Science.gov

Sample records for active contour gac

  1. IN-SITU REGENERATION OF GRANULAR ACTIVATED CARBON (GAC) USING FENTON'S REAGENTS

    EPA Science Inventory

    Fenton-dependent regeneration of granular activated carbon (GAC) initially saturated with one of several chlorinated aliphatic contaminants was studied in batch and continuous-flow reactors. Homogeneous and heterogeneous experiments were designed to investigate the effects of va...

  2. Effect of ozone and granular activated coal (GAC) on the bioactivity of drinking water

    SciTech Connect

    Sallanko, J.; Iivari, P.; Heiska, E.

    2009-07-01

    In this research, the appearance of easily biodegradable organic material in ozonation and granular activated coal (GAC) filtration was studied. The amount of bioactivity was measured by conventional AOC analyses used in two different modes and also using quite a new growth potential (GP) method. GAC filtration without ozone doubled the amount of AOC of the chemically treated surface water, whereas by ozonation with GAC filtration it was possible to halve the amount of the AOC. The measurement of GP was noticeably simpler than measuring AOC, but for wider use more parallel studies are needed for the comparability of the results of the analysis.

  3. PtrA Is Functionally Intertwined with GacS in Regulating the Biocontrol Activity of Pseudomonas chlororaphis PA23

    PubMed Central

    Shah, Nidhi; Klaponski, Natasha; Selin, Carrie; Rudney, Rachel; Fernando, W. G. Dilantha; Belmonte, Mark F.; de Kievit, Teresa R.

    2016-01-01

    In vitro inhibition of the fungal pathogen Sclerotinia sclerotiorum by Pseudomonas chlororaphis PA23 is reliant upon a LysR-type transcriptional regulator (LTTR) called PtrA. In the current study, we show that Sclerotinia stem rot and leaf infection are significantly increased in canola plants inoculated with the ptrA-mutant compared to the wild type, establishing PtrA as an essential regulator of PA23 biocontrol. LTTRs typically regulate targets that are upstream of and divergently transcribed from the LTTR locus. We identified a short chain dehydrogenase (scd) gene immediately upstream of ptrA. Characterization of a scd mutant revealed that it is phenotypically identical to the wild type. Moreover, scd transcript abundance was unchanged in the ptrA mutant. These findings indicate that PtrA regulation does not involve scd, rather this LTTR controls genes located elsewhere on the chromosome. Employing a combination of complementation and transcriptional analysis we investigated whether connections exist between PtrA and other regulators of biocontrol. Besides ptrA, gacS was the only gene able to partially rescue the wild-type phenotype, establishing a connection between PtrA and the sensor kinase GacS. Transcriptomic analysis revealed decreased expression of biosynthetic (phzA, prnA) and regulatory genes (phzI, phzR, rpoS, gacA, rsmX, rsmZ, retS) in the ptrA mutant; conversely, rsmE, and rsmY were markedly upregulated. The transcript abundance of ptrA was nine-fold higher in the mutant background indicating that this LTTR negatively autoregulates itself. In summary, PtrA is an essential regulator of genes required for PA23 biocontrol that is functionally intertwined with GacS. PMID:27713742

  4. Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies

    SciTech Connect

    Morley, M.C.; Speitel, G.E. Jr.

    1999-03-01

    Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

  5. Decoupled active contour (DAC) for boundary detection.

    PubMed

    Mishra, Akshaya Kumar; Fieguth, Paul W; Clausi, David A

    2011-02-01

    The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.

  6. The Two-Component GacS-GacA System Activates lipA Translation by RsmE but Not RsmA in Pseudomonas protegens Pf-5

    PubMed Central

    Zha, Daiming; Xu, Li; Zhang, Houjin

    2014-01-01

    In Pseudomonas spp., the Gac-Rsm signal transduction system is required for the production of lipases. The current model assumes that the system induces lipase gene transcription mediated through the quorum-sensing (QS) system. However, there are no reports of a QS system based upon N-acyl homoserine lactones or the regulation of lipase gene expression in Pseudomonas protegens. In this study, we investigated the regulatory mechanism acting on lipA expression activated by the Gac-Rsm system in P. protegens Pf-5 through deletion and overexpression of gacA, overexpression of rsmA or rsmE, expression of various lacZ fusions, reverse transcription-PCR analysis, and determination of whole-cell lipase activity. The results demonstrated that the GacS-GacA (GacS/A) system activates lipA expression at both the transcriptional and the translational levels but that the translational level is the key regulatory pathway. Further results showed that the activation of lipA translation by the GacS/A system is mediated through RsmE, which inhibits lipA translation by binding to the ACAAGGAUGU sequence overlapping the Shine-Dalgarno (SD) sequence of lipA mRNA to hinder the access of the 30S ribosomal subunit to the SD sequence. Moreover, the GacS/A system promotes lipA transcription through the mediation of RsmA inhibiting lipA transcription via an unknown pathway. Besides the transcriptional repression, RsmA mainly activates lipA translation by negatively regulating rsmE translation. In summary, in P. protegens Pf-5, the Gac-RsmE system mainly and directly activates lipA translation and the Gac-RsmA system indirectly enhances lipA transcription. PMID:25128345

  7. Vascular active contour for vessel tree segmentation.

    PubMed

    Shang, Yanfeng; Deklerck, Rudi; Nyssen, Edgard; Markova, Aneta; de Mey, Johan; Yang, Xin; Sun, Kun

    2011-04-01

    In this paper, a novel active contour model is proposed for vessel tree segmentation. First, we introduce a region competition-based active contour model exploiting the gaussian mixture model, which mainly segments thick vessels. Second, we define a vascular vector field to evolve the active contour along its center line into the thin and weak vessels. The vector field is derived from the eigenanalysis of the Hessian matrix of the image intensity in a multiscale framework. Finally, a dual curvature strategy, which uses a vesselness measure-dependent function selecting between a minimal principal curvature and a mean curvature criterion, is added to smoothen the surface of the vessel without changing its shape. The developed model is used to extract the liver and lung vessel tree as well as the coronary artery from high-resolution volumetric computed tomography images. Comparisons are made with several classical active contour models and manual extraction. The experiments show that our model is more accurate and robust than these classical models and is, therefore, more suited for automatic vessel tree extraction.

  8. Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-15

    Naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) have known environmental toxicity and are resistant to conventional wastewater treatments. The granular activated carbon (GAC) biofilm treatment process has been shown to effectively treat OSPW NAs via combined adsorption/biodegradation processes despite the lack of research investigating their individual contributions. Presently, the NAs removals due to the individual processes of adsorption and biodegradation in OSPW bioreactors were determined using sodium azide to inhibit biodegradation. For raw OSPW, after 28 days biodegradation and adsorption contributed 14% and 63% of NA removal, respectively. For ozonated OSPW, biodegradation removed 18% of NAs while adsorption reduced NAs by 73%. Microbial community 454-pyrosequencing of bioreactor matrices indicated the importance of biodegradation given the diverse carbon degrading families including Acidobacteriaceae, Ectothiorhodospiraceae, and Comamonadaceae. Overall, results highlight the ability to determine specific processes of NAs removals in the combined treatment process in the presence of diverse bacteria metabolic groups found in GAC bioreactors.

  9. Development of biomass in a drinking water granular active carbon (GAC) filter.

    PubMed

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters.

  10. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2012-06-01

    The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment.

  11. Image Segmentation With Cage Active Contours.

    PubMed

    Garrido, Lluís; Guerrieri, Marité; Igual, Laura

    2015-12-01

    In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods.

  12. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  13. FENTON-DRIVEN CHEMICAL REGENERATION OF MTBE-SPENT GAC

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was chemically regenerated utilizing the Fenton mechanism. Two successive GAC regeneration cycles were performed involving iterative adsorption and oxidation processes: MTBE was adsorbed to the GAC, oxidized, r...

  14. A shape constrained parametric active contour model for breast contour detection.

    PubMed

    Lee, Juhun; Muralidhar, Gautam S; Reece, Gregory P; Markey, Mia K

    2012-01-01

    Quantitative measures of breast morphology can help a breast cancer survivor to understand outcomes of reconstructive surgeries. One bottleneck of quantifying breast morphology is that there are only a few reliable automation algorithms for detecting the breast contour. This study proposes a novel approach for detecting the breast contour, which is based on a parametric active contour model. In addition to employing the traditional parametric active contour model, the proposed approach enforces a mathematical shape constraint based on the catenary curve, which has been previously shown to capture the overall shape of the breast contour reliably. The mathematical shape constraint regulates the evolution of the active contour and helps the contour evolve towards the breast, while minimizing the undesired effects of other structures such as, the nipple/areola and scars. The efficacy of the proposed approach was evaluated on anterior posterior photographs of women who underwent or were scheduled for breast reconstruction surgery including autologous tissue reconstruction. The proposed algorithm shows promising results for detecting the breast contour.

  15. Characteristics of Combined Submerged Membrane Bioreactor with Granular Activated Carbon (GAC) in Treating Lineal Alkylbenzene Sulphonates (LAS) Wastewater

    NASA Astrophysics Data System (ADS)

    Guo, Jifeng; Xia, Siqing; Lu, Yanjun

    2010-11-01

    A combined MBR (cMBR) with granular activated carbon (GAC) was used as a backbone system to treat the synthetic lineal alkylbenzene sulphonates (LAS) wastewater. The GAC was added in the MBR to improve the resistance of membrane fouling. A parallel conventional MBR (pMBR) without the GAC was run to give a contrast. The results of the process demonstrate that the cMBR process was more efficient than pMBR. It was found that the TMP changes of the cMBR were slower than the pMBR. The results demonstrated that the cMBRs membrane was better than the pMBR's after a clean period run. It was the GAC scrubbing to the membrane that delayed the membrane fouling of the cMBR. Variable critical flux was found in MBR, which showed that the cMBR could make the critical flux better than pMBR in the run time, but GAC could not improve the critical flux at the end of the period for the severe membrane fouling. Based on this theory, a variable critical flux (J) of MBR was put forward, and the relationship of J with time (t) was: J = 16.081e-0.0177t.

  16. Brain extraction using geodesic active contours

    NASA Astrophysics Data System (ADS)

    Huang, Albert; Abugharbieh, Rafeef; Tam, Roger; Traboulsee, Anthony

    2006-03-01

    Extracting the brain cortex from magnetic resonance imaging (MRI) head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool (BET) produces a brain mask which may be too smooth for practical use. This paper presents a novel brain extraction tool based on three-dimensional geodesic active contours, connected component analysis and mathematical morphology. Based on user-specified intensity and contrast levels, the proposed algorithm allows an active contour to evolve naturally and extract the brain cortex. Experiments on synthetic MRI data and scanned coronal and axial MRI image volumes indicate successful extraction of tight perimeters surrounding the brain cortex. Quantitative evaluations on both synthetic phantoms and manually labeled data resulted in better accuracy than BET in terms of true and false voxel assignment. Based on these results, we illustrate that our brain extraction tool is a robust and accurate approach for the challenging task of automatically extracting the brain cortex in MRI data.

  17. Highway extraction from high resolution aerial photography using a geometric active contour model

    NASA Astrophysics Data System (ADS)

    Niu, Xutong

    Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the

  18. Segmenting multiple overlapping objects via a hybrid active contour model incorporating shape priors: applications to digital pathology

    NASA Astrophysics Data System (ADS)

    Ali, Sahirzeeshan; Madabhushi, Anant

    2011-03-01

    Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term comprises the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei, lymphocytes, and glands reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Roussons shape based model) and resolves up to 92% of overlapping/occluded lymphocytes and nuclei on prostate and breast cancer histology images.

  19. Formation and removal of genotoxic activity during UV/H(2)O(2)-GAC treatment of drinking water.

    PubMed

    Heringa, M B; Harmsen, D J H; Beerendonk, E F; Reus, A A; Krul, C A M; Metz, D H; Ijpelaar, G F

    2011-01-01

    The objective of this study was to determine the genotoxic activity of water after UV/H(2)O(2) oxidation and GAC filtration. Pre-treated surface water from three locations was treated with UV/H(2)O(2) with medium pressure (MP) lamps and passed through granulated activated carbon (GAC). Samples taken before and after each treatment step were extracted and concentrated by solid phase extraction (SPE) and analyzed for genotoxicity using the Comet assay with HepG2 cells and the Ames II assay. The Comet assay showed no genotoxic response in any of the samples. In the Ames II, no genotoxic response was obtained with the TAMix (a mix of six strains), but the TA98 strain showed an increase in genotoxic activity after MP-UV/H(2)O(2) for all three locations. GAC post treatment effectively reduced the activities to control levels at two of the three locations and to below the level of the pre-treated water at one site. The results indicate that UV/H(2)O(2) treatment may lead to the formation of genotoxic by-products, which can be removed by subsequent GAC filtration.

  20. Evaluating geodesic active contours in microcalcifications segmentation on mammograms.

    PubMed

    Duarte, Marcelo A; Alvarenga, Andre V; Azevedo, Carolina M; Calas, Maria Julia G; Infantosi, Antonio F C; Pereira, Wagner C A

    2015-12-01

    Breast cancer is the most commonly occurring type of cancer among women, and it is the major cause of female cancer-related deaths worldwide. Its incidence is increasing in developed as well as developing countries. Efficient strategies to reduce the high death rates due to breast cancer include early detection and tumor removal in the initial stages of the disease. Clinical and mammographic examinations are considered the best methods for detecting the early signs of breast cancer; however, these techniques are highly dependent on breast characteristics, equipment quality, and physician experience. Computer-aided diagnosis (CADx) systems have been developed to improve the accuracy of mammographic diagnosis; usually such systems may involve three steps: (i) segmentation; (ii) parameter extraction and selection of the segmented lesions and (iii) lesions classification. Literature considers the first step as the most important of them, as it has a direct impact on the lesions characteristics that will be used in the further steps. In this study, the original contribution is a microcalcification segmentation method based on the geodesic active contours (GAC) technique associated with anisotropic texture filtering as well as the radiologists' knowledge. Radiologists actively participate on the final step of the method, selecting the final segmentation that allows elaborating an adequate diagnosis hypothesis with the segmented microcalcifications presented in a region of interest (ROI). The proposed method was assessed by employing 1000 ROIs extracted from images of the Digital Database for Screening Mammography (DDSM). For the selected ROIs, the rate of adequately segmented microcalcifications to establish a diagnosis hypothesis was at least 86.9%, according to the radiologists. The quantitative test, based on the area overlap measure (AOM), yielded a mean of 0.52±0.20 for the segmented images, when all 2136 segmented microcalcifications were considered. Moreover, a

  1. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    PubMed

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2015-09-11

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  2. Radial-searching contour extraction method based on a modified active contour model for mammographic masses.

    PubMed

    Nakagawa, Toshiaki; Hara, Takeshi; Fujita, Hiroshi; Horita, Katsuhei; Iwase, Takuji; Endo, Tokiko

    2008-07-01

    In this study, we developed an automatic extraction scheme for the precise recognition of the contours of masses on digital mammograms in order to improve a computer-aided diagnosis (CAD) system. We propose a radial-searching contour extraction method based on a modified active contour model (ACM). In this technique, after determining the central point of a mass by searching for the direction of the density gradient, we arranged an initial contour at the central point, and the movement of a control point was limited to directions radiating from the central point. Moreover, it became possible to increase the extraction accuracy by sorting out the pixel used for processing and using two images-an edge-intensity image and a degree-of-separation image defined based on the pixel-value histogram-for calculation of the image forces used for constraints on deformation of the ACM. We investigated the accuracy of the automated extraction method by using 53 masses with several "difficult contours" on 53 digitized mammograms. The extraction results were compared quantitatively with the "correct segmentation" represented by an experienced physician's sketches. The numbers of cases in which the extracted region corresponded to the correct region with overlap ratios of more than 81 and 61% were 30 and 45, respectively. The initial results obtained with this technique show that it will be useful for the segmentation of masses in CAD schemes.

  3. Removing EDB with GAC filters

    SciTech Connect

    Narbaitz, R.M.; Baratta, A.; Parsons, F.Z. )

    1994-08-01

    Nearly 1,000 point-of-entry granular activated carbon (GAC) filters are efficiently removing ethylene dibromide (EDB) from contaminated groundwater throughout Florida. This article discusses the design, performance, and operational problems of the filters and assesses the possibility of extending the interval between GAC replacement from the current six months. Few breakthroughs have occurred in these filters, and most were caused by desorption during periods of sharp decreases in well-water EDB concentrations. Because GAC loading data from the literature described the program data very well, they were used in conjunction with the equilibrium column model to predict the performance of the program's filters for different GAC replacement periods. Based on the most conservative estimates, maintenance for 50% of the filters could be extended to every nine months.

  4. A Vessel Active Contour Model for Vascular Segmentation

    PubMed Central

    Chen, Qingli; Wang, Wei; Peng, Yu; Wang, Qingjun; Wu, Zhongke; Zhou, Mingquan

    2014-01-01

    This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is more accurate, efficient, and suitable for extraction of the vessel tree from different medical images. PMID:25101262

  5. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  6. Localized Patch-Based Fuzzy Active Contours for Image Segmentation

    PubMed Central

    Liu, Huaxiang; Zhang, Liting; Liu, Jun

    2016-01-01

    This paper presents a novel fuzzy region-based active contour model for image segmentation. By incorporating local patch-energy functional along each pixel of the evolving curve into the fuzziness of the energy, we construct a patch-based energy function without the regurgitation term. Its purpose is not only to make the active contour evolve very stably without the periodical initialization during the evolution but also to reduce the effect of noise. In particular, in order to reject local minimal of the energy functional, we utilize a direct method to calculate the energy alterations instead of solving the Euler-Lagrange equation of the underlying problem. Compared with other fuzzy active contour models, experimental results on synthetic and real images show the advantages of the proposed method in terms of computational efficiency and accuracy. PMID:28070210

  7. Automated segmentation of the quadratus lumborum muscle from magnetic resonance images using a hybrid atlas based - geodesic active contour scheme.

    PubMed

    Jurcak, V; Fripp, J; Engstrom, C; Walker, D; Salvado, O; Ourselin, S; Crozier, S

    2008-01-01

    This study presents a novel method for the automatic segmentation of the quadratus lumborum (QL) muscle from axial magnetic resonance (MR) images using a hybrid scheme incorporating the use of non-rigid registration with probabilistic atlases (PAs) and geodesic active contours (GACs). The scheme was evaluated on an MR database of 7mm axial images of the lumbar spine from 20 subjects (fast bowlers and athletic controls). This scheme involved several steps, including (i) image pre-processing, (ii) generation of PAs for the QL, psoas (PS) and erector spinae+multifidus (ES+MT) muscles and (iii) segmentation, using 3D GACs initialized and constrained by the propagation of the PAs using non-rigid registration. Pre-processing of the images involved bias field correction based on local entropy minimization with a bicubic spline model and a reverse diffusion interpolation algorithm to increase the slice resolution to 0.98 x 0.98 x 1.75mm. The processed images were then registered (affine and non-rigid) and used to generate an average atlas. The PAs for the QL, PS and ES+MT were then generated by propagation of manual segmentations. These atlases were further analysed with specialised filtering to constrain the QL segmentation from adjacent non-muscle tissues (kidney, fat). This information was then used in 3D GACs to obtain the final segmentation of the QL. The automatic segmentation results were compared with the manual segmentations using the Dice similarity metric (DSC), with a median DSC for the right and left QL muscles of 0.78 (mean = 0.77, sd=0.07) and 0.75 (mean =0.74, sd=0.07), respectively.

  8. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  9. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  10. Automatic segmentation of leg bones by using active contours.

    PubMed

    Kim, Sunhee; Kim, Youngjun; Park, Sehyung; Lee, Deukhee

    2014-01-01

    In this paper, we present a new active contours model to segment human leg bones in computed tomography images that is based on a variable-weighted combination of local and global intensity. This model can split an object surrounded by both weak and strong boundaries, and also distinguish very adjacent objects with those boundaries. The ability of this model is required for segmentation in medical images, e.g., human leg bones, which are usually composed of highly inhomogeneous objects and where the distances among organs are very close. We developed an evolution equation of a level set function whose zero level set represents a contour. An initial contour is automatically obtained by applying a histogram based multiphase segmentation method. We experimented with computed tomography images from three patients, and demonstrate the efficiency of the proposed method in experimental results.

  11. DBPs removal in GAC filter-adsorber.

    PubMed

    Kim, Jinkeun; Kang, Byeongsoo

    2008-01-01

    A rapid sand filter and granular activated carbon filter-adsorber (GAC FA) were compared in terms of dissolved organic carbon (DOC) and disinfection by-products (DBPs) removal. A water treatment plant (WTP) that had a high ammonia concentration and DOC in raw water, which, in turn, led to a high concentration of DBPs because of a high dose of pre-chlorination, was investigated. To remove DBPs and DOC simultaneously, a conventional rapid sand filter had been retrofitted to a GAC FA at the Buyeo WTP in Korea. The overall removal efficiency of DBPs and DOC was higher in the GAC FA than in the sand filter, as expected. Breakthrough of trihalomethanes (THMs) was noticed after 3 months of GAC FA operation, and then removal of THMs was minimal (<10%). On the other hand, the removal efficiency of five haloacetic acids (HAA(5)) in the GAC FA was better than that of THMs, though adsorption of HAA(5) decreased rapidly after 3.5 months of GAC FA operation. And then, gradual improvement (>90%) in HAA(5) removal efficiency was again observed, which could be attributed to biodegradation. At the early stage of GAC FA operation, HAA(5) removal was largely due to physical adsorption, but later on biodegradation appeared to prevail. Biodegradation of HAA(5) was significantly influenced by water temperature. Similar turbidity removal was noticed in both filters, while better manganese removal was confirmed in the sand filter rather than in the GAC FA.

  12. Automatic exudate detection using active contour model and regionwise classification.

    PubMed

    Harangi, B; Lazar, I; Hajdu, A

    2012-01-01

    Diabetic retinopathy is one the most common cause of blindness in the world. Exudates are among the early signs of this disease, so its proper detection is a very important task to prevent consequent effects. In this paper, we propose a novel approach for exudate detection. First, we identify possible regions containing exudates using grayscale morphology. Then, we apply an active contour based method to minimize the Chan-Vese energy to extract accurate borders of the candidates. To remove those false candidates that have sufficient strong borders to pass the active contour method we use a regionwise classifier. Hence, we extract several shape features for each candidate and let a boosted Naïve Bayes classifier eliminate the false candidates. We considered the publicly available DiaretDB1 color fundus image set for testing, where the proposed method outperformed several state-of-the-art exudate detectors.

  13. Active contour segmentation for hyperspectral oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Mei-ping; Chang, Ming; An, Ju-bai; Huang, Jian; Lin, Bin

    2013-08-01

    Oil spills could occur in many conditions, which results in pollution of the natural resources, marine environment and economic health of the area. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Hyperspectral remote sensing imaging is now widely used to detect oil spill. Active Contour Models (ACMs) is a widely used image segmentation method that utilizes the geometric information of objects within images. Region based models are less sensitive to noise and give good performance for images with weak edges or without edges. One of the popular Region based ACMs, active contours without edges Models, is implemented by Chan-Vese. The model has the property of global segmentation to segment all the objects within an image irrespective of the initial contour. In this paper, we propose an improved CV model, which can perform well in the oil spill hyper-spectral image segmentation. The energy function embeds spectral and spatial information, introduces the vector edge stopping function, and constructs a novel length term. Results of the improved model on airborne hyperspectral oil spill images show that it improves the ability of distinguishing between oil spills and sea water, as well as the capability of noise reduction.

  14. Segmentation of Coronal Holes Using Active Contours Without Edges

    NASA Astrophysics Data System (ADS)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  15. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  16. Segmentation of volumetric tissue images using constrained active contour models.

    PubMed

    Adiga, P S Umesh

    2003-06-01

    In this article we describe an application of active contour model for the segmentation of 3D histo-pathological images. The 3D images of a thick tissue specimen are obtained as a stack of optical sections using confocal laser beam scanning microscope (CLSM). We have applied noise reduction and feature enhancement methods so that a smooth and slowly varying potential surface is obtained for proper convergence. To increase the capture range of the potential surface, we use a combination of distance potential and the diffused gradient potential as external forces. It has been shown that the region-based information obtained from low-level segmentation can be applied to reduce the adverse influence of the neighbouring nucleus having a strong boundary feature. We have also shown that, by increasing the axial resolution of the image stack, we can automatically propagate the optimum active contour of one image slice to its neighbouring image slices as an appropriate initial model. Results on images of prostate tissue section are presented.

  17. Pupil segmentation using active contour with shape prior

    NASA Astrophysics Data System (ADS)

    Ukpai, Charles O.; Dlay, Satnam S.; Woo, Wai L.

    2015-03-01

    Iris segmentation is the process of defining the valid part of the eye image used for further processing (feature extraction, matching and decision making). Segmentation of the iris mostly starts with pupil boundary segmentation. Most pupil segmentation techniques are based on the assumption that the pupil is circular shape. In this paper, we propose a new pupil segmentation technique which combines shape, location and spatial information for accurate and efficient segmentation of the pupil. Initially, the pupil's position and radius is estimated using a statistical approach and circular Hough transform. In order to segment the irregular boundary of the pupil, an active contour model is initialized close to the estimated boundary using information from the first step and segmentation is achieved using energy minimization based active contour. Pre-processing and post-processing were carried out to remove noise and occlusions respectively. Experimental results on CASIA V1.0 and 4.0 shows that the proposed method is highly effective at segmenting irregular boundaries of the pupil.

  18. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  19. Vesselness-guided Active Contour: A Coronary Vessel Extraction Method

    PubMed Central

    Dehkordi, Maryam Taghizadeh; Jalalat, Morteza; Sadri, Saeed; Doosthoseini, Alimohamad; Ahmadzadeh, Mohammad Reza; Amirfattahi, Rasoul

    2014-01-01

    Vessel extraction is a critical task in clinical practice. In this paper, we propose a new approach for vessel extraction using an active contour model by defining a novel vesselness-based term, based on accurate analysis of the vessel structure in the image. To achieve the novel term, a simple and fast directional filter bank is proposed, which does not employ down sampling and resampling used in earlier versions of directional filter banks. The proposed model not only preserves the performance of the existing models on images with intensity inhomogeneity, but also overcomes their inability both to segment low contrast vessels and to omit non-vessel structures. Experimental results for synthetic images and coronary X-ray angiograms show desirable performance of our model. PMID:24761379

  20. Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0.

    PubMed

    Blumer, C; Haas, D

    2000-10-01

    Pseudomonas fluorescens CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that substantially contributes to this strain's biocontrol ability. Cyanogenesis is induced by oxygen-limiting conditions, but abolished by iron depletion. In P. fluorescens, the anaerobic regulator ANR and the global activator GacA are both required for the maximal expression of the HCN biosynthetic genes hcnABC. The molecular basis of this regulation by ANR and GacA was investigated under conditions of oxygen and iron limitation. A promoter deletion analysis using a translational hcnA'-'lacZ fusion revealed that a conserved FNR/ANR recognition sequence in the -40 promoter region was necessary and sufficient for the regulation by ANR in response to oxygen limitation. Stimulation of hcnA'-'lacZ expression by the addition of iron also depended on the presence of ANR and the FNR/ANR box, but not on GacA, suggesting that in addition to acting as an oxygen-sensitive protein, ANR also responds to iron availability. Expression of the translational hcnA'-'lacZ fusion remained GacA-dependent in hcn promoter mutants that were no longer responsive to ANR, in agreement with earlier evidence for a post-transcriptional regulatory mechanism under GacA control. These data support a model in which cyanogenesis is sequentially activated by ANR at the level of transcription and by components of the GacA network at the level of translation.

  1. Active Lip Contour Using Hue Characteristics Energy Model for A Lip Reading System

    NASA Astrophysics Data System (ADS)

    Ogoshi, Yasuhiro; Ide, Hisato; Araki, Chikahiro; Kimura, Haruhiko

    Active contour model (SNAKES) is very used as one of the powerful technique in a contour extraction that utilizes principle of energy-minimizing. Performing extraction of lip contour with the lip image that has strong edges or noises on the lips and oral cavity is an important problem. This paper proposes a new energy model of SNAKES based on hue characteristics of lip images.

  2. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  3. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  4. Feature-based active contour model and occluding object detection.

    PubMed

    Memar, Sara; Ksantini, Riadh; Boufama, Boubakeur

    2016-04-01

    This paper presents a method for image segmentation and object detection. The proposed strategy consists of two major stages. The first one corresponds to image segmentation, which is based on the active contour model (ACM) algorithm, using an automatic selection of the best candidate features among gradient, polarity, and depth, coupled with a combination of them by the kernel support vector machine (KSVM). Although existing techniques, such as the ones based on ACM, perform well in the single-object case and non-noisy environments, these techniques fail when the scene consists of multiple occluding objects, with possibly similar colors. Thus, the second stage corresponds to the identification of salient and occluded objects based on the fuzzy C-mean algorithm (FCM). In this stage, the depth is included as another clue that allows us to estimate the cluster number and to make the clustering process more robust. In particular, complex occlusions can be handled this way, and the objects can be properly segmented and identified. Experimental results on real images and on several standard datasets have shown the success and effectiveness of the proposed method.

  5. Parametric kernel-driven active contours for image segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Qiongzhi; Fang, Jiangxiong

    2012-10-01

    We investigated a parametric kernel-driven active contour (PKAC) model, which implicitly transfers kernel mapping and piecewise constant to modeling the image data via kernel function. The proposed model consists of curve evolution functional with three terms: global kernel-driven and local kernel-driven terms, which evaluate the deviation of the mapped image data within each region from the piecewise constant model, and a regularization term expressed as the length of the evolution curves. In the local kernel-driven term, the proposed model can effectively segment images with intensity inhomogeneity by incorporating the local image information. By balancing the weight between the global kernel-driven term and the local kernel-driven term, the proposed model can segment the images with either intensity homogeneity or intensity inhomogeneity. To ensure the smoothness of the level set function and reduce the computational cost, the distance regularizing term is applied to penalize the deviation of the level set function and eliminate the requirement of re-initialization. Compared with the local image fitting model and local binary fitting model, experimental results show the advantages of the proposed method in terms of computational efficiency and accuracy.

  6. Multiplatform GPGPU implementation of the active contours without edges algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Meyer-Baese, Anke; Meyer-Baese, Uwe

    2012-05-01

    An OpenCL implementation of the Active Contours Without Edges algorithm is presented. The proposed algorithm uses the General Purpose Computing on Graphics Processing Units (GPGPU) to accelerate the original model by parallelizing the two main steps of the segmentation process, the computation of the Signed Distance Function (SDF) and the evolution of the segmented curve. The proposed scheme for the computation of the SDF is based on the iterative construction of partial Voronoi diagrams of a reduced dimension and obtains the exact Euclidean distance in a time of order O(N/p), where N is the number of pixels and p the number of processors. With high resolution images the segmentation algorithm runs 10 times faster than its equivalent sequential implementation. This work is being done as an open source software that, being programmed in OpenCL, can be used in dierent platforms allowing a broad number of nal users and can be applied in dierent areas of computer vision, like medical imaging, tracking, robotics, etc. This work uses OpenGL to visualize the algorithm results in real time.

  7. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa

    PubMed Central

    Redelberger, David; Fadel, Firas; Filloux, Alain; Sivaneson, Melissa; de Bentzmann, Sophie; Bordi, Christophe

    2016-01-01

    In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response. PMID:27176226

  8. Efficient hyperspectral image segmentation using geometric active contour formulation

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.

    2014-10-01

    In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.

  9. IN-PLACE REGENERATION OF GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    This paper evaluates the feasibility of using Fenton’s reagents for in-place recovery of spent granular activated carbon (GAC). Fenton’s reagents are cycled through spent GAC to degrade sorbed chlorinated hydrocarbons with little loss of carbon capacity. Seven chlorinated compou...

  10. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  11. Rapid Activation of Motor Responses by Illusory Contours

    ERIC Educational Resources Information Center

    Seydell-Greenwald, Anna; Schmidt, Thomas

    2012-01-01

    Whereas physiological studies indicate that illusory contours (ICs) are signaled in early visual areas at short latencies, behavioral studies are divided as to whether IC processing can proceed in a fast, automatic, bottom-up manner or whether it requires extensive top-down intracortical feedback or even awareness and cognition. Here, we employ a…

  12. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  13. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  14. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.

  15. Bacterial community in the biofilm of granular activated carbon (GAC) PreBiofilter in bench-scale pilot plants for surface water pretreatment.

    PubMed

    Wu, Tiehang; Fu, George Yuzhu; Sabula, Michael; Brown, Tommy

    2014-12-01

    Biofilters of granular activated carbon (GAC) are responsible for the removal of organic matters in drinking water treatments. PreBiofilters, which operate as the first unit in a surface water treatment train, are a cost-effective pretreatment for conventional surface water treatment and provide more consistent downstream water quality. This study investigated bacterial communities from the samples of raw surface water, biofilm on the PreBiofilter, and filtrates for surface water pretreatment. A bench-scale pilot plant of PreBiofilter was constructed to pretreat surface water from the Canoochee River, GA, USA. PreBiofilter exhibited a significant reduction of total organic carbon and dissolved organic carbon. The evenness and Shannon diversity of bacterial operational taxonomic units (OTUs) were significantly higher on the biofilm of PreBiofilter than in raw water and filtrates. Similar bacteria communities were observed in the raw water and filtrates using relative abundance of bacterial OTUs. However, the bacterial communities in the filtrates became relatively similar to those in the biofilm using presence/absence of bacterial OTUs. GAC biofilm or raw water and filtrates greatly contributed to the abundance of bacteria; whereas, bacteria sheared from colonized biofilm and entered filtrates. Evenly distributed, diverse and unique bacteria in the biofilm played an important role to remove organic matters from surface water for conventional surface water pretreatment.

