Science.gov

Sample records for active contour methods

  1. Radial-searching contour extraction method based on a modified active contour model for mammographic masses.

    PubMed

    Nakagawa, Toshiaki; Hara, Takeshi; Fujita, Hiroshi; Horita, Katsuhei; Iwase, Takuji; Endo, Tokiko

    2008-07-01

    In this study, we developed an automatic extraction scheme for the precise recognition of the contours of masses on digital mammograms in order to improve a computer-aided diagnosis (CAD) system. We propose a radial-searching contour extraction method based on a modified active contour model (ACM). In this technique, after determining the central point of a mass by searching for the direction of the density gradient, we arranged an initial contour at the central point, and the movement of a control point was limited to directions radiating from the central point. Moreover, it became possible to increase the extraction accuracy by sorting out the pixel used for processing and using two images-an edge-intensity image and a degree-of-separation image defined based on the pixel-value histogram-for calculation of the image forces used for constraints on deformation of the ACM. We investigated the accuracy of the automated extraction method by using 53 masses with several "difficult contours" on 53 digitized mammograms. The extraction results were compared quantitatively with the "correct segmentation" represented by an experienced physician's sketches. The numbers of cases in which the extracted region corresponded to the correct region with overlap ratios of more than 81 and 61% were 30 and 45, respectively. The initial results obtained with this technique show that it will be useful for the segmentation of masses in CAD schemes.

  2. Vesselness-guided Active Contour: A Coronary Vessel Extraction Method

    PubMed Central

    Dehkordi, Maryam Taghizadeh; Jalalat, Morteza; Sadri, Saeed; Doosthoseini, Alimohamad; Ahmadzadeh, Mohammad Reza; Amirfattahi, Rasoul

    2014-01-01

    Vessel extraction is a critical task in clinical practice. In this paper, we propose a new approach for vessel extraction using an active contour model by defining a novel vesselness-based term, based on accurate analysis of the vessel structure in the image. To achieve the novel term, a simple and fast directional filter bank is proposed, which does not employ down sampling and resampling used in earlier versions of directional filter banks. The proposed model not only preserves the performance of the existing models on images with intensity inhomogeneity, but also overcomes their inability both to segment low contrast vessels and to omit non-vessel structures. Experimental results for synthetic images and coronary X-ray angiograms show desirable performance of our model. PMID:24761379

  3. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  4. Method for non-referential defect characterization using fractal encoding and active contours

    DOEpatents

    Gleason, Shaun S.; Sari-Sarraf, Hamed

    2007-05-15

    A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.

  5. Comparison of segmentation using fast marching and geodesic active contours methods for bone

    NASA Astrophysics Data System (ADS)

    Bilqis, A.; Widita, R.

    2016-03-01

    Image processing is important in diagnosing diseases or damages of human organs. One of the important stages of image processing is segmentation process. Segmentation is a separation process of the image into regions of certain similar characteristics. It is used to simplify the image to make an analysis easier. The case raised in this study is image segmentation of bones. Bone's image segmentation is a way to get bone dimensions, which is needed in order to make prosthesis that is used to treat broken or cracked bones. Segmentation methods chosen in this study are fast marching and geodesic active contours. This study uses ITK (Insight Segmentation and Registration Toolkit) software. The success of the segmentation was then determined by calculating its accuracy, sensitivity, and specificity. Based on the results, the Active Contours method has slightly higher accuracy and sensitivity values than the fast marching method. As for the value of specificity, fast marching has produced three image results that have higher specificity values compared to those of geodesic active contour's. The result also indicates that both methods have succeeded in performing bone's image segmentation. Overall, geodesic active contours method is quite better than fast marching in segmenting bone images.

  6. Liver segmentation with new supervised method to create initial curve for active contour.

    PubMed

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations.

  7. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model

    PubMed Central

    Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  8. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    PubMed

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  9. An active contour method for bone cement reconstruction from C-arm x-ray images.

    PubMed

    Lucas, Blake C; Otake, Yoshito; Armand, Mehran; Taylor, Russell H

    2012-04-01

    A novel algorithm is presented to segment and reconstruct injected bone cement from a sparse set of X-ray images acquired at arbitrary poses. The sparse X-ray multi-view active contour (SxMAC-pronounced "smack") can 1) reconstruct objects for which the background partially occludes the object in X-ray images, 2) use X-ray images acquired on a noncircular trajectory, and 3) incorporate prior computed tomography (CT) information. The algorithm's inputs are preprocessed X-ray images, their associated pose information, and prior CT, if available. The algorithm initiates automated reconstruction using visual hull computation from a sparse number of X-ray images. It then improves the accuracy of the reconstruction by optimizing a geodesic active contour. Experiments with mathematical phantoms demonstrate improvements over a conventional silhouette based approach, and a cadaver experiment demonstrates SxMAC's ability to reconstruct high contrast bone cement that has been injected into a femur and achieve sub-millimeter accuracy with four images.

  10. Decoupled active contour (DAC) for boundary detection.

    PubMed

    Mishra, Akshaya Kumar; Fieguth, Paul W; Clausi, David A

    2011-02-01

    The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours. To address these limitations, a decoupled active contour (DAC) is developed which applies the two energy terms separately. Essentially, the DAC consists of a measurement update step, employing a Hidden Markov Model (HMM) and Viterbi search, and then a separate prior step, which modifies the updated curve based on the relative strengths of the measurement uncertainty and the nonstationary prior. By separating the measurement and prior steps, the algorithm is less likely to misconverge; furthermore, the use of a Viterbi optimizer allows the method to converge far more rapidly than energy-based iterative solvers. The results clearly demonstrate that the proposed approach is robust to noise, can capture regions of very high curvature, and exhibits limited dependence on contour initialization or parameter settings. Compared to five other published methods and across many image sets, the DAC is found to be faster with better or comparable segmentation accuracy.

  11. Shoreline Mapping with Integrated HSI-DEM using Active Contour Method

    NASA Astrophysics Data System (ADS)

    Sukcharoenpong, Anuchit

    Shoreline mapping has been a critical task for federal/state agencies and coastal communities. It supports important applications such as nautical charting, coastal zone management, and legal boundary determination. Current attempts to incorporate data from hyperspectral imagery to increase the efficiency and efficacy of shoreline mapping have been limited due to the complexity in processing its data as well as its inferior spatial resolution when compared to multispectral imagery or to sensors such as LiDAR. As advancements in remote-sensing technologies increase sensor capabilities, the ability to exploit the spectral formation carried in hyperspectral images becomes more imperative. This work employs a new approach to extracting shorelines from AVIRIS hyperspectral images by combination with a LiDAR-based DEM using a multiphase active contour segmentation technique. Several techniques, such as study of object spectra and knowledge-based segmentation for initial contour generation, have been employed in order to achieve a sub-pixel level of accuracy and maintain low computational expenses. Introducing a DEM into hyperspectral image segmentation proves to be a useful tool to eliminate misclassifications and improve shoreline positional accuracy. Experimental results show that mapping shorelines from hyperspectral imagery and a DEM can be a promising approach as many further applications can be developed to exploit the rich information found in hyperspectral imagery.

  12. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    PubMed

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  13. Image Segmentation With Cage Active Contours.

    PubMed

    Garrido, Lluís; Guerrieri, Marité; Igual, Laura

    2015-12-01

    In this paper, we present a framework for image segmentation based on parametrized active contours. The evolving contour is parametrized according to a reduced set of control points that form a closed polygon and have a clear visual interpretation. The parametrization, called mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. Our framework allows to easily formulate region-based energies to segment an image. In particular, we present three different local region-based energy terms: 1) the mean model; 2) the Gaussian model; 3) and the histogram model. We show the behavior of our method on synthetic and real images and compare the performance with state-of-the-art level set methods.

  14. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images.

    PubMed

    Rebouças Filho, Pedro Pedrosa; Cortez, Paulo César; da Silva Barros, Antônio C; C Albuquerque, Victor Hugo; R S Tavares, João Manuel

    2017-01-01

    The World Health Organization estimates that 300 million people have asthma, 210 million people have Chronic Obstructive Pulmonary Disease (COPD), and, according to WHO, COPD will become the third major cause of death worldwide in 2030. Computational Vision systems are commonly used in pulmonology to address the task of image segmentation, which is essential for accurate medical diagnoses. Segmentation defines the regions of the lungs in CT images of the thorax that must be further analyzed by the system or by a specialist physician. This work proposes a novel and powerful technique named 3D Adaptive Crisp Active Contour Method (3D ACACM) for the segmentation of CT lung images. The method starts with a sphere within the lung to be segmented that is deformed by forces acting on it towards the lung borders. This process is performed iteratively in order to minimize an energy function associated with the 3D deformable model used. In the experimental assessment, the 3D ACACM is compared against three approaches commonly used in this field: the automatic 3D Region Growing, the level-set algorithm based on coherent propagation and the semi-automatic segmentation by an expert using the 3D OsiriX toolbox. When applied to 40 CT scans of the chest the 3D ACACM had an average F-measure of 99.22%, revealing its superiority and competency to segment lungs in CT images.

  15. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  16. Automated tumour boundary delineation on 18F-FDG PET images using active contour coupled with shifted-optimal thresholding method

    NASA Astrophysics Data System (ADS)

    Khamwan, Kitiwat; Krisanachinda, Anchali; Pluempitiwiriyawej, Charnchai

    2012-10-01

    This study presents an automatic method to trace the boundary of the tumour in positron emission tomography (PET) images. It has been discovered that Otsu's threshold value is biased when the within-class variances between the object and the background are significantly different. To solve the problem, a double-stage threshold search that minimizes the energy between the first Otsu's threshold and the maximum intensity value is introduced. Such shifted-optimal thresholding is embedded into a region-based active contour so that both algorithms are performed consecutively. The efficiency of the method is validated using six sphere inserts (0.52-26.53 cc volume) of the IEC/2001 torso phantom. Both spheres and phantom were filled with 18F solution with four source-to-background ratio (SBR) measurements of PET images. The results illustrate that the tumour volumes segmented by combined algorithm are of higher accuracy than the traditional active contour. The method had been clinically implemented in ten oesophageal cancer patients. The results are evaluated and compared with the manual tracing by an experienced radiation oncologist. The advantage of the algorithm is the reduced erroneous delineation that improves the precision and accuracy of PET tumour contouring. Moreover, the combined method is robust, independent of the SBR threshold-volume curves, and it does not require prior lesion size measurement.

  17. Vascular active contour for vessel tree segmentation.

    PubMed

    Shang, Yanfeng; Deklerck, Rudi; Nyssen, Edgard; Markova, Aneta; de Mey, Johan; Yang, Xin; Sun, Kun

    2011-04-01

    In this paper, a novel active contour model is proposed for vessel tree segmentation. First, we introduce a region competition-based active contour model exploiting the gaussian mixture model, which mainly segments thick vessels. Second, we define a vascular vector field to evolve the active contour along its center line into the thin and weak vessels. The vector field is derived from the eigenanalysis of the Hessian matrix of the image intensity in a multiscale framework. Finally, a dual curvature strategy, which uses a vesselness measure-dependent function selecting between a minimal principal curvature and a mean curvature criterion, is added to smoothen the surface of the vessel without changing its shape. The developed model is used to extract the liver and lung vessel tree as well as the coronary artery from high-resolution volumetric computed tomography images. Comparisons are made with several classical active contour models and manual extraction. The experiments show that our model is more accurate and robust than these classical models and is, therefore, more suited for automatic vessel tree extraction.

  18. Localized Patch-Based Fuzzy Active Contours for Image Segmentation

    PubMed Central

    Liu, Huaxiang; Zhang, Liting; Liu, Jun

    2016-01-01

    This paper presents a novel fuzzy region-based active contour model for image segmentation. By incorporating local patch-energy functional along each pixel of the evolving curve into the fuzziness of the energy, we construct a patch-based energy function without the regurgitation term. Its purpose is not only to make the active contour evolve very stably without the periodical initialization during the evolution but also to reduce the effect of noise. In particular, in order to reject local minimal of the energy functional, we utilize a direct method to calculate the energy alterations instead of solving the Euler-Lagrange equation of the underlying problem. Compared with other fuzzy active contour models, experimental results on synthetic and real images show the advantages of the proposed method in terms of computational efficiency and accuracy. PMID:28070210

  19. A Vessel Active Contour Model for Vascular Segmentation

    PubMed Central

    Chen, Qingli; Wang, Wei; Peng, Yu; Wang, Qingjun; Wu, Zhongke; Zhou, Mingquan

    2014-01-01

    This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is more accurate, efficient, and suitable for extraction of the vessel tree from different medical images. PMID:25101262

  20. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  1. Automatic segmentation of leg bones by using active contours.

    PubMed

    Kim, Sunhee; Kim, Youngjun; Park, Sehyung; Lee, Deukhee

    2014-01-01

    In this paper, we present a new active contours model to segment human leg bones in computed tomography images that is based on a variable-weighted combination of local and global intensity. This model can split an object surrounded by both weak and strong boundaries, and also distinguish very adjacent objects with those boundaries. The ability of this model is required for segmentation in medical images, e.g., human leg bones, which are usually composed of highly inhomogeneous objects and where the distances among organs are very close. We developed an evolution equation of a level set function whose zero level set represents a contour. An initial contour is automatically obtained by applying a histogram based multiphase segmentation method. We experimented with computed tomography images from three patients, and demonstrate the efficiency of the proposed method in experimental results.

  2. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  3. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  4. A shape constrained parametric active contour model for breast contour detection.

    PubMed

    Lee, Juhun; Muralidhar, Gautam S; Reece, Gregory P; Markey, Mia K

    2012-01-01

    Quantitative measures of breast morphology can help a breast cancer survivor to understand outcomes of reconstructive surgeries. One bottleneck of quantifying breast morphology is that there are only a few reliable automation algorithms for detecting the breast contour. This study proposes a novel approach for detecting the breast contour, which is based on a parametric active contour model. In addition to employing the traditional parametric active contour model, the proposed approach enforces a mathematical shape constraint based on the catenary curve, which has been previously shown to capture the overall shape of the breast contour reliably. The mathematical shape constraint regulates the evolution of the active contour and helps the contour evolve towards the breast, while minimizing the undesired effects of other structures such as, the nipple/areola and scars. The efficacy of the proposed approach was evaluated on anterior posterior photographs of women who underwent or were scheduled for breast reconstruction surgery including autologous tissue reconstruction. The proposed algorithm shows promising results for detecting the breast contour.

  5. Brain extraction using geodesic active contours

    NASA Astrophysics Data System (ADS)

    Huang, Albert; Abugharbieh, Rafeef; Tam, Roger; Traboulsee, Anthony

    2006-03-01

    Extracting the brain cortex from magnetic resonance imaging (MRI) head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool (BET) produces a brain mask which may be too smooth for practical use. This paper presents a novel brain extraction tool based on three-dimensional geodesic active contours, connected component analysis and mathematical morphology. Based on user-specified intensity and contrast levels, the proposed algorithm allows an active contour to evolve naturally and extract the brain cortex. Experiments on synthetic MRI data and scanned coronal and axial MRI image volumes indicate successful extraction of tight perimeters surrounding the brain cortex. Quantitative evaluations on both synthetic phantoms and manually labeled data resulted in better accuracy than BET in terms of true and false voxel assignment. Based on these results, we illustrate that our brain extraction tool is a robust and accurate approach for the challenging task of automatically extracting the brain cortex in MRI data.

  6. Automatic exudate detection using active contour model and regionwise classification.

    PubMed

    Harangi, B; Lazar, I; Hajdu, A

    2012-01-01

    Diabetic retinopathy is one the most common cause of blindness in the world. Exudates are among the early signs of this disease, so its proper detection is a very important task to prevent consequent effects. In this paper, we propose a novel approach for exudate detection. First, we identify possible regions containing exudates using grayscale morphology. Then, we apply an active contour based method to minimize the Chan-Vese energy to extract accurate borders of the candidates. To remove those false candidates that have sufficient strong borders to pass the active contour method we use a regionwise classifier. Hence, we extract several shape features for each candidate and let a boosted Naïve Bayes classifier eliminate the false candidates. We considered the publicly available DiaretDB1 color fundus image set for testing, where the proposed method outperformed several state-of-the-art exudate detectors.

  7. The contour method: a new approach in experimental mechanics

    SciTech Connect

    Prime, Michael B

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  8. Active contour segmentation for hyperspectral oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Mei-ping; Chang, Ming; An, Ju-bai; Huang, Jian; Lin, Bin

    2013-08-01

    Oil spills could occur in many conditions, which results in pollution of the natural resources, marine environment and economic health of the area. Whenever we need to identify oil spill, confirm the location or get the shape and acreage of oil spill, we have to get the edge information of oil slick images firstly. Hyperspectral remote sensing imaging is now widely used to detect oil spill. Active Contour Models (ACMs) is a widely used image segmentation method that utilizes the geometric information of objects within images. Region based models are less sensitive to noise and give good performance for images with weak edges or without edges. One of the popular Region based ACMs, active contours without edges Models, is implemented by Chan-Vese. The model has the property of global segmentation to segment all the objects within an image irrespective of the initial contour. In this paper, we propose an improved CV model, which can perform well in the oil spill hyper-spectral image segmentation. The energy function embeds spectral and spatial information, introduces the vector edge stopping function, and constructs a novel length term. Results of the improved model on airborne hyperspectral oil spill images show that it improves the ability of distinguishing between oil spills and sea water, as well as the capability of noise reduction.

  9. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  10. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    PubMed

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  11. Framework of a Contour Based Depth Map Coding Method

    NASA Astrophysics Data System (ADS)

    Wang, Minghui; He, Xun; Jin, Xin; Goto, Satoshi

    Stereo-view and multi-view video formats are heavily investigated topics given their vast application potential. Depth Image Based Rendering (DIBR) system has been developed to improve Multiview Video Coding (MVC). Depth image is introduced to synthesize virtual views on the decoder side in this system. Depth image is a piecewise image, which is filled with sharp contours and smooth interior. Contours in a depth image show more importance than interior in view synthesis process. In order to improve the quality of the synthesized views and reduce the bitrate of depth image, a contour based coding strategy is proposed. First, depth image is divided into layers by different depth value intervals. Then regions, which are defined as the basic coding unit in this work, are segmented from each layer. The region is further divided into the contour and the interior. Two different procedures are employed to code contours and interiors respectively. A vector-based strategy is applied to code the contour lines. Straight lines in contours cost few of bits since they are regarded as vectors. Pixels, which are out of straight lines, are coded one by one. Depth values in the interior of a region are modeled by a linear or nonlinear formula. Coefficients in the formula are retrieved by regression. This process is called interior painting. Unlike conventional block based coding method, the residue between original frame and reconstructed frame (by contour rebuilt and interior painting) is not sent to decoder. In this proposal, contour is coded in a lossless way whereas interior is coded in a lossy way. Experimental results show that the proposed Contour Based Depth map Coding (CBDC) achieves a better performance than JMVC (reference software of MVC) in the high quality scenarios.

  12. Simple method for prediction of aircraft noise contours

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1980-01-01

    A method for generating noise contours more rapidly and more simply than previously used programs is discussed. The method gives the area, the noise contour, and its extremities for an arbitrarily complex flight path for both takeoffs and landings with relative ease. The analysis reveals the fundamental nature of the contours and how the various factors that influence its size and shape enter into the analysis. It is noted that the effects of ground attenuation and shielding are omitted as they are important only on the initial portion of flight and are highly dependent upon aircraft configuration. However, the analysis shows that these effects could be included. It is emphasized the the single-event contour is an obvious choice for purposes of minimizing noise impact.

  13. Segmentation of Coronal Holes Using Active Contours Without Edges

    NASA Astrophysics Data System (ADS)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  14. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  15. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process

  16. Segmentation of volumetric tissue images using constrained active contour models.

    PubMed

    Adiga, P S Umesh

    2003-06-01

    In this article we describe an application of active contour model for the segmentation of 3D histo-pathological images. The 3D images of a thick tissue specimen are obtained as a stack of optical sections using confocal laser beam scanning microscope (CLSM). We have applied noise reduction and feature enhancement methods so that a smooth and slowly varying potential surface is obtained for proper convergence. To increase the capture range of the potential surface, we use a combination of distance potential and the diffused gradient potential as external forces. It has been shown that the region-based information obtained from low-level segmentation can be applied to reduce the adverse influence of the neighbouring nucleus having a strong boundary feature. We have also shown that, by increasing the axial resolution of the image stack, we can automatically propagate the optimum active contour of one image slice to its neighbouring image slices as an appropriate initial model. Results on images of prostate tissue section are presented.

  17. Pupil segmentation using active contour with shape prior

    NASA Astrophysics Data System (ADS)

    Ukpai, Charles O.; Dlay, Satnam S.; Woo, Wai L.

    2015-03-01

    Iris segmentation is the process of defining the valid part of the eye image used for further processing (feature extraction, matching and decision making). Segmentation of the iris mostly starts with pupil boundary segmentation. Most pupil segmentation techniques are based on the assumption that the pupil is circular shape. In this paper, we propose a new pupil segmentation technique which combines shape, location and spatial information for accurate and efficient segmentation of the pupil. Initially, the pupil's position and radius is estimated using a statistical approach and circular Hough transform. In order to segment the irregular boundary of the pupil, an active contour model is initialized close to the estimated boundary using information from the first step and segmentation is achieved using energy minimization based active contour. Pre-processing and post-processing were carried out to remove noise and occlusions respectively. Experimental results on CASIA V1.0 and 4.0 shows that the proposed method is highly effective at segmenting irregular boundaries of the pupil.

  18. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  19. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, Lothar F.

    1995-05-30

    A method for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining.

  20. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, L.F.

    1995-05-30

    A method is disclosed for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining. 5 figs.

  1. Adaptable active contour model with applications to infrared ship target segmentation

    NASA Astrophysics Data System (ADS)

    Fang, Lingling; Wang, Xianghai; Wan, Yu

    2016-07-01

    Active contour model is widely and popularly used in the field of image segmentation because of its superior theoretical properties and efficient numerical methods. An algorithm to segment a ship target in infrared (IR) images using Chan-Vese (C-V) active contour model is proposed here. The method effectively integrates both image regional and boundary information by an adaptable weight function. The method can segment IR ship images, which usually contain noises, blurry boundaries, and heterogeneous regions. In addition, compared with the state-of-the-art methods, experiment results demonstrate the performance and effectiveness of this method.

  2. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of ����.�������� with our method (p < 0.001, Wilcoxon).

  3. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of 0.24 with our method (p < 0.001, Wilcoxon).

  4. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  5. BABEL - A method for digitization and restoration of contour maps

    NASA Astrophysics Data System (ADS)

    Westphalen, Gernot

    1995-03-01

    We have developed BABEL as a method for digitization and restoration of contour maps. The results of the comparison between restoration and template are encouraging and first applications are proving very useful. The restoration method is now quite flexible and fast. The result is available as a standard fits file, so that the restored map can be transferred into various coordinate systems and projections and can be used for further digital processing, e.g. for comparison of older radio data with new infrared or X-ray data. So far we have digitized various HI line and 11.1 cm continuum contour maps, for which we know that the original digital data were lost or did never exist in a machine readable format.

  6. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  7. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  8. Estimation of uncertainty for contour method residual stress measurements

    SciTech Connect

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).

  9. A partition-based active contour model incorporating local information for image segmentation.

    PubMed

    Shi, Jiao; Wu, Jiaji; Paul, Anand; Jiao, Licheng; Gong, Maoguo

    2014-01-01

    Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant intensities. This assumption, however, cannot be satisfied when describing intensity inhomogeneous images which frequently occur in real world images and induced considerable difficulties in image segmentation. A milder assumption that the image is statistically homogeneous within different local regions may better suit real world images. By taking local image information into consideration, an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposed method, pixels within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model when dealing with intensity inhomogeneity images.

  10. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  11. Feature-based active contour model and occluding object detection.

    PubMed

    Memar, Sara; Ksantini, Riadh; Boufama, Boubakeur

    2016-04-01

    This paper presents a method for image segmentation and object detection. The proposed strategy consists of two major stages. The first one corresponds to image segmentation, which is based on the active contour model (ACM) algorithm, using an automatic selection of the best candidate features among gradient, polarity, and depth, coupled with a combination of them by the kernel support vector machine (KSVM). Although existing techniques, such as the ones based on ACM, perform well in the single-object case and non-noisy environments, these techniques fail when the scene consists of multiple occluding objects, with possibly similar colors. Thus, the second stage corresponds to the identification of salient and occluded objects based on the fuzzy C-mean algorithm (FCM). In this stage, the depth is included as another clue that allows us to estimate the cluster number and to make the clustering process more robust. In particular, complex occlusions can be handled this way, and the objects can be properly segmented and identified. Experimental results on real images and on several standard datasets have shown the success and effectiveness of the proposed method.

  12. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Dupont, Pierre E

    2012-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system's signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the "tubularity" of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours.

  13. An investigation into positron emission tomography contouring methods across two treatment planning systems

    SciTech Connect

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-04-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

  14. Parametric kernel-driven active contours for image segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Qiongzhi; Fang, Jiangxiong

    2012-10-01

    We investigated a parametric kernel-driven active contour (PKAC) model, which implicitly transfers kernel mapping and piecewise constant to modeling the image data via kernel function. The proposed model consists of curve evolution functional with three terms: global kernel-driven and local kernel-driven terms, which evaluate the deviation of the mapped image data within each region from the piecewise constant model, and a regularization term expressed as the length of the evolution curves. In the local kernel-driven term, the proposed model can effectively segment images with intensity inhomogeneity by incorporating the local image information. By balancing the weight between the global kernel-driven term and the local kernel-driven term, the proposed model can segment the images with either intensity homogeneity or intensity inhomogeneity. To ensure the smoothness of the level set function and reduce the computational cost, the distance regularizing term is applied to penalize the deviation of the level set function and eliminate the requirement of re-initialization. Compared with the local image fitting model and local binary fitting model, experimental results show the advantages of the proposed method in terms of computational efficiency and accuracy.

  15. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  16. Efficient hyperspectral image segmentation using geometric active contour formulation

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.

    2014-10-01

    In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.

  17. Active Contours Driven by Multi-Feature Gaussian Distribution Fitting Energy with Application to Vessel Segmentation.

    PubMed

    Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong

    2015-01-01

    Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.

  18. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    SciTech Connect

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  19. Coupling of radial-basis network and active contour model for multispectral brain MRI segmentation.

    PubMed

    Valdés-Cristerna, Raquel; Medina-Bañuelos, Verónica; Yáñez-Suárez, Oscar

    2004-03-01

    Magnetic resonance (MR) has been accepted as the reference image study in the clinical environment. The development of new sequences has allowed obtaining diverse images with high clinical importance and whose interpretation requires their joint analysis (multispectral MRI). Recent approaches to segment MRI point toward the definition of hybrid models, where the advantages of region and contour-based methods can be exploited to look for the integration or fusion of information, thus enhancing the performance of the individual approaches. Following this perspective, a hybrid model for multispectral brain MRI segmentation is presented. The model couples a segmenter, based on a radial basis network (RBFNNcc), and an active contour model, based on a cubic spline active contour (CSAC) interpolation. Both static and dynamic coupling of RBFNNcc and CSAC are proposed; the RBFNNcc stage provides an initial contour to the CSAC; the initial contour is optimally sampled with respect to its curvature variations; multispectral information and a restriction term are included into the CSAC energy equation. Segmentations were compared to a reference stack, indicating high-quality performance as measured by Tanimoto indexes of 0.74 +/- 0.08.

  20. The contour method cutting assumption: error minimization and correction

    SciTech Connect

    Prime, Michael B; Kastengren, Alan L

    2010-01-01

    The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

  1. Evaluating geodesic active contours in microcalcifications segmentation on mammograms.

    PubMed

    Duarte, Marcelo A; Alvarenga, Andre V; Azevedo, Carolina M; Calas, Maria Julia G; Infantosi, Antonio F C; Pereira, Wagner C A

    2015-12-01

    Breast cancer is the most commonly occurring type of cancer among women, and it is the major cause of female cancer-related deaths worldwide. Its incidence is increasing in developed as well as developing countries. Efficient strategies to reduce the high death rates due to breast cancer include early detection and tumor removal in the initial stages of the disease. Clinical and mammographic examinations are considered the best methods for detecting the early signs of breast cancer; however, these techniques are highly dependent on breast characteristics, equipment quality, and physician experience. Computer-aided diagnosis (CADx) systems have been developed to improve the accuracy of mammographic diagnosis; usually such systems may involve three steps: (i) segmentation; (ii) parameter extraction and selection of the segmented lesions and (iii) lesions classification. Literature considers the first step as the most important of them, as it has a direct impact on the lesions characteristics that will be used in the further steps. In this study, the original contribution is a microcalcification segmentation method based on the geodesic active contours (GAC) technique associated with anisotropic texture filtering as well as the radiologists' knowledge. Radiologists actively participate on the final step of the method, selecting the final segmentation that allows elaborating an adequate diagnosis hypothesis with the segmented microcalcifications presented in a region of interest (ROI). The proposed method was assessed by employing 1000 ROIs extracted from images of the Digital Database for Screening Mammography (DDSM). For the selected ROIs, the rate of adequately segmented microcalcifications to establish a diagnosis hypothesis was at least 86.9%, according to the radiologists. The quantitative test, based on the area overlap measure (AOM), yielded a mean of 0.52±0.20 for the segmented images, when all 2136 segmented microcalcifications were considered. Moreover, a

  2. An active contour model for medical image segmentation with application to brain CT image

    PubMed Central

    Qian, Xiaohua; Wang, Jiahui; Guo, Shuxu; Li, Qiang

    2013-01-01

    Purpose: Cerebrospinal fluid (CSF) segmentation in computed tomography (CT) is a key step in computer-aided detection (CAD) of acute ischemic stroke. Because of image noise, low contrast and intensity inhomogeneity, CSF segmentation has been a challenging task. A region-based active contour model, which is insensitive to contour initialization and robust to intensity inhomogeneity, was developed for segmenting CSF in brain CT images. Methods: The energy function of the region-based active contour model is composed of a range domain kernel function, a space domain kernel function, and an edge indicator function. By minimizing the energy function, the region of edge elements of the target could be automatically identified in images with less dependence on initial contours. The energy function was optimized by means of the deepest descent method with a level set framework. An overlap rate between segmentation results and the reference standard was used to assess the segmentation accuracy. The authors evaluated the performance of the proposed method on both synthetic data and real brain CT images. They also compared the performance level of our method to those of region-scalable fitting (RSF) and global convex segment (GCS) models. Results: For the experiment of CSF segmentation in 67 brain CT images, their method achieved an average overlap rate of 66% compared to the average overlap rates of 16% and 46% from the RSF model and the GCS model, respectively. Conclusions: Their region-based active contour model has the ability to achieve accurate segmentation results in images with high noise level and intensity inhomogeneity. Therefore, their method has great potential in the segmentation of medical images and would be useful for developing CAD schemes for acute ischemic stroke in brain CT images. PMID:23387759

  3. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  4. Active contour-based cell segmentation during freezing and its application in cryopreservation.

    PubMed

    Wu, Pengxiang; Yi, Jingru; Zhao, Gang; Huang, Zhangjin; Qiu, Bensheng; Gao, Dayong

    2015-01-01

    Water permeability of the plasma membrane plays an important role in making optimal cryopreservation protocols for different types of cells. To quantify water permeability effectively, automated cell volume segmentation during freezing is necessary. Unfortunately, there exists so far no efficient and accurate segmentation method to handle this kind of image processing task gracefully. The existence of extracellular ice and variable background present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel approach to reliably extract cells from the extracellular ice, which attaches to or surrounds cells. Our method operates on temporal image sequences and is composed of two steps. First, for each image from the sequence, a greedy search strategy is employed to track approximate locations of cells in motion. Second, we utilize a localized competitive active contour model to obtain the contour of each cell. Based on the first step's result, the initial contour for level set evolution can be determined appropriately, thus considerably easing the pain of initialization for an active contour model. Experimental results demonstrate that the proposed method is efficient and effective in segmenting cells during freezing.

  5. Unsupervised Cardiac Image Segmentation via Multiswarm Active Contours with a Shape Prior

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Garcia-Hernandez, M. G.; Ibarra-Manzano, M. A.

    2013-01-01

    This paper presents a new unsupervised image segmentation method based on particle swarm optimization and scaled active contours with shape prior. The proposed method uses particle swarm optimization over a polar coordinate system to perform the segmentation task, increasing the searching capability on medical images with respect to different interactive segmentation techniques. This method is used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, where the shape prior is acquired by cardiologists, and it is utilized as the initial active contour. Moreover, to assess the performance of the cardiac medical image segmentations obtained by the proposed method and by the interactive techniques regarding the regions delineated by experts, a set of validation metrics has been adopted. The experimental results are promising and suggest that the proposed method is capable of segmenting human heart and ventricular areas accurately, which can significantly help cardiologists in clinical decision support. PMID:24198850

  6. Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow

    PubMed Central

    Michailovich, Oleg; Rathi, Yogesh; Tannenbaum, Allen

    2013-01-01

    This paper addresses the problem of image segmentation by means of active contours, whose evolution is driven by the gradient flow derived from an energy functional that is based on the Bhattacharyya distance. In particular, given the values of a photometric variable (or of a set thereof), which is to be used for classifying the image pixels, the active contours are designed to converge to the shape that results in maximal discrepancy between the empirical distributions of the photometric variable inside and outside of the contours. The above discrepancy is measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the problem at hand. The proposed methodology can be viewed as a generalization of the segmentation methods, in which active contours maximize the difference between a finite number of empirical moments of the “inside” and “outside” distributions. Furthermore, it is shown that the proposed methodology is very versatile and flexible in the sense that it allows one to easily accommodate a diversity of the image features based on which the segmentation should be performed. As an additional contribution, a method for automatically adjusting the smoothness properties of the empirical distributions is proposed. Such a procedure is crucial in situations when the number of data samples (supporting a certain segmentation class) varies considerably in the course of the evolution of the active contour. In this case, the smoothness properties of the empirical distributions have to be properly adjusted to avoid either over- or underestimation artifacts. Finally, a number of relevant segmentation results are demonstrated and some further research directions are discussed. PMID:17990755

  7. Efficient thermal image segmentation through integration of nonlinear enhancement with unsupervised active contour model

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Krieger, Evan; Sidike, Paheding; Asari, Vijayan K.

    2015-03-01

    Thermal images are exploited in many areas of pattern recognition applications. Infrared thermal image segmentation can be used for object detection by extracting regions of abnormal temperatures. However, the lack of texture and color information, low signal-to-noise ratio, and blurring effect of thermal images make segmenting infrared heat patterns a challenging task. Furthermore, many segmentation methods that are used in visible imagery may not be suitable for segmenting thermal imagery mainly due to their dissimilar intensity distributions. Thus, a new method is proposed to improve the performance of image segmentation in thermal imagery. The proposed scheme efficiently utilizes nonlinear intensity enhancement technique and Unsupervised Active Contour Models (UACM). The nonlinear intensity enhancement improves visual quality by combining dynamic range compression and contrast enhancement, while the UACM incorporates active contour evolutional function and neural networks. The algorithm is tested on segmenting different objects in thermal images and it is observed that the nonlinear enhancement has significantly improved the segmentation performance.

  8. New method of contour-based mask-shape compiler

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka

    2007-10-01

    We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.

