mansoni

    PubMed Central

    Panic, Gordana; Vargas, Mireille; Scandale, Ivan; Keiser, Jennifer

    2015-01-01

    Background As plans to expand mass drug treatment campaigns to fight schistosomiasis form, worries about reliance on praziquantel as the sole available treatment motivate the investigation for novel antischistosomal compounds. Drug repurposing might be an inexpensive and effective source of novel antischistosomal leads. Methodology 1600 FDA approved compounds were first assayed against Schistosoma mansoni schistosomula at a concentration of 10 µM. Active compounds identified from this screen were advanced to the adult worm screen at 33.33 µM, followed by hit characterization. Leads with complementary pharmacokinetic and toxicity profiles were then selected for in vivo studies. Principal Findings The in vitro screen identified 121 and 36 compounds active against the schistosomula and adult stage, respectively. Further, in vitro characterization and comparison with already available pharmacokinetic and toxicity data identified 11 in vivo candidates. Doramectin (10 mg/kg) and clofazimine (400 mg/kg) were found to be active in vivo with worm burden reductions of 60.1% and 82.7%, respectively. Conclusions/Significance The work presented here expands the knowledge of antischistosomal properties of already approved compounds and underscores variations observed between target-based and phenotypic approaches and among laboratories. The two in vivo-active drugs identified in this study, doramectin and clofazimine are widely available and present as novel drug classes as starting points for further investigation. PMID:26230921

  18. Evaluation of anxiolytic activity of compound Valeriana jatamansi Jones in mice

    PubMed Central

    2012-01-01

    Background Compound Valeriana jatamansi Jones is a formula for treating anxiety-related diseases in the clinic, which is composed of Valeriana jatamansi Rhizoma et Radix, Ziziphi Spinosae Semen, Albiziae Cortex and Junci Medulla. The purpose of this study was to explore the anxiolytic properties of this compound in mice. Methods Male ICR mice were treated with compound Valerianae Jatamansi Jones (1.2 g/kg, 2.4 g/kg, 4.8 g/kg), saline, diazepam (2 mg/kg) orally for 10 days and then exposed to elevated maze-plus (EPM) and light–dark box (LDB). The effects of the compound on spontaneous activity were evaluated by locomotor activity test. We further investigated the mechanism of action underlying the anxiolytic-like effect of compound by pre-treating animals with antagonists of benzodiazepine (flumazenil, 3mg/kg) prior to evaluation using EPM and LDB. Results Compound Valerianae Jatamansi Jones (2.4, 4.8 g/kg, p.o.) significantly increased entries (P<0.05) into and time spent (P<0.05) on the open arms of the EPM, and number of transitions (P<0.05) and time spent (P<0.05) in the light compartment of the LDB. However, the anxiolytic-like effects of compound were significantly reduced by pre-treatment with flumazenil (P>0.05). In addition, compound Valerianae Jatamansi Jones treatment didn’t affect the spontaneous activity in mice (P> 0.05). Conclusions The present study supports the hypothesis that compound Valeriana jatamansi Jones exert anxiolytic action but no sedative effects in mice and that this effect might be mediated by benzodiazepine receptors. PMID:23171285

  19. Sorghum flour fractions: correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index.

    PubMed

    Moraes, Érica Aguiar; Marineli, Rafaela da Silva; Lenquiste, Sabrina Alves; Steel, Caroline Joy; de Menezes, Cícero Beserra; Queiroz, Valéria Aparecida Vieira; Maróstica Júnior, Mário Roberto

    2015-08-01

    Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5 ± 0.41; WSF 77.2 ± 0.33; and SB 60.3 ± 0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI.

  20. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR)

    SciTech Connect

    Jacobs, Miriam N. . E-mail: miriam.jacobs@jrc.it; Nolan, Gail T.; Hood, Steven R.

    2005-12-01

    The pregnane X receptor (PXR) mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The receptor is expressed in liver and intestinal tissues and is activated by a wide range of compounds. The ability of a diverse range of dietary compounds to activate PXR-mediated transcription was assayed in HuH7 cells following transient transfection with human PXR (hPXR). The compounds investigated included phytochemicals such as lignans and phytoestrogens, organochlorine dietary contaminants such as polychlorinated biphenyls (PCBs) and triclosan and selected steroid, drug and herbal compounds. The hPXR activation at the top concentrations tested (10 {mu}M) relative to the positive control 10 {mu}M rifampicin ranged from 1.3% (trans-resveratrol) to 152% (ICI 182780). Hydroxylated compounds were marginally more potent than the parent compounds (tamoxifen activation was 74.6% whereas 4 hydroxytamoxifen activation was 84.2%) or significantly greater (vitamin D{sub 3} activation was 1.6%, while hydroxylated vitamin D{sub 3} activation was 55.6%). Enterolactone, the metabolite of common dietary lignans, was a medium activator of PXR (35.6%), compared to the lower activation of a parent lignan, secoisolariciresinol (20%). Two non-hydroxylated PCB congeners (PCB 118 and 153), which present a larger fraction of the PCB contamination of fatty foods, activated hPXR by 26.6% and 17%, respectively. The pesticide trans-nonachlor activation was 53.8%, while the widely used bacteriocide triclosan was a medium activator of hPXR at 46.2%. The responsiveness of PXR to activation by lignan metabolites suggests that dietary intake of these compounds may affect the metabolism of drugs that are CYP3A substrates. Additionally, the evidence that organochlorine chemicals, particularly the ubiquitous triclosan, activate hPXR suggests that these environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid

  1. Extremely Randomized Machine Learning Methods for Compound Activity Prediction.

    PubMed

    Czarnecki, Wojciech M; Podlewska, Sabina; Bojarski, Andrzej J

    2015-11-09

    Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called 'extremely randomized methods'-Extreme Entropy Machine and Extremely Randomized Trees-for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their 'non-extreme' competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  2. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars.

    PubMed

    Geiss, Otmar; Tirendi, Salvatore; Barrero-Moreno, Josefa; Kotzias, Dimitrios

    2009-11-01

    The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 microg m(-3). Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 degrees C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m(-3). PMID:19729200

  3. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  4. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    NASA Astrophysics Data System (ADS)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  5. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  6. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  7. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical. PMID:27564590

  8. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical.

  9. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    PubMed Central

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  10. Antiviral activity of Plantago major extracts and related compounds in vitro.

    PubMed

    Chiang, L C; Chiang, W; Chang, M Y; Ng, L T; Lin, C C

    2002-07-01

    Plantago major L., a popular traditional Chinese medicine, has long been used for treating various diseases varying from cold to viral hepatitis. The aim of present study was to examine the antiviral activity of aqueous extract and pure compounds of P. major. Studies were conducted on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The antiviral activity of EC50 was defined as the concentration achieved 50% cyto-protection against virus infection and the selectivity index (SI) was determined by the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extract of P. major possessed only a slight anti-herpes virus activity. In contrast, certain pure compounds belonging to the five different classes of chemicals found in extracts of this plant exhibited potent antiviral activity. Among them, caffeic acid exhibited the strongest activity against HSV-1 (EC50=15.3 microg/ml, SI=671), HSV-2 (EC50=87.3 microg/ml, SI=118) and ADV-3 (EC50=14.2 microg/ml, SI=727), whereas chlorogenic acid possessed the strongest anti-ADV-11 (EC50=13.3 microg/ml, SI=301) activity. The present study concludes that pure compounds of P. major, which possess antiviral activities are mainly derived from the phenolic compounds, especially caffeic acid. Its mode of action against HSV-2 and ADV-3 was found to be at multiplication stages (postinfection of HSV-1: 0-12 h; ADV-3: 0-2 h), and with SI values greater than 400, suggesting the potential use of this compound for treatment of the infection by these two viruses. PMID:12076751

  11. Antiviral activity of Plantago major extracts and related compounds in vitro.

    PubMed

    Chiang, L C; Chiang, W; Chang, M Y; Ng, L T; Lin, C C

    2002-07-01

    Plantago major L., a popular traditional Chinese medicine, has long been used for treating various diseases varying from cold to viral hepatitis. The aim of present study was to examine the antiviral activity of aqueous extract and pure compounds of P. major. Studies were conducted on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The antiviral activity of EC50 was defined as the concentration achieved 50% cyto-protection against virus infection and the selectivity index (SI) was determined by the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extract of P. major possessed only a slight anti-herpes virus activity. In contrast, certain pure compounds belonging to the five different classes of chemicals found in extracts of this plant exhibited potent antiviral activity. Among them, caffeic acid exhibited the strongest activity against HSV-1 (EC50=15.3 microg/ml, SI=671), HSV-2 (EC50=87.3 microg/ml, SI=118) and ADV-3 (EC50=14.2 microg/ml, SI=727), whereas chlorogenic acid possessed the strongest anti-ADV-11 (EC50=13.3 microg/ml, SI=301) activity. The present study concludes that pure compounds of P. major, which possess antiviral activities are mainly derived from the phenolic compounds, especially caffeic acid. Its mode of action against HSV-2 and ADV-3 was found to be at multiplication stages (postinfection of HSV-1: 0-12 h; ADV-3: 0-2 h), and with SI values greater than 400, suggesting the potential use of this compound for treatment of the infection by these two viruses.

  12. Extraction and evaluation of natural occurring bioactive compounds and change in antioxidant activity during red winemaking.

    PubMed

    Ivanova-Petropulos, Violeta; Durakova, Sanja; Ricci, Arianna; Parpinello, Giuseppina P; Versari, Andrea

    2016-06-01

    Phenolic composition of red wines from Stanušina, a grape variety indigenous of the Republic of Macedonia, was compared with the regional Vranec and the international Cabernet Sauvignon. The extent of skin contact (i.e. maceration time) on levels of phenolic compounds and antioxidant activity of wines was evaluated. A total of 19 phenolic compounds were identified and quantified. Among these malvidin-3-glucoside and its derivatives were the major compounds, while caftaric acid was the predominant cinnamic acid derivative, followed by catechin, the main flavan-3-ol. The concentration of hydroxycinnamic acids, anthocyanins and (+)-catechin ranged from 224 to 511 mg/L, 22 to 360 mg/L and 26 20 to 375 mg/L, respectively and peaked at 3rd, 6th and 9th day of maceration, respectively. However, prolong maceration slightly decreased their concentration. Stanušina wines presented high levels of hydroxycinnamic acids and antioxidant activity. PMID:27478219

  13. In vitro Cytotoxic Activities and Molecular Mechanisms of Angelica shikokiana Extract and its Isolated Compounds

    PubMed Central

    Mira, Amira; Shimizu, Kuniyoshi

    2015-01-01

    Background: Angelica shikokiana is a Japanese medicinal herb that is included among food and drug preparations protecting against cancer; however, there is no previous report about the cytotoxicity of A. shikokiana or its bioactive compounds. Objective: This study was designed to investigate the cytotoxic activities of A. shikokiana methanol extract (AME) and its isolated compounds and to identify the molecular mechanisms of the cytotoxicity. Materials and Methods: Cytotoxicity and selectivity was investigated by measuring the IC50 values on five cancer cell lines; human hepatocellular carcinoma, rhabdomyosarcoma (RD), colorectal carcinoma, human epithelioma and human breast adenocarcinoma and one normal cell line; human lung fibroblasts. The effects on tubulin polymerization and histone deacetylase 8 (HDAC8), were examined to determine the mechanism of cytotoxicity. Docking study was designed to examine the binding affinity to the target molecules. Results: Methanol extract and some of its isolated coumarins and flavonoids showed potent, selective cytotoxicity against cancer cell lines. AME and all isolated compounds inhibited tubulin polymerization. Angelicin and kaempferol-3-O-rutinoside were the most active compounds. Phenolic compounds and furanocoumarins showed binding affinity to colchicine binding site rather than the vinblastine binding site of tubulin microtubules. On the other side, quercetin, kaempferol, luteolin, chlorogenic acid, and methyl chlorogenate exhibited the strongest activity against HDAC8 and the highest affinity to trichostatin A binding site. Conclusion: These findings provide the first scientific evidence of the cytotoxicity of AME through inhibition of tubulin polymerization and HDAC8 activity through its coumarin and flavonoid content. SUMMARY The present study provides for the first time a clue for the cytotoxic activities of the AME. Our results indicate that the cytotoxic activities are partially related to the ability of AME to

  14. Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity.

    PubMed

    You, Yanli; Duan, Xuewu; Wei, Xiaoyi; Su, Xinguo; Zhao, Mouming; Sun, Jian; Ruenroengklin, Neungnapa; Jiang, Yueming

    2007-01-01

    Chinese water chestnut (CWC) is one of the most popular foods among Asian people due to its special taste and medical function. Experiments were conducted to test the antioxidant activity and then determine the major phenolic compound components present in CWC. CWC phenolic extract strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radicals, superoxide anions and hydroxyl radicals, which was superior to ascorbic acid and butylated hydroxytoluene (BHT), two commercial used antioxidants. Furthermore, the CWC extract was found to have a relatively higher reducing power, compared with BHT. The major phenolic compounds present in CWC tissues were extracted, purified and identified by high-performance liquid chromatograph (HPLC) as (-)-gallocatechin gallate, (-)-epicatechin gallate and (+)-catechin gallate. This study suggests that CWC tissues exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions.

  15. Antifungal activity of tautomycin and related compounds against Sclerotinia sclerotiorum.

    PubMed

    Chen, Xiaolong; Zhu, Xiaohui; Ding, Yicheng; Shen, Yinchu

    2011-08-01

    The potential of tautomycin to control oilseed rape stem rot was investigated in this paper. Tautomycin produced by Streptomyces spiroverticillatus strongly inhibited Sclerotinia sclerotiorum, which causes oilseed rape stem rot. Tautomycin showed great inhibition of the mycelial growth of S. sclerotiorum on potato dextrose agar (PDA) plates. The values of EC(50) and MIC were 3.26 × 10(-4) mM and 6.52 × 10(-4) mM, respectively. Tautomycin treatment also resulted in morphological abnormalities of S. sclerotiorum such as hyphal swellings and abnormally branched shapes, which were observed microscopically. Sclerotia of S. sclerotiorum soaked in the tautomycin solution for 24 h remained viable, but their ability to undergo myceliogenic germination on PDA plates was completely inhibited when the concentration of tautomycin reached 6.52 × 10(-4) mM. Tautomycin-treated oilseed rape leaves were found to have a low incidence of leaf blight caused by S. sclerotiorum. The activity of the protein phosphatase (PP) in S. sclerotiorum decreased by 41.6% and 52.6% when treated with 3.30 × 10(-4) mM and 6.52 × 10(-4) mM tautomycin, respectively. Cellular constituents also leaked from S. sclerotiorum cells incubated with tautomycin. The results suggest that the antimicrobial activity of tautomycin is due to the inhibition of the PP and then a change of membrane permeability. This paper also investigated related compounds that possess either a maleic anhydride or maleic acid moiety. Results showed 2,3-dimethylmaleic anhydride, diphenylmaleic anhydride and dimethyl maleate demonstrated significant activity against S. sclerotiorum. The values of EC(50) for these three compounds were 0.31 mM, 0.15 mM and 3.99 mM, respectively. The MIC values obtained for these compounds were 1.11 mM, 0.56 mM and 9.58 mM, respectively.

  16. Antifungal activity of tautomycin and related compounds against Sclerotinia sclerotiorum.

    PubMed

    Chen, Xiaolong; Zhu, Xiaohui; Ding, Yicheng; Shen, Yinchu

    2011-08-01

    The potential of tautomycin to control oilseed rape stem rot was investigated in this paper. Tautomycin produced by Streptomyces spiroverticillatus strongly inhibited Sclerotinia sclerotiorum, which causes oilseed rape stem rot. Tautomycin showed great inhibition of the mycelial growth of S. sclerotiorum on potato dextrose agar (PDA) plates. The values of EC(50) and MIC were 3.26 × 10(-4) mM and 6.52 × 10(-4) mM, respectively. Tautomycin treatment also resulted in morphological abnormalities of S. sclerotiorum such as hyphal swellings and abnormally branched shapes, which were observed microscopically. Sclerotia of S. sclerotiorum soaked in the tautomycin solution for 24 h remained viable, but their ability to undergo myceliogenic germination on PDA plates was completely inhibited when the concentration of tautomycin reached 6.52 × 10(-4) mM. Tautomycin-treated oilseed rape leaves were found to have a low incidence of leaf blight caused by S. sclerotiorum. The activity of the protein phosphatase (PP) in S. sclerotiorum decreased by 41.6% and 52.6% when treated with 3.30 × 10(-4) mM and 6.52 × 10(-4) mM tautomycin, respectively. Cellular constituents also leaked from S. sclerotiorum cells incubated with tautomycin. The results suggest that the antimicrobial activity of tautomycin is due to the inhibition of the PP and then a change of membrane permeability. This paper also investigated related compounds that possess either a maleic anhydride or maleic acid moiety. Results showed 2,3-dimethylmaleic anhydride, diphenylmaleic anhydride and dimethyl maleate demonstrated significant activity against S. sclerotiorum. The values of EC(50) for these three compounds were 0.31 mM, 0.15 mM and 3.99 mM, respectively. The MIC values obtained for these compounds were 1.11 mM, 0.56 mM and 9.58 mM, respectively. PMID:21772304

  17. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    PubMed Central

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Maio, Ilona Di; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  18. 17 CFR 229.1206 - (Item 1206) Present activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the registrant's present activities, such as the number of wells in the process of being drilled... files the document as reasonably possible. (c) Include only those wells in the process of being drilled... ENERGY POLICY AND CONSERVATION ACT OF 1975-REGULATION S-K Disclosure by Registrants Engaged in Oil...

  19. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  20. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  1. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  2. Natural Compounds Preventing Neurodegenerative Diseases Through Autophagic Activation.

    PubMed

    Huang, Zhe; Adachi, Hiroaki

    2016-06-01

    Neurodegenerative diseases (NDDs) are a group of intractable diseases that significantly affect human health. To date, the pathogenesis of NDDs is still poorly understood and effective disease-modifying therapies for NDDs have not been established. NDDs share the common morphological characteristic of the deposition of abnormal proteins in the nervous system, including neurons. Autophagy is one of the major processes by which damaged organelles and abnormal proteins are removed from cells. Impairment of autophagy has been found to be involved in the pathogenesis of NDDs, and the regulation of autophagy may become a therapeutic strategy for NDDs. In recent years, some active compounds from plants have been found to regulate autophagy and exert neuroprotection against NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia 3, and amyotrophic lateral sclerosis, via activating autophagy. In this paper, we review recent advances in the use of active ingredients from plants for the regulation of autophagy and treatment of NDDs. PMID:27302727

  3. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  4. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    PubMed Central

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  5. Small-Molecule Activators of Insulin-Degrading Enzyme Discovered through High-Throughput Compound Screening

    PubMed Central

    Cabrol, Christelle; Huzarska, Malwina A.; Dinolfo, Christopher; Rodriguez, Maria C.; Reinstatler, Lael; Ni, Jake; Yeh, Li-An; Cuny, Gregory D.; Stein, Ross L.; Selkoe, Dennis J.; Leissring, Malcolm A.

    2009-01-01

    Background Hypocatabolism of the amyloid β-protein (Aβ) by insulin-degrading enzyme (IDE) is implicated in the pathogenesis of Alzheimer disease (AD), making pharmacological activation of IDE an attractive therapeutic strategy. However, it has not been established whether the proteolytic activity of IDE can be enhanced by drug-like compounds. Methodology/Principal Findings Based on the finding that ATP and other nucleotide polyphosphates modulate IDE activity at physiological concentrations, we conducted parallel high-throughput screening campaigns in the absence or presence of ATP and identified two compounds—designated Ia1 and Ia2—that significantly stimulate IDE proteolytic activity. Both compounds were found to interfere with the crosslinking of a photoaffinity ATP analogue to IDE, suggesting that they interact with a bona fide ATP-binding domain within IDE. Unexpectedly, we observed highly synergistic activation effects when the activity of Ia1 or Ia2 was tested in the presence of ATP, a finding that has implications for the mechanisms underlying ATP-mediated activation of IDE. Notably, Ia1 and Ia2 activated the degradation of Aβ by ∼700% and ∼400%, respectively, albeit only when Aβ was presented in a mixture also containing shorter substrates. Conclusions/Significance This study describes the first examples of synthetic small-molecule activators of IDE, showing that pharmacological activation of this important protease with drug-like compounds is achievable. These novel activators help to establish the putative ATP-binding domain as a key modulator of IDE proteolytic activity and offer new insights into the modulatory action of ATP. Several larger lessons abstracted from this screen will help inform the design of future screening campaigns and facilitate the eventual development of IDE activators with therapeutic utility. PMID:19384407

  6. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  7. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    PubMed Central

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  8. [The effect of selected tannery chemical compounds on selected bacteria of activated sludge].

    PubMed

    Mendrycka, M; Mierzejewski, J; Lidacki, A; Smiechowski, K

    2000-01-01

    Influence of tannery chemical compounds on the selected bacteria of the activated sludge was investigated. The chromium compounds must be diluted to 1:15-1:20 to loss its activity on the bacteria. Other compounds like: natrium chloratum, natrium formate and greased oils have any influence on the growth of the selected bacteria. PMID:11286092

  9. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    PubMed

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.

  10. Antiinflammatory and Analgesic Activities of Ethanol Extract and Isolated Compounds from Millettia pulchra.

    PubMed

    Huo, Xiaowei; Zhang, Leilei; Gao, Li; Guo, Yan; Zhang, Lijing; Li, Liyong; Si, Jianyong; Cao, Li

    2015-01-01

    The plant Millettia pulchra was commonly used in folk medicine for the management of inflammation. However, there was no scientific rationale for these effects and the mechanism of action remained incompletely understood. The present study was designed to investigate the antiinflammatory and analgesic activities of an ethanol extract of the stem of M. pulchra (EMP) in vivo, and to explore the antiinflammatory activity of compounds isolated from EMP in vitro. We found that EMP reduced xylene-induced ear edema and relieved both acetic acid-induced pain and pain in the hot plate test. Additionally, a significant decrease in nitric oxide (NO) production was observed in cells treated with the isolated compounds. Lanceolatin B, which showed the greatest inhibition of NO synthesis among the compounds tested, also reduced levels of interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), and phosphorylation inhibitory kappa B alpha (p-IκBα) in a dose-dependent manner. These findings provide convincing evidence that EMP and the individual isolated compounds possess significant antiinflammatory and analgesic activities. PMID:26062514

  11. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

    PubMed Central

    2010-01-01

    Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. Conclusion This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds. PMID:20939907

  12. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper.

    PubMed

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-06-23

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L.) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September.

  13. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    PubMed Central

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  14. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper.

    PubMed

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L.) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  15. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2015-01-01

    Lyme disease is the leading tick-borne disease in the USA. Whereas the majority of Lyme disease patients with early disease can be cured with standard treatment, some patients suffer from chronic fatigue and joint and muscular pain despite treatment, a syndrome called posttreatment Lyme disease syndrome. Although the cause is unclear, ineffective killing of Borrelia burgdorferi persisters by current Lyme disease antibiotics is one possible explanation. We took advantage of our recently developed high-throughput viability assay and screened the National Cancer Institute compound library collection consisting of 2526 compounds against stationary phase B. burgdorferi. We identified the top 30 new active hits, including the top six anthracycline antibiotics daunomycin 3-oxime, dimethyldaunomycin, daunomycin, NSC299187, NSC363998 and nogalamycin, along with other compounds, including prodigiosin, mitomycin, nanaomycin and dactinomycin, as having excellent activity against B. burgdorferi stationary phase culture. The anthracycline or anthraquinone compounds, which are known to have both anti-cancer and antibacterial activities, also had high activity against growing B. burgdorferi with low minimum inhibitory concentration. Future studies on the structure-activity relationship and mechanisms of action of anthracyclines/anthraquinones are warranted. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics to eradicate B. burgdorferi persisters in vitro and in animal models are needed to determine if they improve the treatment of Lyme disease. PMID:26954881

  16. Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains.

    PubMed

    Cablk, Mary E; Szelagowski, Erin E; Sagebiel, John C

    2012-07-10

    Human Remains Detection (HRD) dogs can be a useful tool to locate buried human remains because they rely on olfactory rather than visual cues. Trained specifically to locate deceased humans, it is widely believed that HRD dogs can differentiate animal remains from human remains. This study analyzed the volatile organic compounds (VOCs) present in the headspace above partially decomposed animal tissue samples and directly compared them with results published from human tissues using established solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) methods. Volatile organic compounds present in the headspace of four different animal tissue samples (bone, muscle, fat and skin) from each of cow, pig and chicken were identified and compared to published results from human samples. Although there were compounds common to both animal and human remains, the VOC signatures of each of the animal remains differed from those of humans. Of particular interest was the difference between pigs and humans, because in some countries HRD dogs are trained on pig remains rather than human remains. Pig VOC signatures were not found to be a subset of human; in addition to sharing only seven of thirty human-specific compounds, an additional nine unique VOCs were recorded from pig samples which were not present in human samples. The VOC signatures from chicken and human samples were most similar sharing the most compounds of the animals studied. Identifying VOCs that are unique to humans may be useful to develop human-specific training aids for HRD canines, and may eventually lead to an instrument that can detect clandestine human burial sites.

  17. Antibacterial activity of phenolic compounds and aromatic alcohols.

    PubMed

    Lucchini, J J; Corre, J; Cremieux, A

    1990-05-01

    The antibacterial properties of phenolic compounds and aromatic alcohols (growth inhibition, lethal effect and cytological damage) were investigated. The role of protein and RNA synthesis in the bactericidal action was also determined. All compounds tested demonstrated lethal properties and the ability to alter membranes, especially in Gram-negative bacteria. Efficacious concentrations, however, varied greatly among the compounds. These data corroborate previous findings which suggest that the mechanism of action of these compounds is related to their lipophilia. Moreover, since it was demonstrated that the lethal effect of two aromatic alcohols (phenethyl alcohol and benzyl alcohol) stops when protein synthesis is inhibited, it is likely that both possess specific mechanisms of action.

  18. Antioxidant activities and phenolic compounds of date plum persimmon ( Diospyros lotus L.) fruits.

    PubMed

    Gao, Hui; Cheng, Ni; Zhou, Juan; Wang, Bini; Deng, Jianjun; Cao, Wei

    2014-05-01

    In the present study, phenolic compounds are extracted from the date plum persimmon fruits using water, methanol and acetone as solvents. Antioxidant activities of the phenolic extracts are measured using four different tests, namely, DPPH, hydroxyl radical scavenging activities, chelating and reducing power assays. All the extracts show dose dependent DPPH radical scavenging activity, reducing and chelating powers and moreover, they are well correlated with the total phenolic and total flavonoid substances, suggesting direct contribution of phenolic compounds to these activities. In further, the extracts are identified and quantified by HPLC-ECD. Results show that gallic acid is the most abundant phenolic compound, with amounts ranging between 45.49and 287.47 μg/g dry sample. Myricetin is the dominant flavonoid in all extracts. Its level varied from 2.75 μg/g dry sample in acetone extract to 5.28 μg/g dry sample in water extract. On the basis of the results obtained, the date plum persimmon fruits phenolic extract is a potential source of natural antioxidants owing to its significant antioxidant activities. PMID:24803703

  19. Antioxidant activities and phenolic compounds of date plum persimmon ( Diospyros lotus L.) fruits.

    PubMed

    Gao, Hui; Cheng, Ni; Zhou, Juan; Wang, Bini; Deng, Jianjun; Cao, Wei

    2014-05-01

    In the present study, phenolic compounds are extracted from the date plum persimmon fruits using water, methanol and acetone as solvents. Antioxidant activities of the phenolic extracts are measured using four different tests, namely, DPPH, hydroxyl radical scavenging activities, chelating and reducing power assays. All the extracts show dose dependent DPPH radical scavenging activity, reducing and chelating powers and moreover, they are well correlated with the total phenolic and total flavonoid substances, suggesting direct contribution of phenolic compounds to these activities. In further, the extracts are identified and quantified by HPLC-ECD. Results show that gallic acid is the most abundant phenolic compound, with amounts ranging between 45.49and 287.47 μg/g dry sample. Myricetin is the dominant flavonoid in all extracts. Its level varied from 2.75 μg/g dry sample in acetone extract to 5.28 μg/g dry sample in water extract. On the basis of the results obtained, the date plum persimmon fruits phenolic extract is a potential source of natural antioxidants owing to its significant antioxidant activities.

  20. Antiherpetic Plants: A Review of Active Extracts, Isolated Compounds, and Bioassays.

    PubMed

    Silva-Mares, David; Torres-López, Ernesto; Rivas-Galindo, Verónica M

    2016-04-01

    Herpes simplex is a disease that is widely distributed throughout the world. It is caused by herpes simplex virus type 1 (HSV-1) and simplex virus type 2 (HSV-2). The drugs of choice for treatment are acyclovir (ACV), Penciclovir (PCV) and other guanine analogues, which have the same mechanism of action. However, due to the constant increase of ACV-resistant strains in immunocompromised patients, it is necessary to find new treatment alternatives. It has been shown that natural products are a good alternative for the treatment of these diseases as well as being an excellent source of compounds with anti-herpetic activity, which may be useful for the development of new drugs and act through a mechanism of action different from ACV and PCV. This paper compiles reports on extracts and compounds isolated from plants that have anti-herpetic activity. We present an analysis of the solvents most widely used for extraction from plants as well as cells and commonly used methods for evaluating cytotoxic and anti-herpetic activity. Families that have a higher number of plants with anti-herpetic activity are evaluated, and we also highlight the importance of studies of mechanisms of action of extracts and compounds with anti-herpetic activity. PMID:27396217

  1. Influence of endocrine active compounds on the developing rodent brain.

    PubMed

    Patisaul, Heather B; Polston, Eva K

    2008-03-01

    Changes in the volumes of sexually dimorphic brain nuclei are often used as a biomarker for developmental disruption by endocrine-active compounds (EACs). However, these gross, morphological analyses do not reliably predict disruption of cell phenotype or neuronal function. Therefore, an experimental approach that simultaneously assesses anatomical, physiological and behavioral endpoints is required when developing risk assessment models for EAC exposure. Using this more comprehensive approach we have demonstrated that the disruption of nuclear volume does not necessarily coincide with disruption of cellular phenotype or neuroendocrine function in two sexually dimorphic brain nuclei: the anteroventral periventricular nucleus of the hypothalamus (AVPV) and the sexually dimorphic nucleus of the preoptic area (SDN). These results demonstrate that nuclear volume is likely not an appropriate biomarker for EAC exposure. We further demonstrated that neonatal exposure to the EACs genistein (GEN) and Bisphenol-A (BPA) can affect sexually dimorphic brain morphology and neuronal phenotypes in adulthood with regional and cellular specificity suggesting that effects observed in one brain region may not be predictive of effects within neighboring regions. Finally, developmental EAC exposure has been shown to affect a variety of sexually dimorphic behaviors including reproductive behavior. These effects are likely to have a broad impact as maladaptive behavior could translate to decreased fitness of entire populations. Collectively, these findings emphasize the need to employ a comprehensive approach that addresses anatomical, functional and behavioral endpoints when evaluating the potential effects of EAC exposure.

  2. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    PubMed Central

    2012-01-01

    Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2) and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1), B (2), C (3), F (4), G (5) and 2,7-dihydroxy-4-methoxyphenanthrene (6), were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR) phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA) and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL) was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL) was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential antimicrobial

  3. Comparative study of SoxR activation by redox-active compounds

    PubMed Central

    Singh, Atul K.; Shin, Jung-Ho; Lee, Kang-Lok; Imlay, James A.; Roe, Jung-Hye

    2013-01-01

    Summary SoxR from E. coli and related enterobacteria is activated by a broad range of redox-active compounds through oxidation or nitrosylation of its [2Fe-2S] cluster. Activated SoxR then induces SoxS, which subsequently activates more than 100 genes in response. In contrast, non-enteric SoxRs directly activate their target genes in response to redox-active compounds that include endogenously produced metabolites. We compared the responsiveness of SoxRs from Streptomyces coelicolor (ScSoxR), Pseudomonas aeruginosa (PaSoxR) and E. coli (EcSoxR), all expressed in S. coelicolor, toward natural or synthetic redox-active compounds. EcSoxR responded to all compounds examined, whereas ScSoxR was insensitive to oxidants such as paraquat (Eh −440 mV) and menadione sodium bisulfite (Eh −45 mV) and to NO generators. PaSoxR was insensitive only to some NO generators. Whole cell EPR analysis of SoxRs expressed in E. coli revealed that the [2Fe-2S]1+ of ScSoxR was not oxidizable by paraquat, differing from EcSoxR and PaSoxR. The mid-point redox potential of purified ScSoxR was determined to be −185 ± 10 mV, higher by ~100 mV than those of EcSoxR and PaSoxR, supporting its limited response to paraquat. The overall sensitivity profile indicates that both redox potential and kinetic reactivity determine the differential responses of SoxRs toward various oxidants. PMID:24112649

  4. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    PubMed Central

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Hashim, Najihah Mohd; Chow, Kit May; Ahmadipour, Fatemeh

    2015-01-01

    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells. PMID:26648695

  5. Mutagenic and genotoxic activity of chosen dyes and surface active compounds used in the textile industry.

    PubMed

    Przybojewska, B; Barański, B; Spiechowicz, E; Szymczak, W

    1989-01-01

    This study was designed to investigate the mutagenic and genotoxic properties of ten dyes and four surface active compounds using Salmonella/microsome assay and the micronucleus test. Five of the investigated dyes (Acid Blue 7, Acid Green 16, Direct Black 19:1, Basic Red 22, Basic Orange 28) possessed mutagenic activity with regard to test strains of Salmonella. In addition, all of them increased the frequency of micronucleated polychromatic erythrocytes in the bone marrow of mice. Three other compounds (Acid Blue 62, Direct Yellow 12, Direct Red 81), which were not mutagenic in the Salmonella/microsome assay, were genotoxic in the micronucleus test. The other two dyes (Reactive Blue 13, Acid Red 213), as well as tested surface active compounds, did not exert mutagenic and genotoxic effects, and therefore, it is most probable that they do not have carcinogenic properties. Besides, it was noted that Acid Blue 62, Direct Black 19:1, Direct Red 81 and Basic Orange 28 cause a significant decrease in the ratio polychromatic to normochromatic erythrocytes in the bone marrow of mice, which means that, at the doses used in the experiment, they are toxic to the erythrocyte series cells of bone marrow. The other compounds under consideration have no such effect.