  16. A gacS Deletion in Pseudomonas aeruginosa Cystic Fibrosis Isolate CHA Shapes Its Virulence

    PubMed Central

    Sall, Khady Mayebine; Casabona, Maria Guillermina; Bordi, Christophe; Huber, Philippe; de Bentzmann, Sophie; Attrée, Ina; Elsen, Sylvie

    2014-01-01

    Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor. PMID:24780952

  17. A partition-based active contour model incorporating local information for image segmentation.

    PubMed

    Shi, Jiao; Wu, Jiaji; Paul, Anand; Jiao, Licheng; Gong, Maoguo

    2014-01-01

    Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant intensities. This assumption, however, cannot be satisfied when describing intensity inhomogeneous images which frequently occur in real world images and induced considerable difficulties in image segmentation. A milder assumption that the image is statistically homogeneous within different local regions may better suit real world images. By taking local image information into consideration, an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposed method, pixels within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model when dealing with intensity inhomogeneity images.

  18. USING ISOTHERMS TO PREDICT GAC'S CAPACITY FOR SYNTHETIC ORGANICS

    EPA Science Inventory

    This investigation involved operating a pilot granular activated carbon (GAC) plant to obtain capacity data under typical field conditions, determining isotherms for selected synthetic organic chemicals, and comparing the capacity predicted by the isotherm data with the pilot-pla...

  19. EVALUATION OF THE MIDDAS SYSTEM FOR DESIGNING GAC ADSORBERS

    EPA Science Inventory

    The Micro-Diameter-Depth Adsorption System (MIDDAS) was evaluated for its usefulness in determining equilibrium parameters for adsorption in granular activated carbon (GAC) systems. The system employs a column configuration for determining such parameters, rather than the traditi...

  20. Degradation of crystal violet by an FeGAC/H2O2 process.

    PubMed

    Chen, Chiing-Chang; Chen, Wen-Ching; Chiou, Mei-Rung; Chen, Sheng-Wei; Chen, Yao Yin; Fan, Huan-Jung

    2011-11-30

    Because of the growing concern over highly contaminated crystal violet (CV) wastewater, an FeGAC/H(2)O(2) process was employed in this research to treat CV-contaminated wastewater. The experimental results indicated that the presence of iron oxide-coated granular activated carbon (FeGAC) greatly improved the oxidative ability of H(2)O(2) for the removal of CV. For instance, the removal efficiencies of H(2)O(2), GAC, FeGAC, GAC/H(2)O(2) and FeGAC/H(2)O(2) processes were 10%, 44%, 40%, 43% and 71%, respectively, at test conditions of pH 3 and 7.4mM H(2)O(2). FeGAC/H(2)O(2) combined both the advantages of FeGAC and H(2)O(2). FeGAC had a good CV adsorption ability and could effectively catalyze the hydrogen peroxide oxidation reaction. Factors (including pH, FeGAC dosage and H(2)O(2) dosage) affecting the removal of CV by FeGAC/H(2)O(2) were investigated in this research as well. In addition, the reaction intermediates were separated and identified using HPLC-ESI-MS. The N-demethylation step might be the main reaction pathway for the removal of CV. The reaction mechanisms for the process proposed in this research might be useful for future application of this technology to the removal of triphenylmethane (TPM) dyes.

  1. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Dupont, Pierre E

    2012-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system's signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the "tubularity" of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours.

  2. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  3. Color diffusion model for active contours - an application to skin lesion segmentation.

    PubMed

    Ivanovici, Mihai; Stoica, Diana

    2012-01-01

    Most of the existing diffusion models are defined for gray-scale images. We propose a diffusion model for color images to be used as external energy for active contours. Our diffusion model is based on the first-order moment of the correlation integral expressed using ΔE distances in the CIE Lab color space. We use a multi-scale approach for active contours, the diffusion being independently computed at various scales. We validate the model on synthetic images, including multi-fractal color textures, as well as medical images representing melanoma. We conclude that the proposed diffusion model is valid for use in skin lesion segmentation in color images using active contours.

  4. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of ����.�������� with our method (p < 0.001, Wilcoxon).

  5. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of 0.24 with our method (p < 0.001, Wilcoxon).

  6. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  7. Adaptable active contour model with applications to infrared ship target segmentation

    NASA Astrophysics Data System (ADS)

    Fang, Lingling; Wang, Xianghai; Wan, Yu

    2016-07-01

    Active contour model is widely and popularly used in the field of image segmentation because of its superior theoretical properties and efficient numerical methods. An algorithm to segment a ship target in infrared (IR) images using Chan-Vese (C-V) active contour model is proposed here. The method effectively integrates both image regional and boundary information by an adaptable weight function. The method can segment IR ship images, which usually contain noises, blurry boundaries, and heterogeneous regions. In addition, compared with the state-of-the-art methods, experiment results demonstrate the performance and effectiveness of this method.

  8. Method for non-referential defect characterization using fractal encoding and active contours

    DOEpatents

    Gleason, Shaun S.; Sari-Sarraf, Hamed

    2007-05-15

    A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.

  9. Robust segmentation of moving objects in video based on spatiotemporal visual saliency and active contour model

    NASA Astrophysics Data System (ADS)

    Ramadan, Hiba; Tairi, Hamid

    2016-11-01

    This paper presents an algorithm for automatic segmentation of moving objects in video based on spatiotemporal visual saliency and an active contour model. Our algorithm exploits the visual saliency and motion information to build a spatiotemporal visual saliency map used to extract a moving region of interest. This region is used to automatically provide the seeds for the convex active contour (CAC) model to segment the moving object accurately. The experiments show a good performance of our algorithm for moving object segmentation in video without user interaction, especially on the SegTrack dataset.

  10. Coupling of radial-basis network and active contour model for multispectral brain MRI segmentation.

    PubMed

    Valdés-Cristerna, Raquel; Medina-Bañuelos, Verónica; Yáñez-Suárez, Oscar

    2004-03-01

    Magnetic resonance (MR) has been accepted as the reference image study in the clinical environment. The development of new sequences has allowed obtaining diverse images with high clinical importance and whose interpretation requires their joint analysis (multispectral MRI). Recent approaches to segment MRI point toward the definition of hybrid models, where the advantages of region and contour-based methods can be exploited to look for the integration or fusion of information, thus enhancing the performance of the individual approaches. Following this perspective, a hybrid model for multispectral brain MRI segmentation is presented. The model couples a segmenter, based on a radial basis network (RBFNNcc), and an active contour model, based on a cubic spline active contour (CSAC) interpolation. Both static and dynamic coupling of RBFNNcc and CSAC are proposed; the RBFNNcc stage provides an initial contour to the CSAC; the initial contour is optimally sampled with respect to its curvature variations; multispectral information and a restriction term are included into the CSAC energy equation. Segmentations were compared to a reference stack, indicating high-quality performance as measured by Tanimoto indexes of 0.74 +/- 0.08.

  11. Active Contours Driven by Multi-Feature Gaussian Distribution Fitting Energy with Application to Vessel Segmentation.

    PubMed

    Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong

    2015-01-01

    Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.

  12. Comparison of segmentation using fast marching and geodesic active contours methods for bone

    NASA Astrophysics Data System (ADS)

    Bilqis, A.; Widita, R.

    2016-03-01

    Image processing is important in diagnosing diseases or damages of human organs. One of the important stages of image processing is segmentation process. Segmentation is a separation process of the image into regions of certain similar characteristics. It is used to simplify the image to make an analysis easier. The case raised in this study is image segmentation of bones. Bone's image segmentation is a way to get bone dimensions, which is needed in order to make prosthesis that is used to treat broken or cracked bones. Segmentation methods chosen in this study are fast marching and geodesic active contours. This study uses ITK (Insight Segmentation and Registration Toolkit) software. The success of the segmentation was then determined by calculating its accuracy, sensitivity, and specificity. Based on the results, the Active Contours method has slightly higher accuracy and sensitivity values than the fast marching method. As for the value of specificity, fast marching has produced three image results that have higher specificity values compared to those of geodesic active contour's. The result also indicates that both methods have succeeded in performing bone's image segmentation. Overall, geodesic active contours method is quite better than fast marching in segmenting bone images.

  13. Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow

    PubMed Central

    Michailovich, Oleg; Rathi, Yogesh; Tannenbaum, Allen

    2013-01-01

    This paper addresses the problem of image segmentation by means of active contours, whose evolution is driven by the gradient flow derived from an energy functional that is based on the Bhattacharyya distance. In particular, given the values of a photometric variable (or of a set thereof), which is to be used for classifying the image pixels, the active contours are designed to converge to the shape that results in maximal discrepancy between the empirical distributions of the photometric variable inside and outside of the contours. The above discrepancy is measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the problem at hand. The proposed methodology can be viewed as a generalization of the segmentation methods, in which active contours maximize the difference between a finite number of empirical moments of the “inside” and “outside” distributions. Furthermore, it is shown that the proposed methodology is very versatile and flexible in the sense that it allows one to easily accommodate a diversity of the image features based on which the segmentation should be performed. As an additional contribution, a method for automatically adjusting the smoothness properties of the empirical distributions is proposed. Such a procedure is crucial in situations when the number of data samples (supporting a certain segmentation class) varies considerably in the course of the evolution of the active contour. In this case, the smoothness properties of the empirical distributions have to be properly adjusted to avoid either over- or underestimation artifacts. Finally, a number of relevant segmentation results are demonstrated and some further research directions are discussed. PMID:17990755

  14. Liver segmentation with new supervised method to create initial curve for active contour.

    PubMed

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations.

  15. Active contour-based cell segmentation during freezing and its application in cryopreservation.

    PubMed

    Wu, Pengxiang; Yi, Jingru; Zhao, Gang; Huang, Zhangjin; Qiu, Bensheng; Gao, Dayong

    2015-01-01

    Water permeability of the plasma membrane plays an important role in making optimal cryopreservation protocols for different types of cells. To quantify water permeability effectively, automated cell volume segmentation during freezing is necessary. Unfortunately, there exists so far no efficient and accurate segmentation method to handle this kind of image processing task gracefully. The existence of extracellular ice and variable background present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel approach to reliably extract cells from the extracellular ice, which attaches to or surrounds cells. Our method operates on temporal image sequences and is composed of two steps. First, for each image from the sequence, a greedy search strategy is employed to track approximate locations of cells in motion. Second, we utilize a localized competitive active contour model to obtain the contour of each cell. Based on the first step's result, the initial contour for level set evolution can be determined appropriately, thus considerably easing the pain of initialization for an active contour model. Experimental results demonstrate that the proposed method is efficient and effective in segmenting cells during freezing.

  16. Simulation of saxitoxins adsorption in full-scale GAC filter using HSDM.

    PubMed

    Capelo-Neto, Jose; Silva Buarque, Neuma Maria

    2016-01-01

    Many different species of cyanobacteria capable of producing saxitoxins have been identified as a threat to the safety of drinking water supplies worldwide. Removal of these contaminants can be accomplished by adsorption on granular activated carbon (GAC) but little is yet known about the kinetics of this process. This research investigated adsorption kinetics and diffusion behaviour of decarbomoyl saxitoxin (dc-STX) and carbamate saxitoxin (STX) on a GAC sample and simulated a full-scale GAC filter using batch experimental data and the homogeneous surface diffusion model (HSDM). HSDM was able to successfully describe batch adsorption of STX and dc-STX onto GAC sample and the surface diffusion coefficient was identified as the main adjustment parameter for this model. Different scenarios of STX and dc-STX removal in a GAC filter were simulated, offering engineers and scientists an option for the design of GAC full-scale filters, bench or pilot-scale experiments.

  17. Effect on the operation properties of DMBR with the addition of GAC

    NASA Astrophysics Data System (ADS)

    Lin, Jizhi; Zhang, Qian; Hong, Junming

    2017-01-01

    The membrane bioreactor and dynamic membrane bioreactor were used to examine the effect of granular activated carbon (GAC) on the treatment of synthetic wastewater. After the addition of different volume fractions GAC in the DMBR, the operation parameters, effluent COD, NH4 +-N, NO3 --N, TN concentrations and sludge viscosity of the bioreactor was investigated. The results showed that the addition of GAC could relieve the membrane fouling and improve the removal efficiencies of pollutants in the DMBR. The effluent concentrations of pollutants were linear correlation with the addition of volume fractions of GAC in the bioreactor. The value of R2 of each modulation was almost more than 0.9. The sludge viscosity was almost not affected by the volume fractions of GAC in the bioreactor. The best volume fractions of GAC were 20% in the DMBR.

  18. An active contour model for medical image segmentation with application to brain CT image

    PubMed Central

    Qian, Xiaohua; Wang, Jiahui; Guo, Shuxu; Li, Qiang

    2013-01-01

    Purpose: Cerebrospinal fluid (CSF) segmentation in computed tomography (CT) is a key step in computer-aided detection (CAD) of acute ischemic stroke. Because of image noise, low contrast and intensity inhomogeneity, CSF segmentation has been a challenging task. A region-based active contour model, which is insensitive to contour initialization and robust to intensity inhomogeneity, was developed for segmenting CSF in brain CT images. Methods: The energy function of the region-based active contour model is composed of a range domain kernel function, a space domain kernel function, and an edge indicator function. By minimizing the energy function, the region of edge elements of the target could be automatically identified in images with less dependence on initial contours. The energy function was optimized by means of the deepest descent method with a level set framework. An overlap rate between segmentation results and the reference standard was used to assess the segmentation accuracy. The authors evaluated the performance of the proposed method on both synthetic data and real brain CT images. They also compared the performance level of our method to those of region-scalable fitting (RSF) and global convex segment (GCS) models. Results: For the experiment of CSF segmentation in 67 brain CT images, their method achieved an average overlap rate of 66% compared to the average overlap rates of 16% and 46% from the RSF model and the GCS model, respectively. Conclusions: Their region-based active contour model has the ability to achieve accurate segmentation results in images with high noise level and intensity inhomogeneity. Therefore, their method has great potential in the segmentation of medical images and would be useful for developing CAD schemes for acute ischemic stroke in brain CT images. PMID:23387759

  19. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours

    PubMed Central

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-01-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: First, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction — This not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we

  20. Unsupervised Cardiac Image Segmentation via Multiswarm Active Contours with a Shape Prior

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Garcia-Hernandez, M. G.; Ibarra-Manzano, M. A.

    2013-01-01

    This paper presents a new unsupervised image segmentation method based on particle swarm optimization and scaled active contours with shape prior. The proposed method uses particle swarm optimization over a polar coordinate system to perform the segmentation task, increasing the searching capability on medical images with respect to different interactive segmentation techniques. This method is used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, where the shape prior is acquired by cardiologists, and it is utilized as the initial active contour. Moreover, to assess the performance of the cardiac medical image segmentations obtained by the proposed method and by the interactive techniques regarding the regions delineated by experts, a set of validation metrics has been adopted. The experimental results are promising and suggest that the proposed method is capable of segmenting human heart and ventricular areas accurately, which can significantly help cardiologists in clinical decision support. PMID:24198850

  1. Efficient thermal image segmentation through integration of nonlinear enhancement with unsupervised active contour model

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Krieger, Evan; Sidike, Paheding; Asari, Vijayan K.

    2015-03-01

    Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity enhancement technique and Unsupervised Active Contour Models (UACM). The nonlinear intensity enhancement improves visual quality by combining dynamic range compression and contrast enhancement, while the UACM incorporates active contour evolutional function and neural networks. The algorithm is tested on segmenting different objects in thermal images and it is observed that the nonlinear enhancement has significantly improved the segmentation performance.

  2. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  3. Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia.

    PubMed

    Hafiane, Adel; Vieyres, Pierre; Delbos, Alain

    2014-09-01

    Ultrasound guided regional anesthesia (UGRA) is steadily growing in popularity, owing to advances in ultrasound imaging technology and the advantages that this technique presents for safety and efficiency. The aim of this work is to assist anaesthetists during the UGRA procedure by automatically detecting the nerve blocks in the ultrasound images. The main disadvantage of ultrasound images is the poor quality of the images, which are also affected by the speckle noise. Moreover, the nerve structure is not salient amid the other tissues, which makes its detection a challenging problem. In this paper we propose a new method to tackle the problem of nerve zone detection in ultrasound images. The method consists in a combination of three approaches: probabilistic, edge phase information and active contours. The gradient vector flow (GVF) is adopted as an edge-based active contour. The phase analysis of the monogenic signal is used to provide reliable edges for the GVF. Then, a learned probabilistic model reduces the false positives and increases the likelihood energy term of the target region. It yields a new external force field that attracts the active contour toward the desired region of interest. The proposed scheme has been applied to sciatic nerve regions. The qualitative and quantitative evaluations show a high accuracy and a significant improvement in performance.

  4. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  5. Iterative weighted average diffusion as a novel external force in the active contour model

    NASA Astrophysics Data System (ADS)

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  6. Active contour segmentation using level set function with enhanced image from prior intensity.

    PubMed

    Kim, Sunhee; Kim, Youngjun; Lee, Deukhee; Park, Sehyung

    2015-01-01

    This paper presents a new active contour segmentation model using a level set function that can correctly capture both the strong and the weak boundaries of a target enclosed by bright and dark regions at the same time. We introduce an enhanced image obtained from prior information about the intensity of the target. The enhanced image emphasizes the regions where pixels have intensities close to the prior intensity. This enables a desirable segmentation of an image having a partially low contrast with the target surrounded by regions that are brighter or darker than the target. We define an edge indicator function on an original image, and local and regularization forces on an enhanced image. An edge indicator function and two forces are incorporated in order to identify the strong and weak boundaries, respectively. We established an evolution equation of contours in the level set formulation and experimented with several medical images to show the performance of the proposed method.

  7. Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images

    PubMed Central

    Srivastava, Anuj

    2010-01-01

    We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692

  8. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

    PubMed

    Keshani, Mohsen; Azimifar, Zohreh; Tajeripour, Farshad; Boostani, Reza

    2013-05-01

    In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly.

  9. Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour.

    PubMed

    Xing, Fuyong; Yang, Lin

    2015-10-01

    Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned images is a difficult task due to a large number of cells. The weak or misleading cell boundaries also present significant challenges. In this paper, we propose a fast, high throughput cell segmentation algorithm by combining top-down shape models and bottom-up image appearance information. A scalable sparse manifold learning method is proposed to model multiple subpopulations of different cell shape priors. Followed by a shape clustering on the manifold, a novel affine transform-approximated active contour model is derived to deform contours without solving a large amount of computationally-expensive Euler-Lagrange equations, and thus dramatically reduces the computational time. To the best of our knowledge, this is the first report of a high throughput cell segmentation algorithm for whole slide scanned pathology specimens using manifold learning to accelerate active contour models. The proposed approach is tested using 12 NET images, and the comparative experiments with the state of the arts demonstrate its superior performance in terms of both efficiency and effectiveness.

  10. Automatic brain cropping enhancement using active contours initialized by a PCNN

    NASA Astrophysics Data System (ADS)

    Swathanthira Kumar, Murali Murugavel; Sullivan, John M., Jr.

    2009-02-01

    Active contours are a popular medical image segmentation strategy. However in practice, its accuracy is dependent on the initialization of the process. The PCNN (Pulse Coupled Neural Network) algorithm developed by Eckhorn to model the observed synchronization of neural assemblies in small mammals such as cats allows for segmenting regions of similar intensity but it lacks a convergence criterion. In this paper we report a novel PCNN based strategy to initialize the zero level contour for automatic brain cropping of T2 weighted MRI image volumes of Long-Evans rats. Individual 2D anatomy slices of the rat brain volume were processed by means of a PCNN and a surrogate image 'signature' was constructed for each slice. By employing a previously trained artificial neural network (ANN) an approximate PCNN iteration (binary mask) was selected. This mask was then used to initialize a region based active contour model to crop the brain region. We tested this hybrid algorithm on 30 rat brain (256*256*12) volumes and compared the results against manually cropped gold standard. The Dice and Jaccard similarity indices were used for numerical evaluation of the proposed hybrid model. The highly successful system yielded an average of 0.97 and 0.94 respectively.

  11. A Novel Active Contour Model for MRI Brain Segmentation used in Radiotherapy Treatment Planning

    PubMed Central

    Mostaar, Ahmad; Houshyari, Mohammad; Badieyan, Saeedeh

    2016-01-01

    Introduction Brain image segmentation is one of the most important clinical tools used in radiology and radiotherapy. But accurate segmentation is a very difficult task because these images mostly contain noise, inhomogeneities, and sometimes aberrations. The purpose of this study was to introduce a novel, locally statistical active contour model (ACM) for magnetic resonance image segmentation in the presence of intense inhomogeneity with the ability to determine the position of contour and energy diagram. Methods A Gaussian distribution model with different means and variances was used for inhomogeneity, and a moving window was used to map the original image into another domain in which the intensity distributions of inhomogeneous objects were still Gaussian but were better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying a bias field by the original signal within the window. Then, a statistical energy function is defined for each local region. Also, to evaluate the performance of our method, experiments were conducted on MR images of the brain for segment tumors or normal tissue as visualization and energy functions. Results In the proposed method, we were able to determine the size and position of the initial contour and to count iterations to have a better segmentation. The energy function for 20 to 430 iterations was calculated. The energy function was reduced by about 5 and 7% after 70 and 430 iterations, respectively. These results showed that, with increasing iterations, the energy function decreased, but it decreased faster during the early iterations, after which it decreased slowly. Also, this method enables us to stop the segmentation based on the threshold that we define for the energy equation. Conclusion An active contour model based on the energy function is a useful tool for medical image segmentation. The proposed method combined the information about neighboring pixels that

  12. Evaluation of competitive adsorption in anaerobic GAC reactors

    SciTech Connect

    Nakhla, G.F.; Suidan, M.T.

    1995-10-01

    This study primarily investigates the role of competition in completely mixed anaerobic granular activated carbon (GAC) reactors treating a synthetic wastewater consisting of acetic acid, phenol, and o-cresol, and also addresses dual substrate biodegradation. The fate of the biodegradable nonadsorbable substrate followed very closely that of the biodegradable adsorbable substrate. As adsorption complemented biodegradation in this system, with the two being oppositely influenced by the GAC replacement rate, the removal of both biodegradable substrates exhibited both a maximum and minimum at GAC residence times of 30 and 12 days, respectively. On comparing the experimental capacities for o-cresol, which resisted biodegradation in the GAC reactors, with the o-cresol isotherm capacities, the effect of phenol competition for adsorption was found to be negligible when the effluent o-cresol concentrations were orders of magnitude higher than the concentrations of the biodegradable phenol. Competition effects decreased the adsorptive capacities of the reactors` GAC for o-cresol when phenol and o-cresol concentrations were of the same order of magnitude, although phenol sorptive capacities were predicted much more closely than at very low phenol concentration. The ideal adsorbed solution theory (IAST) was found to fairly describe the competition for adsorption between phenol and o-cresol despite some discrepancies between the experimental and the model-predicted capacities at low adsorbate concentrations.

  13. A robust region-based active contour model with point classification for ultrasound breast lesion segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua; Zhang, Lidan; Ren, Haibing; Kim, Ji-Yeun

    2013-02-01

    Lesion segmentation is one of the key technologies for computer-aided diagnosis (CAD) system. In this paper, we propose a robust region-based active contour model (ACM) with point classification to segment high-variant breast lesion in ultrasound images. First, a local signed pressure force (LSPF) function is proposed to classify the contour points into two classes: local low contrast class and local high contrast class. Secondly, we build a sub-model for each class. For low contrast class, the sub-model is built by combining global energy with local energy model to find a global optimal solution. For high contrast class, the sub-model is just the local energy model for its good level set initialization. Our final energy model is built by adding the two sub-models. Finally, the model is minimized and evolves the level set contour to get the segmentation result. We compare our method with other state-of-art methods on a very large ultrasound database and the result shows that our method can achieve better performance.

  14. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field

    PubMed Central

    Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2013-01-01

    Purpose: Lung lesions vary considerably in size, density, and shape, and can attach to surrounding anatomic structures such as chest wall or mediastinum. Automatic segmentation of the lesions poses a challenge. This work communicates a new three-dimensional algorithm for the segmentation of a wide variety of lesions, ranging from tumors found in patients with advanced lung cancer to small nodules detected in lung cancer screening programs. Methods: The authors’ algorithm uniquely combines the image processing techniques of marker-controlled watershed, geometric active contours as well as Markov random field (MRF). The user of the algorithm manually selects a region of interest encompassing the lesion on a single slice and then the watershed method generates an initial surface of the lesion in three dimensions, which is refined by the active geometric contours. MRF improves the segmentation of ground glass opacity portions of part-solid lesions. The algorithm was tested on an anthropomorphic thorax phantom dataset and two publicly accessible clinical lung datasets. These clinical studies included a same-day repeat CT (prewalk and postwalk scans were performed within 15 min) dataset containing 32 lung lesions with one radiologist's delineated contours, and the first release of the Lung Image Database Consortium (LIDC) dataset containing 23 lung nodules with 6 radiologists’ delineated contours. The phantom dataset contained 22 phantom nodules of known volumes that were inserted in a phantom thorax. Results: For the prewalk scans of the same-day repeat CT dataset and the LIDC dataset, the mean overlap ratios of lesion volumes generated by the computer algorithm and the radiologist(s) were 69% and 65%, respectively. For the two repeat CT scans, the intra-class correlation coefficient (ICC) was 0.998, indicating high reliability of the algorithm. The mean relative difference was −3% for the phantom dataset. Conclusions: The performance of this new segmentation

  15. EFFECT OF DISSOLVED OXYGEN ON PHENOLS BREAKTHROUGH FROM GAC ADSORBERS

    EPA Science Inventory

    This study demonstrates that molecular oxygen plays an important role in the adsorption of organic compounds from water by activated carbon. It was determined that the adsorptive capacity of granular activated carbon (GAC) for o-cresol can increase by almost 200% as a result of...

  16. Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems.

    PubMed

    Sirianuntapiboon, Suntud; Ungkaprasatcha, Ongorn

    2007-10-01

    Living bio-sludge from domestic wastewater treatment plant was used as adsorbent of heavy metals (Pb(2+), Ni(2+)) and its adsorption capacity was about 10-30% reduced by autoclaving at 110 degrees C for 10 min. The living bio-sludge acclimatized in synthetic industrial estate wastewater (SIEWW) without heavy metals showed the highest Pb(2+) and Ni(2+) adsorption capacities at 840+/-20 and 720+/-10 mg/g bio-sludge, respectively. The adsorbed Pb(2+) and Ni(2+) were easily eluted (70-77%) from bio-sludge by washing with 0.1 mol/l HNO(3) solution. The heavy metals (Pb(2+), Ni(2+)) removal efficiency of both SBR and GAC-SBR systems were increased with the increase of hydraulic retention time (HRT), or the decrease of organic loading. The SBR system showed higher heavy metals removal efficiency than GAC-SBR system at the same organic loading or HRT. The Pb(2+), Ni(2+), BOD(5), COD and TKN removal efficiencies of GAC-SBR system were 88.6+/-0.9%, 94.6+/-0.1%, 91.3+/-1.0%, 81.9+/-1.0% and 62.9+/-0.5%, respectively with industrial estate wastewater (IEWW) with 410 mg/l glucose, 5 mg/l Pb(2+) and 5 mg/l Ni(2+) under organic loading of 1.25 kg BOD(5)/m(3) d (HRT of 3 days). The bio-sludge quality (sludge volume index: SVI) of the system was less than 80 ml/g. The excess sludge from both SBR and GAC-SBR systems with SIEWW under the organic loading of 1.25-2.50 kg BOD(5)/m(3) d contained Pb(2+) and Ni(2+) at concentrations of 240-250 mg Pb(2+)/g bio-sludge and 180-210 mg Ni(2+)/g bio-sludge, respectively.

  17. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system.

    PubMed

    Lai, Bo; Zhou, Yuexi; Yang, Ping; Yang, Jinghui; Wang, Juling

    2013-01-01

    The degradation of 3,3'-iminobis-propanenitrile was investigated using the Fe(0)/GAC micro-electrolysis system. Effects of influent pH value, Fe(0)/GAC ratio and granular activated carbon (GAC) adsorption on the removal efficiency of the pollutant were studied in the Fe(0)/GAC micro-electrolysis system. The degradation of 3,3'-iminobis-propanenitrile was affected by influent pH, and a decrease of the influent pH values from 8.0 to 4.0 led to the increase of degradation efficiency. Granular activated carbon was added as cathode to form macroscopic galvanic cells between Fe(0) and GAC and enhance the current efficiency of the Fe(0)/GAC micro-electrolysis system. The GAC could only adsorb the pollutant and provide buffer capacity for the Fe(0)/GAC micro-electrolysis system, and the macroscopic galvanic cells of the Fe(0)/GAC micro-electrolysis system played a leading role in degradation of 3,3'-iminobis-propanenitrile. With the analysis of the degradation products with GC-MS, possible reaction pathway for the degradation of 3,3'-iminobis-propanenitrile by the Fe(0)/GAC micro-electrolysis system was suggested.

  18. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept.

  19. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  20. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  1. CONTROLLING ORGANICS WITH GAC: A COST AND PERFORMANCE ANALYSIS

    EPA Science Inventory

    The amendments to the US Safe Drinking Water Act require extensive evaluation of the feasibility or removing organic compounds using granular activated carbon (GAC). To meet deadlines for this technology evaluation, the US Environmental Prtotection Agency has combined the use of ...

  2. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    NASA Astrophysics Data System (ADS)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  3. Memory based active contour algorithm using pixel-level classified images for colon crypt segmentation.

    PubMed

    Cohen, Assaf; Rivlin, Ehud; Shimshoni, Ilan; Sabo, Edmond

    2015-07-01

    In this paper, we introduce a novel method for detection and segmentation of crypts in colon biopsies. Most of the approaches proposed in the literature try to segment the crypts using only the biopsy image without understanding the meaning of each pixel. The proposed method differs in that we segment the crypts using an automatically generated pixel-level classification image of the original biopsy image and handle the artifacts due to the sectioning process and variance in color, shape and size of the crypts. The biopsy image pixels are classified to nuclei, immune system, lumen, cytoplasm, stroma and goblet cells. The crypts are then segmented using a novel active contour approach, where the external force is determined by the semantics of each pixel and the model of the crypt. The active contour is applied for every lumen candidate detected using the pixel-level classification. Finally, a false positive crypt elimination process is performed to remove segmentation errors. This is done by measuring their adherence to the crypt model using the pixel level classification results. The method was tested on 54 biopsy images containing 4944 healthy and 2236 cancerous crypts, resulting in 87% detection of the crypts with 9% of false positive segments (segments that do not represent a crypt). The segmentation accuracy of the true positive segments is 96%.

  4. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  5. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model

    PubMed Central

    Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  6. Locally constrained active contour: a region-based level set for ovarian cancer metastasis segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Yao, Jianhua; Wang, Shijun; Linguraru, Marius George; Summers, Ronald M.

    2014-03-01

    Accurate segmentation of ovarian cancer metastases is clinically useful to evaluate tumor growth and determine follow-up treatment. We present a region-based level set algorithm with localization constraints to segment ovarian cancer metastases. Our approach is established on a representative region-based level set, Chan-Vese model, in which an active contour is driven by region competition. To reduce over-segmentation, we constrain the level set propagation within a narrow image band by embedding a dynamic localization function. The metastasis intensity prior is also estimated from image regions within the level set initialization. The localization function and intensity prior force the level set to stop at the desired metastasis boundaries. Our approach was validated on 19 ovarian cancer metastases with radiologist-labeled ground-truth on contrast-enhanced CT scans from 15 patients. The comparison between our algorithm and geodesic active contour indicated that the volume overlap was 75+/-10% vs. 56+/-6%, the Dice coefficient was 83+/-8% vs. 63+/-8%, and the average surface distance was 2.2+/-0.6mm vs. 4.4+/-0.9mm. Experimental results demonstrated that our algorithm outperformed traditional level set algorithms.

  7. An active contour method for bone cement reconstruction from C-arm x-ray images.

    PubMed

    Lucas, Blake C; Otake, Yoshito; Armand, Mehran; Taylor, Russell H

    2012-04-01

    A novel algorithm is presented to segment and reconstruct injected bone cement from a sparse set of X-ray images acquired at arbitrary poses. The sparse X-ray multi-view active contour (SxMAC-pronounced "smack") can 1) reconstruct objects for which the background partially occludes the object in X-ray images, 2) use X-ray images acquired on a noncircular trajectory, and 3) incorporate prior computed tomography (CT) information. The algorithm's inputs are preprocessed X-ray images, their associated pose information, and prior CT, if available. The algorithm initiates automated reconstruction using visual hull computation from a sparse number of X-ray images. It then improves the accuracy of the reconstruction by optimizing a geodesic active contour. Experiments with mathematical phantoms demonstrate improvements over a conventional silhouette based approach, and a cadaver experiment demonstrates SxMAC's ability to reconstruct high contrast bone cement that has been injected into a femur and achieve sub-millimeter accuracy with four images.