  9. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  10. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  11. Use of the Contour Method to Determine Autofrettage Residual Stresses: A Proposed Experimental Procedure

    DTIC Science & Technology

    2013-05-01

    determination of residual stresses in a long section of swage -autofrettaged gun tube by employing the relatively new contour method (CM). The CM...stresses, swage -autofrettage, contour method (CM), electric discharge machining (EDM), gun tube, and cutting, 16. SECURITY CLASSIFICATION OF: 17...4 Experimental Evidence Relating to Swage Autofrettage

  12. A Novel Active Contour Model for MRI Brain Segmentation used in Radiotherapy Treatment Planning

    PubMed Central

    Mostaar, Ahmad; Houshyari, Mohammad; Badieyan, Saeedeh

    2016-01-01

    Introduction Brain image segmentation is one of the most important clinical tools used in radiology and radiotherapy. But accurate segmentation is a very difficult task because these images mostly contain noise, inhomogeneities, and sometimes aberrations. The purpose of this study was to introduce a novel, locally statistical active contour model (ACM) for magnetic resonance image segmentation in the presence of intense inhomogeneity with the ability to determine the position of contour and energy diagram. Methods A Gaussian distribution model with different means and variances was used for inhomogeneity, and a moving window was used to map the original image into another domain in which the intensity distributions of inhomogeneous objects were still Gaussian but were better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying a bias field by the original signal within the window. Then, a statistical energy function is defined for each local region. Also, to evaluate the performance of our method, experiments were conducted on MR images of the brain for segment tumors or normal tissue as visualization and energy functions. Results In the proposed method, we were able to determine the size and position of the initial contour and to count iterations to have a better segmentation. The energy function for 20 to 430 iterations was calculated. The energy function was reduced by about 5 and 7% after 70 and 430 iterations, respectively. These results showed that, with increasing iterations, the energy function decreased, but it decreased faster during the early iterations, after which it decreased slowly. Also, this method enables us to stop the segmentation based on the threshold that we define for the energy equation. Conclusion An active contour model based on the energy function is a useful tool for medical image segmentation. The proposed method combined the information about neighboring pixels that

  13. Phase-based probabilistic active contour for nerve detection in ultrasound images for regional anesthesia.

    PubMed

    Hafiane, Adel; Vieyres, Pierre; Delbos, Alain

    2014-09-01

    Ultrasound guided regional anesthesia (UGRA) is steadily growing in popularity, owing to advances in ultrasound imaging technology and the advantages that this technique presents for safety and efficiency. The aim of this work is to assist anaesthetists during the UGRA procedure by automatically detecting the nerve blocks in the ultrasound images. The main disadvantage of ultrasound images is the poor quality of the images, which are also affected by the speckle noise. Moreover, the nerve structure is not salient amid the other tissues, which makes its detection a challenging problem. In this paper we propose a new method to tackle the problem of nerve zone detection in ultrasound images. The method consists in a combination of three approaches: probabilistic, edge phase information and active contours. The gradient vector flow (GVF) is adopted as an edge-based active contour. The phase analysis of the monogenic signal is used to provide reliable edges for the GVF. Then, a learned probabilistic model reduces the false positives and increases the likelihood energy term of the target region. It yields a new external force field that attracts the active contour toward the desired region of interest. The proposed scheme has been applied to sciatic nerve regions. The qualitative and quantitative evaluations show a high accuracy and a significant improvement in performance.

  14. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

    PubMed

    Keshani, Mohsen; Azimifar, Zohreh; Tajeripour, Farshad; Boostani, Reza

    2013-05-01

    In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly.

  15. Simple computer method provides contours for radiological images

    NASA Technical Reports Server (NTRS)

    Newell, J. D.; Keller, R. A.; Baily, N. A.

    1975-01-01

    Computer is provided with information concerning boundaries in total image. Gradient of each point in digitized image is calculated with aid of threshold technique; then there is invoked set of algorithms designed to reduce number of gradient elements and to retain only major ones for definition of contour.

  16. Active Lip Contour Using Hue Characteristics Energy Model for A Lip Reading System

    NASA Astrophysics Data System (ADS)

    Ogoshi, Yasuhiro; Ide, Hisato; Araki, Chikahiro; Kimura, Haruhiko

    Active contour model (SNAKES) is very used as one of the powerful technique in a contour extraction that utilizes principle of energy-minimizing. Performing extraction of lip contour with the lip image that has strong edges or noises on the lips and oral cavity is an important problem. This paper proposes a new energy model of SNAKES based on hue characteristics of lip images.

  17. Multiplatform GPGPU implementation of the active contours without edges algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Meyer-Baese, Anke; Meyer-Baese, Uwe

    2012-05-01

    An OpenCL implementation of the Active Contours Without Edges algorithm is presented. The proposed algorithm uses the General Purpose Computing on Graphics Processing Units (GPGPU) to accelerate the original model by parallelizing the two main steps of the segmentation process, the computation of the Signed Distance Function (SDF) and the evolution of the segmented curve. The proposed scheme for the computation of the SDF is based on the iterative construction of partial Voronoi diagrams of a reduced dimension and obtains the exact Euclidean distance in a time of order O(N/p), where N is the number of pixels and p the number of processors. With high resolution images the segmentation algorithm runs 10 times faster than its equivalent sequential implementation. This work is being done as an open source software that, being programmed in OpenCL, can be used in dierent platforms allowing a broad number of nal users and can be applied in dierent areas of computer vision, like medical imaging, tracking, robotics, etc. This work uses OpenGL to visualize the algorithm results in real time.

  18. Active contour segmentation using level set function with enhanced image from prior intensity.

    PubMed

    Kim, Sunhee; Kim, Youngjun; Lee, Deukhee; Park, Sehyung

    2015-01-01

    This paper presents a new active contour segmentation model using a level set function that can correctly capture both the strong and the weak boundaries of a target enclosed by bright and dark regions at the same time. We introduce an enhanced image obtained from prior information about the intensity of the target. The enhanced image emphasizes the regions where pixels have intensities close to the prior intensity. This enables a desirable segmentation of an image having a partially low contrast with the target surrounded by regions that are brighter or darker than the target. We define an edge indicator function on an original image, and local and regularization forces on an enhanced image. An edge indicator function and two forces are incorporated in order to identify the strong and weak boundaries, respectively. We established an evolution equation of contours in the level set formulation and experimented with several medical images to show the performance of the proposed method.

  19. 3D dento-maxillary osteolytic lesion and active contour segmentation pilot study in CBCT: semi-automatic vs manual methods

    PubMed Central

    Kacem, A; Legoux, H; Le Tenier, M; Hamitouche, C; Arbab-Chirani, R

    2015-01-01

    Objectives: This study was designed to evaluate the reliability of a semi-automatic segmentation tool for dento-maxillary osteolytic image analysis compared with manually defined segmentation in CBCT scans. Methods: Five CBCT scans were selected from patients for whom periapical radiolucency images were available. All images were obtained using a ProMax® 3D Mid Planmeca (Planmeca Oy, Helsinki, Finland) and were acquired with 200-μm voxel size. Two clinicians performed the manual segmentations. Four operators applied three different semi-automatic procedures. The volumes of the lesions were measured. An analysis of dispersion was made for each procedure and each case. An ANOVA was used to evaluate the operator effect. Non-paired t-tests were used to compare semi-automatic procedures with the manual procedure. Statistical significance was set at α = 0.01. Results: The coefficients of variation for the manual procedure were 2.5–3.5% on average. There was no statistical difference between the two operators. The results of manual procedures can be used as a reference. For the semi-automatic procedures, the dispersion around the mean can be elevated depending on the operator and case. ANOVA revealed significant differences between the operators for the three techniques according to cases. Conclusions: Region-based segmentation was only comparable with the manual procedure for delineating a circumscribed osteolytic dento-maxillary lesion. The semi-automatic segmentations tested are interesting but are limited to complex surface structures. A methodology that combines the strengths of both methods could be of interest and should be tested. The improvement in the image analysis that is possible through the segmentation procedure and CBCT image quality could be of value. PMID:25996572

  20. A robust region-based active contour model with point classification for ultrasound breast lesion segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhihua; Zhang, Lidan; Ren, Haibing; Kim, Ji-Yeun

    2013-02-01

    Lesion segmentation is one of the key technologies for computer-aided diagnosis (CAD) system. In this paper, we propose a robust region-based active contour model (ACM) with point classification to segment high-variant breast lesion in ultrasound images. First, a local signed pressure force (LSPF) function is proposed to classify the contour points into two classes: local low contrast class and local high contrast class. Secondly, we build a sub-model for each class. For low contrast class, the sub-model is built by combining global energy with local energy model to find a global optimal solution. For high contrast class, the sub-model is just the local energy model for its good level set initialization. Our final energy model is built by adding the two sub-models. Finally, the model is minimized and evolves the level set contour to get the segmentation result. We compare our method with other state-of-art methods on a very large ultrasound database and the result shows that our method can achieve better performance.

  1. Hemagglutinin outer contour detection methods based on regular hexagon bar template

    NASA Astrophysics Data System (ADS)

    Tian, Miaomiao; Jing, Wenbo; Duan, Jin; Wang, Xiaoman

    2014-11-01

    In order to extract hemagglutinin outer contour accurately in the hemagglutinin image, analyzes the hemagglutinin protein content by the size of detected contour, presents a regular hexagon bar circle detection algorithm which uses regular hexagon bar detection template to detect outer contour of the hemagglutinin. Firstly, the hemagglutinin image thresholded by using OTSU adaptive thresholding method; and then using regular hexagon bar detection template method to rough align hemagglutinin after thresholded, intersection of detection template and the hemagglutinin contour area is attained, the noise near hemagglutinin contour is reduced by using the standardization relationship of the hexagon bars, so the hemagglutinin pixels are accurately obtained; finally the hemagglutinin outer contour information is gained by the geometric relationship of pixels, the hemagglutinin position is achieved precisely. The experimental results show that: the contour detection error due to the density uneven and the edge unclearly of hemagglutinin image protein is better reduced, the detection accuracy is increased by a factor of 0.47, detection speed is increased by a factor of 0.56.The hemagglutinin contour can be dected stablely, fastly, accurately and the is significant to the study of the hemagglutinin protein content.

  2. Yet another method for triangulation and contouring for automated cartography

    NASA Technical Reports Server (NTRS)

    De Floriani, L.; Falcidieno, B.; Nasy, G.; Pienovi, C.

    1982-01-01

    An algorithm is presented for hierarchical subdivision of a set of three-dimensional surface observations. The data structure used for obtaining the desired triangulation is also singularly appropriate for extracting contours. Some examples are presented, and the results obtained are compared with those given by Delaunay triangulation. The data points selected by the algorithm provide a better approximation to the desired surface than do randomly selected points.

  3. Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour.

    PubMed

    Xing, Fuyong; Yang, Lin

    2015-10-01

    Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned images is a difficult task due to a large number of cells. The weak or misleading cell boundaries also present significant challenges. In this paper, we propose a fast, high throughput cell segmentation algorithm by combining top-down shape models and bottom-up image appearance information. A scalable sparse manifold learning method is proposed to model multiple subpopulations of different cell shape priors. Followed by a shape clustering on the manifold, a novel affine transform-approximated active contour model is derived to deform contours without solving a large amount of computationally-expensive Euler-Lagrange equations, and thus dramatically reduces the computational time. To the best of our knowledge, this is the first report of a high throughput cell segmentation algorithm for whole slide scanned pathology specimens using manifold learning to accelerate active contour models. The proposed approach is tested using 12 NET images, and the comparative experiments with the state of the arts demonstrate its superior performance in terms of both efficiency and effectiveness.

  4. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    PubMed

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system.

  5. Rapid Activation of Motor Responses by Illusory Contours

    ERIC Educational Resources Information Center

    Seydell-Greenwald, Anna; Schmidt, Thomas

    2012-01-01

    Whereas physiological studies indicate that illusory contours (ICs) are signaled in early visual areas at short latencies, behavioral studies are divided as to whether IC processing can proceed in a fast, automatic, bottom-up manner or whether it requires extensive top-down intracortical feedback or even awareness and cognition. Here, we employ a…

  6. Method of tracing contour patterns for use in making gradual contour resin matrix composites

    NASA Technical Reports Server (NTRS)

    Fontes, M. J. (Inventor)

    1983-01-01

    The invention relates to methods for making alminate patterns for a resin matrix composite structural component. A sheet of paper is temporarily adhered to a model of the structrual component. A pen is positioned on the paper with a spindle touching the model surface opposite the pen. The pen and spindle are moved along the path that maintains the aforementioned contacts. The resulting line traced on paper is a model constant-thickness locus and provides a pattern for a single lamination of resin-impregnated fabric. The steps are repeated to make other patterns and each time the steps are repeated the distance between the tracer and the spindle is changed to correspond to the thickness of a lamination.

  7. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random field

    PubMed Central

    Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2013-01-01

    Purpose: Lung lesions vary considerably in size, density, and shape, and can attach to surrounding anatomic structures such as chest wall or mediastinum. Automatic segmentation of the lesions poses a challenge. This work communicates a new three-dimensional algorithm for the segmentation of a wide variety of lesions, ranging from tumors found in patients with advanced lung cancer to small nodules detected in lung cancer screening programs. Methods: The authors’ algorithm uniquely combines the image processing techniques of marker-controlled watershed, geometric active contours as well as Markov random field (MRF). The user of the algorithm manually selects a region of interest encompassing the lesion on a single slice and then the watershed method generates an initial surface of the lesion in three dimensions, which is refined by the active geometric contours. MRF improves the segmentation of ground glass opacity portions of part-solid lesions. The algorithm was tested on an anthropomorphic thorax phantom dataset and two publicly accessible clinical lung datasets. These clinical studies included a same-day repeat CT (prewalk and postwalk scans were performed within 15 min) dataset containing 32 lung lesions with one radiologist's delineated contours, and the first release of the Lung Image Database Consortium (LIDC) dataset containing 23 lung nodules with 6 radiologists’ delineated contours. The phantom dataset contained 22 phantom nodules of known volumes that were inserted in a phantom thorax. Results: For the prewalk scans of the same-day repeat CT dataset and the LIDC dataset, the mean overlap ratios of lesion volumes generated by the computer algorithm and the radiologist(s) were 69% and 65%, respectively. For the two repeat CT scans, the intra-class correlation coefficient (ICC) was 0.998, indicating high reliability of the algorithm. The mean relative difference was −3% for the phantom dataset. Conclusions: The performance of this new segmentation

  8. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  9. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  10. Memory based active contour algorithm using pixel-level classified images for colon crypt segmentation.

    PubMed

    Cohen, Assaf; Rivlin, Ehud; Shimshoni, Ilan; Sabo, Edmond

    2015-07-01

    In this paper, we introduce a novel method for detection and segmentation of crypts in colon biopsies. Most of the approaches proposed in the literature try to segment the crypts using only the biopsy image without understanding the meaning of each pixel. The proposed method differs in that we segment the crypts using an automatically generated pixel-level classification image of the original biopsy image and handle the artifacts due to the sectioning process and variance in color, shape and size of the crypts. The biopsy image pixels are classified to nuclei, immune system, lumen, cytoplasm, stroma and goblet cells. The crypts are then segmented using a novel active contour approach, where the external force is determined by the semantics of each pixel and the model of the crypt. The active contour is applied for every lumen candidate detected using the pixel-level classification. Finally, a false positive crypt elimination process is performed to remove segmentation errors. This is done by measuring their adherence to the crypt model using the pixel level classification results. The method was tested on 54 biopsy images containing 4944 healthy and 2236 cancerous crypts, resulting in 87% detection of the crypts with 9% of false positive segments (segments that do not represent a crypt). The segmentation accuracy of the true positive segments is 96%.

  11. Optimization of Doppler echocardiographic velocity measurements using an automatic contour detection method.

    PubMed

    Gaillard, Emmanuel; Kadem, Lyes; Clavel, Marie-Annick; Pibarot, Philippe; Durand, Louis-Gilles

    2010-09-01

    Intra- and interobserver variability in Doppler echocardiographic velocity measurements (DEVM) is a significant issue. Indeed, imprecisions of DEVM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunctions. To reduce the variability and rapidity of DEVM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared with those obtained manually by two experienced echocardiographers on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients with aortic or mitral stenosis, 20 with normal sinus rhythm and 10 with atrial fibrillation. We focused on the three essential variables that are measured routinely using Doppler echocardiography in the clinical setting: the maximum velocity (Vmax), the mean velocity (Vmean) and the velocity-time integral (VTI). Comparison between the two methods has shown a very good agreement. A small bias value was found between the two methods (between -3.9% and 0.5% for Vmax, between -4.6% and -1.4% for Vmean and between -3.6% and 4.4% for VTI). Moreover, the computation time was short, approximately 5 s. This new method applied to DEVM could, therefore, provide a useful tool to eliminate the intra- and interobserver variabilities associated with DEVM and thereby to improve the accuracy of the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared with the standard manual tracing method. From a practical point of view, the model developed can be easily implemented in a standard echocardiographic system.

  12. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    PubMed Central

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  13. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  14. Evaluation of the pulse-contour method of determining stroke volume in man.

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.; Branzi, A.; Sanders, W.; Brown, B. W.; Harrison, D. C.

    1972-01-01

    The pulse-contour method for determining stroke volume has been employed as a continuous rapid method of monitoring the cardiovascular status of patients. Twenty-one patients with ischemic heart disease and 21 patients with mitral valve disease were subjected to a variety of hemodynamic interventions. The pulse-contour estimations, using three different formulas derived by Warner, Kouchoukos, and Herd, were compared with indicator-dilution outputs. A comparison of the results of the two methods for determining stroke volume yielded correlation coefficients ranging from 0.59 to 0.84. The better performing Warner formula yielded a coefficient of variation of about 20%. The type of hemodynamic interventions employed did not significantly affect the results using the pulse-contour method. Although the correlation of the pulse-contour and indicator-dilution stroke volumes is high, the coefficient of variation is such that small changes in stroke volume cannot be accurately assessed by the pulse-contour method. However, the simplicity and rapidity of this method compared to determination of cardiac output by Fick or indicator-dilution methods makes it a potentially useful adjunct for monitoring critically ill patients.

  15. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    NASA Astrophysics Data System (ADS)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  16. Synthetic aperture radar image segmentation based on edge-region active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wen, Xianbin; Xu, Haixia; Meng, Qingxia

    2016-07-01

    An energy functional is proposed based on an edge-region active contour model for synthetic aperture radar (SAR) image segmentation. The proposed energy functional not only has a desirable property to process inhomogeneous regions in SAR images, but also shows satisfactory convergence speed. Our proposed energy functional consists of two main energy terms: an edge-region term and a regularization term. The edge-region term is derived from a Gamma model and gradient term model, which can process the speckle noises and drive the motion of the curves toward desired locations. The regularization term is not only able to maintain a desired shape of the evolution curves but also has a strong smoothing curve effect and avoid the occurrence of small, isolated regions in the final segmentation. Finally, the gradient descent flow method is introduced for minimizing our energy functional. A desirable feature of the proposed method is that it is not sensitive to the contour initialization. Compared with other methods, experimental results show that the proposed approach has promising edge detection results on the synthetic and real SAR images.

  17. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  18. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent

    PubMed Central

    GHAYOUMI ZADEH, Hossein; HADDADNIA, Javad; MONTAZERI, Alimohammad

    2016-01-01

    Background: The segmentation of cancerous areas in breast images is important for the early detection of disease. Thermal imaging has advantages, such as being non-invasive, non-radiation, passive, quick, painless, inexpensive, and non-contact. Imaging technique is the focus of this research. Methods: The proposed model in this paper is a combination of surf and corners that are very resistant. Obtained features are resistant to changes in rotation and revolution then with the help of active contours, this feature has been used for segmenting cancerous areas. Results: Comparing the obtained results from the proposed method and mammogram show that proposed method is Accurate and appropriate. Benign and malignance of segmented areas are detected by Lyapunov exponent. Values obtained include TP=91.31%, FN=8.69%, FP=7.26%. Conclusion: The proposed method can classify those abnormally segmented areas of the breast, to the Benign and malignant cancer. PMID:27398339

  19. QUANTITATIVE CELL MOTILITY FOR IN VITRO WOUND HEALING USING LEVEL SET-BASED ACTIVE CONTOUR TRACKING.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit K; Baskin, Tobias I; Dong, Gang

    2006-04-06

    Quantifying the behavior of cells individually, and in clusters as part of a population, under a range of experimental conditions, is a challenging computational task with many biological applications. We propose a versatile algorithm for segmentation and tracking of multiple motile epithelial cells during wound healing using time-lapse video. The segmentation part of the proposed method relies on a level set-based active contour algorithm that robustly handles a large number of cells. The tracking part relies on a detection-based multiple-object tracking method with delayed decision enabled by multi-hypothesis testing. The combined method is robust to complex cell behavior including division and apoptosis, and to imaging artifacts such as illumination changes.

  20. Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer.

    PubMed

    Ali, Sahirzeeshan; Veltri, Robert; Epstein, Jonathan I; Christudass, Christhunesa; Madabhushi, Anant

    2011-01-01

    Shape based active contours have emerged as a natural solution to overlap resolution. However, most of these shape-based methods are computationally expensive. There are instances in an image where no overlapping objects are present and applying these schemes results in significant computational overhead without any accompanying, additional benefit. In this paper we present a novel adaptive active contour scheme (AdACM) that combines boundary and region based energy terms with a shape prior in a multi level set formulation. To reduce the computational overhead, the shape prior term in the variational formulation is only invoked for those instances in the image where overlaps between objects are identified; these overlaps being identified via a contour concavity detection scheme. By not having to invoke all 3 terms (shape, boundary, region) for segmenting every object in the scene, the computational expense of the integrated active contour model is dramatically reduced, a particularly relevant consideration when multiple objects have to be segmented on very large histopathological images. The AdACM was employed for the task of segmenting nuclei on 80 prostate cancer tissue microarray images. Morphological features extracted from these segmentations were found to able to discriminate different Gleason grade patterns with a classification accuracy of 84% via a Support Vector Machine classifier. On average the AdACM model provided 100% savings in computational times compared to a non-optimized hybrid AC model involving a shape prior.

  1. Automated detection of lung tumors in PET/CT images using active contour filter

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Adachi, Hayato; Tsujimoto, Masakazu; Fujita, Hiroshi; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo; Nishio, Masami; Kobayashi, Toshiki

    2015-03-01

    In a previous study, we developed a hybrid tumor detection method that used both computed tomography (CT) and positron emission tomography (PET) images. However, similar to existing computer-aided detection (CAD) schemes, it was difficult to detect low-contrast lesions that touch to the normal organs such as the chest wall or blood vessels in the lung. In the current study, we proposed a novel lung tumor detection method that uses active contour filters to detect the nodules deemed "difficult" in previous CAD schemes. The proposed scheme detects lung tumors using both CT and PET images. As for the detection in CT images, the massive region was first enhanced using an active contour filter (ACF), which is a type of contrast enhancement filter that has a deformable kernel shape. The kernel shape involves closed curves that are connected by several nodes that move iteratively in order to enclose the massive region. The final output of ACF is the difference between the maximum pixel value on the deformable kernel, and pixel value on the center of the filter kernel. Subsequently, the PET images were binarized to detect the regions of increased uptake. The results were integrated, followed by the false positive reduction using 21 characteristic features and three support vector machines. In the experiment, we evaluated the proposed method using 100 PET/CT images. More than half of nodules missed using previous methods were accurately detected. The results indicate that our method may be useful for the detection of lung tumors using PET/CT images.

  2. Balloon energy based on parametric active contour and directional Walsh-Hadamard transform and its application in tracking of texture object in texture background

    NASA Astrophysics Data System (ADS)

    Tahvilian, Homa; Moallem, Payman; Monadjemi, Amirhassan

    2012-12-01

    One of the popular approaches in object boundary detecting and tracking is active contour models (ACM). This article presents a new balloon energy in parametric active contour for tracking a texture object in texture background. In this proposed method, by adding the balloon energy to the energy function of the parametric ACM, a precise detection and tracking of texture target in texture background has been elaborated. In this method, texture feature of contour and object points have been calculated using directional Walsh-Hadamard transform, which is a modified version of the Walsh-Hadamard. Then, by comparing the texture feature of contour points with texture feature of the target object, movement direction of the balloon has been determined, whereupon contour curves are expanded or shrunk in order to adapt to the target boundaries. The tracking process is iterated to the last frames. The comparison between our method and the active contour method based on the moment demonstrates that our method is more effective in tracking object boundary edges used for video streams with a changing background. Consequently, the tracking precision of our method is higher; in addition, it converges more rapidly due to it slower complexity.

  3. Color diffusion model for active contours - an application to skin lesion segmentation.

    PubMed

    Ivanovici, Mihai; Stoica, Diana

    2012-01-01

    Most of the existing diffusion models are defined for gray-scale images. We propose a diffusion model for color images to be used as external energy for active contours. Our diffusion model is based on the first-order moment of the correlation integral expressed using ΔE distances in the CIE Lab color space. We use a multi-scale approach for active contours, the diffusion being independently computed at various scales. We validate the model on synthetic images, including multi-fractal color textures, as well as medical images representing melanoma. We conclude that the proposed diffusion model is valid for use in skin lesion segmentation in color images using active contours.

  4. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  5. Robust segmentation of moving objects in video based on spatiotemporal visual saliency and active contour model

    NASA Astrophysics Data System (ADS)

    Ramadan, Hiba; Tairi, Hamid

    2016-11-01

    This paper presents an algorithm for automatic segmentation of moving objects in video based on spatiotemporal visual saliency and an active contour model. Our algorithm exploits the visual saliency and motion information to build a spatiotemporal visual saliency map used to extract a moving region of interest. This region is used to automatically provide the seeds for the convex active contour (CAC) model to segment the moving object accurately. The experiments show a good performance of our algorithm for moving object segmentation in video without user interaction, especially on the SegTrack dataset.

  6. Validation Specimen for Contour Method Extension to Multiple Residual Stress Components

    SciTech Connect

    Pagliaro, Pierluigi; Prime, Michael B; Zuccarello, B; Clausen, Bjorn; Watkins, Thomas R

    2007-01-01

    A new theoretical development of the contour method, that allow the user to measure the three normal residual stress components on cross sections of a generic mechanical part, is presented. To validate such a theoretical development, a residual stress test specimen was properly designed, fabricated and then tested with different experimental techniques.

  7. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  8. A novel active contour model for unsupervised low-key image segmentation

    NASA Astrophysics Data System (ADS)

    Mei, Jiangyuan; Si, Yulin; Karimi, Hamid; Gao, Huijun

    2013-06-01

    Unsupervised image segmentation is greatly useful in many vision-based applications. In this paper, we aim at the unsupervised low-key image segmentation. In low-key images, dark tone dominates the background, and gray level distribution of the foreground is heterogeneous. They widely exist in the areas of space exploration, machine vision, medical imaging, etc. In our algorithm, a novel active contour model with the probability density function of gamma distribution is proposed. The flexible gamma distribution gives a better description for both of the foreground and background in low-key images. Besides, an unsupervised curve initialization method is designed, which helps to accelerate the convergence speed of curve evolution. The experimental results demonstrate the effectiveness of the proposed algorithm through comparison with the CV model. Also, one real-world application based on our approach is described in this paper.

  9. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    SciTech Connect

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M.; Reamer, Courtney B.; Mohler, Emile R.

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  10. Measuring multiple residual-stress components using the contour method and multiple cuts

    SciTech Connect

    Prime, Michael B; Swenson, Hunter; Pagliaro, Pierluigi; Zuccarello, Bernardo

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  11. A method for detecting whistles, moans, and other frequency contour sounds.

    PubMed

    Mellinger, David K; Martin, Stephen W; Morrissey, Ronald P; Thomas, Len; Yosco, James J

    2011-06-01

    An algorithm is presented for the detection of frequency contour sounds-whistles of dolphins and many other odontocetes, moans of baleen whales, chirps of birds, and numerous other animal and non-animal sounds. The algorithm works by tracking spectral peaks over time, grouping together peaks in successive time slices in a spectrogram if the peaks are sufficiently near in frequency and form a smooth contour over time. The algorithm has nine parameters, including the ones needed for spectrogram calculation and normalization. Finding optimal values for all of these parameters simultaneously requires a search of parameter space, and a grid search technique is described. The frequency contour detection method and parameter optimization technique are applied to the problem of detecting "boing" sounds of minke whales from near Hawaii. The test data set contained many humpback whale sounds in the frequency range of interest. Detection performance is quantified, and the method is found to work well at detecting boings, with a false-detection rate of 3% for the target missed-call rate of 25%. It has also worked well anecdotally for other marine and some terrestrial species, and could be applied to any species that produces a frequency contour, or to non-animal sounds as well.

  12. An Anatomically Validated Brachial Plexus Contouring Method for Intensity Modulated Radiation Therapy Planning

    SciTech Connect

    Van de Velde, Joris; Audenaert, Emmanuel; Speleers, Bruno; Vercauteren, Tom; Mulliez, Thomas; Vandemaele, Pieter; Achten, Eric; Kerckaert, Ingrid; D'Herde, Katharina; De Neve, Wilfried; Van Hoof, Tom

    2013-11-15

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validated the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.

  13. Segmenting breast cancerous regions in thermal images using fuzzy active contours.

    PubMed

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710

  14. Segmenting breast cancerous regions in thermal images using fuzzy active contours

    PubMed Central

    Ghayoumi Zadeh, Hossein; Haddadnia, Javad; Rahmani Seryasat, Omid; Mostafavi Isfahani, Sayed Mohammad

    2016-01-01

    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171 ± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845 ± 0.0619, 0.0710

  15. A simple method for the generation of organ and vessel contours from roentgenographic or fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Newell, J. D.; Keller, R. A.; Baily, N. A.

    1974-01-01

    A simple method for outlining or contouring any area defined by a change in film density or fluoroscopic screen intensity is described. The entire process, except for the positioning of an electronic window, is accomplished using a small computer having appropriate softwave. The electronic window is operator positioned over the area to be processed. The only requirement is that the window be large enough to encompass the total area to be considered.

  16. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours

    PubMed Central

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-01-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: First, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction — This not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we

  17. Evaluation of cardiac output by 5 arterial pulse contour techniques using trend interchangeability method

    PubMed Central

    Fischer, Marc-Olivier; Diouf, Momar; de Wilde, Robert B.P.; Dupont, Hervé; Hanouz, Jean-Luc; Lorne, Emmanuel

    2016-01-01

    Abstract Cardiac output measurement with pulse contour analysis is a continuous, mini-invasive, operator-independent, widely used, and cost-effective technique, which could be helpful to assess changes in cardiac output. The 4-quadrant plot and the polar plot have been described to compare the changes between 2 measurements performed under different conditions, and the direction of change by using different methods of measurements. However, the 4-quadrant plot and the polar plot present a number of limitations, with a risk of misinterpretation in routine clinical practice. We describe a new trend interchangeability method designed to objectively define the interchangeability of each change of a variable. Using the repeatability of the reference method, we classified each change as either uninterpretable or interpretable and then as either noninterchangeable, in the gray zone or interchangeable. An interchangeability rate can then be calculated by the number of interchangeable changes divided by the total number of interpretable changes. In this observational study, we used this objective method to assess cardiac output changes with 5 arterial pulse contour techniques (Wesseling's method, LiDCO, PiCCO, Hemac method, and Modelflow) in comparison with bolus thermodilution technique as reference method in 24 cardiac surgery patients. A total of 172 cardiac output variations were available from the 199 data points: 88 (51%) were uninterpretable, according to the first step of the method. The second step of the method, based on the 84 (49%) interpretable variations, showed that only 18 (21%) to 30 (36%) variations were interchangeable regardless of the technique used. None of pulse contour cardiac output technique could be interchangeable with bolus thermodilution to assess changes in cardiac output using the trend interchangeability method in cardiac surgery patients. Future studies may consider using this method to assess interchangeability of changes between different

  18. Detection of the intima and media layer thickness of ultrasound common carotid artery image using efficient active contour segmentation technique.

    PubMed

    Santhiyakumari, N; Rajendran, P; Madheswaran, M; Suresh, S

    2011-11-01

    An active contour segmentation technique for extracting the intima-media layer of the common carotid artery (CCA) ultrasound images employing semiautomatic region of interest identification and speckle reduction techniques is presented in this paper. An attempt has been made to test the ultrasound images of the carotid artery of different subjects with this contour segmentation based on improved dynamic programming method. It is found that the preprocessing of ultrasound images of the CCA with region identification and despeckleing followed by active contour segmentation algorithm can be successfully used in evaluating the intima-media thickness (IMT) of the normal and abnormal subjects. It is also estimated that the segmentation used in this paper results an intermethod error of 0.09 mm and a coefficient of variation of 18.9%, for the despeckled images. The magnitudes of the IMT values have been used to explore the rate of prediction of blockage existing in the cerebrovascular and cardiovascular pathologies and also hypertension and atherosclerosis.

  19. A robust active contour edge detection algorithm based on local Gaussian statistical model for oil slick remote sensing image

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia

    2015-08-01

    Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.

  20. 3D Brain Segmentation Using Dual-Front Active Contours with Optional User Interaction

    PubMed Central

    Yezzi, Anthony; Cohen, Laurent D.

    2006-01-01

    Important attributes of 3D brain cortex segmentation algorithms include robustness, accuracy, computational efficiency, and facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide the segmentation to ensure an accurate final result. We propose a novel 3D brain cortex segmentation procedure utilizing dual-front active contours which minimize image-based energies in a manner that yields flexibly global minimizers based on active regions. Region-based information and boundary-based information may be combined flexibly in the evolution potentials for accurate segmentation results. The resulting scheme is not only more robust but much faster and allows the user to guide the final segmentation through simple mouse clicks which add extra seed points. Due to the flexibly global nature of the dual-front evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed of our scheme compared with other methods. PMID:23165037

  1. Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation

    PubMed Central

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139

  2. Analytical solutions for determining residual stresses in two-dimensional domains using the contour method

    PubMed Central

    Kartal, Mehmet E.

    2013-01-01

    The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187

  3. Method and apparatus for measuring surface contour on parts with elevated temperatures

    DOEpatents

    Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George

    1991-01-01

    The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.

  4. Iterative weighted average diffusion as a novel external force in the active contour model

    NASA Astrophysics Data System (ADS)

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  5. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  6. Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images

    PubMed Central

    Srivastava, Anuj

    2010-01-01

    We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692

  7. Automatic brain cropping enhancement using active contours initialized by a PCNN

    NASA Astrophysics Data System (ADS)

    Swathanthira Kumar, Murali Murugavel; Sullivan, John M., Jr.

    2009-02-01

    Active contours are a popular medical image segmentation strategy. However in practice, its accuracy is dependent on the initialization of the process. The PCNN (Pulse Coupled Neural Network) algorithm developed by Eckhorn to model the observed synchronization of neural assemblies in small mammals such as cats allows for segmenting regions of similar intensity but it lacks a convergence criterion. In this paper we report a novel PCNN based strategy to initialize the zero level contour for automatic brain cropping of T2 weighted MRI image volumes of Long-Evans rats. Individual 2D anatomy slices of the rat brain volume were processed by means of a PCNN and a surrogate image 'signature' was constructed for each slice. By employing a previously trained artificial neural network (ANN) an approximate PCNN iteration (binary mask) was selected. This mask was then used to initialize a region based active contour model to crop the brain region. We tested this hybrid algorithm on 30 rat brain (256*256*12) volumes and compared the results against manually cropped gold standard. The Dice and Jaccard similarity indices were used for numerical evaluation of the proposed hybrid model. The highly successful system yielded an average of 0.97 and 0.94 respectively.

  8. Detection of Pulmonary Nodules in CT Images Based on Fuzzy Integrated Active Contour Model and Hybrid Parametric Mixture Model

    PubMed Central

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and “weak” local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method. PMID:23690876

  9. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  10. Segmentation of Uterus Using Laparoscopic Ultrasound by an Image-Based Active Contour Approach for Guiding Gynecological Diagnosis and Surgery.