  6. Bioactive Compounds and Antioxidant Activity in Different Types of Berries.

    PubMed

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  7. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  8. Environmental aspects of surface-active quaternary ammonium compounds

    SciTech Connect

    Boethling, R.S.

    1994-12-31

    Cationic surfactants first gained prominence more than 50 years ago, after Domagk`s discovery that the biocidal properties of quaternary ammonium compounds were greatly enhanced by the presence of a long alkyl chain. Present-day applications include fabric softeners, biocides, textile dye leveling agents, oil fields chemicals and asphalt additives, to name only a few. US consumption was estimated at 190,000 metric tons in 1987, most of which was sewered. Cationics thus represent a major class of potential environmental contaminants. As a class they sorb strongly and rapidly to solids in sewage and the aquatic environment. Most major categories of cationics have been shown to undergo extensive aerobic biodegradation in low-biomass test systems, when tested at environmentally relevant concentrations. But anaerobic biodegradation, although not well studied, appears to be slow, and the lower degradability of dialkyl quaternaries in general is now leading to their replacement by analogs containing ester or amide linkages to enhance biodegradation. Cationics are also toxic to aquatic organisms, including fish, invertebrates and algae. Acute toxicity is fairly well characterized, but data on chronic toxicity are more limited and support concern concentrations in the ug/L range. In the aquatic environment sorption to sediment and dissolved organic carbon may substantially reduce acute toxicity, but bioavailability in the gut warrants further study.

  9. Variations in essential oil, phenolic compounds, and antioxidant activity of tunisian cultivated Salvia officinalis L.

    PubMed

    Ben Farhat, Mouna; Jordán, María J; Chaouech-Hamada, Rym; Landoulsi, Ahmed; Sotomayor, Jose A

    2009-11-11

    The variation in the chemical composition of the essential oil of Salvia officinalis , growing in different habitats, was studied. GC-MS analysis revealed 57 compounds representing 94.68-96.80% of total oils. The major components were alpha-thujone (11.55-19.23%), viridiflorol (9.94-19.46%), 1,8-cineole (8.85-15.60%), camphor (5.08-15.06%), manool (5.52-13.06%), beta-caryophyllene (2.63-9.24%), alpha-humulene (1.93-8.94%), and beta-thujone (5.45-6.17%), showing significant differences between different collection sites. Analysis of some representative polyphenolic compounds and antioxidant activity was performed using postdistilled dry samples. Rosmarinic acid, carnosol, and carnosic acid were the prevalent compounds of S. officinalis methanolic extracts. The results revealed differences in the polyphenolic composition and also exhibited antioxidant and radical-scavenging activities at different magnitudes of potency. However, within the used methods, only the DPPH(*) assay showed significant differences (p < 0.05) in free radical scavenging activity among samples collected in different regions. Plants collected in the coastal regions Soliman and Kelibia accumulate more polyphenolic compounds, known to be responsible for the main antioxidant activity of sage (rosmarinic acid, carnosol, and carnosic acid), than those growing inland at Bou Arada and Sers. Moreover, the former presented a higher radical-scavenging activity. The methanolic extracts of postdistilled S. officinalis might be valuable antioxidant natural sources and seemed to be applicable in both the health medicine and food industries.

  10. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds.

    PubMed

    Aazza, Smail; Lyoussi, Badiâ; Miguel, Maria G

    2011-01-01

    The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L.) Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene. PMID:21900869

  11. Analytical methodology for the profiling and characterization of androgen receptor active compounds in human placenta.

    PubMed

    Indiveri, Paolo; Horwood, Julia; Abdul-Sada, Alaa; Arrebola, Juan P; Olea, Nicolas; Hill, Elizabeth M

    2014-08-01

    The exposure to endocrine disrupting chemicals during foetal development has been proposed to cause reproductive dysfunctions in the neonate or later life. In order to support such studies, an analytical method was developed to profile the receptor mediated (anti)androgenic activities present in extracts of placenta samples. Placenta samples from women giving birth to healthy male neonates were extracted and fractionated by HPLC. Fractions containing androgen receptor (AR) activity were detected using an in vitro yeast-based human androgen receptor transcription screen. GC-MS analyses of receptor active fractions resulted in detection of chemical contaminants including antimicrobial and cosmetic compounds which exhibited AR antagonist activity in the yeast screen, and endogenously derived steroids which contributed to both the agonist and antagonistic activity in the samples. The bioassay-directed fractionation methodology developed in this study revealed the potential to identify mixtures of chemical contaminants that should be investigated for potential effects on the reproductive system.

  12. Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for alpha-dicarbonyl compounds as a proof of the mutagenic mechanism.

    PubMed

    Rodríguez Mellado, J M; Ruiz Montoya, M

    1994-01-16

    The mutagenic activities in the Ames test against S. typhimurium TA100 for a series of alpha-dicarbonyl compounds are examined together with the formation constants of the adducts formed between such compounds and guanine and guanosine. Correlations between the equilibrium constants, the apparent reaction enthalpies, and the mutagenic activity are presented. These correlations imply that the mutagenic activity is related to the chemical reactivity of the dicarbonyl compounds with the puric bases. PMID:7506369

  13. Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for alpha-dicarbonyl compounds as a proof of the mutagenic mechanism.

    PubMed

    Rodríguez Mellado, J M; Ruiz Montoya, M

    1994-01-16

    The mutagenic activities in the Ames test against S. typhimurium TA100 for a series of alpha-dicarbonyl compounds are examined together with the formation constants of the adducts formed between such compounds and guanine and guanosine. Correlations between the equilibrium constants, the apparent reaction enthalpies, and the mutagenic activity are presented. These correlations imply that the mutagenic activity is related to the chemical reactivity of the dicarbonyl compounds with the puric bases.

  14. Taiwan's cooperative space activities at present and in future

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen

    2004-01-01

    Taiwan is developing a long-term space program which is entering its next 15 years of planning cycle. Since its establishment in 1992, the National Space Program Office has played a key role in introducing satellite technology and space experiments into Taiwan. In parallel, basic research in space science and remote-sensing observations are being promoted in different institutions. A combination of these efforts has earned Taiwan a compact but effective space program capable of mounting satellite missions and advanced study in various disciplines of space science. The satellite data receiving and data processing facilities are particularly valuable in addressing issues related to environmental protection, natural hazards and economic planning. At the present time, Taiwan's international cooperative space activities are still very limited in scope but there is a wide ranging of possibilities which could be pursued together with other developing nations in space research under the auspice of COSPAR.

  15. Acquisition of Compound Words in Chinese-English Bilingual Children: Decomposition and Cross-Language Activation

    ERIC Educational Resources Information Center

    Cheng, Chenxi; Wang, Min; Perfetti, Charles A.

    2011-01-01

    This study investigated compound processing and cross-language activation in a group of Chinese-English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both languages. The compound words in one language contained…

  16. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  17. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  18. Analysis of coenzyme A activated compounds in actinomycetes.

    PubMed

    Cabruja, Matías; Lyonnet, Bernardo Bazet; Millán, Gustavo; Gramajo, Hugo; Gago, Gabriela

    2016-08-01

    Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle and lipid, carbohydrate, and amino acid metabolisms, and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study, we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high-pressure liquid chromatography electrospray ionization high-resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept, we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces, and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed, including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoA profile of Mycobacterium smegmatis, which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid-treated cells. This robust, sensitive, and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate. PMID:27270600

  19. Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities.

    PubMed

    Zhang, Yu-Bo; Wu, Peng; Zhang, Xiao-Li; Xia, Chao; Li, Guo-Qiang; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2015-11-05

    Three new phenolic compounds 1-3 and twenty known ones 4-23 were isolated from the flowers of Bombax malabaricum. Their chemical structures were elucidated by spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D- and 2D-NMR) and chemical reactions. The antioxidant capacities of the isolated compounds were tested using FRAP and DPPH radical-scavenging assays, and compounds 4, 6, 8, 12, as well as the new compound 2, exhibited stronger antioxidant activities than ascorbic acid. Furthermore, all of compounds were tested for their antiviral activities against RSV by the CPE reduction assay and plaque reduction assay. Compounds 4, 10, 12 possess in vitro antiviral activities, and compound 10 exhibits potent anti-RSV effects, comparable to the positive control ribavirin.

  20. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.

  1. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    PubMed

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. PMID:27612813

  2. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    PubMed

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages.

  3. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  4. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain. PMID:15046718

  5. Present Day Activity of South Polar Gullies on Mars

    NASA Astrophysics Data System (ADS)

    Raack, J.; Reiss, D.; Ruesch, O.; Hiesinger, H.

    2012-04-01

    Here we report on clearly identified seasonal changes of gullies observed within the last two martian years (MY) on slopes of a south polar pit, which is located in a filled crater (diameter ~54 km) north of Sisyphi Cavi at ~68.5°S and ~1.5°E. Using new high-resolution imaging (High Resolution Imaging Science Experiment, HiRISE), temperature (Thermal Emission Spectrometer, TES) and spectral data (Compact Reconnaissance Imaging Spectrometer for Mars, CRISM; Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, OMEGA), we analyzed the exact timing of changes of gullies and detect the possible medium (CO2, H2O or dry) and mechanism which initiate present day gully activity. Two locations in the study region with clear modifications of gullies were identified in MY 29 between LS 226° and LS 247° and between LS 209° and LS 247°. In MY 30 changes occur in both locations between LS 218° and LS 249°. Modifications are the formation of a new small apron and new deposits within the channel, both associated with the deposition of dark material. Erosion in gully alcoves or channels was not observed. TES data show temperatures between ~180 and ~240 K within the period of gully modifications. Maximum temperatures in the region rise up to ~285 K between LS ~270° and ~310°. Spectral data show a CO2-cover of the study region until LS 227°. CO2-ice free surface are spectrally observed for the first time at LS 249°. H2O was not spectrally detected in the study region and a mixture of CO2 and H2O as presented in [1] cannot be clearly detected. Unfortunately, there are no spectral data available between LS 227° and 249°. Modifications of gullies imply seasonal volatile activity. The activity can be narrowed down to occur between LS 226° and 247° at mean temperatures between ~180 and ~240 K. This is in the range of temperatures where CO2 sublimates back into the atmosphere. Based on the temperature range, the most likely candidate for the observed new

  6. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  7. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.

    PubMed

    Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W

    2009-08-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  8. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.

    PubMed

    Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W

    2009-08-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon. PMID:19657534

  9. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    USGS Publications Warehouse

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  10. Global emissions and models of photochemically active compounds

    SciTech Connect

    Penner, J.E.; Atherton, C.S.; Graedel, T.E.

    1993-05-20

    Anthropogenic emissions from industrial activity, fossil fuel combustion, and biomass burning are now known to be large enough (relative to natural sources) to perturb the chemistry of vast regions of the troposphere. A goal of the IGAC Global Emissions Inventory Activity (GEIA) is to provide authoritative and reliable emissions inventories on a 1{degree} {times} 1{degree} grid. When combined with atmospheric photochemical models, these high quality emissions inventories may be used to predict the concentrations of major photochemical products. Comparison of model results with measurements of pertinent species allows us to understand whether there are major shortcomings in our understanding of tropospheric photochemistry, the budgets and transport of trace species, and their effects in the atmosphere. Through this activity, we are building the capability to make confident predictions of the future consequences of anthropogenic emissions. This paper compares IGAC recommended emissions inventories for reactive nitrogen and sulfur dioxide to those that have been in use previously. We also present results from the three-dimensional LLNL atmospheric chemistry model that show how emissions of anthropogenic nitrogen oxides might potentially affect tropospheric ozone and OH concentrations and how emissions of anthropogenic sulfur increase sulfate aerosol loadings.

  11. Effects of polyhydroxy compounds on beetle antifreeze protein activity

    PubMed Central

    Amornwittawat, Natapol; Wang, Sen; Banatlao, Joseph; Chung, Melody; Velasco, Efrain; Duman, John G.; Wen, Xin

    2016-01-01

    Antifreeze proteins (AFPs) noncolligatively depress the nonequilibrium freezing point of a solution and produce a difference between the melting and freezing points termed thermal hysteresis (TH). Some low-molecular-mass solutes can affect the TH values. The TH enhancement effects of selected polyhydroxy compounds including polyols and carbohydrates on an AFP from the beetle Dendroides canadensis were systematically investigated using differential scanning calorimetry (DSC). The number of hydroxyl groups dominates the molar enhancement effectiveness of polyhydroxy compounds having one to five hydroxyl groups. However, the above rule does not apply for polyhydroxy compounds having more than five hydroxyl groups. The most efficient polyhydroxy enhancer identified is trehalose. In a combination of enhancers the strongest enhancer plays the major role in determining the TH enhancement. Mechanistic insights into identification of highly efficient AFP enhancers are discussed. PMID:19038370

  12. Inhibition of Peroxidase Activity of Cytochrome c: De Novo Compound Discovery and Validation

    PubMed Central

    Bakan, Ahmet; Kapralov, Alexandr A.; Bayir, Hulya; Hu, Feizhou; Kagan, Valerian E.

    2015-01-01

    Cytochrome c (cyt c) release from mitochondria is accepted to be the point of no return for eliciting a cascade of interactions that lead to apoptosis. A strategy for containing sustained apoptosis is to reduce the mitochondrial permeability pore opening. Pore opening is enhanced by peroxidase activity of cyt c gained upon its complexation with cardiolipin in the presence of reactive oxygen species. Blocking access to the heme group has been proposed as an effective intervention method for reducing, if not eliminating, the peroxidase activity of cyt c. In the present study, using a combination of druggability simulations, pharmacophore modeling, virtual screening, and in vitro fluorescence measurements to probe peroxidase activity, we identified three repurposable drugs and seven compounds that are validated to effectively inhibit the peroxidase activity of cyt c. PMID:26078313

  13. A review of QSAR studies to discover new drug-like compounds actives against leishmaniasis and trypanosomiasis.

    PubMed

    Castillo-Garit, Juan Alberto; Abad, Concepción; Rodríguez-Borges, J Enrique; Marrero-Ponce, Yovani; Torrens, Francisco

    2012-01-01

    The neglected tropical diseases (NTDs) affect more than one billion people (one-sixth of the world's population) and occur primarily in undeveloped countries in sub-Saharan Africa, Asia, and Latin America. Available drugs for these diseases are decades old and present an important number of limitations, especially high toxicity and, more recently, the emergence of drug resistance. In the last decade several Quantitative Structure-Activity Relationship (QSAR) studies have been developed in order to identify new organic compounds with activity against the parasites responsible for these diseases, which are reviewed in this paper. The topics summarized in this work are: 1) QSAR studies to identify new organic compounds actives against Chaga's disease; 2) Development of QSAR studies to discover new antileishmanial drusg; 3) Computational studies to identify new drug-like compounds against human African trypanosomiasis. Each topic include the general characteristics, epidemiology and chemotherapy of the disease as well as the main QSAR approaches to discovery/identification of new actives compounds for the corresponding neglected disease. The last section is devoted to a new approach know as multi-target QSAR models developed for antiparasitic drugs specifically those actives against trypanosomatid parasites. At present, as a result of these QSAR studies several promising compounds, active against these parasites, are been indentify. However, more efforts will be required in the future to develop more selective (specific) useful drugs.

  14. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine.

    PubMed

    Mao, Ze-Wei; Zheng, Xi; Lin, Yu-Ping; Hu, Chun-Yan; Wang, Xiu-Li; Wan, Chun-Ping; Rao, Gao-Xiong

    2016-08-01

    A series of novel hybrid compounds between benzofuran and N-aryl piperazine have been designed and prepared. These derivatives were evaluated for their in vitro anti-tumor activity against a panel of human tumor cell lines by MTT assay. The results demonstrated that amide derivatives were more bioactive than sulfonamide compounds in general, and that chloro or trifluoromethyl substituent was vital for modulating cytotoxic activity. In particular, compound 13 was found to be the most potent compound against 4 strains human tumor cell lines, and exhibited cytotoxic activity selectively against Hela (0.03μM). PMID:27371110

  15. Comprehensive assessment of the specific compounds present in combustion processes. Volume 4. National estimates of emission of specific compounds from coal fired utility boiler plants. Final report

    SciTech Connect

    Lucas, R.M.; Kircher, G.W.

    1985-08-01

    Specimens were acquired from influents and effluents from seven coal-fired utility boilers. The specimens were chemically analyzed for toxic compounds in the polycyclic organic matter group. The specific target compounds were polychlorinated dibenzo(p)-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), selected polynuclear aromatic hydrocarbons (PAHs) and selected phthalates. Twelve PAH compounds and six phthalate compounds were included among the targetted compounds. Naphthalene was the most prevalent PAH compound detected. It was found in the flue gas emissions from all seven facilities. Other PAHs were also detected in the coal at all seven facilities but were only rarely detected in the other media. No PCDDs or PCDFs were detected in any of the acquired specimens. PCBs were only detected in one other media, the influent combustion air.

  16. Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines.

    PubMed

    Ivanova-Petropulos, Violeta; Ricci, Arianna; Nedelkovski, Dusko; Dimovska, Violeta; Parpinello, Giuseppina P; Versari, Andrea

    2015-03-15

    Phenolic composition of twenty-two Macedonian red wines, including ten autochthonous monovarietal Vranec wines produced with different yeasts for fermentation, and twelve wines from international varieties (Syrah, Merlot and Cabernet Sauvignon) from different wine regions was studied. All wines presented relatively high value of total phenols and antioxidant activity. A total of 19 phenolic compounds were identified and quantified using HPLC-DAD and among them, malvidin-3-glucoside and its derivatives were the major compounds, followed by the petunidin derivatives, while caftaric acid was the predominant cinnamic acid derivative in all wines. The anthocyanin content was mainly affected by the grape variety and to a less extent by the yeast used in fermentation. In particular, the use of locally isolated yeasts affected higher amount of anthocyanins and phenolic acids compared to the wines fermented with commercial yeasts. Principal Component Analysis showed a satisfactory grouping of red wines according to the grape variety.

  17. (PRESENTED AT TSUKIJI, CHUO-KU, JAPAN) PERSISTENT PERFLUORINATED COMPOUNDS IN THE ENVIRONMENT: A BRIEF INTRODUCTION TO THIS IMPORTANT NEW CLASS OF POLLUTANTS

    EPA Science Inventory

    PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.

  18. Anti-tumor activities of active ingredients in Compound Kushen Injection

    PubMed Central

    Wang, Wei; You, Rong-li; Qin, Wen-jie; Hai, Li-na; Fang, Ming-jing; Huang, Guo-hua; Kang, Rui-xia; Li, Ming-hua; Qiao, Yu-feng; Li, Jian-wei; Li, An-ping

    2015-01-01

    Kushen (Radix Sophorae Flavescentis) has a long history of use for the treatment of tumors, inflammation and other diseases in traditional Chinese medicine. Compound Kushen Injection (CKI) is a mixture of natural compounds extracted from Kushen and Baituling (Rhizoma Smilacis Glabrae). The main principles of CKI are matrine (MT) and oxymatrine (OMT) that exhibit a variety of pharmacological activities, including anti-inflammatory, anti-allergic, anti-viral, anti-fibrotic and cardiovascular protective effects. Recent evidence shows that these compounds also produce anti-cancer actions, such as inhibiting cancer cell proliferation, inducing cell cycle arrest, accelerating apoptosis, restraining angiogenesis, inducing cell differentiation, inhibiting cancer metastasis and invasion, reversing multidrug resistance, and preventing or reducing chemotherapy- and/or radiotherapy-induced toxicity when combined with chemotherapeutic drugs. In this review, we summarize recent progress in studying the anti-cancer activities of MT, OMT and CKI and their potential molecular targets, which provide clues and references for further study. PMID:25982630

  19. Anti-tumor activities of active ingredients in Compound Kushen Injection.

    PubMed

    Wang, Wei; You, Rong-li; Qin, Wen-jie; Hai, Li-na; Fang, Ming-jing; Huang, Guo-hua; Kang, Rui-xia; Li, Ming-hua; Qiao, Yu-feng; Li, Jian-wei; Li, An-ping

    2015-06-01

    Kushen (Radix Sophorae Flavescentis) has a long history of use for the treatment of tumors, inflammation and other diseases in traditional Chinese medicine. Compound Kushen Injection (CKI) is a mixture of natural compounds extracted from Kushen and Baituling (Rhizoma Smilacis Glabrae). The main principles of CKI are matrine (MT) and oxymatrine (OMT) that exhibit a variety of pharmacological activities, including anti-inflammatory, anti-allergic, anti-viral, anti-fibrotic and cardiovascular protective effects. Recent evidence shows that these compounds also produce anti-cancer actions, such as inhibiting cancer cell proliferation, inducing cell cycle arrest, accelerating apoptosis, restraining angiogenesis, inducing cell differentiation, inhibiting cancer metastasis and invasion, reversing multidrug resistance, and preventing or reducing chemotherapy- and/or radiotherapy-induced toxicity when combined with chemotherapeutic drugs. In this review, we summarize recent progress in studying the anti-cancer activities of MT, OMT and CKI and their potential molecular targets, which provide clues and references for further study. PMID:25982630

  20. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  1. Flavan-3-ol Compounds from Wine Wastes with in Vitro and in Vivo Antioxidant Activity

    PubMed Central

    Scola, Gustavo; Conte, Danusa; Spada, Patrícia Wilmsen Dalla-Santa; Dani, Caroline; Vanderlinde, Regina; Funchal, Claudia; Salvador, Mirian

    2010-01-01

    It has been suggested that the dietary intake of antioxidant supplements could be a useful strategy to reduce the incidence of diseases associated with oxidative stress. The aim of present work is to study the possibility to obtain compounds with antioxidant activity from wine wastes using water as solvent. Results have shown that it is possible to obtain flavan-3-ol compounds from wine wastes both from V. vinifera (cv. Cabernet Sauvignon and Merlot) and V. labrusca (cv. Bordo and Isabella) species. The main phenolic compounds found in the extracts were catechin and epicatechin, followed by procyanidin B3, procyanidin B1, procyanidin B2, gallic acid, epigallocatechin, and procyanidin B4. All flavan-3-ol extracts showed significant in vitro and in vivo activities. It was found that the extracts were able to prevent lipid and protein oxidative damage in the cerebral cortex, cerebellum and hippocampus tissues of rats. Although further studies are necessary, these flavan-3-ol extracts show potential to be used to reduce the incidence of degenerative diseases associated with oxidative stress. PMID:22253995

  2. Ovicidal and adulticidal activities of Cinnamomum zeylanicum bark essential oil compounds and related compounds against Pediculus humanus capitis (Anoplura: Pediculicidae).

    PubMed

    Yang, Young-Cheol; Lee, Hoi-Seon; Lee, Si Hyeock; Clark, J Marshall; Ahn, Young-Joon

    2005-12-01

    The toxicity of cinnamon, Cinnamomum zeylanicum, bark essential oil compounds against eggs and adult females of human head louse, Pediculus humanus capitis, was examined using direct contact and vapour phase toxicity bioassays and compared with the lethal activity of their related compounds, benzyl alcohol, cinnamic acid, cinnamyl acetate, 4-hydroxybenzaldehyde and salicylaldehyde, as well as two widely used pediculicides, d-phenothrin and pyrethrum. In a filter-paper contact toxicity bioassay with female lice at 0.25 mg/cm(2), benzaldehyde was 29- and 27-fold more toxic than pyrethrum and d-phenothrin, respectively, as judged by median lethal time (LT(50)) values. Salicylaldehyde was nine and eight times more active than pyrethrum and d-phenothrin, respectively. Pediculicidal activity of linalool was comparable with that of d-phenothrin and pyrethrum. Cinnamomum bark essential oil was slightly less effective than either d-phenothrin or pyrethrum. Benzyl alcohol and (E)-cinnamaldehyde exhibited moderate pediculicidal activity. After 24h of exposure, no hatching was observed with 0.063 mg/cm(2) salicylaldehyde, 0.125 mg/cm(2) benzaldehyde, 0.5mg/cm(2)Cinnamomum bark essential oil, 1.0 mg/cm(2) (E)-cinnamaldehyde, and 1.0 mg/cm(2) benzyl cinnamate. Little or no ovicidal activity was observed with d-phenothrin or pyrethrum. In vapour phase toxicity tests with female lice, benzaldehyde and salicylaldehyde were much more effective in closed containers than in open ones, indicating that the mode of delivery of these compounds was largely due to action in the vapour phase. Neither d-phenothrin nor pyrethrum exhibited fumigant toxicity. Cinnamomum bark essential oil and test compounds described merit further study as potential pediculicides or ovicides for the control of P. h. capitis.

  3. Silver-Catalyzed Cross-Coupling of Isocyanides and Active Methylene Compounds by a Radical Process.

    PubMed

    Liu, Jianquan; Liu, Zhenhua; Liao, Peiqiu; Zhang, Lin; Tu, Tao; Bi, Xihe

    2015-09-01

    Isocyanides are versatile building blocks, and have been extensively exploited in C-H functionalization reactions. However, transition-metal-catalyzed direct C-H functionalization reactions with isocyanides suffer from over-insertion of isocyanides. Reported herein is a radical coupling/isomerization strategy for the cross-coupling of isocyanides with active methylene compounds through silver-catalysis. The method solves the over-insertion issue and affords a variety of otherwise difficult to synthesize β-aminoenones and tricarbonylmethanes under base- and ligand-free conditions. This report presents a new fundamental C-C bond-forming reaction of two basic chemicals.

  4. Inhibitors of 7-Dehydrocholesterol Reductase: Screening of a Collection of Pharmacologically Active Compounds in Neuro2a Cells.

    PubMed

    Kim, Hye-Young H; Korade, Zeljka; Tallman, Keri A; Liu, Wei; Weaver, C David; Mirnics, Karoly; Porter, Ned A

    2016-05-16

    A small library of pharmacologically active compounds (the NIH Clinical Collection) was assayed in Neuro2a cells to determine their effect on the last step in the biosynthesis of cholesterol, the transformation of 7-dehydrocholesterol (7-DHC) to cholesterol promoted by 7-dehydrocholesterol reductase, DHCR7. Of some 727 compounds in the NIH Clinical Collection, over 30 compounds significantly increased 7-DHC in Neuro2a cells when assayed at 1 μM. Active compounds that increased 7-DHC with a Z-score of +3 or greater generally gave rise to modest decreases in desmosterol and increases in lanosterol levels. Among the most active compounds identified in the library were the antipsychotic, antidepressant, and anxiolytic compounds that included perospirone, nefazodone, haloperidol, aripiprazole, trazodone, and buspirone. Fluoxetine and risperidone were also active at 1 μM, and another 10 compounds in this class of pharmaceuticals were identified in the screen at concentrations of 10 μM. Increased levels of 7-DHC are associated with Smith-Lemli-Opitz syndrome (SLOS), a human condition that results from a mutation in the gene that encodes DHCR7. The SLOS phenotype includes neurological deficits and congenital malformations, and it is linked to a higher incidence of autism spectrum disorder. The significance of the current study is that it identifies common pharmacological compounds that may induce a biochemical presentation similar to SLOS. Little is known about the side effects of elevated 7-DHC postdevelopmentally, and the elevated 7-DHC that results from exposure to these compounds may also be a confounder in the diagnosis of SLOS. PMID:27097157

  5. Follow-up: Prospective compound design using the 'SAR Matrix' method and matrix-derived conditional probabilities of activity.

    PubMed

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  6. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5. PMID:27020521

  7. Caatinga plants: Natural and semi-synthetic compounds potentially active against Trichomonas vaginalis.

    PubMed

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; da Silva, Gloria Narjara Santos; Silva, Denise Brentan; Lopes, Norberto Peporine; Gnoatto, Simone Cristina Baggio; da Silva, Márcia Vanusa; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis causes trichomoniasis; the most common but overlooked non-viral sexually transmitted disease worldwide. The treatment is based at 5'-nitroimidazoles, however, failure are related to resistance of T. vaginalis to chemotherapy. Caatinga is a uniquely Brazilian region representing a biome with type desert vegetation and plants present diverse biological activity, however, with few studies. The aim of this study was to investigate the activity against T. vaginalis of different plants from Caatinga and identify the compounds responsible by the activity. A bioguided fractionation of Manilkara rufula was performed and four major compounds were identified: caproate of α-amyrin (1b), acetate of β-amyrin (2a), caproate of β-amyrin (2b), and acetate of lupeol (3a). In addition, six derivatives of α-amyrin (1), β-amyrin (2) and lupeol (3) were synthesized and tested against the parasite. Ursolic acid (5) reduced about 98% of parasite viability after 2h of incubation and drastic ultrastructural alterations were observed by scanning electron microscopy. Moreover, 5 presented high cytotoxicity to HMVII and HeLa cell line and low cytotoxicity against Vero line at 50 μM (MIC against the parasite). Metronidazole effect against T. vaginalis resistant isolate was improved when in association with 5.

  8. Composition and topology of activity cliff clusters formed by bioactive compounds.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2014-02-24

    The assessment of activity cliffs has thus far mostly focused on compound pairs, although the majority of activity cliffs are not formed in isolation but in a coordinated manner involving multiple active compounds and cliffs. However, the composition of coordinated activity cliff configurations and their topologies are unknown. Therefore, we have identified all activity cliff configurations formed by currently available bioactive compounds and analyzed them in network representations where activity cliff configurations occur as clusters. The composition, topology, frequency of occurrence, and target distribution of activity cliff clusters have been determined. A limited number of large cliff clusters with unique topologies were identified that were centers of activity cliff formation. These clusters originated from a small number of target sets. However, most clusters were of small to moderate size. Three basic topologies were sufficient to describe recurrent activity cliff cluster motifs/topologies. For example, frequently occurring clusters with star topology determined the scale-free character of the global activity cliff network and represented a characteristic activity cliff configuration. Large clusters with complex topology were often found to contain different combinations of basic topologies. Our study provides a first view of activity cliff configurations formed by currently available bioactive compounds and of the recurrent topologies of activity cliff clusters. Activity cliff clusters of defined topology can be selected, and from compounds forming the clusters, SAR information can be obtained. The SAR information of activity cliff clusters sharing a/one specific activity and topology can be compared.

  9. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  10. Scale-free brain activity: past, present and future

    PubMed Central

    He, Biyu J.

    2014-01-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography, magnetoencephalography and functional magnetic resonance imaging signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, “scale-free”). This characteristic of scale-free brain activity distinguishes it from brain oscillations. While scale-free brain activity and brain oscillations coexist, our understanding of the former remains very limited. Recent research has shed light on the spatiotemporal organization, functional significance and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights and analytical tools for cognitive neuroscience. PMID:24788139

  11. Scale-free brain activity: past, present, and future.

    PubMed

    He, Biyu J

    2014-09-01

    Brain activity observed at many spatiotemporal scales exhibits a 1/f-like power spectrum, including neuronal membrane potentials, neural field potentials, noninvasive electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) signals. A 1/f-like power spectrum is indicative of arrhythmic brain activity that does not contain a predominant temporal scale (hence, 'scale-free'). This characteristic of scale-free brain activity distinguishes it from brain oscillations. Although scale-free brain activity and brain oscillations coexist, our understanding of the former remains limited. Recent research has shed light on the spatiotemporal organization, functional significance, and potential generative mechanisms of scale-free brain activity, as well as its developmental and clinical relevance. A deeper understanding of this prevalent brain signal should provide new insights into, and analytical tools for, cognitive neuroscience.