  8. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity

    PubMed Central

    Dubern, Jean-Frédéric; Li, Hui; Halliday, Nigel; Chernin, Leonid; Gao, Kexiang; Cámara, Miguel; Liu, Xiaoguang

    2015-01-01

    The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs) and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA). To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS) and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a differential

  9. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-08-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding "hot-spots", and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  10. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    PubMed Central

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  11. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  12. Synthetic aperture radar image segmentation based on edge-region active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wen, Xianbin; Xu, Haixia; Meng, Qingxia

    2016-07-01

    An energy functional is proposed based on an edge-region active contour model for synthetic aperture radar (SAR) image segmentation. The proposed energy functional not only has a desirable property to process inhomogeneous regions in SAR images, but also shows satisfactory convergence speed. Our proposed energy functional consists of two main energy terms: an edge-region term and a regularization term. The edge-region term is derived from a Gamma model and gradient term model, which can process the speckle noises and drive the motion of the curves toward desired locations. The regularization term is not only able to maintain a desired shape of the evolution curves but also has a strong smoothing curve effect and avoid the occurrence of small, isolated regions in the final segmentation. Finally, the gradient descent flow method is introduced for minimizing our energy functional. A desirable feature of the proposed method is that it is not sensitive to the contour initialization. Compared with other methods, experimental results show that the proposed approach has promising edge detection results on the synthetic and real SAR images.

  13. Shoreline Mapping with Integrated HSI-DEM using Active Contour Method

    NASA Astrophysics Data System (ADS)

    Sukcharoenpong, Anuchit

    Shoreline mapping has been a critical task for federal/state agencies and coastal communities. It supports important applications such as nautical charting, coastal zone management, and legal boundary determination. Current attempts to incorporate data from hyperspectral imagery to increase the efficiency and efficacy of shoreline mapping have been limited due to the complexity in processing its data as well as its inferior spatial resolution when compared to multispectral imagery or to sensors such as LiDAR. As advancements in remote-sensing technologies increase sensor capabilities, the ability to exploit the spectral formation carried in hyperspectral images becomes more imperative. This work employs a new approach to extracting shorelines from AVIRIS hyperspectral images by combination with a LiDAR-based DEM using a multiphase active contour segmentation technique. Several techniques, such as study of object spectra and knowledge-based segmentation for initial contour generation, have been employed in order to achieve a sub-pixel level of accuracy and maintain low computational expenses. Introducing a DEM into hyperspectral image segmentation proves to be a useful tool to eliminate misclassifications and improve shoreline positional accuracy. Experimental results show that mapping shorelines from hyperspectral imagery and a DEM can be a promising approach as many further applications can be developed to exploit the rich information found in hyperspectral imagery.

  14. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  15. A circumscribing active contour model for delineation of nuclei and membranes of megakaryocytes in bone marrow trephine biopsy images

    NASA Astrophysics Data System (ADS)

    Song, Tzu-Hsi; Sanchez, Victor; EIDaly, Hesham; Rajpoot, Nasir M.

    2015-03-01

    The assessment of megakaryocytes (MKs) in bone marrow trephine images is an important step in the classification of different subtypes of myeloproliferative neoplasms (MPNs). In general, bone marrow trephine images include several types of cells mixed together, which make it quite difficult to visually identify MKs. In order to aid hematopathologists in the identification and study of MKs, we develop an image processing framework with supervised machine learning approaches and a novel circumscribing active contour model to identify potential MKs and then to accurately delineate the corresponding nucleus and membrane. Specifically, a number of color and texture features are used in a nave Bayesian classifier and an Adaboost classifier to locate the regions with a high probability of depicting MKs. A region-based active contour is used on the candidate MKs to accurately delineate the boundaries of nucleus and membrane. The proposed circumscribing active contour model employs external forces not only based on pixel intensities, but also on the probabilities of depicting MKs as computed by the classifiers. Experimental results suggest that the machine learning approach can detect potential MKs with an accuracy of more than 75%. When our circumscribing active contour model is employed on the candidate MKs, the nucleus and membrane boundaries are segmented with an accuracy of more than 80% as measured by the Dice similarity coefficient. Compared to traditional region-based active contours, the use of additional external forces based on the probability of depicting MKs improves segmentation performance and computational time by an average 5%.

  16. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.

  17. Contour complexity and contour detection.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    Itis well-known that "smooth" chains of oriented elements-contours-are more easily detected amid background noise than more undulating (i.e., "less smooth") chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process-the identification of organized patterns in the environment.

  18. SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Wang, Tingting

    2017-02-01

    In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.

  19. QUANTITATIVE CELL MOTILITY FOR IN VITRO WOUND HEALING USING LEVEL SET-BASED ACTIVE CONTOUR TRACKING.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit K; Baskin, Tobias I; Dong, Gang

    2006-04-06

    Quantifying the behavior of cells individually, and in clusters as part of a population, under a range of experimental conditions, is a challenging computational task with many biological applications. We propose a versatile algorithm for segmentation and tracking of multiple motile epithelial cells during wound healing using time-lapse video. The segmentation part of the proposed method relies on a level set-based active contour algorithm that robustly handles a large number of cells. The tracking part relies on a detection-based multiple-object tracking method with delayed decision enabled by multi-hypothesis testing. The combined method is robust to complex cell behavior including division and apoptosis, and to imaging artifacts such as illumination changes.

  20. Adaptive tracking of weld joints using active contour model in arc-welding processes

    NASA Astrophysics Data System (ADS)

    Kim, Jaeseon; Koh, Kyoungchul; Cho, Hyungsuck

    2001-02-01

    12 This paper presents a vision processing scheme to automatic weld joint tracking in robotic arc welding process. Particular attention is concentrated on its robustness against various optical disturbances, such as arc glares and weld spatters radiating from the melted weld pool. Underlying the developed vision processing is a kind of model-based pattern searching, which is necessarily accompanied by two separate stages of modeling and tracking. In the modeling stage, a syntactic approach is adopted to identify unknown weld joint structure. The joint profile identified in the modeling stage is used as a starting point for successive tracking of variations in the geometry of weld joint during welding, which is automatically achieved by an active contour model technology following feature- based template matching. The performance of the developed scheme is investigated through a series of practical welding experiments.

  1. A novel active contour model for unsupervised low-key image segmentation

    NASA Astrophysics Data System (ADS)

    Mei, Jiangyuan; Si, Yulin; Karimi, Hamid; Gao, Huijun

    2013-06-01

    Unsupervised image segmentation is greatly useful in many vision-based applications. In this paper, we aim at the unsupervised low-key image segmentation. In low-key images, dark tone dominates the background, and gray level distribution of the foreground is heterogeneous. They widely exist in the areas of space exploration, machine vision, medical imaging, etc. In our algorithm, a novel active contour model with the probability density function of gamma distribution is proposed. The flexible gamma distribution gives a better description for both of the foreground and background in low-key images. Besides, an unsupervised curve initialization method is designed, which helps to accelerate the convergence speed of curve evolution. The experimental results demonstrate the effectiveness of the proposed algorithm through comparison with the CV model. Also, one real-world application based on our approach is described in this paper.

  2. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent

    PubMed Central

    GHAYOUMI ZADEH, Hossein; HADDADNIA, Javad; MONTAZERI, Alimohammad

    2016-01-01

    Background: The segmentation of cancerous areas in breast images is important for the early detection of disease. Thermal imaging has advantages, such as being non-invasive, non-radiation, passive, quick, painless, inexpensive, and non-contact. Imaging technique is the focus of this research. Methods: The proposed model in this paper is a combination of surf and corners that are very resistant. Obtained features are resistant to changes in rotation and revolution then with the help of active contours, this feature has been used for segmenting cancerous areas. Results: Comparing the obtained results from the proposed method and mammogram show that proposed method is Accurate and appropriate. Benign and malignance of segmented areas are detected by Lyapunov exponent. Values obtained include TP=91.31%, FN=8.69%, FP=7.26%. Conclusion: The proposed method can classify those abnormally segmented areas of the breast, to the Benign and malignant cancer. PMID:27398339

  3. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  4. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1 . Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1 . Granular activated carbon (GAC) adsorption is w...

  5. IN-PLACE REGENERATION OF SVE LOADED GAC USING FENTON'S REAGENTS

    EPA Science Inventory

    Ten out of the 25 most frequently detected groundwater contaminants at hazardous waste sites are chlorinated volatile organic compounds (VOCs) 1. Trichloroethylene (TCE) and tetrachloroethylene (PCE) are among the top three 1. Granular activated carbon (GAC) adsorption is widel...

  6. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    SciTech Connect

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M.; Reamer, Courtney B.; Mohler, Emile R.

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  7. Automated detection of lung tumors in PET/CT images using active contour filter

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Adachi, Hayato; Tsujimoto, Masakazu; Fujita, Hiroshi; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo; Nishio, Masami; Kobayashi, Toshiki

    2015-03-01

    In a previous study, we developed a hybrid tumor detection method that used both computed tomography (CT) and positron emission tomography (PET) images. However, similar to existing computer-aided detection (CAD) schemes, it was difficult to detect low-contrast lesions that touch to the normal organs such as the chest wall or blood vessels in the lung. In the current study, we proposed a novel lung tumor detection method that uses active contour filters to detect the nodules deemed "difficult" in previous CAD schemes. The proposed scheme detects lung tumors using both CT and PET images. As for the detection in CT images, the massive region was first enhanced using an active contour filter (ACF), which is a type of contrast enhancement filter that has a deformable kernel shape. The kernel shape involves closed curves that are connected by several nodes that move iteratively in order to enclose the massive region. The final output of ACF is the difference between the maximum pixel value on the deformable kernel, and pixel value on the center of the filter kernel. Subsequently, the PET images were binarized to detect the regions of increased uptake. The results were integrated, followed by the false positive reduction using 21 characteristic features and three support vector machines. In the experiment, we evaluated the proposed method using 100 PET/CT images. More than half of nodules missed using previous methods were accurately detected. The results indicate that our method may be useful for the detection of lung tumors using PET/CT images.

  8. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  9. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  10. Sunspots and Coronal Bright Points Tracking using a Hybrid Algorithm of PSO and Active Contour Model

    NASA Astrophysics Data System (ADS)

    Dorotovic, I.; Shahamatnia, E.; Lorenc, M.; Rybansky, M.; Ribeiro, R. A.; Fonseca, J. M.

    2014-02-01

    In the last decades there has been a steady increase of high-resolution data, from ground-based and space-borne solar instruments, and also of solar data volume. These huge image archives require efficient automatic image processing software tools capable of detecting and tracking various features in the solar atmosphere. Results of application of such tools are essential for studies of solar activity evolution, climate change understanding and space weather prediction. The follow up of interplanetary and near-Earth phenomena requires, among others, automatic tracking algorithms that can determine where a feature is located, on successive images taken along the period of observation. Full-disc solar images, obtained both with the ground-based solar telescopes and the instruments onboard the satellites, provide essential observational material for solar physicists and space weather researchers for better understanding the Sun, studying the evolution of various features in the solar atmosphere, and also investigating solar differential rotation by tracking such features along time. Here we demonstrate and discuss the suitability of applying a hybrid Particle Swarm Optimization (PSO) algorithm and Active Contour model for tracking and determining the differential rotation of sunspots and coronal bright points (CBPs) on a set of selected solar images. The results obtained confirm that the proposed approach constitutes a promising tool for investigating the evolution of solar activity and also for automating tracking features on massive solar image archives.

  11. Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer.

    PubMed

    Ali, Sahirzeeshan; Veltri, Robert; Epstein, Jonathan I; Christudass, Christhunesa; Madabhushi, Anant

    2011-01-01

    Shape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit. In this paper we present a novel adaptive active contour scheme (AdACM) that combines boundary and region based energy terms with a shape prior in a multi level set formulation. To reduce the computational overhead, the shape prior term in the variational formulation is only invoked for those instances in the image where overlaps between objects are identified; these overlaps being identified via a contour concavity detection scheme. By not having to invoke all 3 terms (shape, boundary, region) for segmenting every object in the scene, the computational expense of the integrated active contour model is dramatically reduced, a particularly relevant consideration when multiple objects have to be segmented on very large histopathological images. The AdACM was employed for the task of segmenting nuclei on 80 prostate cancer tissue microarray images. Morphological features extracted from these segmentations were found to able to discriminate different Gleason grade patterns with a classification accuracy of 84% via a Support Vector Machine classifier. On average the AdACM model provided 100% savings in computational times compared to a non-optimized hybrid AC model involving a shape prior.

  12. 3D Brain Segmentation Using Dual-Front Active Contours with Optional User Interaction

    PubMed Central

    Yezzi, Anthony; Cohen, Laurent D.

    2006-01-01

    Important attributes of 3D brain cortex segmentation algorithms include robustness, accuracy, computational efficiency, and facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide the segmentation to ensure an accurate final result. We propose a novel 3D brain cortex segmentation procedure utilizing dual-front active contours which minimize image-based energies in a manner that yields flexibly global minimizers based on active regions. Region-based information and boundary-based information may be combined flexibly in the evolution potentials for accurate segmentation results. The resulting scheme is not only more robust but much faster and allows the user to guide the final segmentation through simple mouse clicks which add extra seed points. Due to the flexibly global nature of the dual-front evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed of our scheme compared with other methods. PMID:23165037

  13. Segmenting breast cancerous regions in thermal images using fuzzy active contours.

    PubMed

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710

  14. Segmenting breast cancerous regions in thermal images using fuzzy active contours

    PubMed Central

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710

  15. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    PubMed

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  16. Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation

    PubMed Central

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139

  17. The two-component regulators GacS and GacA positively regulate a nonfluorescent siderophore through the Gac/Rsm signaling cascade in high-siderophore-yielding Pseudomonas sp. strain HYS.

    PubMed

    Yu, Xinyan; Chen, Min; Jiang, Zhen; Hu, Yi; Xie, Zhixiong

    2014-09-01

    Siderophores, which are produced to overcome iron deficiency, are believed to be closely related to the adaptability of bacteria. The high-siderophore-yielding Pseudomonas sp. strain HYS simultaneously secretes the fluorescent siderophore pyoverdine and another nonfluorescent siderophore that is a major contributor to the high siderophore yield. Transposon mutagenesis revealed siderophore-related genes, including the two-component regulators GacS/GacA and a special cluster containing four open reading frames (the nfs cluster). Deletion mutations of these genes abolished nonfluorescent-siderophore production, and expression of the nfs cluster depended on gacA, indicating that gacS-gacA may control the nonfluorescent siderophore through regulation of the nfs cluster. Furthermore, regulation of the nonfluorescent siderophore by GacS/GacA involved the Gac/Rsm pathway. In contrast, inactivation of GacS/GacA led to upregulation of the fluorescent pyoverdine. The two siderophores were secreted under different iron conditions, probably because of differential effects of GacS/GacA. The global GacS/GacA regulatory system may control iron uptake by modulating siderophore production and may enable bacteria to adapt to changing iron environments.

  18. Detection of the intima and media layer thickness of ultrasound common carotid artery image using efficient active contour segmentation technique.

    PubMed

    Santhiyakumari, N; Rajendran, P; Madheswaran, M; Suresh, S

    2011-11-01

    An active contour segmentation technique for extracting the intima-media layer of the common carotid artery (CCA) ultrasound images employing semiautomatic region of interest identification and speckle reduction techniques is presented in this paper. An attempt has been made to test the ultrasound images of the carotid artery of different subjects with this contour segmentation based on improved dynamic programming method. It is found that the preprocessing of ultrasound images of the CCA with region identification and despeckleing followed by active contour segmentation algorithm can be successfully used in evaluating the intima-media thickness (IMT) of the normal and abnormal subjects. It is also estimated that the segmentation used in this paper results an intermethod error of 0.09 mm and a coefficient of variation of 18.9%, for the despeckled images. The magnitudes of the IMT values have been used to explore the rate of prediction of blockage existing in the cerebrovascular and cardiovascular pathologies and also hypertension and atherosclerosis.

  19. A robust active contour edge detection algorithm based on local Gaussian statistical model for oil slick remote sensing image

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia

    2015-08-01

    Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.

  20. Adsorption And Simultaneous Dechlorination Of PCBs On GAC/Fe/Pd: Mechanistic Aspects And Reactive Capping Barrier Concept

    EPA Science Inventory

    There are many concerns and challenges in current remediation strategies for sediments contaminated with polychlorinated biphenyls (PCBs). Our efforts have been geared toward the development of granular activated carbon (GAC) impregnated with reactive iron/palladium (Fe/Pd) bime...

  1. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence.

    PubMed

    Wang, Hong; Pryor, Marsha A; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy

    2013-10-01

    Opportunistic pathogens in potable water systems are an emerging health concern; however, the factors influencing their proliferation are poorly understood. Here we investigated the effects of prior granular activated carbon (GAC) biofiltration [GAC-filtered water, unfiltered water, and a blend (30% GAC filtered and 70% unfiltered water)] and disinfectant type (chlorine, chloramine) on opportunistic pathogen occurrence using five annular reactors (ARs) to simulate water distribution systems, particularly premise plumbing. GAC pre-treatment effectively reduced total organic carbon (TOC), resulting in three levels of influent TOC investigated. Quantitative polymerase chain reaction (q-PCR) provided molecular evidence of natural colonization of Legionella spp., Mycobacterium spp., Acanthamoeba spp., Hartmannella vermiformis and Mycobacterium avium on AR coupons. Cultivable mycobacteria and amoeba, including pathogenic species, were also found in bulk water and biofilm samples. While q-PCR tends to overestimate live cells, it provided a quantitative comparison of target organisms colonizing the AR biofilms in terms of gene copy numbers. In most cases, total bacteria and opportunistic pathogens were higher in the three undisinfected ARs, but the levels were not proportional to the level of GAC pre-treatment/TOC. Chlorine was more effective for controlling mycobacteria and Acanthamoeba, whereas chloramine was more effective for controlling Legionella. Both chlorine and chloramine effectively inhibited M. avium and H. vermiformis colonization. Pyrosequencing of 16S rRNA genes in coupon biofilms revealed a significant effect of GAC pre-treatment and disinfectant type on the microbial community structure. Overall, this study provides insights into the potential of different disinfectants and GAC biofilters at the treatment plant and in buildings to control downstream opportunistic pathogens and broader drinking water microbial communities.

  2. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  3. Segmenting the thoracic, abdominal and pelvic musculature on CT scans combining atlas-based model and active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2013-03-01

    Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.

  4. Three-Dimensional Contour Maps

    ERIC Educational Resources Information Center

    Lee, Edward

    2005-01-01

    In summary, this highly conceptual activity helps middle school students understand that the lines on the contour map represent intersections of the surface of the landform with regularly spaced horizontal planes. Building the landform and relating its features to the contour map offer many opportunities for visualization, all grounded in concrete…

  5. Balloon energy based on parametric active contour and directional Walsh-Hadamard transform and its application in tracking of texture object in texture background

    NASA Astrophysics Data System (ADS)

    Tahvilian, Homa; Moallem, Payman; Monadjemi, Amirhassan

    2012-12-01

    One of the popular approaches in object boundary detecting and tracking is active contour models (ACM). This article presents a new balloon energy in parametric active contour for tracking a texture object in texture background. In this proposed method, by adding the balloon energy to the energy function of the parametric ACM, a precise detection and tracking of texture target in texture background has been elaborated. In this method, texture feature of contour and object points have been calculated using directional Walsh-Hadamard transform, which is a modified version of the Walsh-Hadamard. Then, by comparing the texture feature of contour points with texture feature of the target object, movement direction of the balloon has been determined, whereupon contour curves are expanded or shrunk in order to adapt to the target boundaries. The tracking process is iterated to the last frames. The comparison between our method and the active contour method based on the moment demonstrates that our method is more effective in tracking object boundary edges used for video streams with a changing background. Consequently, the tracking precision of our method is higher; in addition, it converges more rapidly due to it slower complexity.

  6. Arsenic adsorption and speciation in drinking water by GAC-based iron-containing adsorbents

    NASA Astrophysics Data System (ADS)

    Gim, Yewon; Terry, Jeff; Gu, Zhimang; Hua, B.; Deng, Baolin

    2008-04-01

    Granular Activated Carbon (GAC) with Iron adsorbents were developed for effective removal of arsenic from drinking water. The structure and proposed mechanism for As removal was studied using X-ray absorption spectroscopy. The oxidation state of As(III)GAC sample was calculated using XANES spectra and verified to be predominantly As(V). The structure was determined using EXAFS spectra of As(V) and Fe. The Fe spectra suggested thin layer of Fe oxide formation on GAC surface. As data showed As oxide formed bond on the Fe oxide surface. The spectra were calculated using multiple geometrically optimized models calculated using density functional theory. Further calculations were done to verify the structure, and further examine the structure.

  7. Modelling GAC adsorption of biologically pre-treated process water from hydrothermal carbonization.

    PubMed

    Fettig, J; Liebe, H

    2015-01-01

    Granular-activated carbon (GAC) adsorption of biologically pre-treated process waters from hydrothermal carbonization (HTC) of different materials was investigated. Overall, isotherms showed that most of the dissolved organic substances are strongly adsorbable while the non-adsorbable fractions are small. The equilibrium data were modelled by using five fictive components to represent the organic matter. Mean film transfer coefficients and mean intraparticle diffusivities were derived from short-column and batch kinetic test data, respectively. Breakthrough curves in GAC columns could be predicted satisfactorily by applying the film-homogeneous diffusion model and using the equilibrium and kinetic parameters determined from batch tests. Thus, the approach is suited to model GAC adsorption of HTC process water under technical-scale conditions.

  8. Fenton- and Persulfate-driven Regeneration of Contaminant-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton- or persulfate-driven chemical oxidation regeneration of spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto GAC and chemical oxidation regeneration of the spent-GAC. Environmental...

  9. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  10. Detection of Pulmonary Nodules in CT Images Based on Fuzzy Integrated Active Contour Model and Hybrid Parametric Mixture Model

    PubMed Central

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and “weak” local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method. PMID:23690876

  11. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  12. New region-scalable discriminant and fitting energy functional for driving geometric active contours in medical image segmentation.

    PubMed

    Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2014-01-01

    We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.

  13. Segmentation of Uterus Using Laparoscopic Ultrasound by an Image-Based Active Contour Approach for Guiding Gynecological Diagnosis and Surgery.

    PubMed

    Gong, Xue-Hao; Lu, Jun; Liu, Jin; Deng, Ying-Yuan; Liu, Wei-Zong; Huang, Xian; Yang, Yong-Heng; Xu, Qin; Yu, Zhi-Ying

    2015-01-01

    In laparoscopic gynecologic surgery, ultrasound has been typically implemented to diagnose urological and gynecological conditions. We applied laparoscopic ultrasonography (using Esaote 7.5~10MHz laparoscopic transducer) on the retrospective analyses of 42 women subjects during laparoscopic extirpation and excision of gynecological tumors in our hospital from August 2011 to August 2013. The objective of our research is to develop robust segmentation technique for isolation and identification of the uterus from the ultrasound images, so as to assess, locate and guide in removing the lesions during laparoscopic operations. Our method enables segmentation of the uterus by the active contour algorithm. We evaluated 42 in-vivo laparoscopic images acquired from the 42 patients (age 39.1 ± 7.2 years old) and selected images pertaining to 4 cases of congenital uterine malformations and 2 cases of pelvic adhesions masses. These cases (n = 6) were used for our uterus segmentation experiments. Based on them, the active contour method was compared with the manual segmentation method by a medical expert using linear regression and the Bland-Altman analysis (used to measure the correlation and the agreement). Then, the Dice and Jaccard indices are computed for measuring the similarity of uterus segmented between computational and manual methods. Good correlation was achieved whereby 84%-92% results fall within the 95% confidence interval in the Student t-test) and we demonstrate that the proposed segmentation method of uterus using laparoscopic images is effective.

  14. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source.

    PubMed

    Kim, Ji Soo; Kim, Yong Hwan; Park, Ju Yeon; Anderson, Anne J; Kim, Young Cheol

    2014-03-01

    An aggressive root colonizer, Pseudomonas chlororaphis O6 produces various secondary metabolites that impact plant health. The sensor kinase GacS is a key regulator of the expression of biocontrol-related traits. Biofilm formation is one such trait because of its role in root surface colonization. This paper focuses on the effects of carbon source on biofilm formation. In comparison with the wild type, a gacS mutant formed biofilms at a reduced level with sucrose as the major carbon source but at much higher level with mannitol in the defined medium. Biofilm formation by the gacS mutant occurred without phenazine production and in the absence of normal levels of acyl homoserine lactones, which promote biofilms with other pseudomonads. Colonization of tomato roots was similar for the wild type and gacS mutant, showing that any differences in biofilm formation in the rhizosphere were not of consequence under the tested conditions. The reduced ability of the gacS mutant to induce systemic resistance against tomato leaf mold and tomato gray mold was consistent with a lack of production of effectors, such as phenazines. These results demonstrated plasticity in biofilm formation and root colonization in the rhizosphere by a beneficial pseudomonad.

  15. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  16. An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation

    PubMed Central

    Huang, Chencheng; Zeng, Li

    2015-01-01

    Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results. PMID:25837416

  17. EVALUATING THE COSTS OF PACKED-TOWER AERATION AND GAC FOR CONTROLLING SELECTED ORGANICS

    EPA Science Inventory

    This article focuses on a preliminary cost analysis that compares liquid-phase granular activated carbon (GAC) treatment with packed-tower aeration (PTA) treatment, with and without air emissions control. The sensitivity of cost to design and operating variables is also discussed...

  18. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.

    PubMed

    Way, Ted W; Hadjiiski, Lubomir M; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N; Kazerooni, Ella A; Bogot, Naama; Zhou, Chuan

    2006-07-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D

  19. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  20. Treatment of Industrial Process Effluents & Contaminated Groundwater Using the Biological Granular Activated Carbon-Fluidized Bed Reactor (GAC-FBR) Process. Volume I

    DTIC Science & Technology

    2007-11-02

    and effluent streams. The influent and effluent wastewater streams were analyzed for DNT, DAT, ethanol, ether, short chain fatty acids, and COD. Added...Substrates like glucose, alcohols or acetone are sufficient for activating the anaerobic biomass and supplying the reducing equivalents for the...separate the MeCI/ Water emulsions . The MeCI layer was removed with a Pasteur pipette and passed through another Pasteur pipette packed with anhydrous

  1. Segmentation of follicular regions on H&E slides using a matching filter and active contour model

    NASA Astrophysics Data System (ADS)

    Belkacem-Boussaid, Kamel; Prescott, Jeffrey; Lozanski, Gerard; Gurcan, Metin N.

    2010-03-01

    Follicular Lymphoma (FL) accounts for 20-25% of non-Hodgkin lymphomas in the United States. The first step in follicular lymphoma grading is the identification of follicles. The goal of this paper is to develop a technique to segment follicular regions in H&E stained images. The method is based on a robust active contour model, which is initialized by a seed point selected inside the follicle manually by the user. The novel aspect of this method is the introduction of a matched filter for the flattening of background in the L channel of the Lab color space. The performance of the algorithm was tested by comparing it against the manual segmentations of trained readers using the Zijbendos similarity index. The mean accuracy of the final segmentation compared to the manual ground truth was 0.71 with a standard deviation of 0.12.

  2. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    PubMed

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  3. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  4. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring.

    PubMed

    Suzuki, Kenji; Huynh, Hieu Trung; Liu, Yipeng; Calabrese, Dominic; Zhou, Karen; Oto, Aytekin; Hori, Masatoshi

    2013-01-01

    Computerized liver volumetry has been studied, because the current "gold-standard" manual volumetry is subjective and very time-consuming. Liver volumetry is done in either CT or MRI. A number of researchers have developed computerized liver segmentation in CT, but there are fewer studies on ones for MRI. Our purpose in this study was to develop a general framework for liver segmentation in both CT and MRI. Our scheme consisted of 1) an anisotropic diffusion filter to reduce noise while preserving liver structures, 2) a scale-specific gradient magnitude filter to enhance liver boundaries, 3) a fast-marching algorithm to roughly determine liver boundaries, and 4) a geodesic-active-contour model coupled with a level-set algorithm to refine the initial boundaries. Our CT database contained hepatic CT scans of 18 liver donors obtained under a liver transplant protocol. Our MRI database contains 23 patients with 1.5T MRI scanners. To establish "gold-standard" liver volumes, radiologists manually traced the contour of the liver on each CT or MR slice. We compared our computer volumetry with "gold-standard" manual volumetry. Computer volumetry in CT and MRI reached excellent agreement with manual volumetry (intra-class correlation coefficient = 0.94 and 0.98, respectively). Average user time for computer volumetry in CT and MRI was 0.57 ± 0.06 and 1.0 ± 0.13 min. per case, respectively, whereas those for manual volumetry were 39.4 ± 5.5 and 24.0 ± 4.4 min. per case, respectively, with statistically significant difference (p < .05). Our computerized liver segmentation framework provides an efficient and accurate way of measuring liver volumes in both CT and MRI.

  5. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression.

    PubMed

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K

    2008-07-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA

  6. Removal of Trihalomethanes by Dual Filtering Media (GAC-Sand) at El-Manshia Water Purification Plant.

    PubMed

    Mohamed, Manal A; Hassan, Ahmed H; El Messiry, Mamdouh A; Hazzaa, Reham A

    2006-01-01

    Prechlorination is used as an initial step in water purification for public supply. One of the drawbacks of the prechlorination is the reaction between natural organic matters with chlorine forming trihalmethanes. This study aims at evaluating the performance of granular activated carbon (GAC) with sand as a dual filtering media with different depths on removal of trihalomethanes (THMs) for improving water quality. The Czeck sand filter at El-Manshia Water Purification Plant was chosen in this study in order to improve its water quality. The pilot filter was designed to work as mono medium sand filter and dual GAC-Sand media. The depths of GAC were 5 cm, 10 cm, 15 cm, 20 cm, 30 cm, and 40 cm over 115 cm, 110 cm, 105 cm, 100 cm, 90 cm, and 80 cm of sand, respectively. The six filter depths of GAC in the dual filter were studied to choose the optimum depth of GAC to improve water quality especially for THMs removal and comparing with mono-sand media and with Czeck filter. The results showed that the GAC-Sand dual media filter of 30 cm depth of GAC and 90 cm sand was the best depth for improving water quality where it was efficient in adsorbing mostly the total trihalomethanes in which its percentage of removal was 87%. The filtered water turbidity had an average of 0.3 NTU and its percentage of removal was 90%, algae removal was 95%, but it had a poor effect on bacteria removal with 27% removal due to adsorption of residual chlorine by GAC. The study recommended replacing mono media by dual media filter to improve water quality where the GAC was efficient to remove trihalomethanes in which the relative concentration (C/Co) was 0.16. The benefit cost calculated on 30 cm depth of GAC is equal to 0.04 piaster/m(3). In addition, it resulted in longer filter run of 54 hrs compared to average filter run of 24 hr for Czech filters, as well as increased water productivity where unit filter run volume was 324 m(3)/m(2) instead of 144 m(3)/m(2) for Czech mono media.

  7. [Body-contouring surgery].

    PubMed

    Pitanguy, Ivo

    2003-01-01

    Concepts of beauty have been continuously evolving throughout the history of mankind. The voluptuous figures that were idealized by artists in the past have been substituted by slimmer forms. Medical advances in this century have permitted safe and efficient surgical correction of contour deformities. Until recently, these alterations were mostly hidden under heavy clothing or were reluctantly accepted. Current fashion trends generally promote body-revealing attire. The media frequently encourages the importance of fitness and good health linking these qualities with youthfulness and beauty. The subliminal as well as overt message is that these are necessary and desirable requirements for social acceptance and professional success. On the other hand, current sedentary lifestyle and dietary excesses, associated with factors such as genetic determination, pregnancy and the aging process, contribute to alterations of body contour that result in the loss of the individual's body image. This creates a strong psychological motivation for surgical correction. Localized fat deposits and skin flaccidity are sometimes resistant to the most sincere efforts in weight loss and sport activities. This ever-increasing request for contour surgery has been favorably met by safe and effective anesthesiology as well as efficient surgical techniques, resulting in a high degree of patient satisfaction. It is essential that today's aesthetic surgeon understand the motivations of patients who present with body contour deformities. A request for surgical treatment should be seen as a legitimate desire to achieve a physical form that approximates the individual with his or her ideal self-image. Additionally, the surgeon must always consider the possible benefit of including the participation of a multidisciplinary team approach. Depending on each case, this team should include consultants in endocrinology, dermatology, oculoplastics, pediatrics and other appropriate specialties.

  8. Diagnosis of dissolved organic matter removal by GAC treatment in biologically treated papermill effluents using advanced organic characterisation techniques.

    PubMed

    Antony, Alice; Bassendeh, Mojgan; Richardson, Desmond; Aquilina, Simon; Hodgkinson, Andrew; Law, Ian; Leslie, Greg

    2012-02-01

    Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62cf. 1.47kgm(-3)) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240mgL(-1). The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58mgL(-1)), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534gmol(-1)) and aromaticity (5.35 vs. 4.67Lmg(-1)m(-1)) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0Lmg(-1)m(-1) in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50gmol(-1) while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads.

  9. pSnakes: a new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images.