    PubMed

    Gong, Xue-Hao; Lu, Jun; Liu, Jin; Deng, Ying-Yuan; Liu, Wei-Zong; Huang, Xian; Yang, Yong-Heng; Xu, Qin; Yu, Zhi-Ying

    2015-01-01

    In laparoscopic gynecologic surgery, ultrasound has been typically implemented to diagnose urological and gynecological conditions. We applied laparoscopic ultrasonography (using Esaote 7.5~10MHz laparoscopic transducer) on the retrospective analyses of 42 women subjects during laparoscopic extirpation and excision of gynecological tumors in our hospital from August 2011 to August 2013. The objective of our research is to develop robust segmentation technique for isolation and identification of the uterus from the ultrasound images, so as to assess, locate and guide in removing the lesions during laparoscopic operations. Our method enables segmentation of the uterus by the active contour algorithm. We evaluated 42 in-vivo laparoscopic images acquired from the 42 patients (age 39.1 ± 7.2 years old) and selected images pertaining to 4 cases of congenital uterine malformations and 2 cases of pelvic adhesions masses. These cases (n = 6) were used for our uterus segmentation experiments. Based on them, the active contour method was compared with the manual segmentation method by a medical expert using linear regression and the Bland-Altman analysis (used to measure the correlation and the agreement). Then, the Dice and Jaccard indices are computed for measuring the similarity of uterus segmented between computational and manual methods. Good correlation was achieved whereby 84%-92% results fall within the 95% confidence interval in the Student t-test) and we demonstrate that the proposed segmentation method of uterus using laparoscopic images is effective.

  11. A method for producing a shaped contour radiation pattern using a single shaped reflector and a single feed

    NASA Technical Reports Server (NTRS)

    Cherrette, Alan R.; Lee, Shung-Wu; Acosta, Roberto J.

    1989-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  12. A Method for Producing a Shaped Contour Radiation Pattern Using a Single Shaped Reflector and a Single Feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Lee, S. W.; Acosta, R. J.

    1988-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  13. Segmenting the thoracic, abdominal and pelvic musculature on CT scans combining atlas-based model and active contour model

    NASA Astrophysics Data System (ADS)

    Zhang, Weidong; Liu, Jiamin; Yao, Jianhua; Summers, Ronald M.

    2013-03-01

    Segmentation of the musculature is very important for accurate organ segmentation, analysis of body composition, and localization of tumors in the muscle. In research fields of computer assisted surgery and computer-aided diagnosis (CAD), muscle segmentation in CT images is a necessary pre-processing step. This task is particularly challenging due to the large variability in muscle structure and the overlap in intensity between muscle and internal organs. This problem has not been solved completely, especially for all of thoracic, abdominal and pelvic regions. We propose an automated system to segment the musculature on CT scans. The method combines an atlas-based model, an active contour model and prior segmentation of fat and bones. First, body contour, fat and bones are segmented using existing methods. Second, atlas-based models are pre-defined using anatomic knowledge at multiple key positions in the body to handle the large variability in muscle shape. Third, the atlas model is refined using active contour models (ACM) that are constrained using the pre-segmented bone and fat. Before refining using ACM, the initialized atlas model of next slice is updated using previous atlas. The muscle is segmented using threshold and smoothed in 3D volume space. Thoracic, abdominal and pelvic CT scans were used to evaluate our method, and five key position slices for each case were selected and manually labeled as the reference. Compared with the reference ground truth, the overlap ratio of true positives is 91.1%+/-3.5%, and that of false positives is 5.5%+/-4.2%.

  14. Segmenting multiple overlapping objects via a hybrid active contour model incorporating shape priors: applications to digital pathology

    NASA Astrophysics Data System (ADS)

    Ali, Sahirzeeshan; Madabhushi, Anant

    2011-03-01

    Active contours and active shape models (ASM) have been widely employed in image segmentation. A major limitation of active contours, however, is in their (a) inability to resolve boundaries of intersecting objects and to (b) handle occlusion. Multiple overlapping objects are typically segmented out as a single object. On the other hand, ASMs are limited by point correspondence issues since object landmarks need to be identified across multiple objects for initial object alignment. ASMs are also are constrained in that they can usually only segment a single object in an image. In this paper, we present a novel synergistic boundary and region-based active contour model that incorporates shape priors in a level set formulation. We demonstrate an application of these synergistic active contour models using multiple level sets to segment nuclear and glandular structures on digitized histopathology images of breast and prostate biopsy specimens. Unlike previous related approaches, our model is able to resolve object overlap and separate occluded boundaries of multiple objects simultaneously. The energy functional of the active contour is comprised of three terms. The first term comprises the prior shape term, modeled on the object of interest, thereby constraining the deformation achievable by the active contour. The second term, a boundary based term detects object boundaries from image gradients. The third term drives the shape prior and the contour towards the object boundary based on region statistics. The results of qualitative and quantitative evaluation on 100 prostate and 14 breast cancer histology images for the task of detecting and segmenting nuclei, lymphocytes, and glands reveals that the model easily outperforms two state of the art segmentation schemes (Geodesic Active Contour (GAC) and Roussons shape based model) and resolves up to 92% of overlapping/occluded lymphocytes and nuclei on prostate and breast cancer histology images.

  15. pSnakes: a new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images.

    PubMed

    de Alexandria, Auzuir Ripardo; Cortez, Paulo César; Bessa, Jessyca Almeida; da Silva Félix, John Hebert; de Abreu, José Sebastião; de Albuquerque, Victor Hugo C

    2014-10-01

    Active contours are image segmentation methods that minimize the total energy of the contour to be segmented. Among the active contour methods, the radial methods have lower computational complexity and can be applied in real time. This work aims to present a new radial active contour technique, called pSnakes, using the 1D Hilbert transform as external energy. The pSnakes method is based on the fact that the beams in ultrasound equipment diverge from a single point of the probe, thus enabling the use of polar coordinates in the segmentation. The control points or nodes of the active contour are obtained in pairs and are called twin nodes. The internal energies as well as the external one, Hilbertian energy, are redefined. The results showed that pSnakes can be used in image segmentation of short-axis echocardiogram images and that they were effective in image segmentation of the left ventricle. The echo-cardiologist's golden standard showed that the pSnakes was the best method when compared with other methods. The main contributions of this work are the use of pSnakes and Hilbertian energy, as the external energy, in image segmentation. The Hilbertian energy is calculated by the 1D Hilbert transform. Compared with traditional methods, the pSnakes method is more suitable for ultrasound images because it is not affected by variations in image contrast, such as noise. The experimental results obtained by the left ventricle segmentation of echocardiographic images demonstrated the advantages of the proposed model. The results presented in this paper are justified due to an improved performance of the Hilbert energy in the presence of speckle noise.

  16. Development and evaluation of a standardized method and atlas for contouring primary and permanent dentition

    PubMed Central

    Fang, P; Batra, S; Hollander, A B; Lin, A; Hill-Kayser, C E; Levin, L M; Mupparapu, M

    2015-01-01

    Objectives: Radiation toxicity of the dentition may present significant treatment-related morbidity in the paediatric head and neck cancer population. However, clear dose–effect relationships remain undetermined and must be predicated upon accurate structure delineation and dosimetry at the individual tooth level. Radiation oncologists generally have limited familiarity or experience with relevant dental anatomy. Methods: We therefore developed a detailed CT atlas of permanent and primary dentition. After studying this atlas, five radiation oncology clinicians delineated all teeth for each of eight different cases (selected for breadth of dental maturity and anatomical variability). They were asked to record confidence in their contours on a per-tooth basis as well as the duration of time required per case. Contour accuracy and interclinician variability were assessed by Hausdorff distance and Dice similarity coefficient. All analyses were performed using R v. 3.1.1 and the RadOnc v. 1.0.9 package. Results: Participating clinicians delineated teeth with varying degrees of completeness and accuracy, stratified primarily by the age of the subject. On a per-tooth basis, delineation of permanent dentition was feasible for incisors, canines, premolars and first molars among all subjects, even at the youngest ages. However, delineation of second and third molars was less consistent, commensurate with approximate timing of tooth development. Within each tooth contour, uncertainty was the greatest at the level of the dental roots. Conclusions: Delineation of individual teeth is feasible and serves as a necessary precursor for dental dose assessment and avoidance. Among the paediatric radiation oncology community in particular, this atlas may serve as a useful tool and reference. PMID:25812046

  17. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  18. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept.

  19. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE PAGES

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; ...

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  20. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    SciTech Connect

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; Prime, M. B.

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile from an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.

  1. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  2. A safe and accurate method to perform esthetic mandibular contouring surgery for Far Eastern Asians.

    PubMed

    Hsieh, A M-C; Huon, L-K; Jiang, H-R; Liu, S Y-C

    2017-05-01

    A tapered mandibular contour is popular with Far Eastern Asians. This study describes a safe and accurate method of using preoperative virtual surgical planning (VSP) and an intraoperative ostectomy guide to maximize the esthetic outcomes of mandibular symmetry and tapering while mitigating injury to the inferior alveolar nerve (IAN). Twelve subjects with chief complaints of a wide and square lower face underwent this protocol from January to June 2015. VSP was used to confirm symmetry and preserve the IAN while maximizing the surgeon's ability to taper the lower face via mandibular inferior border ostectomy. The accuracy of this method was confirmed by superimposition of the perioperative computed tomography scans in all subjects. No subjects complained of prolonged paresthesia after 3 months. A safe and accurate protocol for achieving an esthetic lower face in indicated Far Eastern individuals is described.

  3. New region-scalable discriminant and fitting energy functional for driving geometric active contours in medical image segmentation.

    PubMed

    Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2014-01-01

    We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness.

  4. Locally constrained active contour: a region-based level set for ovarian cancer metastasis segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Yao, Jianhua; Wang, Shijun; Linguraru, Marius George; Summers, Ronald M.

    2014-03-01

    Accurate segmentation of ovarian cancer metastases is clinically useful to evaluate tumor growth and determine follow-up treatment. We present a region-based level set algorithm with localization constraints to segment ovarian cancer metastases. Our approach is established on a representative region-based level set, Chan-Vese model, in which an active contour is driven by region competition. To reduce over-segmentation, we constrain the level set propagation within a narrow image band by embedding a dynamic localization function. The metastasis intensity prior is also estimated from image regions within the level set initialization. The localization function and intensity prior force the level set to stop at the desired metastasis boundaries. Our approach was validated on 19 ovarian cancer metastases with radiologist-labeled ground-truth on contrast-enhanced CT scans from 15 patients. The comparison between our algorithm and geodesic active contour indicated that the volume overlap was 75+/-10% vs. 56+/-6%, the Dice coefficient was 83+/-8% vs. 63+/-8%, and the average surface distance was 2.2+/-0.6mm vs. 4.4+/-0.9mm. Experimental results demonstrated that our algorithm outperformed traditional level set algorithms.

  5. Contour Connection Method for automated identification and classification of landslide deposits

    NASA Astrophysics Data System (ADS)

    Leshchinsky, Ben A.; Olsen, Michael J.; Tanyu, Burak F.

    2015-01-01

    Landslides are a common hazard worldwide that result in major economic, environmental and social impacts. Despite their devastating effects, inventorying existing landslides, often the regions at highest risk of reoccurrence, is challenging, time-consuming, and expensive. Current landslide mapping techniques include field inventorying, photogrammetric approaches, and use of bare-earth (BE) lidar digital terrain models (DTMs) to highlight regions of instability. However, many techniques do not have sufficient resolution, detail, and accuracy for mapping across landscape scale with the exception of using BE DTMs, which can reveal the landscape beneath vegetation and other obstructions, highlighting landslide features, including scarps, deposits, fans and more. Current approaches to landslide inventorying with lidar to create BE DTMs include manual digitizing, statistical or machine learning approaches, and use of alternate sensors (e.g., hyperspectral imaging) with lidar. This paper outlines a novel algorithm to automatically and consistently detect landslide deposits on a landscape scale. The proposed method is named as the Contour Connection Method (CCM) and is primarily based on bare earth lidar data requiring minimal user input such as the landslide scarp and deposit gradients. The CCM algorithm functions by applying contours and nodes to a map, and using vectors connecting the nodes to evaluate gradient and associated landslide features based on the user defined input criteria. Furthermore, in addition to the detection capabilities, CCM also provides an opportunity to be potentially used to classify different landscape features. This is possible because each landslide feature has a distinct set of metadata - specifically, density of connection vectors on each contour - that provides a unique signature for each landslide. In this paper, demonstrations of using CCM are presented by applying the algorithm to the region surrounding the Oso landslide in Washington

  6. A Hybrid Method for Endocardial Contour Extraction of Right Ventricle in 4-Slices from 3D Echocardiography Dataset.

    PubMed

    Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D

    2014-01-01

    This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.

  7. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  8. Calculating the reflected radiation error between turbine blades and vanes based on double contour integral method

    NASA Astrophysics Data System (ADS)

    Feng, Chi; Li, Dong; Gao, Shan; Daniel, Ketui

    2016-11-01

    This paper presents a CFD (Computation Fluid Dynamic) simulation and experimental results for the reflected radiation error from turbine vanes when measuring turbine blade's temperature using a pyrometer. In the paper, an accurate reflection model based on discrete irregular surfaces is established. Double contour integral method is used to calculate view factor between the irregular surfaces. Calculated reflected radiation error was found to change with relative position between blades and vanes as temperature distribution of vanes and blades was simulated using CFD. Simulation results indicated that when the vanes suction surface temperature ranged from 860 K to 1060 K and the blades pressure surface average temperature is 805 K, pyrometer measurement error can reach up to 6.35%. Experimental results show that the maximum pyrometer absolute error of three different targets on the blade decreases from 6.52%, 4.15% and 1.35% to 0.89%, 0.82% and 0.69% respectively after error correction.

  9. Contour Completion Without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose.

  10. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-08-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding "hot-spots", and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  11. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  12. A circumscribing active contour model for delineation of nuclei and membranes of megakaryocytes in bone marrow trephine biopsy images

    NASA Astrophysics Data System (ADS)

    Song, Tzu-Hsi; Sanchez, Victor; EIDaly, Hesham; Rajpoot, Nasir M.

    2015-03-01

    The assessment of megakaryocytes (MKs) in bone marrow trephine images is an important step in the classification of different subtypes of myeloproliferative neoplasms (MPNs). In general, bone marrow trephine images include several types of cells mixed together, which make it quite difficult to visually identify MKs. In order to aid hematopathologists in the identification and study of MKs, we develop an image processing framework with supervised machine learning approaches and a novel circumscribing active contour model to identify potential MKs and then to accurately delineate the corresponding nucleus and membrane. Specifically, a number of color and texture features are used in a nave Bayesian classifier and an Adaboost classifier to locate the regions with a high probability of depicting MKs. A region-based active contour is used on the candidate MKs to accurately delineate the boundaries of nucleus and membrane. The proposed circumscribing active contour model employs external forces not only based on pixel intensities, but also on the probabilities of depicting MKs as computed by the classifiers. Experimental results suggest that the machine learning approach can detect potential MKs with an accuracy of more than 75%. When our circumscribing active contour model is employed on the candidate MKs, the nucleus and membrane boundaries are segmented with an accuracy of more than 80% as measured by the Dice similarity coefficient. Compared to traditional region-based active contours, the use of additional external forces based on the probability of depicting MKs improves segmentation performance and computational time by an average 5%.

  13. An explicit shape-constrained MRF-based contour evolution method for 2-D medical image segmentation.

    PubMed

    Chittajallu, Deepak R; Paragios, Nikos; Kakadiaris, Ioannis A

    2014-01-01

    Image segmentation is, in general, an ill-posed problem and additional constraints need to be imposed in order to achieve the desired segmentation result. While segmenting organs in medical images, which is the topic of this paper, a significant amount of prior knowledge about the shape, appearance, and location of the organs is available that can be used to constrain the solution space of the segmentation problem. Among the various types of prior information, the incorporation of prior information about shape, in particular, is very challenging. In this paper, we present an explicit shape-constrained MAP-MRF-based contour evolution method for the segmentation of organs in 2-D medical images. Specifically, we represent the segmentation contour explicitly as a chain of control points. We then cast the segmentation problem as a contour evolution problem, wherein the evolution of the contour is performed by iteratively solving a MAP-MRF labeling problem. The evolution of the contour is governed by three types of prior information, namely: (i) appearance prior, (ii) boundary-edgeness prior, and (iii) shape prior, each of which is incorporated as clique potentials into the MAP-MRF problem. We use the master-slave dual decomposition framework to solve the MAP-MRF labeling problem in each iteration. In our experiments, we demonstrate the application of the proposed method to the challenging problem of heart segmentation in non-contrast computed tomography data.

  14. Highway extraction from high resolution aerial photography using a geometric active contour model

    NASA Astrophysics Data System (ADS)

    Niu, Xutong

    Highway extraction and vehicle detection are two of the most important steps in traffic-flow analysis from multi-frame aerial photographs. The traditional method of deriving traffic flow trajectories relies on manual vehicle counting from a sequence of aerial photographs, which is tedious and time-consuming. This research presents a new framework for semi-automatic highway extraction. The basis of the new framework is an improved geometric active contour (GAC) model. This novel model seeks to minimize an objective function that transforms a problem of propagation of regular curves into an optimization problem. The implementation of curve propagation is based on level set theory. By using an implicit representation of a two-dimensional curve, a level set approach can be used to deal with topological changes naturally, and the output is unaffected by different initial positions of the curve. However, the original GAC model, on which the new model is based, only incorporates boundary information into the curve propagation process. An error-producing phenomenon called leakage is inevitable wherever there is an uncertain weak edge. In this research, region-based information is added as a constraint into the original GAC model, thereby, giving this proposed method the ability of integrating both boundary and region-based information during the curve propagation. Adding the region-based constraint eliminates the leakage problem. This dissertation applies the proposed augmented GAC model to the problem of highway extraction from high-resolution aerial photography. First, an optimized stopping criterion is designed and used in the implementation of the GAC model. It effectively saves processing time and computations. Second, a seed point propagation framework is designed and implemented. This framework incorporates highway extraction, tracking, and linking into one procedure. A seed point is usually placed at an end node of highway segments close to the boundary of the

  15. Segmentation of follicular regions on H&E slides using a matching filter and active contour model

    NASA Astrophysics Data System (ADS)

    Belkacem-Boussaid, Kamel; Prescott, Jeffrey; Lozanski, Gerard; Gurcan, Metin N.

    2010-03-01

    Follicular Lymphoma (FL) accounts for 20-25% of non-Hodgkin lymphomas in the United States. The first step in follicular lymphoma grading is the identification of follicles. The goal of this paper is to develop a technique to segment follicular regions in H&E stained images. The method is based on a robust active contour model, which is initialized by a seed point selected inside the follicle manually by the user. The novel aspect of this method is the introduction of a matched filter for the flattening of background in the L channel of the Lab color space. The performance of the algorithm was tested by comparing it against the manual segmentations of trained readers using the Zijbendos similarity index. The mean accuracy of the final segmentation compared to the manual ground truth was 0.71 with a standard deviation of 0.12.

  16. Contour detection based on brightness and contour completion

    NASA Astrophysics Data System (ADS)

    Zou, Lamei; Wan, Min; Jin, Liujia; Gao, Yahong; Yang, Weidong

    2015-12-01

    The further research of visual processing mechanism provides a new idea for contour detection. On the primary visual cortex, the non-classical receptive field of the neurons has the orientation selectivity exerts suppression effect on the response of classical receptive field, which influences edge or line perception. Based on the suppression property of non-classical receptive field and contour completion, this paper proposed a contour detection method based on brightness and contour completion. The experiment shows that the proposed method can not only effectively eliminate clutter information, but also connect the broken contour points by taking advantage of contour completion.

  17. Contour complexity and contour detection.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    Itis well-known that "smooth" chains of oriented elements-contours-are more easily detected amid background noise than more undulating (i.e., "less smooth") chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process-the identification of organized patterns in the environment.

  18. SOM-based nonlinear least squares twin SVM via active contours for noisy image segmentation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Wang, Tingting

    2017-02-01

    In this paper, a nonlinear least square twin support vector machine (NLSTSVM) with the integration of active contour model (ACM) is proposed for noisy image segmentation. Efforts have been made to seek the kernel-generated surfaces instead of hyper-planes for the pixels belonging to the foreground and background, respectively, using the kernel trick to enhance the performance. The concurrent self organizing maps (SOMs) are applied to approximate the intensity distributions in a supervised way, so as to establish the original training sets for the NLSTSVM. Further, the two sets are updated by adding the global region average intensities at each iteration. Moreover, a local variable regional term rather than edge stop function is adopted in the energy function to ameliorate the noise robustness. Experiment results demonstrate that our model holds the higher segmentation accuracy and more noise robustness.

  19. Adaptive tracking of weld joints using active contour model in arc-welding processes

    NASA Astrophysics Data System (ADS)

    Kim, Jaeseon; Koh, Kyoungchul; Cho, Hyungsuck

    2001-02-01

    12 This paper presents a vision processing scheme to automatic weld joint tracking in robotic arc welding process. Particular attention is concentrated on its robustness against various optical disturbances, such as arc glares and weld spatters radiating from the melted weld pool. Underlying the developed vision processing is a kind of model-based pattern searching, which is necessarily accompanied by two separate stages of modeling and tracking. In the modeling stage, a syntactic approach is adopted to identify unknown weld joint structure. The joint profile identified in the modeling stage is used as a starting point for successive tracking of variations in the geometry of weld joint during welding, which is automatically achieved by an active contour model technology following feature- based template matching. The performance of the developed scheme is investigated through a series of practical welding experiments.

  20. Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods.

    PubMed

    Muramatsu, Chisako; Nakagawa, Toshiaki; Sawada, Akira; Hatanaka, Yuji; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2011-01-01

    The automatic determination of the optic disc area in retinal fundus images can be useful for calculation of the cup-to-disc (CD) ratio in the glaucoma screening. We compared three different methods that employed active contour model (ACM), fuzzy c-mean (FCM) clustering, and artificial neural network (ANN) for the segmentation of the optic disc regions. The results of these methods were evaluated using new databases that included the images captured by different camera systems. The average measures of overlap between the disc regions determined by an ophthalmologist and by using the ACM (0.88 and 0.87 for two test datasets) and ANN (0.88 and 0.89) methods were slightly higher than that by using FCM (0.86 and 0.86) method. These results on the unknown datasets were comparable with those of the resubstitution test; this indicates the generalizability of these methods. The differences in the vertical diameters, which are often used for CD ratio calculation, determined by the proposed methods and based on the ophthalmologist's outlines were even smaller than those in the case of the measure of overlap. The proposed methods can be useful for automatic determination of CD ratios.

  1. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.

    PubMed

    Way, Ted W; Hadjiiski, Lubomir M; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N; Kazerooni, Ella A; Bogot, Naama; Zhou, Chuan

    2006-07-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D

  2. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  3. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  4. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  5. Can stroke volume and cardiac output be determined reliably in a tilt-table test using the pulse contour method?

    PubMed

    Nieminen, T; Kööbi, T; Turjanmaa, V

    2000-11-01

    The applicability of the finger pressure-derived pulse contour (PC) technique was evaluated in the measurement of stroke volume (SV), cardiac output (CO) and their changes in different phases of the tilt-table test. The reference method was whole-body impedance cardiography (ICG). A total number of 40 physically active patients, aged 41 +/- 19 years, were randomly chosen from a pool of 230. Specifically speaking, 20 of the patients experienced (pre)syncope (tilt+ patients) during the head-up tilt (HUT), and 20 did not (tilt-). A total number of three measurement periods, 30-60 s each, were analysed: supine position, 5 min after the commencement of HUT, and 1 min before set down. SV and CO values measured by PC underestimated significantly those measured by ICG (biases +/- SD 19 +/- 14 ml and 1.55 +/- 1.14 l min-1, respectively) in agreement with earlier reports. The bias between the methods was almost the same in the different phases of the test. However, the SD of the bias was bigger for tilt+ (P < 0.05). When the bias between the methods was eliminated by scaling the first measurement to 100%, the agreement between the methods in the second and third measurements was clearly better than without scaling. Both methods showed a physiological drop in SV after the commencement of HUT. These results indicate that PC suffices in tracking the changes in CO and SV, but for absolute values it is not reliable.

  6. Mapping residual stresses after foreign object damage using the contour method

    SciTech Connect

    Prime, M. B.; Martineau, R. L.

    2002-01-01

    A 51-mm thick plate of High-Strength Low-Alloy (HSLA-100) steel was impacted by a 6.4 mm diameter tungsten carbide sphere traveling at 2.2 km/sec. The projectile penetration left a 10 mm diameter and 12 mm deep crater. A residual stress map over a cross-section through the crater was measured by the contour method. The predominant feature of the stress map was a peak compressive stress of 900 MPa, or 1.3 times the yield strength, centered about 1.5 crater radii below the crater floor. The results were compared with an explicit finite element simulation of the impact event. The model has good agreement with the measured residual stresses. As part of the study, residual stresses in the as-received HSLA-100 plate were also measured and found to be a typical quenching stress distribution with peak compressive stress of about 165 MPa a few mm below the surface and tensile stress of 200 MPa in the center of the plate thickness.

  7. Sunspots and Coronal Bright Points Tracking using a Hybrid Algorithm of PSO and Active Contour Model

    NASA Astrophysics Data System (ADS)

    Dorotovic, I.; Shahamatnia, E.; Lorenc, M.; Rybansky, M.; Ribeiro, R. A.; Fonseca, J. M.

    2014-02-01

    In the last decades there has been a steady increase of high-resolution data, from ground-based and space-borne solar instruments, and also of solar data volume. These huge image archives require efficient automatic image processing software tools capable of detecting and tracking various features in the solar atmosphere. Results of application of such tools are essential for studies of solar activity evolution, climate change understanding and space weather prediction. The follow up of interplanetary and near-Earth phenomena requires, among others, automatic tracking algorithms that can determine where a feature is located, on successive images taken along the period of observation. Full-disc solar images, obtained both with the ground-based solar telescopes and the instruments onboard the satellites, provide essential observational material for solar physicists and space weather researchers for better understanding the Sun, studying the evolution of various features in the solar atmosphere, and also investigating solar differential rotation by tracking such features along time. Here we demonstrate and discuss the suitability of applying a hybrid Particle Swarm Optimization (PSO) algorithm and Active Contour model for tracking and determining the differential rotation of sunspots and coronal bright points (CBPs) on a set of selected solar images. The results obtained confirm that the proposed approach constitutes a promising tool for investigating the evolution of solar activity and also for automating tracking features on massive solar image archives.

  8. An Active Contour Model for the Segmentation of Images with Intensity Inhomogeneities and Bias Field Estimation

    PubMed Central

    Huang, Chencheng; Zeng, Li

    2015-01-01

    Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results. PMID:25837416

  9. New method of contour image processing based on the formalism of spiral light beams

    SciTech Connect

    Volostnikov, Vladimir G; Kishkin, S A; Kotova, S P

    2013-07-31

    The possibility of applying the mathematical formalism of spiral light beams to the problems of contour image recognition is theoretically studied. The advantages and disadvantages of the proposed approach are evaluated; the results of numerical modelling are presented. (optical image processing)

  10. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    SciTech Connect

    Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi

    2010-05-15

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less completion time

  11. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    PubMed Central

    Luo, Gongning

    2017-01-01

    Segmentation of the left atrium (LA) from cardiac magnetic resonance imaging (MRI) datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs) and active contour model (ACM) approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC) and average surface-to-surface distance (S2S), were computed as 0.9227 ± 0.0598 and 1.14 ± 1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively. PMID:28316992

  12. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  13. A shallow landslide analysis method consisting of contour line based method and slope stability model with critical slip surface

    NASA Astrophysics Data System (ADS)

    Tsutsumi, D.

    2015-12-01

    To mitigate sediment related disaster triggered by rainfall event, it is necessary to predict a landslide occurrence and subsequent debris flow behavior. Many landslide analysis method have been developed and proposed by numerous researchers for several decades. Among them, distributed slope stability models simulating temporal and spatial instability of local slopes are more essential for early warning or evacuation in area of lower part of hill-slopes. In the present study, a distributed, physically based landslide analysis method consisting of contour line-based method that subdivide a watershed area into stream tubes, and a slope stability analysis in which critical slip surface is searched to identify location and shape of the most instable slip surface in each stream tube, is developed. A target watershed area is divided into stream tubes using GIS technique, grand water flow for each stream tubes during a rainfall event is analyzed by a kinematic wave model, and slope stability for each stream tube is calculated by a simplified Janbu method searching for a critical slip surface using a dynamic programming method. Comparing to previous methods that assume infinite slope for slope stability analysis, the proposed method has advantage simulating landslides more accurately in spatially and temporally, and estimating amount of collapsed slope mass, that can be delivered to a debris flow simulation model as a input data. We applied this method to a small watershed in the Izu Oshima, Tokyo, Japan, where shallow and wide landslides triggered by heavy rainfall and subsequent debris flows attacked Oshima Town, in 2013. Figure shows the temporal and spatial change of simulated grand water level and landslides distribution. The simulated landslides are correspond to the uppermost part of actual landslide area, and the timing of the occurrence of landslides agree well with the actual landslides.

  14. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  15. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  16. A comparison of contour maps derived from independent methods of measuring lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.

    1978-01-01

    Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.

  17. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    NASA Astrophysics Data System (ADS)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  18. An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng

    2016-01-01

    An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.

  19. Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.

    1994-01-01

    A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.

  20. The Facial Contouring and Support System: An Innovative Method for Midfacial Fat Repositioning

    PubMed Central

    2014-01-01

    Summary: Minimally invasive rejuvenation procedures are increasingly popular with patients. In the midface, these might involve the introduction of sutures to lift and secure the malar tissue, fat grafts, and fillers to increase volume. This article describes a new facial contouring and support system, which uses an innovative hollow, double-beveled needle to which a 2/0 polypropylene suture may be anchored. Among 102 patients there were no complications, and follow-up at 3–5 years indicates little or no loss of satisfaction with the outcome. The procedure can be combined with other modalities—including fillers and skin peels—to achieve an overall, balanced, natural look for the patient. Potential adjustability and reversibility of the procedure are reassuring for both patient and surgeon and add to the technique’s versatility. PMID:25426398

  1. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  2. Contour Completion without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-05-06

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite of psychological evidences for its importance. This paper proposes a purely contour-based higher-order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher-order inference problem can be transformed into an integer linear program (ILP) and be solved efficiently. Compared with methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose.

  3. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    SciTech Connect

    Fritscher, Karl D. Sharp, Gregory; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer

    2014-05-15

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  4. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  5. Inter-element orientation and distance influence the duration of persistent contour integration.

    PubMed

    Strother, Lars; Alferov, Danila

    2014-01-01

    Contour integration is a fundamental form of perceptual organization. We introduce a new method of studying the mechanisms responsible for contour integration. This method capitalizes on the perceptual persistence of contours under conditions of impending camouflage. Observers viewed arrays of randomly arranged line segments upon which circular contours comprised of similar line segments were superimposed via abrupt onset. Crucially, these contours remained visible for up to a few seconds following onset, but eventually disappeared due to the camouflaging effects of surrounding background line segments. Our main finding was that the duration of contour visibility depended on the distance and degree of co-alignment between adjacent contour segments such that relatively dense smooth contours persisted longest. The stimulus-related effects reported here parallel similar results from contour detection studies, and complement previous reported top-down influences on contour persistence (Strother et al., 2011). We propose that persistent contour visibility reflects the sustained activity of recurrent processing loops within and between visual cortical areas involved in contour integration and other important stages of visual object recognition.

  6. Automated segmentation of the quadratus lumborum muscle from magnetic resonance images using a hybrid atlas based - geodesic active contour scheme.

    PubMed

    Jurcak, V; Fripp, J; Engstrom, C; Walker, D; Salvado, O; Ourselin, S; Crozier, S

    2008-01-01

    This study presents a novel method for the automatic segmentation of the quadratus lumborum (QL) muscle from axial magnetic resonance (MR) images using a hybrid scheme incorporating the use of non-rigid registration with probabilistic atlases (PAs) and geodesic active contours (GACs). The scheme was evaluated on an MR database of 7mm axial images of the lumbar spine from 20 subjects (fast bowlers and athletic controls). This scheme involved several steps, including (i) image pre-processing, (ii) generation of PAs for the QL, psoas (PS) and erector spinae+multifidus (ES+MT) muscles and (iii) segmentation, using 3D GACs initialized and constrained by the propagation of the PAs using non-rigid registration. Pre-processing of the images involved bias field correction based on local entropy minimization with a bicubic spline model and a reverse diffusion interpolation algorithm to increase the slice resolution to 0.98 x 0.98 x 1.75mm. The processed images were then registered (affine and non-rigid) and used to generate an average atlas. The PAs for the QL, PS and ES+MT were then generated by propagation of manual segmentations. These atlases were further analysed with specialised filtering to constrain the QL segmentation from adjacent non-muscle tissues (kidney, fat). This information was then used in 3D GACs to obtain the final segmentation of the QL. The automatic segmentation results were compared with the manual segmentations using the Dice similarity metric (DSC), with a median DSC for the right and left QL muscles of 0.78 (mean = 0.77, sd=0.07) and 0.75 (mean =0.74, sd=0.07), respectively.

  7. Quenching and Cold-Work Residual Stresses in Aluminum Hand Forgings : Contour Method Measurement and FEM Prediction

    SciTech Connect

    Prime, M. B.; Newborn, M. A.; Balog, J. A.

    2003-01-01

    The cold-compression stress relief process used to reduce the quench-induced stresses in high-strength aerospace aluminum alloy forgings does not fully relieve the stresses. This study measured and predicted the residual stress in 7050-T74 (solution heat treated, quenched, and artificially overaged) and 7050-T7452 (cold compressed prior to aging) hand forgings. The manufacturing process was simulated by finite element analysis. First, a thermal analysis simulated the quench using appropriate thermal boundary conditions and temperature dependent material properties. Second, a structural analysis used the thermal history and a temperature and strain-rate dependent constitutive model to predict the stresses after quenching. Third, the structural analysis was continued to simulate the multiple cold compressions of the stress relief process. Experimentally, the residual stresses in the forgings were mapped using the contour method, which involved cutting the forgings using wire EDM and then measuring the contour of the cut surface using a CMM. Multiple cuts were used to map different stress components. The results show a spatially periodic variation of stresses that results from the periodic nature of the cold work stress relief process. The results compare favorably with the finite element prediction of the stresses.

  8. Three-Dimensional Contour Maps

    ERIC Educational Resources Information Center

    Lee, Edward

    2005-01-01

    In summary, this highly conceptual activity helps middle school students understand that the lines on the contour map represent intersections of the surface of the landform with regularly spaced horizontal planes. Building the landform and relating its features to the contour map offer many opportunities for visualization, all grounded in concrete…

  9. Study of resonant structures in a deformed mean field by the contour deformation method in momentum space

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Vaagen, J. S.

    2006-03-01

    Solution of the momentum space Schrödinger equation in the case of deformed fields is being addressed. In particular it is shown that a complete set of single-particle states that includes bound, resonant, and complex continuum states may be obtained by the contour deformation method. This generalized basis in the complex energy plane is known as a Berggren basis. The momentum space Schrödinger equation is an integral equation that is easily solved by matrix diagonalization routines even for the case of deformed fields. The method is demonstrated for axial symmetry and a fictitious “deformed He5” but may be extended to more general deformation and applied to truly deformed halo nuclei.

  10. Contour matching by epipolar geometry

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Lin; Zhang, Damin; Wei, Sui

    2003-09-01

    Matching features computed in images is an important process in multiview image analysis. When the motion between two images is large, the matching problem becomes very difficult. In this paper, we propose a contour matching algorithm based on geometric constraints. With the assumption that the contours are obtained from images taken from a moving camera with static scenes, we apply the epipolar constraint between two sets of contours and compute the corresponding points on the contours. From the initial epipolar constraints obtained from comer point matching, candidate contours are selected according to the epipolar geometry, the linear relation among tangent vectors of the contour. In order to reduce the possibility of false matches, the curvature of the contour of match points on a contour is also used as a selection method. The initial epipolar constraint is refined from the matched sets of contours. The algorithm can be applied to a pair or two pairs of images. All of the processes are fully automatic and successfully implemented and tested with various synthetic images.