  12. Sangay volcano, Ecuador: structural development, present activity and petrology

    NASA Astrophysics Data System (ADS)

    Monzier, Michel; Robin, Claude; Samaniego, Pablo; Hall, Minard L.; Cotten, Jo; Mothes, Patricia; Arnaud, Nicolas

    1999-05-01

    Sangay (5230 m), the southernmost active volcano of the Andean Northern Volcanic Zone (NVZ), sits ˜130 km above a >32-Ma-old slab, close to a major tear that separates two distinct subducting oceanic crusts. Southwards, Quaternary volcanism is absent along a 1600-km-long segment of the Andes. Three successive edifices of decreasing volume have formed the Sangay volcanic complex during the last 500 ka. Two former cones (Sangay I and II) have been largely destroyed by sector collapses that resulted in large debris avalanches that flowed out upon the Amazon plain. Sangay III, being constructed within the last avalanche amphitheater, has been active at least since 14 ka BP. Only the largest eruptions with unusually high Plinian columns are likely to represent a major hazard for the inhabited areas located 30 to 100 km west of the volcano. However, given the volcano's relief and unbuttressed eastern side, a future collapse must be considered, that would seriously affect an area of present-day colonization in the Amazon plain, ˜30 km east of the summit. Andesites greatly predominate at Sangay, there being few dacites and basalts. In order to explain the unusual characteristics of the Sangay suite—highest content of incompatible elements (except Y and HREE) of any NVZ suite, low Y and HREE values in the andesites and dacites, and high Nb/La of the only basalt found—a preliminary five-step model is proposed: (1) an enriched mantle (in comparison with an MORB source), or maybe a variably enriched mantle, at the site of the Sangay, prior to Quaternary volcanism; (2) metasomatism of this mantle by important volumes of slab-derived fluids enriched in soluble incompatible elements, due to the subduction of major oceanic fracture zones; (3) partial melting of this metasomatized mantle and generation of primitive basaltic melts with Nb/La values typical of the NVZ, which are parental to the entire Sangay suite but apparently never reach the surface and subordinate

  13. [Activity of digestive enzymes during intraperitoneal intake of metal compounds].

    PubMed

    Zdol'nik, T D

    2001-01-01

    Digestive function was studied when three compounds from Group VIB of the Mendeleev periodic system of elements were intraperitoneally administered during 100 days. Potassium bichromate, ammonium molybdate in a dose of 0.2 mg/kg and sodium tungstate in a dose of 5.0 mg/kg (in terms of metal) were found to have a resorptive effect on pancreatic function and a local effect on the small intestinal mucosa.

  14. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    SciTech Connect

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  15. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens.

    PubMed

    Hagvall, Lina; Baron, Jens Malte; Börje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-12-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol.

  16. Structure elucidation and antioxidant activity of the phenolic compounds from Rhynchosia suaveolens.

    PubMed

    Rammohan, Aluru; Gunasekar, Duvvuru; Reddy, Netala Vasudeva; Vijaya, Tartte; Devillee, Alexandre; Bodo, Bernard

    2015-04-01

    A new benzophenone, 2-hydroxy-3,4-dimethoxybenzophenone (1), together with a known C-glycosylxanthone, mangiferin (2) and two known C-glycosylflavones, isovitexin (3) and isoorientin (4), were isolated from the flowers of Rhynchosia suaveolens DC. (Fabaceae). The structure of the new compound (1) and the known compounds (2-4) were elucidated by extensive 1D and 2D NMR spectral studies. The plant extracts, as well as the isolated compounds, were evaluated for their total phenolic content (TPC), total flavonoid content (TFC) and DPPH radical scavenging activity. Among the isolated compounds, mangiferin (2) and isoorientin (4) showed significant radical scavenging activity comparable with that of ascorbic acid.

  17. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Chiasson, F.; Borsa, J.; Ouattara, B.

    2004-09-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect.

  18. CDRUG: a web server for predicting anticancer activity of chemical compounds.

    PubMed

    Li, Gong-Hua; Huang, Jing-Fei

    2012-12-15

    Cancer is the leading cause of death worldwide. Screening anticancer candidates from tens of millions of chemical compounds is expensive and time-consuming. A rapid and user-friendly web server, known as CDRUG, is described here to predict the anticancer activity of chemical compounds. In CDRUG, a hybrid score was developed to measure the similarity of different compounds. The performance analysis shows that CDRUG has the area under curve of 0.878, indicating that CDRUG is effective to distinguish active and inactive compounds.

  19. Antinociceptive and antitumor activity of novel synthetic mononuclear Ruthenium (II) compounds

    PubMed Central

    Sunder A, Shyam; Dhulipala, Satyavati; Thota, Sreekanth; Yerra, Rajeshwar; Balzarini, Jan; De Clercq, Erik

    2013-01-01

    Background: From the thousands of years, metal compounds have been used in medicine for treatment of various diseases including various types of cancers. Ruthenium was seen as a promising metal due to its similar kinetics to platinum and its lower toxicity. Therefore, we aimed to evaluate the newer mononuclear ruthenium (II) compounds for antinociceptive and antitumor activities. Materials and Methods: Ruthenium (II) compounds were evaluated for antinociceptive and antitumor activity using the various in vitro and in vivo models. The compounds were injected to mice at concentrations of 1 and 2 mg kg-1 intraperitoneally and were screened for antinociceptive activity, and the antiproliferative effect was evaluated against murine leukemia cells (L1210), human T-lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa) using MTT assay. Results: The results for antitumor activity clearly indicated that compound R1 was potent cytotoxic agent than R2 with IC50 values ranging from 4-6 μM for R1, whereas IC50 values for compound R2 ranging from 65-103 μM. The compounds have shown a significant anti-inflammatory effect in carrageenan and dextran models but do not having the central analgesic activity, this indicating that the antinociceptive activity is related to the peripheral nervous system. The results for 5-Lipoxygenase (5-LOX) activity showed that both R1 and R2 compounds were found to be significant 5-LOX inhibitory activity with IC50 values of 14.35 μg ml-1 and 29.24 μg ml-1 respectively. Conclusion: These findings concluded that the new ruthenium compounds might be the promising antiproliferative agents as these compounds showing significant 5-LOX inhibitory activity and potential agents in the management of pain related disorders. PMID:23930118

  20. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  1. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds.

    PubMed

    Winkler, Christoph K; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-12-31

    Ene-reductases from the 'Old Yellow Enzyme' family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues.

  2. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl. (Moraceae)

    PubMed Central

    2011-01-01

    Background Many plants of the family Moraceae are used in the treatment of infectious diseases. Ficus polita Vahl., an edible plant belonging to this family is used traditionally in case of dyspepsia, infectious diseases, abdominal pains and diarrhea. The present work was designed to assess the antimicrobial activity of the methanol extract from the roots of F. polita (FPR), as well as that of its fractions (FPR1-5) and two of the eight isolated compounds, namely euphol-3-O-cinnamate (1) and (E)-3,5,4'-trihydroxy-stilbene-3,5-O-β-D-diglucopyranoside (8). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The results of the MIC determination showed that the crude extract, fractions FPR1, FPR2 and compound 8 were able to prevent the growth of the eight tested microorganisms. Other samples showed selective activity. The lowest MIC value of 64 μg/ml for the crude extract was recorded on 50% of the studied microbial species. The corresponding value for fractions of 32 μg/ml was obtained on Salmonella typhi, Escherichia coli and Candida albicans ATCC strains. The MIC values recorded with compound 8 on the resistant Pseudomonas aeruginosa PA01 strain was equal to that of chloramphenicol used as reference antibiotic. Conclusion The obtained results highlighted the interesting antimicrobial potency of F. polita as well as that of compound 8, and provided scientific basis for the traditional use of this taxon in the treatment of microbial infections. PMID:21269424

  3. Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract.

    PubMed

    Singh, Harpal; Dixit, Sameer; Verma, Praveen Chandra; Singh, Pradhyumna Kumar

    2014-03-26

    Tomatoes are one of the most consumed crops in the whole world because of their versatile importance in dietary food as well as many industrial applications. They are also a rich source of secondary metabolites, such as phenolics and flavonoids. In the present study, we described a method to produce these compounds from hairy roots of tomato (THRs). Agrobacterium rhizogenes strain A4 was used to induce hairy roots in the tomato explants. The Ri T-DNA was confirmed by polymerase chain reaction amplification of the rolC gene. Biomass accumulation of hairy root lines was 1.7-3.7-fold higher compared to in vitro grown roots. Moreover, THRs efficiently produced several phenolic compounds, such as rutin, quercetin, kaempferol, gallic acid, protocatechuic acid, ferulic acid, colorogenic acid, and caffeic acid. Gallic acid [34.02 μg/g of dry weight (DW)] and rutin (20.26 μg/g of DW) were the major phenolic acid and flavonoid produced by THRs, respectively. The activities of reactive oxygen species enzymes (catalase, ascorbate peroxidase, and superoxide dismutase) were quantified. The activity of catalase in THRs was 0.97 ± 0.03 mM H2O2 min(-1) g(-1), which was 1.22-fold (0.79 ± 0.09 mM H2O2 min(-1) g(-1)) and 1.59-fold (0.61 ± 0.06 mM H2O2 min(-1) g(-1)) higher than field grown and in vitro grown roots, respectively. At 100 μL/g concentration, the phenolic compound extract caused 53.34 and 40.00% mortality against Helicoverpa armigera and Spodoptera litura, respectively, after 6 days. Surviving larvae of H. armigera and S. litura on the phenolic compound extract after 6 days showed 85.43 and 86.90% growth retardation, respectively. PMID:24635720

  4. Two β-xylanases from Aspergillus terreus: characterization and influence of phenolic compounds on xylanase activity.

    PubMed

    de Souza Moreira, Leonora Rios; de Carvalho Campos, Marcela; de Siqueira, Pedro Henrique Vieira Martins; Silva, Luciano Paulino; Ricart, Carlos André Ornelas; Martins, Pedro Alves; Queiroz, Rayner Myr Lautherjung; Filho, Edivaldo Ximenes Ferreira

    2013-11-01

    Sugarcane bagasse was used as an inexpensive alternative carbon source for production of β-xylanases from Aspergillus terreus. The induction profile showed that the xylanase activity was detected from the 6th day of cultivation period. Two low molecular weight enzymes, named Xyl T1 and Xyl T2 were purified to apparent homogeneity by ultrafiltration, gel filtration and ion exchange chromatographies and presented molecular masses of 24.3and 23.60 kDa, as determined by SDS-PAGE, respectively. Xyl T1 showed highest activity at 50 °C and pH 6.0, while Xyl T2 was most active at 45 °C and pH 5.0. Mass spectrometry analysis of trypsin digested Xyl T1 and Xyl T2 showed two different fingerprinting spectra, indicating that they are distinct enzymes. Both enzymes were specific for xylan as substrate. Xyl T1 was inhibited in greater or lesser degree by phenolic compounds, while Xyl T2 was very resistant to the inhibitory effect of all phenolic compounds tested. The apparent km values of Xyl T2, using birchwood xylan as substrate, decreased in the presence of six phenolic compounds. Both enzymes were inhibited by N-bromosuccinimide and Hg(2+) and activated by Mn(2+). Incubation of Xyl T1 and Xyl T2 with L-cysteine increased their half-lives up to 14 and 24 h at 50 °C, respectively. Atomic force microscopy showed a bimodal size distribution of globular particles for both enzymes, indicating that Xyl T1 is larger than Xyl T2.

  5. Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells.

    PubMed

    Zhao, Pan; Yang, Xiaoda

    2013-06-01

    Vanadium compounds are promising agents in the therapeutic treatment of diabetes; however, their mechanism of action has not been clearly elucidated. The current study investigated the effects of vanadium compounds, vanadyl acetylacetonate [V(IV)O(acac)2] and sodium metavanadate (NaV(V)O3), on peroxisome proliferator-activated receptors (PPARs), especially PPARγ, which are important targets of anti-diabetic drugs. Our experimental results revealed that treatment of NIT-1 β-pancreas cells with vanadium compounds resulted in PPARγ activation and elevation of PPARγ protein levels. Vanadium compounds did not increase PPARγ transcription but ameliorated PPARγ degradation induced by inflammatory stimulators TNF-α/IL-6. Vanadium compounds induced binding of PPARγ to heat shock protein (Hsp60). This PPARγ-Hsp60 interaction might cause inhibition of PPARγ degradation, thus elevating the PPARγ level. In addition, modulation of PPARγ phosphorylation was also observed upon vanadium treatment. The present work demonstrated for the first time that vanadium compounds are novel PPARγ modulators. The results may provide new insights for the mechanism of anti-diabetic action of vanadium compounds.

  6. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities

    PubMed Central

    Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.

    2011-01-01

    Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147

  7. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts. PMID:16878585

  8. HPLC-Analysis of Polyphenolic Compounds in Gardenia jasminoides and Determination of Antioxidant Activity by Using Free Radical Scavenging Assays

    PubMed Central

    Uddin, Riaz; Saha, Moni Rani; Subhan, Nusrat; Hossain, Hemayet; Jahan, Ismet Ara; Akter, Raushanara; Alam, Ashraful

    2014-01-01

    Purpose: Gardenia jasminoides is a traditional medicinal plant rich in anti-inflammatory flavonoids and phenolic compounds and used for the treatment of inflammatory diseases and pain. In this present study, antioxidant potential of Gardenia jasminoides leaves extract was evaluated by using various antioxidant assays. Methods: Various antioxidant assays such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, reducing power and total antioxidant capacity expressed as equivalent to ascorbic acid were employed. Moreover, phenolic compounds were detected by high-performance liquid chromatography (HPLC) coupled with diode-array detection. Results: The methanol extract showed significant free radical scavenging activities in DPPH radical scavenging antioxidant assays compared to the reference antioxidant ascorbic acid. Total antioxidant activity was increased in a dose dependent manner. The extract also showed strong reducing power. The total phenolic content was determined as 190.97 mg/g of gallic acid equivalent. HPLC coupled with diode-array detection was used to identify and quantify the phenolic compounds in the extracts. Gallic acid, (+)-catechin, rutin hydrate and quercetin have been identified in the plant extracts. Among the phenolic compounds, catechin and rutin hydrate are present predominantly in the extract. The accuracy and precision of the presented method were corroborated by low intra- and inter-day variations in quantitative results in leaves extract. Conclusion: These results suggest that phenolic compounds and flavonoids might contribute to high antioxidant activities of Gardenia jasminoides leaves. PMID:24754012

  9. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity

    PubMed Central

    Venugopala, K. N.; Rashmi, V.; Odhav, B.

    2013-01-01

    Coumarin (2H-1-benzopyran-2-one) is a plant-derived natural product known for its pharmacological properties such as anti-inflammatory, anticoagulant, antibacterial, antifungal, antiviral, anticancer, antihypertensive, antitubercular, anticonvulsant, antiadipogenic, antihyperglycemic, antioxidant, and neuroprotective properties. Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, seeds, nuts, coffee, tea, and wine. In view of the established low toxicity, relative cheapness, presence in the diet, and occurrence in various herbal remedies of coumarins, it appears prudent to evaluate their properties and applications further. PMID:23586066

  10. Determination of phenolic compounds and antioxidant activity in leaves from wild Rubus L. species.

    PubMed

    Oszmiański, Jan; Wojdyło, Aneta; Nowicka, Paulina; Teleszko, Mirosława; Cebulak, Tomasz; Wolanin, Mateusz

    2015-03-18

    Twenty-six different wild blackberry leaf samples were harvested from various localities throughout southeastern Poland. Leaf samples were assessed regarding their phenolic compound profiles and contents by LC/MS QTOF, and their antioxidant activity by ABTS and FRAP. Thirty-three phenolic compounds were detected (15 flavonols, 13 hydroxycinnamic acids, three ellagic acid derivatives and two flavones). Ellagic acid derivatives were the predominant compounds in the analyzed leaves, especially sanguiin H-6, ellagitannins, lambertianin C, and casuarinin. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. The highest level of phenolic compounds was measured for R. perrobustus, R. wimmerianus, R. pedemontanus and R. grabowskii. The study showed that wild blackberry leaves can be considered a good source of antioxidant compounds. There is clear potential for the utilization of blackberry leaves as a food additive, medicinal source or herbal tea.

  11. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets.

  12. Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure

    PubMed Central

    Santiago, Carolina; Sun, Lin; Munro, Murray Herbert Gibson; Santhanam, Jacinta

    2014-01-01

    Objective To study bioactivity and compounds produced by an endophytic Phoma sp. fungus isolated from the medicinal plant Cinnamomum mollissimum. Methods Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate. This was followed by bioactivity profiling of the crude extract fractions obtained via high performance liquid chromatography. The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi. Compounds purified from active fractions which showed antibacterial, antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis, mass spectrometry and admission to AntiMarin database. Results Three known compounds, namely 4-hydroxymellein, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one and 1-(2,6-dihydroxyphenyl) ethanone, were isolated from the fungus. The polyketide compound 4-hydroxymellein showed high inhibitory activity against P388 murine leukemic cells (94.6%) and the bacteria Bacillus subtilis (97.3%). Meanwhile, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one, a benzopyran compound, demonstrated moderate inhibitory activity against P388 murine leukemic cells (48.8%) and the fungus Aspergillus niger (56.1%). The second polyketide compound, 1 (2,6-dihydroxyphenyl) ethanone was inactive against the tested targets. Conclusions These findings demonstrate the potential of endophytes as producers of pharmacologically important compounds, including polyketides which are major secondary metabolites in fungi. PMID:25183332

  13. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst.

    PubMed

    Guyon, Carole; Duclos, Marie-Christine; Sutter, Marc; Métay, Estelle; Lemaire, Marc

    2015-07-01

    A one-pot two-step reaction (Knoevenagel condensation - reduction of the double bond) has been developed using calcium hydride as a reductant in the presence of a supported noble metal catalyst. The reaction between carbonyl compounds and active methylene compounds such as methylcyanoacetate, 1,3-dimethylbarbituric acid, dimedone and the more challenging dimethylmalonate, affords the corresponding monoalkylated products in moderate to good yields (up to 83%) with minimal reduction of the starting carbonyl compounds. PMID:26053131

  14. Effect of polyphenolic compounds on the growth and cellulolytic activity of a strain of Trichoderma viride

    SciTech Connect

    Arrieta-Escobar, A.; Belin, J.M.

    1982-04-01

    Polyphenolic compounds are often regarded as inhibitors of microorganism growth. However, polyphenolic compounds can also induce stimulating effects on the growth, respiration, fermentation and excretion of amino acids. Depending on the concentration of polyphenolic compounds in the medium, opposed effects (inhibition, stimulation) can be observed. The purpose of this article is to study the effects of condensed tannins and some monomers on the growth and cellulolytic activity of Trichoderma viride. (Refs. 30).

  15. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino.

    PubMed

    Mira, Amira; Yamashita, Shuntaro; Katakura, Yoshinori; Shimizu, Kuniyoshi

    2015-03-16

    Angelica shikokiana is widely marketed in Japan as a dietary food supplement. With a focus on neurodegenerative conditions such as Alzheimer's disease, the aerial part was extracted and through bio-guided fractionation, fifteen compounds [α-glutinol, β-amyrin, kaempferol, luteolin, quercetin, kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, methyl chlorogenate, chlorogenic acid, hyuganin E, 5-(hydroxymethyl)-2-furaldehyde, β-sitosterol-3-O-glucoside, adenosine (isolated for the first time from A. shikokiana), isoepoxypteryxin and isopteryxin] were isolated. Isolated compounds were evaluated for in vitro neuroprotection using acetylcholine esterase inhibitory, protection against hydrogen peroxide and amyloid β peptide (Aβ25-35)-induced neurotoxicity in neuro-2A cells, scavenging of hydroxyl radicals and intracellular reactive oxygen species and thioflavin T assays. Quercetin showed the strongest AChE inhibition (IC50 value = 35.5 µM) through binding to His-440 and Tyr-70 residues at the catalytic and anionic sites of acetylcholine esterase, respectively. Chlorogenic acid, its methyl ester, quercetin and luteolin could significantly protect neuro-2A cells against H2O2-induced neurotoxicity and scavenge hydroxyl radical and intracellular reactive oxygen species. Kaempferol-3-O-rutinoiside, hyuganin E and isoepoxypteryxin significantly decreased Aβ25-35-induced neurotoxicity and Th-T fluorescence. To the best of our knowledge, this is the first report about neuroprotection of hyuganin E and isoepoxypteryxin against Aβ25-35-induced neurotoxicity.

  16. Activated Brain Endothelial Cells Cross-Present Malaria Antigen

    PubMed Central

    Howland, Shanshan W.; Poh, Chek Meng; Rénia, Laurent

    2015-01-01

    In the murine model of cerebral malaria caused by P. berghei ANKA (PbA), parasite-specific CD8+ T cells directly induce pathology and have long been hypothesized to kill brain endothelial cells that have internalized PbA antigen. We previously reported that brain microvessel fragments from infected mice cross-present PbA epitopes, using reporter cells transduced with epitope-specific T cell receptors. Here, we confirm that endothelial cells are the population responsible for cross-presentation in vivo, not pericytes or microglia. PbA antigen cross-presentation by primary brain endothelial cells in vitro confers susceptibility to killing by CD8+ T cells from infected mice. IFNγ stimulation is required for brain endothelial cross-presentation in vivo and in vitro, which occurs by a proteasome- and TAP-dependent mechanism. Parasite strains that do not induce cerebral malaria were phagocytosed and cross-presented less efficiently than PbA in vitro. The main source of antigen appears to be free merozoites, which were avidly phagocytosed. A human brain endothelial cell line also phagocytosed P. falciparum merozoites. Besides being the first demonstration of cross-presentation by brain endothelial cells, our results suggest that interfering with merozoite phagocytosis or antigen processing may be effective strategies for cerebral malaria intervention. PMID:26046849

  17. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities.

    PubMed

    Kant, Rama; Kumar, Dharmendra; Agarwal, Drishti; Gupta, Rinkoo Devi; Tilak, Ragini; Awasthi, Satish Kumar; Agarwal, Alka

    2016-05-01

    The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells. PMID:26922227

  18. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects.

    PubMed

    Watanabe, Fumio; Yabuta, Yukinori; Tanioka, Yuri; Bito, Tomohiro

    2013-07-17

    The usual dietary sources of vitamin B12 are animal-source based foods, including meat, milk, eggs, fish, and shellfish, although a few plant-based foods such as certain types of dried lavers (nori) and mushrooms contain substantial and considerable amounts of vitamin B12, respectively. Unexpectedly, detailed characterization of vitamin B12 compounds in foods reveals the presence of various corrinoids that are inactive in humans. The majority of edible blue-green algae (cyanobacteria) and certain edible shellfish predominately contain an inactive corrinoid known as pseudovitamin B12. Various factors affect the bioactivity of vitamin B12 in foods. For example, vitamin B12 is partially degraded and loses its biological activity during cooking and storage of foods. The intrinsic factor-mediated gastrointestinal absorption system in humans has evolved to selectively absorb active vitamin B12 from naturally occurring vitamin B12 compounds, including its degradation products and inactive corrinoids that are present in daily meal foods. The objective of this review is to present up-to-date information on various factors that can affect the bioactivity of vitamin B12 in foods. To prevent vitamin B12 deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify plant-source foods that contain high levels of bioactive vitamin B12 and, in conjunction, to prepare the use of crystalline vitamin B12-fortified foods. PMID:23782218

  19. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects.

    PubMed

    Watanabe, Fumio; Yabuta, Yukinori; Tanioka, Yuri; Bito, Tomohiro

    2013-07-17

    The usual dietary sources of vitamin B12 are animal-source based foods, including meat, milk, eggs, fish, and shellfish, although a few plant-based foods such as certain types of dried lavers (nori) and mushrooms contain substantial and considerable amounts of vitamin B12, respectively. Unexpectedly, detailed characterization of vitamin B12 compounds in foods reveals the presence of various corrinoids that are inactive in humans. The majority of edible blue-green algae (cyanobacteria) and certain edible shellfish predominately contain an inactive corrinoid known as pseudovitamin B12. Various factors affect the bioactivity of vitamin B12 in foods. For example, vitamin B12 is partially degraded and loses its biological activity during cooking and storage of foods. The intrinsic factor-mediated gastrointestinal absorption system in humans has evolved to selectively absorb active vitamin B12 from naturally occurring vitamin B12 compounds, including its degradation products and inactive corrinoids that are present in daily meal foods. The objective of this review is to present up-to-date information on various factors that can affect the bioactivity of vitamin B12 in foods. To prevent vitamin B12 deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify plant-source foods that contain high levels of bioactive vitamin B12 and, in conjunction, to prepare the use of crystalline vitamin B12-fortified foods.

  20. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion. PMID:26902395

  1. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

  2. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin.

    PubMed

    Araújo, Sthéfane G; Alves, Lucas F; Pinto, Maria Eduarda A; Oliveira, Graziela T; Siqueira, Ezequias P; Ribeiro, Rosy I M A; Ferreira, Jaqueline M S; Lima, Luciana A R S

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity.

  3. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp. PMID:25062020

  4. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin.

    PubMed

    Araújo, Sthéfane G; Alves, Lucas F; Pinto, Maria Eduarda A; Oliveira, Graziela T; Siqueira, Ezequias P; Ribeiro, Rosy I M A; Ferreira, Jaqueline M S; Lima, Luciana A R S

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  5. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  6. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin

    PubMed Central

    Araújo, Sthéfane G.; Alves, Lucas F.; Pinto, Maria Eduarda A.; Oliveira, Graziela T.; Siqueira, Ezequias P.; Ribeiro, Rosy I. M. A.; Ferreira, Jaqueline M. S.; Lima, Luciana A. R. S.

    2014-01-01

    Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS). Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity. PMID:25763039

  7. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review.

    PubMed

    Rahaiee, Somayeh; Moini, Sohrab; Hashemi, Maryam; Shojaosadati, Seyed Abbas

    2015-04-01

    Saffron (Crocus sativus L. stigma), the most valuable medicinal food product, belongs to the Iridaceae family which has been widely used as a coloring and flavoring agent. These properties are basically related to its crocins, picrocrocin and safranal contents which have all demonstrated health promoting properties. The present review article highlights the phytochemical constituents (phenolic and flavonoid compounds, degraded carotenoid compounds crocins and crocetin) that are important in antioxidant activity of saffron extracts. However, the synergistic effect of all the bioactive components presence in saffron gave a significant antioxidant activity similar to vegetables rich in carotenoids. Our study provides an updated overview focused on the antioxidant activity of saffron related to its bioactive compounds to design the different functional products in food, medicine and cosmetic industries.

  8. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    PubMed

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC.

  9. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  10. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their Anticancer Activities.

    PubMed

    Roth, Howard S; Hergenrother, Paul J

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an indepth discussion of four derivatives on which extensive studies have been performed. PMID:26630918

  11. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and Anticancer Activities

    PubMed Central

    Roth, Howard S.; Hergenrother, Paul J.

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an in-depth discussion of four derivatives on which extensive studies have been performed. PMID:26630918

  12. Advanced steady-state model for the fate of hydrophobic and volatile compounds in activated sludge

    SciTech Connect

    Lee, K.C.; Rittmann, B.E.; Shi, J.; McAvoy, D.

    1998-09-01

    A steady-state, advanced, general fate model developed to study the fate of organic compounds in primary and activated-sludge systems. This model considers adsorption, biodegradation from the dissolved and adsorbed phases, bubble volatilization, and surface volatilization as removal mechanisms. A series of modeling experiments was performed to identify the key trends of these removal mechanisms for compounds with a range of molecular properties. With typical municipal wastewater treatment conditions, the results from the modeling experiments show that co-metabolic and primary utilization mechanisms give very different trends in biodegradation for the compounds tested. For co-metabolism, the effluent concentration increases when the influent concentration increases, while the effluent concentration remains unchanged when primary utilization occurs. For a highly hydrophobic compound, the fraction of compound removed from adsorption onto primary sludge can be very important, and the direct biodegradation of compound sorbed to the activated sludge greatly increases its biodegradation and reduces its discharge with the waste activated sludge. Volatilization from the surface of the primary and secondary systems is important for compounds with moderate to high volatilities, especially when these compounds are not biodegradable. Finally, bubble volatilization can be a major removal mechanism for highly volatile compounds even when they are highly biodegradable.

  13. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    PubMed

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity.

  14. Activities at Fermilab related to collider present and future

    NASA Astrophysics Data System (ADS)

    Goderre, G. P.; Holt, J.

    1992-11-01

    The long-range Fermilab program requires fully capitalizing on the world's highest energy accelerator, the Tevatron, throughout the decade of the 90's. The program calls for increasing the collider luminosity with each successive run until peak luminosities of ≳5×1031 cm-2 s-1 and integrated luminosities of ≳100 pb-1 per run are achieved, effectively doubling the mass range accessible for discovery. If the quark lies at the upper range of the mass of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program as well. In order to achieve these goals, we present a highly challenging upgrade of the present accelerator complex, called Fermilab III. In order to increase this performance level by a factor of 50, many changes are needed. Such a plan, of necessity, has modifications in almost all areas of the accelerator as the present system is reasonably optimized. (AIP)

  15. Screening of Panamanian Plant Extracts for Pesticidal Properties and HPLC-Based Identification of Active Compounds

    PubMed Central

    Guldbrandsen, Niels; De Mieri, Maria; Gupta, Mahabir; Seiser, Tobias; Wiebe, Christine; Dickhaut, Joachim; Reingruber, Rüdiger; Sorgenfrei, Oliver; Hamburger, Matthias

    2015-01-01

    A library of 600 taxonomically diverse Panamanian plant extracts was screened for fungicidal, insecticidal, and herbicidal activities. A total of 19 active extracts were submitted to HPLC-based activity profiling, and extracts of Bocconia frutescens, Miconia affinis, Myrcia splendens, Combretum aff. laxum, and Erythroxylum macrophyllum were selected for the isolation of compounds. Chelerythrine (2), macarpine (3), dihydrosanguinarine (5), and arjunolic acid (8) showed moderate-to-good fungicidal activity. Myricetin-3-O-(6’’-O-galloyl)-β-galactopyranoside (13) showed moderate insecticidal activity, but no compound with herbicidal activity was identified. PMID:26839818

  16. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.

    PubMed

    Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2014-09-01

    The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater.

  17. Antipoliovirus Activity of the Organic Extract of Eupatorium buniifolium: Isolation of Euparin as an Active Compound

    PubMed Central

    Visintini Jaime, María Florencia; Campos, Rodolfo H.; Martino, Virginia S.; Cavallaro, Lucía V.; Muschietti, Liliana V.

    2013-01-01

    The antiviral activity of the organic extract (OE) of Eupatorium buniifolium against poliovirus type 1 was determined by in vitro assays with an effective concentration 50 (EC50) of 23.3 ± 3.3 µg/mL. Bioassay-guided fractionation of the OE allowed the isolation of an active principle that was identified by spectroscopic methods (1H- and 13C-NMR, EI-MS, UV, and IR spectroscopy) as the benzofuran euparin. The plaque reduction assay in Vero cells was used to assess the antiviral activity of euparin against poliovirus types 1, 2, and 3 with EC50 values of 0.47, 0.12, and 0.15 µg/mL, respectively. Moreover, this compound showed high selectivity indexes of 284.9, 1068, and 854.7, respectively. In order to identify the mechanism by which euparin exerts its antiviral activity, the virucidal effect, the pretreatment of Vero cells, and the time of action on one viral replication cycle were evaluated. Results obtained demonstrated that euparin exerts its effect during the early events of the replication cycle, from the virus adsorption to cells up to the first twenty minutes after infection. This is the first report on the presence of euparin in E. buniifolium and its antiviral activity. PMID:23956770

  18. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X.

    PubMed

    Bijak, Michal; Ponczek, Michal Blazej; Nowak, Pawel

    2014-04-01

    Blood coagulation consists of series of zymogens which can be converted by limited proteolysis to active enzymes leading to the generation of thrombin and conversion of fibrinogen into fibrin by this enzyme. The activated factor X (FXa) forms prothrombinase complex on phosphatidylserine containing surface which is responsible for conversion of prothrombin to thrombin. One molecule of FXa generates more than 1000 thrombin molecules. Therefore FXa is a novel target for modern anticoagulant therapy. The aim of our present study is to examine the effects of the well-known plant polyphenolic compounds on factor Xa amidolytic activity and characterization of these interactions using bioinformatic ligand docking method. We observed that only four polyphenols belonging to flavonoids group: procyanidin B2, cyanidin, quercetin and silybin, had inhibitory effect on FXa activity. Bioinformatic analyses revealed that procyanidin B2, cyanidin, quercetin and silybin bound in the S1-S4 pockets located in vicinity of the FXa active site and blocked access of substrates to Ser195. The results presented here showed that flavonoids might be potential structural bases for design of new nature-based, safe, orally bioavailable direct FXa inhibitors. PMID:24444877

  19. Controlling the release of active compounds from the inorganic carrier halloysite

    NASA Astrophysics Data System (ADS)

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-01

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  20. Controlling the release of active compounds from the inorganic carrier halloysite

    SciTech Connect

    Tescione, F.; Buonocore, G. G.; Stanzione, M.; Oliviero, M.; Lavorgna, M.