    PubMed

    de Alexandria, Auzuir Ripardo; Cortez, Paulo César; Bessa, Jessyca Almeida; da Silva Félix, John Hebert; de Abreu, José Sebastião; de Albuquerque, Victor Hugo C

    2014-10-01

    Active contours are image segmentation methods that minimize the total energy of the contour to be segmented. Among the active contour methods, the radial methods have lower computational complexity and can be applied in real time. This work aims to present a new radial active contour technique, called pSnakes, using the 1D Hilbert transform as external energy. The pSnakes method is based on the fact that the beams in ultrasound equipment diverge from a single point of the probe, thus enabling the use of polar coordinates in the segmentation. The control points or nodes of the active contour are obtained in pairs and are called twin nodes. The internal energies as well as the external one, Hilbertian energy, are redefined. The results showed that pSnakes can be used in image segmentation of short-axis echocardiogram images and that they were effective in image segmentation of the left ventricle. The echo-cardiologist's golden standard showed that the pSnakes was the best method when compared with other methods. The main contributions of this work are the use of pSnakes and Hilbertian energy, as the external energy, in image segmentation. The Hilbertian energy is calculated by the 1D Hilbert transform. Compared with traditional methods, the pSnakes method is more suitable for ultrasound images because it is not affected by variations in image contrast, such as noise. The experimental results obtained by the left ventricle segmentation of echocardiographic images demonstrated the advantages of the proposed model. The results presented in this paper are justified due to an improved performance of the Hilbert energy in the presence of speckle noise.

  10. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    NASA Astrophysics Data System (ADS)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  11. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    PubMed Central

    Luo, Gongning

    2017-01-01

    Segmentation of the left atrium (LA) from cardiac magnetic resonance imaging (MRI) datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs) and active contour model (ACM) approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC) and average surface-to-surface distance (S2S), were computed as 0.9227 ± 0.0598 and 1.14 ± 1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively. PMID:28316992

  12. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images.

    PubMed

    Rebouças Filho, Pedro Pedrosa; Cortez, Paulo César; da Silva Barros, Antônio C; C Albuquerque, Victor Hugo; R S Tavares, João Manuel

    2017-01-01

    The World Health Organization estimates that 300 million people have asthma, 210 million people have Chronic Obstructive Pulmonary Disease (COPD), and, according to WHO, COPD will become the third major cause of death worldwide in 2030. Computational Vision systems are commonly used in pulmonology to address the task of image segmentation, which is essential for accurate medical diagnoses. Segmentation defines the regions of the lungs in CT images of the thorax that must be further analyzed by the system or by a specialist physician. This work proposes a novel and powerful technique named 3D Adaptive Crisp Active Contour Method (3D ACACM) for the segmentation of CT lung images. The method starts with a sphere within the lung to be segmented that is deformed by forces acting on it towards the lung borders. This process is performed iteratively in order to minimize an energy function associated with the 3D deformable model used. In the experimental assessment, the 3D ACACM is compared against three approaches commonly used in this field: the automatic 3D Region Growing, the level-set algorithm based on coherent propagation and the semi-automatic segmentation by an expert using the 3D OsiriX toolbox. When applied to 40 CT scans of the chest the 3D ACACM had an average F-measure of 99.22%, revealing its superiority and competency to segment lungs in CT images.

  13. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    PubMed

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.

  14. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  15. Survival of GacS/GacA Mutants of the Biological Control Bacterium Pseudomonas aureofaciens 30-84 in the Wheat Rhizosphere

    PubMed Central

    Chancey, Scott T.; Wood, Derek W.; Pierson, Elizabeth A.; Pierson III, Leland S.

    2002-01-01

    GacS/GacA comprises a two-component regulatory system that controls the expression of secondary metabolites required for the control of plant diseases in many pseudomonads. High mutation frequencies of gacS and gacA have been observed in liquid culture. We examined whether gacS/gacA mutants could competitively displace the wild-type populations on roots and thus pose a threat to the efficacy of biological control. The survival of a gac mutant alone and in competition with the wild type on roots was examined in the biological control strain Pseudomonas aureofaciens 30-84. In this bacterium, GacS/GacA controls the expression of phenazine antibiotics that are inhibitory to plant pathogenic fungi and enhance the competitive survival of the bacterium. Wheat seedlings were inoculated with strain 30-84, and bacteria were recovered from roots after 21 days in sterile or nonsterile soil to check for the presence of gacS or gacA mutants. Although no mutants were detected in the inoculum, gacS/gacA mutants were recovered from 29 out of 31 roots and comprised up to 36% of the total bacterial populations. Southern hybridization analysis of the recovered gacA mutants did not indicate a conserved mutational mechanism. Replacement series analysis on roots utilizing strain 30-84 and a gacA mutant (30-84.gacA) or a gacS mutant (30-84.A2) demonstrated that although the mutant population partially displaced the wild type in sterile soil, it did not do so in natural soil. In fact, in natural soil final rhizosphere populations of wild-type strain 30-84 starting from mixtures were at least 1.5 times larger than would be predicted from their inoculation ratio and generally were greater than or equal to the population of wild type alone despite lower inoculation rates. These results indicate that although gacS/gacA mutants survive in natural rhizosphere populations, they do not displace wild-type populations. Better survival of wild-type populations in mixtures with mutants suggests that

  16. Contour integration with corners.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2016-10-01

    Contour integration refers to the ability of the visual system to bind disjoint local elements into coherent global shapes. In cluttered images containing randomly oriented elements a contour becomes salient when its elements are coaligned with a smooth global trajectory, as described by the Gestalt law of good continuation. Abrupt changes of curvature strongly diminish contour salience. Here we show that by inserting local corner elements at points of angular discontinuity, a jagged contour becomes as salient as a straight one. We report results from detection experiments for contours with and without corner elements which indicate their psychophysical equivalence. This presents a challenge to the notion that contour integration mostly relies on local interactions between neurons tuned to single orientations, and suggests that a site where single orientations and more complex local features are combined constitutes the early basis of contour and 2D shape processing.

  17. Equilibrium model for biodegradation and adsorption of mixtures in GAC columns

    SciTech Connect

    Erlanson, B.C.; Dvorak, B.I.; Speitel, G.E. Jr.; Lawler, D.F.

    1997-05-01

    Microbial activity in granular activated carbon (GAC) columns has received much attention over the last 15 years because biodegradation of one or more chemicals might increase the GAC service life, thereby decreasing costs. An equilibrium model for simultaneous biodegradation and adsorption was developed and verified with existing data. For simplicity the model was restricted to only two components: one biodegradable and one not. The results from modeling over 300 hypothetical situations identified conditions where biodegradation significantly extends the service life of granular activated carbon (GAC) columns. When the nonbiodegradable chemical controls the service life, the only significant gains in service life occurred when the biodegradable and nonbiodegradable chemical had similar adsorbabilities. When the biodegradable chemical controls the service life, the service life was 1.2--7 times that with adsorption alone, depending on the relative adsorbability of the two chemicals. The increase in service life can be maximized by ensuring that biodegradation begins as soon as possible after start-up. The model provides a good screening tool for initial assessments of process feasibility, preliminary economic analyses, and planning of detailed experimental and computer modeling studies. Examples are presented using benzene and TCE to illustrate how the general trends presented apply to specific cases.

  18. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    SciTech Connect

    Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi

    2010-05-15

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less completion time

  19. Automated tumour boundary delineation on 18F-FDG PET images using active contour coupled with shifted-optimal thresholding method

    NASA Astrophysics Data System (ADS)

    Khamwan, Kitiwat; Krisanachinda, Anchali; Pluempitiwiriyawej, Charnchai

    2012-10-01

    This study presents an automatic method to trace the boundary of the tumour in positron emission tomography (PET) images. It has been discovered that Otsu's threshold value is biased when the within-class variances between the object and the background are significantly different. To solve the problem, a double-stage threshold search that minimizes the energy between the first Otsu's threshold and the maximum intensity value is introduced. Such shifted-optimal thresholding is embedded into a region-based active contour so that both algorithms are performed consecutively. The efficiency of the method is validated using six sphere inserts (0.52-26.53 cc volume) of the IEC/2001 torso phantom. Both spheres and phantom were filled with 18F solution with four source-to-background ratio (SBR) measurements of PET images. The results illustrate that the tumour volumes segmented by combined algorithm are of higher accuracy than the traditional active contour. The method had been clinically implemented in ten oesophageal cancer patients. The results are evaluated and compared with the manual tracing by an experienced radiation oncologist. The advantage of the algorithm is the reduced erroneous delineation that improves the precision and accuracy of PET tumour contouring. Moreover, the combined method is robust, independent of the SBR threshold-volume curves, and it does not require prior lesion size measurement.

  20. Fenton-driven regeneration of MTBE-spent granular activated carbon - Effects of particle size and Iron Amendment Procedures

    EPA Science Inventory

    Fenton-driven regeneration of spent granular activated carbon (GAC) is a technology being developed to regenerate organic contaminant-spent GAC. Here, the effect of GAC particle size (>2 mm to <0.35 mm) on Fenton-driven oxidation of methyl tert-butyl ether (MTBE)-spent GAC was ev...

  1. Feasibility of treating emulsified oily and salty wastewaters through coagulation and bio-regenerated GAC filtration.

    PubMed

    Mancini, Giuseppe; Panzica, Michele; Fino, Debora; Cappello, Simone; Yakimov, Michail M; Luciano, Antonella

    2016-07-19

    In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl3), Aluminium sulphate (Al2(SO4)3) and Polyaluminum chloride (Al2(OH3)Cl3) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m(3) of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.

  2. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  3. Role of the GacS Sensor Kinase in the Regulation of Volatile Production by Plant Growth-Promoting Pseudomonas fluorescens SBW25

    PubMed Central

    Cheng, Xu; Cordovez, Viviane; Etalo, Desalegn W.; van der Voort, Menno; Raaijmakers, Jos M.

    2016-01-01

    In plant-associated Pseudomonas species, the production of several secondary metabolites and exoenzymes is regulated by the GacS/GacA two-component regulatory system (the Gac-system). Here, we investigated if a mutation in the GacS sensor kinase affects the production of volatile organic compounds (VOCs) in P. fluorescens SBW25 (Pf.SBW25) and how this impacts on VOCs-mediated growth promotion and induced systemic resistance of Arabidopsis and tobacco. A total of 205 VOCs were detected by Gas Chromatography Mass Spectrometry for Pf. SBW25 and the gacS-mutant grown on two different media for 3 and 6 days. Discriminant function analysis followed by hierarchical clustering revealed 24 VOCs that were significantly different in their abundance between Pf.SBW25 and the gacS-mutant, which included three acyclic alkenes (3-nonene, 4-undecyne, 1-undecene). These alkenes were significantly reduced by the gacS mutation independently of the growth media and of the incubation time. For Arabidopsis, both Pf.SBW25 and the gacS-mutant enhanced, via VOCs, root and shoot biomass, induced systemic resistance against leaf infections by P. syringae and rhizosphere acidification to the same extent. For tobacco, however, VOCs-mediated effects on shoot and root growth were significantly different between Pf.SBW25 and the gacS-mutant. While Pf.SBW25 inhibited tobacco root growth, the gacS-mutant enhanced root biomass and lateral root formation relative to the non-treated control plants. Collectively these results indicate that the sensor kinase GacS is involved in the regulation of VOCs production in Pf.SBW25, affecting plant growth in a plant species-dependent manner. PMID:27917180

  4. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Agner, Shannon C.; Xu, Jun; Madabhushi, Anant

    2013-01-01

    Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. Results: On a cohort of 50

  5. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    SciTech Connect

    Fritscher, Karl D. Sharp, Gregory; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer

    2014-05-15

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  6. Treatment of composite chemical wastewater by aerobic GAC-biofilm sequencing batch reactor (SBGR).

    PubMed

    Rao, N Chandrasekhara; Mohan, S Venkata; Muralikrishna, P; Sarma, P N

    2005-09-30

    The performance of granular activated carbon (GAC)-biofilm configured sequencing batch reactor (SBGR) in aerobic environment was investigated for the treatment of composite chemical wastewater [low BOD/COD ratio ( approximately 0.3), high sulfate content (1.75 g/l) and high TDS concentration (11 g/l)]. Composite wastewater was a combined mixture of effluents from about 100 chemical based industries. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h (fill: 15 min; reaction (aeration with recirculation): 23 h; settle: 30 min; decant: 15 min) and the performance of the system was studied at organic loading rates (OLR) of 1.7 kg COD/cum-day, 3.5 kg COD/cum-day and 5.5 kg COD/cum-day. The reactor showed efficient performance with respect to substrate degradation rate and sustained its performance at higher operating OLR (5.5 kg COD/cum-day) and at low BOD/COD ratio. Substrate utilization was found to increase with increase in the operating OLR. Maximum non-cumulative substrate utilization of 1.837 kg COD/cum-h, 2.99 kg COD/cum-h and 3.821 kg COD/cum-h was observed after 15 h of the cycle operation for operating OLRs of 1.7 kg COD/cum-day, 3.5 kg COD/cum-day and 5.5 kg COD/cum-day, respectively. Sulfate removal efficiency of 11+/-2% was recorded in the SBGR due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm. Effective performance of the reactor may be attributed to sorption capacity of GAC as carrier material facilitating low toxicant concentration in the mixed liquor. The existing high flow rates around the GAC particle results in good mass transfer of the substrate from the bulk liquid. The long retention of biofilm on GAC increases the potential for the treatment of recalcitrant industrial wastewater. GAC configured biofilm configuration coupled with sequencing batch mode operation appears to be promising

  7. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater.

    PubMed

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang

    2014-01-01

    This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.

  8. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    EPA Science Inventory

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  9. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  10. Variable contour securing system

    NASA Technical Reports Server (NTRS)

    Zebus, P. P.; Packer, P. N.; Haynie, C. C. (Inventor)

    1978-01-01

    A variable contour securing system has a retaining structure for a member whose surface contains a variable contour. The retaining mechanism includes a spaced array of adjustable spindles mounted on a housing. Each spindle has a base member support cup at one end. A vacuum source is applied to the cups for seating the member adjacent to the cups. A locking mechanism sets the spindles in a predetermined position once the member has been secured to the spindle support cups.

  11. GENERALIZED DIGITAL CONTOURING PROGRAM

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1994-01-01

    This is a digital computer contouring program developed by combining desirable characteristics from several existing contouring programs. It can easily be adapted to many different research requirements. The overlaid structure of the program permits desired modifications to be made with ease. The contouring program performs both the task of generating a depth matrix from either randomly or regularly spaced surface heights and the task of contouring the data. Each element of the depth matrix is computed as a weighted mean of heights predicted at an element by planes tangent to the surface at neighboring control points. Each contour line is determined by its intercepts with the sides of geometrical figures formed by connecting the various elements of the depth matrix with straight lines. Although contour charts are usually thought of as being two-dimensional pictorial representations of topographic formations of land masses, they can also be useful in portraying data which are obtained during the course of research in various scientific disciplines and which would ordinarily be tabulated. Any set of data which can be referenced to a two-dimensional coordinate system can be graphically represented by this program. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on the CDC 6000 Series. This program was developed in 1971.

  12. Reconstruction of surfaces from planar contours through contour interpolation

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  13. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model

    SciTech Connect

    Bellotti, R.; De Carlo, F.; Gargano, G.; Tangaro, S.; Cascio, D.; Catanzariti, E.; Cerello, P.; Cheran, S. C.; Delogu, P.; De Mitri, I.; Fulcheri, C.; Grosso, D.; Retico, A.; Squarcia, S.; Tommasi, E.; Golosio, Bruno

    2007-12-15

    A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.

  14. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  15. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    EPA Science Inventory

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  16. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    PubMed

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively.

  17. Contour detection based on brightness and contour completion

    NASA Astrophysics Data System (ADS)

    Zou, Lamei; Wan, Min; Jin, Liujia; Gao, Yahong; Yang, Weidong

    2015-12-01

    The further research of visual processing mechanism provides a new idea for contour detection. On the primary visual cortex, the non-classical receptive field of the neurons has the orientation selectivity exerts suppression effect on the response of classical receptive field, which influences edge or line perception. Based on the suppression property of non-classical receptive field and contour completion, this paper proposed a contour detection method based on brightness and contour completion. The experiment shows that the proposed method can not only effectively eliminate clutter information, but also connect the broken contour points by taking advantage of contour completion.

  18. Contour Completion Without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose.

  19. The Development of Contour Interpolation: Evidence from Subjective Contours

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2010-01-01

    Adults are skilled at perceiving subjective contours in regions without any local image information (e.g., [Ginsburg, 1975] and [Kanizsa, 1976]). Here we examined the development of this skill and the effect thereon of the support ratio (i.e., the ratio of the physically specified contours to the total contour length). Children (6-, 9-, and…

  20. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    EPA Science Inventory

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  1. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping.

    PubMed

    Gilad, Ariel; Meirovithz, Elhanan; Slovin, Hamutal

    2013-04-24

    The neuronal mechanisms underlying perceptual grouping of discrete, similarly oriented elements are not well understood. To investigate this, we measured neural population responses using voltage-sensitive dye imaging in V1 of monkeys trained on a contour-detection task. By mapping the contour and background elements onto V1, we could study their neural processing. Population response early in time showed activation patches corresponding to the contour/background individual elements. However, late increased activity in the contour elements, along with suppressed activity in the background elements, enabled us to visualize in single trials a salient continuous contour "popping out" from a suppressed background. This modulated activity in the contour and in background extended beyond the cortical representation of individual contour or background elements. Finally, the late modulation was correlated with behavioral performance of contour saliency and the monkeys' perceptual report. Thus, opposing responses in the contour and background may underlie perceptual grouping in V1.

  2. Computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection.

    PubMed

    Meziou, L; Histace, A; Precioso, F; Romain, O; Dray, X; Granado, B; Matuszewski, B J

    2014-01-01

    Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the "gold standard" technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.

  3. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis.

    PubMed

    Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P

    2017-02-09

    Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit.

  4. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  5. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  6. Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor.

    PubMed

    Islam, Md Shahinoor; Dong, Tao; McPhedran, Kerry N; Sheng, Zhiya; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2014-11-01

    Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp.

  7. Impact of UV-H2O2 Advanced Oxidation and Aging Processes on GAC Capacity for the Removal of Cyanobacterial Taste and Odor Compounds.

    PubMed

    Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron

    2015-01-01

    Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water.

  8. Impact of UV–H2O2 Advanced Oxidation and Aging Processes on GAC Capacity for the Removal of Cyanobacterial Taste and Odor Compounds

    PubMed Central

    Zamyadi, Arash; Sawade, Emma; Ho, Lionel; Newcombe, Gayle; Hofmann, Ron

    2015-01-01

    Cyanobacteria and their taste and odor (T&O) compounds are a growing concern in water sources globally. Geosmin and 2-methylisoborneol (MIB) are the most commonly detected T&O compounds associated with cyanobacterial presence in drinking water sources. The use of ultraviolet and hydrogen peroxide (H2O2) as an advanced oxidation treatment for T&O control is an emerging technology. However, residual H2O2 (>80% of the initial dose) has to be removed from water prior final disinfection. Recently, granular activated carbon (GAC) is used to remove H2O2 residual. The objective of this study is to assess the impact of H2O2 quenching and aging processes on GAC capacity for the removal of geosmin and MIB. Pilot columns with different types of GAC and presence/absence of H2O2 have been used for this study. H2O2 removal for the operational period of 6 months has no significant impact on GAC capacity to remove the geosmin and MIB from water. PMID:26462247

  9. Segmentation of the endocardial wall of the left atrium using local region-based active contours and statistical shape learning

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Gholami, Behnood; MacLeod, Robert S.; Blauer, Joshua; Haddad, Wassim M.; Tannenbaum, Allen R.

    2010-03-01

    Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers of the heart, is a rapidly growing problem in modern societies. One treatment, referred to as catheter ablation, targets specific parts of the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic resonance imaging has been used for both pre- and and post-ablation assessment of the atrial wall. Magnetic resonance imaging can aid in selecting the right candidate for the ablation procedure and assessing post-ablation scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the computer-assisted segmentation of the left atrial wall, in this paper we use shape learning and shape-based image segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic resonance images.

  10. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  11. The role of eye movements in a contour detection task.

    PubMed

    Van Humbeeck, Nathalie; Schmitt, Nadine; Hermens, Frouke; Wagemans, Johan; Ernst, Udo A

    2013-12-04

    Vision combines local feature integration with active viewing processes, such as eye movements, to perceive complex visual scenes. However, it is still unclear how these processes interact and support each other. Here, we investigated how the dynamics of saccadic eye movements interact with contour integration, focusing on situations in which contours are difficult to find or even absent. We recorded observers' eye movements while they searched for a contour embedded in a background of randomly oriented elements. Task difficulty was manipulated by varying the contour's path angle. An association field model of contour integration was employed to predict potential saccade targets by identifying stimulus locations with high contour salience. We found that the number and duration of fixations increased with the increasing path angle of the contour. In addition, fixation duration increased over the course of a trial, and the time course of saccade amplitude depended on the percept of observers. Model fitting revealed that saccades fully compensate for the reduced saliency of peripheral contour targets. Importantly, our model predicted fixation locations to a considerable degree, indicating that observers fixated collinear elements. These results show that contour integration actively guides eye movements and determines their spatial and temporal parameters.

  12. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS.

    PubMed

    Kang, Beom Ryong; Han, Song Hee; Zdor, Rob E; Anderson, Anne J; Spencer, Matt; Yang, Kwang Yeol; Kim, Yong Hwan; Lee, Myung Chul; Cho, Baik Ho; Kim, Young Cheol

    2007-04-01

    Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P chlororaphis 06 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

  13. Robot Hand Would Adapt To Contours

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Conceptual device uses hydraulic pressure to activate fingers. Projections on opposing fingers of proposed robot hand automatically conform to contours of object on contact. Pistons connected to common reservoir provide gentle, firm grip. Fingers communicate with each other via hydraulic pressure, without elaborate control system. Pistons move in and out, and tips slope to match contour of object. Their action tends to center object on finger. Hand used to grasp objects of various shapes and sizes. Conforming process passive; pressure of object on one or several pad elements forces other pad elements to touch it. Would not use elaborate mechanisms involving motors, cams, and cables.

  14. Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...

  15. Contour Completion without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-05-06

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite of psychological evidences for its importance. This paper proposes a purely contour-based higher-order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher-order inference problem can be transformed into an integer linear program (ILP) and be solved efficiently. Compared with methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose.

  16. Contour matching by epipolar geometry

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Lin; Zhang, Damin; Wei, Sui

    2003-09-01

    Matching features computed in images is an important process in multiview image analysis. When the motion between two images is large, the matching problem becomes very difficult. In this paper, we propose a contour matching algorithm based on geometric constraints. With the assumption that the contours are obtained from images taken from a moving camera with static scenes, we apply the epipolar constraint between two sets of contours and compute the corresponding points on the contours. From the initial epipolar constraints obtained from comer point matching, candidate contours are selected according to the epipolar geometry, the linear relation among tangent vectors of the contour. In order to reduce the possibility of false matches, the curvature of the contour of match points on a contour is also used as a selection method. The initial epipolar constraint is refined from the matched sets of contours. The algorithm can be applied to a pair or two pairs of images. All of the processes are fully automatic and successfully implemented and tested with various synthetic images.

  17. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  18. GacA is essential for Group A S treptococcus and defines a new class of monomeric dTDP‐4‐dehydrorhamnose reductases (RmlD)

    PubMed Central

    van der Beek, Samantha L.; Le Breton, Yoann; Ferenbach, Andrew T.; Chapman, Robert N.; van Aalten, Daan M. F.; Navratilova, Iva; Boons, Geert‐Jan; McIver, Kevin S.

    2015-01-01

    Summary The sugar nucleotide dTDP‐L‐rhamnose is critical for the biosynthesis of the Group A Carbohydrate, the molecular signature and virulence determinant of the human pathogen Group A S treptococcus (GAS). The final step of the four‐step dTDP‐L‐rhamnose biosynthesis pathway is catalyzed by dTDP‐4‐dehydrorhamnose reductases (RmlD). RmlD from the Gram‐negative bacterium S almonella is the only structurally characterized family member and requires metal‐dependent homo‐dimerization for enzymatic activity. Using a biochemical and structural biology approach, we demonstrate that the only RmlD homologue from GAS, previously renamed GacA, functions in a novel monomeric manner. Sequence analysis of 213 Gram‐negative and Gram‐positive RmlD homologues predicts that enzymes from all Gram‐positive species lack a dimerization motif and function as monomers. The enzymatic function of GacA was confirmed through heterologous expression of gac A in a S. mutans rml D knockout, which restored attenuated growth and aberrant cell division. Finally, analysis of a saturated mutant GAS library using Tn‐sequencing and generation of a conditional‐expression mutant identified gac A as an essential gene for GAS. In conclusion, GacA is an essential monomeric enzyme in GAS and representative of monomeric RmlD enzymes in Gram‐positive bacteria and a subset of Gram‐negative bacteria. These results will help future screens for novel inhibitors of dTDP‐L‐rhamnose biosynthesis. PMID:26278404

  19. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  20. Granular activated carbon promoted ozonation of a food-processing secondary effluent.

    PubMed

    Alvarez, Pedro M; Pocostales, J Pablo; Beltrán, Fernando J

    2011-01-30

    This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1).

  1. Precision contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip.

  2. Precision contour gage

    DOEpatents

    Bieg, L.F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip. 5 figs.

  3. Roads Centre-Axis Extraction in Airborne SAR Images: AN Approach Based on Active Contour Model with the Use of Semi-Automatic Seeding

    NASA Astrophysics Data System (ADS)

    Lotte, R. G.; Sant'Anna, S. J. S.; Almeida, C. M.

    2013-05-01

    Research works dealing with computational methods for roads extraction have considerably increased in the latest two decades. This procedure is usually performed on optical or microwave sensors (radar) imagery. Radar images offer advantages when compared to optical ones, for they allow the acquisition of scenes regardless of atmospheric and illumination conditions, besides the possibility of surveying regions where the terrain is hidden by the vegetation canopy, among others. The cartographic mapping based on these images is often manually accomplished, requiring considerable time and effort from the human interpreter. Maps for detecting new roads or updating the existing roads network are among the most important cartographic products to date. There are currently many studies involving the extraction of roads by means of automatic or semi-automatic approaches. Each of them presents different solutions for different problems, making this task a scientific issue still open. One of the preliminary steps for roads extraction can be the seeding of points belonging to roads, what can be done using different methods with diverse levels of automation. The identified seed points are interpolated to form the initial road network, and are hence used as an input for an extraction method properly speaking. The present work introduces an innovative hybrid method for the extraction of roads centre-axis in a synthetic aperture radar (SAR) airborne image. Initially, candidate points are fully automatically seeded using Self-Organizing Maps (SOM), followed by a pruning process based on specific metrics. The centre-axis are then detected by an open-curve active contour model (snakes). The obtained results were evaluated as to their quality with respect to completeness, correctness and redundancy.

  4. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    SciTech Connect

    Brigmon, R.L.

    1997-11-26

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR.

  5. Sensory Information and Subjective Contour

    ERIC Educational Resources Information Center

    Brussell, Edward M.; And Others

    1977-01-01

    The possibility that subjective contours are an artifact of brightness contrast was explored. Concludes that subjective contour and brightness contrast are distinct perceptual phenomena but share a dependency on the processing of edge information transmitted through the achromatic channels of the visual system. (Editor/RK)

  6. Contour integration across spatial frequency.

    PubMed

    Persike, Malte; Olzak, Lynn A; Meinhardt, Günter

    2009-12-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed. To explore whether contour integration occurs across SF, we studied human contour detection in Gabor random fields with SF jitter along the contour, and in the embedding field. Results show no impairment of contour detection when the contour elements are 1.25 octaves apart. Even with a SF separation of 2.25 octaves there is only moderate impairment. Because SF tuning functions measured for contextual interactions of neighbored single band-pass elements indicate much smaller bandwidths (Polat & Sagi, 1993), the results imply that contour integration cannot rest solely on local locking among neighbored orientation and SF tuned mechanisms. Robustness across spatial frequency, and across color and depth, as found recently, indicates that local orientation based grouping integrates across other basic features. This suggests an origin in not too distal brain regions.

  7. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  8. Spontaneous Gac Mutants of Pseudomonas Biological Control Strains: Cheaters or Mutualists? ▿

    PubMed Central

    Driscoll, William W.; Pepper, John W.; Pierson, Leland S.; Pierson, Elizabeth A.

    2011-01-01

    Bacteria rely on a range of extracellular metabolites to suppress competitors, gain access to resources, and exploit plant or animal hosts. The GacS/GacA two-component regulatory system positively controls the expression of many of these beneficial external products in pseudomonad bacteria. Natural populations often contain variants with defective Gac systems that do not produce most external products. These mutants benefit from a decreased metabolic load but do not appear to displace the wild type in nature. How could natural selection maintain the wild type in the presence of a mutant with enhanced growth? One hypothesis is that Gac mutants are “cheaters” that do not contribute to the public good, favored within groups but selected against between groups, as groups containing more mutants lose access to ecologically important external products. An alternative hypothesis is that Gac mutants have a mutualistic interaction with the wild type, so that each variant benefits by the presence of the other. In the biocontrol bacterium Pseudomonas chlororaphis strain 30-84, Gac mutants do not produce phenazines, which suppress competitor growth and are critical for biofilm formation. Here, we test the predictions of these alternative hypotheses by quantifying interactions between the wild type and the phenazine- and biofilm-deficient Gac mutant within growing biofilms. We find evidence that the wild type and Gac mutants interact mutualistically in the biofilm context, whereas a phenazine-defective structural mutant does not. Our results suggest that the persistence of alternative Gac phenotypes may be due to the stabilizing role of local mutualistic interactions. PMID:21873476

  9. Low temperature performance prediction model of GAC-20 modified asphalt mixture

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Cheng, H. Y.; Zhu, G. Q.; Ma, J.

    2017-01-01

    25 sets of GAC-20 modified asphalt mixture were designed by means of orthogonal design method. The bending and low temperature creep tests of the GAC-20 were carried out. The related models of the fractal dimension and the road performance evaluation index including low temperature bending failure strain εB and bending strength RB are established by using fractal theory. The model can be used to predict the low temperature performance of GAC-20 modified asphalt mixture according to the design gradation, which can reduce the test workload and improve the working efficiency, so as to provide the reference for engineering design.

  10. Crystal structures of the solute receptor GacH of Streptomyces glaucescens in complex with acarbose and an acarbose homolog: comparison with the acarbose-loaded maltose-binding protein of Salmonella typhimurium.

    PubMed

    Vahedi-Faridi, Ardeschir; Licht, Anke; Bulut, Haydar; Scheffel, Frank; Keller, Sandro; Wehmeier, Udo F; Saenger, Wolfram; Schneider, Erwin

    2010-04-02

    GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a 'carbophor,' the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalE(acarbose). Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.

  11. Granular Activated Carbon (GAC) System Performance Capabilities and Optimization

    DTIC Science & Technology

    1987-02-27

    Langmuir equation which describes monomolecular ad- sorption is: Q~bCe " qe = (l+bCe) qe = weight (or number of moles) of solute adsorbed per unit weight of...the same except for varying the carbon dosage (grams of carbon/gram of solute). :" 7 While the Langmuir equation is an expression of adsorption theory...950. Irv Test Volume No. of Sample No. time wastewater bed Concentration (a/L) [C4 -] (hr) (gal.) volumes RX X Z.4-NT TNT 0 (TI) - 1 0.3 3.2 N/A 35

  12. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  13. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Smit, M P J; Koelmans, A A; Grotenhuis, J T C; Rijnaarts, H H M

    2014-03-15

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for extraction of polycyclic aromatic hydrocarbons (PAH) from sediment by GAC, using a first-order multi-compartment kinetic model. The parameters were obtained by modeling sediment-GAC exchange kinetic data following a tiered model calibration approach. First, parameters for PAH desorption from sediment were calibrated using data from systems with 50% (by weight) GAC acting as an infinite sink. Second, the estimated parameters were used as fixed input to obtain GAC uptake kinetic parameters in sediment slurries with 4% GAC, representing the ex situ remediation scenario. PAH uptake rate constants (kGAC) by GAC ranged from 0.44 to 0.0005 d(-1), whereas GAC sorption coefficients (KGAC) ranged from 10(5.57) to 10(8.57) L kg(-1). These values are the first provided for GAC in the presence of sediment and show that ex situ extraction with GAC is sufficiently fast and effective to reduce the risks of the most available PAHs among those studied, such as fluorene, phenanthrene and anthracene.

  14. Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Grotenhuis, T; Rijnaarts, H H M; Koelmans, A A

    2013-02-01

    Addition of activated carbon (AC) to sediments has been proposed as a method to reduce ecotoxicological risks of sediment-bound contaminants. The present study explores the effectiveness of granular AC (GAC) in extracting polycyclic aromatic hydrocarbon (PAH) from highly contaminated sediments. Four candidate GAC materials were screened in terms of PAH extraction efficiency using single-step 24-h GAC extractions, with traditional 24-h Tenax extraction as a reference. Subsequently, sorption of native PAHs to the best performing GAC 1240W (0.45-1.70 mm) was studied for sediment only and for GAC-sediment mixtures at different GAC-sediment weight ratios, using 76-µm polyoxymethylene (POM) passive samplers. Granular AC sorption parameters for PAHs were determined by subtracting the contribution of PAH sorption to sediment from PAH sorption to the GAC-sediment mixture. It appears that the binding of PAHs and the effectiveness of GAC to reduce sediment porewater concentrations were highly dependent on the GAC-sediment mixing ratio and hydrophobicity of the PAH. Despite the considerable fouling of GAC by organic matter and oil, 50 to 90% of the most available PAH was extracted by the GAC during a 28-d contact time, at a dose as low as 4%, which also is a feasible dose in field-scale applications aimed at cleaning the sediment by GAC addition and removal.