  11. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  12. Robust contour tracking in ultrasound tongue image sequences.

    PubMed

    Xu, Kele; Yang, Yin; Stone, Maureen; Jaumard-Hakoun, Aurore; Leboullenger, Clémence; Dreyfus, Gérard; Roussel, Pierre; Denby, Bruce

    2016-01-01

    A new contour-tracking algorithm is presented for ultrasound tongue image sequences, which can follow the motion of tongue contours over long durations with good robustness. To cope with missing segments caused by noise, or by the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, active contours with a contour-similarity constraint are introduced, which can be used to provide 'prior' shape information. Also, in order to address accumulation of tracking errors over long sequences, we present an automatic re-initialization technique, based on the complex wavelet image similarity index. Experiments on synthetic data and on real 60 frame per second (fps) data from different subjects demonstrate that the proposed method gives good contour tracking for ultrasound image sequences even over durations of minutes, which can be useful in applications such as speech recognition where very long sequences must be analyzed in their entirety.

  13. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  14. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  15. Image Segmentation Using Parametric Contours With Free Endpoints.

    PubMed

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme for image segmentation is presented based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  16. Image Segmentation Using Parametric Contours With Free Endpoints

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Garcke, Harald

    2016-04-01

    In this paper, we introduce a novel approach for active contours with free endpoints. A scheme is presented for image segmentation and restoration based on a discrete version of the Mumford-Shah functional where the contours can be both closed and open curves. Additional to a flow of the curves in normal direction, evolution laws for the tangential flow of the endpoints are derived. Using a parametric approach to describe the evolving contours together with an edge-preserving denoising, we obtain a fast method for image segmentation and restoration. The analytical and numerical schemes are presented followed by numerical experiments with artificial test images and with a real medical image.

  17. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring.

    PubMed

    Suzuki, Kenji; Huynh, Hieu Trung; Liu, Yipeng; Calabrese, Dominic; Zhou, Karen; Oto, Aytekin; Hori, Masatoshi

    2013-01-01

    Computerized liver volumetry has been studied, because the current "gold-standard" manual volumetry is subjective and very time-consuming. Liver volumetry is done in either CT or MRI. A number of researchers have developed computerized liver segmentation in CT, but there are fewer studies on ones for MRI. Our purpose in this study was to develop a general framework for liver segmentation in both CT and MRI. Our scheme consisted of 1) an anisotropic diffusion filter to reduce noise while preserving liver structures, 2) a scale-specific gradient magnitude filter to enhance liver boundaries, 3) a fast-marching algorithm to roughly determine liver boundaries, and 4) a geodesic-active-contour model coupled with a level-set algorithm to refine the initial boundaries. Our CT database contained hepatic CT scans of 18 liver donors obtained under a liver transplant protocol. Our MRI database contains 23 patients with 1.5T MRI scanners. To establish "gold-standard" liver volumes, radiologists manually traced the contour of the liver on each CT or MR slice. We compared our computer volumetry with "gold-standard" manual volumetry. Computer volumetry in CT and MRI reached excellent agreement with manual volumetry (intra-class correlation coefficient = 0.94 and 0.98, respectively). Average user time for computer volumetry in CT and MRI was 0.57 ± 0.06 and 1.0 ± 0.13 min. per case, respectively, whereas those for manual volumetry were 39.4 ± 5.5 and 24.0 ± 4.4 min. per case, respectively, with statistically significant difference (p < .05). Our computerized liver segmentation framework provides an efficient and accurate way of measuring liver volumes in both CT and MRI.

  18. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Agner, Shannon C.; Xu, Jun; Madabhushi, Anant

    2013-01-01

    Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. Results: On a cohort of 50

  19. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  20. Winding number constrained contour detection.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2015-01-01

    Salient contour detection can benefit from the integration of both contour cues and region cues. However, this task is difficult due to different nature of region representations and contour representations. To solve this problem, this paper proposes an energy minimization framework based on winding number constraints. In this framework, both region cues, such as color/texture homogeneity, and contour cues, such as local contrast and continuity, are represented in a joint objective function, which has both region and contour labels. The key problem is how to design constraints that ensure the topological consistency of the two kinds of labels. Our technique is based on the topological concept of winding number. Using a fast method for winding number computation, a small number of linear constraints are derived to ensure label consistency. Our method is instantiated by ratio-based energy functions. By successfully integrating both region and contour cues, our method shows advantages over competitive methods. Our method is extended to incorporate user interaction, which leads to further improvements.

  1. "ECG variability contour" method reveals amplitude changes in both ischemic patients and normal subjects during Dipyridamole stress: a preliminary report.

    PubMed

    Dori, Guy; Gershinsky, Michal; Ben-Haim, Simona; Lewis, Basil S; Bitterman, Haim

    2011-11-01

    To detect and quantify consistent ECG amplitude changes, the "ECG variability contour" (EVC) method was proposed. Using this method we investigated amplitude changes in subjects undergoing myocardial perfusion imaging (MPI) with Dipyridamole (Dp). Fifty-three patients having reversible perfusion defects and 19 normal subjects (NS) who were free of: perfusion defects on their MPI, standard ST-T changes during Dp stress, and a negative clinical follow up. Mean ∏¹(<∏¹>) was similar for the NS and patient group (6.2 ± 6.1 vs. 6.3 ± 6.2, P = 0.95). <∏¹> was 4.6 ± 3.0 in patients not having ST-T changes during Dp stress (n = 42), whereas in patients having ST-T changes (n = 11) it was 13.1 ± 10.2 (P < 0.001). For both groups <∏(QRS)> was smaller than <∏(ST)>, which in turn was smaller than <∏(T)>. The values of <∏(QRS)>, <∏(ST)>, and <∏(T)> for the NS, patients without and with ST-T changes were: 26.8 ± 28.6, 42.6 ± 41.8, 44.9 ± 36.5; 19.6 ± 20.8, 26.4 ± 31.4, 38.7 ± 27.3; 51.0 ± 30.0, 71.0 ± 36.8, 75.1 ± 20.9, respectively (P < 0.05 for all comparisons of patients with versus without ST-T changes). This study showed that Dp stress, with or without hypoperfusion, had a clear effect on myocyte electrophysiology, expressed by consistent ECG amplitude changes, detected by the EVC method. The EVC method did not distinguish between NS and patients in this clinical setting.

  2. The Effects of Dosed versus Gravity-Fed Loading Methods on the Performance and Reliability of Contour Trench Disposal Fields Used for Onsite Wastewater Treatment.

    PubMed

    Bridson-Pateman, Evan; Hayward, Jennifer; Jamieson, Rob; Boutilier, Leah; Lake, Craig

    2013-01-01

    In Nova Scotia, Canada, contour trench disposal fields are the most common type of onsite wastewater system. In this study, two identical contour trench disposal fields were monitored for 3 yr to compare performance under gravity-fed versus periodically dosed loading conditions. Influent and effluent from both systems were analyzed for a suite of water quality parameters, and the hydraulics of the systems were assessed using tracer studies and measurements of ponded water depth in the distribution trenches. Ponded water depths in the distribution trench of the gravity-fed disposal field were observed to increase steadily during the monitoring period, indicating progressive clogging. This was not observed in the periodically dosed field. Regarding treatment, both systems performed well, consistently producing effluent with 5-d biochemical oxygen demand and total suspended solids (TSS) concentrations <10 mg L and achieving >5 log reductions in . However, the gravity-fed system produced statistically lower average effluent concentrations for total P and TSS. It is speculated that the slightly better treatment performance achieved by the gravity-fed system is due to enhanced biomat formation. This study demonstrated adequate treatment of residential wastewater by contour trench disposal fields regardless of loading method. However, because the hydraulic performance of these systems is heavily dependent on pretreatment and loading methods, it is recommended that a dosing system be used to distribute wastewater to contour trench disposal fields to help prevent hydraulic failure.

  3. Active Contours for Multispectral Images With Non-Homogeneous Sub-Regions

    DTIC Science & Technology

    2005-09-16

    green , and blue. Hyperspectral images, used in remote sensing, are other examples of multispectral im- ages. A set of images, measured by physically...method 1, (b) method 2, (c) proposed method The green solid line of all three graphs presents the same statistics measured within class 2 in the...segmentation result. As the green solid line exists closer to the blue solid line, it presents better result. In figure 8.7(a), the dotted green line with

  4. [Body-contouring surgery].

    PubMed

    Pitanguy, Ivo

    2003-01-01

    Concepts of beauty have been continuously evolving throughout the history of mankind. The voluptuous figures that were idealized by artists in the past have been substituted by slimmer forms. Medical advances in this century have permitted safe and efficient surgical correction of contour deformities. Until recently, these alterations were mostly hidden under heavy clothing or were reluctantly accepted. Current fashion trends generally promote body-revealing attire. The media frequently encourages the importance of fitness and good health linking these qualities with youthfulness and beauty. The subliminal as well as overt message is that these are necessary and desirable requirements for social acceptance and professional success. On the other hand, current sedentary lifestyle and dietary excesses, associated with factors such as genetic determination, pregnancy and the aging process, contribute to alterations of body contour that result in the loss of the individual's body image. This creates a strong psychological motivation for surgical correction. Localized fat deposits and skin flaccidity are sometimes resistant to the most sincere efforts in weight loss and sport activities. This ever-increasing request for contour surgery has been favorably met by safe and effective anesthesiology as well as efficient surgical techniques, resulting in a high degree of patient satisfaction. It is essential that today's aesthetic surgeon understand the motivations of patients who present with body contour deformities. A request for surgical treatment should be seen as a legitimate desire to achieve a physical form that approximates the individual with his or her ideal self-image. Additionally, the surgeon must always consider the possible benefit of including the participation of a multidisciplinary team approach. Depending on each case, this team should include consultants in endocrinology, dermatology, oculoplastics, pediatrics and other appropriate specialties.

  5. Segmentation of Opacified Thorax Vessels using Model-driven Active Contour.

    PubMed

    Sebbe, Raphael; Gosselin, Bernard; Coche, Emmanuel; Macq, Benoit

    2005-01-01

    We propose a novel method, guided slice marching to segment opacified vessels tree in 3D image sets (CT scans). It combines a front propagation technique, slice marching, and an anatomical model to guide the propagation for solving the particular case of touching vessels. The formulation of this method, which is based on interface evolution theory, enables easy integration of an a priori model of knowledge of vessels topology to handle the case of touching vessels, where image-based method systematically fails. The a priori knowledge is expressed as parametric curves that model vessels centerline. That information is injected in the fast marching method through the speed of propagation, setting it to zero at missing vessels boundaries. The model is intended to be reused across patients, and must therefore be registered with the image.

  6. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  7. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning

    SciTech Connect

    El Naqa, Issam; Yang Deshan; Apte, Aditya; Khullar, Divya; Mutic, Sasa; Zheng Jie; Bradley, Jeffrey D.; Grigsby, Perry; Deasy, Joseph O.

    2007-12-15

    Multimodality imaging information is regularly used now in radiotherapy treatment planning for cancer patients. The authors are investigating methods to take advantage of all the imaging information available for joint target registration and segmentation, including multimodality images or multiple image sets from the same modality. In particular, the authors have developed variational methods based on multivalued level set deformable models for simultaneous 2D or 3D segmentation of multimodality images consisting of combinations of coregistered PET, CT, or MR data sets. The combined information is integrated to define the overall biophysical structure volume. The authors demonstrate the methods on three patient data sets, including a nonsmall cell lung cancer case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT and MRI. CT, PET, and MR phantom data were also used for quantitative validation of the proposed multimodality segmentation approach. The corresponding Dice similarity coefficient (DSC) was 0.90{+-}0.02 (p<0.0001) with an estimated target volume error of 1.28{+-}1.23% volume. Preliminary results indicate that concurrent multimodality segmentation methods can provide a feasible and accurate framework for combining imaging data from different modalities and are potentially useful tools for the delineation of biophysical structure volumes in radiotherapy treatment planning.

  8. Fully automatic contour detection in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brusseau, Elisabeth F.; de Korte, Chris L.; Mastik, Fritz; Schaar, Johannes; van der Steen, Anton F.

    2004-04-01

    Segmentation of deformable structures remains a challenging task in ultrasound imaging especially in low signal-to-noise ratio applications. In this paper a fully automatic method, dedicated to the luminal contour segmentation in intracoronary ultrasound imaging is introduced. The method is based on an active contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, determined as being mainly Rayleigh distributed. However, contrary to classical snake-based algorithms, the presented technique neither requires from the user the pre-selection of a region of interest tight around the boundary, nor parameter tuning. This fully automatic character is achieved by an initial contour that is not set, but estimated and thus adapted to each image. Its estimation combines two statistical criteria extracted from the a posteriori probability, function of the contour position. These criteria are the location of the function maximum (or maximum a posteriori estimator) and the first zero-crossing of the function derivative. Then starting form the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with a 20 MHz central frequency Jomed Invision ultrasound scanner were segmented with the developed method. Automatic contours were compared to those manually drawn by two physician in terms of mean absolute difference. Results demonstrate that the error between automatic contours and the average of manual ones (0.099+/-0.032mm) and the inter-expert error (0.097+/-0.027mm) are similar and of small amplitude.

  9. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  10. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  11. Automated Means of Identifying Landslide Deposits using LiDAR Data using the Contour Connection Method Algorithm

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Leshchinsky, B. A.; Tanyu, B. F.

    2014-12-01

    Landslides are a global natural hazard, resulting in severe economic, environmental and social impacts every year. Often, landslides occur in areas of repeated slope instability, but despite these trends, significant residential developments and critical infrastructure are built in the shadow of past landslide deposits and marginally stable slopes. These hazards, despite their sometimes enormous scale and regional propensity, however, are difficult to detect on the ground, often due to vegetative cover. However, new developments in remote sensing technology, specifically Light Detection and Ranging mapping (LiDAR) are providing a new means of viewing our landscape. Airborne LiDAR, combined with a level of post-processing, enable the creation of spatial data representative of the earth beneath the vegetation, highlighting the scars of unstable slopes of the past. This tool presents a revolutionary technique to mapping landslide deposits and their associated regions of risk; yet, their inventorying is often done manually, an approach that can be tedious, time-consuming and subjective. However, the associated LiDAR bare earth data present the opportunity to use this remote sensing technology and typical landslide geometry to create an automated algorithm that can detect and inventory deposits on a landscape scale. This algorithm, called the Contour Connection Method (CCM), functions by first detecting steep gradients, often associated with the headscarp of a failed hillslope, and initiating a search, highlighting deposits downslope of the failure. Based on input of search gradients, CCM can assist in highlighting regions identified as landslides consistently on a landscape scale, capable of mapping more than 14,000 hectares rapidly (<30 minutes). CCM has shown preliminary agreement with manual landslide inventorying in Oregon's Coast Range, realizing almost 90% agreement with inventorying performed by a trained geologist. The global threat of landslides necessitates

  12. Contour integration with corners.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2016-10-01

    Contour integration refers to the ability of the visual system to bind disjoint local elements into coherent global shapes. In cluttered images containing randomly oriented elements a contour becomes salient when its elements are coaligned with a smooth global trajectory, as described by the Gestalt law of good continuation. Abrupt changes of curvature strongly diminish contour salience. Here we show that by inserting local corner elements at points of angular discontinuity, a jagged contour becomes as salient as a straight one. We report results from detection experiments for contours with and without corner elements which indicate their psychophysical equivalence. This presents a challenge to the notion that contour integration mostly relies on local interactions between neurons tuned to single orientations, and suggests that a site where single orientations and more complex local features are combined constitutes the early basis of contour and 2D shape processing.

  13. Computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection.

    PubMed

    Meziou, L; Histace, A; Precioso, F; Romain, O; Dray, X; Granado, B; Matuszewski, B J

    2014-01-01

    Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the "gold standard" technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.

  14. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis.

    PubMed

    Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P

    2017-02-09

    Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit.

  15. Global contour processing in amblyopia

    PubMed Central

    Levi, Dennis M.; Yu, Cong; Kuai, Shu-Guang; Rislove, Elizabeth

    2007-01-01

    The purpose of the experiments described here was to investigate global image processing using methods that require global processing while eliminating or compensating for low level abnormalities: visibility, shape perception and positional uncertainty. In order to accomplish this we used a closed figure made up of Gabor patches either in noise or on a blank field. The stimuli were circular or elliptical contours, formed by N equally spaced Gabor patches. We performed two separate experiments: In one experiment we fixed N and varied the aspect ratio using a staircase to determine the threshold aspect ratio; in the second experiment we held the aspect ratio constant (at twice the threshold aspect ratio) and varied N in order to measure the threshold number of elements required to judge the shape. Our results confirm and extend previous studies showing that humans with naturally occurring amblyopia show deficits in contour processing. Our results show that the deficits depend strongly on spatial scale (target size and spatial frequency). The deficit in global contour processing is substantially greater in noise (where contour-linking is required) than on a blank field. The magnitude of the deficits is modest when low-level deficits (reduced visibility, increased positional uncertainty, and abnormal shape perception) are minimized, and does not seem to depend much on acuity, crowding or stereoacuity. The residual deficits reported here cannot be simply ascribed to reduced visibility or increased positional uncertainty, and we therefore conclude that these are genuine deficits in global contour segregation and integration. PMID:17223155

  16. Roads Centre-Axis Extraction in Airborne SAR Images: AN Approach Based on Active Contour Model with the Use of Semi-Automatic Seeding

    NASA Astrophysics Data System (ADS)

    Lotte, R. G.; Sant'Anna, S. J. S.; Almeida, C. M.

    2013-05-01

    Research works dealing with computational methods for roads extraction have considerably increased in the latest two decades. This procedure is usually performed on optical or microwave sensors (radar) imagery. Radar images offer advantages when compared to optical ones, for they allow the acquisition of scenes regardless of atmospheric and illumination conditions, besides the possibility of surveying regions where the terrain is hidden by the vegetation canopy, among others. The cartographic mapping based on these images is often manually accomplished, requiring considerable time and effort from the human interpreter. Maps for detecting new roads or updating the existing roads network are among the most important cartographic products to date. There are currently many studies involving the extraction of roads by means of automatic or semi-automatic approaches. Each of them presents different solutions for different problems, making this task a scientific issue still open. One of the preliminary steps for roads extraction can be the seeding of points belonging to roads, what can be done using different methods with diverse levels of automation. The identified seed points are interpolated to form the initial road network, and are hence used as an input for an extraction method properly speaking. The present work introduces an innovative hybrid method for the extraction of roads centre-axis in a synthetic aperture radar (SAR) airborne image. Initially, candidate points are fully automatically seeded using Self-Organizing Maps (SOM), followed by a pruning process based on specific metrics. The centre-axis are then detected by an open-curve active contour model (snakes). The obtained results were evaluated as to their quality with respect to completeness, correctness and redundancy.

  17. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  18. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  19. Contour detection and hierarchical image segmentation.

    PubMed

    Arbeláez, Pablo; Maire, Michael; Fowlkes, Charless; Malik, Jitendra

    2011-05-01

    This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

  20. Variable contour securing system

    NASA Technical Reports Server (NTRS)

    Zebus, P. P.; Packer, P. N.; Haynie, C. C. (Inventor)

    1978-01-01

    A variable contour securing system has a retaining structure for a member whose surface contains a variable contour. The retaining mechanism includes a spaced array of adjustable spindles mounted on a housing. Each spindle has a base member support cup at one end. A vacuum source is applied to the cups for seating the member adjacent to the cups. A locking mechanism sets the spindles in a predetermined position once the member has been secured to the spindle support cups.

  1. GENERALIZED DIGITAL CONTOURING PROGRAM

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1994-01-01

    This is a digital computer contouring program developed by combining desirable characteristics from several existing contouring programs. It can easily be adapted to many different research requirements. The overlaid structure of the program permits desired modifications to be made with ease. The contouring program performs both the task of generating a depth matrix from either randomly or regularly spaced surface heights and the task of contouring the data. Each element of the depth matrix is computed as a weighted mean of heights predicted at an element by planes tangent to the surface at neighboring control points. Each contour line is determined by its intercepts with the sides of geometrical figures formed by connecting the various elements of the depth matrix with straight lines. Although contour charts are usually thought of as being two-dimensional pictorial representations of topographic formations of land masses, they can also be useful in portraying data which are obtained during the course of research in various scientific disciplines and which would ordinarily be tabulated. Any set of data which can be referenced to a two-dimensional coordinate system can be graphically represented by this program. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on the CDC 6000 Series. This program was developed in 1971.

  2. Reconstruction of surfaces from planar contours through contour interpolation

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  3. A component-labeling algorithm based on contour tracing

    NASA Astrophysics Data System (ADS)

    Qiu, Liudong; Li, Zushu

    2007-12-01

    A new method for finding connected components from binary images is presented in this paper. The main step of this method is to use a contour tracing technique to detect component contours, and use the information of contour to fill in interior areas. All the component points are traced by this algorithm in a single pass and are assigned either a new label or the same label of the contour pixels. Comparative experiment results show that Our algorithm, moreover, is a fast method that not only labels components but also extracts component contours at the same time, which proves to be more useful than those algorithms that only label components.

  4. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model

    SciTech Connect

    Bellotti, R.; De Carlo, F.; Gargano, G.; Tangaro, S.; Cascio, D.; Catanzariti, E.; Cerello, P.; Cheran, S. C.; Delogu, P.; De Mitri, I.; Fulcheri, C.; Grosso, D.; Retico, A.; Squarcia, S.; Tommasi, E.; Golosio, Bruno

    2007-12-15

    A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.

  5. Mapping bedrock surface contours using the horizontal-to-vertical spectral ratio (HVSR) method near the middle quarter srea, Woodbury, Connecticut

    USGS Publications Warehouse

    Brown, Craig J.; Voytek, Emily B.; Lane, Jr., John W.; Stone, Janet R.

    2013-01-01

    The bedrock surface contours in Woodbury, Connecticut, were determined downgradient of a commercial zone known as the Middle Quarter area (MQA) using the novel, noninvasive horizontal-to-vertical (H/V) spectral ratio (HVSR) passive seismic geophysical method. Boreholes and monitoring wells had been drilled in this area to characterize the shallow subsurface to within 20 feet (ft) of the land surface, but little was known about the deep subsurface, including sediment thicknesses and depths to bedrock (Starn and Brown, 2007; Brown and others, 2009). Improved information on the altitude of the bedrock surface and its spatial variation was needed for assessment and remediation of chlorinated solvents that have contaminated the overlying glacial aquifer that supplies water to wells in the area.

  6. Outer contour extraction of skull from CT scan images

    NASA Astrophysics Data System (ADS)

    Ulinuha, M. A.; Yuniarno, E. M.; Nugroho, S. M. S.; Hariadi, M.

    2017-03-01

    Extraction of the outer contour of the skull is an important step in craniofacial reconstruction. The outer contour is required for surface reconstruction of the skull. In this paper, we propose a method to extract the outer contour of the skull. The extraction process consists of four stages: defining the region of interest, segmentation of the bone, noise removal and extraction of the outer contour based on scanning from the four sides of the image. The proposed method successfully extracts the outermost contour of the skull and avoids redundant data.

  7. Spiral Light Beams and Contour Image Processing

    NASA Astrophysics Data System (ADS)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  8. Using Modified Contour Deformable Model to Quantitatively Estimate Ultrasound Parameters for Osteoporosis Assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Du, Yi-Chun; Tsai, Yi-Ting; Chen, Tainsong

    Osteoporosis is a systemic skeletal disease, which is characterized by low bone mass and micro-architectural deterioration of bone tissue, leading to bone fragility. Finding an effective method for prevention and early diagnosis of the disease is very important. Several parameters, including broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (STI), have been used to measure the characteristics of bone tissues. In this paper, we proposed a method, namely modified contour deformable model (MCDM), bases on the active contour model (ACM) and active shape model (ASM) for automatically detecting the calcaneus contour from quantitative ultrasound (QUS) parametric images. The results show that the difference between the contours detected by the MCDM and the true boundary for the phantom is less than one pixel. By comparing the phantom ROIs, significant relationship was found between contour mean and bone mineral density (BMD) with R=0.99. The influence of selecting different ROI diameters (12, 14, 16 and 18 mm) and different region-selecting methods, including fixed region (ROI fix ), automatic circular region (ROI cir ) and calcaneal contour region (ROI anat ), were evaluated for testing human subjects. Measurements with large ROI diameters, especially using fixed region, result in high position errors (10-45%). The precision errors of the measured ultrasonic parameters for ROI anat are smaller than ROI fix and ROI cir . In conclusion, ROI anat provides more accurate measurement of ultrasonic parameters for the evaluation of osteoporosis and is useful for clinical application.

  9. Contour detection based on wavelet differentiation

    NASA Astrophysics Data System (ADS)

    Bezuglov, D.; Kuzin, A.; Voronin, V.

    2016-05-01

    This work proposes a novel algorithm for contour detection based on high-performance algorithm of wavelet analysis for multimedia applications. To solve the noise effect on the result of peaking in this paper we consider the direct and inverse wavelet differentiation. Extensive experimental evaluation on noisy images demonstrates that our contour detection method significantly outperform competing algorithms. The proposed algorithm provides a means of coupling our system to recognition application such as detection and identification of vehicle number plate.

  10. Extreme_SeaState_Contour_v1

    SciTech Connect

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on a given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.

  11. Contour based object detection using part bundles

    PubMed Central

    Lu, ChengEn; Adluru, Nagesh; Ling, Haibin; Zhu, Guangxi; Latecki, Longin Jan

    2016-01-01

    In this paper we propose a novel framework for contour based object detection from cluttered environments. Given a contour model for a class of objects, it is first decomposed into fragments hierarchically. Then, we group these fragments into part bundles, where a part bundle can contain overlapping fragments. Given a new image with set of edge fragments we develop an efficient voting method using local shape similarity between part bundles and edge fragments that generates high quality candidate part configurations. We then use global shape similarity between the part configurations and the model contour to find optimal configuration. Furthermore, we show that appearance information can be used for improving detection for objects with distinctive texture when model contour does not sufficiently capture deformation of the objects.

  12. The Development of Contour Interpolation: Evidence from Subjective Contours

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2010-01-01

    Adults are skilled at perceiving subjective contours in regions without any local image information (e.g., [Ginsburg, 1975] and [Kanizsa, 1976]). Here we examined the development of this skill and the effect thereon of the support ratio (i.e., the ratio of the physically specified contours to the total contour length). Children (6-, 9-, and…

  13. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  14. Isolating contour information from arbitrary images

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.

    1989-11-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  15. Battery equalization active methods

    NASA Astrophysics Data System (ADS)

    Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; Milanes-Montero, M. Isabel; Guerrero-Martinez, Miguel A.

    2014-01-01

    Many different battery technologies are available for the applications which need energy storage. New researches are being focused on Lithium-based batteries, since they are becoming the most viable option for portable energy storage applications. As most of the applications need series battery strings to meet voltage requirements, battery imbalance is an important matter to be taken into account, since it leads the individual battery voltages to drift apart over time, and premature cells degradation, safety hazards, and capacity reduction will occur. A large number of battery equalization methods can be found, which present different advantages/disadvantages and are suitable for different applications. The present paper presents a summary, comparison and evaluation of the different active battery equalization methods, providing a table that compares them, which is helpful to select the suitable equalization method depending on the application. By applying the same weight to the different parameters of comparison, switch capacitor and double-tiered switching capacitor have the highest ratio. Cell bypass methods are cheap and cell to cell ones are efficient. Cell to pack, pack to cell and cell to pack to cell methods present a higher cost, size, and control complexity, but relatively low voltage and current stress in high-power applications.

  16. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping.

    PubMed

    Gilad, Ariel; Meirovithz, Elhanan; Slovin, Hamutal

    2013-04-24

    The neuronal mechanisms underlying perceptual grouping of discrete, similarly oriented elements are not well understood. To investigate this, we measured neural population responses using voltage-sensitive dye imaging in V1 of monkeys trained on a contour-detection task. By mapping the contour and background elements onto V1, we could study their neural processing. Population response early in time showed activation patches corresponding to the contour/background individual elements. However, late increased activity in the contour elements, along with suppressed activity in the background elements, enabled us to visualize in single trials a salient continuous contour "popping out" from a suppressed background. This modulated activity in the contour and in background extended beyond the cortical representation of individual contour or background elements. Finally, the late modulation was correlated with behavioral performance of contour saliency and the monkeys' perceptual report. Thus, opposing responses in the contour and background may underlie perceptual grouping in V1.

  17. Segmentation of the endocardial wall of the left atrium using local region-based active contours and statistical shape learning

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Gholami, Behnood; MacLeod, Robert S.; Blauer, Joshua; Haddad, Wassim M.; Tannenbaum, Allen R.

    2010-03-01

    Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers of the heart, is a rapidly growing problem in modern societies. One treatment, referred to as catheter ablation, targets specific parts of the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic resonance imaging has been used for both pre- and and post-ablation assessment of the atrial wall. Magnetic resonance imaging can aid in selecting the right candidate for the ablation procedure and assessing post-ablation scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the computer-assisted segmentation of the left atrial wall, in this paper we use shape learning and shape-based image segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic resonance images.

  18. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  19. Robustness of shape descriptors to incomplete contour representations.

    PubMed

    Ghosh, Anarta; Petkov, Nicolai

    2005-11-01

    With inspiration from psychophysical researches of the human visual system, we propose a novel aspect and a method for performance evaluation of contour-based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a reference (training) set. Incomplete contour representations of the same objects are used as a test set. The performance of an algorithm is reported using the recognition rate as a function of the percentage of contour retained. We call this evaluation procedure the ICR test. We consider three types of contour incompleteness, viz. segment-wise contour deletion, occlusion, and random pixel depletion. As an illustration, the robustness of two shape recognition algorithms to contour incompleteness is evaluated. These algorithms use a shape context and a distance multiset as local shape descriptors. Qualitatively, both algorithms mimic human visual perception in the sense that recognition performance monotonously increases with the degree of completeness and that they perform best in the case of random depletion and worst in the case of occluded contours. The distance multiset method performs better than the shape context method in this test framework.

  20. The role of eye movements in a contour detection task.

    PubMed

    Van Humbeeck, Nathalie; Schmitt, Nadine; Hermens, Frouke; Wagemans, Johan; Ernst, Udo A

    2013-12-04

    Vision combines local feature integration with active viewing processes, such as eye movements, to perceive complex visual scenes. However, it is still unclear how these processes interact and support each other. Here, we investigated how the dynamics of saccadic eye movements interact with contour integration, focusing on situations in which contours are difficult to find or even absent. We recorded observers' eye movements while they searched for a contour embedded in a background of randomly oriented elements. Task difficulty was manipulated by varying the contour's path angle. An association field model of contour integration was employed to predict potential saccade targets by identifying stimulus locations with high contour salience. We found that the number and duration of fixations increased with the increasing path angle of the contour. In addition, fixation duration increased over the course of a trial, and the time course of saccade amplitude depended on the percept of observers. Model fitting revealed that saccades fully compensate for the reduced saliency of peripheral contour targets. Importantly, our model predicted fixation locations to a considerable degree, indicating that observers fixated collinear elements. These results show that contour integration actively guides eye movements and determines their spatial and temporal parameters.

  1. Robot Hand Would Adapt To Contours

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Conceptual device uses hydraulic pressure to activate fingers. Projections on opposing fingers of proposed robot hand automatically conform to contours of object on contact. Pistons connected to common reservoir provide gentle, firm grip. Fingers communicate with each other via hydraulic pressure, without elaborate control system. Pistons move in and out, and tips slope to match contour of object. Their action tends to center object on finger. Hand used to grasp objects of various shapes and sizes. Conforming process passive; pressure of object on one or several pad elements forces other pad elements to touch it. Would not use elaborate mechanisms involving motors, cams, and cables.

  2. Prostate Contouring Variation: Can It Be Fixed?

    SciTech Connect

    Khoo, Eric L.H.; Schick, Karlissa; Plank, Ashley W.; Poulsen, Michael; Wong, Winnie W.G.; Middleton, Mark; Martin, Jarad M.

    2012-04-01

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  3. Surface reconstruction from sparse fringe contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-08-10

    A new approach for reconstruction of 3D surfaces from 2D cross-sectional contours is presented. By using the so-called ''Equal Importance Criterion,'' we reconstruct the surface based on the assumption that every point in the region contributes equally to the surface reconstruction process. In this context, the problem is formulated in terms of a partial differential equation (PDE), and we show that the solution for dense contours can be efficiently derived from distance transform. In the case of sparse contours, we add a regularization term to insure smoothness in surface recovery. The proposed technique allows for surface recovery at any desired resolution. The main advantage of the proposed method is that inherent problems due to correspondence, tiling, and branching are avoided. Furthermore, the computed high resolution surface is better represented for subsequent geometric analysis. We present results on both synthetic and real data.

  4. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  5. Macromolecular extraction based on contour evolution

    NASA Astrophysics Data System (ADS)

    Wang, Zhaobin; Guo, Miao; Zhu, Ying; Yang, Lizhen; Ma, Yi-de

    2013-03-01

    Detecting the region of interest plays an important role in the field of image processing and analysis. For the microscopic image of plant embryo slice, region of interest usually indicates various cells or macromolecules. Combining contour evolution theory and pulse coupled neural network, we propose a new method of macromolecular detection and extraction for biological microscopic image. Some existing methods are compared with the proposed method. Experimental results show the proposed method has the better performance than existing methods.

  6. Precision contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip.

  7. Precision contour gage

    DOEpatents

    Bieg, L.F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip. 5 figs.

  8. Determination Of The Activity Space By The Stereometric Method

    NASA Astrophysics Data System (ADS)

    Deloison, Y.; Crete, N.; Mollard, R.

    1980-07-01

    To determine the activity space of a sitting subject, it is necessary to go beyond the mere statistical description of morphology and the knowledge of the displacement volume. An anlysis of the positions or variations of the positions of the diverse segmental elements (arms, hands, lower limbs, etc...) in the course of a given activity is required. Of the various methods used to locate quickly and accurately the spatial positions of anatomical points, stereometry makes it possible to plot the three-dimensional coordinates of any point in space in relation to a fixed trirectangle frame of reference determined by the stereome-tric measuring device. Thus, regardless of the orientation and posture of the subject, his segmental elements can be easily pin-pointed, throughout the experiment, within the space they occupy. Using this method, it is possible for a sample of operators seated at an operation station and applying either manual controls or pedals and belonging to a population statistically defined from the data collected and the analyses produced by the anthropometric study to determine a contour line of reach capability marking out the usable working space and to know, within this working space, a contour line of preferential activity that is limited, in space, by the whole range of optimal reach capability of all the subjects.

  9. Decoupled external forces in a predictor-corrector segmentation scheme for LV contours in Tagged MR images.

    PubMed

    Garcia-Barnes, Jaume; Andaluz, Albert; Carreras, Francesc; Gil, Debora

    2010-01-01

    Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictor-corrector (Active Contours - Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.

  10. Sensory Information and Subjective Contour

    ERIC Educational Resources Information Center

    Brussell, Edward M.; And Others

    1977-01-01

    The possibility that subjective contours are an artifact of brightness contrast was explored. Concludes that subjective contour and brightness contrast are distinct perceptual phenomena but share a dependency on the processing of edge information transmitted through the achromatic channels of the visual system. (Editor/RK)

  11. Contour integration across spatial frequency.

    PubMed

    Persike, Malte; Olzak, Lynn A; Meinhardt, Günter

    2009-12-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed. To explore whether contour integration occurs across SF, we studied human contour detection in Gabor random fields with SF jitter along the contour, and in the embedding field. Results show no impairment of contour detection when the contour elements are 1.25 octaves apart. Even with a SF separation of 2.25 octaves there is only moderate impairment. Because SF tuning functions measured for contextual interactions of neighbored single band-pass elements indicate much smaller bandwidths (Polat & Sagi, 1993), the results imply that contour integration cannot rest solely on local locking among neighbored orientation and SF tuned mechanisms. Robustness across spatial frequency, and across color and depth, as found recently, indicates that local orientation based grouping integrates across other basic features. This suggests an origin in not too distal brain regions.

  12. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  13. Active Learning Methods

    ERIC Educational Resources Information Center

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  14. Reconstruction of a 3D stereotactic brain atlas and its contour-to-contour elastic deformation

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiko; Otsuki, Taisuke

    1993-06-01

    We describe a refined method for estimating the 3-D geometry of cerebral structures of a patient's brain from magnetic resonance (MR) images by adapting a 3-D atlas to the images. The 3-D atlas represents the figures of anatomical subdivisions of deep cerebral structures as series of contours reconstructed from a stereotactic printed atlas. The method correlates corresponding points and curve segments that are recognizable in both the atlas and the image, by elastically deforming the atlas two-dimensionally, while maintaining the point-to-point and contour-to-contour correspondence, until equilibrium is reached. We have used the method experimentally for a patient with Parkinson's disease, and successfully estimated the substructures of the thalamus to be treated.

  15. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  16. Combining prior day contours to improve automated prostate segmentation

    SciTech Connect

    Godley, Andrew; Sheplan Olsen, Lawrence J.; Stephans, Kevin; Zhao Anzi

    2013-02-15

    Purpose: To improve the accuracy of automatically segmented prostate, rectum, and bladder contours required for online adaptive therapy. The contouring accuracy on the current image guidance [image guided radiation therapy (IGRT)] scan is improved by combining contours from earlier IGRT scans via the simultaneous truth and performance level estimation (STAPLE) algorithm. Methods: Six IGRT prostate patients treated with daily kilo-voltage (kV) cone-beam CT (CBCT) had their original plan CT and nine CBCTs contoured by the same physician. Three types of automated contours were produced for analysis. (1) Plan: By deformably registering the plan CT to each CBCT and then using the resulting deformation field to morph the plan contours to match the CBCT anatomy. (2) Previous: The contour set drawn by the physician on the previous day CBCT is similarly deformed to match the current CBCT anatomy. (3) STAPLE: The contours drawn by the physician, on each prior CBCT and the plan CT, are deformed to match the CBCT anatomy to produce multiple contour sets. These sets are combined using the STAPLE algorithm into one optimal set. Results: Compared to plan and previous, STAPLE improved the average Dice's coefficient (DC) with the original physician drawn CBCT contours to a DC as follows: Bladder: 0.81 {+-} 0.13, 0.91 {+-} 0.06, and 0.92 {+-} 0.06; Prostate: 0.75 {+-} 0.08, 0.82 {+-} 0.05, and 0.84 {+-} 0.05; and Rectum: 0.79 {+-} 0.06, 0.81 {+-} 0.06, and 0.85 {+-} 0.04, respectively. The STAPLE results are within intraobserver consistency, determined by the physician blindly recontouring a subset of CBCTs. Comparing plans recalculated using the physician and STAPLE contours showed an average disagreement less than 1% for prostate D98 and mean dose, and 5% and 3% for bladder and rectum mean dose, respectively. One scan takes an average of 19 s to contour. Using five scans plus STAPLE takes less than 110 s on a 288 core graphics processor unit. Conclusions: Combining the plan and

  17. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know

    PubMed Central

    Drolet, Matthis; Schubotz, Ricarda I.; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition. PMID:24701202

  18. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know.

    PubMed

    Drolet, Matthis; Schubotz, Ricarda I; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition.

  19. Brain networks supporting perceptual grouping and contour selection.

    PubMed

    Volberg, Gregor; Greenlee, Mark W

    2014-01-01

    The human visual system groups local elements into global objects seemingly without effort. Using a contour integration task and EEG source level analyses, we tested the hypothesis that perceptual grouping requires a top-down selection, rather than a passive pooling, of neural information that codes local elements in the visual image. The participants were presented visual displays with or without a hidden contour. Two tasks were performed: a central luminance-change detection task and a peripheral contour detection task. Only in the contour-detection task could we find differential brain activity between contour and non-contour conditions, within a distributed brain network including parietal, lateral occipital and primary visual areas. Contour processing was associated with an inflow of information from lateral occipital into primary visual regions, as revealed from the slope of phase differences between source level oscillations within these areas. The findings suggest that contour integration results from a selection of neural information from lower visual areas, and that this selection is driven by the lateral occipital cortex.

  20. Variable length open contour tracking using a deformable trellis.

    PubMed

    Sargin, Mehmet Emre; Altinok, Alphan; Manjunath, Bangalore S; Rose, Kenneth

    2011-04-01

    This paper focuses on contour tracking, an important problem in computer vision, and specifically on open contours that often directly represent a curvilinear object. Compelling applications are found in the field of bioimage analysis where blood vessels, dendrites, and various other biological structures are tracked over time. General open contour tracking, and biological images in particular, pose major challenges including scene clutter with similar structures (e.g., in the cell), and time varying contour length due to natural growth and shortening phenomena, which have not been adequately answered by earlier approaches based on closed and fixed end-point contours. We propose a model-based estimation algorithm to track open contours of time-varying length, which is robust to neighborhood clutter with similar structures. The method employs a deformable trellis in conjunction with a probabilistic (hidden Markov) model to estimate contour position, deformation, growth and shortening. It generates a maximum a posteriori estimate given observations in the current frame and prior contour information from previous frames. Experimental results on synthetic and real-world data demonstrate the effectiveness and performance gains of the proposed algorithm.

  1. Non-contact contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  2. Optimality of human contour integration.

    PubMed

    Ernst, Udo A; Mandon, Sunita; Schinkel-Bielefeld, Nadja; Neitzel, Simon D; Kreiter, Andreas K; Pawelzik, Klaus R

    2012-01-01

    For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy.

  3. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  4. Automatic liver contouring for radiotherapy treatment planning.

    PubMed

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-07

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  5. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    SciTech Connect

    Zhou, R; Yang, J; Pan, T; Milgrom, S; Pinnix, C; Shi, A; Yang, J; Liu, Y; Nguyen, Q; Gomez, D; Dabaja, B; Balter, P; Court, L; Liao, Z

    2015-06-15

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  6. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    NASA Astrophysics Data System (ADS)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  7. Evaluation of Dosimetric Consequences of Seroma Contour Variability in Accelerated Partial Breast Irradiation Using a Constructed Representative Seroma Contour

    SciTech Connect

    Kosztyla, Robert; Olson, Robert; Carolan, Hannah; Balkwill, Susan; Moiseenko, Vitali; Kwan, Winkle

    2012-10-01

    Purpose: Contouring variability of the seroma can have important implications in the planning and delivery of accelerated partial breast irradiation (APBI). This study aimed to quantify the dosimetric impact of these interobserver and intraobserver contouring variations by construction of a representative seroma contour (RSC). Methods and Materials: Twenty-one patients with a seroma suitable for APBI underwent four computed tomography (CT) scans: one planning CT and three additional CTs on the first, third, and fifth days of treatment. Three radiation oncologists contoured the seroma on each CT scan. For 3 patients, oncologists repeated contouring twice to assess intraobserver variations. Seroma contour variability was quantified by construction of an RSC. In addition, the percent volume overlap (PVO) was calculated. Root-mean-square (RMS) differences in seroma volume, size, and center of mass position compared to those of the RSC were calculated. Treatment fields from the original plan were applied to the repeated CTs by using the same isocenter shifts as the original plan. The dosimetric impact of the contour variations was assessed using V{sub 95} (volume receiving at least 95% of the prescribed dose) and equivalent uniform dose (EUD). Results: Interobserver RMS volume differences were, on average, 5.6 times larger than intraobserver differences. The median interobserver RMS seroma volume difference was 1.48 cm{sup 3}. The median PVO was 51.6%. V{sub 95} and EUD of the seroma contours were similar for all patients. The median RMS differences of the seroma V{sub 95} and EUD were 0.01% (range, 0%-3.99%) and 0.05 Gy (range, 0-0.98 Gy). Conclusions: Construction of the RSC showed that interobserver variations were most responsible for contour variations of the seroma. Current planning margins provided adequate dose coverage of the seroma despite these contour variations.

  8. Semi-automated contour recognition using DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  9. A closed-form solution for noise contours

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Carson, T. M.

    1979-01-01

    An analytical approach for generating noise contours that overcome the difficulties of existing programs is described. This approach is valid for arbitrarily complex paths and reveals the importance of various factors that influence contour shape and size. The calculations are simple enough to be implemented on a small, hand-held programmable calculator, and a program for the HP-67 calculator is illustrated. The method is fast, simple, and gives the area, the contour, and its extremities for arbitrary flight paths for both takeoffs and landings.

  10. Sonority contours in word recognition

    NASA Astrophysics Data System (ADS)

    McLennan, Sean

    2003-04-01

    Contrary to the Generativist distinction between competence and performance which asserts that speech or perception errors are due to random, nonlinguistic factors, it seems likely that errors are principled and possibly governed by some of the same constraints as language. A preliminary investigation of errors modeled after the child's ``Chain Whisper'' game (a degraded stimulus task) suggests that a significant number of recognition errors can be characterized as an improvement in syllable sonority contour towards the linguistically least-marked, voiceless-stop-plus-vowel syllable. An independent study of sonority contours showed that approximately half of the English lexicon can be uniquely identified by their contour alone. Additionally, ``sororities'' (groups of words that share a single sonority contour), surprisingly, show no correlation to familiarity or frequency in either size or membership. Together these results imply that sonority contours may be an important factor in word recognition and in defining word ``neighborhoods.'' Moreover, they suggest that linguistic markedness constraints may be more prevalent in performance-related phenomena than previously accepted.

  11. Tumor Delineation Based on Time-Activity Curve Differences Assessed With Dynamic Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Rectal Cancer Patients

    SciTech Connect

    Janssen, Marco Aerts, Hugo; Ollers, Michel C.; Bosmans, Geert; Lee, John A.; Buijsen, Jeroen; Ruysscher, Dirk de; Lambin, Philippe; Lammering, Guido; Dekker, Andre L.A.J.

    2009-02-01

    Purpose: To develop an unsupervised tumor delineation method based on time-activity curve (TAC) shape differences between tumor tissue and healthy tissue and to compare the resulting contour with the two tumor contouring methods mostly used nowadays. Methods and Materials: Dynamic positron emission tomography-computed tomography (PET-CT) acquisition was performed for 60 min starting directly after fluorodeoxyglucose (FDG) injection. After acquisition and reconstruction, the data were filtered to attenuate noise. Correction for tissue motion during acquisition was applied. For tumor delineation, the TAC slope values were k-means clustered into two clusters. The resulting tumor contour (Contour I) was compared with a contour manually drawn by the radiation oncologist (Contour II) and a contour generated using a threshold of the maximum standardized uptake value (SUV; Contour III). Results: The tumor volumes of Contours II and III were significantly larger than the tumor volumes of Contour I, with both Contours II and III containing many voxels showing flat TACs at low activities. However, in some cases, Contour II did not cover all voxels showing upward TACs. Conclusion: Both automated SUV contouring and manual tumor delineation possibly incorrectly assign healthy tissue, showing flat TACs, as being malignant. On the other hand, in some cases the manually drawn tumor contours do not cover all voxels showing steep upward TACs, suspected to be malignant. Further research should be conducted to validate the possible superiority of tumor delineation based on dynamic PET analysis.

  12. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  13. Spatial profile of contours inducing long-range color assimilation

    PubMed Central

    DEVINCK, FRÉDÉRIC; SPILLMANN, LOTHAR; WERNER, JOHN S.

    2008-01-01

    Color induction was measured using a matching method for two spatial patterns, each composed of double contours. In one pattern (the standard), the contours had sharp edges to induce the Watercolor Effect (WCE); in the other, the two contours had a spatial taper so that the overall profile produced a sawtooth edge, or ramped stimulus. These patterns were chosen based on our previous study demonstrating that the strength of the chromatic WCE depends on a luminance difference between the two contours. Low-pass chromatic mechanisms, unlike bandpass luminance mechanisms, may be expected to be insensitive to the difference between the two spatial profiles. The strength of the watercolor spreading was similar for the two patterns at narrow widths of the contour possibly because of chromatic aberration, but with wider contours, the standard stimulus produced stronger assimilation than the ramped stimulus. This research suggests that luminance-dependent chromatic mechanisms mediate the WCE and that these mechanisms are sensitive to differences in the two spatial profiles of the pattern contours only when they are wide. PMID:16961998

  14. Infants' perception of curved illusory contour with motion.

    PubMed

    Sato, Kazuki; Masuda, Tomohiro; Wada, Yuji; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K

    2013-12-01

    Recently, Masuda et al. (submitted for publication) showed that adults perceive moving rigid or nonrigid motion from illusory contour with neon color spreading in which the inducer has pendular motion with or without phase difference. In Experiment 1, we used the preferential looking method to investigate whether 3-8-month-old infants can discriminate illusory and non-illusory contour figures, and found that the 7-8-month-old, but not the 3-6-month-old, infants showed significant preference for illusory contour with phase difference. In Experiment 2, we tested the validity of the visual stimuli in the present study, and whether infants could detect illusory contour from the current neon color spreading figures. The results showed that all infants might detect illusory contour figure with neon color spreading figures. The results of Experiments 1 and 2 suggest that 7-8-month-old infants potentially perceive illusory contour from the visual stimulus with phase-different movement of inducers, which elicits the perception of nonrigid dynamic subjective contour in adults.

  15. The Effect of Contouring Variability on Dosimetric Parameters for Brain Metastases Treated With Stereotactic Radiosurgery

    SciTech Connect

    Stanley, Julia; Dunscombe, Peter; Lau, Harold; Burns, Paul; Lim, Gerald; Liu, Hong-Wei; Nordal, Robert; Starreveld, Yves; Valev, Boris; Voroney, Jon-Paul; Spencer, David P.

    2013-12-01

    Purpose: To quantify the effect of contouring variation on stereotactic radiosurgery plan quality metrics for brain metastases. Methods and Materials: Fourteen metastases, each contoured by 8 physicians, formed the basis of this study. A template-based dynamic conformal 5-arc dose distribution was developed for each of the 112 contours, and each dose distribution was applied to the 7 other contours in each patient set. Radiation Therapy Oncology Group (RTOG) plan quality metrics and the Paddick conformity index were calculated for each of the 896 combinations of dose distributions and contours. Results: The ratio of largest to smallest contour volume for each metastasis varied from 1.25 to 4.47, with a median value of 1.68 (n=8). The median absolute difference in RTOG conformity index between the value for the reference contour and the values for the alternative contours was 0.35. The variation of the range of conformity index for all contours for a given tumor varied with the tumor size. Conclusions: The high degree of interobserver contouring variation strongly suggests that peer review or consultation should be adopted to standardize tumor volume prescription. Observer confidence was not reflected in contouring consistency. The impact of contouring variability on plan quality metrics, used as criteria for clinical trial protocol compliance, was such that the category of compliance was robust to interobserver effects only 70% of the time.

  16. A MultiScale Particle Filter Framework for Contour Detection.

    PubMed

    Widynski, Nicolas; Mignotte, Max

    2014-10-01

    We investigate the contour detection task in complex natural images. We propose a novel contour detection algorithm which jointly tracks at two scales small pieces of edges called edgelets. This multiscale edgelet structure naturally embeds semi-local information and is the basic element of the proposed recursive Bayesian modeling. Prior and transition distributions are learned offline using a shape database. Likelihood functions are learned online, thus are adaptive to an image, and integrate color and gradient information via local, textural, oriented, and profile gradient-based features. The underlying model is estimated using a sequential Monte Carlo approach, and the final soft contour detection map is retrieved from the approximated trajectory distribution. We also propose to extend the model to the interactive cut-out task. Experiments conducted on the Berkeley Segmentation data sets show that the proposed MultiScale Particle Filter Contour Detector method performs well compared to competing state-of-the-art methods.

  17. Body Image and Body Contouring Procedures.

    PubMed

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures.

  18. Contour-map encoding of shape for early vision

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1990-01-01

    Contour maps provide a general method for recognizing 2-D shapes. All but blank images give rise to such maps, and people are good at recognizing objects and shapes from them. The maps are encoded easily in long feature vectors that are suitable for recognition by an associative memory. These properties of contour maps suggest a role for them in early visual perception. The prevalence of direction sensitive neurons in the visual cortex of mammals supports this view.

  19. A Genetic-Algorithm-Based Explicit Description of Object Contour and its Ability to Facilitate Recognition.

    PubMed

    Wei, Hui; Tang, Xue-Song

    2015-11-01

    Shape representation is an extremely important and longstanding problem in the field of pattern recognition. Closed contour, which refers to shape contour, plays a crucial role in the comparison of shapes. Because shape contour is the most stable, distinguishable, and invariable feature of an object, it is useful to incorporate it into the recognition process. This paper proposes a method based on genetic algorithms. The proposed method can be used to identify the most common contour fragments, which can be used to represent the contours of a shape category. The common fragments clarify the particular logics included in the contours. This paper shows that the explicit representation of the shape contour contributes significantly to shape representation and object recognition.

  20. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  1. Topological Cacti: Visualizing Contour-based Statistics

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  2. Direct imaging of isofrequency contours in photonic structures

    PubMed Central

    Regan, Emma C.; Igarashi, Yuichi; Zhen, Bo; Kaminer, Ido; Hsu, Chia Wei; Shen, Yichen; Joannopoulos, John D.; Soljačić, Marin

    2016-01-01

    The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique. Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes. PMID:28138536

  3. Algorithm for Constructing Contour Plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1984-01-01

    General computer algorithm developed for construction of contour plots. algorithm accepts as input data values at set of points irregularly distributed over plane. Algorithm based on interpolation scheme: points in plane connected by straight-line segments to form set of triangles. Program written in FORTRAN IV.

  4. Gage for 3-d contours

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.

    1980-01-01

    Simple gage, used with template, can help inspectors determine whether three-dimensional curved surface has correct contour. Gage was developed as aid in explosive forming of Space Shuttle emergency-escape hatch. For even greater accuracy, wedge can be made of metal and calibrated by indexing machine.

  5. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  6. Measuring and Plotting Surface-Contour Deviations

    NASA Technical Reports Server (NTRS)

    Aragon, Lino A.; Shuck, Thomas; Crockett, Leroy K.

    1987-01-01

    Hand-held device measures deviation of contour of surface from desired contour and provides output to x-y plotter. Carriage on device rolled along track representing desired contour, while spring-loaded stylus on device deflects perpendicularly to track to follow surface. Operator moves carriage of contour-measuring device on beamlike track. Stylus on carriage traces contour of surface above it. Carriage of measuring device holds transducer measuring cross-track displacement of surface from desired contour, and multiple-turn potentiometer measuring position along track.

  7. Auto-propagation of contours for adaptive prostate radiation therapy

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  8. Auto-propagation of contours for adaptive prostate radiation therapy.

    PubMed

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-07

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  9. A possible analogy between contours in mathematics--as exemplified by Cauchy's integral formula--and contours in the arts.

    PubMed

    Gerr, S

    1982-01-01

    An attempt is made to draw an analogy between contour drawing and a particular mathematical theorem. The analogy is seen to depend on the fact that both methods use definite values along a contour to imply a totality of values within the contour; thus, the use of a part to suggest the whole, by way of a hypothetical 'gestalt-like integration' in the case of the art contour, and the usual process of mathematical integration in the case of Cauchy's formula. Examples illustrating the analogy are drawn from a wide range of artistic work: a modern American drawing, a Cro-Magnon cave painting, and two Chinese works. The traditional Chinese philosophy of painting is invoked in support of the analogy because of its explicit emphasis on the primacy of outline drawing in Chinese painting. Some speculations are offered on further development and application of the analogy.

  10. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  11. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  12. A fast contour descriptor algorithm for supernova imageclassification

    SciTech Connect

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  13. The Poggendorff illusion driven by real and illusory contour: Behavioral and neural mechanisms.

    PubMed

    Shen, Lu; Zhang, Ming; Chen, Qi

    2016-05-01

    The Poggendorff illusion refers to the phenomenon that the human brain misperceives a diagonal line as being apparently misaligned once the diagonal line is interrupted by two parallel edges, and the size of illusion is negatively correlated with the angle of interception of the oblique, i.e. the sharper the oblique angle, the larger the illusion. This optical illusion can be produced by both real and illusory contour. In this fMRI study, by parametrically varying the oblique angle, we investigated the shared and specific neural mechanisms underlying the Poggendorff illusion induced by real and illusory contour. At the behavioral level, not only the real but also the illusory contours were capable of inducing significant Poggendorff illusion. The size of illusion induced by the real contour, however, was larger than that induced by the illusory contour. At the neural level, real and illusory contours commonly activated more dorsal visual areas, and the real contours specifically activated more ventral visual areas. More importantly, examinations on the parametric modulation effects of the size of illusion revealed the specific neural mechanisms underlying the Poggendorff illusion induced by the real and the illusory contours, respectively. Left precentral gyrus and right middle occipital cortex were specifically involved in the Poggendorff illusion induced by the real contour. On the other hand, bilateral intraparietal sulcus (IPS) and right lateral occipital complex (LOC) were specifically involved in the Poggendorff illusion induced by the illusory contour. Functional implications of the above findings were further discussed.

  14. Automatic lumen contour detection in intravascular OCT images using Otsu binarization and intensity curve.

    PubMed

    Kim, Hye Min; Lee, Seung Hwan; Lee, Chungkeun; Ha, Jong-Won; Yoon, Young-Ro

    2014-01-01

    This paper proposes an automatic method for the detection of lumen contours in intravascular OCT images with guide wire shadow artifacts. This algorithm is divided into five main procedures: pre-processing, an Otsu binarization approach, an intensity curve approach, a lumen contour position correction, and image reconstruction and contour extraction. The 30 IVOCT images from six anonymous patients were used to verify this method and we obtained 99.2% sensitivity and 99.7% specificity with this algorithm.

  15. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  16. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  17. Early processing in human LOC is highly responsive to illusory contours but not to salient regions

    PubMed Central

    Shpaner, Marina; Murray, Micah M.; Foxe, John J.

    2011-01-01

    Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, while later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli likely reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex. PMID:19895562

  18. Grouping by proximity in haptic contour detection.

    PubMed

    Overvliet, Krista E; Krampe, Ralf Th; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  19. Grouping by Proximity in Haptic Contour Detection

    PubMed Central

    Overvliet, Krista E.; Krampe, Ralf Th.; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection. PMID:23762364

  20. An automated workflow for patient-specific quality control of contour propagation.

    PubMed

    Beasley, William J; McWilliam, Alan; Slevin, Nicholas J; Mackay, Ranald I; van Herk, Marcel

    2016-12-21

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated-mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  1. An automated workflow for patient-specific quality control of contour propagation

    NASA Astrophysics Data System (ADS)

    Beasley, William J.; McWilliam, Alan; Slevin, Nicholas J.; Mackay, Ranald I.; van Herk, Marcel

    2016-12-01

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated—mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  2. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  3. Shape from equal thickness contours

    SciTech Connect

    Cong, G.; Parvin, B.

    1998-05-10

    A unique imaging modality based on Equal Thickness Contours (ETC) has introduced a new opportunity for 3D shape reconstruction from multiple views. We present a computational framework for representing each view of an object in terms of its object thickness, and then integrating these representations into a 3D surface by algebraic reconstruction. The object thickness is inferred by grouping curve segments that correspond to points of second derivative maxima. At each step of the process, we use some form of regularization to ensure closeness to the original features, as well as neighborhood continuity. We apply our approach to images of a sub-micron crystal structure obtained through a holographic process.

  4. Aerial targets detection using improved ULPCNN combined with contour tracking

    NASA Astrophysics Data System (ADS)

    Peng, Zhenming; Jiang, Biao; Wang, Hongbing

    2008-03-01

    This paper presents a novel method for automatically segmenting and detecting targets in complex environment using the improved unit linking pulse coupled neural networks (ULPCNN) combining with contour tracking. On the one hand, the typical ULPCNN model is improved including linear modulate, linear attenuation of dynamic threshold and the attenuation parameter matrix Δ , which is more suitable for segmenting and detecting the target under complex environment. On the other hand, we determine the iteration times and obtain the optimal segmentation result using contour tracking based on maximum line contour point. In order to verify the efficiency, various simulations were conducted for different images acquired from real scenes. Experimental results show, as compared to the conventional approaches, the proposed method can overcome the drawbacks of PCNN and obtain the good results for segmenting and detecting targets against complex background.

  5. The TICTOP nozzle: a new nozzle contouring concept

    NASA Astrophysics Data System (ADS)

    Frey, Manuel; Makowka, Konrad; Aichner, Thomas

    2016-10-01

    Currently, mainly two types of nozzle contouring methods are applied in space propulsion: the truncated ideal contour (TIC) and the thrust-optimized parabola (TOP). This article presents a new nozzle contouring method called TICTOP, combining elements of TIC and TOP design. The resulting nozzle is shock-free as the TIC and therefore does not induce restricted shock separation leading to excessive side-loads. Simultaneously, the TICTOP nozzle will allow higher nozzle wall exit pressures and hence give a better separation margin than is the case for a TIC. Hence, this new nozzle type combines the good properties of TIC and TOP nozzles and eliminates their drawbacks. It is especially suited for first stage application in launchers where flow separation and side-loads are design drivers.

  6. Both predictability and familiarity facilitate contour integration.

    PubMed

    Sassi, Michaël; Demeyer, Maarten; Machilsen, Bart; Putzeys, Tom; Wagemans, Johan

    2014-05-30

    Research has shown that contour detection is impaired in the visual periphery for snake-shaped Gabor contours but not for circular and elliptical contours. This discrepancy in findings could be due to differences in intrinsic shape properties, including shape closure and curvature variation, as well as to differences in stimulus predictability and familiarity. In a detection task using only circular contours, the target shape is both more familiar and more predictable to the observer compared with a detection task in which a different snake-shaped contour is presented on each trial. In this study, we investigated the effects of stimulus familiarity and predictability on contour integration by manipulating and disentangling the familiarity and predictability of snakelike stimuli. We manipulated stimulus familiarity by extensively training observers with one particular snake shape. Predictability was varied by alternating trial blocks with only a single target shape and trial blocks with multiple target shapes. Our results show that both predictability and familiarity facilitated contour integration, which constitutes novel behavioral evidence for the adaptivity of the contour integration mechanism in humans. If familiarity or predictability facilitated contour integration in the periphery specifically, this could explain the discrepant findings obtained with snake contours as compared with circles or ellipses. However, we found that their facilitatory effects did not differ between central and peripheral vision and thus cannot explain that particular discrepancy in the literature.

  7. Allograft selection for distal femur through cutting contour registration.

    PubMed

    Qiu, Lei; Zhang, Yu; Zhang, Qing; Xu, Lihui; Niu, Xiaohui; Zhang, Li

    2016-12-01

    Allograft reconstruction is an acceptable procedure for the recovery of normal anatomy after the bone tumor resection. During the past few years, several automated methods have been proposed to select the best anatomically matching allograft from the virtual donor bone bank. The surface-based automated method uses the contralateral healthy bone to obtain the normal surface shape of the diseased bone, which could achieve good matching of the defect and the selected allograft. However, the surface-based method focuses on the matching of the whole bone so that the matching of the contact surface between the allograft and the recipient bone may not be optimal. To deal with the above problem, we propose a cutting contour based method for the allograft selection. Cutting contour from the recipient bone could reflect the structural information of the defect and is seldom influenced by tumor. Thus the cutting contour can be used as the matching template to find the optimal alignment of the recipient bone and the allograft. The proposed method is validated using the data of distal femurs where bone transplantation is commonly performed. Experimental results show that the proposed method generally outperforms the surface-based method within modest extra time. Overall, our contour-based method is an effective complementary technique for allograft selection in the virtual bone bank.

  8. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF snake model.

    PubMed

    Guan, Tao; Zhou, Dongxiang; Liu, Yunhui

    2015-07-01

    Overlapping cells segmentation is one of the challenging topics in medical image processing. In this paper, we propose to approximately represent the cell contour as a set of sparse contour points, which can be further partitioned into two parts: the strong contour points and the weak contour points. We consider the cell contour extraction as a contour points locating problem and propose an effective and robust framework for segmentation of partially overlapping cells in cervical smear images. First, the cell nucleus and the background are extracted by a morphological filtering-based K-means clustering algorithm. Second, a gradient decomposition-based edge enhancement method is developed for enhancing the true edges belonging to the center cell. Then, a dynamic sparse contour searching algorithm is proposed to gradually locate the weak contour points in the cell overlapping regions based on the strong contour points. This algorithm involves the least squares estimation and a dynamic searching principle, and is thus effective to cope with the cell overlapping problem. Using the located contour points, the Gradient Vector Flow Snake model is finally employed to extract the accurate cell contour. Experiments have been performed on two cervical smear image datasets containing both single cells and partially overlapping cells. The high accuracy of the cell contour extraction result validates the effectiveness of the proposed method.

  9. Shift- and scale-invariant recognition of contour objects with logarithmic radial harmonic filters.

    PubMed

    Moya, A; Esteve-Taboada, J J; García, J; Ferreira, C

    2000-10-10

    The phase-only logarithmic radial harmonic (LRH) filter has been shown to be suitable for scale-invariant block object recognition. However, an important set of objects is the collection of contour functions that results from a digital edge extraction of the original block objects. These contour functions have a constant width that is independent of the scale of the original object. Therefore, since the energy of the contour objects decreases more slowly with the scale factor than does the energy of the block objects, the phase-only LRH filter has difficulties in the recognition tasks when these contour objects are used. We propose a modified LRH filter that permits the realization of a shift- and scale-invariant optical recognition of contour objects. The modified LRH filter is a complex filter that compensates the energy variation resulting from the scaling of contour objects. Optical results validate the theory and show the utility of the newly proposed method.

  10. Brightness alteration with interweaving contours.

    PubMed

    Roncato, Sergio

    2012-01-01

    Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation) or when lines of different colours are collinear (neon effect) or adjacent (watercolour) to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread). The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975) and Kanizsa (1979) in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  11. Antenna surface contour control system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L. (Inventor); Miller, James B. (Inventor)

    1989-01-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  12. Image analysis techniques for automated IVUS contour detection.

    PubMed

    Papadogiorgaki, Maria; Mezaris, Vasileios; Chatzizisis, Yiannis S; Giannoglou, George D; Kompatsiaris, Ioannis

    2008-09-01

    Intravascular ultrasound (IVUS) constitutes a valuable technique for the diagnosis of coronary atherosclerosis. The detection of lumen and media-adventitia borders in IVUS images represents a necessary step towards the reliable quantitative assessment of atherosclerosis. In this work, a fully automated technique for the detection of lumen and media-adventitia borders in IVUS images is presented. This comprises two different steps for contour initialization: one for each corresponding contour of interest and a procedure for the refinement of the detected contours. Intensity information, as well as the result of texture analysis, generated by means of a multilevel discrete wavelet frames decomposition, are used in two different techniques for contour initialization. For subsequently producing smooth contours, three techniques based on low-pass filtering and radial basis functions are introduced. The different combinations of the proposed methods are experimentally evaluated in large datasets of IVUS images derived from human coronary arteries. It is demonstrated that our proposed segmentation approaches can quickly and reliably perform automated segmentation of IVUS images.

  13. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  14. Contour Extraction in Prostate Ultrasound Images Using the Wavelet Transform and Snakes

    DTIC Science & Technology

    2007-11-02

    signal noise levels. In this paper we present a semi-automatic prostate contour extraction scheme, which is based on the wavelet transform and active...contour models, or snakes. The ultrasound image is first decomposed into edge naps at different resolutions via the wavelet transform . Seed points are

  15. Effects of Lexical Tone Contour on Mandarin Sentence Intelligibility

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Hu, Yi

    2014-01-01

    Purpose: This study examined the effects of lexical tone contour on the intelligibility of Mandarin sentences in quiet and in noise. Method: A text-to-speech synthesis engine was used to synthesize Mandarin sentences with each word carrying the original lexical tone, flat tone, or a tone randomly selected from the 4 Mandarin lexical tones. The…

  16. SEM image contouring for OPC model calibration and verification

    NASA Astrophysics Data System (ADS)

    Tabery, Cyrus; Morokuma, Hidetoshi; Matsuoka, Ryoichi; Page, Lorena; Bailey, George E.; Kusnadi, Ir; Do, Thuy

    2007-03-01

    Lithography models for leading-edge OPC and design verification must be calibrated with empirical data, and this data is traditionally collected as a one-dimensional quantification of the features acquired by a CD-SEM. Two-dimensional proximity features such as line-end, bar-to-bar, or bar-to-line are only partially characterized because of the difficulty in transferring the complete information of a SEM image into the OPC model building process. A new method of two-dimensional measurement uses the contouring of large numbers of SEM images acquired within the context of a design based metrology system to drive improvement in the quality of the final calibrated model. Hitachi High-Technologies has continued to develop "full automated EPE measurement and contouring function" based on design layout and detected edges of SEM image. This function can measure edge placement error everywhere in a SEM image and pass the result as a design layout (GDSII) into Mentor Graphics model calibration flow. Classification of the critical design elements using tagging scripts is used to weight the critical contours in the evaluation of model fitness. During process of placement of the detected SEM edges of into the coordinate system of the design, coordinate errors inevitably are introduced because of pattern matching errors. Also, line edge roughness in 2D features introduces noise that is large compared to the model building accuracy requirements of advanced technology nodes. This required the development of contour averaging algorithms. Contours from multiple SEM images are acquired of a feature and averaged before passing into the model calibration. This function has been incorporated into the prototype Calibre Workbench model calibration flow. Based on these methods, experimental data is presented detailing the model accuracy of a 45nm immersion lithography process using traditional 1D calibration only, and a hybrid model calibration using SEM image contours and 1D measurement

  17. Interval and Contour Processing in Autism

    ERIC Educational Resources Information Center

    Heaton, Pamela

    2005-01-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group…

  18. Top-down control in contour grouping.

    PubMed

    Volberg, Gregor; Wutz, Andreas; Greenlee, Mark W

    2013-01-01

    Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of 'good continuation'. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15-21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11-12 Hz) and in fronto-posterior theta (4-5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.

  19. Maps Using Hachure and Contour Methods

    ERIC Educational Resources Information Center

    Social Education, 1977

    1977-01-01

    Two maps of Salem Neck, Massachusetts, are primary source materials from the National Archives which K-12 teachers can duplicate and use to teach map skills. Students learn how to read maps and how to use them as historical documents. (Author/RM)

  20. Automatic 4D Reconstruction of Patient-Specific Cardiac Mesh with 1-to-1 Vertex Correspondence from Segmented Contours Lines

    PubMed Central

    Lim, Chi Wan; Su, Yi; Yeo, Si Yong; Ng, Gillian Maria; Nguyen, Vinh Tan; Zhong, Liang; Tan, Ru San; Poh, Kian Keong; Chai, Ping

    2014-01-01

    We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities. PMID:24743555

  1. A Psychosocial Analysis of the Effect of Body-Contouring Surgery on Patients After Weight Loss

    PubMed Central

    Alzahrani, Khalid J.; Kattan, Abdullah E.; Alsaleh, Saud A.; Murad, Khalid A.; Alghamdi, Bader A.

    2017-01-01

    Objectives (Background): Patients are often bothered by excess skin laxity and redundancy after weight loss. Body-contouring surgery offers a solution. This study assessed the psychosocial impact of body-contouring surgery on patients after weight loss. Methods (Settings, Design): In this cross-sectional study, a specifically designed questionnaire developed in collaboration with psychiatric department for our research was used for 43 patients who underwent body-contouring surgery. Data were collected during single visit to the plastic surgery clinic. All the patients had lost 20 kg or less before the surgery and were interviewed at least 6 months after the surgery. The questionnaire was used to compare the psychosocial status of the patients before and after surgery. Data were analyzed appropriately using Statistical Package for the Social Sciences. Results: The participants’ mean age was 34 ± 10 years; the sample included 24 (55.8%) women and 19 (44.2%) men (total N = 43). The patients’ quality of life improved significantly in the areas of social life (P < .001), job performance (P < .002), and sexual activity (P < .001). Moreover, while 17 (39.5%) patients suffered symptoms of depression before surgery, only 1 (2.3%) patient suffered symptoms of depression after surgery. The overall satisfaction was found to be 62.8%, with mammoplasty being the procedure with the highest satisfaction (66.6%). Conclusion: Body-contouring surgery after weight loss has shown to improve both psychological and social aspects of the patients’ lives. Recall bias is the main limitation in our study.

  2. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    SciTech Connect

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  3. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  4. Contour Enhancement Benefits Older Adults with Simulated Central Field Loss

    PubMed Central

    Kwon, MiYoung; Ramachandra, Chaithanya; Satgunam, PremNandhini; Mel, Bartlett W.; Peli, Eli; Tjan, Bosco S.

    2012-01-01

    Purpose Age-related macular degeneration (AMD) is the leading cause of vision loss among Americans over the age of 65. Currently, no effective treatment can reverse the central vision loss associated with most AMD. Digital image-processing techniques have been developed to improve image visibility for peripheral vision; however, both the selection and efficacy of such methods are limited. Progress has been difficult for two reasons: the exact nature of image enhancement that might benefit peripheral vision is not well understood, and efficient methods for testing such techniques have been elusive. The current study aims to develop both an effective image-enhancement technique for peripheral vision and an efficient means for validating the technique. Methods We used a novel contour detection algorithm to locate shape-defining edges in images based on natural-image statistics. We then enhanced the scene by locally boosting the luminance contrast along such contours. Using a gaze-contingent display, we simulated central visual field loss in normally-sighted young (ages 18–30) and older adults (ages 58–88). Visual search performance was measured as a function of contour enhancement strength ("Original" (unenhanced), "Medium", and "High"). For preference task, a separate group of subjects judged which image in a pair "would lead to better search performance". Results We found that while contour enhancement had no significant effect on search time and accuracy in young adults, Medium enhancement resulted in significantly shorter search time in older adults (~13% reduction relative to Original). Both age groups preferred images with Medium enhancement over Original (2 to 7 times). Furthermore, across age groups, image content types and enhancement strengths, there was a robust correlation between preference and performance. Conclusions Our findings demonstrate a beneficial role of contour enhancement in peripheral vision for older adults. Our findings further suggest

  5. Pulse-coupled neural networks for contour and motion matchings.

    PubMed

    Yu, Bo; Zhang, Liming

    2004-09-01

    Two neural networks based on temporal coding are proposed in this paper to perform contour and motion matchings. Both of the proposed networks are three-dimensional (3-D) pulse-coupled neural networks (PCNNs). They are composed of simplified Eckhorn neurons and mimic the structure of the primary visual cortex. The PCNN for contour matching can segment from the background the object with a particular contour, which has been stored as prior knowledge and controls the network activity in the form of spike series; The PCNN for motion matching not only detects the motion in the visual field, but also extracts the object moving in an arbitrarily specified direction. The basic idea of these two models is to encode information into the timing of spikes and later to decode this information through coincidence detectors and synapse delays to realize the knowledge-controlled object matchings. The simulation results demonstrate that the temporal coding and the decoding mechanisms are powerful enough to perform the contour and motion matchings.

  6. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  7. Skeleton pruning by contour partitioning with discrete curve evolution.

    PubMed

    Bai, Xiang; Latecki, Longin Jan; Liu, Wen-Yu

    2007-03-01

    In this paper, we introduce a new skeleton pruning method based on contour partitioning. Any contour partition can be used, but the partitions obtained by Discrete Curve Evolution (DCE) yield excellent results. The theoretical properties and the experiments presented demonstrate that obtained skeletons are in accord with human visual perception and stable, even in the presence of significant noise and shape variations, and have the same topology as the original skeletons. In particular, we have proven that the proposed approach never produces spurious branches, which are common when using the known skeleton pruning methods. Moreover, the proposed pruning method does not displace the skeleton points. Consequently, all skeleton points are centers of maximal disks. Again, many existing methods displace skeleton points in order to produces pruned skeletons.

  8. A calorimetric method to determine water activity

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Wadsö, Lars

    2011-11-01

    A calorimetric method to determine water activity covering the full range of the water activity scale is presented. A dry stream of nitrogen gas is passed either over the solution whose activity should be determined or left dry before it is saturated by bubbling through water in an isothermal calorimeter. The unknown activity is in principle determined by comparing the thermal power of vaporization related to the gas stream with unknown activity to that with zero activity. Except for three minor corrections (for pressure drop, non-perfect humidification, and evaporative cooling) the unknown water activity is calculated solely based on the water activity end-points zero and unity. Thus, there is no need for calibration with references with known water activities. The method has been evaluated at 30 °C by measuring the water activity of seven aqueous sodium chloride solutions ranging from 0.1 mol kg-1 to 3 mol kg-1 and seven saturated aqueous salt solutions (LiCl, MgCl2, NaBr, NaCl, KCl, KNO3, and K2SO4) with known water activities. The performance of the method was adequate over the complete water activity scale. At high water activities the performance was excellent, which is encouraging as many other methods used for water activity determination have limited performance at high water activities.

  9. Assessing crop yield benefits from in situ rainwater harvesting through contour ridges in semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mhizha, A.; Ndiritu, J. G.

    Rainwater harvesting through modified contour ridges known as dead level contours has been practiced in Zimbabwe in the last two decades. Studies have shown marginal soil moisture retention benefits for using this technique while results on crop yield benefits are lacking. This paper presents results from a field study for assessing the impact of dead level contours on soil moisture and crop yield carried out from 2009 to 2011 within the Limpopo River Basin. The experiments were carried out on two study sites; one containing silt loam soil and another containing sandy soil. Three treatments constituting dead level contoured plots, non-contoured plots and plots with the traditional graded contours were used on each site. All the three treatments were planted with a maize crop and managed using conventional farming methods. Planting, weeding and fertiliser application in the three treatments were done at the same time. Crop monitoring was carried out on sub plots measuring 4 m by 4 m established in every treatment. The development of the crop was monitored until harvesting time with data on plant height, leaf moisture and crop yield being collected. An analysis of the data shows that in the site with silt loam soil more soil moisture accumulated after heavy rainfall in dead level contour plots compared to the control (no contours) and graded contour plots (P < 0.05). However the maize crop experienced an insignificantly (P > 0.05) higher yield in the dead level contoured treatment compared to the non-contoured treatment while a significantly (P < 0.05) higher yield was obtained in the dead level contoured treatment when compared with a graded contoured treatment. Different results were obtained from the site with sandy soil where there was no significant difference in soil moisture after a high rainfall event of 60 mm/day between dead level contour plots compared to the control and graded contour plots. The yield from the dead level contoured treatment and that from

  10. Analysis of Breast Contour using Rotated Catenary.

    PubMed

    Lee, Juhun; Beahm, Elisabeth K; Crosby, Melissa A; Reece, Gregory P; Markey, Mia K

    2010-11-13

    Surgical reconstruction of natural-appearing breasts is a challenging task. Currently, surgical planning is limited to the surgeon's subjective assessment of breast morphology. Therefore, it is useful to develop objective measurements of breast contour. In this paper, a novel quantitative measure of the breast contour based on catenary theory is introduced. A catenary curve is fitted on the breast contour (lateral and inferior) and the key parameter determining the shape of the curve is extracted. The new catenary analysis was applied to pre- and post-operative clinical photographs of women who underwent tissue expander/implant (TE/Implant) reconstruction. A logistic regression model was developed to predict the probability that the observed contour is that of a TE/Implant reconstruction from the catenary parameter, patient age, and patient body mass index. It was demonstrated that the parameters contain useful information for distinguishing TE/Implant reconstructed breasts from pre-operative breasts.

  11. Holding fixture for variable-contour parts

    NASA Technical Reports Server (NTRS)

    Haynie, C. C.; Packer, P. N.; Zebus, P. P.

    1979-01-01

    Array of vacuum cups on spindles holds parts for safe machining and other processings. Variable-contour part resting on fixture is held firmly enough for machining, coating, or other mechanical treatment.

  12. Interval and contour processing in autism.

    PubMed

    Heaton, Pamela

    2005-12-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group differences emerged. These findings confirm earlier studies showing facilitated pitch processing and a preserved ability to represent small-scale musical structures in autism.

  13. Parallel algorithms for contour extraction and coding

    NASA Astrophysics Data System (ADS)

    Dinstein, Its'hak; Landau, Gad M.

    1990-07-01

    A parallel approach to contour extraction and coding on an Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine (PRAM) is presented and analyzed. The algorithm is intended for binary images. The labeled contours can be represented by lists of coordinates, and/or chain codes, and/or any other user designed codes. Using O(n2/log n) processors, the algorithm runs in O(logn) time, where n by n is the size of the processed binary image.

  14. Right-hemisphere specialization for contour grouping.

    PubMed

    Volberg, Gregor

    2014-01-01

    Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.

  15. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    SciTech Connect

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-07-15

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.

  16. Directed random polymers via nested contour integrals

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Bufetov, Alexey; Corwin, Ivan

    2016-05-01

    We study the partition function of two versions of the continuum directed polymer in 1 + 1 dimension. In the full-space version, the polymer starts at the origin and is free to move transversally in R, and in the half-space version, the polymer starts at the origin but is reflected at the origin and stays in R-. The partition functions solve the stochastic heat equation in full-space or half-space with mixed boundary condition at the origin; or equivalently the free energy satisfies the Kardar-Parisi-Zhang equation. We derive exact formulas for the Laplace transforms of the partition functions. In the full-space this is expressed as a Fredholm determinant while in the half-space this is expressed as a Fredholm Pfaffian. Taking long-time asymptotics we show that the limiting free energy fluctuations scale with exponent 1 / 3 and are given by the GUE and GSE Tracy-Widom distributions. These formulas come from summing divergent moment generating functions, hence are not mathematically justified. The primary purpose of this work is to present a mathematical perspective on the polymer replica method which is used to derive these results. In contrast to other replica method work, we do not appeal directly to the Bethe ansatz for the Lieb-Liniger model but rather utilize nested contour integral formulas for moments as well as their residue expansions.

  17. A deformable lung tumor tracking method in fluoroscopic video using active shape models: a feasibility study.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B

    2007-09-07

    A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a deforming tumor projection in the beam's eye view. This paper presents a method that can track a deforming lung tumor in fluoroscopic video using active shape models (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with deformation, which is important for DMLC-based real-time tumor tracking.

  18. Surface contouring by optical edge projection based on a continuous wavelet transform.

    PubMed

    Quan, Chenggen; Miao, Hong; Fu, Yu

    2006-07-10

    A novel optical edge projection method for surface contouring of an object with low reflectivity is presented. A structured light edge is projected onto a dark surface, and the image is captured by a CCD camera. The surface profile of the object is then evaluated by an active triangular projection technique, and a whole-field three-dimensional contour of the object is obtained by scanning the optical edge over the entire object surface. An edge detection method based on a continuous wavelet transform (CWT) is employed to determine the location of the optical edge. The method of optical edge detection is described, and characteristic details of gray-level distribution along the edge are analyzed. It is shown that the proposed wavelet edge detection method is not dependent on any threshold values; hence the true edge position can be determined without subjective selection. A black low-reflectivity object surface made from woven carbon fiber is measured, and the experimental results show that the profile of a woven carbon fiber can be obtained by the proposed method.

  19. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  20. Refined contour analysis of giant unilamellar vesicles

    NASA Astrophysics Data System (ADS)

    Pécréaux, J.; Döbereiner, H.-G.; Prost, J.; Joanny, J.-F.; Bassereau, P.

    2004-03-01

    The fluctuation spectrum of giant unilamellar vesicles is measured using a high-resolution contour detection technique. An analysis at higher q vectors than previously achievable is now possible due to technical improvements of the experimental setup and of the detection algorithm. The global fluctuation spectrum is directly fitted to deduce the membrane tension and the bending modulus of lipid membranes. Moreover, we show that the planar analysis of fluctuations is valid for spherical objects, even at low wave vectors. Corrections due to the integration time of the video camera and to the section of a 3D object by the observation plane are introduced. A precise calculation of the error bars has been done in order to provide reliable error estimate. Eventually, using this technique, we have measured bending moduli for EPC, SOPC and \\chem{SOPC:CHOL} membranes confirming previously published values. An interesting application of this technique can be the measurement of the fluctuation spectra for non-equilibrium membranes, such as “active membranes”.

  1. Sensitivity adjustable contouring by digital holography and a virtual reference wavefront

    NASA Astrophysics Data System (ADS)

    Cai, L. Z.; Liu, Q.; Yang, X. L.; Wang, Y. R.

    2003-06-01

    A new method of contouring using digital holography and a virtual reference wavefront is reported. In this method, an object wave is first recorded and then digitally reconstructed. At the same time, a reference wave is digitally introduced to interfere with the reconstructed object wave to form a contour pattern. Since the form or curvature of the reference wave can be arbitrarily designed and artificially generated by a computer, the contouring sensitivity (the depth interval) can be easily adjusted for different purpose. The effectiveness of this method has been verified by computer simulations with both the conventional off-axis hologram and the phase-shifting hologram. The simplicity of optical setup and the unique ability of changing contouring sensitivity in this technique make it attractive potential in practical measurements.

  2. Contour detection of atherosclerotic plaques in IVUS images using ellipse template matching and particle swarm optimization.

    PubMed

    Zhang, Qi; Wang, Yuanyuan; Ma, Jianying; Shi, Jun

    2011-01-01

    It is valuable for diagnosis of atherosclerosis to detect lumen and media-adventitia contours in intravascular ultrasound (IVUS) images of atherosclerotic plaques. In this paper, a method for contour detection of plaques is proposed utilizing the prior knowledge of elliptic geometry of plaques. Contours are initialized as ellipses by using ellipse template matching, where a matching function is maximized by particle swarm optimization. Then the contours are refined by boundary vector field snakes. The method was evaluated via 88 in vivo images from 21 patients. It outperformed a state-of-the-art method by 3.8 pixels and 4.8% in terms of the mean distance error and relative mean distance error, respectively.

  3. Statistical Modeling Approach to Quantitative Analysis of Interobserver Variability in Breast Contouring

    SciTech Connect

    Yang, Jinzhong; Woodward, Wendy A.; Reed, Valerie K.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Buchholz, Thomas A.; Zhang, Lifei; Balter, Peter; Court, Laurence E.; Li, X. Allen; Dong, Lei

    2014-05-01

    Purpose: To develop a new approach for interobserver variability analysis. Methods and Materials: Eight radiation oncologists specializing in breast cancer radiation therapy delineated a patient's left breast “from scratch” and from a template that was generated using deformable image registration. Three of the radiation oncologists had previously received training in Radiation Therapy Oncology Group consensus contouring for breast cancer atlas. The simultaneous truth and performance level estimation algorithm was applied to the 8 contours delineated “from scratch” to produce a group consensus contour. Individual Jaccard scores were fitted to a beta distribution model. We also applied this analysis to 2 or more patients, which were contoured by 9 breast radiation oncologists from 8 institutions. Results: The beta distribution model had a mean of 86.2%, standard deviation (SD) of ±5.9%, a skewness of −0.7, and excess kurtosis of 0.55, exemplifying broad interobserver variability. The 3 RTOG-trained physicians had higher agreement scores than average, indicating that their contours were close to the group consensus contour. One physician had high sensitivity but lower specificity than the others, which implies that this physician tended to contour a structure larger than those of the others. Two other physicians had low sensitivity but specificity similar to the others, which implies that they tended to contour a structure smaller than the others. With this information, they could adjust their contouring practice to be more consistent with others if desired. When contouring from the template, the beta distribution model had a mean of 92.3%, SD ± 3.4%, skewness of −0.79, and excess kurtosis of 0.83, which indicated a much better consistency among individual contours. Similar results were obtained for the analysis of 2 additional patients. Conclusions: The proposed statistical approach was able to measure interobserver variability quantitatively and to

  4. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    SciTech Connect

    Yang, J; Zhang, L; Balter, P; Court, L; Zhang, Y; Dong, L

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points. It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and

  5. Contours of slope as a measure of gravity-capillary wind waves

    NASA Astrophysics Data System (ADS)

    Cox, C. S.; Zhang, X.

    2012-12-01

    lamps of the light source. In our experience contour spacing of 0.8 times the rms. slope in each component provides optimal reconstruction. The contour method has the advantage for measurements at sea that optical sources and receivers can be well separated from the sea surface itself and therefore can avoid the disturbances of delicate wave motions and air flow at the sea surface that have affected earlier measurements. Examples to be shown come from laboratory observations in a wind-wave channel.

  6. Portable FORTRAN contour-plotting subprogram

    SciTech Connect

    Haskell, K.H.

    1983-07-01

    In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

  7. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    SciTech Connect

    Chen, H; Tan, J; Kavanaugh, J; Dolly, S; Gay, H; Thorstad, W; Anastasio, M; Altman, M; Mutic, S; Li, H

    2014-06-15

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  8. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  9. Heteroclinic contours in oscillatory ensembles.

    PubMed

    Komarov, M A; Osipov, G V; Zhou, C S

    2013-02-01

    In this work, we study the onset of sequential activity in ensembles of neuronlike oscillators with inhibitorylike coupling between them. The winnerless competition (WLC) principle is a dynamical concept underlying sequential activity generation. According to the WLC principle, stable heteroclinic sequences in the phase space of a network model represent sequential metastable dynamics. We show that stable heteroclinic sequences and stable heteroclinic channels, connecting saddle limit cycles, can appear in oscillatory models of neural activity. We find the key bifurcations which lead to the occurrence of sequential activity as well as heteroclinic sequences and channels.

  10. Contouring variations and the role of atlas in non-small-cell lung cancer radiotherapy: analysis of a multi-institutional pre-clinical trial planning study

    PubMed Central

    Cui, Yunfeng; Chen, Wenzhou; Kong, Feng-Ming (Spring); Olsen, Lindsey A.; Beatty, Ronald E.; Maxim, Peter G.; Ritter, Timothy; Sohn, Jason W.; Higgins, Jane; Galvin, James M.; Xiao, Ying

    2014-01-01

    Purpose To quantify variations in target and normal structure contouring and evaluate dosimetric impact of these variations in non-small-cell lung cancer (NSCLC) cases. To study whether providing an atlas can reduce potential variation. Methods and Materials Three NSCLC cases were distributed sequentially to multiple institutions for contouring and radiotherapy planning. No segmentation atlas was provided for the first two cases (Case1 and Case2). Contours were collected from submitted plans and consensus contour sets were generated. The volume variation among institution contours and the deviation of them from consensus contours were analyzed. The dose-volume histograms (DVH) for individual institution plans were re-calculated using consensus contours to quantify the dosimetric changes. An atlas containing targets and critical structures was constructed and was made available when the third case (Case3) was distributed for planning. The contouring variability in the submitted plans of Case3 was compared with that in first two cases. Results Planning Target Volume (PTV) showed large variation among institutions. The PTV coverage in institutions’ plans decreased dramatically when re-evaluated using the consensus PTV contour. The PTV contouring consistency did not show improvement with atlas use in Case3. For normal structures, lung contours presented very good agreement, while the brachial plexus showed the largest variation. The consistency of esophagus and heart contouring improved significantly (t-test, p<0.05) in Case3. Major factors contributing to the contouring variation were identified through a survey questionnaire. Conclusions The amount of contouring variations in NSCLC cases was presented. Its impact on dosimetric parameters can be significant. The segmentation atlas improved the contour agreement for esophagus and heart, but not for the PTV in this study. Quality assurance of contouring is essential for a successful multi-institutional clinical trial

  11. Contour tracking and probabilistic segmentation of tissue phase mapping MRI

    NASA Astrophysics Data System (ADS)

    Chitiboi, Teodora; Hennemuth, Anja; Schnell, Susanne; Chowdhary, Varun; Honarmand, Amir; Markl, Michael; Linsen, Lars; Hahn, Horst

    2016-03-01

    Many cardiovascular diseases manifest as an abnormal motion pattern of the heart muscle (myocardium). Local cardiac motion can be non-invasively quantified with magnetic resonance imaging (MRI), using methods such as tissue phase mapping (TPM), which directly measures the local myocardial velocities over time with high temporal and spatial resolution. The challenges for routine clinical use of TPM for the diagnosis and monitoring of cardiac function lie in providing a fast and accurate myocardium segmentation and a robust quantitative analysis of the velocity field. Both of these tasks are difficult to automate on routine clinical data because of the reduced contrast in the presence of noise. In this work, we propose to address these challenges with a segmentation approach that combines smooth, iterative contour displacement and probabilistic segmentation using particle tracing, based on the underlying velocity field. The proposed solution enabled the efficient and reproducible segmentation of TPM datasets from 27 patients and 14 volunteers, showing good potential for routine use in clinical studies. Our method allows for a more reliable quantitative analysis of local myocardial velocities, by giving a higher weight to velocity vectors corresponding to pixels more likely to belong to the myocardium. The accuracy of the contour propagation was evaluated on nine subjects, showing an average error smaller than the spatial resolution of the image data. Statistical analysis concluded that the difference between the segmented contours and the ground truths was not significantly higher than the variability between the manual ground truth segmentations.

  12. Encapsulation method for maintaining biodecontamination activity

    DOEpatents

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.

    2006-04-11

    A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

  13. Encapsulation method for maintaining biodecontamination activity

    DOEpatents

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.

    2002-01-01

    A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

  14. Curved contours and the associative response.

    PubMed

    Zusne, L

    1975-02-01

    72 random polygons and their curvilinear transformations were exposed for 3 sec. to 40 subjects who produced written associations during a 10-sec. interval. The number of associations varied, in general, directly with the amount of curved contour as well as with the degree of contour dispersion. The amount of variance accounted for by these two variables was small, however. Differences in curvature produced much greater differences in the content of the associations, greater degrees of curvature evoking more associations that were curved, man-made objects or living things and fewer associations that were straight-edged, man-made objects. A significant and inverse relationship was also established between contour dispersion and associations that were non-living, natural objects. It is concluded that physical form dimensions, especially curvature, affect less the association value (connotative meaning) of visual forms and much more their denotative meaning.

  15. Perceptual Grouping of Object Contours Survives Saccades

    PubMed Central

    Demeyer, Maarten; De Graef, Peter; Verfaillie, Karl; Wagemans, Johan

    2011-01-01

    Human observers explore scenes by shifting their gaze from object to object. Before each eye movement, a peripheral glimpse of the next object to be fixated has however already been caught. Here we investigate whether the perceptual organization extracted from such a preview could guide the perceptual analysis of the same object during the next fixation. We observed that participants were indeed significantly faster at grouping together spatially separate elements into an object contour, when the same contour elements had also been grouped together in the peripheral preview display. Importantly, this facilitation occurred despite a change in the grouping cue defining the object contour (similarity versus collinearity). We conclude that an intermediate-level description of object shape persists in the visual system across gaze shifts, providing it with a robust basis for balancing efficiency and continuity during scene exploration. PMID:21713007

  16. Variations in the Contouring of Organs at Risk: Test Case From a Patient With Oropharyngeal Cancer

    SciTech Connect

    Nelms, Benjamin E.; Tome, Wolfgang A.; Robinson, Greg; Wheeler, James

    2012-01-01

    Purpose: Anatomy contouring is critical in radiation therapy. Inaccuracy and variation in defining critical volumes will affect everything downstream: treatment planning, dose-volume histogram analysis, and contour-based visual guidance used in image-guided radiation therapy. This study quantified: (1) variation in the contouring of organs at risk (OAR) in a clinical test case and (2) corresponding effects on dosimetric metrics of highly conformal plans. Methods and Materials: A common CT data set with predefined targets from a patient with oropharyngeal cancer was provided to a population of clinics, which were asked to (1) contour OARs and (2) design an intensity-modulated radiation therapy plan. Thirty-two acceptable plans were submitted as DICOM RT data sets, each generated by a different clinical team. Using those data sets, we quantified: (1) the OAR contouring variation and (2) the impact this variation has on dosimetric metrics. New technologies were employed, including a software tool to quantify three-dimensional structure comparisons. Results: There was significant interclinician variation in OAR contouring. The degree of variation is organ-dependent. We found substantial dose differences resulting strictly from contouring variation (differences ranging from -289% to 56% for mean OAR dose; -22% to 35% for maximum dose). However, there appears to be a threshold in the OAR comparison metric beyond which the dose differences stabilize. Conclusions: The effects of interclinician variation in contouring organs-at-risk in the head and neck can be large and are organ-specific. Physicians need to be aware of the effect that variation in OAR contouring can play on the final treatment plan and not restrict their focus only to the target volumes.

  17. Expansion/De-expansion Tool to Quantify the Accuracy of Prostate Contours

    SciTech Connect

    Chung, Eugene; Stenmark, Matthew H.; Evans, Cheryl; Narayana, Vrinda; McLaughlin, Patrick W.

    2012-05-01

    Purpose: Accurate delineation of the prostate gland on computed tomography (CT) remains a persistent challenge and continues to introduce geometric uncertainty into the planning and delivery of external beam radiotherapy. We, therefore, developed an expansion/de-expansion tool to quantify the contour errors and determine the location of the deviations. Methods and Materials: A planning CT scan and magnetic resonance imaging scan were prospectively acquired for 10 patients with prostate cancer. The prostate glands were contoured by 3 independent observers using the CT data sets with instructions to contour the prostate without underestimation but to minimize overestimation. The standard prostate for each patient was defined using magnetic resonance imaging and CT on multiple planes. After registration of the CT and magnetic resonance imaging data sets, the CT-defined prostates were scored for accuracy. The contours were defined as ideal if they were within a 2.5-mm expansion of the standard without underestimation, acceptable if they were within a 5.0-mm expansion and a 2.5-mm de-expansion, and unacceptable if they extended >5.0 mm or underestimated the prostate by >2.5 mm. Results: A total of 636 CT slices were individually analyzed, with the vast majority scored as ideal or acceptable. However, none of the 30 prostate contour sets had all the contours scored as ideal or acceptable. For all 3 observers, the unacceptable contours were more likely from underestimation than overestimation of the prostate. The errors were more common at the base and apex than the mid-gland. Conclusions: The expansion/de-expansion tool allows for directed feedback on the location of contour deviations, as well as the determination of over- or underestimation of the prostate. This metric might help improve the accuracy of prostate contours.

  18. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect

    Gay, Hiram A.; Barthold, H. Joseph; O'Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  19. Affect From Mere Perception: Illusory Contour Perception Feels Good.

    PubMed

    Erle, Thorsten M; Reber, Rolf; Topolinski, Sascha

    2017-02-16

    Can affect be evoked by mere perception? Earlier work on processing fluency, which manipulated the dynamics of a running perceptual process, has shown that efficient processing can indeed trigger positive affect. The present work introduces a novel route by not manipulating the dynamics of an ongoing perceptual process, but by blocking or allowing the whole process in the first place. We used illusory contour perception as one very basic such process. In 5 experiments (total N = 422), participants briefly (≤100 ms) viewed stimuli that either allowed illusory contour perception, so-called Kanizsa shapes, or proximally identical control shapes that did not allow for this process to occur. Self-reported preference ratings (Experiments 1, 2, and 4) and facial muscle activity (Experiment 3) showed that participants consistently preferred Kanizsa over these control shapes. Moreover, even within Kanizsa shapes, those that most likely instigated illusory contour perception (i.e., those with the highest support ratio) were liked the most (Experiment 5). At the same time, Kanizsa stimuli with high support ratios were objectively and subjectively the most complex, rendering a processing fluency explanation of this preference unlikely. These findings inform theorizing in perception about affective properties of early perceptual processes that are independent from perceptual fluency and research on affect about the importance of basic perception as a source of affectivity. (PsycINFO Database Record

  20. Features of stress state of support under varying displacement of free contour of underground excavation

    NASA Astrophysics Data System (ADS)

    Seryakov, VM

    2017-02-01

    The scope of the discussion covers the issues of stress state assessment in support and rock mass surrounding an underground mined-out void, considering partial relaxation of rocks from initial stresses prior to contact interaction between the underground excavation contour and the support elements. The dedicated methods and algorithms are used to determine stress field distribution in elements of support in an arched underground excavation under varying pre-contact displacements of the excavation contour.

  1. The velocity snake: Deformable contour for tracking in spatio-velocity space

    SciTech Connect

    Peterfreund, N.

    1997-06-01

    The author presents a new active contour model for boundary tracking and position prediction of nonrigid objects, which results from applying a velocity control to the class of elastodynamical contour models, known as snakes. The proposed control term minimizes an energy dissipation function which measures the difference between the contour velocity and the apparent velocity of the image. Treating the image video-sequence as continuous measurements along time, it is shown that the proposed control results in an unbiased tracking. This is in contrast to the original snake model which is proven to be biased due to the image (object) velocity, thus resulting in high sensitivity to image clutter. The motion estimation further allows for position prediction of nonrigid boundaries. Based on the proposed control approach, the author proposes a new class of real time tracking contours, varying from models with batch-mode control estimation to models with real time adaptive controllers.

  2. Automatic extraction and tracking of the tongue contours.

    PubMed

    Akgul, Y S; Kambhamettu, C; Stone, M

    1999-10-01

    Computerized analysis of the tongue surface movement can provide valuable information to speech and swallowing research. Ultrasound technology is currently the most attractive modality for the tongue imaging mainly because of its high video frame rate. However, problems with ultrasound imaging, such as noise and echo artifacts, refractions, and unrelated reflections pose significant challenges for computer analysis of the tongue images and hence specific methods must be developed. This paper presents a system that is developed for automatic extraction and tracking of the tongue surface movements from ultrasound image sequences. The ultrasound images are supplied by the head and transducer support system (HATS), which was developed in order to fix the head and support the transducer under the chin in a known position without disturbing speech. In this work, we propose a novel scheme for the analysis of the tongue images using deformable contours. We incorporate novel mechanisms to 1) impose speech related constraints on the deformations; 2) perform spatiotemporal smoothing using a contour postprocessing stage; 3) utilize optical flow techniques to speed up the search process; and 4) propagate user supplied information to the analysis of all image frames. We tested the system's performance qualitatively and quantitatively in consultation with speech scientists. Our system produced contours that are within the range of manual measurement variations. The results of our system are extremely encouraging and the system can be used in practical speech and swallowing research in the field of otolaryngology.

  3. Patient Expectations of Bariatric and Body Contouring Surgery

    PubMed Central

    Klassen, Anne; Jhanwar, Sabrina; Pusic, Andrea; Roessler, Kirsten K.; Rose, Michael; Sørensen, Jens Ahm

    2016-01-01

    Background: Patient expectations are important in bariatric and body contouring surgery because the goals include improvements in health-related quality of life, appearance, and body image. The aim of this study was to identify patient expectations along the weight loss journey and/or body contouring surgery. Methods: This qualitative study took an interpretive description approach. Between September 2009 and February 2012, 49 patients were interviewed postbody contouring surgery. Data were analyzed using a line-by-line approach whereby expectations were identified and labeled as expected, unexpected, or neutral. Constant comparison was used to ensure coding was done consistently. Interviews continued until no new themes emerged. Results: Participants described expectations according to appearance, health-related quality of life, and patient experience of care. Two areas stood out in terms of unmet expectations and included appearance and physical health, ie, recovery from body contouring surgery. Most participants, who underwent bariatric surgery, expected neither the extent of excess skin after weight loss nor how the excess skin would make them look and feel. For recovery, participants did not expect that it would be as long or as hard as it was in reality. Conclusions: A full understanding of outcomes and expectations for this patient population is needed to enhance patient education and improve shared medical decision making. Education materials should be informed by the collection of evidence-based patient-reported outcome information using measures such as the BODY-Q. A patient-reported outcome scale measuring patient expectations is needed for obese and bariatric patients. PMID:27200256

  4. Integrated contour detection and pose estimation for fluoroscopic analysis of knee implants.

    PubMed

    Prins, A H; Kaptein, B L; Stoel, B C; Nelissen, R G H H; Reiber, J H C; Valstar, E R

    2011-08-01

    With fluoroscopic analysis of knee implant kinematics the implant contour must be detected in each image frame, followed by estimation of the implant pose. With a large number of possibly low-quality images, the contour detection is a time-consuming bottleneck. The present paper proposes an automated contour detection method, which is integrated in the pose estimation. In a phantom experiment the automated method was compared with a standard method, which uses manual selection of correct contour parts. Both methods demonstrated comparable precision, with a minor difference in the Y-position (0.08 mm versus 0.06 mm). The precision of each method was so small (below 0.2 mm and 0.3 degrees) that both are sufficiently accurate for clinical research purposes. The efficiency of both methods was assessed on six clinical datasets. With the automated method the observer spent 1.5 min per image, significantly less than 3.9 min with the standard method. A Bland-Altman analysis between the methods demonstrated no discernible trends in the relative femoral poses. The threefold increase in efficiency demonstrates that a pose estimation approach with integrated contour detection is more intuitive than a standard method. It eliminates most of the manual work in fluoroscopic analysis, with sufficient precision for clinical research purposes.

  5. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions.

  6. Contour coding based rotating adaptive model for human detection and tracking in thermal catadioptric omnidirectional vision.

    PubMed

    Tang, Yazhe; Li, Youfu

    2012-09-20

    In this paper, we introduce a novel surveillance system based on thermal catadioptric omnidirectional (TCO) vision. The conventional contour-based methods are difficult to be applied to the TCO sensor for detection or tracking purposes due to the distortion of TCO vision. To solve this problem, we propose a contour coding based rotating adaptive model (RAM) that can extract the contour feature from the TCO vision directly as it takes advantage of the relative angle based on the characteristics of TCO vision to change the sequence of sampling automatically. A series of experiments and quantitative analyses verify that the performance of the proposed RAM-based contour coding feature for human detection and tracking are satisfactory in TCO vision.

  7. A new approach of drawing airport noise contours on computer based on Surfer.

    PubMed

    Zhang, Bang-jun; Guo, Chun-yan; Di, Guo-qing

    2004-01-01

    Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The L(WECPN) (weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well.

  8. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  9. Camera Would Monitor Weld-Pool Contours

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.; Gutow, David A.

    1990-01-01

    Weld pool illuminated and viewed coaxially along welding torch. Proposed monitoring subsystem for arc welder provides image in which horizontal portions of surface of weld pool highlighted. Monitoring and analyzing subsystems integrated into overall control system of robotic welder. Control system sets welding parameters to adapt to changing conditions, maintaining surface contour giving desired pattern of reflections.

  10. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  11. Contour-measuring tool for composite layups

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.

    1981-01-01

    Simple handtool helps form contours and complex shapes from laminae of resin-impregnated fabric. Tool, which consists of yoke having ballpoint pen and spindle and gage, is placed so that it straddles model. As toll is moved, pen draws constant thickness focus that is used as template.

  12. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  13. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  14. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  15. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  16. Controlling cavitation in the 1990s: Contours, materials, monitors

    SciTech Connect

    Fulton, E.

    1996-10-01

    Case studies of cavitation control methods at hydroelectric power plants are presented in the article. The control methods described include contouring of turbine blades, stainless steel runners and overlays (including 309L) and super-resistant alloys (Hydroloy 914), and cavitation monitoring equipment. Hydroelectric plants highlighted in the article include Central Maine Power Company`s Hiram Unit 2, U.S. Army Corps of Engineers` Dworshak Dam, Transalta Utilities` Spray Station, and Tennessee Valley Authority`s Raccoon Mountain. The development and testing of new materials is also highlighted.

  17. Automated detection of abnormalities in paranasal sinus on dental panoramic radiographs by using contralateral subtraction technique based on mandible contour

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hara, Takeshi; Tagami, Motoki; Muramatsu, Chicako; Kaneda, Takashi; Katsumata, Akitoshi; Fujita, Hiroshi

    2013-02-01

    Inflammation in paranasal sinus sometimes becomes chronic to take long terms for the treatment. The finding is important for the early treatment, but general dentists may not recognize the findings because they focus on teeth treatments. The purpose of this study was to develop a computer-aided detection (CAD) system for the inflammation in paranasal sinus on dental panoramic radiographs (DPRs) by using the mandible contour and to demonstrate the potential usefulness of the CAD system by means of receiver operating characteristic analysis. The detection scheme consists of 3 steps: 1) Contour extraction of mandible, 2) Contralateral subtraction, and 3) Automated detection. The Canny operator and active contour model were applied to extract the edge at the first step. At the subtraction step, the right region of the extracted contour image was flipped to compare with the left region. Mutual information between two selected regions was obtained to estimate the shift parameters of image registration. The subtraction images were generated based on the shift parameter. Rectangle regions of left and right paranasal sinus on the subtraction image were determined based on the size of mandible. The abnormal side of the regions was determined by taking the difference between the averages of each region. Thirteen readers were responded to all cases without and with the automated results. The averaged AUC of all readers was increased from 0.69 to 0.73 with statistical significance (p=0.032) when the automated detection results were provided. In conclusion, the automated detection method based on contralateral subtraction technique improves readers' interpretation performance of inflammation in paranasal sinus on DPRs.

  18. Methods for using polypeptides having cellobiohydrolase activity

    DOEpatents

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  20. Evaluation of methods to assess physical activity

    NASA Astrophysics Data System (ADS)

    Leenders, Nicole Y. J. M.

    Epidemiological evidence has accumulated that demonstrates that the amount of physical activity-related energy expenditure during a week reduces the incidence of cardiovascular disease, diabetes, obesity, and all-cause mortality. To further understand the amount of daily physical activity and related energy expenditure that are necessary to maintain or improve the functional health status and quality of life, instruments that estimate total (TDEE) and physical activity-related energy expenditure (PAEE) under free-living conditions should be determined to be valid and reliable. Without evaluation of the various methods that estimate TDEE and PAEE with the doubly labeled water (DLW) method in females there will be eventual significant limitations on assessing the efficacy of physical activity interventions on health status in this population. A triaxial accelerometer (Tritrac-R3D, (TT)), an uniaxial (Computer Science and Applications Inc., (CSA)) activity monitor, a Yamax-Digiwalker-500sp°ler , (YX-stepcounter), by measuring heart rate responses (HR method) and a 7-d Physical Activity Recall questionnaire (7-d PAR) were compared with the "criterion method" of DLW during a 7-d period in female adults. The DLW-TDEE was underestimated on average 9, 11 and 15% using 7-d PAR, HR method and TT. The underestimation of DLW-PAEE by 7-d PAR was 21% compared to 47% and 67% for TT and YX-stepcounter. Approximately 56% of the variance in DLW-PAEE*kgsp{-1} is explained by the registration of body movement with accelerometry. A larger proportion of the variance in DLW-PAEE*kgsp{-1} was explained by jointly incorporating information from the vertical and horizontal movement measured with the CSA and Tritrac-R3D (rsp2 = 0.87). Although only a small amount of variance in DLW-PAEE*kgsp{-1} is explained by the number of steps taken per day, because of its low cost and ease of use, the Yamax-stepcounter is useful in studies promoting daily walking. Thus, studies involving the

  1. Comparison of hinged and contoured rods for occipitocervical arthrodesis in adults: A clinical study

    PubMed Central

    Abode-Iyamah, Kingsley O; Dlouhy, Brian J; Lopez, Alejandro J; Menezes, Arnold H; Hitchon, Patrick W; Dahdaleh, Nader S

    2016-01-01

    Introduction: A rigid construct that employs an occipital plate and upper cervical screws and rods is the current standard treatment for craniovertebral junction (CVJ) instability. A rod is contoured to accommodate the occipitocervical angle. Fatigue failure has been associated these acute bends. Hinged rod systems have been developed to obviate intraoperative rod contouring. Object: The aim of this study is to determine the safety and efficacy of the hinged rod system in occipitocervical fusion. Materials and Methods: This study retrospectively evaluated 39 patients who underwent occipitocervical arthrodesis. Twenty patients were treated with hinged rods versus 19 with contoured rods. Clinical and radiographic data were compared and analyzed. Results: Preoperative and postoperative Nurick and Frankel scores were similar between both groups. The use of allograft, autograft or bone morphogenetic protein was similar in both groups. The average number of levels fused was 4.1 (±2.4) and 3.4 (±2) for hinged and contoured rods, respectively. The operative time, estimated blood loss, and length of stay were similar between both groups. The occiput to C2 angle was similarly maintained in both groups and all patients demonstrated no movement across the CVJ on flexion-extension X-rays during their last follow-up. The average follow-up for the hinged and contoured rod groups was 12.2 months and 15.9 months, respectively. Conclusion: Hinged rods provide a safe and effective alternative to contoured rods during occipitocervical arthrodesis. PMID:27630479

  2. Reduced Crowding and Poor Contour Detection in Schizophrenia Are Consistent with Weak Surround Inhibition

    PubMed Central

    Robol, Valentina; Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.

    2013-01-01

    Background Detection of visual contours (strings of small oriented elements) is markedly poor in schizophrenia. This has previously been attributed to an inability to group local information across space into a global percept. Here, we show that this failure actually originates from a combination of poor encoding of local orientation and abnormal processing of visual context. Methods We measured the ability of observers with schizophrenia to localise contours embedded in backgrounds of differently oriented elements (either randomly oriented, near-parallel or near-perpendicular to the contour). In addition, we measured patients’ ability to process local orientation information (i.e., report the orientation of an individual element) for both isolated and crowded elements (i.e., presented with nearby distractors). Results While patients are poor at detecting contours amongst randomly oriented elements, they are proportionally less disrupted (compared to unaffected controls) when contour and surrounding elements have similar orientations (near-parallel condition). In addition, patients are poor at reporting the orientation of an individual element but, again, are less prone to interference from nearby distractors, a phenomenon known as visual crowding. Conclusions We suggest that patients’ poor performance at contour perception arises not as a consequence of an “integration deficit” but from a combination of reduced sensitivity to local orientation and abnormalities in contextual processing. We propose that this is a consequence of abnormal gain control, a phenomenon that has been implicated in orientation-selectivity as well as surround suppression. PMID:23585865

  3. Active music therapy and Parkinson's disease: methods.

    PubMed

    Pacchetti, C; Aglieri, R; Mancini, F; Martignoni, E; Nappi, G

    1998-01-01

    Music therapy (MT) is an unconventional, multisensorial therapy poorly assessed in medical care but widely used to different ends in a variety of settings. MT has two branches: active and passive. In active MT the utilisation of instruments is structured to correspond to all sensory organs so as to obtain suitable motor and emotional responses. We conducted a prospective study to evaluate the effects of MT in the neurorehabilitation of patients with Parkinson's Disease (PD), a common degenerative disorder involving movement and emotional impairment. Sixteen PD patients took part in 13 weekly sessions of MT each lasting 2 hours. At the beginning and at the end of the session, every 2 weeks, the patients were evaluated by a neurologist, who assessed PD severity with UPDRS, emotional functions with Happiness Measures (HM) and quality of life using the Parkinson's Disease Quality of Life Questionnaire (PDQL). After every session a significant improvement in motor function, particularly in relation to hypokinesia, was observed both in the overall and in the pre-post session evaluations. HM, UPDRS-ADL and PDQL changes confirmed an improving effect of MT on emotional functions, activities of daily living and quality of life. In conclusion, active MT, operating at a multisensorial level, stimulates motor, affective and behavioural functions. Finally, we propose active MT as new method to include in PD rehabilitation programmes. This article describes the methods adopted during MT sessions with PD patients.

  4. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights. Naval vessels may display, as a means of outlining the contour of the delivery ship during...

  5. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  6. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  7. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  8. Contour Instabilities in Early Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Ben Amar, M.; Chatelain, C.; Ciarletta, P.

    2011-04-01

    Recent tumor growth models are often based on the multiphase mixture framework. Using bifurcation theory techniques, we show that such models can give contour instabilities. Restricting to a simplified but realistic version of such models, with an elastic cell-to-cell interaction and a growth rate dependent on diffusing nutrients, we prove that the tumor cell concentration at the border acts as a control parameter inducing a bifurcation with loss of the circular symmetry. We show that the finite wavelength at threshold has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since contour instabilities are crucial for early diagnosis. Given the generality of the equations, other relevant applications can be envisaged for solving problems of tissue growth and remodeling.

  9. Contour detection combined with depth information

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Many challenging computer vision problems have been proven to benefit from the incorporation of depth information, to name a few, semantic labellings, pose estimations and even contour detection. Different objects have different depths from a single monocular image. The depth information of one object is coherent and the depth information of different objects may vary discontinuously. Meanwhile, there exists a broad non-classical receptive field (NCRF) outside the classical receptive field (CRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. Based on the findings and researches, a biological-inspired contour detection model which combined with depth information is proposed in this paper.

  10. Thermal contouring of forestry data: Wallops Island

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The contouring of 8-13.5 micrometer thermal data collected over a forestry site in Virginia is described. The data were collected at an altitude of 1000 ft above terrain on November 4, 1970. The site was covered on three approximately parallel lines. The purpose of the contouring was to attempt to delineate pine trees attacked by southern pine bark beetle, and to map other important terrain categories. Special processing steps were required to achieve the correct aspect ratio of the thermal data. The reference for the correction procedure was color infrared photography. Data form and quality are given, processing steps are outlined, a brief interpretation of results is given, and conclusion are presented.

  11. Accuracy of model-based RSA contour reduction in a typical clinical application.

    PubMed

    Hurschler, Christof; Seehaus, Frank; Emmerich, Judith; Kaptein, Bart L; Windhagen, Henning

    2008-08-01

    Marker-based roentgen stereophotogrammetric analysis (RSA) is an accurate method for measuring in vivo implant migration, which requires attachment of tantalum markers to the implant. Model-based RSA allows migration measurement without implant markers; digital pose estimation, which can be thought of as casting a shadow of a surface model of the implant into the stereoradiographs, is used instead. The number of surface models required in a given clinical study depends on the number of implanted sizes and design variations of prostheses. Contour selection can be used to limit pose estimation to areas of the prosthesis that do not vary with design, reducing the number of surface models required. The effect of contour reduction on the accuracy of the model-based method was investigated using three different contour selection schemes on tibial components in 24 patients at 3 and 6 month followup. The agreement interval (mean +/- 2 standard deviations), which bounds the differences between the marker-based and model-based methods with contour reduction was smaller than -0.028 +/- 0.254 mm. The data suggest that contour reduction does not result in unacceptable loss of model-based RSA accuracy, and that the model-based method can be used interchangeably with the marker-based method for measuring tibial component migration.

  12. [Bioluminescent method of determining antiprotease activity].

    PubMed

    Gitel'zon, I I; Rykov, S A; Kratasiuk, G A; Petushkov, V N; Shvetskiĭ, A G

    1985-11-01

    A method for antiprotease activity measurement based on the use of luminous bacteria luciferase as protein substrate of proteases is suggested. Antiprotease is incubated with protease for 1 to 2 min at 30 degrees C and then it is added to the reaction mixture containing luciferase, NADH: FMN-oxidoreductase and their substrates--myristic aldehyde, FMN and NADH. Biofluorescence is measured in a temperature-controlled cuvette for 1 min. The total time of the measurement is 3 min. The method can be applied both in fine biochemical assays and in medical rapid diagnosis.

  13. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  14. Selected configuration tradeoffs of contour optical instruments

    NASA Astrophysics Data System (ADS)

    Warren, J.; Strohbehn, K.; Murchie, S.; Fort, D.; Reynolds, E.; Heyler, G.; Peacock, K.; Boldt, J.; Darlington, E.; Hayes, J.; Henshaw, R.; Izenberg, N.; Kardian, C.; Lees, J.; Lohr, D.; Mehoke, D.; Schaefer, E.; Sholar, T.; Spisz, T.; Willey, C.; Veverka, J.; Bell, J.; Cochran, A.

    2003-01-01

    The Comet Nucleus Tour (CONTOUR) is a low-cost NASA Discovery mission designed to conduct three close flybys of comet nuclei. Selected configuration tradeoffs conducted to balance science requirements with low mission cost are reviewed. The tradeoffs discussed focus on the optical instruments and related spacecraft considerations. Two instruments are under development. The CONTOUR Forward Imager (CFI) is designed to perform optical navigation, moderate resolution nucleus/jet imaging, and imaging of faint molecular emission bands in the coma. The CONTOUR Remote Imager and Spectrometer (CRISP) is designed to obtain high-resolution multispectral images of the nucleus, conduct spectral mapping of the nucleus surface, and provide a backup optical navigation capability. Tradeoffs discussed are: (1) the impact on the optical instruments of not using reaction wheels on the spacecraft, (2) the improved performance and simplification gained by implementing a dedicated star tracker instead of including this function in CFI, (3) the improved flexibility and robustness of switching to a low frame rate tracker for CRISP, (4) the improved performance and simplification of replacing a visible imaging spectrometer by enhanced multispectral imaging in CRISP, and (5) the impact on spacecraft resources of these and other tradeoffs.

  15. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  16. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  17. Contour-based automatic crater recognition using digital elevation models from Chang'E missions

    NASA Astrophysics Data System (ADS)

    Zuo, Wei; Zhang, Zhoubin; Li, Chunlai; Wang, Rongwu; Yu, Linjie; Geng, Liang

    2016-12-01

    In order to provide fundamental information for exploration and related scientific research on the Moon and other planets, we propose a new automatic method to recognize craters on the lunar surface based on contour data extracted from a digital elevation model (DEM). Through DEM and image processing, this method can be used to reconstruct contour surfaces, extract and combine contour lines, set the characteristic parameters of crater morphology, and establish a crater pattern recognition program. The method has been tested and verified with DEM data from Chang'E-1 (CE-1) and Chang'E-2 (CE-2), showing a strong crater recognition ability with high detection rate, high robustness, and good adaptation to recognize various craters with different diameter and morphology. The method has been used to identify craters with high precision and accuracy on the Moon. The results meet requirements for supporting exploration and related scientific research for the Moon and planets.

  18. Improvement of three-dimensional microstructure contour accuracy using maskless lithography technique based on DMD

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2016-10-01

    A novel method is proposed to improve contour accuracy of three-dimensional (3D) microstructure in real-time maskless lithography technique based on a digital micro-mirror device (DMD). In this paper, firstly according to the study of theory and experiment on exposure doses and exposure thickness relation, the spatial distribution of the photo-resist exposure doses was derived, which could predict the resulting 3D contour. Secondly, an equal-arc slicing strategy was adopted, in which arc lengths between adjacent slicing point are kept constant while layer heights become variant. And an equal-arc-mean slicing strategy that takes the average of adjacent layers height was also proposed to further optimize the quality of contour and reduce the contour error on the basis of the equal-arc slicing. Finally, to estimate the validity of the method and as a study case, aspheric micro-lens array were fabricated with proposed method in experiments. Our results showed that the proposed method is feasible for improving and enhancing the 3D microstructure contour accuracy and smoothness.

  19. The effect of contour closure on shape recognition.

    PubMed

    Garrigan, Patrick

    2012-01-01

    Recent research on the Gestalt principle of closure has focused on how the presence of closure affects the ability to detect contours hidden in cluttered visual arrays. Some of the earliest research on closure, however, dealt with encoding and recognizing closed and open shapes, rather than detection. This research re-addresses the relation between closure and shape memory, focusing on how contour closure affects the ability to learn to recognize novel contour shapes. Of particular interest is whether closed contour shapes are easier to learn to recognize and, if so, whether this benefit is due to better encoding of closed contour shapes or easier comparison of closed contour shapes to already learned shapes. The results show that closed contours are indeed easier to recognize and, further, that this advantage appears to be related to better encoding.

  20. A new method for FMRI activation detection

    NASA Astrophysics Data System (ADS)

    Wei, Jianing; Talavage, Thomas M.; Pollak, Ilya

    2009-02-01

    The objective of fMRI data analysis is to detect the region of the brain that gets activated in response to a specific stimulus presented to the subject. We develop a new algorithm for activation detection in event-related fMRI data. We utilize a forward model for fMRI data acquisition which explicitly incorporates physiological noise, scanner noise and the spatial blurring introduced by the scanner. After slice-by-slice image restoration procedure that independently restores each data slice corresponding to each time index, we estimate the parameters of the hemodynamic response function (HRF) model for each pixel of the restored data. In order to enforce spatial regularity in our estimates, we model the prior distribution of the HRF parameters as a generalized Gaussian Markov random field (GGMRF) model. We develop an algorithm to compute the maximum a posteriori (MAP) estimates of the parameters. We then threshold the amplitude parameters to obtain the final activation map. We illustrate our algorithm by comparing it with the widely used general linear model (GLM) method. In synthetic data experiments, under the same probability of false alarm, the probability of correct detection for our method is up to 15% higher than GLM. In real data experiments, through anatomical analysis and benchmark testing using block paradigm results, we demonstrate that our algorithm produces fewer false alarms than GLM.

  1. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  2. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  3. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  4. Dual stage active magnetic regenerator and method

    DOEpatents

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  5. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  6. Restauration adaptative des contours par une approche inspiree de la prediction des performances

    NASA Astrophysics Data System (ADS)

    Rousseau, Kami

    En teledetection, les cartes de contours peuvent servir, entre autres choses, a la restitution geometrique, a la recherche d'elements lineaires, ainsi qu'a la segmentation. La creation de ces cartes est faite relativement tot dans la chaine de traitements d'une image. Pour assurer la qualite des operations subsequentes, il faut veiller a obtenir une carte de contours precise. Notre problematique est de savoir s'il est possible de diminuer la perte de temps liee au choix d'algorithme et de parametre en corrigeant automatiquement la carte de contours. Nous concentrerons donc nos efforts sur le developpement d'une methode de detection/restauration de contours adaptative. Notre methode s'inspire d'une technique de prediction des performances d'algorithmes de bas niveau. Elle consiste a integrer un traitement par reseau de neurones a une methode " classique " de detection de contours. Plus precisement, nous proposons de combiner la carte de performances avec la carte de gradient pour permettre des decisions plus exactes. La presente etude a permis de developper un logiciel comprenant un reseau de neurones entraine pour predire la presence de contours. Ce reseau de neurones permet d'ameliorer les decisions de detecteurs de contours, en reduisant le nombre de pixels de fausses alarmes et de contours manques. La premiere etape de ce travail consiste en une methode d'evaluation de performance pour les cartes de contours. Une fois ce choix effectue, il devient possible de comparer les cartes entre elles. Il est donc plus aise de determiner, pour chaque image, la meilleure detection de contours. La revue de la litterature realisee simultanement a permis de faire un choix d'un groupe d'indicateurs prometteurs pour la restauration de contours. Ces derniers ont servi a la calibration et a l'entrainement d'un reseau de neurones pour modeliser les contours. Par la suite, l'information fournie par ce reseau a ete combinee par multiplication arithmetique avec les cartes d

  7. Breast Reconstruction Using Contour Fenestrated AlloDerm: Does Improvement in Design Translate to Improved Outcomes?

    PubMed Central

    Frey, Jordan D.; Alperovich, Michael; Weichman, Katie E.; Wilson, Stelios C.; Hazen, Alexes; Saadeh, Pierre B.; Levine, Jamie P.; Choi, Mihye

    2015-01-01

    Background: Acellular dermal matrices are used in implant-based breast reconstruction. The introduction of contour fenestrated AlloDerm (Life-Cell, Branchburg, N.J.) offers sterile processing, a crescent shape, and prefabricated fenestrations. However, any evidence comparing reconstructive outcomes between this newer generation acellular dermal matrices and earlier versions is lacking. Methods: Patients undergoing implant-based breast reconstruction from 2010 to 2014 were identified. Reconstructive outcomes were stratified by 4 types of implant coverage: aseptic AlloDerm, sterile “ready-to-use” AlloDerm, contour fenestrated AlloDerm, or total submuscular coverage. Outcomes were compared with significance set at P < 0.05. Results: A total of 620 patients (1019 reconstructions) underwent immediate, implant-based breast reconstruction; patients with contour fenestrated AlloDerm were more likely to have nipple-sparing mastectomy (P = 0.0001, 0.0004, and 0.0001) and immediate permanent implant reconstructions (P = 0.0001). Those with contour fenestrated AlloDerm coverage had lower infection rates requiring oral (P = 0.0016) and intravenous antibiotics (P = 0.0012) compared with aseptic AlloDerm coverage. Compared with sterile “ready-to-use” AlloDerm coverage, those with contour fenestrated AlloDerm had similar infection outcomes but significantly more minor mastectomy flap necrosis (P = 0.0023). Compared with total submuscular coverage, those with contour fenestrated AlloDerm coverage had similar infection outcomes but significantly more explantations (P = 0.0001), major (P = 0.0130) and minor mastectomy flap necrosis (P = 0.0001). Significant independent risk factors for increased infection were also identified. Conclusions: Contour fenestrated AlloDerm reduces infections compared with aseptic AlloDerm, but infection rates are similar to those of sterile, ready-to-use AlloDerm and total submuscular coverage. PMID:26495218

  8. Impact of region contouring variability on image-based focal therapy evaluation

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  9. Contour dynamics model for electric discharges.

    PubMed

    Arrayás, M; Fontelos, M A; Jiménez, C

    2010-03-01

    We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified.

  10. Shear-strain contours from moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Joh, D.

    1985-01-01

    The development of whole-field contour maps of shear strains gamma (xy), derived from displacement fields obtained by moire interferometry with 2400 lines/mm, is described. The use of mechanical differentiation to obtain cross-derivatives of displacements and the use of graphical additive moire to sum the cross-derivatives are explained. Quantitative analysis in the small-strain domain is possible because of the high sensitivity of moire interferometry. The applicability of this technique is shown by the testing of a short epoxy beam under three-point bending.

  11. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  12. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  13. Computerized patient contours using the scanning arm of compound B-scanner.

    PubMed

    Hills, J F; Ibbott, G S; Hendee, W R

    1979-01-01

    Full utilization of the precision of newer radiation therapy devices requires patient contours drawn with greater accuracy than is possible with the conventional lead wire technique. Polaroid photographs can introduce large errors due to distortion and small image size. Techniques including electromechanical or optical devices and CT scans offer improved accuracy, but often at added expense. A method for obtaining contours has been developed which utilizes a treatment planning minicomputer (equipped with an analog-to-digital converter and plotter) and a commercially available ultrasound B-scanning arm. Voltages corresponding to the X-Y position of the tip of the scanning arm are fed from the scanner to the A/D interface, smoothed, scaled, and plotted. The resulting drawing is a full scale external patient contour. The accuracy of this method is compared to alternative techniques.

  14. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to

  15. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to

  16. Collinear facilitation and contour integration in autism: evidence for atypical visual integration

    PubMed Central

    Jachim, Stephen; Warren, Paul A.; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome) using two psychophysical tasks thought to rely on integrative processing—collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD. PMID:25805985

  17. Hotspot monitoring system with contour-based metrology

    NASA Astrophysics Data System (ADS)

    Kawamoto, A.; Tanaka, Y.; Tsuda, S.; Shibayama, K.; Furukawa, S.; Abe, H.; Mitsui, T.; Yamazaki, Y.

    2009-03-01

    As design rules shrink, hotspot management is becoming increasingly important. In this paper, an automatic system of hotspot monitoring that is the final step in the hotspot management flow is proposed. The key technology for the automatic hotspot monitoring is contour-based metrology. It is an effective method of evaluating complex patterns, such as hotspots, whose efficiency has been proved in the field of optical proximity correction (OPC) calibration. The contour-based metrology is utilized in our system as a process control tool available on mass-production lines. The pattern evaluation methodology has been developed in order to achieve high sensitivity. Lithography simulation decides a hotspot to be monitored and furthermore indicates the most sensitive points in the field of view (FOV) of a hotspot image. And quantification of the most sensitive points is consistent with an engineer's visual check of a shape of a hotspot. Its validity has been demonstrated in process window determination. This system has the potential to substantially shorten turnaround time (TAT) for hotspot monitoring.

  18. Evaluation of solar mirror figure by moire contouring

    SciTech Connect

    Griffin, J.W.; Lind, M.A.

    1980-06-01

    Moire topography is applied to the figure assessment of solar mirrors. The technique is demonstrated on component facets of a six-meter diameter, four-meter focal length, parabolic dish collector. The relative ease of experimental implementation and subsequent data analysis suggests distinct advantages over the more established laser ray trace or BCS/ICS technique for many applications. The theoretical and experimental considerations necessary to fully implement moire topography on mirror surfaces are detailed. A procedure to de-specularize the mirror is demonstrated which conserves the surface morphology without damaging the reflective surface. The moire fringe patterns observed for the actual mirror facets are compared with theoretical contours generated for representative dish facets using a computer simulation algorithm. A method for evaluating the figure error of the real facet is presented in which the error parameter takes the form of an average absolute deviation of the surface slope from theoretical. The experimental measurement system used for this study employs a 200 line/inch Ronchi transmission grating. The mirror surface is illuminated by a collimated beam at 60/sup 0/. The fringe observation is performed normal to the grating. These parameters yield contour intervals for the fringe patterns of 0.073 mm. The practical considerations for extending the techniques to higher resolution are discussed.

  19. Development of a Standardized Method for Contouring the Lumbosacral Plexus: A Preliminary Dosimetric Analysis of this Organ at Risk Among 15 Patients Treated With Intensity-Modulated Radiotherapy for Lower Gastrointestinal Cancers and the Incidence of Radiation-Induced Lumbosacral Plexopathy

    SciTech Connect

    Yi, Sun K.; Mak, Walter; Yang, Claus C.; Liu Tianxiao; Cui Jing; Chen, Allen M.; Purdy, James A.; Monjazeb, Arta M.; Do, Ly

    2012-10-01

    Purpose: To generate a reproducible step-wise guideline for the delineation of the lumbosacral plexus (LSP) on axial computed tomography (CT) planning images and to provide a preliminary dosimetric analysis on 15 representative patients with rectal or anal cancers treated with an intensity-modulated radiotherapy (IMRT) technique. Methods and Materials: A standardized method for contouring the LSP on axial CT images was devised. The LSP was referenced to identifiable anatomic structures from the L4-5 interspace to the level of the sciatic nerve. It was then contoured retrospectively on 15 patients treated with IMRT for rectal or anal cancer. No dose limitations were placed on this organ at risk during initial treatment planning. Dosimetric parameters were evaluated. The incidence of radiation-induced lumbosacral plexopathy (RILSP) was calculated. Results: Total prescribed dose to 95% of the planned target volume ranged from 50.4 to 59.4 Gy (median 54 Gy). The mean ({+-}standard deviation [SD]) LSP volume for the 15 patients was 100 {+-} 22 cm{sup 3} (range, 71-138 cm{sup 3}). The mean maximal dose to the LSP was 52.6 {+-} 3.9 Gy (range, 44.5-58.6 Gy). The mean irradiated volumes of the LSP were V40Gy = 58% {+-} 19%, V50Gy = 22% {+-} 23%, and V55Gy = 0.5% {+-} 0.9%. One patient (7%) was found to have developed RILSP at 13 months after treatment. Conclusions: The true incidence of RILSP in the literature is likely underreported and is not a toxicity commonly assessed by radiation oncologists. In our analysis the LSP commonly received doses approaching the prescribed target dose, and 1 patient developed RILSP. Identification of the LSP during IMRT planning may reduce RILSP. We have provided a reproducible method for delineation of the LSP on CT images and a preliminary dosimetric analysis for potential future dose constraints.

  20. CONTOUR; a modification of G.I. Evenden's general purpose contouring program

    USGS Publications Warehouse

    Godson, R.H.; Webring, M.W.

    1982-01-01

    A contouring program written for the DEC-10 computer (Evenden, 1975) has been modified and enhanced to operate on a Honeywell Multics 68/80 computer. The program uses a device independent plotting system (Wahl, 1977) so that output can be directed to any of several plotting devices by simply specifying one input variable.

  1. SU-E-E-05: Improving Contouring Precision and Consistency for Physicians-In-Training with Simple Lab Experiments

    SciTech Connect

    Ma, L; Larson, D A

    2015-06-15

    Purpose: Target contouring for high-dose treatments such as radiosurgery of brain metastases is highly critical in eliminating marginal failure and reducing complications as shown by recent clinical studies. In order to improve contouring accuracy and practice consistency for the procedure, we introduced a self-assessed physics lab practice for the physicians-in-training. Methods: A set of commercially acquired high-precision PMMA plastic spheres were randomly embedded in a Styrofoam block and then scanned with the CT/MR via the clinical procedural imaging protocol. A group of first-year physicians-in-training (n=6) from either neurosurgery or radiation oncology department were asked to contour the scanned objects (diameter ranged from 0.4 cm to 3.8 cm). These user-defined contours were then compared with the ideal contour sets of object shape for self assessments to determine the maximum areas of the observed discrepancies and method of improvements. Results: The largest discrepancies from initial practice were consistently found to be located near the extreme longitudinal portions of the target for all the residents. Discrepancy was especially prominent when contouring small objects < 1.0 cm in diameters. For example, the mean volumes rendered from the initial contour data set differed from the ideal data set by 7.7%±6.6% for the participants (p> 0.23 suggesting agreement cannot be established). However, when incorporating a secondary imaging scan such as reconstructed coronal or sagittal images in a repeat practice, the agreement was dramatically improved yielding p<0.02 in agreement with the reference data set for all the participants. Conclusion: A simple physics lab revealed a common pitfall in contouring small metastatic brain tumors for radiosurgical procedures and provided a systematic tool for physicians-in-training in improving their clinical contouring skills. Dr Ma is current a board member of international stereotactic radiosurgical society.

  2. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  3. Multifeature-based surround inhibition improves contour detection in natural images.

    PubMed

    Yang, Kai-Fu; Li, Chao-Yi; Li, Yong-Jie

    2014-12-01

    To effectively perform visual tasks like detecting contours, the visual system normally needs to integrate multiple visual features. Sufficient physiological studies have revealed that for a large number of neurons in the primary visual cortex (V1) of monkeys and cats, neuronal responses elicited by the stimuli placed within the classical receptive field (CRF) are substantially modulated, normally inhibited, when difference exists between the CRF and its surround, namely, non-CRF, for various local features. The exquisite sensitivity of V1 neurons to the center-surround stimulus configuration is thought to serve important perceptual functions, including contour detection. In this paper, we propose a biologically motivated model to improve the performance of perceptually salient contour detection. The main contribution is the multifeature-based center-surround framework, in which the surround inhibition weights of individual features, including orientation, luminance, and luminance contrast, are combined according to a scale-guided strategy, and the combined weights are then used to modulate the final surround inhibition of the neurons. The performance was compared with that of single-cue-based models and other existing methods (especially other biologically motivated ones). The results show that combining multiple cues can substantially improve the performance of contour detection compared with the models using single cue. In general, luminance and luminance contrast contribute much more than orientation to the specific task of contour extraction, at least in gray-scale natural images.

  4. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  5. Shape adaptation of long bone structures using a contour based approach.

    PubMed

    Roberts, M D; Hart, R T

    2005-06-01

    In this work, an approach for mechanically driven shape adaptation of long bone structures is presented which utilizes contour descriptions to track morphological changes at different bone cross sections. A script-based procedure is used to iteratively generate a solid geometry and finite element (FE) model from these contours, perform a stress analysis, and then update the contour shapes using the results of the stress analysis using a prescribed remodeling rule. Because a remeshing operation is performed at each timestep the method is able to effectively simulate large changes in geometry. Several examples of shape adaptation of idealized and geometrically accurate long-bone structures are presented using a variety of remodeling signals and parameters.

  6. Feature selection and definition for contours classification of thermograms in breast cancer detection

    NASA Astrophysics Data System (ADS)

    Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Nowak, Robert M.; Okuniewski, Rafał; Oleszkiewicz, Witold; Cichosz, Paweł

    2016-09-01

    This contribution introduces the method of cancer pathologies detection on breast skin temperature distribution images. The use of thermosensitive foils applied to the breasts skin allows to create thermograms, which displays the amount of infrared energy emitted by all breast cells. The significant foci of hyperthermia or inflammation are typical for cancer cells. That foci can be recognized on thermograms as a contours, which are the areas of higher temperature. Every contour can be converted to a feature set that describe it, using the raw, central, Hu, outline, Fourier and colour moments of image pixels processing. This paper defines also the new way of describing a set of contours through theirs neighbourhood relations. Contribution introduces moreover the way of ranking and selecting most relevant features. Authors used Neural Network with Gevrey`s concept and recursive feature elimination, to estimate feature importance.

  7. Pin guidance of reconstruction plate contour: an expanded role of external fixation.

    PubMed

    Jaquet, Yves; Higgins, Kevin M; Enepekides, Danny J

    2011-09-01

    This article presents a modification of intraoperative external fixation for mandibular reconstruction with free tissue flaps. This technique is indicated when preregistration of the reconstruction plate is not possible due to transmandibular tumor extension. Once standard external fixation has been carried out and prior to segmental mandibulectomy, additional pins are fixed to the connecting rod that delineate the mandibular contour in three-dimensional (3D) space. Following mandibulectomy, these pins allow accurate contouring of the reconstruction plate and improved restoration of mandibular contour, projection, and dental occlusion. A step-by-step description of the technique using models and intraoperative photos is presented. This method of mandibular reconstruction is a simple and time-effective alternative to intraoperative computer navigation and 3D modeling in select cases of oral carcinoma where tumor infiltration of the outer mandibular cortex precludes prebending of the reconstruction plates.

  8. WE-D-9A-01: A Novel Mesh-Based Deformable Surface-Contour Registration

    SciTech Connect

    Zhong, Z; Cai, Y; Guo, X; Jia, X; Chiu, T; Kearney, V; Liu, H; Jiang, L; Chen, S; Yordy, J; Nedzi, L; Mao, W

    2014-06-15

    Purpose: Initial guess is vital for 3D-2D deformable image registration (DIR) while dealing with large deformations for adaptive radiation therapy. A fast procedure has been developed to deform body surface to match 2D body contour on projections. This surface-contour DIR will provide an initial deformation for further complete 3D DIR or image reconstruction. Methods: Both planning CT images and come-beam CT (CBCT) projections are preprocessed to create 0–1 binary mask. Then the body surface and CBCT projection body contours are extracted by Canny edge detector. A finite element modeling system was developed to automatically generate adaptive meshes based on the image surface. After that, the projections of the CT surface voxels are computed and compared with corresponding 2D projection contours from CBCT scans. As a result, the displacement vector field (DVF) on mesh vertices around the surface was optimized iteratively until the shortest Euclidean distance between the pixels on the projections of the deformed CT surface and the corresponding CBCT projection contour is minimized. With the help of the tetrahedral meshes, we can smoothly diffuse the deformation from the surface into the interior of the volume. Finally, the deformed CT images are obtained by the optimal DVF applied on the original planning CT images. Results: The accuracy of the surface-contour registration is evaluated by 3D normalized cross correlation increased from 0.9176 to 0.9957 (sphere-ellipsoid phantom) and from 0.7627 to 0.7919 (H and N cancer patient data). Under the GPU-based implementation, our surface-contour-guided method on H and N cancer patient data takes 8 seconds/iteration, about 7.5 times faster than direct 3D method (60 seconds/iteration), and it needs fewer optimization iterations (30 iterations vs 50 iterations). Conclusion: The proposed surface-contour DIR method can substantially improve both the accuracy and the speed of reconstructing volumetric images, which is helpful

  9. Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration

    PubMed Central

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity. PMID:26057620

  10. Challenges of OPC model calibration from SEM contours

    NASA Astrophysics Data System (ADS)

    Granik, Yuri; Kusnadi, Ir

    2008-03-01

    Traditionally OPC models are calibrated to match CD measurements from selected test pattern locations. This demand for massive CD data drives advances in metrology. Considerable progress has recently been achieved in complimenting this CD data with SEM contours. Here we propose solutions to some challenges that emerge in calibrating OPC models from the experimental contours. We discuss and state the minimization objective as a measure of the distance between simulation and experimental contours. The main challenge is to correctly process inevitable gaps, discontinuities and roughness of the SEM contours. We discuss standardizing the data interchange formats and procedures between OPC and metrology vendors.

  11. One "shape" fits all: the orientation bandwidth of contour integration.

    PubMed

    Hansen, Bruce C; May, Keith A; Hess, Robert F

    2014-11-18

    The ability of human participants to integrate fragmented stimulus elements into perceived coherent contours (amidst a field of distracter elements) has been intensively studied across a large number of contour element parameters, ranging from luminance contrast and chromaticity to motion and stereo. The evidence suggests that contour integration performance depends on the low-level Fourier properties of the stimuli. Thus, to understand contour integration, it would be advantageous to understand the properties of the low-level filters that the visual system uses to process contour stimuli. We addressed this issue by examining the role of stimulus element orientation bandwidth in contour integration, a previously unexplored area. We carried out three psychophysical experiments, and then simulated all of the experiments using a recently developed two-stage filter-overlap model whereby the contour grouping occurs by virtue of the overlap between the filter responses to different elements. The first stage of the model responds to the elements, while the second stage integrates the responses along the contour. We found that the first stage had to be fairly broadly tuned for orientation to account for our results. The model showed a very good fit to a large data set with relatively few free parameters, suggesting that this class of model may have an important role to play in helping us to better understand the mechanisms of contour integration.

  12. Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity.

  13. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    SciTech Connect

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target

  14. Visualizing Europe’s demographic scars with coplots and contour plots

    PubMed Central

    Minton, Jonathan; Vanderbloemen, Laura; Dorling, Danny

    2013-01-01

    We present two enhancements to existing methods for visualizing vital statistics data. Data from the Human Mortality Database were used and vital statistics from England and Wales are used for illustration. The simpler of these methods involves coplotting mean age of death with its variance, and the more complex of these methods is to present data as a contour plot. The coplot method shows the effect of the 20th century’s epidemiological transitions. The contour plot method allows more complex and subtle age, period and cohort effects to be seen. The contour plot shows the effects of broad improvements in public health over the 20th century, including vast reductions in rates of childhood mortality, reduced baseline mortality risks during adulthood and the postponement of higher mortality risks to older ages. They also show the effects of the two world wars and the 1918 influenza pandemic on men of fighting age, women and children. The contour plots also show a cohort effect for people born around 1918, suggesting a possible epigenetic effect of parental exposure to the pandemic which shortened the cohort’s lifespan and which has so far received little attention. Although this article focuses on data from England and Wales, the associated online appendices contain equivalent visualizations for almost 50 series of data available on the Human Mortality Database. We expect that further analyses of these visualizations will reveal further insights into global public health. PMID:24062300

  15. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  16. Body contouring surgery for military personnel following massive weight loss.

    PubMed

    Chong, S J; Kok, Y O; Foo, C L

    2011-12-01

    The burgeoning global obesity epidemic extends to the military service, where 6-53% of military personnel are overweight. Obese military personnel who adhere to a strict training and diet regime may potentially achieve and maintain significant weight loss. They may however face physical problems such as excess skin folds causing discomfort, difficulty in uniform fitting, personal hygiene, interference with full physical activities and psychological issues such as body image dissatisfaction, low self esteem and difficulty in social acceptance. We present a case report of a highly motivated military conscript who achieved and maintained significant weight loss but had physical defects following Massive Weight Loss. Body contouring surgery was successfully utilised to correct his physical defects and allowed him to return to full physical duties.

  17. Vorticity generation by contoured wall injectors

    SciTech Connect

    Waitz, I.A.; Marble, F.E.; Zukoski, E.E. California Institute of Technology, Pasadena )

    1992-07-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface. 19 refs.

  18. Vorticity generation by contoured wall injectors

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.; Marble, Frank E.; Zukoski, Edward E.

    1992-01-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface.

  19. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    PubMed Central

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  20. Responses in early visual areas to contour integration are context dependent

    PubMed Central

    Qiu, Cheng; Burton, Philip C.; Kersten, Daniel; Olman, Cheryl A.

    2016-01-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1–V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization. PMID:27366994

  1. Responses in early visual areas to contour integration are context dependent.

    PubMed

    Qiu, Cheng; Burton, Philip C; Kersten, Daniel; Olman, Cheryl A

    2016-06-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1-V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization.

  2. Using contour plots in elecgroproduction to examine regions in {epsilon}, Q{sup 2}, W space

    SciTech Connect

    Funsten, H.

    1994-04-01

    In determining incident CEBAF beam energies for CLAS electroproduction experiments that separate the longitudinal and transverse cross section components, contour plots of {epsilon} defined over a 2 dimensional Q{sup 2}, W space can be useful. This note describes an approximate method of constructing such plots.

  3. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  4. The Effect of Fundamental Frequency on the Intelligibility of Speech with Flattened Intonation Contours

    ERIC Educational Resources Information Center

    Watson, Peter J.; Schlauch, Robert S.

    2008-01-01

    Purpose: To examine the effect of fundamental frequency (F0) on the intelligibility of speech with flattened F0 contours in noise. Method: Participants listened to sentences produced by 2 female talkers in white noise. The listening conditions included the unmodified original sentences and sentences with resynthesized F0 that reflected the average…

  5. Three-dimensional active net for volume extraction

    NASA Astrophysics Data System (ADS)

    Takanashi, Ikuko; Muraki, Shigeru; Doi, Akio; Kaufman, Arie E.

    1998-05-01

    3D Active Net, which is a 3D extension of Snakes, is an energy-minimizing surface model which can extract a volume of interest from 3D volume data. It is deformable and evolves in 3D space to be attracted to salient features, according to its internal and image energy. The net can be fitted to the contour of a target object by defining the image energy suitable for the contour property. We present testing results of the extraction of a muscle from the Visible Human Data by two methods: manual segmentation and the application of 3D Active Net. We apply principal component analysis, which utilizes the color information of the 3D volume data to emphasize an ill-defined contour of the muscle, and then apply 3D Active Net. We recognize that the extracted object has a smooth and natural contour in contrast with a comparable manual segmentation, proving an advantage of our approach.

  6. ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery.

    PubMed

    Partl, Christian; Lex, Alexander; Streit, Marc; Strobelt, Hendrik; Wassermann, Anne-Mai; Pfister, Hanspeter; Schmalstieg, Dieter

    2014-12-01

    Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However, there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds on cells and need to understand the underlying mechanisms.

  7. When things go pear shaped: contour variations of contacts

    NASA Astrophysics Data System (ADS)

    Utzny, Clemens

    2013-04-01

    Traditional control of critical dimensions (CD) on photolithographic masks considers the CD average and a measure for the CD variation such as the CD range or the standard deviation. Also systematic CD deviations from the mean such as CD signatures are subject to the control. These measures are valid for mask quality verification as long as patterns across a mask exhibit only size variations and no shape variation. The issue of shape variations becomes especially important in the context of contact holes on EUV masks. For EUV masks the CD error budget is much smaller than for standard optical masks. This means that small deviations from the contact shape can impact EUV waver prints in the sense that contact shape deformations induce asymmetric bridging phenomena. In this paper we present a detailed study of contact shape variations based on regular product data. Two data sets are analyzed: 1) contacts of varying target size and 2) a regularly spaced field of contacts. Here, the methods of statistical shape analysis are used to analyze CD SEM generated contour data. We demonstrate that contacts on photolithographic masks do not only show size variations but exhibit also pronounced nontrivial shape variations. In our data sets we find pronounced shape variations which can be interpreted as asymmetrical shape squeezing and contact rounding. Thus we demonstrate the limitations of classic CD measures for describing the feature variations on masks. Furthermore we show how the methods of statistical shape analysis can be used for quantifying the contour variations thus paving the way to a new understanding of mask linearity and its specification.

  8. Computer program utilizes FORTRAN 4 subroutines for contour plotting

    NASA Technical Reports Server (NTRS)

    Block, N.; Garret, R.; Lawson, C.

    1967-01-01

    Computer program constructs lists of xy-coordinate pairs that define contour curves for an arbitrary given function of two variables and transmits these lists to plotting equipment to produce contour plots. The principal subroutine, CONTUR, is independent of any specific system of plotting subroutines and equipment.

  9. Solid Rocket Motor Backflow Analysis For CONTOUR Mishap Investigation

    DTIC Science & Technology

    2005-07-13

    to thank the members of the CONTOUR MIB, especially Mr. Craig Tooley , NASA/GSFC, for their support. He also appreciates the efforts of Messrs. Lou... Tooley , CONTOUR Mishap Investigation Board, SAI-12-627/MSW-2, 20 May 2003, pp. 1-13. 6. M. Woronowicz, “Development of a Novel Free Molecule Rocket Plume

  10. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  11. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  12. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  13. Estimation of Weapon Yield From Inversion of Dose Rate Contours

    DTIC Science & Technology

    2009-03-01

    Zucchini .................................................................................... 76 Operation PLUMBBOB—Priscilla...Appendix E: ESS FOM ....................................................................................................112 Appendix F: Zucchini FOM...Relationship of Dose Rate Contour Area, Weather Grid, and AOI ............... 57 23. Zucchini FDC, DNA-EX, and HPAC Dose Rate Contours at 28KT

  14. Contour Integration over Time: Psychophysical and fMRI Evidence.

    PubMed

    Kuai, Shu-Guang; Li, Wu; Yu, Cong; Kourtzi, Zoe

    2016-05-30

    The brain integrates discrete but collinear stimuli to perceive global contours. Previous contour integration (CI) studies mainly focus on integration over space, and CI is attributed to either V1 long-range connections or contour processing in high-visual areas that top-down modulate V1 responses. Here, we show that CI also occurs over time in a design that minimizes the roles of V1 long-range interactions. We use tilted contours embedded in random orientation noise and moving horizontally behind a fixed vertical slit. Individual contour elements traveling up/down within the slit would be encoded over time by parallel, rather than aligned, V1 neurons. However, we find robust contour detection even when the slit permits only one viewable contour element. Similar to CI over space, CI over time also obeys the rule of collinearity. fMRI evidence shows that while CI over space engages visual areas as early as V1, CI over time mainly engages higher dorsal and ventral visual areas involved in shape processing, as well as posterior parietal regions involved in visual memory that can represent the orientation of temporally integrated contours. These results suggest at least partially dissociable mechanisms for implementing the Gestalt rule of continuity in CI over space and time.

  15. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  16. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  17. Contour-Based Surface Reconstruction using MPU Implicit Models.

    PubMed

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results.

  18. Identification of breast contour for nipple segmentation in breast magnetic resonance images

    SciTech Connect

    Gwo, Chih-Ying; Gwo, Allen; Wei, Chia-Hung; Huang, Pai Jung

    2014-02-15

    Purpose: The purpose of this study is to develop a method to simulate the breast contour and segment the nipple in breast magnetic resonance images. Methods: This study first identifies the chest wall and removes the chest part from the breast MR images. Subsequently, the cleavage and its motion artifacts are removed, distinguishing the separate breasts, where the edge points are sampled for curve fitting. Next, a region growing method is applied to find the potential nipple region. Finally, the potential nipple region above the simulated curve can be removed in order to retain the original smooth contour. Results: The simulation methods can achieve the least root mean square error (RMSE) for certain cases. The proposed YBnd and (Dmin+Dmax)/2 methods are significant due toP = 0.000. The breast contour curve detected by the two proposed methods is closer than that determined by the edge detection method. The (Dmin+Dmax)/2 method can achieve the lowest RMSE of 1.1029 on average, while the edge detection method results in the highest RMSE of 6.5655. This is only slighter better than the comparison methods, which implies that the performance of these methods depends upon the conditions of the cases themselves. Under this method, the maximal Dice coefficient is 0.881, and the centroid difference is 0.36 pixels. Conclusions: The contributions of this study are twofold. First, a method was proposed to identify and segment the nipple in breast MR images. Second, a curve-fitting method was used to simulate the breast contour, allowing the breast to retain its original smooth shape.

  19. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  20. Modulating Phonation Through Alteration of Vocal Fold Medial Surface Contour

    PubMed Central

    Mau, Ted; Muhlestein, Joseph; Callahan, Sean; Chan, Roger W.

    2012-01-01

    Objectives 1. To test whether alteration of the vocal fold medial surface contour can improve phonation. 2. To demonstrate that implant material properties affect vibration even when implant is deep to the vocal fold lamina propria. Study Design Induced phonation of excised human larynges. Methods Thirteen larynges were harvested within 24 hours post-mortem. Phonation threshold pressure (PTP) and flow (PTF) were measured before and after vocal fold injections using either calcium hydroxylapatite (CaHA) or hyaluronic acid (HA). Small-volume injections (median 0.0625 mL) were targeted to the infero-medial aspect of the thyroarytenoid (TA) muscle. Implant locations were assessed histologically. Results The effect of implantation on PTP was material-dependent. CaHA tended to increase PTP, whereas HA tended to decrease PTP (Wilcoxon test P = 0.00013 for onset). In contrast, the effect of implantation on PTF was similar, with both materials tending to decrease PTF (P = 0.16 for onset). Histology confirmed implant presence in the inferior half of the vocal fold vertical thickness. Conclusions Taken together, these data suggested the implants may have altered the vocal fold medial surface contour, potentially resulting in a less convergent or more rectangular glottal geometry as a means to improve phonation. An implant with a closer viscoelastic match to vocal fold cover is desirable for this purpose, as material properties can affect vibration even when the implant is not placed within the lamina propria. This result is consistent with theoretical predictions and implies greater need for surgical precision in implant placement and care in material selection. PMID:22865592

  1. Discourse-level contours in Nehiyawewin

    NASA Astrophysics Data System (ADS)

    Muehlbauer, Jeff; Cook, Clare

    2005-04-01

    This study describes declination and discourse-sized intonation contours in Nehiyawewin, an Algonquian language whose pitch and intonation systems have not been previously studied. The study draws on 270 min of recordings of two female Nehiyaw elders telling their life stories to another Nehiyawewin native speaker. Data is analyzed by using Praat's default algorithm to generate f0 curves for each breath group. Preliminary results indicate: (1) When breath-group internal pitch peaks are considered, an obvious downward trend of f0 occurred in fewer than half the breath groups analyzed (about 40% or 37/90). This raises questions about the role of classical declination in natural discourse [Umeda, Journal of Phonetics 10 (1982)]. (2) When we abstract away from declination within a breath group by computing mean f0 and mean pitch peak for each breath group and tracking trends for these means, larger patterns seem to emerge; breath groups can be grouped into larger units based on raising and lowering trends. These units have a mean peak range of 150 Hz with a 30 Hz change from one breath group to the next and correspond to a domain of around five clauses (about 3-4 breath groups, about 45 syllables).

  2. ANOPP/VMS HSCT ground contour system

    NASA Technical Reports Server (NTRS)

    Rawls, John, Jr.; Glaab, Lou

    1992-01-01

    This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.

  3. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  4. Common Visual Preference for Curved Contours in Humans and Great Apes

    PubMed Central

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans’ preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans’ visual preference for curved objects evolved from earlier primate species’ visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features. PMID:26558754

  5. Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration

    PubMed Central

    Shpaner, Marina; Molholm, Sophie; Forde, Emma-Jane; Foxe, John J.

    2013-01-01

    Contour integration, the linking of collinear but disconnected visual elements across space, is an essential facet of object and scene perception. Here, we set out to arbitrate between two previously advanced mechanisms of contour integration: serial facilitative interactions between collinear cells in the primary visual cortex (V1) versus pooling of inputs in higher-order visual areas. To this end, we used high-density electrophysiological recordings to assess the spatio-temporal dynamics of brain activity in response to Gabor contours embedded in Gabor noise (so-called “pathfinder displays”) versus control stimuli. Special care was taken to elicit and detect early activity stemming from the primary visual cortex, as indexed by the C1 component of the visual evoked potential. Arguing against a purely early V1 account, there was no evidence for contour-related modulations within the C1 timeframe (50-100 msecs). Rather, the earliest effects were observed within the timeframe of the N1 component (160-200 msecs) and inverse source analysis pointed to principle generators in the lateral occipital complex (LOC) within the ventral visual stream. Source anlaysis also suggested that it was only during this relatively late processing period that contextual effects emerged in hierarchically early visual regions (i.e. V1/V2), consistent with a more distributed process involving recurrent feedback/feedforward interactions between LOC and early visual sensory regions. The distribution of effects uncovered here is consistent with pooling of information in higher order cortical areas as the initial step in contour integration, and that this pooling occurs relatively late in processing rather than during the initial sensory-processing period. PMID:23201366

  6. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    SciTech Connect

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua; Anastasio, Mark A.; Low, Daniel A.

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  7. Optimization of object region and boundary extraction by energy minimization for activity recognition

    NASA Astrophysics Data System (ADS)

    Albalooshi, Fatema A.; Asari, Vijayan K.

    2013-05-01

    Automatic video segmentation for human activity recognition has played an important role in several computer vision applications. Active contour model (ACM) has been used extensively for unsupervised adaptive segmentation and automatic object region and boundary extraction in video sequences. This paper presents optimizing Active Contour Model using recurrent architecture for automatic object region and boundary extraction in human activity video sequences. Taking advantage of the collective computational ability and energy convergence capability of the recurrent architecture, energy function of Active Contour Model is optimized with lower computational time. The system starts with initializing recurrent architecture state based on the initial boundary points and ends up with final contour which represent actual boundary points of human body region. The initial contour of the Active Contour Model is computed using background subtraction based on Gaussian Mixture Model (GMM) such that background model is built dynamically and regularly updated to overcome different challenges including illumination changes, camera oscillations, and changes in background geometry. The recurrent nature is useful for dealing with optimization problems due to its dynamic nature, thus, ensuring convergence of the system. The proposed boundary detection and region extraction can be used for real time processing. This method results in an effective segmentation that is less sensitive to noise and complex environments. Experiments on different databases of human activity show that our method is effective and can be used for real-time video segmentation.

  8. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties.

  9. Adaptive pseudo dilation for gestalt edge grouping and contour detection.

    PubMed

    Papari, Giuseppe; Petkov, Nicolai

    2008-10-01

    We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of the presence of a contour, and some global analysis is needed. We introduce a new morphological operator, called adaptive pseudo-dilation (APD), which uses context dependent structuring elements in order to identify long curvilinear structure in the edge map. We show that grouping edge pixels as the connected components of the output of APD results in a good agreement with the gestalt law of good continuation. The novelty of this operator is that dilation is limited to the Voronoi cell of each edge pixel. An efficient implementation of APD is presented. The grouping algorithm is then embedded in a multithreshold contour detector. At each threshold level, small groups of edges are removed, and contours are completed by means of a generalized reconstruction from markers. The use of different thresholds makes the algorithm much less sensitive to the values of the input parameters. Both qualitative and quantitative comparison with existing approaches prove the superiority of the proposed contour detector in terms of larger amount of suppressed texture and more effective detection of low-contrast contours.

  10. Low level constraints on dynamic contour path integration.

    PubMed

    Hall, Sophie; Bourke, Patrick; Guo, Kun

    2014-01-01

    Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar) in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°), temporal (200 ms), colour (over 10 colours) and luminance (-25% to 25%) information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  11. Evaluation of mandibular contour in patients with significant facial asymmetry.

    PubMed

    Fang, J-J; Tu, Y-H; Wong, T-Y; Liu, J-K; Zhang, Y-X; Leong, I-F; Chen, K-C

    2016-07-01

    Most previous studies on facial asymmetry have not specifically differentiated mandible deviation from structural asymmetry of the mandible. The purpose of this study was to assess the symmetry of the mandible by examining its contour in a cohort of patients with significant facial asymmetry. Eleven cases of facial asymmetry with chin deviation ≥10mm were enrolled. A voxel-paired median plane (optimal symmetry plane, OSP) and two landmark-based median planes were generated. The OSP was created by computing the best pairing of the bony voxels on the two sides. One side of the mandibular contour was mirrored onto the other side using the test plane. The contour differences were measured by distance and by area ratio. They were examined both in frontal and frontal downward inclined view. The contour symmetry of the mandible was that revealed by the plane that presented the best symmetry. The results showed that the OSP worked best in bisecting the contour into two symmetrical halves. Contour analysis showed relatively small discrepancies between the two sides. In conclusion, the mandibles retained an acceptable contour symmetry despite the presence of significant mandibular deviations. It is suggested that proper mandibular alignment be the primary objective in the correction of facial asymmetry.

  12. The Influence of Contour on Similarity Perception of Star Glyphs.

    PubMed

    Fuchs, Johannes; Isenberg, Petra; Bezerianos, Anastasia; Fischer, Fabian; Bertini, Enrico

    2014-12-01

    We conducted three experiments to investigate the effects of contours on the detection of data similarity with star glyph variations. A star glyph is a small, compact, data graphic that represents a multi-dimensional data point. Star glyphs are often used in small-multiple settings, to represent data points in tables, on maps, or as overlays on other types of data graphics. In these settings, an important task is the visual comparison of the data points encoded in the star glyph, for example to find other similar data points or outliers. We hypothesized that for data comparisons, the overall shape of a star glyph--enhanced through contour lines--would aid the viewer in making accurate similarity judgments. To test this hypothesis, we conducted three experiments. In our first experiment, we explored how the use of contours influenced how visualization experts and trained novices chose glyphs with similar data values. Our results showed that glyphs without contours make the detection of data similarity easier. Given these results, we conducted a second study to understand intuitive notions of similarity. Star glyphs without contours most intuitively supported the detection of data similarity. In a third experiment, we tested the effect of star glyph reference structures (i.e., tickmarks and gridlines) on the detection of similarity. Surprisingly, our results show that adding reference structures does improve the correctness of similarity judgments for star glyphs with contours, but not for the standard star glyph. As a result of these experiments, we conclude that the simple star glyph without contours performs best under several criteria, reinforcing its practice and popularity in the literature. Contours seem to enhance the detection of other types of similarity, e. g., shape similarity and are distracting when data similarity has to be judged. Based on these findings we provide design considerations regarding the use of contours and reference structures on star

  13. Contour tracking in echocardiographic sequences via sparse representation and dictionary learning.

    PubMed

    Huang, Xiaojie; Dione, Donald P; Compas, Colin B; Papademetris, Xenophon; Lin, Ben A; Bregasi, Alda; Sinusas, Albert J; Staib, Lawrence H; Duncan, James S

    2014-02-01

    This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets.

  14. Contour shape analysis of hollow ion x-ray emission

    SciTech Connect

    Rosmej, F. B.; Angelo, P.; Aouad, Y.

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  15. Contour erasure and filling-in: New observations

    PubMed Central

    Anstis, Stuart; Greenlee, Mark W.

    2014-01-01

    Contour erasure is a newly established form of flicker adaptation that diminishes the saliency of object edges leading to their complete disappearance (Anstis, S. 2013. Journal of Vision, 13(2):25, 1–14). If these “disappeared” objects are then viewed on textured backgrounds, the observers experience filling-in, the illusory sense of background completion in the absence of physical input. In a series of observations, we demonstrate that contour erasure can greatly speed up the filling-in (or fading) of brightness. Based on these observations, we suggest that contour adaptation happens early in the magnocellular pathways. PMID:25469212

  16. Drell-Yan hadron tensor: Contour gauge and gluon propagator

    NASA Astrophysics Data System (ADS)

    Anikin, I. V.; Cherednikov, I. O.; Teryaev, O. V.

    2017-02-01

    We consider the gauge invariant Drell-Yan hadron tensor which includes the standard and nonstandard diagram contributions. The nonstandard diagram contribution appeared owing to the complexity of the twist three BV(x1,x2)-function where the gluon pole manifests. We use the contour gauge conception which allows us to fix easily the spurious uncertainties in the gluon propagator. The contour gauge condition is generated by the corresponding Wilson lines in both the standard and nonstandard diagrams. We demonstrate the substantial role of the nonstandard diagram for forming of the relevant contour in the Wilson path-ordered exponential that leads to the spurious singularity fixing.

  17. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  18. SU-E-T-334: Dosimetric Impacts of Organ at Risk (OAR) Contour Errors in Prostate Volumetric Modulated Arc Therapy (VMAT) Planning: A Sensitivity Study

    SciTech Connect

    Chang, J; Gu, X; Lu, W; Song, T; Jia, X; Jiang, S

    2015-06-15

    Purpose: To investigate the dosimetric impacts of OAR contour errors in prostate VMAT planning with a sensitivity analysis method. Methods: Ten randomly selected prostate VMAT patients were used to simulate OAR contour error in rectum and bladder. For each OAR 12 even spaced contour control points were selected in every three slices. For each simulation, only one of the control points was simulated to move inwards or outwards by up to 6 voxels and coordinates of adjacent voxels to that moving control point were moved accordingly with a 3D-spline smooth function. An in-house software was used to predict OARs dosimetric endpoints based on geometric relationship between PTV and OAR. In this study, the V75, V70, V65, V60 of rectum and V80, V75, V70, V65 of bladder with and without perturbed contours were calculated and compared. Results: The percentage of OAR dose volume difference around the reference OAR contours were plotted as iso-error lines overlaid on CT images. The significant difference was shown in OAR contours adjacent to the PTV where high dose gradient exists. When one of the 12 points adjacent to the PTV moved up to 6 voxels, maximum errors of 1.99%, 2.46%, 2.89%, and 3.19% were found in V75, V70, V65, and V60 of the rectum, and 1.59%, 1.67%, 1.87%, and 1.90% were found in V80, V75, V70, and V65 of the bladder, respectively. Conclusion: We can quantify the dosimetric impact of OAR contouring error by evaluating the percentage of OAR dose volume changes in prostate VMAT planning. For the adaptive radiation therapy, the iso-error lines can provide the planner a guideline that which portion of contour needed to be checked carefully because dosimetric sensitivity of contour errors are different for different part of contours.

  19. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  20. Variational approach to reconstruct surface from sparse and nonparallel contours in freehand 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Deng, Shuangcheng; Jiang, Lipei; Cao, Yingyu; Zhang, Junwen; Zheng, Haiyang

    2012-01-01

    The 3D reconstruction for freehand 3D ultrasound is a challenging issue because the recorded B-scans are not only sparse, but also non-parallel (actually they may intersect each other). Conventional volume reconstruction methods can't reconstruct sparse data efficiently while not introducing geometrical artifacts, and conventional surface reconstruction methods can't reconstruct surfaces from contours that are arbitrarily oriented in 3D space. We developed a new surface reconstruction method for freehand 3D ultrasound. It is based on variational implicit function which is presented by Greg Turk for shape transformation. In the new method, we first constructed on- & off-surface constraints from the segmented contours of all recorded B-scans, then used a variational interpolation technique to get a single implicit function in 3D. Finally, the implicit function was evaluated to extract the zero-valued surface as reconstruction result. Two experiment was conducted to assess our variational surface reconstruction method, and the experiment results have shown that the new method is capable of reconstructing surface smoothly from sparse contours which can be arbitrarily oriented in 3D space.

  1. Two-dimensional wind-tunnel interference from measurements on two contours

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1984-01-01

    This paper describes how wall-induced velocities near a model in a two-dimensional wind tunnel can be estimated from upwash distributions measured along two contours surrounding a model. The method is applicable to flows that can be represented by linear theory. It was derived by applying the Schwarz Integral Formula separately to the two contours and by exploiting the free-air relationship between upwashes along the contours. Advantages of the method are that only one flow quantity need by measured and no representation of the model is required. A weakness of the method is that it assumes streamwise interference velocity vanishes far upstream of the model. This method was applied to a simple theoretical model of flow in a solid-wall wind tunnel. The theoretical interference velocities and the velocities computed using the method were in excellent agreement. The method was then used to analyze experimental data acquired during adaptive-wall experiments at Ames Research Center. This analysis confirmed that the wall adjustments reduced wall-induced velocities near the model.

  2. Robust contour decomposition using a constant curvature criterion

    NASA Technical Reports Server (NTRS)

    Wuescher, Daniel M.; Boyer, Kim L.

    1991-01-01

    The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.

  3. Shaping of the continental rise by deep geostrophic contour currents.

    PubMed

    Heezen, B C; Hollister, C D; Ruddiman, W F

    1966-04-22

    Geostrophic contour-following bottom currents involved in the deep thermohaline circulation of the world ocean appear to be the principal agents which control the shape of the continental rise and other sediment bodies.

  4. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping.…

  5. A historical note on illusory contours in shadow writing.

    PubMed

    Vezzani, Stefano; Marino, Barbara F M

    2009-01-01

    It is widely accepted that illusory contours have been first displayed and discussed by Schumann (1900, Zeitschrift für Psychologie und Physiologie der Sinnesorgane 23 1-32). Here we show that, before him, Jastrow (1899, Popular Science Monthly 54 299-312) produced illusory contours consisting of a shadow word. A brief history of shadow writing in psychological literature from Jastrow to Brunswik is presented, in which the contributions of Pillsbury, Warren, Koffka, and Benussi are examined.

  6. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  7. An Unusual Application of NASTRAN Contour Plotting Capability

    NASA Technical Reports Server (NTRS)

    Mittal, S.; Gallo, M.; Wang, T.

    1985-01-01

    A procedure is presented for obtaining contour plots of any physical quantity defined on a number of points of the surface of a structure. Rigid Format 1 of HEAT approach in Cosmic NASTRAN is ALTERED to enable use of contour plotting capability for scalar quantities. The ALTERED DMAP sequence is given. Examples include temperature distribution on the face of a cooled laser mirror and the angle of incidence or a radome surface.

  8. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  9. Evidence Relating Subjective Contours and Interpretations Involving Occlusion.

    DTIC Science & Technology

    1981-06-01

    This article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretations and is unable to see subjective... article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretions and is unable to see subjective contours...Subjective contours This article examines a prediction that follows from the following two postulates of the above theory: (i) that subjective

  10. Tumor delineation using PET in head and neck cancers: Threshold contouring and lesion volumes

    SciTech Connect

    Ford, Eric C.; Kinahan, Paul E.; Hanlon, Lorraine; Alessio, Adam; Rajendran, Joseph; Schwartz, David L.; Phillips, Mark

    2006-11-15

    Tumor boundary delineation using positron emission tomography (PET) is a promising tool for radiation therapy applications. In this study we quantify the uncertainties in tumor boundary delineation as a function of the reconstruction method, smoothing, and lesion size in head and neck cancer patients using FDG-PET images and evaluate the dosimetric impact on radiotherapy plans. FDG-PET images were acquired for eight patients with a GE Advance PET scanner. In addition, a 20 cm diameter cylindrical phantom with six FDG-filled spheres with volumes of 1.2 to 26.5 cm{sup 3} was imaged. PET emission scans were reconstructed with the OSEM and FBP algorithms with different smoothing parameters. PET-based tumor regions were delineated using an automatic contouring function set at progressively higher threshold contour levels and the resulting volumes were calculated. CT-based tumor volumes were also contoured by a physician on coregistered PET/CT patient images. The intensity value of the threshold contour level that returns 100% of the actual volume, I{sub V100}, was measured. We generated intensity-modulated radiotherapy (IMRT) plans for an example head and neck patient, treating 66 Gy to CT-based gross disease and 54 Gy to nodal regions at risk, followed by a boost to the FDG-PET-based tumor. The volumes of PET-based tumors are a sensitive function of threshold contour level for all patients and phantom datasets. A 5% change in threshold contour level can translate into a 200% increase in volume. Phantom data indicate that I{sub V100} can be set as a fraction, f, of the maximum measured uptake. Fractional threshold values in the cylindrical water phantom range from 0.23 to 0.51. Both the fractional threshold and the threshold-volume curve are dependent on lesion size, with lesions smaller than approximately 5 cm{sup 3} displaying a more pronounced sensitivity and larger fractional threshold values. The threshold-volume curves and fractional threshold values also depend

  11. [Method of double feedback from EEG oscillators of the patient for correction of stress-induced functional disorders].

    PubMed

    Fedotchev, A I; Bondar', A T

    2008-01-01

    Method of correction of human stress-induced functional disorders is proposed which is based on two feedback contours from narrow-band EEG oscillators of the patient. The first one is a usual biofeedback contour in which the feedback signals from the narrow-band EEG oscillator are consciously perceived by the patient and serve him as a guide for voluntary reduction/activation of these EEG components. The second one is an additional contour of resonance stimulation which helps a subject to overcome the difficulties of conscious control of feedback signals. In this contour the parameters of audio-visual stimulation are automatically tuned to the frequency of the dominant narrow-band EEG oscillator of the patient (from the same or other EEG frequency range) to reach its resonance activation. Scientific basis of the method is provided, the results of its experimental testing are presented.

  12. Active magnetic regenerator method and apparatus

    DOEpatents

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  13. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  14. Do we need another neural correlate of contour integration?

    PubMed

    de-Wit, Lee; Schwarzkopf, Dietrich Samuel

    2014-01-01

    Gilad and colleagues use an elegant combination of voltage-sensitive dyes and high temporal and spatial resolution optical imaging to visualize a differential response to collinear contour elements in monkey V1. This result adds to the literature on the neural correlates of contour integration, but does not yet tackle (or seek to tackle) the question as to whether contour integration is mediated by lateral connections within an area (e.g., V1), through pooling of feedfoward connections, or feedback mechanisms. Moreover, while Gilad et al. find that their differential response is correlated with the behavioral performance of each monkey, there are reasons to suspect that the correlation they observe is a consequence of processing in higher regions, and that the differential V1 response may not play a critical role in integrating contour elements, or in generating the monkey's response. Moreover, this differential V1 response was not observed in a monkey who was not trained on the task, a result that can only be reconciled, if one assumes that the monkey could not see the contour prior to training. If valid, this could raise doubts as to whether the study of contour integration really provides insights into the processes by which normal visual perception is achieved.

  15. The development of contour processing: evidence from physiology and psychophysics.

    PubMed

    Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.

  16. Anomalous contours and illusion of angularity: phenomenal and theoretical comparisons.

    PubMed

    Pinna, B

    1991-01-01

    Many experimental comparisons between real and anomalous contours have proven the functional equivalence of the two conditions; however, there are some contradictory findings. One of these is obtained by analyzing the anomalous contours in the light of a new illusion, called the 'illusion of angularity'. A circle becomes a polygon when it covers the centre of a radial arrangement of black stripes, and a polygon changes its perceptual shape depending on its orientation with respect to the same radial arrangement. Phenomenally, it appears like a very pointed polygon, in which every side is concave or, alternatively, a shape that looks like a circle with angles added in the spaces between the radial stripes, or a polygonal shape in which every side is convex. The reciprocal anomalous counterparts of these conditions, obtained by removing the geometrical/polygonal contours, reveal different results. In the first case, one sees a perfect circle; in the second case, a polygon with blunted vertices, or a circular shape with angular protrusions; in the third case, a deformed circle. These results are inconsistent with some theoretical models proposed to explain the emergence of anomalous contours, namely, all the top-down models expressed in terms of cognitive constructions and perceptual hypotheses, or in terms of global figural organizations. Rather, these comparisons suggest a different interpretation for the two phenomena (the illusion of angularity and anomalous contours). This interpretation is based on dynamic interactions or on network computations that synthesize both real and anomalous contours.

  17. A review: aluminum nitride MEMS contour-mode resonator

    NASA Astrophysics Data System (ADS)

    Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning

    2016-10-01

    Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).

  18. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    PubMed Central