    2014-05-15

    Halloysite (HNTs), a natural material characterized by a nanotube structure, has been used as an inorganic carrier of active compounds in several applications from medicine to anticorrosion coatings. In this present work, vanillin (VAN) used as a antimicrobial model, has been encapsulated within HNTs for exploiting its applicability in the active food packaging sector. The molecule release rate has been controlled by crosslinking at the tube ends the loaded vanillin with copper ions, thus producing a stopper network. The vanillin-loaded HNTs were characterized using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis. The antimicrobial release kinetics from the loaded nanoparticles (VAN/HNTs) in water was investigated using UV-vis spectroscopy. The results show that the vanillin crosslinked with cupper ions is a feasible method to tailor the release rate of antimicrobial model from HTNs nanoparticles.

  1. Structure-activity relationship of 9-methylstreptimidone, a compound that induces apoptosis selectively in adult T-cell leukemia cells.

    PubMed

    Takeiri, Masatoshi; Ota, Eisuke; Nishiyama, Shigeru; Kiyota, Hiromasa; Umezawa, Kazuo

    2012-01-01

    We previously reported that 9-methylstreptimidone, a piperidine compound isolated from a culture filtrate of Streptomyces, induces apoptosis selectively in adult T-cell leukemia cells. It was screened for a compound that inhibits LPS-induced NF-kappaB and NO production in mouse macrophages. However, 9-methystreptimidone is poorly obtained from the producing microorganism and difficult to synthesize. Therefore, in the present research, we studied the structure-activity relationship to look for new selective inhibitors. We found that the structure of the unsaturated hydrophobic portion of 9-methylstreptimidone was essential for the inhibition of LPS-induced NO production. Among the 9-methylstreptimidone-related compounds tested, (+/-)-4,alpha-diepi-streptovitacin A inhibited NO production in macrophage-like cells as potently as 9-methylstreptimidone and without cellular toxicity. Moreover, this compound selectively induced apoptosis in adult T-cell leukemia MT-1 cells.

  2. Antiproliferative activity of Saponaria vaccaria constituents and related compounds.

    PubMed

    Balsevich, J John; Ramirez-Erosa, Irving; Hickie, Robert A; Dunlop, Donna M; Bishop, Greg G; Deibert, Leah K

    2012-01-01

    Total methanolic extracts of Saponaria vaccaria seed derived from several varieties, as well as various purified components obtained through successive chromatographic separations of total extracts were evaluated for their growth inhibitory activity in WiDr (colon), MDA-MB-231 (breast), NCI-417 (lung) and PC-3 (prostate) human cancer cells as well as the non-tumorigenic fibroblast BJ (CRL-2522) cell line using MTT colorimetric assay. Purified bisdesmosidic saponins segetoside H and I were further examined using microscopy and apoptosis assays. Bisdesmosidic saponins exhibited dose-dependent growth inhibitory and selective apoptosis-inducing activity. Growth inhibitory effects were particularly strong in a breast (MDA-MB-231) and a prostate (PC-3) cancer cell line. Total extracts exhibited a different preference being most active against a colon cancer cell line (WiDr). In a comparison of varieties, all of the total seed extracts exhibited similar dose-dependent activities, but with some variation in potency. Monodesmosidic saponins vaccarosides A and B, phenolic vaccarin, and cyclopeptide segetalin A, co-occurring seed substituents, did not exhibit activity. The non-tumorigenic fibroblast cell line BJ (CRL 2522) was growth inhibited but did not undergo apoptosis when treated with bisdesmosidic saponins at low micromolar concentrations. Saponin-rich extracts from Kochia scoparia seed and Chenopodium quinoa were also evaluated alongside Saponaria saponins but did not exhibit activity. Closely related Quillaja saponins exhibited activity but were less potent. PMID:22056663

  3. Trypanocidal activity and selectivity in vitro of aromatic amidine compounds upon bloodstream and intracellular forms of Trypanosoma cruzi.

    PubMed

    De Souza, E M; da Silva, P B; Nefertiti, A S G; Ismail, M A; Arafa, R K; Tao, B; Nixon-Smith, C K; Boykin, D W; Soeiro, M N C

    2011-02-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, an important neglected illness affecting about 12-14 million people in endemic areas of Latin America. The chemotherapy of Chagas disease is quite unsatisfactory mainly due to its poor efficacy especially during the later chronic phase and the considerable well-known side effects. These facts emphasize the need to search for find new drugs. Diamidines and related compounds are minor groove binders of DNA at AT-rich sites and present excellent anti-trypanosomal activity. In the present study, six novel aromatic amidine compounds (arylimidamides and diamidines) were tested in vitro to determine activity against the infective and intracellular stages of T. cruzi, which are responsible for sustaining the infection in the mammalian hosts. In addition, their selectivity and toxicity towards primary cultures of cardiomyocyte were evaluated since these cells represent important targets of infection and inflammation in vivo. The aromatic amidines were active against T. cruzi in vitro, the arylimidamide DB1470 was the most effective compound presenting a submicromolar LD(50) values, good selectivity index, and good activity at 4 °C in the presence of blood constituents. Our results further justify trypanocidal screening assays with these classes of compounds both in vitro and in vivo in experimental models of T. cruzi infection.

  4. Present and Future Activities on Neutron Imaging in Argentina

    NASA Astrophysics Data System (ADS)

    Tartaglione, Aureliano; Blostein, Jerónimo; Cantargi, Florencia; Marín, Julio; Baruj, Alberto; Meyer, Gabriel; Santisteban, Javier; Sánchez, Fernando

    We present here a short review of the main work which has been done in the latest years in neutron imaging in Argentina, and the future plans for the development of this technique in the country, mainly focused in the design of a new neutron imaging instrument to be installed in the future research reactor RA10. We present here the results of the implementation of the technique in samples belonging to the Argentinean cultural heritage and experiments related with hydrogen storage. At the same time, the Argentinean RA10 project for the design and construction of a 30 MW multipurpose research reactor is rapidly progressing. It started to be designed by the National Atomic Energy Commission (CNEA) and the technology company INVAP SE, both from Argentina, in June 2010. The construction will start in the beginning of 2015 in the Ezeiza Atomic Center, at 36 km from Buenos Aires City, and is expected to be finished by 2020. One of the main aims of the project is to offer to the Argentinean scientific and technology system new capabilities based on neutron techniques. We present here the conceptual design of a neutron imaging facility which will use one of the cold neutron beams, and will be installed in the reactor hall. Preliminary simulation results show that at the farthest detection position, at about 17 m from the cold source, a uniform neutron beam on a detection screen with an intensity of about 108 n/cm2/s is expected.

  5. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  6. Anti-tumour activity of two novel compounds in cisplatin-resistant testicular germ cell cancer

    PubMed Central

    Nitzsche, B; Gloesenkamp, C; Schrader, M; Hoffmann, B; Zengerling, F; Balabanov, S; Honecker, F; Höpfner, M

    2012-01-01

    Background: Resistance to cisplatin-based chemotherapy is associated with poor prognosis in testicular germ cell cancer, emphasising the need for new therapeutic approaches. In this respect, the therapeutic concept of anti-angiogenesis is of particular interest. In a previous study, we presented two novel anti-angiogenic compounds, HP-2 and HP-14, blocking the tyrosine kinase activity of angiogenic growth factor receptors, such as vascular endothelial growth factor receptor-2 (VEGFR-2), and related signalling pathways in testicular cancer. In this study, we investigated the efficacy of these new compounds in platinum-resistant testicular germ cell tumours (TGCTs), in vitro and in vivo. Methods and results: Drug-induced changes in cell proliferation of the cisplatin-sensitive TGCT cell line 2102EP and its cisplatin-resistant counterpart 2102EP-R, both expressing the VEGFR-2, were evaluated by crystal violet staining. Both compounds inhibited the growth of cisplatin-resistant TGCT cells in a dose-dependent manner. In combination experiments with cisplatin, HP-14 revealed additive growth-inhibitory effects in TGCT cells, irrespective of the level of cisplatin resistance. Anti-angiogenic effects of HP compounds were confirmed by tube formation assays with freshly isolated human umbilical vein endothelial cells. Using TGCT cells inoculated onto the chorioallantoic membrane of fertilised chicken eggs (chicken chorioallantoic membrane assay), the anti-angiogenic and anti-proliferative potency of the novel compounds was also demonstrated in vivo. Gene expression profiling revealed changes in the expression pattern of genes related to DNA damage detection and repair, as well as in chaperone function after treatment with both cisplatin and HP-14, alone or in combination. This suggests that HP-14 can revert the lost effectiveness of cisplatin in the resistant cells by altering the expression of critical genes. Conclusion: The novel compound HP-14 effectively inhibits the

  7. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    PubMed Central

    Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui

    2016-01-01

    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689

  8. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  9. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    PubMed

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  10. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides.

    PubMed

    Mulero, J; Martínez, G; Oliva, J; Cermeño, S; Cayuela, J M; Zafrilla, P; Martínez-Cachá, A; Barba, A

    2015-08-01

    The effect of treating grapes with six fungicides, applied under critical agricultural practices (CAP) on levels of phenolic compounds and antioxidant activity of red wines of Monastrell variety was studied. Vinifications were performed through addition of active dry yeast (ADY). Measurement of phenolic compounds was made with HPLC-DAD. Determination of antioxidant activity was through reaction of the wine sample with the DPPH radical. The wine prepared from grapes treated with quinoxyfen shows a greater increase of phenolic compounds than the control wine. In contrast, the wine obtained from grapes treated with trifloxystrobin showed lower total concentration of phenolic compounds, including stilbenes, whilst treatments with kresoxim-methyl, fluquinconazole, and famoxadone slightly reduced their content. Hence, the use of these last four fungicides could cause a decrease in possible health benefits to consumers. Antioxidant activity hardly varied in the assays with quinoxyfen, fluquinconazole and famoxadone, and decreased in the other wines.

  11. Dried extracts of Encholirium spectabile (Bromeliaceae) present antioxidant and photoprotective activities in vitro

    PubMed Central

    de Oliveira, Raimundo Gonçalves; Souza, Grasielly Rocha; Guimarães, Amanda Leite; de Oliveira, Ana Paula; Silva Morais, Amanda Caroline; da Cruz Araújo, Edigênia Cavalcante; Nunes, Xirley Pereira; Almeida, Jackson Roberto Guedes da Silva

    2013-01-01

    The antioxidant and photoprotective activities of dried extracts from the leaves of Encholirium spectabile were investigated. It was also evaluated the total phenolic and flavonoid contents by the Folin–Ciocalteu and aluminum chloride methods, respectively. Antioxidant activities of the extracts were evaluated by using of 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging and β-carotene–linoleic acid bleaching and compared with ascorbic acid, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) used as reference compounds. The photoprotective effect was evaluated by the spectrophotometric method. The most significant total phenolic and flavonoid contents was of 188.50 ± 27.50 mg of gallic acid equivalent/g and 129.70 ± 4.59 mg of catechin equivalent/g, respectively, for chloroform fraction (Es-CHCl3). The Es-CHCl3 also presented the best antioxidant activity (IC50 25.35 ± 4.35 μg/ml) for DPPH scavenging. The ethanol extract (Es-EtOH), Es-CHCl3 and the fraction ethyl acetate (Es-AcOEt) showed characteristic absorption bands in regions UVB and UVA in a concentration-dependent manner. Es-CHCl3 presented the highest sun protection factor SPF (8.89 ± 2.11). It shows the possibility to use this extract as sunscreen in pharmaceutical preparations. PMID:24396251

  12. Acaricidal Activity of Eugenol Based Compounds against Scabies Mites

    PubMed Central

    Pasay, Cielo; Mounsey, Kate; Stevenson, Graeme; Davis, Rohan; Arlian, Larry; Morgan, Marjorie; Vyszenski-Moher, DiAnn; Andrews, Kathy; McCarthy, James

    2010-01-01

    Backgound Human scabies is a debilitating skin disease caused by the “itch mite” Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. Methodology/Principal Findings Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues –acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. Conclusions The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies. PMID:20711455

  13. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  14. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. Present status of some technological activities supporting the MOLCARE project

    SciTech Connect

    Torazza, A.; Rocchini, G.; Scagliotti, M.

    1996-12-31

    The development of MCFC stack technology is carried out at Ansaldo Ricerche in the framework of the MOLCARE project, a cooperation with Spanish companies under a partial UE funding, while a specific research program concerning the physico-chemical characterization of materials is performed jointly by CISE and ENEL. The project includes the development, the construction and the testing of a full scale 100 kW prototype, the assessment of stack technology on subscale stacks, the mathematical modelling of the MCFC based plants and the basic researches. The aim of the basic researches, carried out on single cells, is to improve the effectiveness and durability of both the active and the hardware materials. The Ansaldo stack technology is based on external manifolding. The full scale 100 kW prototype will be integrated with the sensible heat reformer and other ancillary equipments according to the {open_quote}Compact Unit (CU){close_quotes} concept. These technical choices stress requirements for manifold gasket configuration. electrolyte migration control, {Delta}p management and porous component compaction.

  16. Forecasting the Peak of the Present Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Hamid, Rabab; Marzouk, Beshir

    2016-07-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aa min. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between RM and spotless event around the preceding minimum gives RM24t = 101.9with rise time Tr = 4.5 Y. For the even cycles RM24e = 108.3 with rise time Tr = 3.9 Y. Based on the average aa min. index for the year of sunspot minimum cycles (13 - 23), we estimate the expected amplitude for cycle 24 to be RMaa = 116.5 for both the total and even cycles. Application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 146, which are over estimation. Our result indicating a somewhat weaker cycle 24 as compared to cycles 21-23.

  17. Synthetic mRNA splicing modulator compounds with in vivo antitumor activity.

    PubMed

    Lagisetti, Chandraiah; Pourpak, Alan; Goronga, Tinopiwa; Jiang, Qin; Cui, Xiaoli; Hyle, Judith; Lahti, Jill M; Morris, Stephan W; Webb, Thomas R

    2009-11-26

    We report our progress on the development of new synthetic anticancer lead compounds that modulate the splicing of mRNA. We also report the synthesis and evaluation of new biologically active ester and carbamate analogues. Further, we describe initial animal studies demonstrating the antitumor efficacy of compound 5 in vivo. Additionally, we report the enantioselective and diastereospecific synthesis of a new 1,3-dioxane series of active analogues. We confirm that compound 5 inhibits the splicing of mRNA in cell-free nuclear extracts and in a cell-based dual-reporter mRNA splicing assay. In summary, we have developed totally synthetic novel spliceosome modulators as therapeutic lead compounds for a number of highly aggressive cancers. Future efforts will be directed toward the more complete optimization of these compounds as potential human therapeutics.

  18. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.

  19. Characterization of the most odor-active compounds of Iberian ham headspace.

    PubMed

    Carrapiso, Ana I; Ventanas, Jesús; García, Carmen

    2002-03-27

    Gas chromatography-olfactometry (GC-O) based on detection frequency (DF) was used to characterize the most odor-active compounds from the headspace of Iberian ham. Twenty-eight odorants were identified by GC-O on two capillary columns, including aldehydes (11), sulfur-containing compounds (7), ketones (5), nitrogen-containing compounds (2), esters (2), and an alcohol. Among them, the highest odor potencies (DF values) were found for 2-methyl-3-furanthiol, 2-heptanone, 3-methylbutanal, methanethiol, hexanal, hydrogen sulfide, 1-penten-3-one, 2-methylpropanal, ethyl 2-methylbutyrate, and (E)-2-hexenal. Nine of the 28 most odor-active compounds were identified for the first time as aroma components of dry-cured ham, including hydrogen sulfide, 1-penten-3-one, (Z)-3-hexenal, 1-octen-3-one, and the meaty-smelling compounds 2-methyl-3-furanthiol, 2-furfurylthiol, 3-mercapto-2-pentanone, 2-acetyl-1-pyrroline, and 2-propionyl-1-pyrroline.

  20. Discovery of Structurally Diverse Small-Molecule Compounds with Broad Antiviral Activity against Enteroviruses

    PubMed Central

    Zuo, Jun; Kye, Steve; Quinn, Kevin K.; Cooper, Paige; Damoiseaux, Robert

    2015-01-01

    Antiviral drugs do not currently exist for the treatment of enterovirus infections, which are often severe and potentially life-threatening. We conducted high-throughput molecular screening and identified a structurally diverse set of compounds that inhibit the replication of coxsackievirus B3, a commonly encountered enterovirus. These compounds did not interfere with the function of the viral internal ribosome entry site or with the activity of the viral proteases, but they did drastically reduce the synthesis of viral RNA and viral proteins in infected cells. Sequence analysis of compound-resistant mutants suggests that the viral 2C protein is targeted by most of these compounds. These compounds demonstrated antiviral activity against a panel of the most commonly encountered enteroviruses and thus represent potential leads for the development of broad-spectrum anti-enteroviral drugs. PMID:26711750

  1. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria.

    PubMed

    Hamdi, Omer Abdalla Ahmed; Anouar, El Hassane; Shilpi, Jamil A; Trabolsy, Zuhra Bashir Khalifa Al; Zain, Sharifuddin Bin Md; Zakaria, Nur Shahidatul Shida; Zulkefeli, Mohd; Weber, Jean-Frédéric F; Malek, Sri Nurestri A; Rahman, Syarifah Nur Syed Abdul; Awang, Khalijah

    2015-01-01

    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay.

  2. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Valentão, Patrícia; Andrade, Paula B; Ferreira, Isabel C F R; Ferreres, Federico; Bento, Albino; Seabra, Rosa; Estevinho, Letícia

    2007-11-01

    Different cultivars of walnut (Juglans regia L.) leaves (Cv. Lara, Franquette, Mayette, Marbot, Mellanaise and Parisienne) grown in Portugal, were investigated in what concerns phenolic compounds and antimicrobial and antioxidant properties. Phenolics analysis was performed by reversed-phase HPLC/DAD and 10 compounds were identified and quantified: 3- and 5-caffeoylquinic acids, 3- and 4-p-coumaroylquinic acids, p-coumaric acid, quercetin 3-galactoside, quercetin 3-pentoside derivative, quercetin 3-arabinoside, quercetin 3-xyloside and quercetin 3-rhamnoside. The antimicrobial capacity was screened against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Walnut leaves selectively inhibited the growth of Gram positive bacteria, being B. cereus the most susceptible one (MIC 0.1mg/mL). Gram negative bacteria and fungi were resistant to the extracts at 100mg/mL. Lara walnut leaves were also submitted to antibacterial assays using 18 clinical isolates of Staphylococcus sp. Antioxidant activity was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. In a general way, all of the studied walnut leaves cultivars presented high antioxidant activity (EC(50) values lower than 1mg/mL), being Cv. Lara the most effective one.

  3. Assessment of wild mint from Tunceli as source of bioactive compounds, and its antioxidant Activity.

    PubMed

    Turkoglu, S

    2015-01-01

    The types of wild mint (Mentha spicata L.) were sampled from different geographical regions in Tunceli (Turkey) in order to find out their vitamin, mineral, phenolic contents and their antioxidant properties. The total phenol varied from 77.7±0.242 to 52.34±0.351 mg of GAEs/g of dry mint. The highest radical effect of scavenging was observed in Mazgirt parting of the ways 7.5 km with 6.17±0.245 mg/mL. The highest reducing power and metal chelating were observed in the mint from Cicekli parting of the ways 6.5 km Demirkapı. Among the various macronutrients which were estimated in the plant samples, potassium was presented in the highest quantity followed by calcium and phosphate. Although rutin and resveratrol were not determined in any samples, kaempferol and catechin levels were found out in almost all samples. The concentrations of vitamin A ranged between 42,14±5.70 and 13.61±3.00 (mg/kg dry weight). These results show that plants of mint are quite rich in phenolic compounds, and these have been appeared to have antioxidant activity, which agrees with this work, since the extract showed a higher content of phenolic compounds and higher antioxidant activity and mint may be considered as a natural alternative source for food, pharmacology and medicine sectors. PMID:26718431

  4. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities.

    PubMed

    Bustos, Irene; Martínez-Bartolomé, Miguel A; Achemchem, Fouad; Peláez, Carmen; Requena, Teresa; Martínez-Cuesta, M Carmen

    2011-08-01

    Volatile sulphur compounds (VSCs) are of prime importance in the overall aroma of cheese and make a significant contribution to their typical flavours. Thus, the control of VSCs formation offers considerable potential for industrial applications. Here, lactic acid bacteria (LAB) from different ecological origins were screened for their abilities to produce VSCs from L-methionine. From the data presented, VSC-forming abilities were shown to be strain-specific and were correlated with the C-S lyase enzymatic activities determined using different approaches. High VSCs formation were detected for those strains that were also shown to possess high thiol-producing abilities (determined either by agar plate or spectrophotometry assays). Moreover, differences in C-S lyase activities were shown to correspond with the enzymatic potential of the strains as determined by in situ gel visualization. Therefore, the assessment of the C-S lyase enzymatic potential, by means of either of these techniques, could be used as a valuable approach for the selection of LAB strains with high VSC-producing abilities thus, representing an effective way to enhance cheese sulphur aroma compounds synthesis. In this regard, this study highlights the flavour forming potential of the Streptococcus thermophilus STY-31, that therefore could be used as a starter culture in cheese manufacture. Furthermore, although C-S lyases are involved in both biosynthetic and catabolic pathways, an association between methionine and cysteine auxotrophy of the selected strains and their VSCs-producing abilities could not be found.

  5. Assessment of wild mint from Tunceli as source of bioactive compounds, and its antioxidant Activity.

    PubMed

    Turkoglu, S

    2015-12-19

    The types of wild mint (Mentha spicata L.) were sampled from different geographical regions in Tunceli (Turkey) in order to find out their vitamin, mineral, phenolic contents and their antioxidant properties. The total phenol varied from 77.7±0.242 to 52.34±0.351 mg of GAEs/g of dry mint. The highest radical effect of scavenging was observed in Mazgirt parting of the ways 7.5 km with 6.17±0.245 mg/mL. The highest reducing power and metal chelating were observed in the mint from Cicekli parting of the ways 6.5 km Demirkapı. Among the various macronutrients which were estimated in the plant samples, potassium was presented in the highest quantity followed by calcium and phosphate. Although rutin and resveratrol were not determined in any samples, kaempferol and catechin levels were found out in almost all samples. The concentrations of vitamin A ranged between 42,14±5.70 and 13.61±3.00 (mg/kg dry weight). These results show that plants of mint are quite rich in phenolic compounds, and these have been appeared to have antioxidant activity, which agrees with this work, since the extract showed a higher content of phenolic compounds and higher antioxidant activity and mint may be considered as a natural alternative source for food, pharmacology and medicine sectors.

  6. Walnut (Juglans regia L.) leaves: phenolic compounds, antibacterial activity and antioxidant potential of different cultivars.

    PubMed

    Pereira, José Alberto; Oliveira, Ivo; Sousa, Anabela; Valentão, Patrícia; Andrade, Paula B; Ferreira, Isabel C F R; Ferreres, Federico; Bento, Albino; Seabra, Rosa; Estevinho, Letícia

    2007-11-01

    Different cultivars of walnut (Juglans regia L.) leaves (Cv. Lara, Franquette, Mayette, Marbot, Mellanaise and Parisienne) grown in Portugal, were investigated in what concerns phenolic compounds and antimicrobial and antioxidant properties. Phenolics analysis was performed by reversed-phase HPLC/DAD and 10 compounds were identified and quantified: 3- and 5-caffeoylquinic acids, 3- and 4-p-coumaroylquinic acids, p-coumaric acid, quercetin 3-galactoside, quercetin 3-pentoside derivative, quercetin 3-arabinoside, quercetin 3-xyloside and quercetin 3-rhamnoside. The antimicrobial capacity was screened against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Walnut leaves selectively inhibited the growth of Gram positive bacteria, being B. cereus the most susceptible one (MIC 0.1mg/mL). Gram negative bacteria and fungi were resistant to the extracts at 100mg/mL. Lara walnut leaves were also submitted to antibacterial assays using 18 clinical isolates of Staphylococcus sp. Antioxidant activity was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. In a general way, all of the studied walnut leaves cultivars presented high antioxidant activity (EC(50) values lower than 1mg/mL), being Cv. Lara the most effective one. PMID:17637491

  7. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    PubMed Central

    Dunn, Elyse A.; Cook, Gregory M.; Heikal, Adam

    2015-01-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, “Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins” [2]. PMID:26862571

  8. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  9. Present-day aeolian activity in Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Silvestro, Simone; Vaz, David A.; Michaels, Timothy; Bourke, Mary C.; Komatsu, Goro; Marinangeli, Lucia

    2016-02-01

    In this report, we show evidence for ripple and dune migration in Herschel Crater on Mars. We estimate an average dune migration of 0.8 m and a minimum ripple migration of 1.1 m in a time span of 3.7 Earth-years. These dunes and ripples are mainly shaped by prevailing winds coming from the north, however we also report the presence of secondary winds which elongate the barchans' horns. Such a complex wind scenario is likely caused by the influence of winds blowing off the western crater rim as suggested by the Mars Regional Atmospheric Modeling System (MRAMS), an atmospheric mesoscale model. A multi-directional wind regime at the local scale is also supported by the observed bimodal distribution of the ripple trends. For the first time, a survey integrating the assessment of dune and ripple migration is presented, showing how dune topography can influence the migration patterns of ripples and how underlying topography appears to control the rates of dune migration.

  10. Anti depressant activity of Mamsyadi Kwatha: An Ayurvedic compound formulation.

    PubMed

    Shreevathsa, M; Ravishankar, B; Dwivedi, Rambabu

    2013-01-01

    Depression is a psychiatric condition in which there is loss of interest in all pleasurable outlets, viz. food, sex, work, friends, hobbies and entertainment. The prevalence rate of the disease is 6-8% in women and 3-5% in men. Ayurveda, the science of life, provides systematic management principles for depression. Mamsyadi Kwatha is one such formulation stated by Yadavji Trikamji Acharya in Siddha Yoga Sangraha and Bheshaja Samhita, which is said to be effective in psychiatric conditions. The ingredients are Jatamansi (Nardostachys jatamansi), Ashwagandh (Withania somnifera) and Parasika Yavani (Hyocymus niger) in an 8:4:1 ratio, respectively. The test drug was subjected for antidepressant activity in experimental models. The models selected for anti depressant activity were behavioral despair test, anti-reserpine test and Chronic Fatigue Syndrome (CFS) test in albino mice. The test formulation showed significant inhibition of behavioural despair (P < 0.05), weak to moderate anti-reserpine activity - ptosis (P < 0.001), catatonia (P < 0.01), sedation (P < 0.01) and moderate effect in CFS test (P < 0.050). These effects clearly show that Mamsyadi Kwatha has an anti-depressant activity. PMID:24049416

  11. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  12. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    SciTech Connect

    Satoh, Takumi Saitoh, Sachie; Hosaka, Manami; Kosaka, Kunio

    2009-02-06

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activation of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had

  13. Identification of the phenolic compounds contributing to antibacterial activity in ethanol extracts of Brazilian red propolis.

    PubMed

    Inui, Saori; Hatano, Ai; Yoshino, Megumi; Hosoya, Takahiro; Shimamura, Yuko; Masuda, Shuichi; Ahn, Mok-Ryeon; Tazawa, Shigemi; Araki, Yoko; Kumazawa, Shigenori

    2014-01-01

    The purpose of this study is to identify the quantity and antibacterial activity of the individual phenolic compounds in Brazilian red propolis. Quantitative analysis of the 12 phenolic compounds in Brazilian red propolis was carried out using reversed-phase high-performance liquid chromatography. The main phenolic compounds in Brazilian red propolis were found to be (3S)-vestitol (1), (3S)-neovestitol (2) and (6aS,11aS)-medicarpin (4) with quantities of 72.9, 66.9 and 30.8 mg g of ethanol extracts(- 1), respectively. Moreover, the antibacterial activities of each compound against Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa were evaluated by measuring the minimum inhibitory concentrations. In particular, compound 4 exhibited the most potent antibacterial activity among all the assayed compounds against selected bacteria, indicating that 4 is the most active compound in Brazilian red propolis extracts. Thus, Brazilian red propolis may be used as food additives and pharmaceuticals to protect against bacteria.

  14. Redox-active tetrathiafulvalene and dithiolene compounds derived from allylic 1,4-diol rearrangement products of disubstituted 1,3-dithiole derivatives

    PubMed Central

    Vilela, Filipe; Mason, Christopher R; Westgate, Thomas D J; Luquin, Asun; Coles, Simon J; Hursthouse, Michael B

    2010-01-01

    Summary We present a series of compounds by exploiting the unusual 1,4-aryl shift observed for electron-rich 1,3-dithiole-2-thione and tetrathiafulvalene (TTF) derivatives in the presence of perchloric acid. The mechanistic features of this rearrangement are discussed since this synthetic strategy provides an alternative route for the synthesis and functionalisation of sulfur rich compounds including redox active compounds of TTFs, and a Ni dithiolene. PMID:21085502

  15. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    PubMed

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity.

  16. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    PubMed

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity. PMID:27273551

  17. Reconstitution of anti-allergic activities of PG102 derived from Actinidia arguta by combining synthetic chemical compounds.

    PubMed

    Kim, Donghyun; Choi, Jinyong; Kim, Mi-Jeong; Kim, Seon Hee; Cho, Sang Heon; Kim, Sunyoung

    2013-06-01

    PG102, a water-soluble extract from an edible fruit, Actinidia arguta, has previously been shown to control various factors involved in allergy pathogenesis. It was investigated whether the original activities of PG102 could be reconstituted by mixing chemical compounds present in PG102. Six compounds present in PG102 were, individually or in the form of mixtures, tested for their effects on the expression of various Th2 cytokines and inflammatory mediators in the cell-based assay. Each chemical inhibited IL-4 expression to varying degrees. The chemical compounds were combined at a ratio present in PG102, resulting in two formulations, CQMIIH and CQM, consisting of all or the first three of the following chemicals, citric, quinic, and malic acids, myo-inositol, isoquercitrin, and 5-hydroxymethyl-2-furaldehyde. The mixtures reconstituted original activities of PG102 to a significant level. In the murine asthma model, CQM ameliorated asthmatic symptoms and significantly decreased the level of IgE and IL-5. The decreased phosphorylation of ERK1/2 was observed in cells and mice treated with PG102 and the mixtures. Our data indicated that the substantial portion of PG102's anti-allergic activities could be reconstituted, in vitro and in vivo, by mixing six chemical compounds, suggesting the possibility of developing a new type of anti-allergic agent. This approach may be useful for developing chemically defined functional products from complex botanical extracts. PMID:23918875

  18. Reconstitution of anti-allergic activities of PG102 derived from Actinidia arguta by combining synthetic chemical compounds.

    PubMed

    Kim, Donghyun; Choi, Jinyong; Kim, Mi-Jeong; Kim, Seon Hee; Cho, Sang Heon; Kim, Sunyoung

    2013-06-01

    PG102, a water-soluble extract from an edible fruit, Actinidia arguta, has previously been shown to control various factors involved in allergy pathogenesis. It was investigated whether the original activities of PG102 could be reconstituted by mixing chemical compounds present in PG102. Six compounds present in PG102 were, individually or in the form of mixtures, tested for their effects on the expression of various Th2 cytokines and inflammatory mediators in the cell-based assay. Each chemical inhibited IL-4 expression to varying degrees. The chemical compounds were combined at a ratio present in PG102, resulting in two formulations, CQMIIH and CQM, consisting of all or the first three of the following chemicals, citric, quinic, and malic acids, myo-inositol, isoquercitrin, and 5-hydroxymethyl-2-furaldehyde. The mixtures reconstituted original activities of PG102 to a significant level. In the murine asthma model, CQM ameliorated asthmatic symptoms and significantly decreased the level of IgE and IL-5. The decreased phosphorylation of ERK1/2 was observed in cells and mice treated with PG102 and the mixtures. Our data indicated that the substantial portion of PG102's anti-allergic activities could be reconstituted, in vitro and in vivo, by mixing six chemical compounds, suggesting the possibility of developing a new type of anti-allergic agent. This approach may be useful for developing chemically defined functional products from complex botanical extracts.

  19. Persistence of biologically active compounds in soil: Final report

    SciTech Connect

    Williams, S.E.

    1987-02-01

    This document describes the long-term effects of soil-applied oil shale process water on the VA fungi and Rhizobium bacteria in a native soil. Techniques include assessing the VA fungal activity at field treatment plots and using treated field soils in a bioassay to determine VA infection and Rhizobium-nodulation potentials four years after process water application. 52 refs., 32 figs., 2 tabs.

  20. Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model

    NASA Astrophysics Data System (ADS)

    Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah

    2016-03-01

    The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.