  15. Robust contour tracking in ultrasound tongue image sequences.

    PubMed

    Xu, Kele; Yang, Yin; Stone, Maureen; Jaumard-Hakoun, Aurore; Leboullenger, Clémence; Dreyfus, Gérard; Roussel, Pierre; Denby, Bruce

    2016-01-01

    A new contour-tracking algorithm is presented for ultrasound tongue image sequences, which can follow the motion of tongue contours over long durations with good robustness. To cope with missing segments caused by noise, or by the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, active contours with a contour-similarity constraint are introduced, which can be used to provide 'prior' shape information. Also, in order to address accumulation of tracking errors over long sequences, we present an automatic re-initialization technique, based on the complex wavelet image similarity index. Experiments on synthetic data and on real 60 frame per second (fps) data from different subjects demonstrate that the proposed method gives good contour tracking for ultrasound image sequences even over durations of minutes, which can be useful in applications such as speech recognition where very long sequences must be analyzed in their entirety.

  16. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know

    PubMed Central

    Drolet, Matthis; Schubotz, Ricarda I.; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition. PMID:24701202

  17. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know.

    PubMed

    Drolet, Matthis; Schubotz, Ricarda I; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition.

  18. Brain networks supporting perceptual grouping and contour selection.

    PubMed

    Volberg, Gregor; Greenlee, Mark W

    2014-01-01

    The human visual system groups local elements into global objects seemingly without effort. Using a contour integration task and EEG source level analyses, we tested the hypothesis that perceptual grouping requires a top-down selection, rather than a passive pooling, of neural information that codes local elements in the visual image. The participants were presented visual displays with or without a hidden contour. Two tasks were performed: a central luminance-change detection task and a peripheral contour detection task. Only in the contour-detection task could we find differential brain activity between contour and non-contour conditions, within a distributed brain network including parietal, lateral occipital and primary visual areas. Contour processing was associated with an inflow of information from lateral occipital into primary visual regions, as revealed from the slope of phase differences between source level oscillations within these areas. The findings suggest that contour integration results from a selection of neural information from lower visual areas, and that this selection is driven by the lateral occipital cortex.

  19. Cross-Species GacA-Controlled Induction of Antibiosis in Pseudomonads▿

    PubMed Central

    Dubuis, Christophe; Haas, Dieter

    2007-01-01

    Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication. PMID:17098922

  20. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    PubMed

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-05

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors.

  1. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA.

    PubMed

    Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A

    2009-04-01

    The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.

  2. GacA regulates the PTSNtr-dependent control of cyst formation in Azotobacter vinelandii.

    PubMed

    Trejo, Adan; Moreno, Soledad; Cocotl-Yañez, Miguel; Espín, Guadalupe

    2017-01-01

    Azotobacter vinelandii forms cysts resistant to desiccation and produces polyhydroxybutyrate (PHB), alginate and alkylresorcinols (ARs) that are components of mature cysts. The expression of genes involved in the synthesis of these compounds is under the control of the GacA-RsmA global regulatory system where the RsmA protein represses the translation of mRNAs involved in the synthesis of these polymers. The synthesis of PHB and ARs is also controlled by the Nitrogen-regulated phosphotransferase system (PTS(Ntr)) global regulatory system. When unphosphorylated, the Enzyme IIA(Ntr) (EIIA(Ntr)) protein impairs the synthesis of PHB and ARs. Here we show that cells of gacA mutants, as well as mutants that carry the EIIA(Ntr) protein in its unphosphorylated state, have similar encysting negative phenotypes. Interestingly, we found that in the gacA mutant strain, the EIIA(Ntr) protein was present in its unphosphorylated state. These data indicated that in addition to the GacA-RsmA system, GacA controls polymer synthesis and encystment by controlling the phosphorylation of the EIIA(Ntr), revealing a previously unrecognized link between GacA and PTS(Ntr).

  3. Non-contact contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  4. Optimality of human contour integration.

    PubMed

    Ernst, Udo A; Mandon, Sunita; Schinkel-Bielefeld, Nadja; Neitzel, Simon D; Kreiter, Andreas K; Pawelzik, Klaus R

    2012-01-01

    For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.

  5. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect

    Kan, E.; Huling, S.G.

    2009-03-01

    The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

  6. Winding number constrained contour detection.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2015-01-01

    Salient contour detection can benefit from the integration of both contour cues and region cues. However, this task is difficult due to different nature of region representations and contour representations. To solve this problem, this paper proposes an energy minimization framework based on winding number constraints. In this framework, both region cues, such as color/texture homogeneity, and contour cues, such as local contrast and continuity, are represented in a joint objective function, which has both region and contour labels. The key problem is how to design constraints that ensure the topological consistency of the two kinds of labels. Our technique is based on the topological concept of winding number. Using a fast method for winding number computation, a small number of linear constraints are derived to ensure label consistency. Our method is instantiated by ratio-based energy functions. By successfully integrating both region and contour cues, our method shows advantages over competitive methods. Our method is extended to incorporate user interaction, which leads to further improvements.

  7. Image Segmentation Using Parametric Contours With Free Endpoints.

    PubMed

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme for image segmentation is presented based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  8. Image Segmentation Using Parametric Contours With Free Endpoints

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme is presented for image segmentation and restoration based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  9. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    NASA Astrophysics Data System (ADS)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  10. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    PubMed

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV).

  11. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  12. Sonority contours in word recognition

    NASA Astrophysics Data System (ADS)

    McLennan, Sean

    2003-04-01

    Contrary to the Generativist distinction between competence and performance which asserts that speech or perception errors are due to random, nonlinguistic factors, it seems likely that errors are principled and possibly governed by some of the same constraints as language. A preliminary investigation of errors modeled after the child's ``Chain Whisper'' game (a degraded stimulus task) suggests that a significant number of recognition errors can be characterized as an improvement in syllable sonority contour towards the linguistically least-marked, voiceless-stop-plus-vowel syllable. An independent study of sonority contours showed that approximately half of the English lexicon can be uniquely identified by their contour alone. Additionally, ``sororities'' (groups of words that share a single sonority contour), surprisingly, show no correlation to familiarity or frequency in either size or membership. Together these results imply that sonority contours may be an important factor in word recognition and in defining word ``neighborhoods.'' Moreover, they suggest that linguistic markedness constraints may be more prevalent in performance-related phenomena than previously accepted.

  13. Global contour processing in amblyopia

    PubMed Central

    Levi, Dennis M.; Yu, Cong; Kuai, Shu-Guang; Rislove, Elizabeth

    2007-01-01

    The purpose of the experiments described here was to investigate global image processing using methods that require global processing while eliminating or compensating for low level abnormalities: visibility, shape perception and positional uncertainty. In order to accomplish this we used a closed figure made up of Gabor patches either in noise or on a blank field. The stimuli were circular or elliptical contours, formed by N equally spaced Gabor patches. We performed two separate experiments: In one experiment we fixed N and varied the aspect ratio using a staircase to determine the threshold aspect ratio; in the second experiment we held the aspect ratio constant (at twice the threshold aspect ratio) and varied N in order to measure the threshold number of elements required to judge the shape. Our results confirm and extend previous studies showing that humans with naturally occurring amblyopia show deficits in contour processing. Our results show that the deficits depend strongly on spatial scale (target size and spatial frequency). The deficit in global contour processing is substantially greater in noise (where contour-linking is required) than on a blank field. The magnitude of the deficits is modest when low-level deficits (reduced visibility, increased positional uncertainty, and abnormal shape perception) are minimized, and does not seem to depend much on acuity, crowding or stereoacuity. The residual deficits reported here cannot be simply ascribed to reduced visibility or increased positional uncertainty, and we therefore conclude that these are genuine deficits in global contour segregation and integration. PMID:17223155

  14. Inter-element orientation and distance influence the duration of persistent contour integration.

    PubMed

    Strother, Lars; Alferov, Danila

    2014-01-01

    Contour integration is a fundamental form of perceptual organization. We introduce a new method of studying the mechanisms responsible for contour integration. This method capitalizes on the perceptual persistence of contours under conditions of impending camouflage. Observers viewed arrays of randomly arranged line segments upon which circular contours comprised of similar line segments were superimposed via abrupt onset. Crucially, these contours remained visible for up to a few seconds following onset, but eventually disappeared due to the camouflaging effects of surrounding background line segments. Our main finding was that the duration of contour visibility depended on the distance and degree of co-alignment between adjacent contour segments such that relatively dense smooth contours persisted longest. The stimulus-related effects reported here parallel similar results from contour detection studies, and complement previous reported top-down influences on contour persistence (Strother et al., 2011). We propose that persistent contour visibility reflects the sustained activity of recurrent processing loops within and between visual cortical areas involved in contour integration and other important stages of visual object recognition.

  15. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  16. Body Image and Body Contouring Procedures.

    PubMed

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures.

  17. Topological Cacti: Visualizing Contour-based Statistics

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  18. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions.

    PubMed

    Khan, Moonis Ali; Kim, Seong-wook; Rao, Rifaqat Ali Khan; Abou-Shanab, R A I; Bhatnagar, Amit; Song, Hocheol; Jeon, Byong-Hun

    2010-06-15

    The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 degrees C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.

  19. Algorithm for Constructing Contour Plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1984-01-01

    General computer algorithm developed for construction of contour plots. algorithm accepts as input data values at set of points irregularly distributed over plane. Algorithm based on interpolation scheme: points in plane connected by straight-line segments to form set of triangles. Program written in FORTRAN IV.

  20. Gage for 3-d contours

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.

    1980-01-01

    Simple gage, used with template, can help inspectors determine whether three-dimensional curved surface has correct contour. Gage was developed as aid in explosive forming of Space Shuttle emergency-escape hatch. For even greater accuracy, wedge can be made of metal and calibrated by indexing machine.

  1. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  2. Measuring and Plotting Surface-Contour Deviations

    NASA Technical Reports Server (NTRS)

    Aragon, Lino A.; Shuck, Thomas; Crockett, Leroy K.

    1987-01-01

    Hand-held device measures deviation of contour of surface from desired contour and provides output to x-y plotter. Carriage on device rolled along track representing desired contour, while spring-loaded stylus on device deflects perpendicularly to track to follow surface. Operator moves carriage of contour-measuring device on beamlike track. Stylus on carriage traces contour of surface above it. Carriage of measuring device holds transducer measuring cross-track displacement of surface from desired contour, and multiple-turn potentiometer measuring position along track.

  3. Algorithm research on infrared imaging target extraction based on GAC model

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Fan, Youchen; Wang, Yanqing

    2016-10-01

    Good target detection and tracking technique is significantly meaningful to increase infrared target detection distance and enhance resolution capacity. For the target detection problem about infrared imagining, firstly, the basic principles of level set method and GAC model are is analyzed in great detail. Secondly, "convergent force" is added according to the defect that GAC model is stagnant outside the deep concave region and cannot reach deep concave edge to build the promoted GAC model. Lastly, the self-adaptive detection method in combination of Sobel operation and GAC model is put forward by combining the advantages that subject position of the target could be detected with Sobel operator and the continuous edge of the target could be obtained through GAC model. In order to verify the effectiveness of the model, the two groups of experiments are carried out by selecting the images under different noise effects. Besides, the comparative analysis is conducted with LBF and LIF models. The experimental result shows that target could be better locked through LIF and LBF algorithms for the slight noise effect. The accuracy of segmentation is above 0.8. However, as for the strong noise effect, the target and noise couldn't be distinguished under the strong interference of GAC, LIF and LBF algorithms, thus lots of non-target parts are extracted during iterative process. The accuracy of segmentation is below 0.8. The accurate target position is extracted through the algorithm proposed in this paper. Besides, the accuracy of segmentation is above 0.8.

  4. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco.

    PubMed

    Han, Song Hee; Lee, Seung Je; Moon, Jae Hak; Park, Keun Hyung; Yang, Kwang Yeol; Cho, Balk Ho; Kim, Kil Yong; Kim, Yong Whan; Lee, Myung Chul; Anderson, Anne J; Kim, Young Cheol

    2006-08-01

    Root colonization by a plant-beneficial rhizobacterium, Pseudomonas chlororaphis O6, induces disease resistance in tobacco against leaf pathogens Erwinia carotovora subsp. carotovora SCC1, causing soft-rot, and Pseudomonas syringae pv. tabaci, causing wildfire. In order to identify the bacterial determinants involved in induced systemic resistance against plant diseases, extracellular components produced by the bacterium were fractionated and purified. Factors in the culture filtrate inducing systemic resistance were retained in the aqueous fraction rather than being partitioned into ethyl acetate. Fractionation on high-performance liquid chromatography followed by nuclear magnetic resonance mass spectrometry analysis identified the active compound as 2R, 3R-butanediol. 2R, 3R butanediol induced systemic resistance in tobacco to E. carotovora subsp. carotovora SCC1, but not to P. syringae pv. tabaci. Treatment of tobacco with the volatile 2R, 3R-butanediol enhanced aerial growth, a phenomenon also seen in plants colonized by P. chlororaphis O6. The isomeric form of the butanediol was important because 2S, 3S-butandiol did not affect the plant. The global sensor kinase, GacS, of P. chlororaphis O6 was a key regulator for induced systemic resistance against E. carotovora through regulation of 2R, 3R-butanediol production. This is the first report of the production of these assumed fermentation products by a pseudomonad and the role of the sensor kinase GacS in production of 2R, 3R-butanediol.

  5. Fully automatic contour detection in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brusseau, Elisabeth F.; de Korte, Chris L.; Mastik, Fritz; Schaar, Johannes; van der Steen, Anton F.

    2004-04-01

    Segmentation of deformable structures remains a challenging task in ultrasound imaging especially in low signal-to-noise ratio applications. In this paper a fully automatic method, dedicated to the luminal contour segmentation in intracoronary ultrasound imaging is introduced. The method is based on an active contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, determined as being mainly Rayleigh distributed. However, contrary to classical snake-based algorithms, the presented technique neither requires from the user the pre-selection of a region of interest tight around the boundary, nor parameter tuning. This fully automatic character is achieved by an initial contour that is not set, but estimated and thus adapted to each image. Its estimation combines two statistical criteria extracted from the a posteriori probability, function of the contour position. These criteria are the location of the function maximum (or maximum a posteriori estimator) and the first zero-crossing of the function derivative. Then starting form the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with a 20 MHz central frequency Jomed Invision ultrasound scanner were segmented with the developed method. Automatic contours were compared to those manually drawn by two physician in terms of mean absolute difference. Results demonstrate that the error between automatic contours and the average of manual ones (0.099+/-0.032mm) and the inter-expert error (0.097+/-0.027mm) are similar and of small amplitude.

  6. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  7. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  8. The Poggendorff illusion driven by real and illusory contour: Behavioral and neural mechanisms.

    PubMed

    Shen, Lu; Zhang, Ming; Chen, Qi

    2016-05-01

    The Poggendorff illusion refers to the phenomenon that the human brain misperceives a diagonal line as being apparently misaligned once the diagonal line is interrupted by two parallel edges, and the size of illusion is negatively correlated with the angle of interception of the oblique, i.e. the sharper the oblique angle, the larger the illusion. This optical illusion can be produced by both real and illusory contour. In this fMRI study, by parametrically varying the oblique angle, we investigated the shared and specific neural mechanisms underlying the Poggendorff illusion induced by real and illusory contour. At the behavioral level, not only the real but also the illusory contours were capable of inducing significant Poggendorff illusion. The size of illusion induced by the real contour, however, was larger than that induced by the illusory contour. At the neural level, real and illusory contours commonly activated more dorsal visual areas, and the real contours specifically activated more ventral visual areas. More importantly, examinations on the parametric modulation effects of the size of illusion revealed the specific neural mechanisms underlying the Poggendorff illusion induced by the real and the illusory contours, respectively. Left precentral gyrus and right middle occipital cortex were specifically involved in the Poggendorff illusion induced by the real contour. On the other hand, bilateral intraparietal sulcus (IPS) and right lateral occipital complex (LOC) were specifically involved in the Poggendorff illusion induced by the illusory contour. Functional implications of the above findings were further discussed.

  9. Magnetism and the defect state in the magnetocaloric antiperovskite Mn3GaC1-δ

    NASA Astrophysics Data System (ADS)

    Lewis, L. H.; Yoder, D.; Moodenbaugh, A. R.; Fischer, D. A.; Yu, M.-H.

    2006-02-01

    Magnetic and spectroscopic techniques were used to study the intermetallic antiperovskite Mn3GaC. An antiferromagnetic-ferromagnetic magnetostructural transition at 160 K underlies a remarkable magnetocaloric effect; these phenomena are suppressed in the substoichiometric composition Mn3GaC1-δ. X-ray absorption spectroscopy (XAS) data reported for three compositions Mn3GaC1-δ, δ = 0, 0.10, 0.22, are the basis for drawing inferences concerning the mechanism controlling magnetic order as a function of carbon stoichiometry. While the temperature dependence of the Mn3GaC carbon K edge reveals no observable change across the first-order magnetic transition, a clear splitting of the carbon absorption bands is observed that increases with increasing carbon deficiency. The room temperature Mn and Ga K edges indicate no significant variation with C content. FEFF 8.2 code calculations are in good qualitative agreement with data for the stoichiometric sample, but do not predict the changes in XAS observed in C-deficient samples. These results and the Goodenough-Anderson-Kanamori rules are the basis for a phenomenological model that attributes the carbon content dependence of the low temperature transition to the promotion of weak near-neighbour 90° Mn-Mn pairs in the carbon-deficient compound over the stronger 180° Mn-C-Mn interaction, locking in dominant ferromagnetism at low temperatures.

  10. The GacS/A-RsmA Signal Transduction Pathway Controls the Synthesis of Alkylresorcinol Lipids that Replace Membrane Phospholipids during Encystment of Azotobacter vinelandii SW136

    PubMed Central

    Romero, Yanet; Guzmán, Josefina; Moreno, Soledad; Cocotl-Yañez, Miguel; Vences-Guzmán, Miguel Ángel; Castañeda, Miguel; Espín, Guadalupe; Segura, Daniel

    2016-01-01

    Azotobacter vinelandii is a soil bacterium that undergoes a differentiation process that forms cysts resistant to desiccation. During encystment, a family of alkylresorcinols lipids (ARs) are synthesized and become part of the membrane and are also components of the outer layer covering the cyst, where they play a structural role. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded in the arsABCD operon. The expression of this operon is activated by ArpR, a LysR-type transcriptional regulator whose transcription occurs during encystment and is dependent on the alternative sigma factor RpoS. In this study, we show that the two component response regulator GacA, the small RNA RsmZ1 and the translational repressor protein RsmA, implicated in the control of the synthesis of other cysts components (i.e., alginate and poly-ß-hydroxybutyrate), are also controlling alkylresorcinol synthesis. This control affects the expression of arsABCD and is exerted through the regulation of arpR expression. We show that RsmA negatively regulates arpR expression by binding its mRNA, repressing its translation. GacA in turn, positively regulates arpR expression through the activation of transcription of RsmZ1, that binds RsmA, counteracting its repressor activity. This regulatory cascade is independent of RpoS. We also show evidence suggesting that GacA exerts an additional regulation on arsABCD expression through an ArpR independent route. PMID:27055016

  11. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  12. Early processing in human LOC is highly responsive to illusory contours but not to salient regions

    PubMed Central

    Shpaner, Marina; Murray, Micah M.; Foxe, John J.

    2011-01-01

    Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, while later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli likely reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex. PMID:19895562

  13. Grouping by proximity in haptic contour detection.

    PubMed

    Overvliet, Krista E; Krampe, Ralf Th; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  14. Grouping by Proximity in Haptic Contour Detection

    PubMed Central

    Overvliet, Krista E.; Krampe, Ralf Th.; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection. PMID:23762364

  15. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  16. Design improvement, qualification testing, purge and vent investigation, fabrication, and documentation of a GAC-9 insulation system

    NASA Technical Reports Server (NTRS)

    Shriver, C. B.; Apisa, J. N.; Kariotis, A. H.

    1971-01-01

    Results of the research and development program to determine the purge and vent characteristics of the GAC-9 insulation system are summarized. The work scope comprised: (1) literature survey; (2) design improvement and insulation effort; (3) testing; and (4) evaluation of test results. Program objectives to be realized are: (1) definition of purge gas flow characteristics of the GAC-9 insulation system through laboratory measurements; and (2) demonstration of insulation effectiveness as a system for prelaunch purging and launch venting of the 76-cm diameter calorimeter, which is a subscale model simulating a realistic type of GAC-9 insulation application.

  17. Shape from equal thickness contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-05-10

    A unique imaging modality based on Equal Thickness Contours (ETC) has introduced a new opportunity for 3D shape reconstruction from multiple views. We present a computational framework for representing each view of an object in terms of its object thickness, and then integrating these representations into a 3D surface by algebraic reconstruction. The object thickness is inferred by grouping curve segments that correspond to points of second derivative maxima. At each step of the process, we use some form of regularization to ensure closeness to the original features, as well as neighborhood continuity. We apply our approach to images of a sub-micron crystal structure obtained through a holographic process.

  18. Both predictability and familiarity facilitate contour integration.

    PubMed

    Sassi, Michaël; Demeyer, Maarten; Machilsen, Bart; Putzeys, Tom; Wagemans, Johan

    2014-05-30

    Research has shown that contour detection is impaired in the visual periphery for snake-shaped Gabor contours but not for circular and elliptical contours. This discrepancy in findings could be due to differences in intrinsic shape properties, including shape closure and curvature variation, as well as to differences in stimulus predictability and familiarity. In a detection task using only circular contours, the target shape is both more familiar and more predictable to the observer compared with a detection task in which a different snake-shaped contour is presented on each trial. In this study, we investigated the effects of stimulus familiarity and predictability on contour integration by manipulating and disentangling the familiarity and predictability of snakelike stimuli. We manipulated stimulus familiarity by extensively training observers with one particular snake shape. Predictability was varied by alternating trial blocks with only a single target shape and trial blocks with multiple target shapes. Our results show that both predictability and familiarity facilitated contour integration, which constitutes novel behavioral evidence for the adaptivity of the contour integration mechanism in humans. If familiarity or predictability facilitated contour integration in the periphery specifically, this could explain the discrepant findings obtained with snake contours as compared with circles or ellipses. However, we found that their facilitatory effects did not differ between central and peripheral vision and thus cannot explain that particular discrepancy in the literature.

  19. Brightness alteration with interweaving contours.

    PubMed

    Roncato, Sergio

    2012-01-01

    Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation) or when lines of different colours are collinear (neon effect) or adjacent (watercolour) to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread). The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975) and Kanizsa (1979) in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  20. Antenna surface contour control system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L. (Inventor); Miller, James B. (Inventor)

    1989-01-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  1. Impact of natural organic matter on monochloramine reduction by granular activated carbon: the role of porosity and electrostatic surface properties

    SciTech Connect

    Julian L. Fairey; Gerald E. Speitel Jr.; Lynn E. Katz

    2006-07-01

    Steady-state monochloramine reduction in fixed-bed reactors (FBRs) was quantified on five types of granular activated carbon (GAC) using two background waters - one natural source water (LAW) containing 2.5-3.5 mg/L organic carbon and one synthetic organic-free water (NW). GACs used were coal-based Filtrasorb 400, Filtrasorb 600, Centaur and Medical Grade, and wood-based AquaGuard. While more monochloramine was reduced at steady-state using NW compared to LAW for each GAC and empty-bed contact time studied, the differences in removal varied considerably among the GACs tested. Physical characterization of the GACs suggested that the degree of interference caused by natural organic matter (NOM) increased with increasing GAC surface area contained within pores greater than 2 nm in width. Acid/base and electrostatic properties of the GACs were not found to be significant in terms of NOM uptake, which indicated that size exclusion effects of the GAC pores overwhelmed the impact of the GAC surface chemistry. Therefore, selection of GAC to limit the impact of NOM on monochloramine reduction in FBRs should be based on pore size distribution alone, with the impact of NOM decreasing with decreasing mesoporosity and macroporosity. 23 refs., 4 figs., 3 tabs.

  2. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  3. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  4. Contour Extraction in Prostate Ultrasound Images Using the Wavelet Transform and Snakes

    DTIC Science & Technology

    2007-11-02

    signal noise levels. In this paper we present a semi-automatic prostate contour extraction scheme, which is based on the wavelet transform and active...contour models, or snakes. The ultrasound image is first decomposed into edge naps at different resolutions via the wavelet transform . Seed points are

  5. Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon.

    PubMed

    Shin, SeungKyu; Song, JiHyeon

    2011-10-30

    A combined reaction, consisting of granular activated carbon (GAC) adsorption and catalytic oxidation, has been proposed to improve the removal efficiencies of formaldehyde, one of the major indoor air pollutants. In this study, silver nano-particles attached onto the surface of GAC (Ag-GAC) using the sputtering method were evaluated for the simultaneous catalytic oxidation and adsorption of formaldehyde. The evolution of CO(2) from the silver nano-particles indicated that formaldehyde was catalytically oxidized to its final product, with the oxidation kinetics expressed as pseudo-first order. In addition, a packed column test showed that the mass of formaldehyde removed by the Ag-GAC was 2.4 times higher than that by the virgin GAC at a gas retention time of 0.5s. However, a BET analysis showed that the available surface area and micro-pore volume of the Ag-GAC were substantially decreased due to the deposition of the silver nano-particles. To simulate the performance of the Ag-GAC, the homogeneous surface diffusion model (HSDM), developed for the prediction of the GAC column adsorption, was modified to incorporate the catalytic oxidation taking place on the Ag-GAC surface. The modified HSDM demonstrated that numerical simulations were consistent with the experimental data collected from the Ag-GAC column tests. The model predictions implied that the silver nano-particles deposited on the GAC reduced the adsorptive capacity due to decreasing the available surface for the diffusion of formaldehyde into the GAC, but the overall mass of formaldehyde removed by the Ag-GAC was increased due to catalytic oxidation as a function of the ratio of the surface coverage by the nano-particles.

  6. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  7. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  8. Interval and Contour Processing in Autism

    ERIC Educational Resources Information Center

    Heaton, Pamela

    2005-01-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group…

  9. Top-down control in contour grouping.

    PubMed

    Volberg, Gregor; Wutz, Andreas; Greenlee, Mark W

    2013-01-01

    Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of 'good continuation'. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15-21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11-12 Hz) and in fronto-posterior theta (4-5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.

  10. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  11. Contour detection and hierarchical image segmentation.

    PubMed

    Arbeláez, Pablo; Maire, Michael; Fowlkes, Charless; Malik, Jitendra

    2011-05-01

    This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

  12. UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon.

    PubMed

    An, Dong; Westerhoff, Paul; Zheng, Mengxin; Wu, Mengyuan; Yang, Yu; Chiu, Chao-An

    2015-04-15

    A new method of ultraviolet light (UV) activated persulfate (PS) oxidation was investigated to regenerate granular activated carbon (GAC) in drinking water applications. The improvements in iodine and methylene blue numbers measured in the GAC after ultraviolet- (UV) activated persulfate suggested that the GAC preloaded with natural organic matter (NOM) was chemically regenerated. An experimental matrix for UV-activated persulfate regeneration included a range of persulfate doses and different UV wavelengths. Over 87% of the initial iodine number for GAC was restored under the optimum conditions, perfulfate dosage 60 g/L and UV exposure 1.75 × 10(4) mJ/cm(2). The persulfate dosages had little effect on the recovery of the methylene blue number, which was approximately 65%. Persulfate activation at 185 nm was superior to activation at 254 nm. UV activation of persulfate in the presence of GAC produced acid, lowering the solution pH. Higher persulfate concentrations and UV exposure resulted in greater GAC regeneration. Typical organic and inorganic byproducts (e.g., benzene compounds and sulfate ions) were measured as a component of treated water quality safety. This study provides a proof-of-concept that can be used to optimize pilot-scale and full-scale UV-activated persulfate for regeneration of NOM-saturated GAC.

  13. Persulfate Oxidation Regeneration of Granular Activated Carbon: Reversible Impacts on Sorption Behavior

    EPA Science Inventory

    Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH < 2) and the accumulation ...

  14. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  15. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.

    PubMed

    Vinitnantharat, S; Rattanasirisophon, W; Ishibashi, Y

    2007-01-01

    This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (K(F)) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitos approximately equal to an coated coconut shell (CC) approximately equal to uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 microg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

  16. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  17. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance.

    PubMed

    LaBarge, Nicole; Yilmazel, Yasemin Dilsad; Hong, Pei-Ying; Logan, Bruce E

    2017-02-01

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm(-3)d(-1)), methanol (25±9.7nmolcm(-3)d(-1)), and a volatile fatty acid (VFA) mix (22±11nmolcm(-3)d(-1)). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm(-3)d(-1)), and MECs without GAC had the lowest rates (0.7±0.8nmolcm(-3)d(-1) after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs.

  18. Posttranscriptional Repression of GacS/GacA-Controlled Genes by the RNA-Binding Protein RsmE Acting Together with RsmA in the Biocontrol Strain Pseudomonas fluorescens CHA0

    PubMed Central

    Reimmann, Cornelia; Valverde, Claudio; Kay, Elisabeth; Haas, Dieter

    2005-01-01

    In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0. PMID:15601712

  19. Pulse-coupled neural networks for contour and motion matchings.

    PubMed

    Yu, Bo; Zhang, Liming

    2004-09-01

    Two neural networks based on temporal coding are proposed in this paper to perform contour and motion matchings. Both of the proposed networks are three-dimensional (3-D) pulse-coupled neural networks (PCNNs). They are composed of simplified Eckhorn neurons and mimic the structure of the primary visual cortex. The PCNN for contour matching can segment from the background the object with a particular contour, which has been stored as prior knowledge and controls the network activity in the form of spike series; The PCNN for motion matching not only detects the motion in the visual field, but also extracts the object moving in an arbitrarily specified direction. The basic idea of these two models is to encode information into the timing of spikes and later to decode this information through coincidence detectors and synapse delays to realize the knowledge-controlled object matchings. The simulation results demonstrate that the temporal coding and the decoding mechanisms are powerful enough to perform the contour and motion matchings.

  20. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    PubMed

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-03-30

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  1. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  2. Spiral Light Beams and Contour Image Processing

    NASA Astrophysics Data System (ADS)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  3. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    PubMed

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  4. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    PubMed

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  5. The Digital Sky Survey of the Galactic Anti-center (DSS-GAC)

    NASA Astrophysics Data System (ADS)

    Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Xiang, M.-S.; Zhang, H.-H.; Huang, Y.; Zhang, H.-W.; Zhao, H.-B.; Yao, J. S.; Lu, H.

    2015-03-01

    As an integral component of the LAMOST Experiment for Galactic Understanding and Evolution (LEGUE; Deng et al. 2012), the LAMOST Galactic anti-center spectroscopic survey (Liu et al. in preparation) will survey over three thousand square degree sky area centered on the Galactic anti-center (150d <= l <= 210d, -30d <= b <= +30d) and obtain low resolution (R ~ 1800) optical spectra for a statistically complete sample of more than three million stars down to a limiting magnitude of 18.5 in r band, distributed in a spatially contiguous area and probing a significant volume of the Galactic thin/thick disks, halo and their interface. Sample stars of the LAMOST survey of the Galactic anti-center are derived from a recently completed CCD imaging photometric survey utilizing the newly built 1.0/1.2m Schmidt Telescope at the Xuyi Station of the Purple Mountain Observatory. The Xuyi imaging survey (Yuan et al., in preparation; Zhang et al. 2012) provides high quality photometry (~2 per cent) in the SDSS g, r and i bands and astrometry (~0.1 arcsec) for about a hundred million stars down to a limiting magnitude of about 19 (10 sigma) for over six thousand square degree sky area (3h <= RA <= 9h, -10d <= Dec <= +60d) that envelopes the LAMOST spectroscopic survey area of the Galactic anti-center, plus an extension to the M 31 and M 33 region. This Digital Sky Survey of the Galactic Anti-center (DSS-GAC) with the Xuyi Schmidt and LAMOST telescopes will yield for the first time optical photometry and spectra for millions of stars in the Galactic disk(s), the defining component of the Milky Way as a typical spiral galaxy that contains most Galactic baryonic material and angular momentum. DSS-GAC will deliver classification, extinction, radial velocity and stellar parameters (T eff, log g, [Fe/H], probably also [α/Fe], and in some cases, [C/Fe]), for each sample star. Together with the accurate proper motions and distances to be obtained with the forthcoming GAIA mission, DSS-GAC

  6. Analysis of Breast Contour using Rotated Catenary.

    PubMed

    Lee, Juhun; Beahm, Elisabeth K; Crosby, Melissa A; Reece, Gregory P; Markey, Mia K

    2010-11-13

    Surgical reconstruction of natural-appearing breasts is a challenging task. Currently, surgical planning is limited to the surgeon's subjective assessment of breast morphology. Therefore, it is useful to develop objective measurements of breast contour. In this paper, a novel quantitative measure of the breast contour based on catenary theory is introduced. A catenary curve is fitted on the breast contour (lateral and inferior) and the key parameter determining the shape of the curve is extracted. The new catenary analysis was applied to pre- and post-operative clinical photographs of women who underwent tissue expander/implant (TE/Implant) reconstruction. A logistic regression model was developed to predict the probability that the observed contour is that of a TE/Implant reconstruction from the catenary parameter, patient age, and patient body mass index. It was demonstrated that the parameters contain useful information for distinguishing TE/Implant reconstructed breasts from pre-operative breasts.

  7. Holding fixture for variable-contour parts

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.; Packer, P. N.; Zebus, P. P.

    1979-01-01

    Array of vacuum cups on spindles holds parts for safe machining and other processings. Variable-contour part resting on fixture is held firmly enough for machining, coating, or other mechanical treatment.

  8. Extreme_SeaState_Contour_v1

    SciTech Connect

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on a given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.

  9. Contour based object detection using part bundles

    PubMed Central

    Lu, ChengEn; Adluru, Nagesh; Ling, Haibin; Zhu, Guangxi; Latecki, Longin Jan

    2016-01-01

    In this paper we propose a novel framework for contour based object detection from cluttered environments. Given a contour model for a class of objects, it is first decomposed into fragments hierarchically. Then, we group these fragments into part bundles, where a part bundle can contain overlapping fragments. Given a new image with set of edge fragments we develop an efficient voting method using local shape similarity between part bundles and edge fragments that generates high quality candidate part configurations. We then use global shape similarity between the part configurations and the model contour to find optimal configuration. Furthermore, we show that appearance information can be used for improving detection for objects with distinctive texture when model contour does not sufficiently capture deformation of the objects.

  10. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate.

  11. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.

    PubMed

    Tseng, Hui-Hsin; Su, Jhih-Gang; Liang, Chenju

    2011-08-30

    The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe(2+) solutions by impregnation with and without the use of a PEG dispersant and then heated at 105°C or 700°C under a stream of N(2). Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700°C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.

  12. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    PubMed

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate.

  13. Interval and contour processing in autism.

    PubMed

    Heaton, Pamela

    2005-12-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group differences emerged. These findings confirm earlier studies showing facilitated pitch processing and a preserved ability to represent small-scale musical structures in autism.

  14. Contour detection based on wavelet differentiation

    NASA Astrophysics Data System (ADS)

    Bezuglov, D.; Kuzin, A.; Voronin, V.

    2016-05-01

    This work proposes a novel algorithm for contour detection based on high-performance algorithm of wavelet analysis for multimedia applications. To solve the noise effect on the result of peaking in this paper we consider the direct and inverse wavelet differentiation. Extensive experimental evaluation on noisy images demonstrates that our contour detection method significantly outperform competing algorithms. The proposed algorithm provides a means of coupling our system to recognition application such as detection and identification of vehicle number plate.

  15. Parallel algorithms for contour extraction and coding

    NASA Astrophysics Data System (ADS)

    Dinstein, Its'hak; Landau, Gad M.

    1990-07-01

    A parallel approach to contour extraction and coding on an Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine (PRAM) is presented and analyzed. The algorithm is intended for binary images. The labeled contours can be represented by lists of coordinates, and/or chain codes, and/or any other user designed codes. Using O(n2/log n) processors, the algorithm runs in O(logn) time, where n by n is the size of the processed binary image.

  16. Right-hemisphere specialization for contour grouping.

    PubMed

    Volberg, Gregor

    2014-01-01

    Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.

  17. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  18. Isolating contour information from arbitrary images

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.

    1989-11-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  19. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination.

    PubMed

    Velten, Silvana; Hammes, Frederik; Boller, Markus; Egli, Thomas

    2007-05-01

    Granular activated carbon (GAC) filtration is used during drinking water treatment for the removal of micropollutants such as taste and odour compounds, halogenated hydrocarbons, pesticides and pharmaceuticals. In addition, the active microbial biomass established on GAC is responsible for the removal of biodegradable dissolved organic carbon compounds present in water or formed during oxidation (e.g., ozonation and chlorination) processes. In order to conduct correct kinetic evaluations of DOC removal during drinking water treatment, and to assess the state and performance of full-scale GAC filter installations, an accurate and sensitive method for active biomass determination on GAC is required. We have developed a straight-forward method based on direct measurement of the total adenosine tri-phosphate (ATP) content of a GAC sample and other support media. In this method, we have combined flow-cytometric absolute cell counting and ATP analysis to derive case-specific ATP/cell conversion values. In this study, we present the detailed standardisation of the ATP method. An uncertainty assessment has shown that heterogeneous colonisation of the GAC particles makes the largest contribution to the combined standard uncertainty of the method. The method was applied for the investigation of biofilm formation during the start-up period of a GAC pilot-scale plant treating Lake Zurich water. A rapid increase in the biomass of up to 1.1 x 10(10)cells/g GAC dry weight (DW) within the first 33 days was observed, followed by a slight decrease to an average steady-state concentration of 7.9 x 10(9)cells/g GAC DW. It was shown that the method can be used to determine the biomass attached to the GAC for both stable and developing biofilms.

  20. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  1. IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...

  2. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    EPA Science Inventory

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  3. Astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC)

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Hua; Liu, Xiao-Wei; Yuan, Hai-Bo; Zhao, Hai-Bin; Yao, Jin-Sheng; Zhang, Hua-Wei; Xiang, Mao-Sheng; Huang, Yang

    2014-04-01

    We present astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC). XSTPS-GAC is the photometric part of the Digital Sky Survey of the Galactic Anti-center (DSS-GAC), which is a photometric and spectroscopic sky survey, in combination with LAMOST. In order to select an astrometric reference catalog, we made comparisons between the four widely used astrometric catalogs, GSC2.3, USNO-B1.0, UCAC3 and PPMXL. PPMXL shows relatively small systematic errors in positions and more homogeneous proper motion distributions toward the Galactic Anti-center (GAC), and was selected as the reference catalog. Based on the high quality and bright reference stars that were picked out from PPMXL, we performed a 4th-order polynomial fitting in image units, to construct the transformation relation between coordinates used by XSTPS-GAC and standard coordinates, and to simultaneously correct the image distortions in the CCD. Then we applied the derived relation to all sources to obtain their mean celestial coordinates based on the International Celestial Reference System. For bright point sources with r < 17.0 mag, the accuracy of astrometric calibration could reach about 80 mas for each of the g, r, i bands, with systematic errors being less than 10 mas. But for the faint sources at the brightness limit of the survey, which was r ~ 19.0 mag, the accuracy can still reach 200 mas. After combining all observations, the final weighted average coordinates could reach an accuracy of less than 70 mas for bright stars. For faint stars, the rms residuals of weighted coordinates decrease to ~ 110 mas. The final combined XSTPS-GAC coordinates show a good consistency with the Sloan Digital Sky Survey.

  4. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100.

    PubMed

    Krediet, Cory J; Carpinone, Emily M; Ritchie, Kim B; Teplitski, Max

    2013-05-01

    Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii.

  5. Refined contour analysis of giant unilamellar vesicles

    NASA Astrophysics Data System (ADS)

    Pécréaux, J.; Döbereiner, H.-G.; Prost, J.; Joanny, J.-F.; Bassereau, P.

    2004-03-01

    The fluctuation spectrum of giant unilamellar vesicles is measured using a high-resolution contour detection technique. An analysis at higher q vectors than previously achievable is now possible due to technical improvements of the experimental setup and of the detection algorithm. The global fluctuation spectrum is directly fitted to deduce the membrane tension and the bending modulus of lipid membranes. Moreover, we show that the planar analysis of fluctuations is valid for spherical objects, even at low wave vectors. Corrections due to the integration time of the video camera and to the section of a 3D object by the observation plane are introduced. A precise calculation of the error bars has been done in order to provide reliable error estimate. Eventually, using this technique, we have measured bending moduli for EPC, SOPC and \\chem{SOPC:CHOL} membranes confirming previously published values. An interesting application of this technique can be the measurement of the fluctuation spectra for non-equilibrium membranes, such as “active membranes”.

  6. Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol.

    PubMed

    Toh, Run-Hong; Lim, Poh-Eng; Seng, Chye-Eng; Adnan, Rohana

    2013-09-01

    The objectives of the study are to use immobilized acclimated biomass and immobilized biomass-powdered activated carbon (PAC) as a novel approach in the bioregeneration of granular activated carbon (GAC) loaded with phenol and o-cresol, respectively, and to compare the efficiency and rate of the bioregeneration of the phenolic compound-loaded GAC using immobilized and suspended biomasses under varying GAC dosages. Bioregeneration of GAC loaded with phenol and o-cresol, respectively, was conducted in batch system using the sequential adsorption and biodegradation approach. The results showed that the bioregeneration efficiency of GAC loaded with phenol or o-cresol was basically the same irrespective of whether the immobilized or suspended biomass was used. Nonetheless, the duration for bioregeneration was longer under immobilized biomass. The beneficial effect of immobilized PAC-biomass for bioregeneration is the enhancement of the removal rate of the phenolic compounds via adsorption and the shortening of the bioregeneration duration.

  7. Prostate Contouring Variation: Can It Be Fixed?

    SciTech Connect

    Khoo, Eric L.H.; Schick, Karlissa; Plank, Ashley W.; Poulsen, Michael; Wong, Winnie W.G.; Middleton, Mark; Martin, Jarad M.

    2012-04-01

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  8. Portable FORTRAN contour-plotting subprogram

    SciTech Connect

    Haskell, K.H.

    1983-07-01

    In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

  9. Characterising biofilm development on granular activated carbon used for drinking water production.

    PubMed

    Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Calderer, Montse; Martínez-Lladó, Xavier

    2013-03-01

    Under normal operation conditions, granular activated carbon (GAC) employed in drinking water treatment plants (DWTPs) for natural organic matter (NOM) removal can be colonised by microorganisms which can eventually establish active biofilms. The formation of such biofilms can contribute to NOM removal by biodegradation, but also in clogging phenomena that can make necessary more frequent backwashes. Biofilm occurrence and evolution under full-scale-like conditions (i.e. including periodic backwashing) are still uncertain, and GAC filtration is usually operated with a strong empirical component. The aim of the present study was to assess the formation and growth, if any, of biofilm in a periodically backwashed GAC filter. For this purpose, an on-site pilot plant was assembled and operated to closely mimic the GAC filters installed in the DWTP in Sant Joan Despí (Barcelona, Spain). The study comprised a monitoring of both water and GAC cores withdrawn at various depths and times throughout 1 year operation. The biomass parameters assessed were total cell count by confocal laser scanning microscopy (CLSM), DNA and adenosine triphosphate (ATP). Visual examination of GAC particles was also conducted by high-resolution field emission scanning electron microscopy (FESEM). Additionally, water quality and GAC surface properties were monitored. Results provided insight into the extent and spatial distribution of biofilm within the GAC bed. To sum up, it was found that backwashing could physically detach bacteria from the biofilm, which could however build back up to its pre-backwashing concentration before next backwashing cycle.

  10. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  11. Heteroclinic contours in oscillatory ensembles.

    PubMed

    Komarov, M A; Osipov, G V; Zhou, C S

    2013-02-01

    In this work, we study the onset of sequential activity in ensembles of neuronlike oscillators with inhibitorylike coupling between them. The winnerless competition (WLC) principle is a dynamical concept underlying sequential activity generation. According to the WLC principle, stable heteroclinic sequences in the phase space of a network model represent sequential metastable dynamics. We show that stable heteroclinic sequences and stable heteroclinic channels, connecting saddle limit cycles, can appear in oscillatory models of neural activity. We find the key bifurcations which lead to the occurrence of sequential activity as well as heteroclinic sequences and channels.

  12. Gas phase chemistry in gallium nitride CVD: Theoretical determination of the Arrhenius parameters for the first Ga-C bond homolysis of trimethylgallium.

    PubMed

    Schmid, Rochus; Basting, Daniel

    2005-03-24

    Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.

  13. Curved contours and the associative response.

    PubMed

    Zusne, L

    1975-02-01

    72 random polygons and their curvilinear transformations were exposed for 3 sec. to 40 subjects who produced written associations during a 10-sec. interval. The number of associations varied, in general, directly with the amount of curved contour as well as with the degree of contour dispersion. The amount of variance accounted for by these two variables was small, however. Differences in curvature produced much greater differences in the content of the associations, greater degrees of curvature evoking more associations that were curved, man-made objects or living things and fewer associations that were straight-edged, man-made objects. A significant and inverse relationship was also established between contour dispersion and associations that were non-living, natural objects. It is concluded that physical form dimensions, especially curvature, affect less the association value (connotative meaning) of visual forms and much more their denotative meaning.

  14. Surface reconstruction from sparse fringe contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-08-10

    A new approach for reconstruction of 3D surfaces from 2D cross-sectional contours is presented. By using the so-called ''Equal Importance Criterion,'' we reconstruct the surface based on the assumption that every point in the region contributes equally to the surface reconstruction process. In this context, the problem is formulated in terms of a partial differential equation (PDE), and we show that the solution for dense contours can be efficiently derived from distance transform. In the case of sparse contours, we add a regularization term to insure smoothness in surface recovery. The proposed technique allows for surface recovery at any desired resolution. The main advantage of the proposed method is that inherent problems due to correspondence, tiling, and branching are avoided. Furthermore, the computed high resolution surface is better represented for subsequent geometric analysis. We present results on both synthetic and real data.

  15. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  16. Perceptual Grouping of Object Contours Survives Saccades

    PubMed Central

    Demeyer, Maarten; De Graef, Peter; Verfaillie, Karl; Wagemans, Johan

    2011-01-01

    Human observers explore scenes by shifting their gaze from object to object. Before each eye movement, a peripheral glimpse of the next object to be fixated has however already been caught. Here we investigate whether the perceptual organization extracted from such a preview could guide the perceptual analysis of the same object during the next fixation. We observed that participants were indeed significantly faster at grouping together spatially separate elements into an object contour, when the same contour elements had also been grouped together in the peripheral preview display. Importantly, this facilitation occurred despite a change in the grouping cue defining the object contour (similarity versus collinearity). We conclude that an intermediate-level description of object shape persists in the visual system across gaze shifts, providing it with a robust basis for balancing efficiency and continuity during scene exploration. PMID:21713007

  17. Affect From Mere Perception: Illusory Contour Perception Feels Good.

    PubMed

    Erle, Thorsten M; Reber, Rolf; Topolinski, Sascha

    2017-02-16

    Can affect be evoked by mere perception? Earlier work on processing fluency, which manipulated the dynamics of a running perceptual process, has shown that efficient processing can indeed trigger positive affect. The present work introduces a novel route by not manipulating the dynamics of an ongoing perceptual process, but by blocking or allowing the whole process in the first place. We used illusory contour perception as one very basic such process. In 5 experiments (total N = 422), participants briefly (≤100 ms) viewed stimuli that either allowed illusory contour perception, so-called Kanizsa shapes, or proximally identical control shapes that did not allow for this process to occur. Self-reported preference ratings (Experiments 1, 2, and 4) and facial muscle activity (Experiment 3) showed that participants consistently preferred Kanizsa over these control shapes. Moreover, even within Kanizsa shapes, those that most likely instigated illusory contour perception (i.e., those with the highest support ratio) were liked the most (Experiment 5). At the same time, Kanizsa stimuli with high support ratios were objectively and subjectively the most complex, rendering a processing fluency explanation of this preference unlikely. These findings inform theorizing in perception about affective properties of early perceptual processes that are independent from perceptual fluency and research on affect about the importance of basic perception as a source of affectivity. (PsycINFO Database Record

  18. Determination of the Local Standard of Rest using the LSS-GAC DR1

    NASA Astrophysics Data System (ADS)

    Huang, Yang

    2015-08-01

    We re-estimate the peculiar velocity of the Sun with respect to the local standard of rest using a sample of local stars within 600 pc of the Sun, selected from the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). The sample consists of 94332 FGK main-sequence stars with well-determined radial velocities and atmospheric parameters. To derive the LSR, two independent analyses are applied to the data. Firstly, we determine the solar motion by comparing the observed velocity distribution to that generated with the analytic formulism of Schonrich & Binney that has been demonstrated to show excellent agreement with rigorous torus-based dynamics modelling by Binney & McMillan. Secondly, we propose that cold populations of thin disc stars, selected by applying an orbital eccentricity cut, can be directly used to determine the LSR without the need of asymmetric drift corrections. Both approaches yield consistent results of solar motion in the direction of Galactic rotation, V_sun, that are much higher than the standard value adopted hitherto, derived from Stromgren's equation. The newly deduced values of V_sun are 1-2 km/s smaller than the more recent estimates derived from the Geneva-Copenhagen Survey sample of stars in the solar neighbourhood (within 100 pc). We attribute the small difference to the presence of several well-known moving groups in the GCS sample that, fortunately, hardly affect the LSS-GAC sample. The newly derived radial and vertical components of the solar motion agree well with the previous studies. In addition, for all components of the solar motion, the values yielded by stars of different spectral types in the LSS-GAC sample are consistent with each other, suggesting that the local disk is well relaxed and that the LSR reported in the current work is robust. Our final recommended LSR is, (U,V,W)_sun = (7.01+/-0.20, 10.13+/-0.12, 4.95+/-0.09) km/s.

  19. Determination of the local standard of rest using the LSS-GAC DR1

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, X.-W.; Yuan, H.-B.; Xiang, M.-S.; Huo, Z.-Y.; Chen, B.-Q.; Zhang, Y.; Hou, Y.-H.

    2015-05-01

    We re-estimate the peculiar velocity of the Sun with respect to the local standard of rest (LSR) using a sample of local stars within 600 pc of the Sun, selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also named the Guoshoujing Telescope) Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). The sample consists of 94 332 FGK main-sequence stars with well-determined radial velocities and atmospheric parameters. To derive the LSR, two independent analyses are applied to the data. First, we determine the solar motion by comparing the observed velocity distribution to that generated with the analytic formulism of Schönrich & Binney that has been demonstrated to show excellent agreement with rigorous torus-based dynamics modelling by Binney & McMillan. Secondly, we propose that cold populations of thin disc stars, selected by applying an orbital eccentricity cut, can be directly used to determine the LSR without the need of asymmetric drift corrections. Both approaches yield consistent results of solar motion in the direction of Galactic rotation, V⊙, that are much higher than the standard value adopted hitherto, derived from Strömgren's equation. The newly deduced values of V⊙ are 1-2 km s-1 smaller than the more recent estimates derived from the Geneva-Copenhagen Survey (GCS) sample of stars in the solar neighbourhood (within 100 pc). We attribute the small difference to the presence of several well-known moving groups in the GCS sample that, fortunately, hardly affect the LSS-GAC sample. The newly derived radial (U⊙) and vertical (W⊙) components of the solar motion agree well with the previous studies. In addition, for all components of the solar motion, the values yielded by stars of different spectral types in the LSS-GAC sample are consistent with each other, suggesting that the local disc is well relaxed and that the LSR reported in the current work is robust. Our final recommended LSR is, (U⊙, V⊙, W

  20. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-chi

    2010-12-15

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  1. Impacts of backwashing on granular activated carbon filters for advanced wastewater treatment.

    PubMed

    Frank, Joshua; Ruhl, Aki Sebastian; Jekel, Martin

    2015-12-15

    The use of granular activated carbon (GAC) in fixed bed filters is a promising option for the removal of organic micropollutants (OMP) from wastewater treatment plant effluents. Frequent backwashing of the filter bed is inevitable, but its effect on potential filter stratification is not well understood yet and thus has been evaluated in the present study for two commercial GAC products. Backwashing of GAC filters was simulated with 10 or 100 filter bed expansions of 20 or 100% at backwash velocities of 12 and 40 m/h, respectively. Five vertical fractions were extracted and revealed a vertical stratification according to grain sizes and material densities. Sieve analyses indicated increasing grain sizes towards the bottom for one GAC while grain sizes of the other GAC were more homogeneously distributed throughout the filter bed. The apparent densities of the top sections were significantly lower than that of the bottom sections of both products. Comparative long term fixed bed adsorption experiments with the top and bottom sections of the stratified GAC showed remarkable differences in breakthrough curves of dissolved organic carbon, UV light absorption at 254 nm wavelength (UVA254) and OMP. GAC from the upper section showed constantly better removal efficiencies than GAC from the bottom section, especially for weakly adsorbing OMP such as sulfamethoxazole. Furthermore correlations between UVA254 reductions and OMP removals were found.

  2. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    NASA Astrophysics Data System (ADS)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  3. The velocity snake: Deformable contour for tracking in spatio-velocity space

    SciTech Connect

    Peterfreund, N.

    1997-06-01

    The author presents a new active contour model for boundary tracking and position prediction of nonrigid objects, which results from applying a velocity control to the class of elastodynamical contour models, known as snakes. The proposed control term minimizes an energy dissipation function which measures the difference between the contour velocity and the apparent velocity of the image. Treating the image video-sequence as continuous measurements along time, it is shown that the proposed control results in an unbiased tracking. This is in contrast to the original snake model which is proven to be biased due to the image (object) velocity, thus resulting in high sensitivity to image clutter. The motion estimation further allows for position prediction of nonrigid boundaries. Based on the proposed control approach, the author proposes a new class of real time tracking contours, varying from models with batch-mode control estimation to models with real time adaptive controllers.

  4. LSS-GAC - A LAMOST Spectroscopic Survey of the Galactic Anti-center

    NASA Astrophysics Data System (ADS)

    Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Deng, L.-C.; Hou, J.-L.; Zhao, Y.-H.; Zhao, G.; Shi, J.-R.; Luo, A.-L.; Xiang, M.-S.; Zhang, H.-H.; Huang, Y.; Zhang, H.-W.

    2014-01-01

    As a major component of the LAMOST Galactic surveys, the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) will survey a significant volume of the Galactic thin/thick disks and halo in a contiguous sky area of ~3,400 sq.deg., centered on the Galactic anti-center (|b| <= 30°, 150 <= l <= 210°), and obtain λλ3800-9000 low resolution (R ~1,800) spectra for a statistically complete sample of >~ 3 M stars of all colors, uniformly and randomly selected from (r, g - r) and (r, r - i) Hess diagrams obtained from a CCD imaging photometric survey of ~5,400 sq.deg. with the Xuyi 1.04/1.20 m Schmidt Telescope, ranging from r = 14.0 to a limiting magnitude of r = 17.8 (18.5 for limited fields). The survey will deliver spectral classification, radial velocity (V r) and stellar parameters (effective temperature (T eff), surface gravity (log g) and metallicity [Fe/H]) for millions of Galactic stars. Together with Gaia which will provide accurate distances and tangential velocities for a billion stars, the LSS-GAC will yield a unique data set to study the stellar populations, chemical composition, kinematics and structure of the disks and their interface with the halo, identify streams of debris of tidally disrupted dwarf galaxies and clusters, probe the gravitational potential and dark matter distribution, map the 3D distribution of interstellar dust extinction, search for rare objects (e.g. extremely metal-poor or hyper-velocity stars), and ultimately advance our understanding of the assemblage of the Milky Way and other galaxies and the origin of regularity and diversity of their properties. The survey was initiated in the fall of 2012 and expected to complete in the spring of 2017. Hitherto, about 0.4 M spectra of S/N(λ7450) >= 10 per pixel have been accumulated. In addition, bright nights have been used to target stars brighter than 14 mag and have so far generated over 0.4 M spectra, yielding an excellent sample of local stars to probe the solar

  5. Karat, pulque, and gac: three shining stars in the traditional food galaxy.

    PubMed

    Kuhnlein, Harriet V

    2004-11-01

    Karat banana, pulque prepared from Agave species, and gac fruit are three traditional local food items recently studied intensively for their nutrition potential among traditional and indigenous peoples, and are examples of how local food-based strategies can be used to ensure micronutrient nutrition. Successful health promotion and intervention programs emphasizing traditional food systems are few in the international literature, but offer promise in understanding the potential of food-based strategies. Traditional food strategies could be used not only for alleviating malnutrition, but also for developing locally relevant programs for stemming the nutrition transition and preventing chronic disease, particularly among indigenous and traditional peoples who retain knowledge of using food species in their local ecosystems.

  6. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions.

  7. Using Modified Contour Deformable Model to Quantitatively Estimate Ultrasound Parameters for Osteoporosis Assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Du, Yi-Chun; Tsai, Yi-Ting; Chen, Tainsong

    Osteoporosis is a systemic skeletal disease, which is characterized by low bone mass and micro-architectural deterioration of bone tissue, leading to bone fragility. Finding an effective method for prevention and early diagnosis of the disease is very important. Several parameters, including broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (STI), have been used to measure the characteristics of bone tissues. In this paper, we proposed a method, namely modified contour deformable model (MCDM), bases on the active contour model (ACM) and active shape model (ASM) for automatically detecting the calcaneus contour from quantitative ultrasound (QUS) parametric images. The results show that the difference between the contours detected by the MCDM and the true boundary for the phantom is less than one pixel. By comparing the phantom ROIs, significant relationship was found between contour mean and bone mineral density (BMD) with R=0.99. The influence of selecting different ROI diameters (12, 14, 16 and 18 mm) and different region-selecting methods, including fixed region (ROI fix ), automatic circular region (ROI cir ) and calcaneal contour region (ROI anat ), were evaluated for testing human subjects. Measurements with large ROI diameters, especially using fixed region, result in high position errors (10-45%). The precision errors of the measured ultrasonic parameters for ROI anat are smaller than ROI fix and ROI cir . In conclusion, ROI anat provides more accurate measurement of ultrasonic parameters for the evaluation of osteoporosis and is useful for clinical application.

  8. Magnetically driven anisotropic structural changes in the atomic laminate M n2GaC

    NASA Astrophysics Data System (ADS)

    Dahlqvist, M.; Ingason, A. S.; Alling, B.; Magnus, F.; Thore, A.; Petruhins, A.; Mockute, A.; Arnalds, U. B.; Sahlberg, M.; Hjörvarsson, B.; Abrikosov, I. A.; Rosen, J.

    2016-01-01

    Inherently layered magnetic materials, such as magnetic Mn +1A Xn (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition Mn+1A Xn consists of Mn +1Xn blocks separated by atomically thin A -layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic M n2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of M n2GaC MAX phases in future magnetoelectric and magnetocaloric applications.

  9. Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon

    EPA Science Inventory

    The present study suggests a combined adsorption and Fenton oxidation using an acid treated Fe-amended granular activated carbon (Fe-GAC) for effective removal of bisphenol A in water. When the Fe-GAC adsorbs and is saturated with BPA in water, Fenton oxidation of BPA occurs in ...

  10. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  11. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  12. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  13. Contour-measuring tool for composite layups

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.

    1981-01-01

    Simple handtool helps form contours and complex shapes from laminae of resin-impregnated fabric. Tool, which consists of yoke having ballpoint pen and spindle and gage, is placed so that it straddles model. As toll is moved, pen draws constant thickness focus that is used as template.

  14. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  15. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  16. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  17. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    PubMed Central

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  18. Next-generation pyrosequencing analysis of microbial biofilm communities on granular activated carbon in treatment of oil sands process-affected water.

    PubMed

    Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-06-15

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.

  19. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiajun; Zhai, Yunbo; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2012-12-01

    In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO3, H2O2 and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO3 were 723.88 m2/g and 0.229 cm3/g, respectively, while virgin GAC were 742.34 m2/g and 0.276 cm3/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Nsbnd CH3 group and Cdbnd N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H2O2 was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  20. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  1. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  2. Automatic liver contouring for radiotherapy treatment planning.

    PubMed

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-07

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  3. The Implications of Fe2O3 and TiO2 Nanoparticles on the Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of Humic Acid

    EPA Science Inventory

    The implications of Fe2O3 and TiO2 nanoparticles (NPs) on a granular activated carbon (GAC) adsorber and their impact on the removal of Trichloroethylene (TCE) were investigated in the presence of humic acid (HA). The surface charge of the GAC and NPs was obtained in the presence...

  4. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  5. Adsorption studies of methylene blue and phenol onto black stone cherries prepared by chemical activation.

    PubMed

    Rodríguez Arana, José María Ramos; Mazzoco, René Reyes

    2010-08-15

    The production of granular activated carbon (GAC) basically depends on the correct selection of carbonization temperature, activation ratio and agent (physical or chemical) as well as the raw material. Black cherry, available in Mexico with relative abundance, is of the same genus as the European cherry, whose stones have yielded good GAC production results. Black cherry stones were tried as raw material for GAC production with phosphoric acid as the activating agent. Optimum carbonization temperatures were found to be between 500 and 550 degrees C with an activation ratio of 1.0 g of phosphoric acid/g raw material. Under these conditions the maximum yield was 48.16 g of GAC/100 g black cherry stones. The experimental adsorption parameters fitted into Langmuir's model with a maximum adsorption of 321.75 mg of methylene blue/g GAC and 133.33 mg of phenol/g GAC. Black cherry shells are an abundant agricultural by-product with no uses, and therefore are an alternative for producing GAC.

  6. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights. Naval vessels may display, as a means of outlining the contour of the delivery ship during...

  7. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  8. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  9. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  10. Contour Instabilities in Early Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Ben Amar, M.; Chatelain, C.; Ciarletta, P.

    2011-04-01

    Recent tumor growth models are often based on the multiphase mixture framework. Using bifurcation theory techniques, we show that such models can give contour instabilities. Restricting to a simplified but realistic version of such models, with an elastic cell-to-cell interaction and a growth rate dependent on diffusing nutrients, we prove that the tumor cell concentration at the border acts as a control parameter inducing a bifurcation with loss of the circular symmetry. We show that the finite wavelength at threshold has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since contour instabilities are crucial for early diagnosis. Given the generality of the equations, other relevant applications can be envisaged for solving problems of tissue growth and remodeling.

  11. Contour detection combined with depth information

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Many challenging computer vision problems have been proven to benefit from the incorporation of depth information, to name a few, semantic labellings, pose estimations and even contour detection. Different objects have different depths from a single monocular image. The depth information of one object is coherent and the depth information of different objects may vary discontinuously. Meanwhile, there exists a broad non-classical receptive field (NCRF) outside the classical receptive field (CRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. Based on the findings and researches, a biological-inspired contour detection model which combined with depth information is proposed in this paper.

  12. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  13. Thermal contouring of forestry data: Wallops Island

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The contouring of 8-13.5 micrometer thermal data collected over a forestry site in Virginia is described. The data were collected at an altitude of 1000 ft above terrain on November 4, 1970. The site was covered on three approximately parallel lines. The purpose of the contouring was to attempt to delineate pine trees attacked by southern pine bark beetle, and to map other important terrain categories. Special processing steps were required to achieve the correct aspect ratio of the thermal data. The reference for the correction procedure was color infrared photography. Data form and quality are given, processing steps are outlined, a brief interpretation of results is given, and conclusion are presented.

  14. Macromolecular extraction based on contour evolution

    NASA Astrophysics Data System (ADS)

    Wang, Zhaobin; Guo, Miao; Zhu, Ying; Yang, Lizhen; Ma, Yi-de

    2013-03-01

    Detecting the region of interest plays an important role in the field of image processing and analysis. For the microscopic image of plant embryo slice, region of interest usually indicates various cells or macromolecules. Combining contour evolution theory and pulse coupled neural network, we propose a new method of macromolecular detection and extraction for biological microscopic image. Some existing methods are compared with the proposed method. Experimental results show the proposed method has the better performance than existing methods.

  15. Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction.

    PubMed

    Marutani, Mizuri; Taguchi, Fumiko; Ogawa, Yujiro; Hossain, Md Mijan; Inagaki, Yoshishige; Toyoda, Kazuhiro; Shiraishi, Tomonori; Ichinose, Yuki

    2008-04-01

    Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-component system-defective mutants, DeltagacA and DeltagacS, and a double mutant, DeltagacADeltagacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.

  16. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  17. Semi-automated contour recognition using DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  18. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  19. Selected configuration tradeoffs of contour optical instruments

    NASA Astrophysics Data System (ADS)

    Warren, J.; Strohbehn, K.; Murchie, S.; Fort, D.; Reynolds, E.; Heyler, G.; Peacock, K.; Boldt, J.; Darlington, E.; Hayes, J.; Henshaw, R.; Izenberg, N.; Kardian, C.; Lees, J.; Lohr, D.; Mehoke, D.; Schaefer, E.; Sholar, T.; Spisz, T.; Willey, C.; Veverka, J.; Bell, J.; Cochran, A.

    2003-01-01

    The Comet Nucleus Tour (CONTOUR) is a low-cost NASA Discovery mission designed to conduct three close flybys of comet nuclei. Selected configuration tradeoffs conducted to balance science requirements with low mission cost are reviewed. The tradeoffs discussed focus on the optical instruments and related spacecraft considerations. Two instruments are under development. The CONTOUR Forward Imager (CFI) is designed to perform optical navigation, moderate resolution nucleus/jet imaging, and imaging of faint molecular emission bands in the coma. The CONTOUR Remote Imager and Spectrometer (CRISP) is designed to obtain high-resolution multispectral images of the nucleus, conduct spectral mapping of the nucleus surface, and provide a backup optical navigation capability. Tradeoffs discussed are: (1) the impact on the optical instruments of not using reaction wheels on the spacecraft, (2) the improved performance and simplification gained by implementing a dedicated star tracker instead of including this function in CFI, (3) the improved flexibility and robustness of switching to a low frame rate tracker for CRISP, (4) the improved performance and simplification of replacing a visible imaging spectrometer by enhanced multispectral imaging in CRISP, and (5) the impact on spacecraft resources of these and other tradeoffs.

  20. Outer contour extraction of skull from CT scan images

    NASA Astrophysics Data System (ADS)

    Ulinuha, M. A.; Yuniarno, E. M.; Nugroho, S. M. S.; Hariadi, M.

    2017-03-01

    Extraction of the outer contour of the skull is an important step in craniofacial reconstruction. The outer contour is required for surface reconstruction of the skull. In this paper, we propose a method to extract the outer contour of the skull. The extraction process consists of four stages: defining the region of interest, segmentation of the bone, noise removal and extraction of the outer contour based on scanning from the four sides of the image. The proposed method successfully extracts the outermost contour of the skull and avoids redundant data.