  1. In vitro anti-HIV-1 activity of salicylidene acylhydrazide compounds.

    PubMed

    Forthal, Donald N; Phan, Tran B; Slepenkin, Anatoly V; Landucci, Gary; Chu, Hencelyn; Elofsson, Mikael; Peterson, Ellena

    2012-10-01

    Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 μM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide. PMID:22819150

  2. Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis.

    PubMed

    Barbosa, João; Lima, Raquel T; Sousa, Diana; Gomes, Ana Sara; Palmeira, Andreia; Seca, Hugo; Choosang, Kantima; Pakkong, Pannee; Bousbaa, Hassan; Pinto, Madalena M; Sousa, Emília; Vasconcelos, M Helena; Pedro, Madalena

    2016-01-13

    Our previous work has described a library of thioxanthones designed to have dual activity as P-glycoprotein modulators and antitumor agents. Some of these compounds had shown a significant cell growth inhibitory activity towards leukemia cell lines, without affecting the growth of non-tumor human fibroblasts. However, their effect in cell lines derived from solid tumors has not been previously studied. The present work aimed at: (i) screening this small series of compounds from an in-house library, for their in vitro cell growth inhibitory activity in human tumor cell lines derived from solid tumors; and (ii) initiate a study of the effect of the most potent compound on apoptosis. The tumor cell growth inhibitory effect of 27 compounds was first analysed in different human tumor cell lines, allowing the identification of a hit compound, TXA1. Its hydrochloride salt TXA1·HCl was then synthesized, to improve solubility and bioavailability. Both TXA1 and TXA1·HCl inhibited the growth of MCF-7, NCI-H460, A375-C5, HeLa, 786-O, Caki-2 and AGS cell lines. The effect of TXA1·HCl in MCF-7 cells was found to be irreversible and was associated, at least in part, with an increase in cellular apoptosis.

  3. Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis.

    PubMed

    Barbosa, João; Lima, Raquel T; Sousa, Diana; Gomes, Ana Sara; Palmeira, Andreia; Seca, Hugo; Choosang, Kantima; Pakkong, Pannee; Bousbaa, Hassan; Pinto, Madalena M; Sousa, Emília; Vasconcelos, M Helena; Pedro, Madalena

    2016-01-01

    Our previous work has described a library of thioxanthones designed to have dual activity as P-glycoprotein modulators and antitumor agents. Some of these compounds had shown a significant cell growth inhibitory activity towards leukemia cell lines, without affecting the growth of non-tumor human fibroblasts. However, their effect in cell lines derived from solid tumors has not been previously studied. The present work aimed at: (i) screening this small series of compounds from an in-house library, for their in vitro cell growth inhibitory activity in human tumor cell lines derived from solid tumors; and (ii) initiate a study of the effect of the most potent compound on apoptosis. The tumor cell growth inhibitory effect of 27 compounds was first analysed in different human tumor cell lines, allowing the identification of a hit compound, TXA1. Its hydrochloride salt TXA1·HCl was then synthesized, to improve solubility and bioavailability. Both TXA1 and TXA1·HCl inhibited the growth of MCF-7, NCI-H460, A375-C5, HeLa, 786-O, Caki-2 and AGS cell lines. The effect of TXA1·HCl in MCF-7 cells was found to be irreversible and was associated, at least in part, with an increase in cellular apoptosis. PMID:26771595

  4. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds.

    PubMed

    Vaquero, Javier; Briz, Oscar; Herraez, Elisa; Muntané, Jordi; Marin, Jose J G

    2013-10-01

    The success of pharmacological treatments in primary liver cancers is limited by the marked efficacy of mechanisms of chemoresistance already present in hepatocytes. The role of the nuclear receptor FXR is unclear. Although, in non-treated liver tumors, its expression is reduced, the refractoriness to anticancer drugs is high. Moreover, the treatment with cisplatin up-regulates FXR. The aim of this study was to investigate whether FXR is involved in stimulating chemoprotection/chemoresistance in healthy and tumor liver cells. In human hepatocytes, the activation of FXR with the agonist GW4064 resulted in a significant protection against cisplatin-induced toxicity. In human hepatoma Alexander cells, with negligible endogenous expression of FXR, GW4064 also protected against cisplatin-induced toxicity, but only if they were previously transfected with FXR/RXR. Investigation of 109 genes potentially involved in chemoresistance revealed that only ABCB4, TCEA2, CCL14, CCL15 and KRT13 were up-regulated by FXR activation both in human hepatocytes and FXR/RXR-expressing hepatoma cells. In both models, cisplatin, even in the absence of FXR agonists, such as bile acids and GW4064, was able to up-regulate FXR targets genes, which was due to FXR-mediated trans-activation of response elements in the promoter region. FXR-dependent chemoprotection was also efficient against other DNA-damaging compounds, such as doxorubicin, mitomycin C and potassium dichromate, but not against non-genotoxic drugs, such as colchicine, paclitaxel, acetaminophen, artesunate and sorafenib. In conclusion, ligand-dependent and independent activation of FXR stimulates mechanisms able to enhance the chemoprotection of hepatocytes against genotoxic compounds and to reduce the response of liver tumor cells to certain pharmacological treatments.

  5. Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds.

    PubMed Central

    Gumila, C; Ancelin, M L; Delort, A M; Jeminet, G; Vial, H J

    1997-01-01

    Large-scale in vitro screening of different types of ionophores previously pinpointed nine compounds that were very active and selective in vitro against Plasmodium falciparum; their in vitro and in vivo antimalarial effects were further studied. Addition of the ionophores to synchronized P. falciparum suspensions revealed that all P. falciparum stages were sensitive to the drugs. However, the schizont stages were three- to ninefold more sensitive, and 12 h was required for complete parasite clearance. Pretreatment of healthy erythrocytes with toxic doses of ionophores for 24 to 48 h showed that the activity was not due to an irreversible effect on the host erythrocyte. No preferential ionophore adsorption in infected or uninfected erythrocytes occurred. On the other hand, ionophore molecules strongly bound to serum proteins since increasing the serum concentration from 2 to 50% led to almost a 25-fold parallel increase in the ionophore 50% inhibitory concentration. Mice infected with the malaria parasites Plasmodium vinckei petteri or Plasmodium chabaudi were successfully treated with eight ionophores in a 4-day suppressive test. The 50% effective dose after intraperitoneal administration ranged from 0.4 to 4.1 mg/kg of body weight, and the therapeutic indices were about 5 for all ionophores except monensin A methyl ether, 5-bromo lasalocid A, and gramicidin D, whose therapeutic indices were 12, 18, and 344, respectively. These three compounds were found to be curative, with no recrudescence. Gramicidin D, which presented impressive antimalarial activity, requires parenteral administration, while 5-bromo lasalocid A has the major advantage of being active after oral administration. Overall, the acceptable levels of toxicity and the good in vivo therapeutic indices in the rodent model highlight the interesting potential of these ionophores for the treatment of malaria in higher animals. PMID:9055986

  6. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    PubMed Central

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  7. Organogermanium compounds as inhibitors of the activity of direct acting mutagens in Salmonella typhimurium.

    PubMed

    Schimmer, O; Eschelbach, H; Breitinger, D K; Grützner, T; Wick, H

    1997-12-01

    The organogermanium compounds bis(D,L-lactato)germanium(IV), bis(L-lactato)germanium(IV), bis (thiolactato)germanium(IV) and bis(thioglycolato)germanium(IV) were tested for their antimutagenic activity in Salmonella typhimurium strains TA98 and TA100. Each compound showed moderate activity against the mutagenic effect of nitroaromatic compounds and weak effects against the mutagenic activity of ethylmethane sulfonate. No inhibition of mutagenicity was observed against the indirect acting promutagens benzo(a)pyrene and 2-aminoanthracene. The compounds differed only quantitatively in their antimutagenicity spectrum. It is concluded from these results that an intracellular mechanism is involved in the inhibition of ethylmethane sulfonate-induced mutagenicity. The effect is probably produced, at least partially, at the level of DNA repair. Frameshift mutations seem to be prevented with higher efficiency than base pair substitutions.

  8. Inhibitory compound of tyrosinase activity from the sprout of Polygonum hydropiper L. (Benitade).

    PubMed

    Miyazawa, Mitsuo; Tamura, Naotaka

    2007-03-01

    A tyrosinase inhibitor was isolated from the sprout of Polygonum hydropiper L. (Benitade) by activity-guided fractionation and identified as (2R,3R)-+-taxifolin (1) by spectroscopic means. Compound 1 inhibited 70% of tyrosinase activity at a concentration of 0.50 mM. ID50 (50% inhibition dose) value of compound 1 was 0.24 mM. As compared with tyrosinase inhibitor known cosmetic agent such as arbutin and kojic acid, compound 1 was more inhibited than the former and showed inhibitory effect equal to that of the latter. To study the inhibitory effect of (2R,3R)-+-taxifolin derivatives against tyrosinase activity, 3,7,3',4'-taxifolin tetraacetate (2) and 5,7,3',4'-taxifolin teramethyl ether (3) were also assayed together with compound 1.

  9. Hypervalent iodine compounds as potent antibacterial agents against ice nucleation active (INA) Pseudomonas syringae.

    PubMed

    Menkissoglu-Spiroudi, U; Karamanoli, K; Spyroudis, S; Constantinidou, H I

    2001-08-01

    Twenty-three hypervalent iodine compounds belonging to aryliodonium salts, 1, aryliodonium ylides, 2, and (diacyloxyiodo)arenes, 3, were tested for their antibacterial activities against ice nucleation active (INA) Pseudomonas syringae, and the MIC and EC(50) values were determined. All of the compounds examined caused a dose-dependent decrease in bacterial growth rates. Aryliodonium salts, especially those with electron-withdrawing groups, exhibit higher antibacterial activities with MIC = 8-16 ppm, whereas the nature of the anion does not seem to affect the activities of the diaryliodonium salts. PMID:11513659

  10. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  11. Analyzing compound activity records and promiscuity degrees in light of publication statistics

    PubMed Central

    Hu, Ye; Bajorath, Jürgen

    2016-01-01

    For the generation of contemporary databases of bioactive compounds, activity information is usually extracted from the scientific literature. However, when activity data are analyzed, source publications are typically no longer taken into consideration. Therefore, compound activity data selected from ChEMBL were traced back to thousands of original publications, activity records including compound, assay, and target information were systematically generated, and their distributions across the literature were determined. In addition, publications were categorized on the basis of activity records. Furthermore, compound promiscuity, defined as the ability of small molecules to specifically interact with multiple target proteins, was analyzed in light of publication statistics, thus adding another layer of information to promiscuity assessment. It was shown that the degree of compound promiscuity was not influenced by increasing numbers of source publications. Rather, most non-promiscuous as well as promiscuous compounds, regardless of their degree of promiscuity, originated from single publications, which emerged as a characteristic feature of the medicinal chemistry literature. PMID:27347396

  12. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  13. Antioxidant activity and phytochemical compounds of snake fruit (Salacca Zalacca)

    NASA Astrophysics Data System (ADS)

    Suica-Bunghez, I. R.; Teodorescu, S.; Dulama, I. D.; Voinea, O. C.; imionescu, S.; Ion, R. M.

    2016-06-01

    Snake fruit (Salacca zalacca) is a palm tree species, which is found in Malaysia and Indonesia. This study was conducted to investigate and compare the composition, total phenolic, flavonoid, tanins and monoterpenoids contents in the core and shell fruits. Concentration values of extracts were obtained from standard curves obtained. Antioxidant activity was determined using DPPH method. For all methods it was used the UV-VIS Specord M40, using different wavelength. The infrared spectral analysis was carried out to caracterized the type of functional group existent in snake fruit parts (shell and core).

  14. Pectins and xyloglucans exhibit antimutagenic activities against nitroaromatic compounds.

    PubMed

    Hensel, A; Meier, K

    1999-06-01

    Because a high daily consumption of polysaccharides-containing food is assessed to decrease the risk of cancer of the gastrointestinal system, different types of carbohydrates were investigated for their antimutagenic activity against different standard mutagens. Within the screening pronounced antimutagenic effects were found for xyloglucan and different pectins and pectin-like rhamnogalacturonans against 1-nitropyrene induced mutagenicity. Inhibition rates were dose-dependent and varied between 20 and 50%. Concerning the mode of action a direct interaction of the polymers with the cells is claimed, protecting the organisms from the mutagenic attack. PMID:10418322

  15. Antimicrobial, antimalarial, and antileishmanial activities of mono- and bis-quaternary pyridinium compounds.

    PubMed

    Bharate, Sandip B; Thompson, Charles M

    2010-12-01

    Pyridinium-based oxime compounds have been utilized worldwide as antidotes following exposure to anticholinesterase agents. In the event of combined chemical and biological incident, it is of vital importance to know the ability of antidotes to provide additional protection against biological threats. This paper reports results of in vitro antimicrobial and antiprotozoal activities of a series of quaternary pyridinium oximes against a number of lower pathogenicity BSL-1 and 2 agents. In general, our compound panel had little to no antimicrobial action except for thiophene- and benzothiophene-substituted monoquaternary pyridinium compounds 21 and 24 that showed moderate antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with IC(50) values ranging from 12.2 to 17.7 μg/mL. Compounds 21 and 24 also exhibited antileishmanial activity against Leishmania donovani with IC(50) values of 19 and 18 μg/mL, respectively. Another monoquaternary pyridinium compound with a bromobutyl side chain 17 showed antimalarial activity against both a chloroquine sensitive and resistant strains of Plasmodium falciparum with IC(50) values of 3.7 and 4.0 μg/mL, respectively. None of the bisquaternary pyridinium compounds showed antimicrobial or antiprotozoal activity. None of the compounds showed cytotoxic effects toward mammalian kidney fibroblasts. Results of this study indicate that the pyridinium compounds, some of which are already in use as antidotes, do not have significant antimicrobial and antiprotozoal activities and cannot be relied upon for additional protection in the event of combined chemical-biological incident.

  16. How to acquire new biological activities in old compounds by computer prediction.

    PubMed

    Poroikov, V V; Filimonov, D A

    2002-11-01

    Due to the directed way of testing chemical compounds' in drug research and development many projects fail because serious adverse effects and toxicity are discovered too late, and many existing prospective activities remain unstudied. Evaluation of the general biological potential of molecules is possible using a computer program PASS that predicts more than 780 pharmacological effects, mechanisms of action, mutagenicity, carcinogenicity, etc. on the basis of structural formulae of compounds, with average accuracy approximately 85%. PASS applications to both databases of available samples included hundreds of thousands compounds, and small collections of compounds synthesized by separate medicinal chemists are described. It is shown that 880 compounds from Prestwick chemical library represent a very diverse pharmacological space. New activities can be found in existing compounds by prediction. Therefore, on this basis, the selection of compounds with required and without unwanted properties is possible. Even when PASS cannot predict very new activities, it may recognize some unwanted actions at the early stage of R&D, providing the medicinal chemist with the means to increase the efficiency of projects. PMID:12825794

  17. Synthesis, fungicidal activity, and structure-activity relationship of spiro-compounds containing macrolactam (macrolactone) and thiadiazoline rings.

    PubMed

    Li, Jian-Jun; Liang, Xiao-Mei; Jin, Shu-Hui; Zhang, Jian-Jun; Yuan, Hui-Zhu; Qi, Shu-Hua; Chen, Fu-Heng; Wang, Dao-Quan

    2010-03-10

    Two series of novel spiro-compounds containing macrolactam or macrolactone and thiadiazoline rings, 1-thia-2-alkylimino-3,4,9-triaza-10-oxospiro[4.15]eicosyl-3-ene (4F) and 1-thia-2-alkylimino-3,4-diaza-9-oxa-10-oxospiro[4.15]eicosyl-3-ene (4G), were synthesized from 12-oxo-1,15-pentadecanlactam and 12-oxo-1,15-pentadecanlactone, respectively. Their structures were confirmed by elemental analysis, (1)H NMR, and (13)C NMR. The conformation of compounds 4F was determined via the crystal structure of a representative compound (4F(6)). The bioassay showed that compounds 4F have much better fungicidal activity against five fungi ( Botrytis cinerea Pers., Sclerotinia sclerotiorum , Rhizoctonia solani Kuhn., Phomopsis asparagi Sacc., and Pyricularia oryzae Cav.) than compounds 4G. The fact above showed that the presence of a hydrogen-bonding donor for the fungicidal activity of macrocyclic compounds is very important. 4F(6) showed excellent fungicidal activity against P. oryzae, which is much better than the commercial fungicide isoprothiolane, and 4F(13) showed excellent fungicidal activity against P. oryzae and good fungicidal activity against P. asparagi. PMID:20041703

  18. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase.

    PubMed

    Eibes, Gemma; Debernardi, Gianfranco; Feijoo, Gumersindo; Moreira, M Teresa; Lema, Juan M

    2011-06-01

    Pharmaceuticals are an important group of emerging pollutants with increasing interest due to their rising consumption and the evidence for ecotoxicological effects associated to trace amounts in aquatic environments. In this paper, we assessed the potential degradation of a series of pharmaceuticals: antibiotics (sulfamethoxazole), antidepressives (citalopram hydrobromide and fluoxetine hydrochloride), antiepileptics (carbamazepine), anti-inflammatory drugs (diclofenac and naproxen) and estrogen hormones (estrone, 17β-estradiol, 17α-ethinylestradiol) by means of a versatile peroxidase (VP) from the ligninolytic fungus Bjerkandera adusta. The effects of the reaction conditions: VP activity, organic acid concentration and H(2)O(2) addition rate, on the kinetics of the VP based oxidation system were evaluated. Diclofenac and estrogens were completely degraded after only 5-25 min even with a very low VP activity (10 U l(-1)). High degradation percentages (80%) were achieved for sulfamethoxazole and naproxen. Low or undetectable removal yields were observed for citalopram (up to 18%), fluoxetine (lower than 10%) and carbamazepine (not degraded). PMID:20972884

  19. A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns.

    PubMed

    Rupesinghe, Emmanuel Janaka Rochana; Jones, Andrew; Shalliker, Ross Andrew; Pravadali-Cekic, Sercan

    2016-01-20

    Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract.

  20. Studies on the antioxidant activities of natural vanilla extract and its constituent compounds through in vitro models.

    PubMed

    Shyamala, B N; Naidu, M Madhava; Sulochanamma, G; Srinivas, P

    2007-09-19

    Vanilla extract was prepared by extraction of cured vanilla beans with aqueous ethyl alcohol (60%). The extract was profiled by HPLC, wherein major compounds, viz., vanillic acid, 4-hydroxybenzyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol, 4-hydroxybenzaldehyde and vanillin, could be identified and separated. Extract and pure standard compounds were screened for antioxidant activity using beta-carotene-linoleate and DPPH in vitro model systems. At a concentration of 200 ppm, the extract showed 26% and 43% of antioxidant activity by beta-carotene-linoleate and DPPH methods, respectively, in comparison to corresponding values of 93% and 92% for BHA. Interestingly, 4-hydroxy-3-methoxybenzyl alcohol and 4-hydroxybenzyl alcohol exhibited antioxidant activity of 65% and 45% by beta-carotene-linoleate method and 90% and 50% by DPPH methods, respectively. In contrast, pure vanillin exhibited much lower antioxidant activity. The present study points toward the potential use of vanilla extract components as antioxidants for food preservation and in health supplements as nutraceuticals.

  1. Investigation of active pharmaceutical ingredient loss in pharmaceutical compounding of capsules.

    PubMed

    D'Hondt, Matthias; Wynendaele, Evelien; Vandercruyssen, Kirsten; Bauters, Tiene; Vandenbroucke, Johan; Mullens, Steven; Vervaet, Chris; Remon, Jean Paul; De Spiegeleer, Bart

    2014-08-01

    Pharmaceutical compounding of capsules is still an important corner stone in today's health care. It allows for a more patient specific treatment plan as opposed to the "one size fits all"-approach, used by the pharmaceutical industry when producing fixed dose finished drug products. However, loss of active pharmaceutical ingredient (API) powder during pharmaceutical capsule compounding can lead to under-dosed finished drug products and annul the beneficiary therapeutic effects for the patient. The amount and location of API loss was experimentally determined during capsule compounding of five different preparations: 10 and 20mg hydrocortisone capsules, 4mg triamcinolone capsules and 0.25mg dexamethasone capsules, using a 10% m/m self-made or commercial trituration. The total API amount present in the five capsule preparations varied between 90.8% and 96.6%, demonstrating that for certain preparations, significant API mass loss occurred during the pharmaceutical compounding of capsules. Swabbing results of the different compounding equipment and working areas indicated the mortar surface as the largest API loss location. An agate mortar accounted for the least amount of API loss, whereas an extensively used porcelain mortar accounted for the highest amount of API loss. Optical microscopy and roughness (Ra) determination by profilometry of the different mortar surfaces revealed a significant influence of the mortar surface wear and tear on the observed API loss. This observation can be explained by physical deformation, or scratch formation, of the relatively soft porcelain mortar surface, in which the API particles can become adsorbed. Furthermore, a small effect of the capsulation device material on the API loss was also observed. The presence of a chemical molecule effect on the API loss was demonstrated through data mining using a set of assay results containing 17 different molecules and 1922 assay values. The 17 median assay values were modeled in function of

  2. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  3. [Study of antioxidant activity of phenolic compounds from some species of Georgian flora].

    PubMed

    Alaniia, M; Shalashvili, K; Sagareishvili, T; Kavtaradze, N; Sutiashvili, M

    2013-09-01

    The antioxidant activity of extracts obtained from different parts of Georgian flora species Hamamelis virginiana L., Astragalus caucasicus Pall., Astragalus microcephalus Willd., Vitis vinifera L., Rhododendron ponticum L., Rhododendron Ungernii Trautv., Ginkgo biloba L., Salvia officinalis L., Querqus iberica Stev., Maclura aurantiaca Nutt., Cotinus coggygria Ledeb., Fraxinus ornus L., Urtica dioica L., Rhododendron caucasicum Pall., Pueraria hirsuta Matsum., Geranium pusillum L., Astragalus Tanae Sosn., Pinus silvestris L. has been studied. Comparison with ethylentetraacetate and α-tocopherole revealed high efficacy of all extracts studied. 45 individual phenolic compounds were isolated and described by chemical examination of biologically active objects. Common sage (Salvia officinalis) extract turned out as the most active (200 %). The chemical study revealed the dominant content of condensed tannins and low molecular phenolic compounds, which may be attributed to the high antioxidant activity. Biologically active antiatherosclerotic food additive "Salbin" was developed on the basis of Common sage - Salvia officinalis L. phenolic compounds. PMID:24099817

  4. Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis.

    PubMed

    Kubo, Isao; Fujita, Ken-Ichi; Kubo, Aya; Nihei, Ken-Ichi; Ogura, Tetsuya

    2004-06-01

    Aliphatic (2E)-alkenals and alkanals characterized from the fresh leaves of the coriander Coriandrum sativum L. (Umbelliferae) were found to possess bactericidal activity against Salmonella choleraesuis ssp. choleraesuis ATCC 35640. (2E)-Dodecenal (C(12)) was the most effective against this food-borne bacterium with the minimum bactericidal concentration (MBC) of 6.25 microg/mL (34 microM), followed by (2E)-undecenal (C(11)) with an MBC of 12.5 microg/mL (74 microM). The time-kill curve study showed that these alpha,beta-unsaturated aldehydes are bactericidal against S. choleraesuis at any growth stage and that their bactericidal action comes in part from the ability to act as nonionic surfactants. PMID:15161192

  5. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  6. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.

  7. Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity.

    PubMed Central

    Andries, K; Dewindt, B; Snoeks, J; Wouters, L; Moereels, H; Lewi, P J; Janssen, P A

    1990-01-01

    A variety of chemically different compounds inhibit the replication of several serotypes of rhinoviruses (common-cold viruses). We noticed that one of these antiviral compounds, WIN 51711, had an antiviral spectrum clearly distinctive from a consensus spectrum or other capsid-binding compounds, although all of them were shown to share the same binding site. A systematic evaluation of all known rhinovirus capsid-binding compounds against all serotyped rhinoviruses was therefore initiated. Multivariate analysis of the results revealed the existence of two groups of rhinoviruses, which we will call antiviral groups A and B. The differential sensitivity of members of these groups to antiviral compounds suggests the existence of a dimorphic binding site. The antiviral groups turned out to be a reflection of a divergence of rhinovirus serotypes on a much broader level. Similarities in antiviral spectra were highly correlated with sequence similarities, not only of amino acids lining the antiviral compound-binding-site, but also of amino acids of the whole VP1 protein. Furthermore, analysis of epidemiological data indicated that group B rhinoviruses produced more than twice as many clinical infections per serotype than group A rhinoviruses did. Rhinoviruses belonging to the minor receptor group were without exception all computed to lie in the same region of antiviral group B. PMID:2154596

  8. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms.

  9. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds.

    PubMed

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois; Dymock, Brian W; Tan, Kevin S W

    2016-05-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.

  10. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms. PMID:27413112

  11. Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds

    PubMed Central

    Boudhar, Aicha; Ng, Xiao Wei; Loh, Chiew Yee; Chia, Wan Ni; Tan, Zhi Ming; Nosten, Francois

    2016-01-01

    Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria. PMID:26953199

  12. Leishmanicidal and cytotoxic activities of extracts and naturally-occurring compounds from two Lauraceae species.

    PubMed

    Sánchez-Suárez, Jeysson; Coy-Barrera, Ericsson; Cuca, Luis Enrique; Delgado, Gabriela

    2011-02-01

    The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis. PMID:21425681

  13. Naphthoquinones and Bioactive Compounds from Tobacco as Modulators of Neuronal Nitric Oxide Synthase Activity

    PubMed Central

    Venkatakrishnan, Priya; Gairola, C. Gary; Castagnoli, Neal; Miller, R. Timothy

    2009-01-01

    Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2, 3, 6-trimethyl-1, 4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1, 4-naphthoquinone (menadione) as a control. Up to 31μM, both TMN and menadione stimulated nNOS-catalyzed L-citrulline production. However, at higher concentrations of TMN (62.5-500 μM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5-500 μM), the loss of stimulation surpassed that of the control (78 ± 0.01%), indicating a complete inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified. PMID:19367663

  14. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops.

    PubMed

    Dušek, Martin; Jandovská, Vladimíra; Čermák, Pavel; Mikyška, Alexandr; Olšovská, Jana

    2016-08-15

    The phenolic compounds, secondary metabolites of hops represent a large family of compounds that could be subsequently divided into smaller groups based on the similarities between their chemical structures. The antibacterial, antifungal and antiviral properties of hops are well known, but there is a lack of information about antimicrobial activities of individual hop compounds. This study was carried out with an objective to identify compounds present in hops that have potential antibacterial activity. In the first stage of experiment, the active compounds with potential anti-microbial activity had to be extracted from hop cones. Therefore, minced hop cones were applied on solid growth medium inoculated with Staphylococcus aureus. The active substances that migrated into the medium created an inhibition zone. In the second stage of experiment, the inhibition zones were cut out from Petri dishes, active compounds were extracted from these zones and consequently analyzed using LC-HRMS. These complex assays were developed and optimized. The data were acquired by using a quadrupole-orbitrap hybrid mass spectrometer by targeted-MS2 experiment in both ionization modes. The MS method has been developed as a screening method with a subsequent fragmentation of compound of interest on the base of inclusion mass list. The unknown compounds extracted from inhibition zones have been identified either by searching against a database or their structure has been elucidated on the basis of their fragmentation spectra. On the basis of this experiment the list of active compounds with potential anti-microbial activities was enhanced.

  15. A novel approach for identification of biologically active phenolic compounds in complex matrices using hybrid quadrupole-orbitrap mass spectrometer: A promising tool for testing antimicrobial activity of hops.

    PubMed

    Dušek, Martin; Jandovská, Vladimíra; Čermák, Pavel; Mikyška, Alexandr; Olšovská, Jana

    2016-08-15

    The phenolic compounds, secondary metabolites of hops represent a large family of compounds that could be subsequently divided into smaller groups based on the similarities between their chemical structures. The antibacterial, antifungal and antiviral properties of hops are well known, but there is a lack of information about antimicrobial activities of individual hop compounds. This study was carried out with an objective to identify compounds present in hops that have potential antibacterial activity. In the first stage of experiment, the active compounds with potential anti-microbial activity had to be extracted from hop cones. Therefore, minced hop cones were applied on solid growth medium inoculated with Staphylococcus aureus. The active substances that migrated into the medium created an inhibition zone. In the second stage of experiment, the inhibition zones were cut out from Petri dishes, active compounds were extracted from these zones and consequently analyzed using LC-HRMS. These complex assays were developed and optimized. The data were acquired by using a quadrupole-orbitrap hybrid mass spectrometer by targeted-MS2 experiment in both ionization modes. The MS method has been developed as a screening method with a subsequent fragmentation of compound of interest on the base of inclusion mass list. The unknown compounds extracted from inhibition zones have been identified either by searching against a database or their structure has been elucidated on the basis of their fragmentation spectra. On the basis of this experiment the list of active compounds with potential anti-microbial activities was enhanced. PMID:27260455

  16. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  17. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds.

    PubMed

    Farris, Patricia K

    2011-09-01

    Skin aging is a combination of natural aging with superimposed photoaging. Naturally aged skin is thin, fragile and finely wrinkled whereas photoaged skin is rough and thickened with deep coarse wrinkles. In addition photoaging is characterized by mottled pigmentation, solar lentigines, telangectasias and a loss of elasticity. The science behind skin aging has exploded in the past decade. Skin aging has now been defined on both a cellular and molecular level. The study of genomics in aging skin provides us with potential targets as points for intervention. In this regard, the science behind skin aging becomes a platform for the development of new anti-aging strategies and products. In this paper two new and emerging approaches to treat aging skin will be discussed. Sirtuin activating and anti-glycation products are already being marketed by cosmetic and pharmaceutical companies. These anti-aging approaches are backed by basic science research and the ingredients used are supported by proof of concept studies although clinical trials are often lacking. It is this bench to beauty counter approach to cosmeceuticals that remains an industry standard today. PMID:21925370

  18. Review of the Inhibition of Biological Activities of Food-Related Selected Toxins by Natural Compounds

    PubMed Central

    Friedman, Mendel; Rasooly, Reuven

    2013-01-01

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term ‘chemical genetics’ has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet. PMID:23612750

  19. Review of the inhibition of biological activities of food-related selected toxins by natural compounds.

    PubMed

    Friedman, Mendel; Rasooly, Reuven

    2013-04-23

    There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.

  20. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.

    PubMed

    Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H

    2013-03-20

    Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one.

  1. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-01

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material.

  2. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-01

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material. PMID:26274450

  3. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    PubMed Central

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  4. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China.

    PubMed

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  5. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China.

    PubMed

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-06-15

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches.

  6. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  7. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania.

    PubMed

    Kaškonienė, Vilma; Maruška, Audrius; Akuņeca, Ieva; Stankevičius, Mantas; Ragažinskienė, Ona; Bartkuvienė, Violeta; Kornyšova, Olga; Briedis, Vitalis; Ugenskienė, Rasa

    2016-06-01

    Since biological activity of medicinal plants is dependent on cultivation area, climatic conditions, developmental stage, genetic modifications and other factors, it is important to study flora present in different growing sites and geographical zones. This study was focused on screening of antioxidant activity of C. angustifolium harvested in six different locations in Lithuania. The total contents of phenolic compounds, flavonoids and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were evaluated by spectrophotometric methods. A correlation between radical scavenging activity and total phenolic compounds content was observed (correlation coefficient 0.98). HPLC with online post-column DPPH radical scavenging reaction detection was used for the separation of extracts. Oenothein B, rutin and one unidentified compound were predominant. Volatile compounds were analysed using solid-phase microextraction coupled with gas chromatography-mass spectrometry. Based on the analysis of volatiles, all samples were classified into two chemotypes: (I) with predominant α- and β-caryophyllenes and (II) with predominant anethole. PMID:26222982

  8. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  9. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    PubMed

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  10. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  11. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    PubMed

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization.

  12. Antidermatophytic activity of extracts from Psoralea corylifolia (Fabaceae) correlated with the presence of a flavonoid compound.

    PubMed

    Rajendra Prasad, N; Anandi, C; Balasubramanian, S; Pugalendi, K V

    2004-03-01

    Extracts obtained from seeds of Psoralea corylifolia showed several degrees of antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum and Microsporum gypseum by the disc diffusion method on a Sabouraud dextrose agar (SDA) medium. Methanol extract of the seeds at 250 microg exhibited the maximum inhibition with a halo of 28 mm diameter. Six different bands were obtained when the methanol extract was subjected to TLC. 13C NMR and Mass spectra revealed that the active compound would be a flavonoid, 4'-methoxy flavone. MIC of the active compound along with standard miconazole was carried out using tube dilution technique. PMID:15036462

  13. Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches

    PubMed Central

    Ferreira, Natalia C.; Marques, Icaro A.; Conceição, Wesley A.; Macedo, Bruno; Machado, Clarice S.; Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Yunes, Rosendo Augusto; Nunes, Ricardo José; Hughson, Andrew G.; Raymond, Lynne D.; Pascutti, Pedro G.; Caughey, Byron; Cordeiro, Yraima

    2014-01-01

    The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are

  14. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, T.