  1. A component-labeling algorithm based on contour tracing

    NASA Astrophysics Data System (ADS)

    Qiu, Liudong; Li, Zushu

    2007-12-01

    A new method for finding connected components from binary images is presented in this paper. The main step of this method is to use a contour tracing technique to detect component contours, and use the information of contour to fill in interior areas. All the component points are traced by this algorithm in a single pass and are assigned either a new label or the same label of the contour pixels. Comparative experiment results show that Our algorithm, moreover, is a fast method that not only labels components but also extracts component contours at the same time, which proves to be more useful than those algorithms that only label components.

  2. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    SciTech Connect

    Henke, J.L.; Speitel, G.E.

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

  3. The fate and transport of the SiO2 nanoparticles in a granular activated carbon bed and their impact on the removal of VOCs.

    PubMed

    Salih, Hafiz H; Patterson, Craig L; Sorial, George A; Sinha, Rajib; Krishnan, Radha

    2011-10-15

    Adsorption isotherm, adsorption kinetics and column breakthrough experiments evaluating trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) were conducted in the presence and absence of silica nanoparticles (SiO(2) NPs). Zeta potentials of the SiO(2) NPs and the GAC were measured. Particle size distribution (PSD) of SiO(2) NPs dispersions was analyzed with time to evaluate the extent of aggregation. TEM analysis was conducted. The specific surface area and the pore size distribution of the virgin and the spent GAC were obtained. The fate and transport of the SiO(2) NPs in the GAC fixed bed and their impact on TCE adsorption were found to be a function of their zeta potential, concentration and PSD. The interaction of the SiO(2) NPs and the GAC is of an electrokinetic nature. A weak electrostatic attraction was observed between the SiO(2) NPs and the GAC. This attraction favors SiO(2) NPs attachment on the surface of GAC. SiO(2) NPs attachment onto GAC is manifested by a reduction in the amount of TCE adsorbed during the column breakthrough experiments suggesting a preloading pore blockage phenomenon. However, no effect of SiO(2) NPs was observed on the isotherm and the kinetic studies, this is mainly due to the fast kinetics of TCE adsorption.

  4. The effect of contour closure on shape recognition.

    PubMed

    Garrigan, Patrick

    2012-01-01

    Recent research on the Gestalt principle of closure has focused on how the presence of closure affects the ability to detect contours hidden in cluttered visual arrays. Some of the earliest research on closure, however, dealt with encoding and recognizing closed and open shapes, rather than detection. This research re-addresses the relation between closure and shape memory, focusing on how contour closure affects the ability to learn to recognize novel contour shapes. Of particular interest is whether closed contour shapes are easier to learn to recognize and, if so, whether this benefit is due to better encoding of closed contour shapes or easier comparison of closed contour shapes to already learned shapes. The results show that closed contours are indeed easier to recognize and, further, that this advantage appears to be related to better encoding.

  5. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  6. Magnetic properties and stability of the atomic laminate Mn2 GaC

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martin; Ingason, Árni; Pálsson, Gunnar; Alling, Björn; Abrikosov, Igor; Rosen, Johanna

    Using first-principles calculations, we predicted the thermodynamically stable magnetic Mn2 GaC and subsequently synthesized it as a heteroepitaxial thin film. It belongs to a class of atomically laminated compounds with a unique combination of metallic and ceramic properties. They have a common formula Mn + 1 AXn Mn +1AXn (n = 1-3), where M is an early transition metal, A is an A-group element, and A is carbon or nitrogen. Using density functional theory (DFT) and Heisenberg Monte Carlo (HMC) for a magnetic ground state search, several collinear and noncollinear low energy magnetic spin configurations have been identified, some with different symmetries compared to the non-magnetic crystal structure. Around 240 K X-ray diffraction and magnetic measurements display a sharp Contraction of the lattice in the c-direction coinciding with a sharp magnetic transition. Neutron diffraction measurements displays diffraction peaks consistent with long-ranged antiferromagnetic order with a repetition distance of two structural unit cells (25 Å). This is consistent with theoretically predicted structural changes between different, close to degenerate, magnetic ground states, and it is the first unambiguous evidence of long ranged AFM order in MAX phase materials.

  7. Reconstruction of a 3D stereotactic brain atlas and its contour-to-contour elastic deformation

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiko; Otsuki, Taisuke

    1993-06-01

    We describe a refined method for estimating the 3-D geometry of cerebral structures of a patient's brain from magnetic resonance (MR) images by adapting a 3-D atlas to the images. The 3-D atlas represents the figures of anatomical subdivisions of deep cerebral structures as series of contours reconstructed from a stereotactic printed atlas. The method correlates corresponding points and curve segments that are recognizable in both the atlas and the image, by elastically deforming the atlas two-dimensionally, while maintaining the point-to-point and contour-to-contour correspondence, until equilibrium is reached. We have used the method experimentally for a patient with Parkinson's disease, and successfully estimated the substructures of the thalamus to be treated.

  8. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    PubMed

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream.

  9. PCB bioavailability control in Lumbriculus variegatus through different modes of activated carbon addition to sediments

    SciTech Connect

    Xueli Sun; Upal Ghosh

    2007-07-01

    PCB bioavailability to a freshwater oligochaete (Lumbriculus variegatus) was studied using sediments from a PCB-impacted river that was treated with different modes of granular activated carbon (GAC) addition. The GAC used was bituminous coal-based type TOP. For sediment treated with 2.6% GAC and mixed for 2 min prior to L. variegatus addition, the reduction in total PCB biouptake was 70% for 75-300 {mu}m size carbon, and 92% for the 45-180 {mu}m size carbon. For the case where the GAC was placed as a thin layer on top of the sediments without mixing, the reduction in total PCB uptake was 70%. PCB biouptake kinetics study using treated and untreated sediment showed that the maximum PCB uptake in tissue was achieved at 28 days and decreased after that time. Although the absolute uptake of PCB changed over time, the percent reduction in total PCB uptake upon GAC amendment remained constant after the first few days. Our results indicated that PCB bioavailability was reduced upon the addition and little or no mixing of GAC into sediments. PCB aqueous equilibrium concentration and desorption rates were greatly reduced after GAC amendment, indicating reductions in the two primary mechanisms of PCB bioavailability in sediments: chemical activity and chemical accessibility. 29 refs., 5 figs., 1 tab.

  10. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature.

    PubMed

    Yang, Shiying; Yang, Xin; Shao, Xueting; Niu, Rui; Wang, Leilei

    2011-02-15

    Persulfate (PS) oxidative degradation of azo dye acid orange 7 (AO7) in an aqueous solution was studied in the presence of suspended granular activated carbon (GAC) at ambient temperature (e.g., 25°C). It was observed that there existed a remarkable synergistic effect in the GAC/PS combined system. Higher PS concentration and GAC dosage resulted in higher AO7 degrading rates. Near-neutral was the optimal initial pH. Adsorption had an adverse effect on AO7 degradation. AO7 had not only a good decolorization, but a good mineralization. The decomposition of PS followed a first-order kinetics behavior both in the presence and in the absence of AO7. Radical mechanism was studied and three radical scavengers (methanol (MA), tert-butanol (TBA), phenol) were used to determine the kind of major active species taking part in the degradation of AO7 and the location of degradation reaction. It was assumed that the degradation of AO7 did not occur in the liquid phase, but in the porous bulk and boundary layer on the external surface of GAC. SO(4)(-•) or HO•, generated on or near the surface of GAC, played a major role in the AO7 degradation. Finally, the recovery performance of GAC was studied through the GAC reuse experiments.

  11. Contour dynamics model for electric discharges.

    PubMed

    Arrayás, M; Fontelos, M A; Jiménez, C

    2010-03-01

    We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified.

  12. Shear-strain contours from moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.

    1985-01-01

    The development of whole-field contour maps of shear strains gamma (xy), derived from displacement fields obtained by moire interferometry with 2400 lines/mm, is described. The use of mechanical differentiation to obtain cross-derivatives of displacements and the use of graphical additive moire to sum the cross-derivatives are explained. Quantitative analysis in the small-strain domain is possible because of the high sensitivity of moire interferometry. The applicability of this technique is shown by the testing of a short epoxy beam under three-point bending.

  13. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  14. Collinear facilitation and contour integration in autism: evidence for atypical visual integration

    PubMed Central

    Jachim, Stephen; Warren, Paul A.; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome) using two psychophysical tasks thought to rely on integrative processing—collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD. PMID:25805985

  15. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.

    PubMed

    Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-12-15

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC.

  16. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Z A E M A M I P O U R , D I E G O C E V A L L O S , A N D M A R K J . R O O D * Department of Civil & Environmental Engineering, University of...such as granular activated carbon (GAC) have been used as biofilter packing material on which biofilm was grown to assist with buffering of the...efficiencies were attributed to the thickness of the biofilm on the GAC. GAC was also used in a separate vessel to dampen the fluctuations of the

  17. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater.

  18. CONTOUR; a modification of G.I. Evenden's general purpose contouring program

    USGS Publications Warehouse

    Godson, R.H.; Webring, M.W.

    1982-01-01

    A contouring program written for the DEC-10 computer (Evenden, 1975) has been modified and enhanced to operate on a Honeywell Multics 68/80 computer. The program uses a device independent plotting system (Wahl, 1977) so that output can be directed to any of several plotting devices by simply specifying one input variable.

  19. Constraining the Galactic structure parameters with the XSTPS-GAC and SDSS photometric surveys

    NASA Astrophysics Data System (ADS)

    Chen, B.-Q.; Liu, X.-W.; Yuan, H.-B.; Robin, A. C.; Huang, Y.; Xiang, M.-S.; Wang, C.; Ren, J.-J.; Tian, Z.-J.; Zhang, H.-W.

    2017-01-01

    Photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC) and the Sloan Digital Sky Survey (SDSS) are used to derive the global structure parameters of the smooth components of the Milky Way. The data, which cover nearly 11 000 deg2 sky area and the full range of Galactic latitude, allow us to construct a globally representative Galactic model. The number density distribution of Galactic halo stars is fitted with an oblate spheroid that decays by power law. The best fitting yields an axis ratio and a power-law index κ = 0.65 and p = 2.79, respectively. The r-band differential star counts of three dwarf samples are then fitted with a Galactic model. The best-fitting model yielded by a Markov Chain Monte Carlo analysis has thin and thick disc scale heights and lengths of H1 = 322 pc and L1 = 2343 pc, H2 = 794 pc and L2 = 3638 pc, a local thick-to-thin disc density ratio of f2 = 11 per cent, and a local density ratio of the oblate halo to the thin disc of fh = 0.16 per cent. The measured star count distribution, which is in good agreement with the above model for most of the sky area, shows a number of statistically significant large-scale overdensities, including some of the previously known substructures, such as the Virgo overdensity and the so-called `north near structure', and a new feature between 150° < l < 240° and -1° < b < -5°, at an estimated distance between 1.0 and 1.5 kpc. The Galactic North-South asymmetry in the anticentre is even stronger than previously thought.

  20. Galactic disk bulk motions as revealed by the LSS-GAC DR2

    NASA Astrophysics Data System (ADS)

    Sun, Ning-Chen; Liu, Xiao-Wei; Huang, Yang; Yuan, Hai-Bo; Xiang, Mao-Sheng; Zhang, Hua-Wei; Chen, Bing-Qiu; Ren, Juan-Juan; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ˜2 kpc, a local subset of the global sample consisting of ˜5400 stars within 150 pc, and an anti-center sample containing ˜4400 AFGK dwarfs and red clump stars within windows a few degrees wide centered on the Galactic Anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ˜2 kpc with a spatial resolution of ˜250 pc. Typical values of the radial and vertical components of bulk motion range from -15 km s-1 to 15 km s-1 in contrast, the lag behind the circular motion dominates the azimuthal component by up to ˜15 km s-1. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens of km s-1. Bending- and breathing-mode perturbations are clearly visible, and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars from different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The “velocity bifurcation” reported by Liu et al. at Galactocentric radii 10-11 kpc is confirmed. However, just beyond this distance, our data also reveal a new triple-peaked structure.

  1. SST algorithms in ACSPO reanalysis of AVHRR GAC data from 2002-2013

    NASA Astrophysics Data System (ADS)

    Petrenko, B.; Ignatov, A.; Kihai, Y.; Zhou, X.; Stroup, J.

    2014-05-01

    In response to a request from the NOAA Coral Reef Watch Program, NOAA SST Team initiated reprocessing of 4 km resolution GAC data from AVHRRs flown onboard NOAA and MetOp satellites. The objective is to create a longterm Level 2 Advanced Clear-Sky Processor for Oceans (ACSPO) SST product, consistent with NOAA operations. ACSPO-Reanalysis (RAN) is used as input in the NOAA geo-polar blended Level 4 SST and potentially other Level 4 SST products. In the first stage of reprocessing (reanalysis 1, or RAN1), data from NOAA-15, -16, -17, -18, -19, and Metop-A and -B, from 2002-present have been processed with ACSPO v2.20, and matched up with quality controlled in situ data from in situ Quality Monitor (iQuam) version 1. The ~12 years time series of matchups were used to develop and explore the SST retrieval algorithms, with emphasis on minimizing spatial biases in retrieved SSTs, close reproduction of the magnitudes of true SST variations, and maximizing temporal, spatial and inter-platform stability of retrieval metrics. Two types of SST algorithms were considered: conventional SST regressions, and recently developed incremental regressions. The conventional equations were adopted in the EUMETSAT OSI-SAF formulation, which, according to our previous analyses, provide relatively small regional biases and well-balanced combination of precision and sensitivity, in its class. Incremental regression equations were specifically elaborated to automatically correct for model minus observation biases, always present when RTM simulations are employed. Improved temporal stability was achieved by recalculation of SST coefficients from matchups on a daily basis, with a +/-45 day window around the current date. This presentation describes the candidate SST algorithms considered for the next round of ACSPO reanalysis, RAN2.

  2. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data

    NASA Astrophysics Data System (ADS)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.

    2014-12-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  3. Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration

    PubMed Central

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity. PMID:26057620

  4. Challenges of OPC model calibration from SEM contours

    NASA Astrophysics Data System (ADS)

    Granik, Yuri; Kusnadi, Ir

    2008-03-01

    Traditionally OPC models are calibrated to match CD measurements from selected test pattern locations. This demand for massive CD data drives advances in metrology. Considerable progress has recently been achieved in complimenting this CD data with SEM contours. Here we propose solutions to some challenges that emerge in calibrating OPC models from the experimental contours. We discuss and state the minimization objective as a measure of the distance between simulation and experimental contours. The main challenge is to correctly process inevitable gaps, discontinuities and roughness of the SEM contours. We discuss standardizing the data interchange formats and procedures between OPC and metrology vendors.

  5. Robustness of shape descriptors to incomplete contour representations.

    PubMed

    Ghosh, Anarta; Petkov, Nicolai

    2005-11-01

    With inspiration from psychophysical researches of the human visual system, we propose a novel aspect and a method for performance evaluation of contour-based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a test set. The performance of an algorithm is reported using the recognition rate as a function of the percentage of contour retained. We call this evaluation procedure the ICR test. We consider three types of contour incompleteness, viz. segment-wise contour deletion, occlusion, and random pixel depletion. As an illustration, the robustness of two shape recognition algorithms to contour incompleteness is evaluated. These algorithms use a shape context and a distance multiset as local shape descriptors. Qualitatively, both algorithms mimic human visual perception in the sense that recognition performance monotonously increases with the degree of completeness and that they perform best in the case of random depletion and worst in the case of occluded contours. The distance multiset method performs better than the shape context method in this test framework.

  6. One "shape" fits all: the orientation bandwidth of contour integration.

    PubMed

    Hansen, Bruce C; May, Keith A; Hess, Robert F

    2014-11-18

    The ability of human participants to integrate fragmented stimulus elements into perceived coherent contours (amidst a field of distracter elements) has been intensively studied across a large number of contour element parameters, ranging from luminance contrast and chromaticity to motion and stereo. The evidence suggests that contour integration performance depends on the low-level Fourier properties of the stimuli. Thus, to understand contour integration, it would be advantageous to understand the properties of the low-level filters that the visual system uses to process contour stimuli. We addressed this issue by examining the role of stimulus element orientation bandwidth in contour integration, a previously unexplored area. We carried out three psychophysical experiments, and then simulated all of the experiments using a recently developed two-stage filter-overlap model whereby the contour grouping occurs by virtue of the overlap between the filter responses to different elements. The first stage of the model responds to the elements, while the second stage integrates the responses along the contour. We found that the first stage had to be fairly broadly tuned for orientation to account for our results. The model showed a very good fit to a large data set with relatively few free parameters, suggesting that this class of model may have an important role to play in helping us to better understand the mechanisms of contour integration.

  7. Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity.

  8. Removal of MIB and geosmin using granular activated carbon with and without MIEX pre-treatment.

    PubMed

    Drikas, Mary; Dixon, Mike; Morran, Jim

    2009-12-01

    This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters. Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC. The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.

  9. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene.

    PubMed

    Stallforth, Pierre; Brock, Debra A; Cantley, Alexandra M; Tian, Xiangjun; Queller, David C; Strassmann, Joan E; Clardy, Jon

    2013-09-03

    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source.

  10. Body contouring surgery for military personnel following massive weight loss.

    PubMed

    Chong, S J; Kok, Y O; Foo, C L

    2011-12-01

    The burgeoning global obesity epidemic extends to the military service, where 6-53% of military personnel are overweight. Obese military personnel who adhere to a strict training and diet regime may potentially achieve and maintain significant weight loss. They may however face physical problems such as excess skin folds causing discomfort, difficulty in uniform fitting, personal hygiene, interference with full physical activities and psychological issues such as body image dissatisfaction, low self esteem and difficulty in social acceptance. We present a case report of a highly motivated military conscript who achieved and maintained significant weight loss but had physical defects following Massive Weight Loss. Body contouring surgery was successfully utilised to correct his physical defects and allowed him to return to full physical duties.

  11. Nitrite production in a partial denitrifying upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC).

    PubMed

    Cao, Shenbin; Li, Baikun; Du, Rui; Ren, Nanqi; Peng, Yongzhen

    2016-03-01

    Nitrite production in a partial denitrifying (NO3(-)-N→NO2(-)-N) upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC) was investigated at ambient temperature (28.8-14.1 °C). The nitrite production rate (NPR) increased with the nitrate loading rate (NLR). Average NPR of 6.63 kgN m(-3) d(-1) was obtained at 28.0 °C with the organic loading rate (OLR) and NLR of 25.38 KgCOD∙m(-3)∙d(-1) and 10.82 kgN m(-3) d(-1), respectively. However, serious sludge floatation was observed when the NLR increased to 13.18 kgN m(-3) d(-1), which might be attributed to sludge bulking at high NLR. The USB reactor recovered rapidly when seeded with the sludge discharged before the deteriorated period, and a stable NPR of ∼4.35 kgN m(-3) d(-1) was achieved at 14.1-15.7 °C in the following 100-day operation, during which the maximum nitrate-to-nitrite transformation ratio (NTR) of 81.4% was achieved at the GAC rate of 1.08 L h(-1). The application of GAC in the partial denitrifying USB reactor enhanced mass transfer, which effectively avoided the channel and dead space, and improved the nitrate transform to nitrite. Moreover, it was found that the GAC system played an important role in promoting the stability of the USB reactor by preventing the sludge floatation. The Illumina high-throughput sequencing analysis revealed that the genus of Thauera was dominate in the USB reactor (67.2-50.2%), which may be responsible for the high nitrite accumulation. Results in this study have an important application in treating nitrate wastewater with an economic and efficient way by combining with ANAMMOX process.

  12. Vorticity generation by contoured wall injectors

    SciTech Connect

    Waitz, I.A.; Marble, F.E.; Zukoski, E.E. California Institute of Technology, Pasadena )

    1992-07-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface. 19 refs.

  13. Vorticity generation by contoured wall injectors

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.; Marble, Frank E.; Zukoski, Edward E.

    1992-01-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface.

  14. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    PubMed Central

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  15. Decoupled external forces in a predictor-corrector segmentation scheme for LV contours in Tagged MR images.

    PubMed

    Garcia-Barnes, Jaume; Andaluz, Albert; Carreras, Francesc; Gil, Debora

    2010-01-01

    Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictor-corrector (Active Contours - Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.

  16. Responses in early visual areas to contour integration are context dependent

    PubMed Central

    Qiu, Cheng; Burton, Philip C.; Kersten, Daniel; Olman, Cheryl A.

    2016-01-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1–V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization. PMID:27366994

  17. Responses in early visual areas to contour integration are context dependent.

    PubMed

    Qiu, Cheng; Burton, Philip C; Kersten, Daniel; Olman, Cheryl A

    2016-06-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1-V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization.

  18. Combining prior day contours to improve automated prostate segmentation

    SciTech Connect

    Godley, Andrew; Sheplan Olsen, Lawrence J.; Stephans, Kevin; Zhao Anzi

    2013-02-15

    Purpose: To improve the accuracy of automatically segmented prostate, rectum, and bladder contours required for online adaptive therapy. The contouring accuracy on the current image guidance [image guided radiation therapy (IGRT)] scan is improved by combining contours from earlier IGRT scans via the simultaneous truth and performance level estimation (STAPLE) algorithm. Methods: Six IGRT prostate patients treated with daily kilo-voltage (kV) cone-beam CT (CBCT) had their original plan CT and nine CBCTs contoured by the same physician. Three types of automated contours were produced for analysis. (1) Plan: By deformably registering the plan CT to each CBCT and then using the resulting deformation field to morph the plan contours to match the CBCT anatomy. (2) Previous: The contour set drawn by the physician on the previous day CBCT is similarly deformed to match the current CBCT anatomy. (3) STAPLE: The contours drawn by the physician, on each prior CBCT and the plan CT, are deformed to match the CBCT anatomy to produce multiple contour sets. These sets are combined using the STAPLE algorithm into one optimal set. Results: Compared to plan and previous, STAPLE improved the average Dice's coefficient (DC) with the original physician drawn CBCT contours to a DC as follows: Bladder: 0.81 {+-} 0.13, 0.91 {+-} 0.06, and 0.92 {+-} 0.06; Prostate: 0.75 {+-} 0.08, 0.82 {+-} 0.05, and 0.84 {+-} 0.05; and Rectum: 0.79 {+-} 0.06, 0.81 {+-} 0.06, and 0.85 {+-} 0.04, respectively. The STAPLE results are within intraobserver consistency, determined by the physician blindly recontouring a subset of CBCTs. Comparing plans recalculated using the physician and STAPLE contours showed an average disagreement less than 1% for prostate D98 and mean dose, and 5% and 3% for bladder and rectum mean dose, respectively. One scan takes an average of 19 s to contour. Using five scans plus STAPLE takes less than 110 s on a 288 core graphics processor unit. Conclusions: Combining the plan and

  19. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  20. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    PubMed

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs.

  1. Computer program utilizes FORTRAN 4 subroutines for contour plotting

    NASA Technical Reports Server (NTRS)

    Block, N.; Garret, R.; Lawson, C.

    1967-01-01

    Computer program constructs lists of xy-coordinate pairs that define contour curves for an arbitrary given function of two variables and transmits these lists to plotting equipment to produce contour plots. The principal subroutine, CONTUR, is independent of any specific system of plotting subroutines and equipment.

  2. Solid Rocket Motor Backflow Analysis For CONTOUR Mishap Investigation

    DTIC Science & Technology

    2005-07-13

    to thank the members of the CONTOUR MIB, especially Mr. Craig Tooley , NASA/GSFC, for their support. He also appreciates the efforts of Messrs. Lou... Tooley , CONTOUR Mishap Investigation Board, SAI-12-627/MSW-2, 20 May 2003, pp. 1-13. 6. M. Woronowicz, “Development of a Novel Free Molecule Rocket Plume

  3. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  4. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  5. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  6. Estimation of Weapon Yield From Inversion of Dose Rate Contours

    DTIC Science & Technology

    2009-03-01

    Zucchini .................................................................................... 76 Operation PLUMBBOB—Priscilla...Appendix E: ESS FOM ....................................................................................................112 Appendix F: Zucchini FOM...Relationship of Dose Rate Contour Area, Weather Grid, and AOI ............... 57 23. Zucchini FDC, DNA-EX, and HPAC Dose Rate Contours at 28KT

  7. Contour Integration over Time: Psychophysical and fMRI Evidence.

    PubMed

    Kuai, Shu-Guang; Li, Wu; Yu, Cong; Kourtzi, Zoe

    2016-05-30

    The brain integrates discrete but collinear stimuli to perceive global contours. Previous contour integration (CI) studies mainly focus on integration over space, and CI is attributed to either V1 long-range connections or contour processing in high-visual areas that top-down modulate V1 responses. Here, we show that CI also occurs over time in a design that minimizes the roles of V1 long-range interactions. We use tilted contours embedded in random orientation noise and moving horizontally behind a fixed vertical slit. Individual contour elements traveling up/down within the slit would be encoded over time by parallel, rather than aligned, V1 neurons. However, we find robust contour detection even when the slit permits only one viewable contour element. Similar to CI over space, CI over time also obeys the rule of collinearity. fMRI evidence shows that while CI over space engages visual areas as early as V1, CI over time mainly engages higher dorsal and ventral visual areas involved in shape processing, as well as posterior parietal regions involved in visual memory that can represent the orientation of temporally integrated contours. These results suggest at least partially dissociable mechanisms for implementing the Gestalt rule of continuity in CI over space and time.

  8. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  9. Variable length open contour tracking using a deformable trellis.

    PubMed

    Sargin, Mehmet Emre; Altinok, Alphan; Manjunath, Bangalore S; Rose, Kenneth

    2011-04-01

    This paper focuses on contour tracking, an important problem in computer vision, and specifically on open contours that often directly represent a curvilinear object. Compelling applications are found in the field of bioimage analysis where blood vessels, dendrites, and various other biological structures are tracked over time. General open contour tracking, and biological images in particular, pose major challenges including scene clutter with similar structures (e.g., in the cell), and time varying contour length due to natural growth and shortening phenomena, which have not been adequately answered by earlier approaches based on closed and fixed end-point contours. We propose a model-based estimation algorithm to track open contours of time-varying length, which is robust to neighborhood clutter with similar structures. The method employs a deformable trellis in conjunction with a probabilistic (hidden Markov) model to estimate contour position, deformation, growth and shortening. It generates a maximum a posteriori estimate given observations in the current frame and prior contour information from previous frames. Experimental results on synthetic and real-world data demonstrate the effectiveness and performance gains of the proposed algorithm.

  10. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  11. Contour-Based Surface Reconstruction using MPU Implicit Models.

    PubMed

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results.

  12. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment.

    PubMed

    Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao

    2012-01-01

    A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.

  13. Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety?

    PubMed

    Bichai, Françoise; Dullemont, Yolanda; Hijnen, Wim; Barbeau, Benoit

    2014-11-01

    Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water.

  14. Addition of gut active carbohydrates to colostrum replacer does not improve passive transfer of immunoglobulin G in Holstein dairy calves.

    PubMed

    Villettaz Robichaud, M; Godden, S M; Haines, D M; Haley, D B; Pearl, D L

    2014-09-01

    The primary objective of this study was to investigate the effects of supplementing a commercial colostrum replacer (CR) with gut active carbohydrates (GAC) on passive transfer of IgG in commercial dairy calves. A secondary objective was to evaluate the effect of treatment on preweaning health and growth. A total of 240 newborn Holstein dairy calves on a commercial dairy farm were enrolled in this study. Newborn heifer and bull calves were weighed and then randomly assigned to either the treated group [GAC: 30g of GAC mixed into 1.5 doses (150g of IgG) of commercial colostrum replacer; n=119] or the control group [CON: 1.5 doses (150g of IgG) of CR; n=121]. The assigned CR treatment was fed within 3.5h of birth using an esophageal tube feeder. Venous blood samples were collected at 0 and 24h of age and used to measure serum IgG (mg/mL) and serum total protein (g/dL) concentrations and to estimate the apparent efficiency of absorption of IgG (%). The 129 heifers calves enrolled (CON=60; GAC=69) were also followed until weaning to assess the effect of GAC addition on preweaning health and growth. Multivariable linear regression showed that the addition of GAC to CR did not influence passive transfer of IgG, as measured by apparent efficiency of absorption at 24h of age (CON=54.0 vs. GAC=54.3%), serum IgG (CON=20.3 vs. GAC=20.2mg/mL), and serum total protein (CON=5.69 vs. GAC=5.68g/dL). Although study sample sizes were not originally derived to evaluate health outcomes, treatment had no effect on weight gain or incidence of health events (diarrhea, pneumonia, mortality) for heifer calves between birth and 7 wk of age.

  15. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water.

    PubMed

    Shih, Tom C; Wangpaichitr, Medhi; Suffet, Mel

    2003-01-01

    This study evaluated granular activated carbons (GACs) using rapid small-scale column tests (RSSCTs) on methyl tert-butyl ether (MTBE) levels from 20 to 2000 microg/L, with or without the presence of tert-butyl alcohol, benzene, toluene, p-xylene (BTX) in two groundwater (South Lake Tahoe Utility District [Lake Tahoe, CA] and Arcadia Well Field [Santa Monica, CA]) and a surface water source (Lake Perris, CA). Direct comparison between two GACs was made for RSSCTs conducted with surface water from Lake Perris. The impact of natural organic matter on GAC performance was investigated and found to correspond with total organic carbon concentration in the three source waters. Significant reduction in GAC performance for MTBE due to competitive adsorption from soluble fuel components (e.g., BTX) was observed. Little or no difference in GAC usage rate or bed life was detected as the empty-bed contact time is changed from 10 to 20 min for RSSCTs conducted in the two groundwater sources, whereas the RSSCTs conducted in the surface water source exhibited significant increase in GAC usage rate as the empty-bed contact time is decreased from 20 to 10 min. This finding suggests that the higher NOM content of the surface water over the groundwater sources caused a greater competitive-adsorption effect that made more sites on the GAC to be unavailable to MTBE, thus decreasing its rate of adsorption and GAC performance for MTBE. Finally, the impact of differential influent MTBE concentration on GAC performance was demonstrated.

  16. Framework of a Contour Based Depth Map Coding Method

    NASA Astrophysics Data System (ADS)

    Wang, Minghui; He, Xun; Jin, Xin; Goto, Satoshi

    Stereo-view and multi-view video formats are heavily investigated topics given their vast application potential. Depth Image Based Rendering (DIBR) system has been developed to improve Multiview Video Coding (MVC). Depth image is introduced to synthesize virtual views on the decoder side in this system. Depth image is a piecewise image, which is filled with sharp contours and smooth interior. Contours in a depth image show more importance than interior in view synthesis process. In order to improve the quality of the synthesized views and reduce the bitrate of depth image, a contour based coding strategy is proposed. First, depth image is divided into layers by different depth value intervals. Then regions, which are defined as the basic coding unit in this work, are segmented from each layer. The region is further divided into the contour and the interior. Two different procedures are employed to code contours and interiors respectively. A vector-based strategy is applied to code the contour lines. Straight lines in contours cost few of bits since they are regarded as vectors. Pixels, which are out of straight lines, are coded one by one. Depth values in the interior of a region are modeled by a linear or nonlinear formula. Coefficients in the formula are retrieved by regression. This process is called interior painting. Unlike conventional block based coding method, the residue between original frame and reconstructed frame (by contour rebuilt and interior painting) is not sent to decoder. In this proposal, contour is coded in a lossless way whereas interior is coded in a lossy way. Experimental results show that the proposed Contour Based Depth map Coding (CBDC) achieves a better performance than JMVC (reference software of MVC) in the high quality scenarios.

  17. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  18. Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations.

    PubMed

    Li, Yuanqing; Liu, Chong; Cui, Yi; Walse, Spencer S; Olver, Ryan; Zilberman, David; Mitch, William A

    2016-10-18

    Due to concerns surrounding its ozone depletion potential, there is a need for technologies to capture and destroy methyl bromide (CH3Br) emissions from postharvest fumigations applied to control agricultural pests. Previously, we described a system in which CH3Br fumes vented from fumigation chambers could be captured by granular activated carbon (GAC). The GAC was converted to a cathode by submergence in a high ionic strength solution and connection to the electrical grid, resulting in reductive debromination of the sorbed CH3Br. The GAC bed was drained and dried for reuse to capture and destroy CH3Br fumes from the next fumigation. However, the loose GAC particles and slow kinetics of this primitive electrode necessitated improvements. Here, we report the development of a cathode containing a thin layer of small GAC particles coating carbon cloth as a current distributor. Combining the high sorption potential of GAC for CH3Br with the conductivity of the carbon cloth current distributor, the cathode significantly lowered the total cell resistance and achieved 96% reductive debromination of CH3Br sorbed at 30% by weight to the GAC within 15 h at -1 V applied potential vs standard hydrogen electrode, a time scale and efficiency suitable for postharvest fumigations. The cathode exhibited stable performance over 50 CH3Br capture and destruction cycles. Initial cost estimates indicate that this technique could treat CH3Br fumes at ∼$5/kg, roughly one-third of the cost of current alternatives.

  19. Discourse-level contours in Nehiyawewin

    NASA Astrophysics Data System (ADS)

    Muehlbauer, Jeff; Cook, Clare

    2005-04-01

    This study describes declination and discourse-sized intonation contours in Nehiyawewin, an Algonquian language whose pitch and intonation systems have not been previously studied. The study draws on 270 min of recordings of two female Nehiyaw elders telling their life stories to another Nehiyawewin native speaker. Data is analyzed by using Praat's default algorithm to generate f0 curves for each breath group. Preliminary results indicate: (1) When breath-group internal pitch peaks are considered, an obvious downward trend of f0 occurred in fewer than half the breath groups analyzed (about 40% or 37/90). This raises questions about the role of classical declination in natural discourse [Umeda, Journal of Phonetics 10 (1982)]. (2) When we abstract away from declination within a breath group by computing mean f0 and mean pitch peak for each breath group and tracking trends for these means, larger patterns seem to emerge; breath groups can be grouped into larger units based on raising and lowering trends. These units have a mean peak range of 150 Hz with a 30 Hz change from one breath group to the next and correspond to a domain of around five clauses (about 3-4 breath groups, about 45 syllables).