    1994-06-07

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.

  15. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Tuan Vodinh.

    1993-12-21

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.

  16. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds

  17. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1993-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.

  18. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  19. [Biosynthesis of biologically active low-molecular weight compounds by fungi of the genus Penicillium (review)].

    PubMed

    Kozlovskii, A G; Antipova, T V; Zhelifonova, V P

    2015-01-01

    The recent data on exometabolite biosynthesis in fungi of the genus Penicillium is summarized. The study of creative species, as well as those isolated from extreme ecotopes, resulted in the identification of a number of novel, biologically active compounds. Alkaloid biosynthesis has been shown to begin on.the first day of fungus cultivation and to proceed throughout the cultivation period. Idiophase kinetics was observed for the biosynthesis of polyketide metabolites. The mechanisms of regulation of biosynthesis of promising bioactive compounds are discussed.

  20. Antioxidant compounds and antioxidant activity in "early potatoes".

    PubMed

    Leo, Lucia; Leone, Antonella; Longo, Cristiano; Lombardi, Domenico Antonio; Raimo, Francesco; Zacheo, Giuseppe

    2008-06-11

    The antioxidant content and the antioxidant capacity of both hydrophilic and lipophilic antioxidant extracts from four "early potato" cultivars, grown in two different locations (Racale and Monteroni), were examined. There was a considerable variation in carotenoid content and weak differences in the ascorbic acid concentration of the examined cultivars of "early potato" and between the harvested locations. An increase in both methanol/water (8:2 v/v) and phosphate buffer soluble (PBS) free phenols (70%) and bound phenols (28%) in the extracts from the cultivars grown at Racale site was found and discussed. Examination of individual phenols revealed that chlorogenic acid and catechin were the major phenols present in potato tuber extracts; a moderate amount of caffeic acid and ferulic acid was also detected. The total equivalent antioxidant capacity (TEAC) was higher in the Racale extracts and a highly positive linear relationship ( R (2) = 0.8193) between TEAC values and total phenolic content was observed. The oxyradical scavenging capacity (TOSC) of methanol/water and PBS extracts of peel and whole potatoes against the reactive oxygen species (ROS) peroxyl radicals, peroxynitrite, and hydroxyl radicals was also analyzed. A highly significant linear correlation ( R (2) = 0.9613) between total antioxidant capacity (as a sum of peroxyl radicals + peroxynitrite) and total phenol content of methanol/water extracts was established. Moreover, proliferation of human mammalian cancer (MCF-7) cells was significantly inhibited in a dose-dependent manner after exposure to potato extracts. These data can be useful for "early potato" tuber characterization and suggest that the "early potato" has a potential as a dietary source of antioxidants.

  1. Antifungal activity of extracts and select compounds in heartwood of seven western conifers toward Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western red cedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper,...

  2. [Progress in study of flavonoids from Annonaceae and biological activities of these compounds].

    PubMed

    Hu, Chun-Mei; Wu, Jiu-Hong

    2007-05-01

    More than 50 new flavonoids derived from Annonaceae are reported in the last two decades. Many genuses in Annonaceae contain flavonoids having structural novelty and broad pharmacological activities. Due to the pharmacological interest of some of these compounds, chemical investigations on this topic have grown considerably in the decades. Here the biological activities of some of these flavonoids are also briefly discussed.

  3. Anti-inflammatory activity of sulfur-containing compounds from garlic.

    PubMed

    Lee, Da Yeon; Li, Hua; Lim, Hyo Jin; Lee, Hwa Jin; Jeon, Raok; Ryu, Jae-Ha

    2012-11-01

    We identified four anti-inflammatory sulfur-containing compounds from garlic, and their chemical structures were identified as Z- and E-ajoene and oxidized sulfonyl derivatives of ajoene. The sulfur compounds inhibited the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) and the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in lipopolysaccharide (LPS)-activated macrophages. Western blotting and reverse transcription-polymerase chain reaction analysis demonstrated that these sulfur compounds attenuated the LPS-induced expression of the inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA. Moreover, these sulfur-containing compounds suppressed the nuclear factor-κB (NF-κB) transcriptional activity and the degradation of inhibitory-κBα in LPS-activated macrophages. Furthermore, we observed that they markedly inhibited the LPS-induced phosphorylations of p38 mitogen-activated protein kinases and extracellular signal-regulated kinases (ERK) at 20 μM. These data demonstrate that the sulfur compounds from garlic, (Z, E)-ajoene and their sulfonyl analogs, can suppress the LPS-induced production of NO/PGE(2) and the expression of iNOS/COX-2 genes by inhibiting the NF-κB activation and the phosphorylations of p38 and ERK. Taken together, these data show that Z- and E-ajoene and their sulfonyl analogs from garlic might have anti-inflammatory therapeutic potential.

  4. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  5. Omega-pyridiniumalkylethers of steroidal phenols: new compounds with potent antibacterial and antiproliferative activities.

    PubMed

    Lange, C; Holzhey, N; Schönecker, B; Beckert, R; Möllmann, U; Dahse, H-M

    2004-06-15

    Novel omega-pyridiniumalkylethers of two steroidal phenols were synthesized as compounds with potential antimicrobial activity. 3-Hydroxy-estra-1,3,5(10)-triene-17-one and 1-hydroxy-4-methyl-estra-1,3,5(10)-triene-17-one were reacted with omega,omega'-dibromoalkanes to omega-bromoalkoxy-estra-1,3,5(10)-trienes followed by reaction with pyridine to obtain the desired steroidal omega-pyridiniumalkoxy compounds as bromides. Their antimicrobial activity against strains of multiresistant Staphylococcus aureus (MRSA), a vancomycin resistant Enterococcus faecalis and fast growing mycobacteria depends clearly on the length of the alkyl chain. A strong broadband activity has been found for the compounds with eight or 10 C-atoms; in some cases better than ciprofloxacin or cetylpyridinium salts. In addition, the antiproliferative and cytotoxic activity depends on the chain length, too. The differentiation between antibacterial and cytotoxic activity is better for the steroid hybrid molecules than the cetylpyridinium salts. These new compounds can serve as lead compounds for further optimization.

  6. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds.

    PubMed

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  7. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  8. Carcinogenic potential of phthalic acid esters and related compounds: structure-activity relationships.

    PubMed Central

    Kluwe, W M

    1986-01-01

    Chronic toxicity and carcinogenicity studies of several phthalic acid esters (PAEs) and compounds containing a 2-ethylhexyl moiety were conducted in Fischer 344 rats and B6C3F1 (hybrid) mice. The compounds studied were phthalic anhydride, di(2-ethylhexyl) phthalate, butyl benzyl phthalate, diallyl phthalate, di(2-ethylhexyl) adipate, tris(2-ethylhexyl) phosphate, and 2-ethylhexyl sulfate (sodium salt). Estimated maximum tolerable doses and fractionally lower doses of each compound were administered to groups of 50 male and 50 female rats and mice for 2 years, followed by sacrifice, necropsy, and histopathological examination of major organs and tissues. The low toxic potencies of most of the compounds allowed for relatively high doses to be given during the chronic studies. In general, the toxic manifestations of the PAEs were closely correlated with their ester substituents. Although many of the PAEs possessed some carcinogenic activity, target sites for such effects were dissimilar, suggesting the absence of a common mode of action. In contrast, all of the 2-ethylhexyl-containing compounds studied possessed some hepatocarcinogenic activity, indicating that this moiety may have a propensity for causing hepatocarcinogenesis in mice, particularly those of the female sex. The 2-ethylhexyl compound that caused the greatest hepatocarcinogenic response in mice, di(2-ethylhexyl) phthalate, was also hepatocarcinogenic in rats. Similarly, those with a relatively greater effect in female mice were also active in male mice. Thus, sex and species differences in 2-ethylhexyl-induced hepatocarcinogenesis in rodents are probably quantitative rather than qualitative in nature. PMID:3709453

  9. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro.

    PubMed

    Rodrigues, Klinger Antonio da Franca; Dias, Cínthia Nóbrega de Sousa; Néris, Patrícia Lima do Nascimento; Rocha, Juliana da Câmara; Scotti, Marcus Tullius; Scotti, Luciana; Mascarenhas, Sandra Rodrigues; Veras, Robson Cavalcante; de Medeiros, Isac Almeida; Keesen, Tatjana de Souza Lima; de Oliveira, Tiago Bento; de Lima, Maria do Carmo Alves; Balliano, Tatiane Luciano; de Aquino, Thiago Mendonça; de Moura, Ricardo Olímpio; Mendonça Junior, Francisco Jaime Bezerra; de Oliveira, Márcia Rosa

    2015-12-01

    This study evaluated the effects of 2-amino-thiophene derivatives on the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and their possible mechanisms of action. Initially, we evaluated the antileishmanial activity of ten 2-amino-thiophene derivatives on promastigote and axenic amastigote forms of Leishmania amazonensis and their cytotoxicity against murine macrophages and human red blood cells. Three promising compounds were selected for studies of the cell death process using flow cytometry analysis and a DNA fragmentation assay. The effects of the compounds were assessed on intramacrophagic amastigotes, and the modulation of cytokine and NO production was investigated. All thiophene derivatives showed antileishmanial activity against promastigotes and axenic amastigotes with less toxicity for murine macrophages and human red blood cells. The best values were obtained for compounds containing a lateral indole ring. Docking studies suggested that these compounds played an important role in inhibiting trypanothione reductase (TryR) activity. The selected compounds SB-200, SB-44, and SB-83 induced apoptosis in promastigotes involving phosphatidylserine externalization and DNA fragmentation in a pattern similar to that observed for the positive control. Additionally, SB-200, SB-44, and SB-83 significantly reduced the infection index of macrophages by the parasites; for compounds SB-200 and SB-83 this reduction was associated with increased TNF-α, IL-12, and NO levels. This study demonstrated the effective and selective action of 2-amino-thiophene derivatives against L. amazonensis, resulting in apoptosis-like cell death and immunomodulation in vitro. The results suggest that they are promising compounds for the development of new leishmanicidal drugs.

  10. Identification of chemical compounds present in different fractions of Annona reticulata L. leaf by using GC-MS.

    PubMed

    Rout, Soumya P; Kar, Durga M

    2014-01-01

    GC-MS analysis of fractions prepared from hydro-alcoholic extract of Annona reticulata Linn (Family Annonaceae) leaf revealed the presence of 9,10-dimethyltricyclo[4.2.1.1(2,5)]decane-9,10-diol; 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one; 3,7-dimethyl-6-nonen-1-ol acetate; 9-octadecenamide,(Z)-; glycerine; D-glucose,6-O-α-D-galactopyranosyl-; desulphosinigrin and α-methyl-D-mannopyranoside as few of the major compounds in different fractions. The presence of these compounds in the plant has been identified for the first time.

  11. Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Pepper (Capsicum annuum L.) is an economically important agricultural crop and an excellent dietary source of natural colors and antioxidant compounds. The levels of these compounds can vary according to agricultural practices, like inoculation with plant growth-promoting rhizobacteria. In this work we evaluated for the first time the effect of the inoculation of two Rhizobium strains on C. annuum metabolites and bioactivity. The results revealed a decrease of organic acids and no effect on phenolics and capsaicinoids of leaves from inoculated plants. In the fruits from inoculated plants organic acids and phenolic compounds decreased, showing that fruits from inoculated plants present a higher ripeness stage than those from uninoculated ones. In general, the inoculation with Rhizobium did not improve the antioxidant activity of pepper fruits and leaves. Considering the positive effect on fruit ripening, the inoculation of C. annuum with Rhizobium is a beneficious agricultural practice for this nonlegume.

  12. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites.

    PubMed

    Fernández, Mariana; Arce, Esteban Rodríguez; Sarniguet, Cynthia; Morais, Tânia S; Tomaz, Ana Isabel; Azar, Claudio Olea; Figueroa, Roberto; Diego Maya, J; Medeiros, Andrea; Comini, Marcelo; Helena Garcia, M; Otero, Lucía; Gambino, Dinorah

    2015-12-01

    Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule.

  13. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    SciTech Connect

    Zhang, Lianying; Ren, Xiao-Min; Wan, Bin; Guo, Liang-Hong

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  14. Antitumor and antiparasitic activity of novel ruthenium compounds with polycyclic aromatic ligands.

    PubMed

    Miserachs, Helena Guiset; Cipriani, Micaella; Grau, Jordi; Vilaseca, Marta; Lorenzo, Julia; Medeiros, Andrea; Comini, Marcelo A; Gambino, Dinorah; Otero, Lucía; Moreno, Virtudes

    2015-09-01

    Five novel ruthenium(II)-arene complexes with polycyclic aromatic ligands were synthesized, comprising three compounds of the formula [RuCl(η(6)-p-cym)(L)][PF6], where p-cym = 1-isopropyl-4-methylbenzene and L are the bidentate aromatic ligands 1,10-phenanthroline-5,6-dione, 1, 5-amine-1,10-phenanthroline, 4, or 5,6-epoxy-5,6-dihydro-phenanthroline, 5. In the other two complexes [RuCl2(η(6)-p-cym)(L')], the metal is coordinated to a monodentate ligand L', where L' is phenanthridine, 2, or 9-carbonylanthracene, 3. All compounds were fully characterized by mass spectrometry and elemental analysis, as well as NMR and IR spectroscopic techniques. Obtained ruthenium compounds as well as their respective ligands were tested for their antiparasitic and antitumoral activities. Even though all compounds showed lower Trypanosoma brucei activity than the free ligands, they also resulted less toxic on mammalian cells. Cytotoxicity assays on HL60 cells showed a moderate antitumoral activity for all ruthenium compounds. Compound 1 was the most potent antitumoral (IC50 = 1.26±0.78 μM) and antiparasitic (IC50 = 0.19 ± 0.05 μM) agent, showing high selectivity towards the parasites (selectivity index >100). As complex 1 was the most promising antitumoral compound, its interaction with ubiquitin as potential target was also studied. In addition, obtained ruthenium compounds were found to bind DNA, and they are thought to interact with this macromolecule mainly through intercalation of the aromatic ligand.

  15. A PHARMACOKINETIC MODEL FOR ESTIMATING EXPOSURE OF AMERICANS TO DIOXIN-LIKE COMPOUNDS IN THE PAST, PRESENT, AND FUTURE

    EPA Science Inventory

    Empirical evidence suggests that exposure of Americans to dioxin-like compounds was low during the early decades of the 20th century, then increased during the 1940s and 1950s reaching a peak in the 1960s and 1970s, and progressively decreased to lower levels in the 1980s and 199...

  16. 78 FR 72840 - Drug Products That Present Demonstrable Difficulties for Compounding Under Sections 503A and 503B...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... of June 29, 2000 (65 FR 40104). However, before a list could be developed, the constitutionality of... category of ``outsourcing facilities.'' Outsourcing facilities, as defined in section 503B, are facilities... outsourcing facility. If these conditions are satisfied, a drug compounded by or under the direct...

  17. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection.

    PubMed

    Petrlova, Jitka; Mikelova, Radka; Stejskal, Karel; Kleckerova, Andrea; Zitka, Ondrej; Petrek, Jiri; Havel, Ladislav; Zehnalek, Josef; Vojtech, Adam; Trnkova, Libuse; Kizek, Rene

    2006-05-01

    The most active form of sulfur in biomolecules is the thiol group, present in a number of biologically active compounds. Here we present a comprehensive study of thiol analysis using flow injection analysis/HPLC with electrochemical detection. The effect of different potentials of working electrodes, of organic solvent contents in the mobile phase, and of isocratic and gradient elution on simultaneous determination of thiol compounds (cysteine, cystine, N-acetylcysteine, homocysteine, reduced and oxidised glutathione, desglycinephytochelatin, and phytochelatins) are described and discussed. These thiol compounds were well separated and detected under optimised HPLC-electrochemical detection conditions (mobile phase: 80 mM trifluoroacetic acid and methanol with a gradient profile starting at 97:3 (TFA:methanol), kept constant for the first 8 min, then decreasing to 85:15 during one minute, kept constant for 8 min, and finally increasing linearly up to 97:3 from 17 to 18 min; the flow rate was 0.8 mL/min, column and detector temperature 25 degrees C, and the electrode potential 900 mV). We were able to determine tens of femtomoles (3 S/N) of the thiols per injection (5 microL), except for phytochelatin5 whose detection limit was 2.1 pmole. This technique was consequently used for simultaneous determination of compounds of interest in biological samples (maize tissue and human blood serum). PMID:16830732

  18. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages

    PubMed Central

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-01-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols. PMID:25320718

  19. Bioactive Compound Contents and Antioxidant Activity in Aronia (Aronia melanocarpa) Leaves Collected at Different Growth Stages.

    PubMed

    Thi, Nhuan Do; Hwang, Eun-Sun

    2014-09-01

    The bioactive compounds and antioxidant activity of aronia leaves at different stages of maturity were identified and evaluated. Young and old leaves were approximately 2 months of age and 4 months of age, respectively. The young leaves contained more polyphenols and flavonoids than the old leaves. Three phenolic compounds (i.e., chlorogenic acid, p-coumaric acid, and rutin) were detected by HPLC. Antioxidant activity was measured using 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical, and superoxide anion radical scavenging assays. The reducing power of aronia leaf extracts increased in a concentration-dependent manner (0~100 μg/mL). The antioxidant activity of the 80% ethanol extract was greater than that of distilled water extract. The high phenolic compound content indicated that these compounds contribute to antioxidant activity. The overall results indicate that aronia leaves contain bioactive compounds, and that younger aronia leaves may be more favorable for extracting antioxidative ingredients because they contain more polyphenols.

  20. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts.

    PubMed

    Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula

    2011-12-01

    In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.

  1. Synthesis, characterization, investigation of biological activity and theoretical studies of hydrazone compounds containing choloroacetyl group

    NASA Astrophysics Data System (ADS)

    Cukurovali, Alaaddin; Yilmaz, Engin

    2014-10-01

    In this study, three new hydrazide-hydrazone derivative compounds which contain choloroacetyl group have been synthesized and characterized. In the characterization, spectral techniques such as IR, 1H NMR, 13C NMR and UV-Vis spectroscopy techniques were used. Antibacterial effects of the synthesized compounds were investigated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the theoretical calculations Gaussian 09 software was used with the DFT/6-311+(d,p) basis set. Experimental X-ray analysis of compounds has not been studied. Theoretical bond lengths of synthesized compounds were compared with experimental bond lengths of a similar compound. Theoretical and experimental bond lengths are in good agreement with R2: 0.896, 0.899 and 0.900 for compounds 1, 2, and 3, respectively. For antibacterial activity, the most effective one was found to be N‧-(4-bromobenzylidene)-2-chloro-N-(4-(3-methyl-3-phenylcyclobutyl)-thiazol-2-yl) acetohydrazide against P.aeroginaosa ATTC 27853, among the studied compounds.

  2. Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity

    PubMed Central

    dos Santos, Edson dos A.; Hamel, Ernest; Bai, Ruoli; Burnett, James C.; Tozatti, Camila Santos Suniga; Bogo, Danielle; Perdomo, Renata T.; Antunes, Alexandra M. M.; Marques, M. Matilde; Matos, Maria de F. C.; de Lima, Dênis P.

    2013-01-01

    We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site. PMID:23810282

  3. Parallel Synthesis and Biological Evaluation of 837 Analogues of Procaspase-Activating Compound 1 (PAC-1)

    PubMed Central

    Hsu, Danny C.; Roth, Howard S.; West, Diana C.; Botham, Rachel C.; Novotny, Chris J.; Schmid, Steven C.; Hergenrother, Paul J.

    2011-01-01

    Procaspase-Activating Compound 1 (PAC-1) is an ortho-hydroxy N-acyl hydrazone that enhances the enzymatic activity of procaspase-3 in vitro and induces apoptosis in cancer cells. An analogue of PAC-1, called S-PAC-1, was evaluated in a veterinary clinical trial in pet dogs with lymphoma and found to have considerable potential as an anticancer agent. With the goal of identifying more potent compounds in this promising class of experimental therapeutics, a combinatorial library based on PAC-1 was created, and the compounds were evaluated for their ability to induce death of cancer cells in culture. For library construction, 31 hydrazides were condensed in parallel with 27 aldehydes to create 837 PAC-1 analogues, with an average purity of 91%. The compounds were evaluated for their ability to induce apoptosis in cancer cells, and through this work, six compounds were discovered to be substantially more potent than PAC-1 and S-PAC-1. These six hits were further evaluated for their ability to relieve zinc-mediated inhibition of procaspase-3 in vitro. In general, the newly identified hit compounds are two- to four-fold more potent than PAC-1 and S-PAC-1 in cell culture, and thus have promise as experimental therapeutics for treatment of the many cancers that have elevated expression levels of procaspase-3. PMID:22007686

  4. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  5. P2X7 receptor activation impairs exogenous MHC class I oligopeptides presentation in antigen presenting cells.

    PubMed

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8(+) T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5'-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8(+) T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8(+) T cell immunity.

  6. [Antioxidant activity of the fruits and hydrophilic compounds of Physalis alkekengi].

    PubMed

    Laczkó-Zöld, Eszter; Zupkó, István; Réthy, Borbála; Csedo, Károly; Hohmann, Judit

    2009-01-01

    Physalis alkekengi L. (bladder cherry, Chinese lantern, winter cherry) is an unusual species of the family Solanaceae. Although accumulation of alkaloids is characteristic to Solanaceae species, and accordingly the root and above ground parts of P. alkekengi are toxic, its fruits are in exceptionally edible. The present paper deals with the investigation of antioxidant hydrophilic compounds of the fruits in order to find correlation between the quantity of the constituents and antioxidant capacity of the extracts. Dried and fresh, freeze stored fruits were extracted with water, and the ascorbic acid and total polyphenol content of the fruits was determined. Furthermore, the antioxidant effect was investigated by DPPH test, and in vitro using the rat-brain homogenate method. The antioxidant activity measured by DPPH (fresh fruit: IC50 = 2.48 mg/ml; dried fruit: IC50 = 22.32 mg/ml) showed good correlation with the ascorbic acid content of the fruit (fresh fruit: 1.095%; dried fruit: 0.162%), and exhibited substantial decrease due the drying process. Lipid peroxidation inhibitory activity was found to be weaker as the DPPH radical scavenger capacity, however, also showed a decrease during the drying process of the fruit (fresh fruit: IC50 = 6.43 mg/ml; dried fruit: IC50 = 15.59 mg/ml). Our results clearly demonstrated the radical scavenger and lipid peroxidation inhibitory activity of aqueous extracts of bladder cherry, and indicate that the conservation and processing technology significantly influenced the antioxidant activity and the content of the active ingredients.

  7. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa.

    PubMed

    Akihisa, Toshihiro; Kawashima, Kohta; Orido, Masashi; Akazawa, Hiroyuki; Matsumoto, Masahiro; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto; Tokuda, Harukuni; Fuji, Jizaemon

    2013-03-01

    The MeOH extract of moxa, the processed leaves of Artemisia princeps PAMP. (Asteraceae), exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and melanogenesis-inhibitory activity in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Eight caffeoylquinic acids, 1 and 6-12, five flavonoids, 13-17, two benzoic acid derivatives, 18 and 19, three coumarin derivatives, 20-22, four steroids, 23-26, and six triterpenoids, 27-32, were isolated from the MeOH extract. Upon evaluation of compounds 1, 6-23, and four semisynthetic caffeoylquinic acid esters, 2-5, for their DPPH radical-scavenging activity, 15 compounds, 1-13, 17, and 19, showed potent activities (IC(50) 3.1-16.8 μM). The 15 compounds exhibited, moreover, potent inhibitory activities (51.1-92.5% inhibition) against peroxidation of linoleic acid emulsion at 10 μg/ml concentration. In addition, when 27 compounds, 1-8, 10, 12, 13, 15-18, 20-25, and 27-32, were evaluated for their inhibitory activity against melanogenesis in α-MSH-stimulated B16 melanoma cells, five caffeoylquinic acids, i.e., chlorogenic acid (1), ethyl chlorogenate (3), propyl chlorogenate (4), isopropyl chlorogenate (5), and butyl chlorogenate (6), along with homoorientin (17) and vanillic acid (18), exhibited inhibitory activities with 33-62% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (89-114% of cell viability at 100 μM). Western blot analysis showed that compound 6 reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2. Furthermore, four compounds, 13, 15, 16, and 30, exhibited

  8. A community computational challenge to predict the activity of pairs of compounds

    PubMed Central

    Bansal, Mukesh; Yang, Jichen; Karan, Charles; Menden, Michael P; Costello, James C; Tang, Hao; Xiao, Guanghua; Li, Yajuan; Allen, Jeffrey; Zhong, Rui; Chen, Beibei; Kim, Minsoo; Wang, Tao; Heiser, Laura M; Realubit, Ronald; Mattioli, Michela; Alvarez, Mariano J; Shen, Yao; Gallahan, Daniel; Singer, Dinah; Saez-Rodriguez, Julio; Xie, Yang; Stolovitzky, Gustavo; Califano, Andrea

    2015-01-01

    Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction. PMID:25419740

  9. A community computational challenge to predict the activity of pairs of compounds.

    PubMed

    Bansal, Mukesh; Yang, Jichen; Karan, Charles; Menden, Michael P; Costello, James C; Tang, Hao; Xiao, Guanghua; Li, Yajuan; Allen, Jeffrey; Zhong, Rui; Chen, Beibei; Kim, Minsoo; Wang, Tao; Heiser, Laura M; Realubit, Ronald; Mattioli, Michela; Alvarez, Mariano J; Shen, Yao; Gallahan, Daniel; Singer, Dinah; Saez-Rodriguez, Julio; Xie, Yang; Stolovitzky, Gustavo; Califano, Andrea

    2014-12-01

    Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction.

  10. A new phenolic compound with anticancer activity from the wood of Millettia leucantha.

    PubMed

    Rayanil, Kanok-On; Bunchornmaspan, Pastraporn; Tuntiwachwuttikul, Pittaya

    2011-06-01

    A new phenolic compound, 1-(3-hydroxy-4-methoxyphenyl)-3-(2,4-dihydroxy-5-methoxyphenyl) propan-1-ol, named as millettinol (1), along with six known compounds, medicarpin (2), 4-hydroxy-3-methoxy-8,9-methylenedioxypterocarpan (3), 5,4'-dihydroxy-7,8-dimethoxyisoflavone (4), physcion (5), (R)-(-)-mellein (6) and isoliquiritigenin (7), were isolated from the wood of Millettia leucantha. The structures of the compounds were determined by an analysis of their spectroscopic data. Some of the isolates were tested for anticancer activity. Compound 1 exhibited strong cytotoxicity against the BCA-1 tumor cell lines with an IC(50) = 3.44 μg/mL. PMID:21725807

  11. New compound with DNA Topo I inhibitory activity purified from Penicillium oxalicum HSY05.

    PubMed

    Liu, Bing; Wang, Hai-Feng; Zhang, Li-Hua; Liu, Fang; He, Feng-Jun; Bai, Jiao; Hua, Hui-Ming; Chen, Gang; Pei, Yue-Hu

    2015-01-01

    Strain HSY05 was isolated from sea sediment collected from the South China Sea and was later identified as Penicillium oxalicum by 16S rDNA sequence analysis. Various chromatographic processes led to the isolation and purification of two metabolites from the fermentation culture of HSY05, including one new compound, 2,2',4,4'-tetrahyoxy-8'-methyl-6-methoxy-acyl-ethyl-diphenylmethanone (1), and a known compound secalonic acid D (SAD, 2), as characterised by UV, IR, 1D, 2D-NMR and MS data. The inhibitory activities against topoisomerase I of these two compounds were evaluated. The result showed that in addition to the known topo I inhibitor SAD (2), compound 1 also exhibited a moderate inhibitory effect.

  12. Comparison of the activity and distribution of analog II and related compounds in the mouse and rat

    SciTech Connect

    Pento, J.T.; Koenig, K.K.; Magarian, R.A.; Shridhar, R.; Griffin, M.

    1986-03-01

    The authors have reported that 1,1-dichloro-Cis-2,3-diphenylcyclopropane (Analog II) is antiestrogenic in the mouse and inhibits the initiation and promotion of DMBA-induced tumors in the rat. Recently the authors have synthesized related cyclopropyl derivative of stilbene and stilbenediol. The object of the present study was to compare the activity of these compounds in the mouse and rat. Estrogenic and antiestrogenic activity of each compound was determined using the 3-day uterotropic assay and uterine histology in immature female Swiss Webster mice and Sprague-Dawley rats. (/sup 3/H)-Analog II was used in the tissue distribution studies. It was found that whereas Analog II was antiestrogenic in the mouse, this compound and related cis-stilbene analogs produced no antiestrogenic activity in the rat. However, trans-stilbenediol derivatives were estrogenic in both the mouse and rat with relatively equivalent activity in both species. In the tissue distribution study (/sup 3/H)-Analog II was found to be specifically concentrated in uterine tissue of the mouse but not the rat. This observation may explain, in part, the difference in antiestrogenic activity of Analog II between these two rodent species.

  13. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds.

    PubMed

    Coenye, Tom; Brackman, Gilles; Rigole, Petra; De Witte, Evy; Honraet, Kris; Rossel, Bart; Nelis, Hans J

    2012-03-15

    Propionibacterium acnes is a Gram-positive bacterium that plays an important role in the pathogenesis of acne vulgaris. This organism is capable of biofilm formation and the decreased antimicrobial susceptibility of biofilm-associated cells may hamper efficient treatment. In addition, the prolonged use of systemic antibiotic therapy is likely to lead to the development and spread of antimicrobial resistance. In the present study we investigated whether P. acnes biofilms could be eradicated by plant extracts or their active compounds, and whether other mechanisms besides killing of biofilm cells could be involved. Out of 119 plant extracts investigated, we identified five with potent antibiofilm activity against P. acnes (extracts from Epimedium brevicornum, Malus pumila, Polygonum cuspidatum, Rhodiola crenulata and Dolichos lablab). We subsequently identified icariin, resveratrol and salidroside as active compounds in three of these extracts. Extracts from E. brevicornum and P. cuspidatum, as well as their active compounds (icariin and resveratrol, respectively) showed marked antibiofilm activity when used in subinhibitory concentrations, indicating that killing of microbial cells is not their only mode of action. PMID:22305279

  14. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    PubMed

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  15. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling

    PubMed Central

    Le Bihan, Amélie; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Dechering, Koen J.; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo–Benito, Francisco Javier; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J.; Noviyanti, Rintis; Sanz, Laura María; Sauerwein, Robert W.; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Weller, Thomas; Clozel, Martine; Wittlin, Sergio

    2016-01-01

    Background Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. Method and Findings The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3–4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11–16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23–39). The compound’s preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as

  16. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy.

    PubMed

    Mongkol, Watcharakorn; Arunyawat, Uraiwan; Surat, Wunrada; Kubera, Anchanee

    2015-11-01

    Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity.

  17. Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite.

    PubMed

    Portela, César; Afonso, Carlos M M; Pinto, Madalena M M; Ramos, Maria João

    2004-06-15

    Malaria is one of the most important parasitic diseases, affecting almost half of the world and posing a threat to the other half. Xanthone derivatives can behave as antimalarial drugs in the same mechanistic way as chloroquine and other related quinolines. This action is due to the inhibition of the detoxification pathway of the parasite, responsible for the production of hemozoin. We report a study of the electronic properties of the xanthonic and quinolinic compounds based on DFT calculations, in order to determine a pattern that could be applied to the development of new potentially active antimalarial molecules. As a result, a new interpretation of structure-activity relationship of the quinoline antimalarial drugs, and of the active hydroxylated xanthones is proposed here. We conclude that electronic features rather than steric factors control primarily the inhibitory activity of the studied compounds against hematin aggregation, concurring to a potential antimalarial activity.

  18. Flavonoids, Antioxidant Activity and Aroma Compounds Analysis from Different Kinds of Tartary Buckwheat Tea

    PubMed Central

    Peng, L. X.; Zou, L.; Wang, J. B.; Zhao, J. L.; Xiang, D. B.; Zhao, G.

    2015-01-01

    The rutin, quercetin concentrations, antioxidant activity, and aroma compounds in different commercial tartary buckwheat tea were analyzed in our study. Results revealed that the materials and the processing protocol affected the chemical composition and activity of tartary buckwheat tea. Rutin and quercetin concentrations, antioxidant activity were significantly different in various kinds of tartary buckwheat tea, where the whole bran tea and the whole plant tea had the lower rutin, but higher quercetin concentrations and higher antioxidant activity. The whole embryo tea had the converse results. There was strong correlation between quercetin concentration and antioxidant activity (r>0.98, P<0.05). Meanwhile, Twenty eight different aroma compounds in tartary buckwheat tea were identified by gas chromatography-mass spectrometry. Those compounds were mainly composed of pyrazine, aldehydes, fatty acids and ketones. The main type of aroma compounds in different tartary buckwheat tea were similar, but their relative contents were different. The implications to the quality control of buckwheat tea were extensively discussed. PMID:26997692

  19. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    PubMed

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively.

  20. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    PubMed

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively. PMID:25173461

  1. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-01-01

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities. PMID:27331807

  2. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G.

    PubMed

    Costa, Eduarda C; Cassamale, Tatiana B; Carvalho, Diego B; Bosquiroli, Lauriane S S; Ojeda, Mariáh; Ximenes, Thalita V; Matos, Maria F C; Kadri, Mônica C T; Baroni, Adriano C M; Arruda, Carla C P

    2016-06-20

    Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.

  3. Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower

    PubMed Central

    Ahmed, Fouad A.; Ali, Rehab F. M.

    2013-01-01

    Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively. PMID:24171164

  4. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa fruits.

    PubMed

    Smejkal, Karel; Babula, Petr; Slapetová, Tereza; Brognara, Eleonora; Dall'acqua, Stefano; Zemlicka, Milan; Innocenti, Gabbriella; Cvacka, Josef

    2008-10-01

    The newly discovered 5,7-dihydroxy-6-geranylchromone ( 1) was isolated from PAULOWNIA TOMENTOSA fruit and subsequently characterized. The structure of the isolated compound was elucidated on the basis of extensive NMR experiments including HMQC, HMBC, COSY, and NOESY, as well as HR-MS, IR, and UV. The cytotoxicity of 1 was evaluated using a plant cell model represented by tobacco BY-2 cells. The other phytoconstituents ( 2 - 8) previously isolated from P. TOMENTOSA were similarly evaluated together with the known flavanones 10 and 11. The cytotoxicity (human erythro-leukaemia cell line K562) and activity on erythroid differentiation of compounds 2 - 9 and 12 and 13 have also been evaluated. Acteoside ( 2) was determined to be the most toxic of the compounds tested on BY-2 cells, diplacone ( 6) on the K562 cell line. Some aspects of the relationship between the flavanone skeleton substitution and the metabolic activation necessary for a toxic effect are discussed. PMID:18729043

  5. Activity-guided isolation of an antiandrogenic compound of Pygeum africanum.

    PubMed

    Schleich, Sonja; Papaioannou, Maria; Baniahmad, Aria; Matusch, Rudolf

    2006-05-01

    Inactivation of the androgen receptor (AR) through androgen ablation and treatment with antiandrogens is a major goal in the therapy for prostate hyperplasia and prostate cancer. Bioactivity-directed fractionation of a selective dichloromethane extract from the stem bark of Pygeum africanum led to the isolation of the antiandrogenic compound atraric acid. Its activity was examined by an androgen receptor responsive reporter gene assay. For lead structure optimization we transformed the natural occurring compound atraric acid into its ethyl, N-propyl and N-butyl esters and their antiandrogenic activities were examined as well. In addition, benzoic acid was isolated. The structures of all compounds were determined and characterized by means of 1H- and 13C-NMR, HR-EI-mass, IR and UV spectroscopy.

  6. Biological Characterization and in Vivo Assessment of the Activity of a New Synthetic Macrocyclic Antifungal Compound.

    PubMed

    Deodato, Davide; Maccari, Giorgio; De Luca, Filomena; Sanfilippo, Stefania; Casian, Alexandru; Martini, Riccardo; D'Arezzo, Silvia; Bonchi, Carlo; Bugli, Francesca; Posteraro, Brunella; Vandeputte, Patrick; Sanglard, Dominique; Docquier, Jean-Denis; Sanguinetti, Maurizio; Visca, Paolo; Botta, Maurizio

    2016-04-28

    We recently identified a novel family of macrocyclic amidinoureas showing potent antifungal activity against Candida spp. In this study, we demonstrate the fungicidal effect of these compounds as well as their killing activity in a dose-dependent manner. Transcriptional analysis data indicate that our molecules induce a significant change in the transcriptome involving ATP binding cassette (ABC) transporter genes. Notably, experiments against Candida albicans mutants lacking those genes showed resistance to the compound, suggesting the involvement of ABC transporters in the uptake or intracellular accumulation of the molecule. To probe the mode of action, we performed fluorescence microscopy experiments on fungal cells treated with an ad-hoc synthesized fluorescent derivative. Fluorescence microscopy images confirm the ability of the compound to cross the membrane and show a consistent accumulation within the cytoplasm. Finally, we provide data supporting the in vivo efficacy in a systemic infection murine model setup with a drug-resistant strain of C. albicans. PMID:27045868

  7. Activity and mode of action of acridine compounds against Leishmania donovani.

    PubMed Central

    Mesa-Valle, C M; Castilla-Calvente, J; Sanchez-Moreno, M; Moraleda-Lindez, V; Barbe, J; Osuna, A

    1996-01-01

    In the present work, we have assayed both the in vitro and in vivo action of two acridine compounds against Leishmania donovani. As part of this effort, we have studied the possible action mechanism of these compounds at the ultrastructural and biochemical levels and in relation to the synthesis of macromolecules. The two acridinones inhibit the in vitro growth of the promastigote forms of L. donovani at the highest concentration assayed (100 micrograms/ml). The in vivo results indicate that both compounds reduce the number of amastigotes per gram of spleen, and decrease parasitism, by more than 40%. With respect to the action mechanism, both compounds inhibit the incorporation of [3H]thymidine, inducing alterations at the ultrastructural level in the DNA and mitochondria. Alterations are also caused in the enzymes of the Krebs cycle. PMID:8851593

  8. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  9. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    PubMed Central

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  10. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    PubMed

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  11. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  12. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    PubMed

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol. PMID:25393824

  13. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    PubMed

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol.

  14. Alkyl Nitrates and Oxidized Volatile Organic Compounds during NACHTT: Influence on Reactive Chlorine Activation

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Sive, B. C.; Russo, R. S.; Zhou, Y.

    2011-12-01

    Recent studies have suggested that reactive chlorine species can contribute substantially to the oxidative capacity of the atmosphere and also influence tropospheric ozone chemistry in areas far from dominant marine sources. The photochemical processing of polluted air masses containing can potentially affect the formation of chlorine radical (Cl) through various processes involving hydrocarbons and NOx (NO + NO2). Organic peroxy radicals can react with nitric oxide (NO) to form alkyl nitrates or to produce nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including alcohols, aldehydes and ketones. Aldehydes can further react with NO2 to form peroxyacyl nitrates (PAN). Alkyl nitrates and PAN can serve as reservoirs for long range transport of NOx and can influence Cl production in remote areas. In order to further elucidate the influence of OVOCs and alkyl nitrates on chlorine activation processes, whole air samples were collected hourly during the Nitrogen, Aerosol Composition and Halogens on a Tall Tower (NACHTT) campaign at the Boulder Atmospheric Observatory in Erie, Colorado from February 18 through March 11, 2011. Profile samples up to 250 m were also collected throughout the campaign. Samples were analyzed for a comprehensive suite of volatile organic compounds, including OVOCs and C1 to C5 alkyl nitrates, using a five channel gas chromatographic analytical system. Alkyl nitrates and OVOCs were abundant throughout the campaign. Total alkyl nitrate mixing ratios ranged from 13 to 227 pptv with 2-butyl nitrate and 2-propyl nitrate accounting for over half of this total. Ethanol was the most abundant OVOC followed by methanol with median mixing ratios of 8.5 ppbv and 5.6 ppbv, respectively. This presentation will focus on the influence the observed alkyl nitrate and OVOC mixing ratios and air mass photochemical processing on Cl cycling.

  15. Moooving forward on determining biologically active compounds in milk and their impact on health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have demonstrated that some of the lesser studied components in milk, known as biologically active compounds (BACs), may provide potential benefits to human health. The added health-value of raw milk and milk from organic and grass-fed herds is strongly debated because of limited, an...

  16. Phonological and Semantic Activation in Reading Two-Kanji Compound Words.

    ERIC Educational Resources Information Center

    Morita, Aiko; Matsuda, Fumiko

    2000-01-01

    Examined whether phonological information was activated automatically in processing two kanji compound words. In one experiment, participants judged whether pairs of words were homophones, while others judged whether pairs were synonyms. In the second, participants were asked to make one of the two judgments, as in experiment one. Findings support…

  17. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  18. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  19. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  20. Isolation and characterization of an utero-active compound from Agave americana.

    PubMed

    Basilio, C M; Seyler, L; Bernstein, J; Castro de la Mata, R

    1989-12-01

    Crude extracts of Agave americana contain two utero-active compounds. One of these, tentatively named "Fraction B", has been purified to chromatographic homogeneity. Its pharmacological actions are similar to those of acetylcholine. However its chromatographic and electrophoretic mobilities are different. Some chemical properties of fraction B are compatible with the structure of an acyl derivative of choline different from acetylcholine.

  1. Influence of various phenolic compounds on phenol hydroxylase activity of a Trichosporon cutaneum strain.

    PubMed

    Gerginova, Maria; Manasiev, Jordan; Shivarova, Nedka; Alexieva, Zlatka

    2007-01-01

    The phenol-degrading strain Trichosporon cutaneum R57 utilizes various aromatic and aliphatic compounds as a sole carbon and energy source. The intracellular activities of phenol hydroxylase [EC 1.14.13.7] of a Trichosporon cutaneum R57 strain grown on phenol (0.5 g/l) were measured. Different toxic phenol derivatives (cresols, nitrophenols and hydroxyphenols) were used as substrates in the reaction mixture for determination of the enzyme activity. The data obtained showed that the investigated enzyme was capable to hydroxylate all applied aromatic substrates. The measured activities of phenol hydroxylase varied significantly depending on the aromatic compounds used as substrates. The rate of phenol hydroxylase activity with phenol as a substrate (1.0 U/mg total cell protein) was accepted as 100%.

  2. Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform

    PubMed Central

    Freitas, Jaime; Miller, Nicole; Mengeling, Brenda J.; Xia, Menghang; Huang, Ruili; Houck, Keith; Rietjens, Ivonne M.C.M.; Furlow, J. David; Murk, Albertinka J.

    2014-01-01

    To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening. PMID:24772387

  3. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury.

    PubMed

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  4. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae)

    PubMed Central

    2011-01-01

    Background Artocarpus communis is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antimicrobial activities of the methanol extract (ACB) and compounds isolated from the bark of this plant, namely peruvianursenyl acetate C (1), α-amyrenol or viminalol (2), artonin E (4) and 2-[(3,5-dihydroxy)-(Z)-4-(3-methylbut-1-enyl)phenyl]benzofuran-6-ol (5). Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species. Results The MIC results indicated that ACB as well as compounds 4 and 5 were able to prevent the growth of all tested microbial species. All other compounds showed selective activities. The lowest MIC value of 64 μg/ml for the crude extract was recorded on Staphylococcus aureus ATCC 25922 and Escherichia coli ATCC 8739. The corresponding value of 32 μg/ml was recorded with compounds 4 and 5 on Pseudomonas aeruginosa PA01 and compound 5 on E. coli ATCC 8739, their inhibition effect on P. aeruginosa PA01 being more than that of chloramphenicol used as reference antibiotic. Conclusion The overall results of this study provided supportive data for the use of A. communis as well as some of its constituents for the treatment of infections associated with the studied microorganisms. PMID:21612612

  5. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury

    PubMed Central

    Li, Guo-Yu; Zheng, Ya-Xin; Sun, Fu-Zhou; Huang, Jian; Lou, Meng-Meng; Gu, Jing-Kai; Wang, Jin-Hui

    2015-01-01

    This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury. PMID:26389883

  6. Predicting the adsorption capacity and isotherm curvature of organic compounds onto activated carbons in natural waters.

    PubMed

    Hung, H W; Lin, T F

    2006-03-01

    A simple approach to predict the adsorption capacity and isotherm curvature of organic compounds onto activated carbon in natural water was investigated. A combination of the well-known equivalent background compound (EBC), and the simplified competitive adsorption model (SCAM) was employed to delineate the equilibrium capacity. This SCAM-EBC approach may reduce the numerical and experimental effort to obtain the parameters required to predict the adsorption capacity for a specific adsorption system. Several sets of experimental data, including weakly adsorbing (MTBE), strongly adsorbing compounds (TCP, atrazine, and chloroform), and two taste and odor causing compounds (MIB and geosmin) onto different activated carbons in three natural waters and a synthetic groundwater, were tested to verify the SCAM-EBC approach. Based on the approach, a parameter, called relative adsorptivity, describing the adsorption preference of the adsorbent between EBC and the target compound was employed to simulate the isotherm curvature in natural water. The relative adsorptivity of the SCAM-EBC approach is constant and can be directly obtained from the SCAM-EBC parameters in a specific adsorption system. The potential and extent of isotherm curvature can be simulated by only changing the parameter of relative adsorptivity. The marked isotherm curvature was found while the relative adsorptivity is larger than 2.0 to 4.0 for all the systems tested.

  7. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds.

    PubMed Central

    Huang, Yi; Davidson, Gerard; Li, Jingxia; Yan, Yan; Chen, Fei; Costa, Max; Chen, Lung Chi; Huang, Chuanshu

    2002-01-01

    The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor KB (NF-kappaB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-kappaB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-kappaB and not AP-1. We also investigated the role of NF-kappaB in the induction of Cap43 by nickel compounds using dominant negative mutant Ikappabeta kinase b-KM BEAS-2B transfectants. PMID:12426142

  8. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  9. Organocatalytic enantioselective tandem aldol-cyclization reaction of α-isothiocyanato imides and activated carbonyl compounds

    PubMed Central

    Guang, Jie; Zhao, Cong-Gui

    2011-01-01

    The organocatalytic enantioselective tandem aldol-cyclization reactions of α-isothiocyanato imides and activated carbonyl compounds, such as isatins, an α-ketolactone and a 1,2-dione, have been studied with cinchona alkaloid-derived thiourea-catalysts. This methodology provided an easy way to access enantiomerically enriched spirobicyclic thiocarbamates with high yields and good to excellent stereoselectivity, which have been demonstrated to be useful precursors for the synthesis of biologically active molecules. PMID:21921975

  10. The activity of a variety of chemical compounds against experimental tetanus

    PubMed Central

    Laurence, D. R.; Webster, R. A.

    1958-01-01

    A range of chemical compounds, mostly with central nervous system depressant activity, have been tested against experimental tetanus in the rabbit. A number of the more potent tested, including mephenesin, betanaphthoxyethanol, barbiturates and phenothiazine derivatives, have been accurately assayed by a method of quantitative electromyography. Phenothiazine derivatives were found to be the most potent anticonvulsants and of these acetylpromazine had the greatest activity. The difficulties of direct comparison of the potency of substances from different chemical groups is discussed. PMID:13584740

  11. In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds.

    PubMed

    Lu, Min; Han, Zhiqiang; Xu, Yun; Yao, Lei

    2013-06-28

    Essential oils are increasingly of interest for use as novel drugs acting as antimicrobial and antiviral agents. In the present study, we report the in vitro antiviral activities of 29 essential oils, extracted from Chinese indigenous aromatic plants, against the tobacco mosaic virus (TMV). Of these essential oils, those oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass effected a more than 50% inhibition of TMV at 100 μg/ml. In addition, the mode of antiviral action of the active essential oils was also determined. Essential oils isolated from artemisia and lemongrass possessed potent inactivation and curative effects in vivo and had a directly passivating effect on TMV infection in a dose-dependent manner. However, all other active essential oils exhibited a moderate protective effect in vivo. The chemical constitutions of the essential oils from ginger, lemon, tea tree, tangerine peel, artemisia, and lemongrass were identified by gas chromatography and gas chromatography-mass spectrometry. The major components of these essential oils were α-zingiberene (35.21%), limonene (76.25%), terpinen-4-ol (41.20%), limonene (80.95%), 1,8-cineole (27.45%), and terpinolene (10.67%). The curative effects of 10 individual compounds from the active essential oils on TMV infection were also examined in vivo. The compounds from citronellal, limonene, 1,8-cineole, and α-zingiberene effected a more than 40% inhibition rate for TMV infection, and the other compounds demonstrated moderate activities at 320 μg/ml in vivo. There results indicate that the essential oils isolated from artemisia and lemongrass, and the individual compound citronellal, have the potential to be used as an effective alternative for the treatment of tobacco plants infected with TMV under greenhouse conditions.

  12. Influence of antimicrobial compounds and modified atmosphere packaging on radiation sensitivity of Listeria monocytogenes present in ready-to-use carrots (Daucus carota).

    PubMed

    Caillet, S; Millette, M; Turgis, M; Salmieri, S; Lacroix, M

    2006-01-01

    Radiosensitization of Listeria monocytogenes was determined in the presence of trans-cinnamaldehyde, Spanish oregano, winter savory, and Chinese cinnamon on peeled minicarrots packed under air or under a modified atmosphere (60% O2, 30% CO2, and 10% N2). Samples were inoculated with L. monocytogenes HPB 2812 serovar 1/2a (106 CFU/g) and were coated separately with each active compound (0.5%, wt/wt) before being packaged under air or the modified atmosphere and irradiated at doses from 0.07 to 2.4 kGy. Results indicated that the bacterium was more resistant to irradiation under air in the absence of active compound. The dose required to reduce L. monocytogenes population by 1 log CFU (D10) was 0.36 kGy for samples packed under air and 0.17 kGy for those packed under the modified atmosphere. The active compounds evaluated in this study had an effect on the radiation sensitivity of L. monocytogenes on carrots. The most efficient compound was trans-cinnamaldehyde, where a mean 3.8-fold increase in relative radiation sensitivity was observed for both atmospheres compared with the control. The addition of winter savory and Chinese cinnamon produced a similar increase in relative radiation sensitivity but only when samples where packed under modified atmosphere conditions.

  13. [Mutagenic Activity of Four Aminoazo Compounds with Different Carcinogenicity for Rat Liver in the Ames Test].

    PubMed

    Frolova, T S; Sinitsyna, O I; Kaledin, V I

    2015-01-01

    In this paper in the bacterial Ames test we compared the mutagenicity of four aminoazo compounds, previously studied by other researchers and used for activation of rat liver enzymes, with the carcinogenicity in the rat liver. It was found that in the Ames test they have mutagenic activity, however, this activity does not correlate quantitatively with rat sensitivity to their hepatocarcinogenic action. Thus, the most active carcinogen 3'-methyl-4-dimethylaminoazobenzene causes mutations almost 2.5 times less than weakly carcinogenic ortho-aminoazotoluene, and exactly the same number of mutations as non-carcinogenic N,N-diethyl-4-aminoazobenzene. PMID:26591610

  14. [Mutagenic Activity of Four Aminoazo Compounds with Different Carcinogenicity for Rat Liver in the Ames Test].

    PubMed

    Frolova, T S; Sinitsyna, O I; Kaledin, V I

    2015-01-01

    In this paper in the bacterial Ames test we compared the mutagenicity of four aminoazo compounds, previously studied by other researchers and used for activation of rat liver enzymes, with the carcinogenicity in the rat liver. It was found that in the Ames test they have mutagenic activity, however, this activity does not correlate quantitatively with rat sensitivity to their hepatocarcinogenic action. Thus, the most active carcinogen 3'-methyl-4-dimethylaminoazobenzene causes mutations almost 2.5 times less than weakly carcinogenic ortho-aminoazotoluene, and exactly the same number of mutations as non-carcinogenic N,N-diethyl-4-aminoazobenzene.

  15. Anti-Inflammatory Activity of Sulfur-Containing Compounds from Garlic

    PubMed Central

    Lee, Da Yeon; Li, Hua; Lim, Hyo Jin; Lee, Hwa Jin; Jeon, Raok

    2012-01-01

    Abstract We identified four anti-inflammatory sulfur-containing compounds from garlic, and their chemical structures were identified as Z- and E-ajoene and oxidized sulfonyl derivatives of ajoene. The sulfur compounds inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in lipopolysaccharide (LPS)-activated macrophages. Western blotting and reverse transcription–polymerase chain reaction analysis demonstrated that these sulfur compounds attenuated the LPS-induced expression of the inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA. Moreover, these sulfur-containing compounds suppressed the nuclear factor-κB (NF-κB) transcriptional activity and the degradation of inhibitory-κBα in LPS-activated macrophages. Furthermore, we observed that they markedly inhibited the LPS-induced phosphorylations of p38 mitogen-activated protein kinases and extracellular signal-regulated kinases (ERK) at 20 μM. These data demonstrate that the sulfur compounds from garlic, (Z, E)-ajoene and their sulfonyl analogs, can suppress the LPS-induced production of NO/PGE2 and the expression of iNOS/COX-2 genes by inhibiting the NF-κB activation and the phosphorylations of p38 and ERK. Taken together, these data show that Z- and E-ajoene and their sulfonyl analogs from garlic might have anti-inflammatory therapeutic potential. PMID:23057778

  16. Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells in vitro.

    PubMed

    Adams, Lynn S; Zhang, Yanjun; Seeram, Navindra P; Heber, David; Chen, Shiuan

    2010-01-01

    Estrogen stimulates the proliferation of breast cancer cells and the growth of estrogen-responsive tumors. The aromatase enzyme, which converts androgen to estrogen, plays a key role in breast carcinogenesis. The pomegranate fruit, a rich source of ellagitannins (ET), has attracted recent attention due to its anticancer and antiatherosclerotic properties. On consumption, pomegranate ETs hydrolyze, releasing ellagic acid, which is then converted to 3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one ("urolithin") derivatives by gut microflora. The purpose of this study was to investigate the antiaromatase activity and inhibition of testosterone-induced breast cancer cell proliferation by ET-derived compounds isolated from pomegranates. A panel of 10 ET-derived compounds including ellagic acid, gallagic acid, and urolithins A and B (and their acetylated, methylated, and sulfated analogues prepared in our laboratory) were examined for their ability to inhibit aromatase activity and testosterone-induced breast cancer cell proliferation. Using a microsomal aromatase assay, we screened the panel of ET-derived compounds and identified six with antiaromatase activity. Among these, urolithin B (UB) was shown to most effectively inhibit aromatase activity in a live cell assay. Kinetic analysis of UB showed mixed inhibition, suggesting more than one inhibitory mechanism. Proliferation assays also determined that UB significantly inhibited testosterone-induced MCF-7aro cell proliferation. The remaining test compounds also exhibited antiproliferative activity, but to a lesser degree than UB. These studies suggest that pomegranate ET-derived compounds have potential for the prevention of estrogen-responsive breast cancers.

  17. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major

    PubMed Central

    Iniguez, Eva A.; Perez, Andrea; Maldonado, Rosa A.; Skouta, Rachid

    2015-01-01

    Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods (1H, 13C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50 = 3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50 = 28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells. PMID:26410073

  18. Novel arylalkylamine compounds exhibits potent selective antiparasitic activity against Leishmania major.

    PubMed

    Iniguez, Eva A; Perez, Andrea; Maldonado, Rosa A; Skouta, Rachid

    2015-11-15

    Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L. major and less toxicity to human cells in vitro. Here, we have developed a structure activity relationship (SAR) study of arylalkylamine AA1 in order to study their anti-parasitic effect in L. major. Overall, 27 arylalkylamine compounds derived from AA1 were synthesized and purified by silica gel column chromatography. The purity of each analog was confirmed by spectroscopic methods ((1)H, (13)C NMR and LC/MS). Among these analogs, the compound AA9 showed the best toxic activity on L. major (LD50=3.34 μM), which represents a 9 fold higher lethality as compared with its parental AA1 (Fer-1) compound (LD50=28.75 μM). In addition, AA9 showed no significant toxicity at 80 μM on U20S Human Osteoblasts, Raw 264.7 Macrophages or intraperitoneal macrophages. In summary, our combined SAR study and biological evaluation data of AA1-AA27 compounds allow the identification of novel arylalkylamine compound AA9 that exhibits potent cytotoxicity against L. major promastigote with minimum toxic effect on human cells. PMID:26410073

  19. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  20. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  1. Isolation and identification of aromatic compounds in Lion's Mane Mushroom and their anticancer activities.

    PubMed

    Li, Wei; Zhou, Wei; Kim, Eun-Ji; Shim, Sang Hee; Kang, Hee Kyoung; Kim, Young Ho

    2015-03-01

    Lion's Mane Mushroom (Hericium erinaceum) is a traditional edible mushroom widely used in culinary applications and as an herbal medicine in East Asian countries. In the present study, two new aromatic compounds, hericerin A (1) and isohericenone J (5), along with five known compounds, isoericerin (2), hericerin (3), N-De phenylethyl isohericerin (4), hericenone J (6), and 4-[3',7'-dimethyl-2',6'-octadienyl]-2-formyl-3-hydroxy-5-methyoxybenzylalcohol (7), were isolated from a methanol extract of the fruiting bodies of H. erinaceum. The chemical structures of the compounds were determined from mass spectra and 1D- and 2D NMR spectroscopy. The anticancer effects of the isolated compounds were examined in HL-60 human acute promyelocytic leukaemia cells. Hericerin A (1) and hericerin (3) significantly reduced cell proliferation with IC50 values of 3.06 and 5.47 μM, respectively. These same compounds also induced apoptosis of HL-60 cells, accompanied by time-dependent down-regulation of p-AKT and c-myc levels. These data suggest that compounds 1 and 3 from H. erinaceum are suitable for use in potential cancer treatments.

  2. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  3. Applications of organoboron compounds in carbohydrate chemistry and glycobiology: analysis, separation, protection, and activation.

    PubMed

    McClary, Corey A; Taylor, Mark S

    2013-11-15

    The reversible covalent interactions between organoboron compounds and diols have been applied for many years in carbohydrate chemistry. They form the basis of efficient methods for the detection of carbohydrates, and applications in cellular imaging and glycoprotein analysis are beginning to emerge. The interactions are also of widespread utility in carbohydrate synthesis: depending upon the coordination geometry at boron, either protection or activation of a bound diol motif may be achieved. This review article uses recent examples to illustrate the breadth of applications of organoboron compounds in carbohydrate chemistry.

  4. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.

    PubMed

    Stumpfe, Dagmar; Dimova, Dilyana; Bajorath, Jürgen

    2015-07-01

    Scaffold hopping and activity cliff formation define opposite ends of the activity landscape feature spectrum. To rationalize these events at the level of scaffolds, active compounds involved in scaffold hopping were required to contain topologically distinct scaffolds but have only limited differences in potency, whereas compounds involved in activity cliffs were required to share the same scaffold but have large differences in potency. A systematic search was carried out for compounds involved in scaffold hopping and/or activity cliff formation. Results obtained for compound data sets covering more than 300 human targets revealed clear trends. If scaffolds represented multiple but fewer than 10 active compounds, nearly 90% of all scaffolds were exclusively involved in hopping events. With increasing compound coverage, the fraction of scaffolds involved in both scaffold hopping and activity cliff formation significantly increased to more than 50%. However, ∼40% of the scaffolds representing large numbers of active compounds continued to be exclusively involved in scaffold hopping. More than 200 scaffolds with broad target coverage were identified that consistently represented potent compounds and yielded an abundance of scaffold hops in the low-nanomolar range. These and other subsets of scaffolds we characterized are of prime interest for structure-activity relationship (SAR) exploration and compound design. Therefore, the complete scaffold classification generated in the course of our analysis is made freely available.

  5. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  6. Presence of pharmaceutically active compounds in Doñana Park (Spain) main watersheds.

    PubMed

    Camacho-Muñoz, M D; Santos, J L; Aparicio, I; Alonso, E

    2010-05-15

    Among the emerging environmental contaminants, pharmaceutically active compounds have become a growing public concern because of their potential to cause undesirable ecological and human health effects. Doñana Park (South of Spain) includes a mosaic of unique ecosystems known around the world which is particularly affected by the quality of the incoming flowing water. This study reports the presence of a number of priority pharmaceuticals in wastewater and surface water samples from Doñana watersheds. In general, ibuprofen, naproxen, salicylic acid, propranolol, caffeine and gemfibrozil were the compounds most frequently found in all locations, in the range of ng/L to microg/L. Carbamazepine, with high potential risk to the environment, was also detected, although only in a few water samples. The main results are: (i) pharmaceuticals, as water pollutants, are continually discharged into Doñana water bodies and, owing to their biological activity, could lead to adverse effects in this outstanding aquatic ecosystem; (ii) wastewater treatments implemented in the area are insufficient to remove pharmaceuticals; and (iii) therefore, there is a requirement for better wastewater treatments in this natural area to reduce or avoid the presence of organic pollutants in general and pharmaceutical active compounds in particular. To the best of our knowledge, these data constitute the first measurements of pharmaceutical compounds in water not only from the protected area of Doñana Park but also from other Natural or National Parks in the world.

  7. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time. PMID:27509218

  8. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction.

    PubMed

    Yu, Zirui; Peldszus, Sigrid; Huck, Peter M

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs)-naproxen and carbamazepine and one endocrine disrupting compound (EDC)-nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. PMID:19350922

  9. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review.

    PubMed

    White, Pollyanna A S; Oliveira, Rita C M; Oliveira, Aldeidia P; Serafini, Mairim R; Araújo, Adriano A S; Gelain, Daniel P; Moreira, Jose C F; Almeida, Jackson R G S; Quintans, Jullyana S S; Quintans-Junior, Lucindo J; Santos, Marcio R V

    2014-09-12

    Chronic diseases such as cancer, diabetes, neurodegenerative and cardiovascular diseases are characterized by an enhanced state of oxidative stress, which may result from the overproduction of reactive species and/or a decrease in antioxidant defenses. The search for new chemical entities with antioxidant profile is still thus an emerging field on ongoing interest. Due to the lack of reviews concerning the antioxidant activity of lichen-derived natural compounds, we performed a review of the antioxidant potential and mechanisms of action of natural compounds isolated from lichens. The search terms "lichens", "antioxidants" and "antioxidant response elements" were used to retrieve articles in LILACS, PubMed and Web of Science published until February 2014. From a total of 319 articles surveyed, 32 met the established inclusion and exclusion criteria. It was observed that the most common isolated compound studied was usnic acid, cited in 14 out of the 32 articles. The most often described antioxidant assays for the study of in vitro antioxidant activity were mainly DPPH, LPO and SOD. The most suggested mechanisms of action were scavenging of reactive species, enzymatic activation and inhibition of iNOS. Thus, compounds isolated from lichens are possible candidates for the management of oxidative stress, and may be useful in the treatment of chronic diseases.

  10. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    PubMed

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  11. Antibiofilm Activity, Compound Characterization, and Acute Toxicity of Extract from a Novel Bacterial Species of Paenibacillus

    PubMed Central

    Alasil, Saad Musbah; Omar, Rahmat; Yusof, Mohd Yasim

    2014-01-01

    The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237), phospholipase A2 inhibitor C21H36O5 (MW 368.512), and an antibacterial agent C14H11N3O2 (MW 253.260). The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups (P > 0.05). Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections. PMID:24790603

  12. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    NASA Astrophysics Data System (ADS)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-09-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus Amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus Amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  13. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity.

    PubMed

    El-Azaz, Jorge; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2016-07-01

    l-Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant-derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site-directed mutagenesis we have identified a 22-amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain-containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain-containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed. PMID:27125254

  14. Different Citrus rootstocks present high dissimilarities in their antioxidant activity and vitamins content according to the ripening stage.

    PubMed

    Cardeñosa, Vanessa; Barros, Lillian; Barreira, João C M; Arenas, Francisco; Moreno-Rojas, José M; Ferreira, Isabel C F R

    2015-02-01

    "Lane Late" sweet orange grafted on six different citrus rootstocks and grown in the Guadalquivir valley (Seville, Spain) were picked at different ripening stages in two consecutive seasons to characterize their antioxidant activity (free radicals scavenging activity, reducing power and lipid peroxidation inhibition) and quantify their main antioxidant compounds (vitamin E and vitamin C). Linear discriminant analysis and 2-way ANOVA were applied to compare the effects induced by citrus rootstock and ripening stage. The results showed that differences in antioxidant activity and related compounds are mainly dependent on the citrus rootstock, despite ripening stage had also some particular effects. Changes observed in 2012 showed less marked differences among the citrus rootstock. Nevertheless, Cleopatra rootstock showed the highest antioxidant activity in both years, indicating that an increase in its cultivation might be a good solution to sweet orange farmers. Concerning the ripening stage, samples collected in January presented higher vitamin contents, while those collected in April showed higher antioxidant activity. This result allows deciding the harvesting period according to the desired effect.

  15. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk.

    PubMed

    Valcárcel, Y; González Alonso, S; Rodríguez-Gil, J L; Gil, A; Catalá, M

    2011-09-01

    Concentrations of pharmaceutically active compounds (PhACs) in the order of ng L(-1) to μg L(-1) have been reported worldwide in waste, fluvial and even drinking water, raising concern about the efficacy of the currently employed waste water treatments in the elimination of this kind of compounds. Despite ranking 29th in terms of population, Spain is currently the 8th country on pharmaceutical prescription with an expense of 14×10(9) euros in 2008. In this context, the aim of this study was to determine the presence of 33 pharmaceutically active compounds in specific points of the main rivers of the Madrid Region (MR) as well as tap water samples from the metropolitan area of Madrid. Additionally, a screening level risk characterization by means of the Hazard Quotient (HQ) method was applied. A total of 25 pharmaceutical compounds and metabolites were detected in the 10 sampling points downstream the outlet of the major STPs of the MR. The highest concentrations were detected for the anticonvulsant carbamazepine and the stimulant caffeine. Concentrations for most of the analyzed compounds exceed levels previously reported in the literature. Moreover, we report the highest concentration of the cytostatic ifosfamide, detected for the first time in Spain in surface water. Preliminary risk characterization shows that a total of 16 compounds represent at least a low potential hazard based on their scored HQs, with five of them present in a concentration that exceeds the predicted no effect concentration (PNEC). Toxic Units calculation indicates that for all the selected sampling points high hazard is anticipated from the presence of the analyzed compounds in the measured concentrations (TUs>10). Caffeine and cotinine were detected in all (10) the analyzed tap water samples. Carbamazepine and nicotine were detected in six and venlafaxine in two samples. No studies venlafaxine in drinking water have been reported. These results clearly pinpoint the need for water

  16. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk.

    PubMed

    Valcárcel, Y; González Alonso, S; Rodríguez-Gil, J L; Gil, A; Catalá, M

    2011-09-01

    Concentrations of pharmaceutically active compounds (PhACs) in the order of ng L(-1) to μg L(-1) have been reported worldwide in waste, fluvial and even drinking water, raising concern about the efficacy of the currently employed waste water treatments in the elimination of this kind of compounds. Despite ranking 29th in terms of population, Spain is currently the 8th country on pharmaceutical prescription with an expense of 14×10(9) euros in 2008. In this context, the aim of this study was to determine the presence of 33 pharmaceutically active compounds in specific points of the main rivers of the Madrid Region (MR) as well as tap water samples from the metropolitan area of Madrid. Additionally, a screening level risk characterization by means of the Hazard Quotient (HQ) method was applied. A total of 25 pharmaceutical compounds and metabolites were detected in the 10 sampling points downstream the outlet of the major STPs of the MR. The highest concentrations were detected for the anticonvulsant carbamazepine and the stimulant caffeine. Concentrations for most of the analyzed compounds exceed levels previously reported in the literature. Moreover, we report the highest concentration of the cytostatic ifosfamide, detected for the first time in Spain in surface water. Preliminary risk characterization shows that a total of 16 compounds represent at least a low potential hazard based on their scored HQs, with five of them present in a concentration that exceeds the predicted no effect concentration (PNEC). Toxic Units calculation indicates that for all the selected sampling points high hazard is anticipated from the presence of the analyzed compounds in the measured concentrations (TUs>10). Caffeine and cotinine were detected in all (10) the analyzed tap water samples. Carbamazepine and nicotine were detected in six and venlafaxine in two samples. No studies venlafaxine in drinking water have been reported. These results clearly pinpoint the need for water

  17. Concentration of biologically active compounds extracted from Ilex paraguariensis St. Hil. by nanofiltration.

    PubMed

    Murakami, Aureanna Nairne Negrão; Amboni, Renata Dias de Mello Castanho; Prudêncio, Elane Schwinden; Amante, Edna Regina; Fritzen-Freire, Carlise Beddin; Boaventura, Brunna Cristina Bremer; Muñoz, Isabella de Bona; Branco, Catia Dos Santos; Salvador, Miriam; Maraschin, Marcelo

    2013-11-01

    The aim of this study was to characterise the bioactive compounds in mate (Ilex paraguariensis St. Hil) extract and in concentrated mate extract obtained by nanofiltration (NF). Also, the impact of NF on the antioxidant activity of both mate extracts was evaluated in vitro and using eukaryotic cells of Saccharomyces cerevisiae (yeast assay). The results showed a significant increase in the contents of total phenolics (338%), chlorogenic acid (483%), theobromine (323%), caffeine (251%), chlorophyll (321%), condensed tannins (278%) and saponins (211%) in the concentrated mate extract. The concentrated mate extract showed higher in vitro antioxidant activity than the mate extract. According to the results obtained, it can be stated that the use of nanofiltration membrane is a valid approach for the concentration of biologically active compounds in aqueous extract of mate.

  18. Bioassay-Guided Isolation of Compounds from Datura stramonium with TRAIL-Resistance Overcoming Activity.

    PubMed

    Karmakar, Utpal K; Toume, Kazufumi; Ishikawa, Naoki; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2016-02-01

    TRAIL is a potent inducer of apoptosis in most cancer cells, but not in normal cells, and therefore has deserved intense interest as a promising agent for cancer therapy. In the search for bioactive natural products for overcoming TRAIL-resistance, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionation of the MeOH extract of Datura stramonium leaves led to the isolation of three alkaloids--scopolamine (1), trigonelline (2), and tyramine (3). Compounds 1, 2, and 3 exhibited TRAIL-resistance overcoming activity at 50, 150, and 100 µM, respectively in TRAIL-resistant AGS cells. PMID:27032197

  19. Evaluation of antioxidant activities of the edible and medicinal Acacia albida organs related to phenolic compounds.

    PubMed

    Karoune, Samira; Falleh, Hanen; Kechebar, Mohamed Seif Allah; Halis, Youcef; Mkadmini, Khaoula; Belhamra, Mohamed; Rahmoune, Chaabane; Ksouri, Riadh

    2015-01-01

    This study compared phenolic contents and antioxidant activity in different organs of Acacia albida (leaves and bark) and focuses on identification of phenolic compounds of leaves by HPLC-DAD. The analysed organs exhibited differences in total polyphenol contents (100 and 59.5 mg GAE g(-1) DW). Phenolic contents of leaves were two times higher than those in bark. Ethanolic extracts exhibited good antioxidant activities with IC50 = 26 μg mL(-1) for DPPH and EC50 = 50 μg mL(-1) for FRAP. Identification by HPLC-DAD revealed the presence of nine phenolic compounds known for their high antioxidant activity. The results suggested that this species can be used as source of natural antioxidants.

  20. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. PMID:25976793

  1. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.

    PubMed

    Park, J-H; Goldstein, A H; Timkovsky, J; Fares, S; Weber, R; Karlik, J; Holzinger, R

    2013-08-01

    Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget.

  2. [Discovery of Novel Biologically Active Compounds of Natural Origin, with a Focus on Anti-tumor Activity].

    PubMed

    Yokosuka, Akihito

    2015-01-01

    Numerous clinically valuable medicines, including anticancer drugs, have been developed from biologically active natural compounds and their structurally related derivatives. This review discusses novel natural compounds with promising biological activities and those with novel chemical structures. Glaziovianin A, an isoflavone isolated from the leaves of Ateleia glazioviana (Legminosae), inhibited cell cycle progression at the M-phase with an abnormal spindle structure. AU-1 and YG-1, 5β-steroidal glycosides isolated from the whole plants of Agave utahensis and the underground parts of Yucca glauca (Agavaceae), induced apoptosis of HL-60 cells via caspase-3 activation. Lycolicidinol, an alkaloid isolated from the bulbs of Lycoris albiflora (Amaryllidaceae), induced transient autophagy and morphological changes in mitochondria in the early stage of the apoptotic cell death process in HSC-2 cells. Taccasterosides isolated from the rhizomes of Tacca chantrieri (Taccaceae) and stryphnosides isolated from the pericarps of Stryphnodendron fissuratum (Legminosae) are steroidal and triterpene glycosides with unique chemical structures having novel sugar sequences.

  3. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  4. Rebounding Activation Caused by Lexical Homophony in the Processing of Japanese Two-Kanji Compound Words

    ERIC Educational Resources Information Center

    Tamaoka, Katsuo

    2007-01-01

    The present study investigated the effects of lexical homophony on the processing of Japanese two-kanji compound words. Experiment 1 showed that participants took longer to perform lexical decisions for words with a high degree of lexical homophony than those with no homophony. Interestingly, the same inhibitory trend was found in the naming task…

  5. Active sites in char gasification. Quarterly technical progress report, 1 January 1984-31 March 1984. [Polymers of phenol-formaldehyde family; chars produced from model compounds

    SciTech Connect

    Calo, J.M.; Suubers, E.M.; Wojtowicz, M.; Lilly, W.

    1984-05-01

    This project is concerned with the study of the nature and behavior of active sites in gasification of chars produced from synthesized model compounds, primarily of the phenol-formaldehyde family of resins. The current technical progress report presents further developments on resin synthesis and characterization and the design of a pyro-gasifier reactor for transient kinetic studies of the chars produced from the model compounds. 7 references, 12 figures, 2 tables.

  6. Occurrence of Endocrine Active Compounds and Biological Responses in the Mississippi River - Study Design and Data, June through August 2006

    USGS Publications Warehouse

    Lee, Kathy E.; Yaeger, Christine S.; Jahns, Nathan D.; Schoenfuss, Heiko L.

    2008-01-01

    Concern that selected chemicals in the environment may act as endocrine active compounds in aquatic ecosystems is widespread; however, few studies have examined the occurrence of endocrine active compounds and identified biological markers of endocrine disruption such as intersex occurrence in fish longitudinally in a river system. This report presents environmental data collected and analyzed by the U.S. Geological Survey, Minnesota Pollution Control Agency and St. Cloud State University as part of an integrated biological and chemical study of endocrine disruption in fish in the Mississippi River. Data were collected from water, bed sediment, and fish at 43 sites along the river from the headwaters at Lake Itasca to 14 miles downstream from Brownsville, Minnesota during June through August 2006. Twenty-four individual compounds were detected in water samples, with cholesterol, atrazine, N,N-diethyl-meta-toluamide, metolachlor, and hexahydrohexamethylcyclopentabenzopyran detected most frequently (in at least 10 percent of the samples). The number of compounds detected in water per site ranged from 0 to 8. Forty individual compounds were detected in bed-sediment samples. The most commonly detected compounds (in at least 50 percent of the samples) were indole, beta-sitosterol, cholesterol, beta-stigmastanol, 3-methyl-1H-indole, p-cresol, pyrene, phenol, fluoranthene, 3-beta coprostanol, benzo[a]pyrene, acetophenone, and 2,6-dimethylnaphthalene. The total number of detections in bed sediment (at a site) ranged from 3 to 31. The compounds NP1EO, NP2EO, and 4-nonylphenol were detected in greater than 10 percent of the samples. Most (80 percent) female fish collected had measurable concentrations of vitellogenin. Vitellogenin also was detected in 62, 63, and 33 percent of male carp, smallmouth bass, and redhorse, respectively. The one male walleye sample plasma sample analyzed had a vitellogenin detection. Vitellogenin concentrations were lower in male fish (not

  7. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  8. Characterization of aroma-active compounds in rainbow trout (Oncorhynchus mykiss) eliciting an off-odor.

    PubMed

    Selli, Serkan; Rannou, Cecile; Prost, Carole; Robin, Joel; Serot, Thierry

    2006-12-13

    The aroma-active and off-flavor compounds of cooked rainbow trout (Oncorhynchus mykiss) were analyzed by sensory and instrumental analyses. Sensory analysis shows that the aromatic extract obtained by vacuum steam distillation was representative of rainbow trout odor. To obtain more information on odorants of volatile compounds, analyses were conducted on two gas chromatography columns of different polarities (DB-5 and DB-Wax). The results of the gas chromatography-olfactometry analysis showed that 38 odorous compounds were perceived when the DB-5 column was used and 36 with the DB-Wax column. Of these, 31 with the DB-5 and 28 with the DB-Wax were identified. (E)-2-Nonenal, 2-ethyl-1-hexanol, 2-methylisoborneol, geosmin, 2-methylnaphthalene, and 8-heptadecene were described as off-flavor compounds by the sniffing assessors. The most powerful off-flavor compounds identified in the extract were 2-methylisoborneol and geosmin, which were described as strong musty and earthy odors, respectively.

  9. Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain.

    PubMed

    Esteban, S; Gorga, M; González-Alonso, S; Petrovic, M; Barceló, D; Valcárcel, Y

    2014-01-01

    The aims of this study are to investigate the presence of 30 substances known or thought to act as endocrine disrupting compounds in tap water from the main water supply areas for region of Madrid, to determine the total estrogenic activity of the samples analysed and to estimate the health risk for the population resulting from those compounds found at detectable concentrations. To this end, a one-off composite sampling was performed in August 2012 in which six tap water samples were collected from private residences in the drinking water supply network of the region of Madrid. A total of 14 of the 30 endocrine disruptors analysed were found at concentrations ranging from 0.3 to 165 ng/L. The organophosphorus flame retardants were detected at the highest concentrations followed by the plasticizer bisphenol A, alkylphenols, anticorrosion agents and preservatives. Tap water in the region of Madrid is contaminated with traces (ng/L) of compounds with endocrine disrupting properties. Although the concentrations of endocrine disrupting compounds obtained are too low to be able to confirm a public health risk, and no risk has been detected upon evaluation, it should be remembered that these compounds act at very low doses and that their effects may only appear in the long term. PMID:24728544

  10. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity.

    PubMed

    Houghton, Peter; Fang, Rui; Techatanawat, Isariya; Steventon, Glyn; Hylands, Peter J; Lee, C C

    2007-08-01

    Since the major approach in searching for potential anticancer agents over the last 50 years has been based on selective cytotoxic effects on mammalian cancer cell lines, cell-based methods for cytotoxicity are described and compared. The sulphorhodamine B (SRB) assay is described in detail as the preferred method and also a novel approach has been developed which is based on the hypothesis that, in some circumstances, the naturally occurring compounds act as prodrugs rather than active compounds in their own right. Consequently, extracts or compounds are pre-incubated with systems modelling metabolic processes in the body before being tested. The methods have been validated using known compounds and Iris tectorum extracts have been shown to be more cytotoxic after treatment with beta-glucosidase. In addition bioassays based on mammalian cells involving antioxidant and upregulation of some cellular self-defence mechanisms are discussed which are related to prevention as well as treatment of cancer. Extracts of Alpinia officinarum induced glutathione-S-transferase (GST) activity in cultured hepatocytes and this was traced to the phenylpropanoids present, especially 1'-acetoxychavicol acetate.

  11. The activity of an anti-allergic compound, proxicromil, on models of immunity and inflammation.

    PubMed

    Keogh, R W; Bundick, R V; Cunnington, P G; Jenkins, S N; Blackham, A; Orr, T S

    1981-07-01

    A tricyclic chromone, proxicromil (sodium 6,7,8,9-tetrahydro-5-hydroxy-4-oxo-10-propyl-naphtho (2,3-b) pyran-2-carboxylate), has been tested for activity against certain immunological and inflammatory reactions. When given parenterally it suppressed the development of delayed hypersensitivity reactions in sensitized mice and guinea-pigs but did not affect the rejection of skin allografts in mice. The compound had no activity against certain in vitro correlates of delayed hypersensitivity reactions (lymphocyte transformation and lymphokine activity), but did have an inhibitory effect on lymphokine (MIF) productions at 10(-4) M but not at 10(-5) M. Proxicromil was also found to be active in non-immunologically mediated models of inflammation and in models having an immunological component which are known to be sensitive to non-steroidal anti-inflammatory drugs (adjuvant arthritis, reversed passive Arthus reaction). The activity of this compound was enhanced when administered in arachis oil when compared to its activity in saline. Proxicromil has not direct activity on the development of immune responsiveness but appear to suppress the expression of delayed hypersensitivity and immune complex mediated hypersensitivity reactions by virtue and its anti-inflammatory properties. This activity is not associated with inhibition of cyclo-oxygenase.

  12. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: a comparative study.

    PubMed

    Rao, Yerra Koteswara; Geethangili, Madamanchi; Fang, Shih-Hua; Tzeng, Yew-Min

    2007-09-01

    The antioxidant (DPPH radical and superoxide anion scavenging activities), and cytotoxic (in tumor, Jurkat, PC-3, Colon 205, HepG2, and normal PBMCs cells) activities of 16 plant phenolic or related compounds were evaluated in vitro. Different categories compounds corresponding to 10 flavonoids, three lignans, two phenolic acids, and a catechin showed significant mean differences in antioxidant and cytotoxic activities. Particularly, the flavonols, quercetin (3) and tiliroside (11) possess significant antioxidant activity, as well as cytotoxic activity against Jurkat; and Jurkat and HepG2 cells, respectively. In contrast, the flavanone, 5,7-dimethoxy-3',4'-methylenedioxyflavanone (7), and homoisoflavonoid, isobonducellin (10) shown to have no significant antioxidant activity, but exhibited potent cytotoxic activity in Jurkat and HepG2 cells, while moderate growth inhibition against Colon205 cells. Interestingly, none of these derivatives shown to have toxicity toward normal peripheral blood mononuclear cells, over the concentration range tested (5-200 microM). Cytotoxic activities of some natural flavonoids identified in the medicinal plants were evaluated for the first time.

  13. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, Tuan V.

    1996-01-01

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  14. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOEpatents

    Dinh, T.V.

    1996-06-11

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  15. Inhibition of human DNA topoisomerase IB by nonmutagenic ruthenium(II)-based compounds with antitumoral activity.

    PubMed

    de Camargo, Mariana S; da Silva, Monize M; Correa, Rodrigo S; Vieira, Sara D; Castelli, Silvia; D'Anessa, Ilda; De Grandis, Rone; Varanda, Eliana; Deflon, Victor M; Desideri, Alessandro; Batista, Alzir A

    2016-02-01

    Herein we synthesized two new ruthenium(II) compounds [Ru(pySH)(bipy)(dppb)]PF6 (1) and [Ru(HSpym)(bipy)(dppb)]PF6 (2) that are analogs to an antitumor agent recently described, [Ru(SpymMe2)(bipy)(dppb)]PF6 (3), where [(Spy) = 2-mercaptopyridine anion; (Spym) = 2-mercaptopyrimidine anion and (SpymMe2) = 4,6-dimethyl-2-mercaptopyrimidine anion]. In vitro cell culture experiments revealed significant anti-proliferative activity for 1-3 against HepG2 and MDA-MB-231 tumor cells, higher than the standard anti-cancer drugs doxorubicin and cisplatin. No mutagenicity is detected when compounds are evaluated by cytokinesis-blocked micronucleus cytome and Ames test in the presence and absence of S9 metabolic activation from rat liver. Interaction studies show that compounds 1-3 can bind to DNA through electrostatic interactions and to albumin through hydrophobic interactions. The three compounds are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (Top1). Compound 3 is the most efficient Top1 inhibitor and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of different steps of Top1 catalytic cycle indicates that 3 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and slows down the religation reaction. Molecular docking shows that 3 preferentially binds closer to the residues of the active site when Top1 is free and lies on the DNA groove downstream of the cleavage site in the Top1-DNA complex. Thus, 3 can be considered in further studies for a possible use as an anticancer agent. PMID:26758075

  16. Highly fluorinated 2,2'-biphenols and related compounds: relationship between substitution pattern and herbicidal activity.

    PubMed

    Francke, Robert; Reingruber, Rüdiger; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2013-05-22

    A broad range of halogenated 2,2'-biphenols was tested for applicability as crop protection agents. The activity of these compounds toward four typical pest plants was observed after application by spraying of diluted solutions. Despite their rather simple structure, it was found that the studied compounds reveal a surprisingly high herbicidal impact. To gain a better understanding of the structure-activity relationship, specific sites of the molecule were chemically modified and the core structures thus gradually changed. The influence of the substitution pattern on the herbicidal properties is discussed, and conclusions on the active site of the biphenol structure are drawn. It was observed that type and position of the halogen substituents have a significant influence on the activity of the core structure. The hydroxy functionalities play a crucial role for the effectiveness of the tested compounds. Because the blocking of the hydroxy moiety leads to dramatically deteriorated performances, the presence of these functionalities on the aromatic ring seems to be indispensable. PMID:23641939

  17. Jasmonate signaling in plant stress responses and development - active and inactive compounds.

    PubMed

    Wasternack, Claus; Strnad, Miroslav

    2016-09-25

    Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.

  18. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination.

    PubMed

    Zhou, Xiaoli; Hao, Tingfeng; Zhou, Yiming; Tang, Wen; Xiao, Ying; Meng, Xiaoxiao; Fang, Xiang

    2015-04-01

    Relationships of changes between major non-enzymatic antioxidant compounds and antioxidant capacities of tartary buckwheat during germination were evaluated by means of correlation analysis and principal component analysis in this paper. The changes of antioxidant compounds, including vitamin C, vitamin E, flavonoids, carotenoids, and chlorophyll, and antioxidant activities were detected. A good accumulation in the content of vitamin C (0.71 mg/g), total flavonoids (19.53 mg rutin/g), and rutin (11.34 mg/g) was found after 7-day germination, but germination decreased the vitamin E activity. Germination improved the activities of buckwheat extracts to scavenge DPPH, ABTS, and superoxide free radicals by 107, 144, and 88 %, respectively. Furthermore, the correlation and principal component analysis showed that the vitamin C, total flavonoids, and rutin contents were closely related positively with free radicals scavenging properties, indicating that the compounds which play a key role in the elevated antioxidant activities during germination consisted of vitamin C, total flavonoids, and rutin, but not vitamin E and quercetin.

  19. Synthesis, algal inhibition activities and QSAR studies of novel gramine compounds containing ester functional groups

    NASA Astrophysics Data System (ADS)

    Li, Xia; Yu, Liangmin; Jiang, Xiaohui; Xia, Shuwei; Zhao, Haizhou

    2009-05-01

    2,5,6-Tribromo-1-methylgramine (TBG), isolated from bryozoan Zoobotryon pellucidum was shown to be very efficient in preventing recruitment of larval settlement. In order to improve the compatibility of TBG and its analogues with other ingredients in antifouling paints, structural modification of TBG was focused mainly on halogen substitution and N-substitution. Two halogen-substitute gramines and their derivatives which contain ester functional groups at N-position of gramines were synthesized. Algal inhibition activities of the synthesized compounds against algae Nitzschia closterium were evaluated and the Median Effective Concentration (EC50) range was 1.06-6.74 μg ml-1. Compounds that had a long chain ester group exhibited extremely high antifouling activity. Quantitive Structure Activity Relationship (QSAR) studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors and biological activity of the synthesized compounds. The results show that the toxicity (log (1/EC50)) is correlated well with the partition coefficient log P. Thus, these products have potential function as antifouling agents.

  20. Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.

    PubMed

    Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel

    2013-01-01

    Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear. PMID:23846754

  1. Formation of an activated N-nitroso compound in nitrite-treated fava beans (Vicia faba).

    PubMed

    Piacek-Llanes, B G; Tannenbaum, S R

    1982-01-01

    Fava beans are prominent in the diet of the Colombian population at high gastric cancer risk. Upon nitrite treatment under simulated gastric conditions, a potent mutagen was formed as detected by a forward mutation assay using Salmonella typhimurium TM677 without microsomal activation. The promutagen was partially purified by preparative t.l.c. and normal phase h.p.l.c. of the acetone-soluble portion of a dried aqueous extract. The nitrosated promutagen fully accounted for the mutagenicity observed with whole fava beans. One gram of fresh fava beans yielded approximately 0.35 nmol of mutagen. Mutagenicity data indicated that this mutagen was more potent than N-methyl-N'-nitro-N-nitrosoguanidine. The characteristics of the mutagen were typical of an activated N-nitroso compound, that is a compound in which the N-nitroso moiety is attached to an activating group, such as a carbonyl group. Irradiation of the mutagen yielded a Griess positive reaction. By reverse-phase h.p.l.c. photohydrolysis, a single peak could be ascribed to the mutagen. Its stability varied as a function of pH, being most unstable under alkaline conditions. Cysteine and phosphate concentration had no effect on its rate of decomposition, thereby strongly suggesting that the mutagen is an N-nitrosourea. The results obtained in this study support the hypothesis of carcinogenesis via the intragastric production of activated N-nitroso compounds. PMID:7151253

  2. Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.

    PubMed

    Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel

    2013-07-10

    Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.

  3. Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp.

    PubMed Central

    Rafii, F; Selby, A L; Newton, R K; Cerniglia, C E

    1994-01-01

    Mycobacterium sp. strain Pyr-1 cells, which were grown to the stationary phase in media with and without pyrene, were centrifuged and resuspended in a medium containing 1-nitropyrene. Cells that had been grown with pyrene oxidized up to 20% of the added 1-nitropyrene to 1-nitropyrene-cis-9,10- and 4,5-dihydrodiols. However, cells that had been grown without pyrene reduced up to 70% of the 1-nitropyrene to 1-aminopyrene but did not produce dihydrodiols. The nitroreductase activity was oxygen insensitive, intracellular, and inducible by nitro compounds. Nitroreductase activity was inhibited by p-chlorobenzoic acid, o-iodosobenzoic acid, menadione, dicumarol, and antimycin A. Extracts from cells that had been grown without pyrene activated 1-nitropyrene, 1-amino-7-nitrofluorene, 2,7-dinitro-9-fluorenone, 1,3-dinitropyrene, 1,6-dinitropyrene, and 6-nitrochrysene to DNA-damaging products, as shown in Salmonella typhimurium tester strains by the reversion assay and by induction of the umuC gene. Activation of nitro compounds, as shown by the umu test, was enhanced by NADPH. This study shows that Mycobacterium sp. strain Pyr-1 metabolizes nitroaromatic compounds by both oxidative and reductive pathways. During reduction, it generates products that are mutagenic. PMID:7811065

  4. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination.

    PubMed

    Zhou, Xiaoli; Hao, Tingfeng; Zhou, Yiming; Tang, Wen; Xiao, Ying; Meng, Xiaoxiao; Fang, Xiang

    2015-04-01

    Relationships of changes between major non-enzymatic antioxidant compounds and antioxidant capacities of tartary buckwheat during germination were evaluated by means of correlation analysis and principal component analysis in this paper. The changes of antioxidant compounds, including vitamin C, vitamin E, flavonoids, carotenoids, and chlorophyll, and antioxidant activities were detected. A good accumulation in the content of vitamin C (0.71 mg/g), total flavonoids (19.53 mg rutin/g), and rutin (11.34 mg/g) was found after 7-day germination, but germination decreased the vitamin E activity. Germination improved the activities of buckwheat extracts to scavenge DPPH, ABTS, and superoxide free radicals by 107, 144, and 88 %, respectively. Furthermore, the correlation and principal component analysis showed that the vitamin C, total flavonoids, and rutin contents were closely related positively with free radicals scavenging properties, indicating that the compounds which play a key role in the elevated antioxidant activities during germination consisted of vitamin C, total flavonoids, and rutin, but not vitamin E and quercetin. PMID:25829633

  5. Quinoxaline-2-carboxamide as a carrier ligand in two new platinum(II) compounds: Synthesis, crystal structure, cytotoxic activity and DNA interaction.

    PubMed

    Marqués-Gallego, Patricia; Gamiz-Gonzalez, M Amparo; Fortea-Pérez, Francisco R; Lutz, Martin; Spek, Anthony L; Pevec, Andrej; Kozlevčar, Bojan; Reedijk, Jan

    2010-06-01

    The search for platinum compounds structurally different from cisplatin has led to two new platinum(II) compounds containing quinoxaline-2-carboxamide as a carrier ligand, i.e. cis-[Pt(qnxca)(MeCN)Cl2] (1) and the [Pt(qnxca-H)(dmso)Cl] (2). Both compounds have been synthesized and characterized using different spectroscopic methods. In addition, single-crystal structures have been determined by X-Ray diffraction for both compounds. In each case a square planar Pt(II) is present; in (1) the qnxca is monodentate and neutral, whereas in (2) the ligand has lost a hydrogen, to form the anionic chelating ligand abbreviated as qnxca-H. The biological activity of both compounds has been investigated in a panel of seven human tumour cells, displaying poor cytotoxic activity, compared to cisplatin. The interaction of the new compounds with 1 or 2 equiv. of 9-ethylguanine has been studied using (1)H NMR, (195)Pt NMR and ESI-MS spectroscopy, finding poor reactivity of 1 towards the model base, forming only the monosubstituted adduct. Surprisingly, compound 2, which is more sterically crowded, interacts more efficiently with the 9-EtG, forming a bifunctional adduct with two 9-EtG with substitution of the dmso and the chloride ligand. Unwinding studies of pUC19 plasmid DNA by compound 1 show similar unwinding properties to cisplatin.

  6. A Rapid Screening Analysis of Antioxidant Compounds in Native Australian Food Plants Using Multiplexed Detection with Active Flow Technology Columns.

    PubMed

    Rupesinghe, Emmanuel Janaka Rochana; Jones, Andrew; Shalliker, Ross Andrew; Pravadali-Cekic, Sercan

    2016-01-01

    Conventional techniques for identifying antioxidant and phenolic compounds in native Australian food plants are laborious and time-consuming. Here, we present a multiplexed detection technique that reduces analysis time without compromising separation performance. This technique is achieved using Active Flow Technology-Parallel Segmented Flow (AFT-PSF) columns. Extracts from cinnamon myrtle (Backhousia myrtifolia) and lemon myrtle (Backhousia citriodora) leaves were analysed via multiplexed detection using an AFT-PSF column with underivatised UV-VIS, mass spectroscopy (MS), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) derivatisation for antioxidants as detection methods. A number of antioxidant compounds were detected in the extracts of each leaf extract. PMID:26805792

  7. Normal coordinate analysis and fungicidal activity study on anilazine and its related compound using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Sheeja Mol, Gilbert Pushpam; Arul Dhas, Deva Dhas; Hubert Joe, Isaac; Balachandran, Sreedharan

    2016-06-01

    The FTIR and FT-Raman spectra of anilazine have been recorded in the range 400-4000 cm-1 and 50-3500 cm-1 respectively. The optimized geometrical parameters of the compound were calculated using B3LYP method with 6-311G(d,p) basis set. The distribution of the vibrational bands were carried out with the help of normal coordinate analysis (NCA). The 1H and 13C nuclear spectra have been recorded and chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-Visible spectrum of the compound was recorded in the region 190-900 nm and the electronic properties were determined by time-dependent DFT (TD-DFT) approach. Anilazine was screened for its antifungal activity. Molecular docking studies are conducted to predict its fungicidal activity.

  8. Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale.

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan; Bagavan, A

    2008-08-01

    The larvicidal activity of a petroleum ether extract of Zingiber officinale Roscoe (Zingiberaceae) was evaluated against Aedes aegypti L. and Culex quinquefasciatus Say (Diptera). Bioassay-guided fractionation led to the isolation of 4-gingerol (1), (6)-dehydrogingerdione (2) and (6)-dihydrogingerdione (3); the latter has not previously been reported from Z. officinale. The structures were established from infrared (IR), ultraviolet (UV), (1)H-nuclear magnetic resonance (NMR), (13)C-NMR and mass spectral data. Following a 24 h exposure, compounds 1-3 exhibited larvicidal activities against fourth instar larvae of A. aegypti (LC(50) 4.25, 9.80, 18.20 ppm) and C. quinquefasciatus (LC50 5.52, 7.66, 27.24 ppm), respectively. The results show that the most effective compound was 4-gingerol. PMID:18618523

  9. Radioprotective effects of active compounds from Acanthopanax senticosus of Lesser Khingan Mountain in China

    NASA Astrophysics Data System (ADS)

    Lu, Weihong; Sun, Yeqing; Shi, Jinming

    Bioactive compounds including polysaccharides, flavones, syringin and eleutheroside E were extracted from wild Acanthopanax senticosus and purified by chromatography. In vitro and in vivo anti-radiation activities of the compounds were compared. In vitro radical scavenging results showed that polysaccharides and flavones were more effective than syringin and eleutheroside E in In vivo study proved that polysaccharides and flavones were effective in protecting mice from heavy ion radiation induced oxidative damages. Also, the activity of polysaccharides and flavones in repressing expression changes of radiation response proteins including heat shock protein, disulfide-isomerase and glutathione S-transferase were also found by our results. Moreover, the radioprotective effects were more significant when polysaccharides and flavones were used together.

  10. Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L.

    PubMed

    Ezoubeiri, A; Gadhi, C A; Fdil, N; Benharref, A; Jana, M; Vanhaelen, M

    2005-06-01

    The essential oil of Pulicaria odora, a Moroccan medicinal plant; was analyzed by GC-MS, and subjected to column chromatography on silica gel. Two major constituents were isolated and identified as 2-isopropyl-4-methylphenol (1) and isobutyric acid 2-isopropyl-4-methylphenylester (2), by analysis of spectroscopic data (MS, 1H NMR, 13C NMR, DEPT, COSY, HMQC and HMBC experiments). The isolated compounds are reported for the first time from Pulicaria genus. The essential oil and its major constituents (compounds 1 and 2) were examined for antibacterial and antifungal activity in vitro using the diffusion and dilution methods. Results showed that the essential oil and the 2-isopropyl-4-methylphenol (1) exhibited a very significant antibacterial and antifungal activity, while the isobutyric acid 2-isopropyl-4-methylphenylester (2) was inactive for all tested strains.

  11. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    PubMed Central

    2012-01-01

    Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells. PMID:22938042