  20. ANOPP/VMS HSCT ground contour system

    NASA Technical Reports Server (NTRS)

    Rawls, John, Jr.; Glaab, Lou

    1992-01-01

    This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.

  1. Directed random polymers via nested contour integrals

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Bufetov, Alexey; Corwin, Ivan

    2016-05-01

    We study the partition function of two versions of the continuum directed polymer in 1 + 1 dimension. In the full-space version, the polymer starts at the origin and is free to move transversally in R, and in the half-space version, the polymer starts at the origin but is reflected at the origin and stays in R-. The partition functions solve the stochastic heat equation in full-space or half-space with mixed boundary condition at the origin; or equivalently the free energy satisfies the Kardar-Parisi-Zhang equation. We derive exact formulas for the Laplace transforms of the partition functions. In the full-space this is expressed as a Fredholm determinant while in the half-space this is expressed as a Fredholm Pfaffian. Taking long-time asymptotics we show that the limiting free energy fluctuations scale with exponent 1 / 3 and are given by the GUE and GSE Tracy-Widom distributions. These formulas come from summing divergent moment generating functions, hence are not mathematically justified. The primary purpose of this work is to present a mathematical perspective on the polymer replica method which is used to derive these results. In contrast to other replica method work, we do not appeal directly to the Bethe ansatz for the Lieb-Liniger model but rather utilize nested contour integral formulas for moments as well as their residue expansions.

  2. Evaluation of Dosimetric Consequences of Seroma Contour Variability in Accelerated Partial Breast Irradiation Using a Constructed Representative Seroma Contour

    SciTech Connect

    Kosztyla, Robert; Olson, Robert; Carolan, Hannah; Balkwill, Susan; Moiseenko, Vitali; Kwan, Winkle

    2012-10-01

    Purpose: Contouring variability of the seroma can have important implications in the planning and delivery of accelerated partial breast irradiation (APBI). This study aimed to quantify the dosimetric impact of these interobserver and intraobserver contouring variations by construction of a representative seroma contour (RSC). Methods and Materials: Twenty-one patients with a seroma suitable for APBI underwent four computed tomography (CT) scans: one planning CT and three additional CTs on the first, third, and fifth days of treatment. Three radiation oncologists contoured the seroma on each CT scan. For 3 patients, oncologists repeated contouring twice to assess intraobserver variations. Seroma contour variability was quantified by construction of an RSC. In addition, the percent volume overlap (PVO) was calculated. Root-mean-square (RMS) differences in seroma volume, size, and center of mass position compared to those of the RSC were calculated. Treatment fields from the original plan were applied to the repeated CTs by using the same isocenter shifts as the original plan. The dosimetric impact of the contour variations was assessed using V{sub 95} (volume receiving at least 95% of the prescribed dose) and equivalent uniform dose (EUD). Results: Interobserver RMS volume differences were, on average, 5.6 times larger than intraobserver differences. The median interobserver RMS seroma volume difference was 1.48 cm{sup 3}. The median PVO was 51.6%. V{sub 95} and EUD of the seroma contours were similar for all patients. The median RMS differences of the seroma V{sub 95} and EUD were 0.01% (range, 0%-3.99%) and 0.05 Gy (range, 0-0.98 Gy). Conclusions: Construction of the RSC showed that interobserver variations were most responsible for contour variations of the seroma. Current planning margins provided adequate dose coverage of the seroma despite these contour variations.

  3. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  4. Common Visual Preference for Curved Contours in Humans and Great Apes

    PubMed Central

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans’ preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans’ visual preference for curved objects evolved from earlier primate species’ visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features. PMID:26558754

  5. Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration

    PubMed Central

    Shpaner, Marina; Molholm, Sophie; Forde, Emma-Jane; Foxe, John J.

    2013-01-01

    Contour integration, the linking of collinear but disconnected visual elements across space, is an essential facet of object and scene perception. Here, we set out to arbitrate between two previously advanced mechanisms of contour integration: serial facilitative interactions between collinear cells in the primary visual cortex (V1) versus pooling of inputs in higher-order visual areas. To this end, we used high-density electrophysiological recordings to assess the spatio-temporal dynamics of brain activity in response to Gabor contours embedded in Gabor noise (so-called “pathfinder displays”) versus control stimuli. Special care was taken to elicit and detect early activity stemming from the primary visual cortex, as indexed by the C1 component of the visual evoked potential. Arguing against a purely early V1 account, there was no evidence for contour-related modulations within the C1 timeframe (50-100 msecs). Rather, the earliest effects were observed within the timeframe of the N1 component (160-200 msecs) and inverse source analysis pointed to principle generators in the lateral occipital complex (LOC) within the ventral visual stream. Source anlaysis also suggested that it was only during this relatively late processing period that contextual effects emerged in hierarchically early visual regions (i.e. V1/V2), consistent with a more distributed process involving recurrent feedback/feedforward interactions between LOC and early visual sensory regions. The distribution of effects uncovered here is consistent with pooling of information in higher order cortical areas as the initial step in contour integration, and that this pooling occurs relatively late in processing rather than during the initial sensory-processing period. PMID:23201366

  6. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters.

  7. Spatial profile of contours inducing long-range color assimilation

    PubMed Central

    DEVINCK, FRÉDÉRIC; SPILLMANN, LOTHAR; WERNER, JOHN S.

    2008-01-01

    Color induction was measured using a matching method for two spatial patterns, each composed of double contours. In one pattern (the standard), the contours had sharp edges to induce the Watercolor Effect (WCE); in the other, the two contours had a spatial taper so that the overall profile produced a sawtooth edge, or ramped stimulus. These patterns were chosen based on our previous study demonstrating that the strength of the chromatic WCE depends on a luminance difference between the two contours. Low-pass chromatic mechanisms, unlike bandpass luminance mechanisms, may be expected to be insensitive to the difference between the two spatial profiles. The strength of the watercolor spreading was similar for the two patterns at narrow widths of the contour possibly because of chromatic aberration, but with wider contours, the standard stimulus produced stronger assimilation than the ramped stimulus. This research suggests that luminance-dependent chromatic mechanisms mediate the WCE and that these mechanisms are sensitive to differences in the two spatial profiles of the pattern contours only when they are wide. PMID:16961998

  8. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties.

  9. Adaptive pseudo dilation for gestalt edge grouping and contour detection.

    PubMed

    Papari, Giuseppe; Petkov, Nicolai

    2008-10-01

    We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of the presence of a contour, and some global analysis is needed. We introduce a new morphological operator, called adaptive pseudo-dilation (APD), which uses context dependent structuring elements in order to identify long curvilinear structure in the edge map. We show that grouping edge pixels as the connected components of the output of APD results in a good agreement with the gestalt law of good continuation. The novelty of this operator is that dilation is limited to the Voronoi cell of each edge pixel. An efficient implementation of APD is presented. The grouping algorithm is then embedded in a multithreshold contour detector. At each threshold level, small groups of edges are removed, and contours are completed by means of a generalized reconstruction from markers. The use of different thresholds makes the algorithm much less sensitive to the values of the input parameters. Both qualitative and quantitative comparison with existing approaches prove the superiority of the proposed contour detector in terms of larger amount of suppressed texture and more effective detection of low-contrast contours.

  10. Low level constraints on dynamic contour path integration.

    PubMed

    Hall, Sophie; Bourke, Patrick; Guo, Kun

    2014-01-01

    Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar) in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°), temporal (200 ms), colour (over 10 colours) and luminance (-25% to 25%) information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  11. Infants' perception of curved illusory contour with motion.

    PubMed

    Sato, Kazuki; Masuda, Tomohiro; Wada, Yuji; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K

    2013-12-01

    Recently, Masuda et al. (submitted for publication) showed that adults perceive moving rigid or nonrigid motion from illusory contour with neon color spreading in which the inducer has pendular motion with or without phase difference. In Experiment 1, we used the preferential looking method to investigate whether 3-8-month-old infants can discriminate illusory and non-illusory contour figures, and found that the 7-8-month-old, but not the 3-6-month-old, infants showed significant preference for illusory contour with phase difference. In Experiment 2, we tested the validity of the visual stimuli in the present study, and whether infants could detect illusory contour from the current neon color spreading figures. The results showed that all infants might detect illusory contour figure with neon color spreading figures. The results of Experiments 1 and 2 suggest that 7-8-month-old infants potentially perceive illusory contour from the visual stimulus with phase-different movement of inducers, which elicits the perception of nonrigid dynamic subjective contour in adults.

  12. Evaluation of mandibular contour in patients with significant facial asymmetry.

    PubMed

    Fang, J-J; Tu, Y-H; Wong, T-Y; Liu, J-K; Zhang, Y-X; Leong, I-F; Chen, K-C

    2016-07-01

    Most previous studies on facial asymmetry have not specifically differentiated mandible deviation from structural asymmetry of the mandible. The purpose of this study was to assess the symmetry of the mandible by examining its contour in a cohort of patients with significant facial asymmetry. Eleven cases of facial asymmetry with chin deviation ≥10mm were enrolled. A voxel-paired median plane (optimal symmetry plane, OSP) and two landmark-based median planes were generated. The OSP was created by computing the best pairing of the bony voxels on the two sides. One side of the mandibular contour was mirrored onto the other side using the test plane. The contour differences were measured by distance and by area ratio. They were examined both in frontal and frontal downward inclined view. The contour symmetry of the mandible was that revealed by the plane that presented the best symmetry. The results showed that the OSP worked best in bisecting the contour into two symmetrical halves. Contour analysis showed relatively small discrepancies between the two sides. In conclusion, the mandibles retained an acceptable contour symmetry despite the presence of significant mandibular deviations. It is suggested that proper mandibular alignment be the primary objective in the correction of facial asymmetry.

  13. The contour method: a new approach in experimental mechanics

    SciTech Connect

    Prime, Michael B

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  14. Reduction of bromate by granular activated carbon

    SciTech Connect

    Kirisits, M.J.; Snoeyink, V.L.; Kruithof, J.C.

    1998-07-01

    Ozonation of waters containing bromide can lead to the formation of bromate, a probable human carcinogen. Since bromate will be regulated at 10 {micro}g/L by the Stage 1 Disinfectants/Disinfection By-Products Rule, there is considerable interest in finding a suitable method of bromate reduction. Granular activated carbon (GAC) can be used to chemically reduce bromate to bromide, but interference from organic matter and anions present in natural water render this process inefficient. In an effort to improve bromate reduction by GAC, several modifications were made to the GAC filtration process. The use of a biologically active carbon (BAC) filter ahead of a fresh GAC filter with and without preozonation, to remove the biodegradable organic matter, did not substantially improve the bromate removal of the GAC filter. The use of the BAC filter for biological bromate reduction proved to be the most encouraging experiment. By lowering the dissolved oxygen in the influent to the BAC from 8.0 mg/L to 2.0 mg/L, the percent bromate removal increased from 42% to 61%.

  15. The Influence of Contour on Similarity Perception of Star Glyphs.

    PubMed

    Fuchs, Johannes; Isenberg, Petra; Bezerianos, Anastasia; Fischer, Fabian; Bertini, Enrico

    2014-12-01

    We conducted three experiments to investigate the effects of contours on the detection of data similarity with star glyph variations. A star glyph is a small, compact, data graphic that represents a multi-dimensional data point. Star glyphs are often used in small-multiple settings, to represent data points in tables, on maps, or as overlays on other types of data graphics. In these settings, an important task is the visual comparison of the data points encoded in the star glyph, for example to find other similar data points or outliers. We hypothesized that for data comparisons, the overall shape of a star glyph--enhanced through contour lines--would aid the viewer in making accurate similarity judgments. To test this hypothesis, we conducted three experiments. In our first experiment, we explored how the use of contours influenced how visualization experts and trained novices chose glyphs with similar data values. Our results showed that glyphs without contours make the detection of data similarity easier. Given these results, we conducted a second study to understand intuitive notions of similarity. Star glyphs without contours most intuitively supported the detection of data similarity. In a third experiment, we tested the effect of star glyph reference structures (i.e., tickmarks and gridlines) on the detection of similarity. Surprisingly, our results show that adding reference structures does improve the correctness of similarity judgments for star glyphs with contours, but not for the standard star glyph. As a result of these experiments, we conclude that the simple star glyph without contours performs best under several criteria, reinforcing its practice and popularity in the literature. Contours seem to enhance the detection of other types of similarity, e. g., shape similarity and are distracting when data similarity has to be judged. Based on these findings we provide design considerations regarding the use of contours and reference structures on star

  16. A closed-form solution for noise contours

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1979-01-01

    An analytical approach for generating noise contours that overcome the difficulties of existing programs is described. This approach is valid for arbitrarily complex paths and reveals the importance of various factors that influence contour shape and size. The calculations are simple enough to be implemented on a small, hand-held programmable calculator, and a program for the HP-67 calculator is illustrated. The method is fast, simple, and gives the area, the contour, and its extremities for arbitrary flight paths for both takeoffs and landings.

  17. Contour shape analysis of hollow ion x-ray emission

    SciTech Connect

    Rosmej, F. B.; Angelo, P.; Aouad, Y.

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  18. Contour erasure and filling-in: New observations

    PubMed Central

    Anstis, Stuart; Greenlee, Mark W.

    2014-01-01

    Contour erasure is a newly established form of flicker adaptation that diminishes the saliency of object edges leading to their complete disappearance (Anstis, S. 2013. Journal of Vision, 13(2):25, 1–14). If these “disappeared” objects are then viewed on textured backgrounds, the observers experience filling-in, the illusory sense of background completion in the absence of physical input. In a series of observations, we demonstrate that contour erasure can greatly speed up the filling-in (or fading) of brightness. Based on these observations, we suggest that contour adaptation happens early in the magnocellular pathways. PMID:25469212

  19. Drell-Yan hadron tensor: Contour gauge and gluon propagator

    NASA Astrophysics Data System (ADS)

    Anikin, I. V.; Cherednikov, I. O.; Teryaev, O. V.

    2017-02-01

    We consider the gauge invariant Drell-Yan hadron tensor which includes the standard and nonstandard diagram contributions. The nonstandard diagram contribution appeared owing to the complexity of the twist three BV(x1,x2)-function where the gluon pole manifests. We use the contour gauge conception which allows us to fix easily the spurious uncertainties in the gluon propagator. The contour gauge condition is generated by the corresponding Wilson lines in both the standard and nonstandard diagrams. We demonstrate the substantial role of the nonstandard diagram for forming of the relevant contour in the Wilson path-ordered exponential that leads to the spurious singularity fixing.

  20. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  1. PCB bioavailability control in Lumbriculus variegatus through different modes of activated carbon addition to sediments.

    PubMed

    Sun, Xueli; Ghosh, Upal

    2007-07-01

    PCB bioavailability to a freshwater oligochaete (Lumbriculus variegatus) was studied using sediments from a PCB-impacted river that was treated with different modes of granular activated carbon (GAC) addition. For sedimenttreated with 2.6% GAC and mixed for 2 min prior to L. variegatus addition, the reduction in total PCB biouptake was 70% for 75-300 microm size carbon, and 92% for the 45-180 microm size carbon. For the case where the GAC was placed as a thin layer on top of the sediments without mixing, the reduction in total PCB uptake was 70%. PCB biouptake kinetics study using treated and untreated sediment showed that the maximum PCB uptake in tissue was achieved at 28 days and decreased after that time. Although the absolute uptake of PCB changed over time, the percent reduction in total PCB uptake upon GAC amendment remained constant after the first few days. Our results indicated that PCB bioavailability was reduced upon the addition and little or no mixing of GAC into sediments. PCB aqueous equilibrium concentration and desorption rates were greatly reduced after GAC amendment, indicating reductions in the two primary mechanisms of PCB bioavailability in sediments: chemical activity and chemical accessibility.

  2. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells

    SciTech Connect

    Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu; Cui, Yongchun

    2015-05-08

    Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion of gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.

  3. Direct imaging of isofrequency contours in photonic structures

    PubMed Central

    Regan, Emma C.; Igarashi, Yuichi; Zhen, Bo; Kaminer, Ido; Hsu, Chia Wei; Shen, Yichen; Joannopoulos, John D.; Soljačić, Marin

    2016-01-01

    The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique. Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes. PMID:28138536

  4. A MultiScale Particle Filter Framework for Contour Detection.

    PubMed

    Widynski, Nicolas; Mignotte, Max

    2014-10-01

    We investigate the contour detection task in complex natural images. We propose a novel contour detection algorithm which jointly tracks at two scales small pieces of edges called edgelets. This multiscale edgelet structure naturally embeds semi-local information and is the basic element of the proposed recursive Bayesian modeling. Prior and transition distributions are learned offline using a shape database. Likelihood functions are learned online, thus are adaptive to an image, and integrate color and gradient information via local, textural, oriented, and profile gradient-based features. The underlying model is estimated using a sequential Monte Carlo approach, and the final soft contour detection map is retrieved from the approximated trajectory distribution. We also propose to extend the model to the interactive cut-out task. Experiments conducted on the Berkeley Segmentation data sets show that the proposed MultiScale Particle Filter Contour Detector method performs well compared to competing state-of-the-art methods.

  5. Robust contour decomposition using a constant curvature criterion

    NASA Technical Reports Server (NTRS)

    Wuescher, Daniel M.; Boyer, Kim L.

    1991-01-01

    The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.

  6. Simple method for prediction of aircraft noise contours

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1980-01-01

    A method for generating noise contours more rapidly and more simply than previously used programs is discussed. The method gives the area, the noise contour, and its extremities for an arbitrarily complex flight path for both takeoffs and landings with relative ease. The analysis reveals the fundamental nature of the contours and how the various factors that influence its size and shape enter into the analysis. It is noted that the effects of ground attenuation and shielding are omitted as they are important only on the initial portion of flight and are highly dependent upon aircraft configuration. However, the analysis shows that these effects could be included. It is emphasized the the single-event contour is an obvious choice for purposes of minimizing noise impact.

  7. Shaping of the continental rise by deep geostrophic contour currents.

    PubMed

    Heezen, B C; Hollister, C D; Ruddiman, W F

    1966-04-22

    Geostrophic contour-following bottom currents involved in the deep thermohaline circulation of the world ocean appear to be the principal agents which control the shape of the continental rise and other sediment bodies.

  8. Neutron diffraction study of the magnetic-field-induced transition in Mn{sub 3}GaC

    SciTech Connect

    Çakir, Ö.; Acet, M.; Farle, M.; Senyshyn, A.

    2014-01-28

    The antiperovskite Mn{sub 3}GaC undergoes an isostructural cubic–cubic first order transition from a low-temperature, large-cell-volume antiferromagnetic state to a high-temperature, small-cell-volume ferromagnetic state at around 160 K. The transition can also be induced by applying a magnetic field. We study here the isothermal magnetic-field-evolution of the transition as ferromagnetism is stabilized at the expense of antiferromagnetism. We make use of the presence of the two distinct cell volumes of the two magnetic states as a probe to observe by neutron diffraction the evolution of the transition, as the external magnetic field carries the system from the antiferromagnetic to the ferromagnetic state. We show that the large-volume antiferromagnetic and the small-volume ferromagnetic states coexist in the temperature range of the transition. The ferromagnetic state is progressively stabilized as the field increases.

  9. A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC

    NASA Astrophysics Data System (ADS)

    Meshkian, R.; Ingason, A. S.; Arnalds, U. B.; Magnus, F.; Lu, J.; Rosen, J.

    2015-07-01

    We present synthesis and characterization of a new magnetic atomic laminate: (Mo0.5Mn0.5)2GaC. High quality crystalline films were synthesized on MgO(111) substrates at a temperature of ˜530 °C. The films display a magnetic response, evaluated by vibrating sample magnetometry, in a temperature range 3-300 K and in a field up to 5 T. The response ranges from ferromagnetic to paramagnetic with change in temperature, with an acquired 5T-moment and remanent moment at 3 K of 0.66 and 0.35 μB per metal atom (Mo and Mn), respectively. The remanent moment and the coercive field (0.06 T) exceed all values reported to date for the family of magnetic laminates based on so called MAX phases.

  10. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…

  11. Auto-propagation of contours for adaptive prostate radiation therapy

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  12. A historical note on illusory contours in shadow writing.

    PubMed

    Vezzani, Stefano; Marino, Barbara F M

    2009-01-01

    It is widely accepted that illusory contours have been first displayed and discussed by Schumann (1900, Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23 1-32). Here we show that, before him, Jastrow (1899, Popular Science Monthly 54 299-312) produced illusory contours consisting of a shadow word. A brief history of shadow writing in psychological literature from Jastrow to Brunswik is presented, in which the contributions of Pillsbury, Warren, Koffka, and Benussi are examined.

  13. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  14. Contour-map encoding of shape for early vision

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1990-01-01

    Contour maps provide a general method for recognizing 2-D shapes. All but blank images give rise to such maps, and people are good at recognizing objects and shapes from them. The maps are encoded easily in long feature vectors that are suitable for recognition by an associative memory. These properties of contour maps suggest a role for them in early visual perception. The prevalence of direction sensitive neurons in the visual cortex of mammals supports this view.

  15. An Unusual Application of NASTRAN Contour Plotting Capability

    NASA Technical Reports Server (NTRS)

    Mittal, S.; Gallo, M.; Wang, T.

    1985-01-01

    A procedure is presented for obtaining contour plots of any physical quantity defined on a number of points of the surface of a structure. Rigid Format 1 of HEAT approach in Cosmic NASTRAN is ALTERED to enable use of contour plotting capability for scalar quantities. The ALTERED DMAP sequence is given. Examples include temperature distribution on the face of a cooled laser mirror and the angle of incidence or a radome surface.

  16. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  17. Auto-propagation of contours for adaptive prostate radiation therapy.

    PubMed

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-07

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  18. Evidence Relating Subjective Contours and Interpretations Involving Occlusion.

    DTIC Science & Technology

    1981-06-01

    This article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretations and is unable to see subjective... article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretions and is unable to see subjective contours...Subjective contours This article examines a prediction that follows from the following two postulates of the above theory: (i) that subjective

  19. LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): the second release of value-added catalogues

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Huang, Y.; Wang, C.; Chen, B.-Q.; Ren, J.-J.; Zhang, H.-W.; Tian, Z.-J.; Yang, Y.; Shi, J.-R.; Zhao, J.-K.; Li, J.; Zhao, Y.-H.; Cui, X.-Q.; Li, G.-P.; Hou, Y.-H.; Zhang, Y.; Zhang, W.; Wang, J.-L.; Wu, Y.-Z.; Cao, Z.-H.; Yan, H.-L.; Yan, T.-S.; Luo, A.-L.; Zhang, H.-T.; Bai, Z.-R.; Yuan, H.-L.; Dong, Y.-Q.; Lei, Y.-J.; Li, G.-W.

    2017-01-01

    We present the second release of value-added catalogues of the LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC DR2). The catalogues present values of radial velocity Vr, atmospheric parameters - effective temperature Teff, surface gravity log g, metallicity [Fe/H], α-element to iron (metal) abundance ratio [α/Fe] ([α/M]), elemental abundances [C/H] and [N/H], and absolute magnitudes MV and M_{K_s} deduced from 1.8 million spectra of 1.4 million unique stars targeted by the LSS-GAC since September 2011 until June 2014. The catalogues also give values of interstellar reddening, distance and orbital parameters determined with a variety of techniques, as well as proper motions and multi-band photometry from the far-UV to the mid-IR collected from the literature and various surveys. Accuracies of radial velocities reach 5 km s-1 for late-type stars, and those of distance estimates range between 10 - 30 per cent, depending on the spectral signal-to-noise ratios. Precisions of [Fe/H], [C/H] and [N/H] estimates reach 0.1 dex, and those of [α/Fe] and [α/M] reach 0.05 dex. The large number of stars, the contiguous sky coverage, the simple yet non-trivial target selection function and the robust estimates of stellar radial velocities and atmospheric parameters, distances and elemental abundances, make the catalogues a valuable data set to study the structure and evolution of the Galaxy, especially the solar-neighbourhood and the outer disk.

  20. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    PubMed

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  1. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  2. Do we need another neural correlate of contour integration?

    PubMed

    de-Wit, Lee; Schwarzkopf, Dietrich Samuel

    2014-01-01

    Gilad and colleagues use an elegant combination of voltage-sensitive dyes and high temporal and spatial resolution optical imaging to visualize a differential response to collinear contour elements in monkey V1. This result adds to the literature on the neural correlates of contour integration, but does not yet tackle (or seek to tackle) the question as to whether contour integration is mediated by lateral connections within an area (e.g., V1), through pooling of feedfoward connections, or feedback mechanisms. Moreover, while Gilad et al. find that their differential response is correlated with the behavioral performance of each monkey, there are reasons to suspect that the correlation they observe is a consequence of processing in higher regions, and that the differential V1 response may not play a critical role in integrating contour elements, or in generating the monkey's response. Moreover, this differential V1 response was not observed in a monkey who was not trained on the task, a result that can only be reconciled, if one assumes that the monkey could not see the contour prior to training. If valid, this could raise doubts as to whether the study of contour integration really provides insights into the processes by which normal visual perception is achieved.

  3. The development of contour processing: evidence from physiology and psychophysics.

    PubMed

    Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.

  4. Anomalous contours and illusion of angularity: phenomenal and theoretical comparisons.

    PubMed

    Pinna, B

    1991-01-01

    Many experimental comparisons between real and anomalous contours have proven the functional equivalence of the two conditions; however, there are some contradictory findings. One of these is obtained by analyzing the anomalous contours in the light of a new illusion, called the 'illusion of angularity'. A circle becomes a polygon when it covers the centre of a radial arrangement of black stripes, and a polygon changes its perceptual shape depending on its orientation with respect to the same radial arrangement. Phenomenally, it appears like a very pointed polygon, in which every side is concave or, alternatively, a shape that looks like a circle with angles added in the spaces between the radial stripes, or a polygonal shape in which every side is convex. The reciprocal anomalous counterparts of these conditions, obtained by removing the geometrical/polygonal contours, reveal different results. In the first case, one sees a perfect circle; in the second case, a polygon with blunted vertices, or a circular shape with angular protrusions; in the third case, a deformed circle. These results are inconsistent with some theoretical models proposed to explain the emergence of anomalous contours, namely, all the top-down models expressed in terms of cognitive constructions and perceptual hypotheses, or in terms of global figural organizations. Rather, these comparisons suggest a different interpretation for the two phenomena (the illusion of angularity and anomalous contours). This interpretation is based on dynamic interactions or on network computations that synthesize both real and anomalous contours.

  5. A fast contour descriptor algorithm for supernova imageclassification

    SciTech Connect

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  6. A possible analogy between contours in mathematics--as exemplified by Cauchy's integral formula--and contours in the arts.

    PubMed

    Gerr, S

    1982-01-01

    An attempt is made to draw an analogy between contour drawing and a particular mathematical theorem. The analogy is seen to depend on the fact that both methods use definite values along a contour to imply a totality of values within the contour; thus, the use of a part to suggest the whole, by way of a hypothetical 'gestalt-like integration' in the case of the art contour, and the usual process of mathematical integration in the case of Cauchy's formula. Examples illustrating the analogy are drawn from a wide range of artistic work: a modern American drawing, a Cro-Magnon cave painting, and two Chinese works. The traditional Chinese philosophy of painting is invoked in support of the analogy because of its explicit emphasis on the primacy of outline drawing in Chinese painting. Some speculations are offered on further development and application of the analogy.

  7. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  8. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

    PubMed

    Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun

    2016-01-01

    The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.

  9. Role of synchrony in contour binding: some transient doubts sustained

    NASA Astrophysics Data System (ADS)

    Dakin, Steven C.; Bex, Peter J.

    2002-04-01

    The temporal correlation hypothesis proposes that neurons signal mutual inclusion in complex features, such as extended contours, by phase-locking their firing [C. M. Gray and W. Singer, Proc. Natl. Acad. Sci. USA 86, 1698 (1989)]. Although this hypothesis remains controversial, a number of recent psychophysical studies have suggested that temporal correlation among features can indeed promote perceptual grouping. In particular, subjects are better at detecting extended visual contours embedded within a field of distractor elements when a small delay is present between a cycling presentation of the contour and the background [Nature 394, 179 (1988)]. We have replicated this finding and examined three potentially confounding factors. First, we controlled local density and used more curved contours composed of bandpass elements to confirm that the effect was associated with contour integration and not with the operation of coarse-scale spatial filters. Second, we minimized the effects of saccadic eye movements (which could combine with the flicker of the asynchronous display to introduce motion cues at the contour location) both by using a fixation marker that was visible only when observers made a saccade (allowing them to reject these trials) and by retinally stabilizing the stimulus. We report that eye movements contribute to the effect. Third, we asked if either visible persistence or transients at the onset and the offset of the asynchronous stimuli might contribute to the effect. We report that the effect is largely abolished by the inclusion of prestimulus and poststimulus masks and is entirely abolished by ramping the contrast of the stimulus on and off. Neither ramping, masking, nor stabilization should specifically disrupt a contour-binding scheme based on temporal synchrony, and we conclude that it is the transient component at the onset and the offset of these stimuli that is responsible for the reported advantage for asynchronous presentation.

  10. Brightness/darkness induction and the genesis of a contour

    PubMed Central

    Roncato, Sergio

    2014-01-01

    Visual contours often result from the integration or interpolation of fragmented edges. The strength of the completion increases when the edges share the same contrast polarity (CP). Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP). The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different gray shades. These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in is blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this “solution” by the visual system. PMID:25368570

  11. Brightness/darkness induction and the genesis of a contour.

    PubMed

    Roncato, Sergio

    2014-01-01

    Visual contours often result from the integration or interpolation of fragmented edges. The strength of the completion increases when the edges share the same contrast polarity (CP). Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP). The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different gray shades. These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in is blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this "solution" by the visual system.

  12. Contour interaction for foveal acuity targets at different luminances.

    PubMed

    Bedell, Harold E; Siderov, John; Waugh, Sarah J; Zemanová, Romana; Pluháček, František; Musilová, Lenka

    2013-08-30

    Single-letter visual acuity is impaired by nearby flanking stimuli, a phenomenon known as contour interaction. We showed previously that when foveal acuity is degraded by a reduction of letter contrast, both the magnitude and angular spatial extent of foveal contour interaction remain unchanged. In this study, we asked whether contour interaction also remains unchanged when foveal visual acuity is degraded by a reduction of the target's background luminance. Percent correct letter identification was measured for isolated, near-threshold black Sloan letters and for letters surrounded by 4 flanking bars in 10 normal observers, 5 at Anglia Ruskin University, UK (ARU) and 5 at Palacky University, Czech Republic (PU). A stepwise reduction in the background luminance over 3 log units resulted in an approximately threefold increase in the near-threshold letter size. At each background luminance, black flanking bars with a width equal to 1 letter stroke were presented at separations between approximately 0.45 and 4.5 min arc (ARU) or 0.32 and 3.2 min arc (PU). The results indicate that the angular extent of contour interaction remains unchanged at approximately 4 min arc at all background luminances. On the other hand, the magnitude of contour interaction decreases systematically as luminance is reduced, from approximately a 50% reduction to a 30% reduction in percent correct. The constant angular extent and decreasing magnitude of contour interaction with a reduction of background luminance suggest foveal contour interaction is mediated by luminance-dependent lateral inhibition within a fixed angular region.

  13. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    PubMed

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  14. Director field model of the primary visual cortex for contour detection.

    PubMed

    Singh, Vijay; Tchernookov, Martin; Butterfield, Rebecca; Nemenman, Ilya

    2014-01-01

    We aim to build the simplest possible model capable of detecting long, noisy contours in a cluttered visual scene. For this, we model the neural dynamics in the primate primary visual cortex in terms of a continuous director field that describes the average rate and the average orientational preference of active neurons at a particular point in the cortex. We then use a linear-nonlinear dynamical model with long range connectivity patterns to enforce long-range statistical context present in the analyzed images. The resulting model has substantially fewer degrees of freedom than traditional models, and yet it can distinguish large contiguous objects from the background clutter by suppressing the clutter and by filling-in occluded elements of object contours. This results in high-precision, high-recall detection of large objects in cluttered scenes. Parenthetically, our model has a direct correspondence with the Landau-de Gennes theory of nematic liquid crystal in two dimensions.

  15. Director Field Model of the Primary Visual Cortex for Contour Detection

    PubMed Central

    Singh, Vijay; Tchernookov, Martin; Butterfield, Rebecca; Nemenman, Ilya

    2014-01-01

    We aim to build the simplest possible model capable of detecting long, noisy contours in a cluttered visual scene. For this, we model the neural dynamics in the primate primary visual cortex in terms of a continuous director field that describes the average rate and the average orientational preference of active neurons at a particular point in the cortex. We then use a linear-nonlinear dynamical model with long range connectivity patterns to enforce long-range statistical context present in the analyzed images. The resulting model has substantially fewer degrees of freedom than traditional models, and yet it can distinguish large contiguous objects from the background clutter by suppressing the clutter and by filling-in occluded elements of object contours. This results in high-precision, high-recall detection of large objects in cluttered scenes. Parenthetically, our model has a direct correspondence with the Landau - de Gennes theory of nematic liquid crystal in two dimensions. PMID:25329158

  16. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu,