Science.gov

Sample records for active contours peyman

  1. Harmonic active contours.

    PubMed

    Estellers, Virginia; Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2014-01-01

    We propose a segmentation method based on the geometric representation of images as 2-D manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set function and the objective functional corresponds to the surface of the image manifold. In this geometric framework, both data-fidelity and regularity terms of the segmentation are represented by a single functional that intrinsically aligns the gradients of the level set function with the gradients of the image and results in a segmentation criterion that exploits the directional information of image gradients to overcome image inhomogeneities and fragmented contours. The proposed formulation combines this robust alignment of gradients with attractive properties of previous methods developed in the same geometric framework: 1) the natural coupling of image channels proposed for anisotropic diffusion and 2) the ability of subjective surfaces to detect weak edges and close fragmented boundaries. The potential of such a geometric approach lies in the general definition of Riemannian manifolds, which naturally generalizes existing segmentation methods (the geodesic active contours, the active contours without edges, and the robust edge integrator) to higher dimensional spaces, non-flat images, and feature spaces. Our experiments show that the proposed technique improves the segmentation of multi-channel images, images subject to inhomogeneities, and images characterized by geometric structures like ridges or valleys.

  2. Finsler Active Contours

    PubMed Central

    Melonakos, John; Pichon, Eric; Angenent, Sigurd; Tannenbaum, Allen

    2009-01-01

    In this paper, we propose an image segmentation technique based on augmenting the conformal (or geodesic) active contour framework with directional information. In the isotropic case, the euclidean metric is locally multiplied by a scalar conformal factor based on image information such that the weighted length of curves lying on points of interest (typically edges) is small. The conformal factor that is chosen depends only upon position and is in this sense isotropic. Although directional information has been studied previously for other segmentation frameworks, here, we show that if one desires to add directionality in the conformal active contour framework, then one gets a well-defined minimization problem in the case that the factor defines a Finsler metric. Optimal curves may be obtained using the calculus of variations or dynamic programming-based schemes. Finally, we demonstrate the technique by extracting roads from aerial imagery, blood vessels from medical angiograms, and neural tracts from diffusion-weighted magnetic resonance imagery. PMID:18195436

  3. Integrated active contours for texture segmentation.

    PubMed

    Sagiv, Chen; Sochen, Nir A; Zeevi, Yehoshua Y

    2006-06-01

    We address the issue of textured image segmentation in the context of the Gabor feature space of images. Gabor filters tuned to a set of orientations, scales and frequencies are applied to the images to create the Gabor feature space. A two-dimensional Riemannian manifold of local features is extracted via the Beltrami framework. The metric of this surface provides a good indicator of texture changes and is used, therefore, in a Beltrami-based diffusion mechanism and in a geodesic active contours algorithm for texture segmentation. The performance of the proposed algorithm is compared with that of the edgeless active contours algorithm applied for texture segmentation. Moreover, an integrated approach, extending the geodesic and edgeless active contours approaches to texture segmentation, is presented. We show that combining boundary and region information yields more robust and accurate texture segmentation results. PMID:16764287

  4. CONTOUR

    SciTech Connect

    Pelessone, D. )

    1993-11-01

    CONTOUR is an in-house computer program which is used at General Atomics to generate contour plots of analysis results obtained from various finite element codes used in stress and thermal analysis of core fuel blocks. The program provides contour and fringe plots of the results in either black and white or color. The input data for CONTOUR is CONDRUM, a word addressable file generated by codes which contain element stresses and nodal displacements such as TWOD and PRINT2. TWOD is a finite element program for linear and nonlinear stress analysis of two-dimensional and axisymetric solids. PRINT2 is an output processor code for printing data.

  5. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate. PMID:24111015

  6. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  7. A shape constrained parametric active contour model for breast contour detection.

    PubMed

    Lee, Juhun; Muralidhar, Gautam S; Reece, Gregory P; Markey, Mia K

    2012-01-01

    Quantitative measures of breast morphology can help a breast cancer survivor to understand outcomes of reconstructive surgeries. One bottleneck of quantifying breast morphology is that there are only a few reliable automation algorithms for detecting the breast contour. This study proposes a novel approach for detecting the breast contour, which is based on a parametric active contour model. In addition to employing the traditional parametric active contour model, the proposed approach enforces a mathematical shape constraint based on the catenary curve, which has been previously shown to capture the overall shape of the breast contour reliably. The mathematical shape constraint regulates the evolution of the active contour and helps the contour evolve towards the breast, while minimizing the undesired effects of other structures such as, the nipple/areola and scars. The efficacy of the proposed approach was evaluated on anterior posterior photographs of women who underwent or were scheduled for breast reconstruction surgery including autologous tissue reconstruction. The proposed algorithm shows promising results for detecting the breast contour.

  8. Group average difference: a termination criterion for active contour.

    PubMed

    Chuah, Tong Kuan; Lim, Jun Hong; Poh, Chueh Loo

    2012-04-01

    This paper presents a termination criterion for active contour that does not involve alteration of the energy functional. The criterion is based on the area difference of the contour during evolution. In this criterion, the evolution of the contour terminates when the area difference fluctuates around a constant. The termination criterion is tested using parametric gradient vector flow active contour with contour resampling and normal force selection. The usefulness of the criterion is shown through its trend, speed, accuracy, shape insensitivity, and insensitivity to contour resampling. The metric used in the proposed criterion demonstrated a steadily decreasing trend. For automatic implementation in which different shapes need to be segmented, the proposed criterion demonstrated almost 50% and 60% total time reduction while achieving similar accuracy as compared with the pixel movement-based method in the segmentation of synthetic and real medical images, respectively. Our results also show that the proposed termination criterion is insensitive to shape variation and contour resampling. The criterion also possesses potential to be used for other kinds of snakes.

  9. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  10. A Vessel Active Contour Model for Vascular Segmentation

    PubMed Central

    Chen, Qingli; Wang, Wei; Peng, Yu; Wang, Qingjun; Wu, Zhongke; Zhou, Mingquan

    2014-01-01

    This paper proposes a vessel active contour model based on local intensity weighting and a vessel vector field. Firstly, the energy function we define is evaluated along the evolving curve instead of all image points, and the function value at each point on the curve is based on the interior and exterior weighted means in a local neighborhood of the point, which is good for dealing with the intensity inhomogeneity. Secondly, a vascular vector field derived from a vesselness measure is employed to guide the contour to evolve along the vessel central skeleton into thin and weak vessels. Thirdly, an automatic initialization method that makes the model converge rapidly is developed, and it avoids repeated trails in conventional local region active contour models. Finally, a speed-up strategy is implemented by labeling the steadily evolved points, and it avoids the repeated computation of these points in the subsequent iterations. Experiments using synthetic and real vessel images validate the proposed model. Comparisons with the localized active contour model, local binary fitting model, and vascular active contour model show that the proposed model is more accurate, efficient, and suitable for extraction of the vessel tree from different medical images. PMID:25101262

  11. An Investigation of Implicit Active Contours for Scientific Image Segmentation

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2003-10-29

    The use of partial differential equations in image processing has become an active area of research in the last few years. In particular, active contours are being used for image segmentation, either explicitly as snakes, or implicitly through the level set approach. In this paper, we consider the use of the implicit active contour approach for segmenting scientific images of pollen grains obtained using a scanning electron microscope. Our goal is to better understand the pros and cons of these techniques and to compare them with the traditional approaches such as the Canny and SUSAN edge detectors. The preliminary results of our study show that the level set method is computationally expensive and requires the setting of several different parameters. However, it results in closed contours, which may be useful in separating objects from the background in an image.

  12. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  13. Segmentation of intensity inhomogeneous brain MR images using active contours.

    PubMed

    Akram, Farhan; Kim, Jeong Heon; Lim, Han Ul; Choi, Kwang Nam

    2014-01-01

    Segmentation of intensity inhomogeneous regions is a well-known problem in image analysis applications. This paper presents a region-based active contour method for image segmentation, which properly works in the context of intensity inhomogeneity problem. The proposed region-based active contour method embeds both region and gradient information unlike traditional methods. It contains mainly two terms, area and length, in which the area term practices a new region-based signed pressure force (SPF) function, which utilizes mean values from a certain neighborhood using the local binary fitted (LBF) energy model. In turn, the length term uses gradient information. The novelty of our method is to locally compute new SPF function, which uses local mean values and is able to detect boundaries of the homogenous regions. Finally, a truncated Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The proposed method targets the segmentation problem of intensity inhomogeneous images and reduces the time complexity among locally computed active contour methods. The experimental results show that the proposed method yields better segmentation result as well as less time complexity compared with the state-of-the-art active contour methods. PMID:25143780

  14. Active contours for localizing polyps in colonoscopic NBI image data

    NASA Astrophysics Data System (ADS)

    Breier, Matthias; Gross, Sebastian; Behrens, Alexander; Stehle, Thomas; Aach, Til

    2011-03-01

    Colon cancer is the third most common type of cancer in the United States of America. Every year about 140,000 people are newly diagnosed with colon cancer. Early detection is crucial for a successful therapy. The standard screening procedure is called colonoscopy. Using this endoscopic examination physicians can find colon polyps and remove them if necessary. Adenomatous colon polyps are deemed a preliminary stage of colon cancer. The removal of a polyp, though, can lead to complications like severe bleedings or colon perforation. Thus, only polyps diagnosed as adenomatous should be removed. To decide whether a polyp is adenomatous the polyp's surface structure including vascular patterns has to be inspected. Narrow-Band imaging (NBI) is a new tool to improve visibility of vascular patterns of the polyps. The first step for an automatic polyp classification system is the localization of the polyp. We investigate active contours for the localization of colon polyps in NBI image data. The shape of polyps, though roughly approximated by an elliptic form, is highly variable. Active contours offer the flexibility to adapt to polyp variation well. To avoid clustering of contour polygon points we propose the application of active rays. The quality of the results was evaluated based on manually segmented polyps as ground truth data. The results were compared to a template matching approach and to the Generalized Hough Transform. Active contours are superior to the Hough transform and perform equally well as the template matching approach.

  15. Multiple LREK active contours for knee meniscus ultrasound image segmentation.

    PubMed

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; George, John; Supriyanto, Eko; Lai, Khin W

    2015-10-01

    Quantification of knee meniscus degeneration and displacement in an ultrasound image requires simultaneous segmentation of femoral condyle, meniscus, and tibial plateau in order to determine the area and the position of the meniscus. In this paper, we present an active contour for image segmentation that uses scalable local regional information on expandable kernel (LREK). It includes using a strategy to adapt the size of a local window in order to avoid being confined locally in a homogeneous region during the segmentation process. We also provide a multiple active contours framework called multiple LREK (MLREK) to deal with multiple object segmentation without merging and overlapping between the neighboring contours in the shared boundaries of separate regions. We compare its performance to other existing active contour models and show an improvement offered by our model. We then investigate the choice of various parameters in the proposed framework in response to the segmentation outcome. Dice coefficient and Hausdorff distance measures over a set of real knee meniscus ultrasound images indicate a potential application of MLREK for assessment of knee meniscus degeneration and displacement. PMID:25910057

  16. Gallbladder shape extraction from ultrasound images using active contour models.

    PubMed

    Ciecholewski, Marcin; Chochołowicz, Jakub

    2013-12-01

    Gallbladder function is routinely assessed using ultrasonographic (USG) examinations. In clinical practice, doctors very often analyse the gallbladder shape when diagnosing selected disorders, e.g. if there are turns or folds of the gallbladder, so extracting its shape from USG images using supporting software can simplify a diagnosis that is often difficult to make. The paper describes two active contour models: the edge-based model and the region-based model making use of a morphological approach, both designed for extracting the gallbladder shape from USG images. The active contour models were applied to USG images without lesions and to those showing specific disease units, namely, anatomical changes like folds and turns of the gallbladder as well as polyps and gallstones. This paper also presents modifications of the edge-based model, such as the method for removing self-crossings and loops or the method of dampening the inflation force which moves nodes if they approach the edge being determined. The user is also able to add a fragment of the approximated edge beyond which neither active contour model will move if this edge is incomplete in the USG image. The modifications of the edge-based model presented here allow more precise results to be obtained when extracting the shape of the gallbladder from USG images than if the morphological model is used.

  17. Active contour approach for accurate quantitative airway analysis

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Slabaugh, Greg G.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2008-03-01

    Chronic airway disease causes structural changes in the lungs including peribronchial thickening and airway dilatation. Multi-detector computed tomography (CT) yields detailed near-isotropic images of the lungs, and thus the potential to obtain quantitative measurements of lumen diameter and airway wall thickness. Such measurements would allow standardized assessment, and physicians to diagnose and locate airway abnormalities, adapt treatment, and monitor progress over time. However, due to the sheer number of airways per patient, systematic analysis is infeasible in routine clinical practice without automation. We have developed an automated and real-time method based on active contours to estimate both airway lumen and wall dimensions; the method does not require manual contour initialization but only a starting point on the targeted airway. While the lumen contour segmentation is purely region-based, the estimation of the outer diameter considers the inner wall segmentation as well as local intensity variation, in order anticipate the presence of nearby arteries and exclude them. These properties make the method more robust than the Full-Width Half Maximum (FWHM) approach. Results are demonstrated on a phantom dataset with known dimensions and on a human dataset where the automated measurements are compared against two human operators. The average error on the phantom measurements was 0.10mm and 0.14mm for inner and outer diameters, showing sub-voxel accuracy. Similarly, the mean variation from the average manual measurement was 0.14mm and 0.18mm for inner and outer diameters respectively.

  18. Gallbladder Boundary Segmentation from Ultrasound Images Using Active Contour Model

    NASA Astrophysics Data System (ADS)

    Ciecholewski, Marcin

    Extracting the shape of the gallbladder from an ultrasonography (US) image allows superfluous information which is immaterial in the diagnostic process to be eliminated. In this project an active contour model was used to extract the shape of the gallbladder, both for cases free of lesions, and for those showing specific disease units, namely: lithiasis, polyps and changes in the shape of the organ, such as folds or turns of the gallbladder. The approximate shape of the gallbladder was found by applying the motion equation model. The tests conducted have shown that for the 220 US images of the gallbladder, the area error rate (AER) amounted to 18.15%.

  19. Segmentation of Coronal Holes Using Active Contours Without Edges

    NASA Astrophysics Data System (ADS)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-09-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  20. Segmentation of Coronal Holes Using Active Contours Without Edges

    NASA Astrophysics Data System (ADS)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  1. Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint.

    PubMed

    Appia, Vikram; Yezzi, Anthony

    2011-11-01

    We present an active geodesic contour model in which we constrain the evolving active contour to be a geodesic with respect to a weighted edge-based energy through its entire evolution rather than just at its final state (as in the traditional geodesic active contour models). Since the contour is always a geodesic throughout the evolution, we automatically get local optimality with respect to an edge fitting criterion. This enables us to construct a purely region-based energy minimization model without having to devise arbitrary weights in the combination of our energy function to balance edge-based terms with the region-based terms. We show that this novel approach of combining edge information as the geodesic constraint in optimizing a purely region-based energy yields a new class of active contours which exhibit both local and global behaviors that are naturally responsive to intuitive types of user interaction. We also show the relationship of this new class of globally constrained active contours with traditional minimal path methods, which seek global minimizers of purely edge-based energies without incorporating region-based criteria. Finally, we present some numerical examples to illustrate the benefits of this approach over traditional active contour models.

  2. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  3. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. PMID:23288333

  4. Implicit active contours for automatic brachytherapy seed segmentation in fluoroscopy

    NASA Astrophysics Data System (ADS)

    Moult, Eric; Burdette, Clif; Song, Danny; Fichtinger, Gabor; Fallavollita, Pascal

    2012-02-01

    Motivation: In prostate brachytherapy, intra-operative dosimetry would be ideal to allow for rapid evaluation of the implant quality while the patient is still in the treatment position. Such a mechanism, however, requires 3-D visualization of the currently deposited seeds relative to the prostate. Thus, accurate, robust, and fully-automatic seed segmentation is of critical importance in achieving intra-operative dosimetry. Methodology: Implanted brachytherapy seeds are segmented by utilizing a region-based implicit active contour approach. Overlapping seed clusters are then resolved using a simple yet effective declustering technique. Results: Ground-truth seed coordinates were obtained via a published segmentation technique. A total of 248 clinical C-arm images from 16 patients were used to validate the proposed algorithm resulting in a 98.4% automatic detection rate with a corresponding 2.5% false-positive rate. The overall mean centroid error between the ground-truth and automatic segmentations was measured to be 0.42 pixels, while the mean centroid error for overlapping seed clusters alone was measured to be 0.67 pixels. Conclusion: Based on clinical data evaluation and validation, robust, accurate, and fully-automatic brachytherapy seed segmentation can be achieved through the implicit active contour framework and subsequent seed declustering method.

  5. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm.

    PubMed

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-02-15

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation.

  6. Convolutional virtual electric field for image segmentation using active contours.

    PubMed

    Wang, Yuanquan; Zhu, Ce; Zhang, Jiawan; Jian, Yuden

    2014-01-01

    Gradient vector flow (GVF) is an effective external force for active contours; however, it suffers from heavy computation load. The virtual electric field (VEF) model, which can be implemented in real time using fast Fourier transform (FFT), has been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related to the vector field convolution (VFC) model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence, subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving. Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these advantages of the CONVEF model on both synthetic and natural images. PMID:25360586

  7. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  8. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  9. COMBINING ATLAS AND ACTIVE CONTOUR FOR AUTOMATIC 3D MEDICAL IMAGE SEGMENTATION.

    PubMed

    Gao, Yi; Tannenbaum, Allen

    2011-01-01

    Atlas based methods and active contours are two families of techniques widely used for the task of 3D medical image segmentation. In this work we present a coupled framework where the two methods are combined together, in order to exploit each's advantage while avoid their respective drawbacks. Indeed, the atlas based methods lacks the flexibility in locally tuning the segmentation boundary; whereas the active contour has the drawback that the final result heavily depends on the initialization as well as the contour evolution energy functional. Therefore, in the proposed work, the atlas based segmentation provides a probability map, which not only supplies the initial contour position, but also defines the contour evolution energy in an on-line fashion. Afterward, the active contour further converges to the desired object boundary. Finally, the method is tested on various 3D medical images to demonstrate its robustness as well as accuracy.

  10. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  11. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  12. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  13. An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models.

    PubMed

    Vard, Alireza; Jamshidi, Kamal; Movahhedinia, Naser

    2012-06-01

    This paper presents a fully automated approach to detect the intima and media-adventitia borders in intravascular ultrasound images based on parametric active contour models. To detect the intima border, we compute a new image feature applying a combination of short-term autocorrelations calculated for the contour pixels. These feature values are employed to define an energy function of the active contour called normalized cumulative short-term autocorrelation. Exploiting this energy function, the intima border is separated accurately from the blood region contaminated by high speckle noise. To extract media-adventitia boundary, we define a new form of energy function based on edge, texture and spring forces for the active contour. Utilizing this active contour, the media-adventitia border is identified correctly even in presence of branch openings and calcifications. Experimental results indicate accuracy of the proposed methods. In addition, statistical analysis demonstrates high conformity between manual tracing and the results obtained by the proposed approaches.

  14. Rapid Activation of Motor Responses by Illusory Contours

    ERIC Educational Resources Information Center

    Seydell-Greenwald, Anna; Schmidt, Thomas

    2012-01-01

    Whereas physiological studies indicate that illusory contours (ICs) are signaled in early visual areas at short latencies, behavioral studies are divided as to whether IC processing can proceed in a fast, automatic, bottom-up manner or whether it requires extensive top-down intracortical feedback or even awareness and cognition. Here, we employ a…

  15. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  16. Medical Image Segmentation Based on a Hybrid Region-Based Active Contour Model

    PubMed Central

    Liu, Tingting; Xu, Haiyong; Liu, Zhen; Zhao, Yiming; Tian, Wenzhe

    2014-01-01

    A novel hybrid region-based active contour model is presented to segment medical images with intensity inhomogeneity. The energy functional for the proposed model consists of three weighted terms: global term, local term, and regularization term. The total energy is incorporated into a level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Experiments on some synthetic and real images demonstrate that our model is more efficient compared with the localizing region-based active contours (LRBAC) method, proposed by Lankton, and more robust compared with the Chan-Vese (C-V) active contour model. PMID:25028593

  17. Evaluating geodesic active contours in microcalcifications segmentation on mammograms.

    PubMed

    Duarte, Marcelo A; Alvarenga, Andre V; Azevedo, Carolina M; Calas, Maria Julia G; Infantosi, Antonio F C; Pereira, Wagner C A

    2015-12-01

    Breast cancer is the most commonly occurring type of cancer among women, and it is the major cause of female cancer-related deaths worldwide. Its incidence is increasing in developed as well as developing countries. Efficient strategies to reduce the high death rates due to breast cancer include early detection and tumor removal in the initial stages of the disease. Clinical and mammographic examinations are considered the best methods for detecting the early signs of breast cancer; however, these techniques are highly dependent on breast characteristics, equipment quality, and physician experience. Computer-aided diagnosis (CADx) systems have been developed to improve the accuracy of mammographic diagnosis; usually such systems may involve three steps: (i) segmentation; (ii) parameter extraction and selection of the segmented lesions and (iii) lesions classification. Literature considers the first step as the most important of them, as it has a direct impact on the lesions characteristics that will be used in the further steps. In this study, the original contribution is a microcalcification segmentation method based on the geodesic active contours (GAC) technique associated with anisotropic texture filtering as well as the radiologists' knowledge. Radiologists actively participate on the final step of the method, selecting the final segmentation that allows elaborating an adequate diagnosis hypothesis with the segmented microcalcifications presented in a region of interest (ROI). The proposed method was assessed by employing 1000 ROIs extracted from images of the Digital Database for Screening Mammography (DDSM). For the selected ROIs, the rate of adequately segmented microcalcifications to establish a diagnosis hypothesis was at least 86.9%, according to the radiologists. The quantitative test, based on the area overlap measure (AOM), yielded a mean of 0.52±0.20 for the segmented images, when all 2136 segmented microcalcifications were considered. Moreover, a

  18. [Segmentation of medical images based on dyadic wavelet transform and active contour model].

    PubMed

    Li, Hong; Wang, Huinan; Chang, Linfeng; Shao, Xiaoli

    2008-12-01

    The interference of noise and the weak edge characteristic of symptom information on medical images prevent the traditional methods of segmentation from having good effects. In this paper is proposed a boundary detection method of focus which is based on dyadic wavelet transform and active contour model. In this method, the true edge points are detected by dyadic wavelet transform and linked by improved fast active contour model algorithm. The result of experiment on MRI of brain shows that the method can remove the influence of noise effective and detect the contour of brain tumor actually. PMID:19166191

  19. Brain MR image segmentation using local and global intensity fitting active contours/surfaces.

    PubMed

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2008-01-01

    In this paper, we present an improved region-based active contour/surface model for 2D/3D brain MR image segmentation. Our model combines the advantages of both local and global intensity information, which enable the model to cope with intensity inhomogeneity. We define an energy functional with a local intensity fitting term and an auxiliary global intensity fitting term. In the associated curve evolution, the motion of the contour is driven by a local intensity fitting force and a global intensity fitting force, induced by the local and global terms in the proposed energy functional, respectively. The influence of these two forces on the curve evolution is complementary. When the contour is close to object boundaries, the local intensity fitting force became dominant, which attracts the contour toward object boundaries and finally stops the contour there. The global intensity fitting force is dominant when the contour is far away from object boundaries, and it allows more flexible initialization of contours by using global image information. The proposed model has been applied to both 2D and 3D brain MR image segmentation with promising results.

  20. A partition-based active contour model incorporating local information for image segmentation.

    PubMed

    Shi, Jiao; Wu, Jiaji; Paul, Anand; Jiao, Licheng; Gong, Maoguo

    2014-01-01

    Active contour models are always designed on the assumption that images are approximated by regions with piecewise-constant intensities. This assumption, however, cannot be satisfied when describing intensity inhomogeneous images which frequently occur in real world images and induced considerable difficulties in image segmentation. A milder assumption that the image is statistically homogeneous within different local regions may better suit real world images. By taking local image information into consideration, an enhanced active contour model is proposed to overcome difficulties caused by intensity inhomogeneity. In addition, according to curve evolution theory, only the region near contour boundaries is supposed to be evolved in each iteration. We try to detect the regions near contour boundaries adaptively for satisfying the requirement of curve evolution theory. In the proposed method, pixels within a selected region near contour boundaries have the opportunity to be updated in each iteration, which enables the contour to be evolved gradually. Experimental results on synthetic and real world images demonstrate the advantages of the proposed model when dealing with intensity inhomogeneity images.

  1. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  2. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours.

    PubMed

    Abdelsamea, Mohammed M; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  3. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    PubMed Central

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  4. Method for non-referential defect characterization using fractal encoding and active contours

    DOEpatents

    Gleason, Shaun S.; Sari-Sarraf, Hamed

    2007-05-15

    A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.

  5. Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation

    PubMed Central

    Soomro, Shafiullah; Kim, Jeong Heon; Soomro, Toufique Ahmed

    2016-01-01

    This paper introduces an improved region based active contour method with a level set formulation. The proposed energy functional integrates both local and global intensity fitting terms in an additive formulation. Local intensity fitting term influences local force to pull the contour and confine it to object boundaries. In turn, the global intensity fitting term drives the movement of contour at a distance from the object boundaries. The global intensity term is based on the global division algorithm, which can better capture intensity information of an image than Chan-Vese (CV) model. Both local and global terms are mutually assimilated to construct an energy function based on a level set formulation to segment images with intensity inhomogeneity. Experimental results show that the proposed method performs better both qualitatively and quantitatively compared to other state-of-the-art-methods. PMID:27800011

  6. Comparison of segmentation using fast marching and geodesic active contours methods for bone

    NASA Astrophysics Data System (ADS)

    Bilqis, A.; Widita, R.

    2016-03-01

    Image processing is important in diagnosing diseases or damages of human organs. One of the important stages of image processing is segmentation process. Segmentation is a separation process of the image into regions of certain similar characteristics. It is used to simplify the image to make an analysis easier. The case raised in this study is image segmentation of bones. Bone's image segmentation is a way to get bone dimensions, which is needed in order to make prosthesis that is used to treat broken or cracked bones. Segmentation methods chosen in this study are fast marching and geodesic active contours. This study uses ITK (Insight Segmentation and Registration Toolkit) software. The success of the segmentation was then determined by calculating its accuracy, sensitivity, and specificity. Based on the results, the Active Contours method has slightly higher accuracy and sensitivity values than the fast marching method. As for the value of specificity, fast marching has produced three image results that have higher specificity values compared to those of geodesic active contour's. The result also indicates that both methods have succeeded in performing bone's image segmentation. Overall, geodesic active contours method is quite better than fast marching in segmenting bone images.

  7. Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow

    PubMed Central

    Michailovich, Oleg; Rathi, Yogesh; Tannenbaum, Allen

    2013-01-01

    This paper addresses the problem of image segmentation by means of active contours, whose evolution is driven by the gradient flow derived from an energy functional that is based on the Bhattacharyya distance. In particular, given the values of a photometric variable (or of a set thereof), which is to be used for classifying the image pixels, the active contours are designed to converge to the shape that results in maximal discrepancy between the empirical distributions of the photometric variable inside and outside of the contours. The above discrepancy is measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the problem at hand. The proposed methodology can be viewed as a generalization of the segmentation methods, in which active contours maximize the difference between a finite number of empirical moments of the “inside” and “outside” distributions. Furthermore, it is shown that the proposed methodology is very versatile and flexible in the sense that it allows one to easily accommodate a diversity of the image features based on which the segmentation should be performed. As an additional contribution, a method for automatically adjusting the smoothness properties of the empirical distributions is proposed. Such a procedure is crucial in situations when the number of data samples (supporting a certain segmentation class) varies considerably in the course of the evolution of the active contour. In this case, the smoothness properties of the empirical distributions have to be properly adjusted to avoid either over- or underestimation artifacts. Finally, a number of relevant segmentation results are demonstrated and some further research directions are discussed. PMID:17990755

  8. Liver segmentation with new supervised method to create initial curve for active contour.

    PubMed

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations. PMID:27286186

  9. Active-contour-model-based edge restriction and attraction field regularization for brain MRI segmentation

    NASA Astrophysics Data System (ADS)

    Luan, H.; Qi, Feihu

    2004-11-01

    Constructing 3D models of the object of interest from brain MRI is useful in numerous biomedical imaging application. In general, the construction of the 3D models is generally carried out according to the contours obtained from a 2D segmentation of each MR slice, so the equality of the 3D model strongly depends on the precision of the segmentation process. Active contour model is an effective edge-based method in segmenting an object of interest. However, its application, which segment boundary of anatomical structure of brain MRI, encounters many difficulties due to undesirable properties of brain MRI, for example complex background, intensity inhomogeneity and discontinuous edges. This paper proposes an active contour model to solve the problems of automatically segmenting the object of interest from a brain MRI. In this proposed algorithm, a new method of calculating attraction field has been developed. This method is based on edge restriction and attraction field regularization. Edge restriction introduces prior knowledge about the object of interest to free contours of being affected by edges of other anatomical structures or spurious edges, while attraction field regularization enables our algorithm to extract boundary correctly even at the place, where the edge of object of interest is discontinuous, by diffusing the edge information gotten after edge restriction. When we apply this proposed algorithm to brain MRI, the result shows this proposed algorithm could overcome those difficulties we mentioned above and convergence to object boundary quickly and accurately.

  10. Liver segmentation with new supervised method to create initial curve for active contour.

    PubMed

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations.

  11. An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours.

    PubMed

    Martín-Fernández, Marcos; Alberola-López, Carlos

    2005-02-01

    In this paper, a novel method for the boundary detection of human kidneys from three dimensional (3D) ultrasound (US) is proposed. The inherent difficulty of interpretation of such images, even by a trained expert, makes the problem unsuitable for classical methods. The method here proposed finds the kidney contours in each slice. It is a probabilistic Bayesian method. The prior defines a Markov field of deformations and imposes the restriction of contour smoothness. The likelihood function imposes a probabilistic behavior to the data, conditioned to the contour position. This second function, which is also Markov, uses an empirical model of distribution of the echographical data and a function of the gradient of the data. The model finally includes, as a volumetric extension of the prior, a term that forces smoothness along the depth coordinate. The experiments that have been carried out on echographies from real patients validate the model here proposed. A sensitivity analysis of the model parameters has also been carried out.

  12. An efficient topology adaptation system for parametric active contour segmentation of 3D images

    NASA Astrophysics Data System (ADS)

    Abhau, Jochen; Scherzer, Otmar

    2008-03-01

    Active contour models have already been used succesfully for segmentation of organs from medical images in 3D. In implicit models, the contour is given as the isosurface of a scalar function, and therefore topology adaptations are handled naturally during a contour evolution. Nevertheless, explicit or parametric models are often preferred since user interaction and special geometric constraints are usually easier to incorporate. Although many researchers have studied topology adaptation algorithms in explicit mesh evolutions, no stable algorithm is known for interactive applications. In this paper, we present a topology adaptation system, which consists of two novel ingredients: A spatial hashing technique is used to detect self-colliding triangles of the mesh whose expected running time is linear with respect to the number of mesh vertices. For the topology change procedure, we have developed formulas by homology theory. During a contour evolution, we just have to choose between a few possible mesh retriangulations by local triangle-triangle intersection tests. Our algorithm has several advantages compared to existing ones: Since the new algorithm does not require any global mesh reparametrizations, it is very efficient. Since the topology adaptation system does not require constant sampling density of the mesh vertices nor especially smooth meshes, mesh evolution steps can be performed in a stable way with a rather coarse mesh. We apply our algorithm to 3D ultrasonic data, showing that accurate segmentation is obtained in some seconds.

  13. An active contour model algorithm for tracking endocardiac boundaries in echocardiographic sequences.

    PubMed

    Sánchez, P J; Zapata, J; Ruiz, R

    2000-01-01

    The use of active contour models to track the boundaries of anatomic structures in medical images is a technique that has attracted a great number of efforts during the last decade. Segmentation techniques based in deformable active contours were proposed first by Kass et al. Because of the problems appearing using these models, some solutions have been introduced, such as balloon force or Gradient Vector Flow force (GVF), derived from the Gradient Vector Flow vectorial field. Results obtained with these forces in the tracking endocardiac task in echocardiographic sequences were not adequate. We have designed a new external force called hybrid force, which, by combining both forces, joins the main features of each one.

  14. A novel content-based active contour model for brain tumor segmentation.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2012-06-01

    Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. PMID:22459443

  15. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  16. TWO NOVEL ACM (ACTIVE CONTOUR MODEL) METHODS FOR INTRAVASCULAR ULTRASOUND IMAGE SEGMENTATION

    SciTech Connect

    Chen, Chi Hau; Potdat, Labhesh; Chittineni, Rakesh

    2010-02-22

    One of the attractive image segmentation methods is the Active Contour Model (ACM) which has been widely used in medical imaging as it always produces sub-regions with continuous boundaries. Intravascular ultrasound (IVUS) is a catheter based medical imaging technique which is used for quantitative assessment of atherosclerotic disease. Two methods of ACM realizations are presented in this paper. The gradient descent flow based on minimizing energy functional can be used for segmentation of IVUS images. However this local operation alone may not be adequate to work with the complex IVUS images. The first method presented consists of basically combining the local geodesic active contours and global region-based active contours. The advantage of combining the local and global operations is to allow curves deforming under the energy to find only significant local minima and delineate object borders despite noise, poor edge information and heterogeneous intensity profiles. Results for this algorithm are compared to standard techniques to demonstrate the method's robustness and accuracy. In the second method, the energy function is appropriately modified and minimized using a Hopfield neural network. Proper modifications in the definition of the bias of the neurons have been introduced to incorporate image characteristics. The method overcomes distortions in the expected image pattern, such as due to the presence of calcium, and employs a specialized structure of the neural network and boundary correction schemes which are based on a priori knowledge about the vessel geometry. The presented method is very fast and has been evaluated using sequences of IVUS frames.

  17. Iterative weighted average diffusion as a novel external force in the active contour model

    NASA Astrophysics Data System (ADS)

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  18. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  19. Intrinsic Bayesian Active Contours for Extraction of Object Boundaries in Images

    PubMed Central

    Srivastava, Anuj

    2010-01-01

    We present a framework for incorporating prior information about high-probability shapes in the process of contour extraction and object recognition in images. Here one studies shapes as elements of an infinite-dimensional, non-linear quotient space, and statistics of shapes are defined and computed intrinsically using differential geometry of this shape space. Prior models on shapes are constructed using probability distributions on tangent bundles of shape spaces. Similar to the past work on active contours, where curves are driven by vector fields based on image gradients and roughness penalties, we incorporate the prior shape knowledge in the form of vector fields on curves. Through experimental results, we demonstrate the use of prior shape models in the estimation of object boundaries, and their success in handling partial obscuration and missing data. Furthermore, we describe the use of this framework in shape-based object recognition or classification. PMID:21076692

  20. Automatic brain cropping enhancement using active contours initialized by a PCNN

    NASA Astrophysics Data System (ADS)

    Swathanthira Kumar, Murali Murugavel; Sullivan, John M., Jr.

    2009-02-01

    Active contours are a popular medical image segmentation strategy. However in practice, its accuracy is dependent on the initialization of the process. The PCNN (Pulse Coupled Neural Network) algorithm developed by Eckhorn to model the observed synchronization of neural assemblies in small mammals such as cats allows for segmenting regions of similar intensity but it lacks a convergence criterion. In this paper we report a novel PCNN based strategy to initialize the zero level contour for automatic brain cropping of T2 weighted MRI image volumes of Long-Evans rats. Individual 2D anatomy slices of the rat brain volume were processed by means of a PCNN and a surrogate image 'signature' was constructed for each slice. By employing a previously trained artificial neural network (ANN) an approximate PCNN iteration (binary mask) was selected. This mask was then used to initialize a region based active contour model to crop the brain region. We tested this hybrid algorithm on 30 rat brain (256*256*12) volumes and compared the results against manually cropped gold standard. The Dice and Jaccard similarity indices were used for numerical evaluation of the proposed hybrid model. The highly successful system yielded an average of 0.97 and 0.94 respectively.

  1. SEGMENTATION OF ELASTOGRAPHIC IMAGES USING A COARSE-TO-FINE ACTIVE CONTOUR MODEL

    PubMed Central

    Liu, Wu; Zagzebski, James A.; Varghese, Tomy; Dyer, Charles R.; Techavipoo, Udomchai; Hall, Timothy J.

    2006-01-01

    Delineation of radiofrequency-ablation-induced coagulation (thermal lesion) boundaries is an important clinical problem that is not well addressed by conventional imaging modalities. Elastography, which produces images of the local strain after small, externally applied compressions, can be used for visualization of thermal coagulations. This paper presents an automated segmentation approach for thermal coagulations on 3-D elastographic data to obtain both area and volume information rapidly. The approach consists of a coarse-to-fine method for active contour initialization and a gradient vector flow, active contour model for deformable contour optimization with the help of prior knowledge of the geometry of general thermal coagulations. The performance of the algorithm has been shown to be comparable to manual delineation of coagulations on elastograms by medical physicists (r = 0.99 for volumes of 36 radiofrequency-induced coagulations). Furthermore, the automatic algorithm applied to elastograms yielded results that agreed with manual delineation of coagulations on pathology images (r = 0.96 for the same 36 lesions). This algorithm has also been successfully applied on in vivo elastograms. PMID:16530098

  2. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

    PubMed

    Keshani, Mohsen; Azimifar, Zohreh; Tajeripour, Farshad; Boostani, Reza

    2013-05-01

    In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly. PMID:23369568

  3. Segmentation of Bone with Region Based Active Contour Model in PD Weighted MR Images of Shoulder

    PubMed Central

    Sezer, Aysun; Sezer, Hasan Basri; Albayrak, Songul

    2015-01-01

    Proton density (PD) weighted MR images present inhomogeneity problem, low signal to noise ratio (SNR) and cannot define bone borders clearly. Segmentation of PD weighted images is hampered with these properties of PD weighted images which even limit the visual inspection. The purpose of this study is to determine the effectiveness of segmentation of humeral head from axial PD MR images with active contour without edge (ACWE) model. We included 219 images from our original data set. We extended the use of speckle reducing anisotropic diffusion (SRAD) in PD MR images by estimation of standard deviation of noise (SDN) from ROI. To overcome the problem of initialization of the initial contour of these region based methods, the location of the initial contour was automatically determined with use of circular Hough transform. For comparison, signed pressure force (SPF), fuzzy C-means, and Gaussian mixture models were applied and segmentation results of all four methods were also compared with the manual segmentation results of an expert. Experimental results on our own database show promising results. This is the first study in the literature to segment normal and pathological humeral heads from PD weighted MR images. PMID:26064185

  4. Actin filament tracking based on particle filters and stretching open active contour models.

    PubMed

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2009-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of this approach. PMID:20426170

  5. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  6. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept.

  7. Creative Contours.

    ERIC Educational Resources Information Center

    Fashing, Edward; Appenbrink, David

    1978-01-01

    Students often have difficulty relating contour lines to the shape of a landform. This article describes the construction of a simple landform model designed to help students better understand contour lines. (MA)

  8. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    PubMed Central

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  9. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    PubMed

    Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  10. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation.

    PubMed

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2009-10-01

    In this paper, we propose an improved region-based active contour model in a variational level set formulation. We define an energy functional with a local intensity fitting term, which induces a local force to attract the contour and stops it at object boundaries, and an auxiliary global intensity fitting term, which drives the motion of the contour far away from object boundaries. Therefore, the combination of these two forces allows for flexible initialization of the contours. This energy is then incorporated into a level set formulation with a level set regularization term that is necessary for accurate computation in the corresponding level set method. The proposed model is first presented as a two-phase level set formulation and then extended to a multi-phase formulation. Experimental results show the advantages of our method in terms of accuracy and robustness. In particular, our method has been applied to brain MR image segmentation with desirable results.

  11. Automatic active contour-based segmentation and classification of carotid artery ultrasound images.

    PubMed

    Chaudhry, Asmatullah; Hassan, Mehdi; Khan, Asifullah; Kim, Jin Young

    2013-12-01

    In this paper, we present automatic image segmentation and classification technique for carotid artery ultrasound images based on active contour approach. For early detection of the plaque in carotid artery to avoid serious brain strokes, active contour-based techniques have been applied successfully to segment out the carotid artery ultrasound images. Further, ultrasound images might be affected due to rotation, scaling, or translational factors during acquisition process. Keeping in view these facts, image alignment is used as a preprocessing step to align the carotid artery ultrasound images. In our experimental study, we exploit intima-media thickness (IMT) measurement to detect the presence of plaque in the artery. Support vector machine (SVM) classification is employed using these segmented images to distinguish the normal and diseased artery images. IMT measurement is used to form the feature vector. Our proposed approach segments the carotid artery images in an automatic way and further classifies them using SVM. Experimental results show the learning capability of SVM classifier and validate the usefulness of our proposed approach. Further, the proposed approach needs minimum interaction from a user for an early detection of plaque in carotid artery. Regarding the usefulness of the proposed approach in healthcare, it can be effectively used in remote areas as a preliminary clinical step even in the absence of highly skilled radiologists.

  12. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    NASA Astrophysics Data System (ADS)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  13. Locally constrained active contour: a region-based level set for ovarian cancer metastasis segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Yao, Jianhua; Wang, Shijun; Linguraru, Marius George; Summers, Ronald M.

    2014-03-01

    Accurate segmentation of ovarian cancer metastases is clinically useful to evaluate tumor growth and determine follow-up treatment. We present a region-based level set algorithm with localization constraints to segment ovarian cancer metastases. Our approach is established on a representative region-based level set, Chan-Vese model, in which an active contour is driven by region competition. To reduce over-segmentation, we constrain the level set propagation within a narrow image band by embedding a dynamic localization function. The metastasis intensity prior is also estimated from image regions within the level set initialization. The localization function and intensity prior force the level set to stop at the desired metastasis boundaries. Our approach was validated on 19 ovarian cancer metastases with radiologist-labeled ground-truth on contrast-enhanced CT scans from 15 patients. The comparison between our algorithm and geodesic active contour indicated that the volume overlap was 75+/-10% vs. 56+/-6%, the Dice coefficient was 83+/-8% vs. 63+/-8%, and the average surface distance was 2.2+/-0.6mm vs. 4.4+/-0.9mm. Experimental results demonstrated that our algorithm outperformed traditional level set algorithms.

  14. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model

    PubMed Central

    Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  15. Tracking Epithelial Cell Junctions in C. elegans Embryogenesis With Active Contours Guided by SIFT Flow

    PubMed Central

    Lee, Chen-Yu; Gonçalves, Monira; Chisholm, Andrew D.; Cosman, Pamela C.

    2015-01-01

    Quantitative analysis of cell shape in live samples is an important goal in developmental biology. Automated or semiautomated segmentation and tracking of cell nuclei has been successfully implemented in several biological systems. Segmentation and tracking of cell surfaces has been more challenging. Here, we present a new approach to tracking cell junctions in the developing epidermis of C. elegans embryos. Epithelial junctions as visualized with DLG-1::GFP form lines at the subapical circumference of differentiated epidermal cells and delineate changes in epidermal cell shape and position. We develop and compare two approaches for junction segmentation. For the first method (projection approach), 3-D cell boundaries are projected into 2D for segmentation using active contours with a nonintersecting force, and subsequently tracked using scale-invariant feature transform (SIFT) flow. The resulting 2-D tracked boundaries are then back-projected into 3-D space. The second method (volumetric approach) uses a 3-D extended version of active contours guided by SIFT flow in 3-D space. In both methods, cell junctions are manually located at the first time point and tracked in a fully automated way for the remainder of the video. Using these methods, we have generated the first quantitative description of ventral epidermal cell movements and shape changes during epidermal enclosure. PMID:24771564

  16. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model.

    PubMed

    Feng, Changli; Zhang, Jianxun; Liang, Rui

    2015-01-01

    In order to get the extracted lung region from CT images more accurately, a model that contains lung region extraction and edge boundary correction is proposed. Firstly, a new edge detection function is presented with the help of the classic structure tensor theory. Secondly, the initial lung mask is automatically extracted by an improved active contour model which combines the global intensity information, local intensity information, the new edge information, and an adaptive weight. It is worth noting that the objective function of the improved model is converted to a convex model, which makes the proposed model get the global minimum. Then, the central airway was excluded according to the spatial context messages and the position relationship between every segmented region and the rib. Thirdly, a mesh and the fractal theory are used to detect the boundary that surrounds the juxtapleural nodule. Finally, the geometric active contour model is employed to correct the detected boundary and reinclude juxtapleural nodules. We also evaluated the performance of the proposed segmentation and correction model by comparing with their popular counterparts. Efficient computing capability and robustness property prove that our model can correct the lung boundary reliably and reproducibly. PMID:26089976

  17. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  18. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    PubMed Central

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  19. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    PubMed Central

    Bunyak, Filiz; Palaniappan, Kannappan; Nath, Sumit Kumar; Seetharaman, Gunasekaran

    2007-01-01

    This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shape-based model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations. PMID:19096530

  20. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    PubMed Central

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  1. A circumscribing active contour model for delineation of nuclei and membranes of megakaryocytes in bone marrow trephine biopsy images

    NASA Astrophysics Data System (ADS)

    Song, Tzu-Hsi; Sanchez, Victor; EIDaly, Hesham; Rajpoot, Nasir M.

    2015-03-01

    The assessment of megakaryocytes (MKs) in bone marrow trephine images is an important step in the classification of different subtypes of myeloproliferative neoplasms (MPNs). In general, bone marrow trephine images include several types of cells mixed together, which make it quite difficult to visually identify MKs. In order to aid hematopathologists in the identification and study of MKs, we develop an image processing framework with supervised machine learning approaches and a novel circumscribing active contour model to identify potential MKs and then to accurately delineate the corresponding nucleus and membrane. Specifically, a number of color and texture features are used in a nave Bayesian classifier and an Adaboost classifier to locate the regions with a high probability of depicting MKs. A region-based active contour is used on the candidate MKs to accurately delineate the boundaries of nucleus and membrane. The proposed circumscribing active contour model employs external forces not only based on pixel intensities, but also on the probabilities of depicting MKs as computed by the classifiers. Experimental results suggest that the machine learning approach can detect potential MKs with an accuracy of more than 75%. When our circumscribing active contour model is employed on the candidate MKs, the nucleus and membrane boundaries are segmented with an accuracy of more than 80% as measured by the Dice similarity coefficient. Compared to traditional region-based active contours, the use of additional external forces based on the probability of depicting MKs improves segmentation performance and computational time by an average 5%.

  2. Real-time 3D medical structure segmentation using fast evolving active contours

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Wang, Qiang; Hao, Zhihui; Xu, Kuanhong; Guo, Ping; Ren, Haibing; Jang, Wooyoung; Kim, Jung-bae

    2014-03-01

    Segmentation of 3D medical structures in real-time is an important as well as intractable problem for clinical applications due to the high computation and memory cost. We propose a novel fast evolving active contour model in this paper to reduce the requirements of computation and memory. The basic idea is to evolve the brief represented dynamic contour interface as far as possible per iteration. Our method encodes zero level set via a single unordered list, and evolves the list recursively by adding activated adjacent neighbors to its end, resulting in active parts of the zero level set moves far enough per iteration along with list scanning. To guarantee the robustness of this process, a new approximation of curvature for integer valued level set is proposed as the internal force to penalize the list smoothness and restrain the list continual growth. Besides, list scanning times are also used as an upper hard constraint to control the list growing. Together with the internal force, efficient regional and constrained external forces, whose computations are only performed along the unordered list, are also provided to attract the list toward object boundaries. Specially, our model calculates regional force only in a narrowband outside the zero level set and can efficiently segment multiple regions simultaneously as well as handle the background with multiple components. Compared with state-of-the-art algorithms, our algorithm is one-order of magnitude faster with similar segmentation accuracy and can achieve real-time performance for the segmentation of 3D medical structures on a standard PC.

  3. AUTOMATED ACTIN FILAMENT SEGMENTATION, TRACKING AND TIP ELONGATION MEASUREMENTS BASED ON OPEN ACTIVE CONTOUR MODELS.

    PubMed

    Li, Hongsheng; Shen, Tian; Smith, Matthew B; Fujiwara, Ikuko; Vavylonis, Dimitrios; Huang, Xiaolei

    2009-06-28

    This paper presents an automated method for actin filament segmentation and tracking for measuring tip elongation rates in Total Internal Reflection Fluorescence Microscopy (TIRFM) images. The main contributions of the paper are: (i) we use a novel open active contour model for filament segmentation and tracking, which is fast and robust against noise; (ii) different strategies are proposed to solve the filament intersection problem, which is shown to be the main difficulty in filament tracking; and (iii) this fully automated method avoids the need of human interaction and thus reduces required time for the entire elongation measurement process on an image sequence. Application to experimental results demonstrated the robustness and effectiveness of this method.

  4. Actin Filament Tracking Based on Particle Filters and Stretching Open Active Contour Models

    PubMed Central

    Li, Hongsheng; Shen, Tian; Vavylonis, Dimitrios; Huang, Xiaolei

    2010-01-01

    We introduce a novel algorithm for actin filament tracking and elongation measurement. Particle Filters (PF) and Stretching Open Active Contours (SOAC) work cooperatively to simplify the modeling of PF in a one-dimensional state space while naturally integrating filament body constraints to tip estimation. Existing microtubule (MT) tracking methods track either MT tips or entire bodies in high-dimensional state spaces. In contrast, our algorithm reduces the PF state spaces to one-dimensional spaces by tracking filament bodies using SOAC and probabilistically estimating tip locations along the curve length of SOACs. Experimental evaluation on TIRFM image sequences with very low SNRs demonstrates the accuracy and robustness of the proposed approach. PMID:20426170

  5. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  6. From snakes to region-based active contours defined by region-dependent parameters.

    PubMed

    Jehan-Besson, Stéphanie; Gastaud, Muriel; Precioso, Frédéric; Barlaud, Michel; Aubert, Gilles; Debreuve, Eric

    2004-01-10

    Image and sequence segmentation of a the segmentation task are discussed from the point of view of optimizing the segmentation criterion. Such a segmentation criterion involves so-called (boundary and region) descriptors, which, in general, may depend on their respective boundaries or regions. This dependency must be taken into account when one is computing the criterion derivative with respect to the unknown object domain (defined by its boundary). If this dependency not considered, some correctional terms may be omitted. Computing the derivative of the segmentation criterion with a dynamic scheme is described. The scheme is general enough to provide a framework for a wide variety of applications in segmentation. It also provides a theoretical meaning to the philosophy of active contours.

  7. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent

    PubMed Central

    GHAYOUMI ZADEH, Hossein; HADDADNIA, Javad; MONTAZERI, Alimohammad

    2016-01-01

    Background: The segmentation of cancerous areas in breast images is important for the early detection of disease. Thermal imaging has advantages, such as being non-invasive, non-radiation, passive, quick, painless, inexpensive, and non-contact. Imaging technique is the focus of this research. Methods: The proposed model in this paper is a combination of surf and corners that are very resistant. Obtained features are resistant to changes in rotation and revolution then with the help of active contours, this feature has been used for segmenting cancerous areas. Results: Comparing the obtained results from the proposed method and mammogram show that proposed method is Accurate and appropriate. Benign and malignance of segmented areas are detected by Lyapunov exponent. Values obtained include TP=91.31%, FN=8.69%, FP=7.26%. Conclusion: The proposed method can classify those abnormally segmented areas of the breast, to the Benign and malignant cancer. PMID:27398339

  8. Airborne asbestos fibers detection in microscope images using re-initialization free active contours.

    PubMed

    Theodosiou, Zenonas; Tsapatsoulis, Nicolas; Bujak-Pietrek, Stella; Szadkowska-Stanczyk, Irena

    2010-01-01

    Breathing in asbestos fibers can lead to a number of diseases, the fibers become trapped in the lung and cannot be removed by either coughing or the person's immune system. Atmospheric concentrations of carcinogenic asbestos fibers, have traditionally been measured visually using phase contrast microscopy. However, because this measurement method requires great skill, and has poor reproducibility and objectivity, the development of automatic counting methods has been long anticipated. In this paper we proposed an automated fibers detection method based on a variational formulation of geometric active contours that forces the level set function to be close to signed distance function and therefore completely eliminates the need of the costly re-initialization procedure. The method was evaluated using a ground truth of 29 manually annotated images. The results were encouraging for the further development of the proposed method.

  9. Contour complexity and contour detection.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    Itis well-known that "smooth" chains of oriented elements-contours-are more easily detected amid background noise than more undulating (i.e., "less smooth") chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process-the identification of organized patterns in the environment.

  10. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    SciTech Connect

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M.; Reamer, Courtney B.; Mohler, Emile R.

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  11. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    NASA Astrophysics Data System (ADS)

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  12. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  13. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  14. Contour complexity and contour detection

    PubMed Central

    Wilder, John; Feldman, Jacob; Singh, Manish

    2015-01-01

    It is well-known that “smooth” chains of oriented elements—contours—are more easily detected amid background noise than more undulating (i.e., “less smooth”) chains. Here, we develop a Bayesian framework for contour detection and show that it predicts that contour detection performance should decrease with the contour's complexity, quantified as the description length (DL; i.e., the negative logarithm of probability integrated along the contour). We tested this prediction in two experiments in which subjects were asked to detect simple open contours amid pixel noise. In Experiment 1, we demonstrate a consistent decline in performance with increasingly complex contours, as predicted by the Bayesian model. In Experiment 2, we confirmed that this effect is due to integrated complexity along the contour, and does not seem to depend on local stretches of linear structure. The results corroborate the probabilistic model of contours, and show how contour detection can be understood as a special case of a more general process—the identification of organized patterns in the environment. PMID:26024453

  15. Region-based geometric active contour for classification using hyperspectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Yan, Lin

    2011-12-01

    The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model

  16. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    NASA Astrophysics Data System (ADS)

    Arikidis, N. S.; Karahaliou, A.; Skiadopoulos, S.; Likaki, E.; Panagiotakis, G.; Costaridou, L.

    2009-07-01

    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98±0.81 when multiscale active rays were combined to region growing and 2.93±0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05).

  17. Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours.

    PubMed

    Molnar, Csaba; Jermyn, Ian H; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter

    2016-01-01

    The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the "gas of near circles" active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654

  18. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS

    PubMed Central

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-01-01

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain “SOAC segments”. These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  19. EXTRACTION AND ANALYSIS OF ACTIN NETWORKS BASED ON OPEN ACTIVE CONTOUR MODELS.

    PubMed

    Xu, Ting; Li, Hongsheng; Shen, Tian; Ojkic, Nikola; Vavylonis, Dimitrios; Huang, Xiaolei

    2011-03-30

    Network structures formed by actin filaments are present in many kinds of fluorescence microscopy images. In order to quantify the conformations and dynamics of such actin filaments, we propose a fully automated method to extract actin networks from images and analyze network topology. The method handles well intersecting filaments and, to some extent, overlapping filaments. First we automatically initialize a large number of Stretching Open Active Contours (SOACs) from ridge points detected by searching for plus-to-minus sign changes in the gradient map of the image. These initial SOACs then elongate simultaneously along the bright center-lines of filaments by minimizing an energy function. During their evolution, they may merge or stop growing, thus forming a network that represents the topology of the filament ensemble. We further detect junction points in the network and break the SOACs at junctions to obtain "SOAC segments". These segments are then re-grouped using a graph-cut spectral clustering method to represent the configuration of actin filaments. The proposed approach is generally applicable to extracting intersecting curvilinear structures in noisy images. We demonstrate its potential using two kinds of data: (1) actin filaments imaged by Total Internal Reflection Fluorescence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton networks in fission yeast imaged by spinning disk confocal microscopy. PMID:21822463

  20. Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours

    PubMed Central

    Molnar, Csaba; Jermyn, Ian H.; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter

    2016-01-01

    The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the “gas of near circles” active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654

  1. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    PubMed

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  2. Algorithm for quantifying advanced carotid artery atherosclerosis in humans using MRI and active contours

    NASA Astrophysics Data System (ADS)

    Adams, Gareth; Vick, G. W., III; Bordelon, Cassius; Insull, William; Morrisett, Joel

    2002-05-01

    A new algorithm for measuring carotid artery volumes and estimating atherosclerotic plaque volumes from MRI images has been developed and validated using pressure-perfusion-fixed cadaveric carotid arteries. Our method uses an active contour algorithm with the generalized gradient vector field force as the external force to localize the boundaries of the artery on each MRI cross-section. Plaque volume is estimated by an automated algorithm based on estimating the normal wall thickness for each branch of the carotid. Triplicate volume measurements were performed by a single observer on thirty-eight pairs of cadaveric carotid arteries. The coefficient of variance (COV) was used to quantify measurement reproducibility. Aggregate volumes were computed for nine contiguous slices bounding the carotid bifurcation. The median (mean +/- SD) COV for the 76 aggregate arterial volumes was 0.93% (1.47% +/- 1.52%) for the lumen volume, 0.95% (1.06% +/- 0.67%) for the total artery volume, and 4.69% (5.39% +/- 3.97%) for the plaque volume. These results indicate that our algorithm provides repeatable measures of arterial volumes and a repeatable estimate of plaque volume of cadaveric carotid specimens through analysis of MRI images. The algorithm also significantly decreases the amount of time necessary to generate these measurements.

  3. Contour adaptation.

    PubMed

    Anstis, Stuart

    2013-01-01

    It is known that adaptation to a disk that flickers between black and white at 3-8 Hz on a gray surround renders invisible a congruent gray test disk viewed afterwards. This is contrast adaptation. We now report that adapting simply to the flickering circular outline of the disk can have the same effect. We call this "contour adaptation." This adaptation does not transfer interocularly, and apparently applies only to luminance, not color. One can adapt selectively to only some of the contours in a display, making only these contours temporarily invisible. For instance, a plaid comprises a vertical grating superimposed on a horizontal grating. If one first adapts to appropriate flickering vertical lines, the vertical components of the plaid disappears and it looks like a horizontal grating. Also, we simulated a Cornsweet (1970) edge, and we selectively adapted out the subjective and objective contours of a Kanisza (1976) subjective square. By temporarily removing edges, contour adaptation offers a new technique to study the role of visual edges, and it demonstrates how brightness information is concentrated in edges and propagates from them as it fills in surfaces.

  4. Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.

    PubMed

    Xu, Jun; Monaco, James P; Madabhushi, Anant

    2010-01-01

    In this paper we present a Markov random field (MRF) driven region-based active contour model (MaRACel) for medical image segmentation. State-of-the-art region-based active contour (RAC) models assume that every spatial location in the image is statistically independent of the others, thereby ignoring valuable contextual information. To address this shortcoming we incorporate a MRF prior into the AC model, further generalizing Chan & Vese's (CV) and Rousson and Deriche's (RD) AC models. This incorporation requires a Markov prior that is consistent with the continuous variational framework characteristic of active contours; consequently, we introduce a continuous analogue to the discrete Potts model. To demonstrate the effectiveness of MaRACel, we compare its performance to those of the CV and RD AC models in the following scenarios: (1) the qualitative segmentation of a cancerous lesion in a breast DCE-MR image and (2) the qualitative and quantitative segmentations of prostatic acini (glands) in 200 histopathology images. Across the 200 prostate needle core biopsy histology images, MaRACel yielded an average sensitivity, specificity, and positive predictive value of 71%, 95%, 74% with respect to the segmented gland boundaries; the CV and RD models have corresponding values of 19%, 81%, 20% and 53%, 88%, 56%, respectively.

  5. Contour Tones.

    ERIC Educational Resources Information Center

    Yip, Moira

    1989-01-01

    Argues that contour tones in East Asian languages behave as melodic units consisting of a root node [upper] dominating a branching specification. It is also argued that, with upper as the tonal root node, no more than two rising or falling tones will contrast underlying. (49 references) (JL)

  6. A robust active contour edge detection algorithm based on local Gaussian statistical model for oil slick remote sensing image

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia

    2015-08-01

    Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.

  7. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    PubMed

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  8. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    PubMed

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  9. Contour Mapping

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the early 1990s, the Ohio State University Center for Mapping, a NASA Center for the Commercial Development of Space (CCDS), developed a system for mobile mapping called the GPSVan. While driving, the users can map an area from the sophisticated mapping van equipped with satellite signal receivers, video cameras and computer systems for collecting and storing mapping data. George J. Igel and Company and the Ohio State University Center for Mapping advanced the technology for use in determining the contours of a construction site. The new system reduces the time required for mapping and staking, and can monitor the amount of soil moved.

  10. Three-Dimensional Contour Maps

    ERIC Educational Resources Information Center

    Lee, Edward

    2005-01-01

    In summary, this highly conceptual activity helps middle school students understand that the lines on the contour map represent intersections of the surface of the landform with regularly spaced horizontal planes. Building the landform and relating its features to the contour map offer many opportunities for visualization, all grounded in concrete…

  11. Segmentation of Uterus Using Laparoscopic Ultrasound by an Image-Based Active Contour Approach for Guiding Gynecological Diagnosis and Surgery.

    PubMed

    Gong, Xue-Hao; Lu, Jun; Liu, Jin; Deng, Ying-Yuan; Liu, Wei-Zong; Huang, Xian; Yang, Yong-Heng; Xu, Qin; Yu, Zhi-Ying

    2015-01-01

    In laparoscopic gynecologic surgery, ultrasound has been typically implemented to diagnose urological and gynecological conditions. We applied laparoscopic ultrasonography (using Esaote 7.5~10MHz laparoscopic transducer) on the retrospective analyses of 42 women subjects during laparoscopic extirpation and excision of gynecological tumors in our hospital from August 2011 to August 2013. The objective of our research is to develop robust segmentation technique for isolation and identification of the uterus from the ultrasound images, so as to assess, locate and guide in removing the lesions during laparoscopic operations. Our method enables segmentation of the uterus by the active contour algorithm. We evaluated 42 in-vivo laparoscopic images acquired from the 42 patients (age 39.1 ± 7.2 years old) and selected images pertaining to 4 cases of congenital uterine malformations and 2 cases of pelvic adhesions masses. These cases (n = 6) were used for our uterus segmentation experiments. Based on them, the active contour method was compared with the manual segmentation method by a medical expert using linear regression and the Bland-Altman analysis (used to measure the correlation and the agreement). Then, the Dice and Jaccard indices are computed for measuring the similarity of uterus segmented between computational and manual methods. Good correlation was achieved whereby 84%-92% results fall within the 95% confidence interval in the Student t-test) and we demonstrate that the proposed segmentation method of uterus using laparoscopic images is effective.

  12. New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

    PubMed Central

    Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2014-01-01

    We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness. PMID:25110513

  13. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  14. A weighted mean shift, normalized cuts initialized color gradient based geodesic active contour model: applications to histopathology image segmentation

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Janowczyk, Andrew; Chandran, Sharat; Madabhushi, Anant

    2010-03-01

    While geodesic active contours (GAC) have become very popular tools for image segmentation, they are sensitive to model initialization. In order to get an accurate segmentation, the model typically needs to be initialized very close to the true object boundary. Apart from accuracy, automated initialization of the objects of interest is an important pre-requisite to being able to run the active contour model on very large images (such as those found in digitized histopathology). A second limitation of GAC model is that the edge detector function is based on gray scale gradients; color images typically being converted to gray scale prior to computing the gradient. For color images, however, the gray scale gradient results in broken edges and weak boundaries, since the other channels are not exploited for the gradient determination. In this paper we present a new geodesic active contour model that is driven by an accurate and rapid object initialization scheme-weighted mean shift normalized cuts (WNCut). WNCut draws its strength from the integration of two powerful segmentation strategies-mean shift clustering and normalized cuts. WNCut involves first defining a color swatch (typically a few pixels) from the object of interest. A multi-scale mean shift coupled normalized cuts algorithm then rapidly yields an initial accurate detection of all objects in the scene corresponding to the colors in the swatch. This detection result provides the initial boundary for GAC model. The edge-detector function of the GAC model employs a local structure tensor based color gradient, obtained by calculating the local min/max variations contributed from each color channel (e.g. R,G,B or H,S,V). Our color gradient based edge-detector function results in more prominent boundaries compared to classical gray scale gradient based function. We evaluate segmentation results of our new WNCut initialized color gradient based GAC (WNCut-CGAC) model against a popular region-based model (Chan

  15. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  16. Segmentation of follicular regions on H&E slides using a matching filter and active contour model

    NASA Astrophysics Data System (ADS)

    Belkacem-Boussaid, Kamel; Prescott, Jeffrey; Lozanski, Gerard; Gurcan, Metin N.

    2010-03-01

    Follicular Lymphoma (FL) accounts for 20-25% of non-Hodgkin lymphomas in the United States. The first step in follicular lymphoma grading is the identification of follicles. The goal of this paper is to develop a technique to segment follicular regions in H&E stained images. The method is based on a robust active contour model, which is initialized by a seed point selected inside the follicle manually by the user. The novel aspect of this method is the introduction of a matched filter for the flattening of background in the L channel of the Lab color space. The performance of the algorithm was tested by comparing it against the manual segmentations of trained readers using the Zijbendos similarity index. The mean accuracy of the final segmentation compared to the manual ground truth was 0.71 with a standard deviation of 0.12.

  17. Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2006-03-20

    We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.

  18. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  19. Contour extraction of Drosophila embryos.

    PubMed

    Li, Qi; Kambhamettu, Chandra

    2011-01-01

    Contour extraction of Drosophila (fruit fly) embryos is an important step to build a computational system for matching expression pattern of embryonic images to assist the discovery of the nature of genes. Automatic contour extraction of embryos is challenging due to severe image variations, including 1) the size, orientation, shape, and appearance of an embryo of interest; 2) the neighboring context of an embryo of interest (such as nontouching and touching neighboring embryos); and 3) illumination circumstance. In this paper, we propose an automatic framework for contour extraction of the embryo of interest in an embryonic image. The proposed framework contains three components. Its first component applies a mixture model of quadratic curves, with statistical features, to initialize the contour of the embryo of interest. An efficient method based on imbalanced image points is proposed to compute model parameters. The second component applies active contour model to refine embryo contours. The third component applies eigen-shape modeling to smooth jaggy contours caused by blurred embryo boundaries. We test the proposed framework on a data set of 8,000 embryonic images, and achieve promising accuracy (88 percent), that is, substantially higher than the-state-of-the-art results.

  20. [Body-contouring surgery].

    PubMed

    Pitanguy, Ivo

    2003-01-01

    Concepts of beauty have been continuously evolving throughout the history of mankind. The voluptuous figures that were idealized by artists in the past have been substituted by slimmer forms. Medical advances in this century have permitted safe and efficient surgical correction of contour deformities. Until recently, these alterations were mostly hidden under heavy clothing or were reluctantly accepted. Current fashion trends generally promote body-revealing attire. The media frequently encourages the importance of fitness and good health linking these qualities with youthfulness and beauty. The subliminal as well as overt message is that these are necessary and desirable requirements for social acceptance and professional success. On the other hand, current sedentary lifestyle and dietary excesses, associated with factors such as genetic determination, pregnancy and the aging process, contribute to alterations of body contour that result in the loss of the individual's body image. This creates a strong psychological motivation for surgical correction. Localized fat deposits and skin flaccidity are sometimes resistant to the most sincere efforts in weight loss and sport activities. This ever-increasing request for contour surgery has been favorably met by safe and effective anesthesiology as well as efficient surgical techniques, resulting in a high degree of patient satisfaction. It is essential that today's aesthetic surgeon understand the motivations of patients who present with body contour deformities. A request for surgical treatment should be seen as a legitimate desire to achieve a physical form that approximates the individual with his or her ideal self-image. Additionally, the surgeon must always consider the possible benefit of including the participation of a multidisciplinary team approach. Depending on each case, this team should include consultants in endocrinology, dermatology, oculoplastics, pediatrics and other appropriate specialties.

  1. pSnakes: a new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images.

    PubMed

    de Alexandria, Auzuir Ripardo; Cortez, Paulo César; Bessa, Jessyca Almeida; da Silva Félix, John Hebert; de Abreu, José Sebastião; de Albuquerque, Victor Hugo C

    2014-10-01

    Active contours are image segmentation methods that minimize the total energy of the contour to be segmented. Among the active contour methods, the radial methods have lower computational complexity and can be applied in real time. This work aims to present a new radial active contour technique, called pSnakes, using the 1D Hilbert transform as external energy. The pSnakes method is based on the fact that the beams in ultrasound equipment diverge from a single point of the probe, thus enabling the use of polar coordinates in the segmentation. The control points or nodes of the active contour are obtained in pairs and are called twin nodes. The internal energies as well as the external one, Hilbertian energy, are redefined. The results showed that pSnakes can be used in image segmentation of short-axis echocardiogram images and that they were effective in image segmentation of the left ventricle. The echo-cardiologist's golden standard showed that the pSnakes was the best method when compared with other methods. The main contributions of this work are the use of pSnakes and Hilbertian energy, as the external energy, in image segmentation. The Hilbertian energy is calculated by the 1D Hilbert transform. Compared with traditional methods, the pSnakes method is more suitable for ultrasound images because it is not affected by variations in image contrast, such as noise. The experimental results obtained by the left ventricle segmentation of echocardiographic images demonstrated the advantages of the proposed model. The results presented in this paper are justified due to an improved performance of the Hilbert energy in the presence of speckle noise.

  2. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    NASA Astrophysics Data System (ADS)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  3. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  4. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    PubMed Central

    Luo, Yun-gang; Ko, Jacky KL; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie CW; Wang, Defeng

    2015-01-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading. PMID:26215336

  5. Contouring randomly spaced data

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Morris, W. D.; Hamm, R. W.

    1977-01-01

    Computer program using triangulation contouring technique contours data points too numerous to fit into rectangular grid. Using random access procedures, program can handle up to 56,000 data points and provides up to 20 contour intervals for multiple number of parameters.

  6. Contour integration with corners.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2016-10-01

    Contour integration refers to the ability of the visual system to bind disjoint local elements into coherent global shapes. In cluttered images containing randomly oriented elements a contour becomes salient when its elements are coaligned with a smooth global trajectory, as described by the Gestalt law of good continuation. Abrupt changes of curvature strongly diminish contour salience. Here we show that by inserting local corner elements at points of angular discontinuity, a jagged contour becomes as salient as a straight one. We report results from detection experiments for contours with and without corner elements which indicate their psychophysical equivalence. This presents a challenge to the notion that contour integration mostly relies on local interactions between neurons tuned to single orientations, and suggests that a site where single orientations and more complex local features are combined constitutes the early basis of contour and 2D shape processing.

  7. Contour integration with corners.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2016-10-01

    Contour integration refers to the ability of the visual system to bind disjoint local elements into coherent global shapes. In cluttered images containing randomly oriented elements a contour becomes salient when its elements are coaligned with a smooth global trajectory, as described by the Gestalt law of good continuation. Abrupt changes of curvature strongly diminish contour salience. Here we show that by inserting local corner elements at points of angular discontinuity, a jagged contour becomes as salient as a straight one. We report results from detection experiments for contours with and without corner elements which indicate their psychophysical equivalence. This presents a challenge to the notion that contour integration mostly relies on local interactions between neurons tuned to single orientations, and suggests that a site where single orientations and more complex local features are combined constitutes the early basis of contour and 2D shape processing. PMID:27542687

  8. CONTOURING RANDOMLY SPACED DATA

    NASA Technical Reports Server (NTRS)

    Hamm, R. W.

    1994-01-01

    This program prepares contour plots of three-dimensional randomly spaced data. The contouring techniques use a triangulation procedure developed by Dr. C. L. Lawson of the Jet Propulsion Laboratory which allows the contouring of randomly spaced input data without first fitting the data into a rectangular grid. The program also allows contour points to be fitted with a smooth curve using an interpolating spline under tension. The input data points to be contoured are read from a magnetic tape or disk file with one record for each data point. Each record contains the X and Y coordinates, value to be contoured, and an alternate contour value (if applicable). The contour data is then partitioned by the program to reduce core storage requirements. Output consists of the contour plots and user messages. Several output options are available to the user such as: controlling which value in the data record is to be contoured, whether contours are drawn by polygonal lines or by a spline under tension (smooth curves), and controlling the contour level labels which may be suppressed if desired. The program can handle up to 56,000 data points and provide for up to 20 contour intervals for a multiple number of parameters. This program was written in FORTRAN IV for implementation on a CDC 6600 computer using CALCOMP plotting capabilities. The field length required is dependent upon the number of data points to be contoured. The program requires 42K octal storage locations plus the larger of: 24 times the maximum number of points in each data partition (defaults to maximum of 1000 data points in each partition with 20 percent overlap) or 2K plus four times the total number of points to be plotted. This program was developed in 1975.

  9. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    SciTech Connect

    Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi

    2010-05-15

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less completion time

  10. Automated detection of the carotid artery wall in longitudinal B-mode images using active contours initialized by the Hough transform.

    PubMed

    Matsakou, A I; Golemati, S; Stoitsis, J S; Nikita, K S

    2011-01-01

    In this paper, a fully automatic active-contour-based segmentation method is presented, for detecting the carotid artery wall in longitudinal B-mode ultrasound images. A Hough-transform-based methodology is used for the definition of the initial snake, followed by a gradient vector flow (GVF) snake deformation for the final contour detection. The GVF snake is based on the calculation of the image edge map and the calculation of GVF field which guides its deformation for the estimation of the real arterial wall boundaries. In twenty cases there was no significant difference between the automated segmentation and the manual diameter measurements. The sensitivity, specificity and accuracy were 0.97, 0.99 and 0.98, respectively, for both diastolic and systolic cases. In conclusion, the proposed methodology provides an accurate and reliable way to segment ultrasound images of the carotid artery.

  11. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  12. Supersonic inlet contour interpolation

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A.

    1975-01-01

    A method for designing supersonic inlet contours is described which consists in the interpolation of the contours of two known inlets designed for different Mach numbers, thereby determining the contours for a third inlet at an intermediate design Mach number. Several similar axisymmetric inlet contours were interpolated from known inlets with design Mach numbers ranging from 2.16 to 4.0 and with design Mach numbers differing by as much as 1.0. The flowfields were calculated according to Sorensen's (1965) computer program. Shockwave structure and pressure distribution characteristics are shown for the interpolated inlets. The validity of the interpolation is demonstrated by comparing the plots of the flowfield properties across the throat station of the interpolated inlet with the known inlets which were designed iteratively. It seems possible to write a computer program so that a matrix of known inlet contours can be interpolated.

  13. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    SciTech Connect

    Fritscher, Karl D. Sharp, Gregory; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer

    2014-05-15

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  14. Region-based Active Contour Model based on Markov Random Field to Segment Images with Intensity Non-Uniformity and Noise.

    PubMed

    Shahvaran, Zahra; Kazemi, Kamran; Helfroush, Mohammad Sadegh; Jafarian, Nassim

    2012-01-01

    This paper represents a new region-based active contour model that can be used to segment images with intensity non-uniformity and high-level noise. The main idea of our proposed method is to use Gaussian distributions with different means and variances with incorporation of intensity non-uniformity model for image segmentation. In order to integrate the spatial information between neighboring pixels in our proposed method, we use Markov Random Field. Our experiments on synthetic images and cerebral magnetic resonance images show the advantages of the proposed method over state-of-art methods, i.e. local Gaussian distribution fitting.

  15. A Cell Derived Active Contour (CDAC) Method for Robust Tracking in Low Frame Rate, Low Contrast Phase Microscopy - an Example: The Human hNT Astrocyte

    PubMed Central

    Nejati Javaremi, Alireza; Unsworth, Charles P.; Graham, E. Scott

    2013-01-01

    The problem of automated segmenting and tracking of the outlines of cells in microscope images is the subject of active research. While great progress has been made on recognizing cells that are of high contrast and of predictable shape, many situations arise in practice where these properties do not exist and thus many interesting potential studies - such as the migration patterns of astrocytes to scratch wounds - have been relegated to being largely qualitative in nature. Here we analyse a select number of recent developments in this area, and offer an algorithm based on parametric active contours and formulated by taking into account cell movement dynamics. This Cell-Derived Active Contour (CDAC) method is compared with two state-of-the-art segmentation methods for phase-contrast microscopy. Specifically, we tackle a very difficult segmentation problem: human astrocytes that are very large, thin, and irregularly-shaped. We demonstrate quantitatively better results for CDAC as compared to similar segmentation methods, and we also demonstrate the reliable segmentation of qualitatively different data sets that were not possible using existing methods. We believe this new method will enable new and improved automatic cell migration and movement studies to be made. PMID:24358233

  16. Male Body Contouring.

    PubMed

    Singh, Babu; Keaney, Terrence; Rossi, Anthony M

    2015-09-01

    Men are increasingly turning to dermatologists and plastic surgeons to request procedures that correct or enhance physical features. With the advent of this emerging new patient population, alterations in preexisting aesthetic techniques, gender-specific uses of existing devices and overall approaches need to be revisited and adapted to obtain results that are suitable for the male patient. Recently, body contouring has become one of the most sought out procedures by men. Although the majority of clinical studies involving body contouring esthetics are performed with female patients, gains from such studies can be extrapolated to men. Body contouring can be broadly classified as non-invasive or invasive, depending on the modality used. Non-invasive contouring is most frequently performed with devices that target subcutaneous adipose with focused electrical or thermal energy, including low-level laser, cryolipolysis, ultrasonography, and radiofrequency. Invasive body contouring modalities useful for male body contouring include liposuction, pectoral and abdominal wall etching, jawline fillers, synthetic deoxycholic acid injections, and solid silicone implants. The purpose of this review is to bring attention to the unique aspects, strategies, and modalities used in aesthetic body contouring for the male patient.

  17. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  18. Variable contour securing system

    NASA Technical Reports Server (NTRS)

    Zebus, P. P.; Packer, P. N.; Haynie, C. C. (Inventor)

    1978-01-01

    A variable contour securing system has a retaining structure for a member whose surface contains a variable contour. The retaining mechanism includes a spaced array of adjustable spindles mounted on a housing. Each spindle has a base member support cup at one end. A vacuum source is applied to the cups for seating the member adjacent to the cups. A locking mechanism sets the spindles in a predetermined position once the member has been secured to the spindle support cups.

  19. GENERALIZED DIGITAL CONTOURING PROGRAM

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1994-01-01

    This is a digital computer contouring program developed by combining desirable characteristics from several existing contouring programs. It can easily be adapted to many different research requirements. The overlaid structure of the program permits desired modifications to be made with ease. The contouring program performs both the task of generating a depth matrix from either randomly or regularly spaced surface heights and the task of contouring the data. Each element of the depth matrix is computed as a weighted mean of heights predicted at an element by planes tangent to the surface at neighboring control points. Each contour line is determined by its intercepts with the sides of geometrical figures formed by connecting the various elements of the depth matrix with straight lines. Although contour charts are usually thought of as being two-dimensional pictorial representations of topographic formations of land masses, they can also be useful in portraying data which are obtained during the course of research in various scientific disciplines and which would ordinarily be tabulated. Any set of data which can be referenced to a two-dimensional coordinate system can be graphically represented by this program. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on the CDC 6000 Series. This program was developed in 1971.

  20. Reconstruction of surfaces from planar contours through contour interpolation

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  1. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset. PMID:27659985

  2. Contour Completion Without Region Segmentation.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose.

  3. The Development of Contour Interpolation: Evidence from Subjective Contours

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2010-01-01

    Adults are skilled at perceiving subjective contours in regions without any local image information (e.g., [Ginsburg, 1975] and [Kanizsa, 1976]). Here we examined the development of this skill and the effect thereon of the support ratio (i.e., the ratio of the physically specified contours to the total contour length). Children (6-, 9-, and…

  4. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping.

    PubMed

    Gilad, Ariel; Meirovithz, Elhanan; Slovin, Hamutal

    2013-04-24

    The neuronal mechanisms underlying perceptual grouping of discrete, similarly oriented elements are not well understood. To investigate this, we measured neural population responses using voltage-sensitive dye imaging in V1 of monkeys trained on a contour-detection task. By mapping the contour and background elements onto V1, we could study their neural processing. Population response early in time showed activation patches corresponding to the contour/background individual elements. However, late increased activity in the contour elements, along with suppressed activity in the background elements, enabled us to visualize in single trials a salient continuous contour "popping out" from a suppressed background. This modulated activity in the contour and in background extended beyond the cortical representation of individual contour or background elements. Finally, the late modulation was correlated with behavioral performance of contour saliency and the monkeys' perceptual report. Thus, opposing responses in the contour and background may underlie perceptual grouping in V1.

  5. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  6. Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection

    PubMed Central

    Meziou, L.; Histace, A.; Precioso, F.; Romain, O.; Dray, X.; Granado, B.; Matuszewski, B. J.

    2014-01-01

    Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation. PMID:25587264

  7. Segmentation of the common carotid artery walls based on a frequency implementation of active contours: segmentation of the common carotid artery walls.

    PubMed

    Bastida-Jumilla, M Consuelo; Menchón-Lara, Rosa M; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge; Sancho-Gómez, José Luis

    2013-02-01

    Atherosclerosis is one of the most extended cardiovascular diseases nowadays. Although it may be unnoticed during years, it also may suddenly trigger severe illnesses such as stroke, embolisms or ischemia. Therefore, an early detection of atherosclerosis can prevent adult population from suffering more serious pathologies. The intima-media thickness (IMT) of the common carotid artery (CCA) has been used as an early and reliable indicator of atherosclerosis for years. The IMT is manually computed from ultrasound images, a process that can be repeated as many times as necessary (over different ultrasound images of the same patient), but also prone to errors. With the aim to reduce the inter-observer variability and the subjectivity of the measurement, a fully automatic computer-based method based on ultrasound image processing and a frequency-domain implementation of active contours is proposed. The images used in this work were obtained with the same ultrasound scanner (Philips iU22 Ultrasound System) but with different spatial resolutions. The proposed solution does not extract only the IMT but also the CCA diameter, which is not as relevant as the IMT to predict future atherosclerosis evolution but it is a statistically interesting piece of information for the doctors to determine the cardiovascular risk. The results of the proposed method have been validated by doctors, and these results are visually and numerically satisfactory when considering the medical measurements as ground truth, with a maximum deviation of only 3.4 pixels (0.0248 mm) for IMT. PMID:22552539

  8. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  9. The role of eye movements in a contour detection task.

    PubMed

    Van Humbeeck, Nathalie; Schmitt, Nadine; Hermens, Frouke; Wagemans, Johan; Ernst, Udo A

    2013-12-04

    Vision combines local feature integration with active viewing processes, such as eye movements, to perceive complex visual scenes. However, it is still unclear how these processes interact and support each other. Here, we investigated how the dynamics of saccadic eye movements interact with contour integration, focusing on situations in which contours are difficult to find or even absent. We recorded observers' eye movements while they searched for a contour embedded in a background of randomly oriented elements. Task difficulty was manipulated by varying the contour's path angle. An association field model of contour integration was employed to predict potential saccade targets by identifying stimulus locations with high contour salience. We found that the number and duration of fixations increased with the increasing path angle of the contour. In addition, fixation duration increased over the course of a trial, and the time course of saccade amplitude depended on the percept of observers. Model fitting revealed that saccades fully compensate for the reduced saliency of peripheral contour targets. Importantly, our model predicted fixation locations to a considerable degree, indicating that observers fixated collinear elements. These results show that contour integration actively guides eye movements and determines their spatial and temporal parameters.

  10. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  11. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  12. Precision contour gage

    DOEpatents

    Bieg, L.F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip. 5 figs.

  13. Precision contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-11

    An apparatus for gaging the contour of a machined part includes a rotary slide assembly, a kinematic mount to move the apparatus into and out of position for measuring the part while the part is still on the machining apparatus, a linear probe assembly with a suspension arm and a probe assembly including as probe tip for providing a measure of linear displacement of the tip on the surface of the part, a means for changing relative positions between the part and the probe tip, and a means for recording data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip.

  14. A general purpose contouring system

    USGS Publications Warehouse

    Evenden, Gerald Ian

    1975-01-01

    Three Decsystem-10 FORTRAN IV programs provide a general purpose system for contouring two-dimensional data. The system can provide both quick or final, publication quality contour maps on either interactive or offline plotting devices. Complete user documentation, with examples, and program listings are presented.

  15. Contour Integration across Spatial Frequency

    ERIC Educational Resources Information Center

    Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter

    2009-01-01

    Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed.…

  16. Sensory Information and Subjective Contour

    ERIC Educational Resources Information Center

    Brussell, Edward M.; And Others

    1977-01-01

    The possibility that subjective contours are an artifact of brightness contrast was explored. Concludes that subjective contour and brightness contrast are distinct perceptual phenomena but share a dependency on the processing of edge information transmitted through the achromatic channels of the visual system. (Editor/RK)

  17. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know.

    PubMed

    Drolet, Matthis; Schubotz, Ricarda I; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition.

  18. Robust contour tracking in ultrasound tongue image sequences.

    PubMed

    Xu, Kele; Yang, Yin; Stone, Maureen; Jaumard-Hakoun, Aurore; Leboullenger, Clémence; Dreyfus, Gérard; Roussel, Pierre; Denby, Bruce

    2016-01-01

    A new contour-tracking algorithm is presented for ultrasound tongue image sequences, which can follow the motion of tongue contours over long durations with good robustness. To cope with missing segments caused by noise, or by the tongue midsagittal surface being parallel to the direction of ultrasound wave propagation, active contours with a contour-similarity constraint are introduced, which can be used to provide 'prior' shape information. Also, in order to address accumulation of tracking errors over long sequences, we present an automatic re-initialization technique, based on the complex wavelet image similarity index. Experiments on synthetic data and on real 60 frame per second (fps) data from different subjects demonstrate that the proposed method gives good contour tracking for ultrasound image sequences even over durations of minutes, which can be useful in applications such as speech recognition where very long sequences must be analyzed in their entirety.

  19. Contour Error Map Algorithm

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John

    2005-01-01

    The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.

  20. Brain networks supporting perceptual grouping and contour selection.

    PubMed

    Volberg, Gregor; Greenlee, Mark W

    2014-01-01

    The human visual system groups local elements into global objects seemingly without effort. Using a contour integration task and EEG source level analyses, we tested the hypothesis that perceptual grouping requires a top-down selection, rather than a passive pooling, of neural information that codes local elements in the visual image. The participants were presented visual displays with or without a hidden contour. Two tasks were performed: a central luminance-change detection task and a peripheral contour detection task. Only in the contour-detection task could we find differential brain activity between contour and non-contour conditions, within a distributed brain network including parietal, lateral occipital and primary visual areas. Contour processing was associated with an inflow of information from lateral occipital into primary visual regions, as revealed from the slope of phase differences between source level oscillations within these areas. The findings suggest that contour integration results from a selection of neural information from lower visual areas, and that this selection is driven by the lateral occipital cortex.

  1. Non-contact contour gage

    DOEpatents

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  2. Wavelet Representation of Contour Sets

    SciTech Connect

    Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I

    2001-07-19

    We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.

  3. Isopachic contouring of opaque plates

    NASA Technical Reports Server (NTRS)

    Post, D.; Asundi, A.; Czarnek, R.

    1984-01-01

    Contour maps of change of thickness of opaque plates subjected to external loads are obtained using holographic interferometry in conjunction with the moire effect. A simple holographic-interferometry arrangement is used first to obtain contour maps of the out-of-plane displacements of the two sides of the object. Carrier patterns of equal magnitude but opposite signs are added to these contours. Superposition of the reconstructed holograms of the two sides produces a pattern of additive-moire fringes, which are contours of change of thickness. Effects of midplane warpage of the loaded specimen are cancelled. Sensitivity is lambda/2 per fringe order, contrast of the isopachic-fringe pattern is excellent, and the process is compatible with a mechanical-testing-machine environment.

  4. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  5. Winding number constrained contour detection.

    PubMed

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2015-01-01

    Salient contour detection can benefit from the integration of both contour cues and region cues. However, this task is difficult due to different nature of region representations and contour representations. To solve this problem, this paper proposes an energy minimization framework based on winding number constraints. In this framework, both region cues, such as color/texture homogeneity, and contour cues, such as local contrast and continuity, are represented in a joint objective function, which has both region and contour labels. The key problem is how to design constraints that ensure the topological consistency of the two kinds of labels. Our technique is based on the topological concept of winding number. Using a fast method for winding number computation, a small number of linear constraints are derived to ensure label consistency. Our method is instantiated by ratio-based energy functions. By successfully integrating both region and contour cues, our method shows advantages over competitive methods. Our method is extended to incorporate user interaction, which leads to further improvements.

  6. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    NASA Astrophysics Data System (ADS)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  7. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  8. Inter-element orientation and distance influence the duration of persistent contour integration.

    PubMed

    Strother, Lars; Alferov, Danila

    2014-01-01

    Contour integration is a fundamental form of perceptual organization. We introduce a new method of studying the mechanisms responsible for contour integration. This method capitalizes on the perceptual persistence of contours under conditions of impending camouflage. Observers viewed arrays of randomly arranged line segments upon which circular contours comprised of similar line segments were superimposed via abrupt onset. Crucially, these contours remained visible for up to a few seconds following onset, but eventually disappeared due to the camouflaging effects of surrounding background line segments. Our main finding was that the duration of contour visibility depended on the distance and degree of co-alignment between adjacent contour segments such that relatively dense smooth contours persisted longest. The stimulus-related effects reported here parallel similar results from contour detection studies, and complement previous reported top-down influences on contour persistence (Strother et al., 2011). We propose that persistent contour visibility reflects the sustained activity of recurrent processing loops within and between visual cortical areas involved in contour integration and other important stages of visual object recognition.

  9. Sonority contours in word recognition

    NASA Astrophysics Data System (ADS)

    McLennan, Sean

    2003-04-01

    Contrary to the Generativist distinction between competence and performance which asserts that speech or perception errors are due to random, nonlinguistic factors, it seems likely that errors are principled and possibly governed by some of the same constraints as language. A preliminary investigation of errors modeled after the child's ``Chain Whisper'' game (a degraded stimulus task) suggests that a significant number of recognition errors can be characterized as an improvement in syllable sonority contour towards the linguistically least-marked, voiceless-stop-plus-vowel syllable. An independent study of sonority contours showed that approximately half of the English lexicon can be uniquely identified by their contour alone. Additionally, ``sororities'' (groups of words that share a single sonority contour), surprisingly, show no correlation to familiarity or frequency in either size or membership. Together these results imply that sonority contours may be an important factor in word recognition and in defining word ``neighborhoods.'' Moreover, they suggest that linguistic markedness constraints may be more prevalent in performance-related phenomena than previously accepted.

  10. Orientation-crowding within contours.

    PubMed

    Glen, James C; Dakin, Steven C

    2013-01-01

    We examined how crowding (the breakdown of object recognition in the periphery caused by interference from "clutter") depends on the global arrangement of target and distracting flanker elements. Specifically we probed orientation discrimination using a near-vertical target Gabor flanked by two vertical distractor Gabors (one above and one below the target). By applying variable (opposite-sign) horizontal offsets to the positions of the two flankers we arranged the elements so that on some trials they formed contours with the target and on others they did not. While the presence of flankers generally elevated orientation discrimination thresholds for the target we observe maximal crowding not when flanker and targets were co-aligned but when a small spatial offset was applied to flanker location, so that contours formed between flanker and targets only when the target orientation was cued. We also report that observers' orientation judgments are biased, with target orientation appearing either attracted or repulsed by the global/contour orientation. A second experiment reveals that the sign of this effect is dependent both on observer and on eccentricity. In general, the magnitude of repulsion is reduced with eccentricity but whether this becomes attraction (of element orientation to contour orientation) is dependent on observer. We note however that across observers and eccentricities, the magnitude of repulsion correlates positively with the amount of release from crowding observed with co-aligned targets and flankers, supporting the notion of fluctuating bias as the basis for elevated crowding within contours. PMID:23857951

  11. Body Image and Body Contouring Procedures.

    PubMed

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures.

  12. Body Image and Body Contouring Procedures.

    PubMed

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures. PMID:27634782

  13. Topological Cacti: Visualizing Contour-based Statistics

    SciTech Connect

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  14. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  15. Contour inflections are adaptable features.

    PubMed

    Bell, Jason; Sampasivam, Sinthujaa; McGovern, David P; Meso, Andrew Isaac; Kingdom, Frederick A A

    2014-06-03

    An object's shape is a strong cue for visual recognition. Most models of shape coding emphasize the role of oriented lines and curves for coding an object's shape. Yet inflection points, which occur at the junction of two oppositely signed curves, are ubiquitous features in natural scenes and carry important information about the shape of an object. Using a visual aftereffect in which the perceived shape of a contour is changed following prolonged viewing of a slightly different-shaped contour, we demonstrate a specific aftereffect for a contour inflection. Control conditions show that this aftereffect cannot be explained by adaptation to either the component curves or to the local orientation at the point of inflection. Further, we show that the aftereffect transfers weakly to a compound curve without an inflection, ruling out a general compound curvature detector as an explanation of our findings. We assume however that there are adaptable mechanisms for coding other specific forms of compound curves. Taken together, our findings provide evidence that the human visual system contains specific mechanisms for coding contour inflections, further highlighting their role in shape and object coding.

  16. Illusory contour formation survives crowding.

    PubMed

    Lau, Jonathan Siu Fung; Cheung, Sing-Hang

    2012-06-12

    Flanked objects are difficult to identify using peripheral vision due to visual crowding, which limits conscious access to target identity. Nonetheless, certain types of visual information have been shown to survive crowding. Such resilience to crowding provides valuable information about the underlying neural mechanism of crowding. Here we ask whether illusory contour formation survives crowding of the inducers. We manipulated the presence of illusory contours through the (mis)alignment of the four inducers of a Kanizsa square. In the inducer-aligned condition, the observers judged the perceived shape (thin vs. fat) of the illusory Kanizsa square, manipulated by small rotations of the inducers. In the inducer-misaligned condition, three of the four inducers (all except the upper-left) were rotated 90°. The observers judged the orientation of the upper-left inducer. Crowding of the inducers worsened observers' performance significantly only in the inducer-misaligned condition. Our findings suggest that information for illusory contour formation survives crowding of the inducers. Crowding happens at a stage where the low-level featural information is integrated for inducer orientation discrimination, but not at a stage where the same information is used for illusory contour formation.

  17. Algorithm for Constructing Contour Plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1984-01-01

    General computer algorithm developed for construction of contour plots. algorithm accepts as input data values at set of points irregularly distributed over plane. Algorithm based on interpolation scheme: points in plane connected by straight-line segments to form set of triangles. Program written in FORTRAN IV.

  18. Fully automatic contour detection in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brusseau, Elisabeth F.; de Korte, Chris L.; Mastik, Fritz; Schaar, Johannes; van der Steen, Anton F.

    2004-04-01

    Segmentation of deformable structures remains a challenging task in ultrasound imaging especially in low signal-to-noise ratio applications. In this paper a fully automatic method, dedicated to the luminal contour segmentation in intracoronary ultrasound imaging is introduced. The method is based on an active contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, determined as being mainly Rayleigh distributed. However, contrary to classical snake-based algorithms, the presented technique neither requires from the user the pre-selection of a region of interest tight around the boundary, nor parameter tuning. This fully automatic character is achieved by an initial contour that is not set, but estimated and thus adapted to each image. Its estimation combines two statistical criteria extracted from the a posteriori probability, function of the contour position. These criteria are the location of the function maximum (or maximum a posteriori estimator) and the first zero-crossing of the function derivative. Then starting form the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with a 20 MHz central frequency Jomed Invision ultrasound scanner were segmented with the developed method. Automatic contours were compared to those manually drawn by two physician in terms of mean absolute difference. Results demonstrate that the error between automatic contours and the average of manual ones (0.099+/-0.032mm) and the inter-expert error (0.097+/-0.027mm) are similar and of small amplitude.

  19. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  20. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  1. The Poggendorff illusion driven by real and illusory contour: Behavioral and neural mechanisms.

    PubMed

    Shen, Lu; Zhang, Ming; Chen, Qi

    2016-05-01

    The Poggendorff illusion refers to the phenomenon that the human brain misperceives a diagonal line as being apparently misaligned once the diagonal line is interrupted by two parallel edges, and the size of illusion is negatively correlated with the angle of interception of the oblique, i.e. the sharper the oblique angle, the larger the illusion. This optical illusion can be produced by both real and illusory contour. In this fMRI study, by parametrically varying the oblique angle, we investigated the shared and specific neural mechanisms underlying the Poggendorff illusion induced by real and illusory contour. At the behavioral level, not only the real but also the illusory contours were capable of inducing significant Poggendorff illusion. The size of illusion induced by the real contour, however, was larger than that induced by the illusory contour. At the neural level, real and illusory contours commonly activated more dorsal visual areas, and the real contours specifically activated more ventral visual areas. More importantly, examinations on the parametric modulation effects of the size of illusion revealed the specific neural mechanisms underlying the Poggendorff illusion induced by the real and the illusory contours, respectively. Left precentral gyrus and right middle occipital cortex were specifically involved in the Poggendorff illusion induced by the real contour. On the other hand, bilateral intraparietal sulcus (IPS) and right lateral occipital complex (LOC) were specifically involved in the Poggendorff illusion induced by the illusory contour. Functional implications of the above findings were further discussed.

  2. Intonation contour in synchronous speech

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  3. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  4. Grouping by proximity in haptic contour detection.

    PubMed

    Overvliet, Krista E; Krampe, Ralf Th; Wagemans, Johan

    2013-01-01

    We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots), relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  5. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  6. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  7. Neuronal oscillations form parietal/frontal networks during contour integration

    PubMed Central

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13–30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  8. Assessing outcomes in body contouring.

    PubMed

    Klassen, Anne F; Cano, Stefan J; Scott, Amie; Tsangaris, Elena; Pusic, Andrea L

    2014-10-01

    Patient-reported outcome (PRO) instruments are questionnaires designed to measure outcomes of importance to patients from their perspective. This article describes the methods used to develop a new PRO instrument for obese patients and patients having bariatric and cosmetic body contouring surgery. The BODY-Q is composed of 19 newly designed scales that measure: (1) appearance; (2) health-related quality of life; and (3) process of care. Recommended guidelines for PRO instrument development were followed to ensure that the BODY-Q meets requirements of regulatory bodies. The BODY-Q is currently being field-tested in an international study.

  9. Both predictability and familiarity facilitate contour integration.

    PubMed

    Sassi, Michaël; Demeyer, Maarten; Machilsen, Bart; Putzeys, Tom; Wagemans, Johan

    2014-05-30

    Research has shown that contour detection is impaired in the visual periphery for snake-shaped Gabor contours but not for circular and elliptical contours. This discrepancy in findings could be due to differences in intrinsic shape properties, including shape closure and curvature variation, as well as to differences in stimulus predictability and familiarity. In a detection task using only circular contours, the target shape is both more familiar and more predictable to the observer compared with a detection task in which a different snake-shaped contour is presented on each trial. In this study, we investigated the effects of stimulus familiarity and predictability on contour integration by manipulating and disentangling the familiarity and predictability of snakelike stimuli. We manipulated stimulus familiarity by extensively training observers with one particular snake shape. Predictability was varied by alternating trial blocks with only a single target shape and trial blocks with multiple target shapes. Our results show that both predictability and familiarity facilitated contour integration, which constitutes novel behavioral evidence for the adaptivity of the contour integration mechanism in humans. If familiarity or predictability facilitated contour integration in the periphery specifically, this could explain the discrepant findings obtained with snake contours as compared with circles or ellipses. However, we found that their facilitatory effects did not differ between central and peripheral vision and thus cannot explain that particular discrepancy in the literature.

  10. An elastic contour matching model for tropical cyclone pattern recognition.

    PubMed

    Lee, R T; Lin, J K

    2001-01-01

    In this paper, an elastic graph dynamic link model (EGDLM) based on elastic contour matching is proposed to automate the Dvorak technique for tropical cyclone (TC) pattern interpretation from satellite images. This method integrates traditional dynamic link architecture (DLA) for neural dynamics and the active contour model (ACM) for contour extraction of TC patterns. Using satellite pictures provided by National Oceanic and Atmospheric Administration (NOAA), 120 tropical cyclone cases that appeared in the period from 1990 to 1998 were extracted for the study. An overall correct rate for TC classification was found to be above 95%. For hurricanes with distinct "eye" formation, the model reported a deviation within 3 km from the "actual eye" location, which was obtained from the aircraft measurement of minimum surface pressure by reconnaissance. Compared with the classical DLA model, the proposed model has simplified the feature representation, the network initialization, and the training process. This leads to a tremendous improvement of recognition performance by more than 1000 times.

  11. Antenna surface contour control system

    NASA Astrophysics Data System (ADS)

    Ahl, Elvin L.; Miller, James B.

    1989-03-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  12. Antenna surface contour control system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L. (Inventor); Miller, James B. (Inventor)

    1989-01-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  13. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  14. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  15. A program for contouring randomly spaced data

    NASA Technical Reports Server (NTRS)

    Hamm, R. W.; Kibler, J. F.; Morris, W. D.

    1975-01-01

    A description is given of a digital computer program which prepares contour plots of three dimensional data. The contouring technique uses a triangulation procedure. As presently configured, the program can accept up to 56,000 randomly spaced data points, although the required computer resources may be prohibitive. However, with relatively minor internal modifications, the program can handle essentially unlimited amounts of data. Up to 20 contouring intervals can be selected and contoured with either polygonal lines or smooth curves. Sample cases are illustrated. A general description of the main program and primary level subroutines is included to permit simple modifications of the program.

  16. CONTOUR. Stress Time History Postprocessor Plotting Program

    SciTech Connect

    Pelessone, D.

    1993-11-01

    CONTOUR is an in-house computer program which is used at General Atomics to generate contour plots of analysis results obtained from various finite element codes used in stress and thermal analysis of core fuel blocks. The program provides contour and fringe plots of the results in either black and white or color. The input data for CONTOUR is CONDRUM, a word addressable file generated by codes which contain element stresses and nodal displacements such as TWOD and PRINT2. TWOD is a finite element program for linear and nonlinear stress analysis of two-dimensional and axisymmetric solids. PRINT2 is an output processor code for printing data.

  17. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  18. Cortical Contributions to Impaired Contour Integration in Schizophrenia

    PubMed Central

    Silverstein, Steven M.; Harms, Michael P.; Carter, Cameron S.; Gold, James M.; Keane, Brian P.; MacDonald, Angus; Ragland, J. Daniel; Barch, Deanna M.

    2015-01-01

    Objectives Visual perceptual organization impairments in schizophrenia (SCZ) are well established, but their neurobiological bases are not. The current study used the previously validated Jittered Orientation Visual Integration (JOVI) task, along with fMRI, to examine the neural basis of contour integration (CI), and its impairment in SCZ. CI is an aspect of perceptual organization in which multiple distinct oriented elements are grouped into a single continuous boundary or shape. Methods On the JOVI, five levels of orientational jitter were added to non-contiguous closed contour elements embedded in background noise to progressively increase the difficulty in perceiving contour elements as left- or right-pointing ovals. Multi-site fMRI data were analyzed for 56 healthy control subjects and 47 people with SCZ. Results SCZ patients demonstrated poorer CI, and this was associated with increased activation in regions involved in global shape processing and visual attention, namely the lateral occipital complex and superior parietal lobules. There were no brain regions where controls demonstrated more activation than patients. Conclusions CI impairment in this sample of outpatients with SCZ was related to excessive activation in regions associated with object processing and allocation of visual-spatial attention. There was no evidence for basic impairments in contour element linking in the fMRI data. The latter may be limited to poor outcome patients, where more extensive structural and functional changes in the occipital lobe have been observed. PMID:26160288

  19. [Signal processing in contour implants].

    PubMed

    Ormezzano, Y; Deleurme, C; Vormès, E; Frachet, B

    1990-01-01

    Signal processing by cochlear implants is aimed at transmitting all the acoustic information carried by the human voice, whether in its semantic, esthetic or affective aspects, as an electrical signal. The "translating" approach, which encodes the signal according to the characteristics of the sounds, can only be ideally used in multiple-canal implants. On the contrary, our experience with various single-canal prostheses shows that our patients choose one of these according to the comfort of the signal and to its reliability rather than to the complexity of signal processing: all prostheses produce approximately the same results, whatever the method implemented. The contour implant allows an easy, effective and well-tolerated fitting at low costs.

  20. Body Contouring After Bariatric Surgery.

    PubMed

    Ellison, Jo M; Steffen, Kristine J; Sarwer, David B

    2015-11-01

    Individuals who undergo bariatric surgery generally experience rapid and dramatic weight loss. While the weight loss typically confers significant health benefits, an undesirable consequence is often excessive quantities of hanging, surplus skin. Some patients undergo body-contouring surgery (BCS) in order to improve health, mobility, appearance and psychological adjustment. While the majority of post-bariatric patients desire BCS in one or more body regions, a small percentage of patients receive such surgeries. Lack of knowledge about procedures, cost and (in the USA and several other countries) difficulty obtaining insurance reimbursement likely prevents many patients from undergoing BCS. Those who do undergo BCS appear to be at heightened risk for wound-healing complications. Despite these complications, the majority of patients report satisfactory BCS outcomes. The extant literature in this area provides a great deal of information about these issues; nevertheless, additional research is needed to further inform clinical management and improve patient outcomes.

  1. Sodium Deoxycholate for Submental Contouring.

    PubMed

    Humphrey, S; Beleznay, K; Beleznay, J D A

    2016-09-01

    The chin and jaw line are integral parts of an individual's aesthetic profile, and the presence of submental fat detracts from this and can lead to displeasure with one's facial appearance. While liposuction and cosmetic surgery are regarded as the gold standard in treating submental fat, surgical intervention is not appealing to all patients and has potential surgical complications including longer recovery, and contour irregularities. Despite ample advances in aesthetic medicine to enhance the appearance of the face, very little is available in non-invasive options to reduce submental fat that has been supported by robust evidence. ATX-101, a proprietary formulation of deoxycholic acid that is synthetically derived, has been extensively explored in a vigorous clinical development program that has established the safety and efficacy of the injectable. It has recently received approval by regulatory authorities in Canada (Belkyra™) and the US (Kybella®) for the treatment of submental fat. PMID:27603325

  2. Body Contouring After Bariatric Surgery.

    PubMed

    Ellison, Jo M; Steffen, Kristine J; Sarwer, David B

    2015-11-01

    Individuals who undergo bariatric surgery generally experience rapid and dramatic weight loss. While the weight loss typically confers significant health benefits, an undesirable consequence is often excessive quantities of hanging, surplus skin. Some patients undergo body-contouring surgery (BCS) in order to improve health, mobility, appearance and psychological adjustment. While the majority of post-bariatric patients desire BCS in one or more body regions, a small percentage of patients receive such surgeries. Lack of knowledge about procedures, cost and (in the USA and several other countries) difficulty obtaining insurance reimbursement likely prevents many patients from undergoing BCS. Those who do undergo BCS appear to be at heightened risk for wound-healing complications. Despite these complications, the majority of patients report satisfactory BCS outcomes. The extant literature in this area provides a great deal of information about these issues; nevertheless, additional research is needed to further inform clinical management and improve patient outcomes. PMID:26395601

  3. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  4. Interval and Contour Processing in Autism

    ERIC Educational Resources Information Center

    Heaton, Pamela

    2005-01-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group…

  5. The evidence behind noninvasive body contouring devices.

    PubMed

    Nassab, Reza

    2015-03-01

    The demand for body contouring is rapidly increasing, and interest in noninvasive approaches has also grown. The author reviewed the evidence base behind the currently available devices and methods for nonsurgical body contouring. There is little high-level evidence in the present literature to support the effectiveness of any of these devices.

  6. Top-down control in contour grouping.

    PubMed

    Volberg, Gregor; Wutz, Andreas; Greenlee, Mark W

    2013-01-01

    Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of 'good continuation'. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15-21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11-12 Hz) and in fronto-posterior theta (4-5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.

  7. Information Along Contours and Object Boundaries

    ERIC Educational Resources Information Center

    Feldman, Jacob; Singh, Manish

    2005-01-01

    F. Attneave (1954) famously suggested that information along visual contours is concentrated in regions of high magnitude of curvature, rather than being distributed uniformly along the contour. Here the authors give a formal derivation of this claim, yielding an exact expression for information, in C. Shannon's (1948) sense, as a function of…

  8. Contour mapping of spectacle lenses.

    PubMed

    Liu, L

    1994-04-01

    The measurement of spectacle lenses by conventional focimeters and automated focimeters assesses only a small region of the lens, and only the power and related data at that point are indicated. In this paper, two methods based on optical Fourier filtering and optical correlation are suggested for contour-mapping the deviations of a spectacle lens over its whole aperture. The fringe pattern appearing on the lens image depicts vividly the characteristics of the tested lens. All the related data are qualitatively seen at a glance and can be calculated from the fringe distribution. Furthermore, the optical processing of the fringes by defocusing is described; thus, the fringes can be continuously changed by shifting the illuminating point source or mask. The shift indicates the spherical power needed to decrease or increase the lens fringes. In addition, a fringe-reading technique is suggested by counting the number of the fringes within a reticle ring. Therefore, the sphere power, cylinder power, cylinder axis, prism power, and prism orientation can be obtained from the reading of the fringes, the shift position, or their combination with a high accuracy. The methods are suitable not only to sphere, spherocylinder, and prism lenses but also to multifocus and progressive power lenses. The suggestion provides a practical way to measure spectacle lenses over the whole aperture. PMID:8047340

  9. Extreme_SeaState_Contour_v1

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on amore » given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.« less

  10. Extreme_SeaState_Contour_v1

    SciTech Connect

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on a given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.

  11. Right-hemisphere specialization for contour grouping.

    PubMed

    Volberg, Gregor

    2014-01-01

    Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.

  12. Isolating contour information from arbitrary images

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.

    1989-11-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  13. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  14. Portable FORTRAN contour-plotting subprogram

    SciTech Connect

    Haskell, K.H.

    1983-07-01

    In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

  15. Prostate contouring in MRI guided biopsy

    PubMed Central

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2010-01-01

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  16. Prostate contouring in MRI guided biopsy.

    PubMed

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2009-03-27

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  17. Modified contour-improved perturbation theory

    SciTech Connect

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-11-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard ''contour-improved'' method based on a derivative expansion of the Adler function. The new approach has some advantages compared to contour-improved perturbation theory. The renormalization scale dependence is weaker by more than a factor of 2 and the last term of the expansion is reduced by about 10%, while the renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2% lower than the contour-improved value. We find {alpha}{sub s}(M{sub Z}{sup 2})=0.1211{+-}0.0010.

  18. Body contouring using 635-nm low level laser therapy.

    PubMed

    Nestor, Mark S; Newburger, Jessica; Zarraga, Matthew B

    2013-03-01

    Noninvasive body contouring has become one of the fastest-growing areas of esthetic medicine. Many patients appear to prefer nonsurgical less-invasive procedures owing to the benefits of fewer side effects and shorter recovery times. Increasingly, 635-nm low-level laser therapy (LLLT) has been used in the treatment of a variety of medical conditions and has been shown to improve wound healing, reduce edema, and relieve acute pain. Within the past decade, LLLT has also emerged as a new modality for noninvasive body contouring. Research has shown that LLLT is effective in reducing overall body circumference measurements of specifically treated regions, including the hips, waist, thighs, and upper arms, with recent studies demonstrating the long-term effectiveness of results. The treatment is painless, and there appears to be no adverse events associated with LLLT. The mechanism of action of LLLT in body contouring is believed to stem from photoactivation of cytochrome c oxidase within hypertrophic adipocytes, which, in turn, affects intracellular secondary cascades, resulting in the formation of transitory pores within the adipocytes' membrane. The secondary cascades involved may include, but are not limited to, activation of cytosolic lipase and nitric oxide. Newly formed pores release intracellular lipids, which are further metabolized. Future studies need to fully outline the cellular and systemic effects of LLLT as well as determine optimal treatment protocols.

  19. The CONTOUR remote imager and spectrometer (CRISP)

    NASA Astrophysics Data System (ADS)

    Warren, Jeffery W.; Heffernan, Kevin J.; Conard, Steven J.; Bell, James F., III; Cochran, Anita L.; Boldt, John D.; Bowman, Alice F.; Darlington, E. H.; Deluzio, Anthony; Fiore, Daniel; Fort, Dennis E.; Garcia, David; Grey, Matthew P.; Gotwols, Bruce L.; Harch, Ann P.; Hayes, John R.; Heyler, Gene A.; Howser, Linda M.; Humm, David C.; Izenberg, Noam R.; Kosakowski, Kris E.; Lees, W. J.; Lohr, D. A.; Luther, Holger M.; Mehoke, Douglas S.; Murchie, Scott L.; Reiter, R. Alan; Rider, Brian; Rogers, G. D.; Sampath, Deepak; Schaefer, Edward D.; Spisz, Thomas S.; Strohbehn, Kim; Svenson, Scott; Taylor, Howard W.; Thompson, Patrick L.; Veverka, Joseph; Williams, Robert L.; Wilson, Paul

    2004-02-01

    The CONTOUR Remote Imager and Spectrometer (CRISP) was a multi-function optical instrument developed for the Comet Nucleus Tour Spacecraft (CONTOUR). CONTOUR was a NASA Discovery class mission launched on July 3, 2002. This paper describes the design, fabrication, and testing of CRISP. Unfortunately, the CONTOUR spacecraft was destroyed on August 15, 2002 during the firing of the solid rocket motor that injected it into heliocentric orbit. CRISP was designed to return high quality science data from the solid nucleus at the heart of a comet. To do this during close range (order 100 km) and high speed (order 30 km/sec) flybys, it had an autonomous nucleus acquisition and tracking system which included a one axis tracking mirror mechanism and the ability to control the rotation of the spacecraft through a closed loop interface to the guidance and control system. The track loop was closed using the same images obtained for scientific investigations. A filter imaging system was designed to obtain multispectral and broadband images at resolutions as good as 4 meters per pixel. A near IR imaging spectrometer (or hyperspectral imager) was designed to obtain spectral signatures out to 2.5 micrometers with resolution of better than 100 meters spatially. Because of the high flyby speeds, CRISP was designed as a highly automated instrument with close coupling to the spacecraft, and was intended to obtain its best data in a very short period around closest approach. CRISP was accompanied in the CONTOUR science payload by CFI, the CONTOUR Forward Imager. CFI was optimized for highly sensitive observations at greater ranges. The two instruments provided highly complementary optical capabilities, while providing some degree of functional redundancy.

  20. Contour-based classification of video objects

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Kuehne, Gerald; Schuster, Oliver

    2000-12-01

    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects.

  1. Contour-based classification of video objects

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Kuehne, Gerald; Schuster, Oliver

    2001-01-01

    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects.

  2. Off-axis low coherence interferometry contouring

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Yves; Pavillon, Nicolas; Lang, Florian; Depeursinge, Christian

    2009-12-01

    In this article we present a method to achieve tri-dimensional contouring of macroscopic objects. A modified reference wave speckle interferometer is used in conjunction with a source of reduced coherence. The depth signal is given by the envelope of the interference signal, directly determined by the coherence length of the source. Fringes are detected in the interferogram obtained by a single shot and are detected by means of adequate filtering. With the approach based on off-axis configuration, a contour line can be extracted from a single acquisition, thus allowing to use the system in harsh environment.

  3. The velocity snake: Deformable contour for tracking in spatio-velocity space

    SciTech Connect

    Peterfreund, N.

    1997-06-01

    The author presents a new active contour model for boundary tracking and position prediction of nonrigid objects, which results from applying a velocity control to the class of elastodynamical contour models, known as snakes. The proposed control term minimizes an energy dissipation function which measures the difference between the contour velocity and the apparent velocity of the image. Treating the image video-sequence as continuous measurements along time, it is shown that the proposed control results in an unbiased tracking. This is in contrast to the original snake model which is proven to be biased due to the image (object) velocity, thus resulting in high sensitivity to image clutter. The motion estimation further allows for position prediction of nonrigid boundaries. Based on the proposed control approach, the author proposes a new class of real time tracking contours, varying from models with batch-mode control estimation to models with real time adaptive controllers.

  4. Radiographic and Anatomic Basis for Prostate Contouring Errors and Methods to Improve Prostate Contouring Accuracy

    SciTech Connect

    McLaughlin, Patrick W.; Evans, Cheryl M.S.; Feng, Mary; Narayana, Vrinda

    2010-02-01

    Purpose: Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Methods and Materials: Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Results: Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Conclusions: Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data.

  5. Contour junctions underlie neural representations of scene categories in high-level human visual cortex.

    PubMed

    Choo, Heeyoung; Walther, Dirk B

    2016-07-15

    Humans efficiently grasp complex visual environments, making highly consistent judgments of entry-level category despite their high variability in visual appearance. How does the human brain arrive at the invariant neural representations underlying categorization of real-world environments? We here show that the neural representation of visual environments in scene-selective human visual cortex relies on statistics of contour junctions, which provide cues for the three-dimensional arrangement of surfaces in a scene. We manipulated line drawings of real-world environments such that statistics of contour orientations or junctions were disrupted. Manipulated and intact line drawings were presented to participants in an fMRI experiment. Scene categories were decoded from neural activity patterns in the parahippocampal place area (PPA), the occipital place area (OPA) and other visual brain regions. Disruption of junctions but not orientations led to a drastic decrease in decoding accuracy in the PPA and OPA, indicating the reliance of these areas on intact junction statistics. Accuracy of decoding from early visual cortex, on the other hand, was unaffected by either image manipulation. We further show that the correlation of error patterns between decoding from the scene-selective brain areas and behavioral experiments is contingent on intact contour junctions. Finally, a searchlight analysis exposes the reliance of visually active brain regions on different sets of contour properties. Statistics of contour length and curvature dominate neural representations of scene categories in early visual areas and contour junctions in high-level scene-selective brain regions.

  6. Contour Mapping for Pools and Ponds.

    ERIC Educational Resources Information Center

    Berry, Noel

    1985-01-01

    Simple jigs (positioning devices) to make contour mapping tasks easier and more accurate are easily constructed from 5mm-thick acetate sheets. These plastic holders are used with meter sticks to provide scanning guides to measure pools and ponds. Instructions for making the jigs and sample results are included. (DH)

  7. Expectations for Melodic Contours Transcend Pitch

    PubMed Central

    Graves, Jackson E.; Micheyl, Christophe; Oxenham, Andrew J.

    2015-01-01

    The question of what makes a good melody has interested composers, music theorists, and psychologists alike. Many of the observed principles of good “melodic continuation” involve melodic contour – the pattern of rising and falling pitch within a sequence. Previous work has shown that contour perception can extend beyond pitch to other auditory dimensions, such as brightness and loudness. Here, we show with two experiments that the generalization of contour perception to non-traditional dimensions also extends to melodic expectations. In the first experiment, subjective ratings for three-tone sequences that vary in brightness or loudness conformed to the same general contour-based expectations as pitch sequences. In the second experiment, we modified the sequence of melody presentation such that melodies with the same beginning were blocked together. This change produced substantively different results, but the patterns of ratings remained similar across the three auditory dimensions. Taken together, these results suggest that 1) certain well-known principles of melodic expectation (such as the expectation for a reversal following a skip) are dependent on long-term context, and 2) these expectations are not unique to the dimension of pitch and may instead reflect more general principles of perceptual organization. PMID:25365571

  8. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  9. Molding Compound For Inspection Of Internal Contours

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Ricklefs, Steve

    1988-01-01

    Material clean, sets rapidly, and easy to use. Silicone elastomer, Citrocon or equivalent, commonly used in dentistry, in combination with mold-release agent (Also see MFS-29240), speeds and facilitates making of impressions of interior surfaces so surface contours examined. Elastomer easily moved around in cavity until required location found.

  10. Automatic Contour Tracking in Ultrasound Images

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human tongue is presented. The images are produced by a head and transducer support system (HATS). The noise and unrelated high-contrast edges in ultrasound images make it very difficult to automatically detect the correct tongue surfaces. In…

  11. contbin: Contour binning and accumulative smoothing

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy S.

    2016-09-01

    Contbin bins X-ray data using contours on an adaptively smoothed map. The generated bins closely follow the surface brightness, and are ideal where the surface brightness distribution is not smooth, or the spectral properties are expected to follow surface brightness. Color maps can be used instead of surface brightness maps.

  12. Contour-measuring tool for composite layups

    NASA Technical Reports Server (NTRS)

    Fontes, M. J.

    1981-01-01

    Simple handtool helps form contours and complex shapes from laminae of resin-impregnated fabric. Tool, which consists of yoke having ballpoint pen and spindle and gage, is placed so that it straddles model. As toll is moved, pen draws constant thickness focus that is used as template.

  13. Aircraft noise source and contour estimation

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.

    1973-01-01

    Calculation procedures are presented for predicting the noise-time histories and noise contours (footprints) of five basic types of aircraft; turbojet, turofan, turboprop, V/STOL, and helicopter. The procedures have been computerized to facilitate prediction of the noise characteristics during takeoffs, flyovers, and/or landing operations.

  14. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  15. Improved discrimination in photographic density contouring

    NASA Technical Reports Server (NTRS)

    Godding, R. A.

    1974-01-01

    Density discrimination can be accomplished through use of special photographic contouring material which has two sensitive layers (one negative, one positive) on single support. Process will be of interest to investigators who require finer discrimination of densities of original photograph for purposes such as identification of crops and analysis of energy levels of radiating objects.

  16. Automatic liver contouring for radiotherapy treatment planning.

    PubMed

    Li, Dengwang; Liu, Li; Kapp, Daniel S; Xing, Lei

    2015-10-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  17. Automatic liver contouring for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  18. [External contour acquisition system for radiotherapy: an original solution].

    PubMed

    Létourneau, D; Brochet, F; Bohémier, R; Gagnon, J

    2000-01-01

    A contour acquisition system has been designed in radiotherapy at the Sagamie Hospital complex (Chicoutimi, Québec) to measure the external contours of the patients who do not need a CT exam. This measuring system can produce transversal, sagittal or coronal patient contours in the treatment position. The absolute accuracy of the system is +/- 1 mm. The contours produced by this equipment can be transferred electronically or on paper to the planning system.

  19. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  20. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  1. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  2. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  3. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b)...

  4. Contour detection combined with depth information

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Many challenging computer vision problems have been proven to benefit from the incorporation of depth information, to name a few, semantic labellings, pose estimations and even contour detection. Different objects have different depths from a single monocular image. The depth information of one object is coherent and the depth information of different objects may vary discontinuously. Meanwhile, there exists a broad non-classical receptive field (NCRF) outside the classical receptive field (CRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. Based on the findings and researches, a biological-inspired contour detection model which combined with depth information is proposed in this paper.

  5. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  6. Thermal contouring of forestry data: Wallops Island

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The contouring of 8-13.5 micrometer thermal data collected over a forestry site in Virginia is described. The data were collected at an altitude of 1000 ft above terrain on November 4, 1970. The site was covered on three approximately parallel lines. The purpose of the contouring was to attempt to delineate pine trees attacked by southern pine bark beetle, and to map other important terrain categories. Special processing steps were required to achieve the correct aspect ratio of the thermal data. The reference for the correction procedure was color infrared photography. Data form and quality are given, processing steps are outlined, a brief interpretation of results is given, and conclusion are presented.

  7. Numerosity underestimation in sets with illusory contours.

    PubMed

    Kirjakovski, Atanas; Matsumoto, Eriko

    2016-05-01

    People underestimate the numerosity of collections in which a few dots are connected in pairs by task-irrelevant lines. Such configural processing suggests that visual numerosity depends on the perceived scene segments, rather than on the perceived total area occupied by a collection. However, a methodology that uses irrelevant line connections may also introduce unnecessary distraction and variety, or obscure the perception of task-relevant items, given the saliency of the lines. To avoid such potentially confounding variables, we conducted four experiments where the line-connected dots were replaced with collinear inducers of Kanizsa-type illusory contours. Our participants had to compare two simultaneously presented collections and choose the more numerous one. Displays comprised c-shaped inducers and disks (Experiment 1), c-shaped inducers only (Experiments 2 and 4), or closed inducers (Experiment 3). One display always showed a 12- (Experiments 1-3) or 48-item reference pattern (Experiment 4); the other was a test pattern with numerosity varying between 9 and 15 (Experiments 1-3) or 36-60 items (Experiment 4). By manipulating the number of illusory contours in the test patterns, the level of connectedness increased or decreased respectively. The fitted psychometric functions revealed an underestimation that increased with the number of illusory contours in Experiments 1 and 2, but was absent in Experiments 3 and 4, where illusory contours were more difficult to perceive or larger numerosities were used. Results corroborate claims that visual numerosity estimation depends on segmented inputs, but only within moderate numerical ranges. PMID:27038561

  8. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  9. Inlet contour and flow effects on radiation

    NASA Astrophysics Data System (ADS)

    Ville, J. M.; Silcox, R. J.

    1980-06-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  10. Semi-automated contour recognition using DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  11. Motion-based mechanisms of illusory contour synthesis.

    PubMed

    Anderson, B L; Barth, H C

    1999-10-01

    Neurophysiological studies and computational models of illusory contour formation have focused on contour orientation as the underlying determinant of illusory contour shape in both static and moving displays. Here, we report a class of motion-induced illusory contours that demonstrate the existence of novel mechanisms of illusory contour synthesis. In a series of experiments, we show that the velocity of contour terminations and the direction of motion of a partially occluded figure regulate the perceived shape and apparent movement of illusory contours formed from moving image sequences. These results demonstrate the existence of neural mechanisms that reconstruct occlusion relationships from both real and inferred image velocities, in contrast to the static geometric mechanisms that have been the focus of studies to date. PMID:10571236

  12. Application of centerline detection and deformable contours algorithms to segmenting the carotid lumen

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Ogiela, Marek R.

    2014-03-01

    The main contribution of this article is to evaluate the utility of different state-of-the-art deformable contour models for segmenting carotid lumen walls from computed tomography angiography images. We have also proposed and tested a new tracking-based lumen segmentation method based on our evaluation results. The deformable contour algorithm (snake) is used to detect the outer wall of the vessel. We have examined four different snakes: with a balloon, distance, and a gradient vector flow force and the method of active contours without edges. The algorithms were evaluated on a set of 32 artery lumens-16 from the common carotid artery (CCA)-the internal carotid artery section and 16 from the CCA-the external carotid artery section-in order to find the optimum deformable contour model for this task. Later, we evaluated different values of energy terms in the method of active contours without edges, which turned out to be the best for our dataset, in order to find the optimal values for this particular segmentation task. The choice of particular weights in the energy term was evaluated statistically. The final Dice's coefficient at the level of 0.939±0.049 puts our algorithm among the best state-of-the-art methods for these solutions.

  13. Body contouring following massive weight loss

    PubMed Central

    Langer, Vijay; Singh, Amitabh; Aly, Al S.; Cram, Albert E.

    2011-01-01

    Obesity is a global disease with epidemic proportions. Bariatric surgery or modified lifestyles go a long way in mitigating the vast weight gain. Patients following these interventions usually undergo massive weight loss. This results in redundant tissues in various parts of the body. Loose skin causes increased morbidity and psychological trauma. This demands various body contouring procedures that are usually excisional. These procedures are complex and part of a painstaking process that needs a committed patient and an industrious plastic surgeon. As complications in these patients can be quite frequent, both the patient and the surgeon need to be aware and willing to deal with them. PMID:21713202

  14. Grating projection system for surface contour measurement.

    PubMed

    Tay, Cho Jui; Thakur, Madhuri; Quan, Chenggen

    2005-03-10

    A grating projection system is a low-cost surface contour measurement technique that can be applied to a wide range of applications. There has been a resurgence of interest in the technique in recent years because of developments in computer hardware and image processing algorithms. We describe a method that projects a phase-shifted grating through a lens on an object surface. The deformed grating image on the object surface is captured by a CCD camera for subsequent analysis. Phase variation is achieved by a linear translation stage on which the grating is mounted. We compare the experimental results with the test results using a mechanical stylus method. PMID:15796237

  15. Circumferential truncal contouring: the belt lipectomy.

    PubMed

    Aly, Al; Mueller, Melissa

    2014-10-01

    The primary goal of belt lipectomy surgery is to improve the contour of the inferior truncal circumferential unit and to place the resultant scar in natural junctions. Excessive intra-abdominal content is a contraindication for belt lipectomy. The higher the presenting patient's body mass index (BMI), the higher the risk of postoperative complications and the less impressive the results. The converse is also true: the lower the BMI, the lower the risk of complications and the better the results. The most common complications are small wound separations and seromas.

  16. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  17. Contour dynamics model for electric discharges.

    PubMed

    Arrayás, M; Fontelos, M A; Jiménez, C

    2010-03-01

    We present an effective contour model for electrical discharges deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The incorporation of curvature effects to the velocity propagation and not to the boundary conditions is a feature and makes it different from the classical Laplacian growth models. The dispersion relation for a nonplanar two-dimensional discharge is calculated. The development and propagation of fingerlike patterns are studied and their main features quantified.

  18. Automatic segmentation of vertebral contours from CT images using fuzzy corners.

    PubMed

    Athertya, Jiyo S; Saravana Kumar, G

    2016-05-01

    Automatic segmentation of bone in computed tomography (CT) images is critical for the implementation of computer-assisted diagnosis which has increasing potential in the evaluation of various spine disorders. Of the many techniques available for delineating the region of interest (ROI), active contour methods (ACM) are well-established techniques that are used to segment medical images. The initialization for these methods is either through manual intervention or by applying a global threshold, thus making them semi-automatic in nature. The paper presents a methodology for automatic contour initialization in ACM and demonstrates the applicability of the method for medical image segmentation from spinal CT images. Initially, a set of feature markers from the image is extracted to construct an initial contour for the ACM. A fuzzified corner metric, based on image intensity, is proposed to identify the feature markers to be enclosed by the contour. A concave hull based on α shape, is constructed using these fuzzy corners to give the initial contour. The proposed method was evaluated against conventional feature detectors and other initialization methods. The results show the method׳s robust performance in the presence of simulated Gaussian noise levels. The method enables the ACM to efficiently converge to the ground truth segmentation. The reference standard for comparison was the annotated images from a radiologist, and the Dice coefficient and Hausdorff distance measures were used to evaluate the segmentation. PMID:27017068

  19. Collinear facilitation and contour integration in autism: evidence for atypical visual integration.

    PubMed

    Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD. PMID:25805985

  20. Collinear facilitation and contour integration in autism: evidence for atypical visual integration

    PubMed Central

    Jachim, Stephen; Warren, Paul A.; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome) using two psychophysical tasks thought to rely on integrative processing—collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD. PMID:25805985

  1. CONTOUR; a modification of G.I. Evenden's general purpose contouring program

    USGS Publications Warehouse

    Godson, R.H.; Webring, M.W.

    1982-01-01

    A contouring program written for the DEC-10 computer (Evenden, 1975) has been modified and enhanced to operate on a Honeywell Multics 68/80 computer. The program uses a device independent plotting system (Wahl, 1977) so that output can be directed to any of several plotting devices by simply specifying one input variable.

  2. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26903419

  3. Is accommodation colorblind? Focusing chromatic contours.

    PubMed

    Wolfe, J M; Owens, D A

    1981-01-01

    Two adjacent regions define an edge if they differ in either color or luminance. If the difference is purely chromatic, the edge is said to be isoluminant. Isoluminant contours are often perceptually unstable. Perhaps some of this instability could be explained if isoluminant contours were difficult to bring into focus. To test this hypothesis, a vernier optometer was used to measure the accuracy of steady-state accommodation for the vertical boundary of a red-green bipartite field. This edge was presented at optical distances of 0, 1.5, 3.0, and 4.5 diopters, with brightness contrasts between the two hemifields of 0% (isoluminant), 15%, 58%, and 100%. Accommodation was essentially unresponsiveness to the isoluminant edge and exhibited increasing focusing accuracy with increased brightness contrast. Control experiments replicated this finding for red-orange, green-blue, and white-white fields. These results imply that luminance contrast is a necessary stimulus for monocular accommodation. Inappropriate accommodation may be a factor contributing to the perceptual instability of isoluminant patterns. PMID:7255083

  4. Automated extraction of odontocete whistle contours.

    PubMed

    Roch, Marie A; Brandes, T Scott; Patel, Bhavesh; Barkley, Yvonne; Baumann-Pickering, Simone; Soldevilla, Melissa S

    2011-10-01

    Many odontocetes produce frequency modulated tonal calls known as whistles. The ability to automatically determine time × frequency tracks corresponding to these vocalizations has numerous applications including species description, identification, and density estimation. This work develops and compares two algorithms on a common corpus of nearly one hour of data collected in the Southern California Bight and at Palmyra Atoll. The corpus contains over 3000 whistles from bottlenose dolphins, long- and short-beaked common dolphins, spinner dolphins, and melon-headed whales that have been annotated by a human, and released to the Moby Sound archive. Both algorithms use a common signal processing front end to determine time × frequency peaks from a spectrogram. In the first method, a particle filter performs Bayesian filtering, estimating the contour from the noisy spectral peaks. The second method uses an adaptive polynomial prediction to connect peaks into a graph, merging graphs when they cross. Whistle contours are extracted from graphs using information from both sides of crossings. The particle filter was able to retrieve 71.5% (recall) of the human annotated tonals with 60.8% of the detections being valid (precision). The graph algorithm's recall rate was 80.0% with a precision of 76.9%.

  5. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory.

  6. Noninvasive and minimally invasive techniques in body contouring.

    PubMed

    Afrooz, Paul N; Pozner, Jason N; DiBernardo, Barry E

    2014-10-01

    Major surgical body contouring procedures have several inherent drawbacks, including hospitalization, anesthetic use, pain, swelling, and prolonged recovery. It is for these reasons that body contouring through noninvasive and minimally invasive methods has become one of the most alluring areas in aesthetic surgery. Patient expectations and demands have driven the field toward safer, less-invasive procedures with less discomfort, fewer complications, and a shorter recovery. In this article, the current minimally invasive and noninvasive modalities for body contouring are reviewed.

  7. Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity.

  8. One "shape" fits all: the orientation bandwidth of contour integration.

    PubMed

    Hansen, Bruce C; May, Keith A; Hess, Robert F

    2014-11-18

    The ability of human participants to integrate fragmented stimulus elements into perceived coherent contours (amidst a field of distracter elements) has been intensively studied across a large number of contour element parameters, ranging from luminance contrast and chromaticity to motion and stereo. The evidence suggests that contour integration performance depends on the low-level Fourier properties of the stimuli. Thus, to understand contour integration, it would be advantageous to understand the properties of the low-level filters that the visual system uses to process contour stimuli. We addressed this issue by examining the role of stimulus element orientation bandwidth in contour integration, a previously unexplored area. We carried out three psychophysical experiments, and then simulated all of the experiments using a recently developed two-stage filter-overlap model whereby the contour grouping occurs by virtue of the overlap between the filter responses to different elements. The first stage of the model responds to the elements, while the second stage integrates the responses along the contour. We found that the first stage had to be fairly broadly tuned for orientation to account for our results. The model showed a very good fit to a large data set with relatively few free parameters, suggesting that this class of model may have an important role to play in helping us to better understand the mechanisms of contour integration.

  9. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture.

    PubMed

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-06-18

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness--the valence dimension of the affect circumplex--accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain.

  10. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture.

    PubMed

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-06-18

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness--the valence dimension of the affect circumplex--accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  11. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    PubMed Central

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  12. Responses in early visual areas to contour integration are context dependent.

    PubMed

    Qiu, Cheng; Burton, Philip C; Kersten, Daniel; Olman, Cheryl A

    2016-06-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1-V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization.

  13. Responses in early visual areas to contour integration are context dependent

    PubMed Central

    Qiu, Cheng; Burton, Philip C.; Kersten, Daniel; Olman, Cheryl A.

    2016-01-01

    It has been shown that early visual areas are involved in contour processing. However, it is not clear how local and global context interact to influence responses in those areas, nor has the interarea coordination that yields coherent structural percepts been fully studied, especially in human observers. In this study, we used functional magnetic resonance imaging (fMRI) to measure activity in early visual cortex while observers performed a contour detection task in which alignment of Gabor elements and background clutter were manipulated. Six regions of interest (two regions, containing either the cortex representing the target or the background clutter, in each of areas V1, V2, and V3) were predefined using separate target versus background functional localizer scans. The first analysis using a general linear model showed that in the presence of background clutter, responses in V1 and V2 target regions of interest were significantly stronger to aligned than unaligned contours, whereas when background clutter was absent, no significant difference was observed. The second analysis using interarea correlations showed that with background clutter, there was an increase in V1–V2 coordination within the target regions when perceiving aligned versus unaligned contours; without clutter, however, correlations between V1 and V2 were similar no matter whether aligned contours were present or not. Both the average response magnitude and the connectivity analysis suggest different mechanisms support contour processing with or without background distractors. Coordination between V1 and V2 may play a major role in coherent structure perception, especially with complex scene organization. PMID:27366994

  14. Vorticity generation by contoured wall injectors

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.; Marble, Frank E.; Zukoski, Edward E.

    1992-01-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface.

  15. Vorticity generation by contoured wall injectors

    SciTech Connect

    Waitz, I.A.; Marble, F.E.; Zukoski, E.E. California Institute of Technology, Pasadena )

    1992-07-01

    A class of contoured wall fuel injectors was designed to enable shock-enhancement of hypervelocity mixing for supersonic combustion ramjet applications. Previous studies of these geometries left unresolved questions concerning the relative importance of various axial vorticity sources in mixing the injectant with the freestream. The present study is a numerical simulation of two generic fuel injectors which is aimed at elucidating the relative roles of axial vorticity sources including: baroclinic torque through shock-impingement, cross-stream shear, turning of boundary layer vorticity, shock curvature, and diffusive flux. Both the magnitude of the circulation, and the location of vorticity with respect to the mixing interface were considered. Baroclinic torque and cross-stream shear were found to be most important in convectively mixing the injectant with the freestream, with the former providing for deposition of vorticity directly on the fuel/air interface. 19 refs.

  16. Cervical contouring concepts: enhancing the dentogingival complex.

    PubMed

    Bichacho, N

    1996-04-01

    The importance of the mucogingival complex in any restorative procedure has long been recognized, and various surgical and nonsurgical procedures have been developed to restore the compromised gingiva to its original health. The learning objective of this article is to review nonsurgical restorative techniques to manipulate the soft tissue surrounding the cervical aspect of the restored tooth into a more favorable contour. The techniques presented are applicable to direct and indirect restorations. Six case reports are used to illustrate the various clinical procedures. The techniques include: Supragingival direct restorative techniques, such as recontouring intact dentition; and intracrevicular indirect techniques, such as recapturing the soft tissue of deficient crown restorations, re-engineering recessed injured tissue, re-creation of hyperplastic injured tissue, re-engineering hyperplastic recessed posttrauma tissue, and re-engineering the periprosthetic envelope.

  17. Combining prior day contours to improve automated prostate segmentation

    SciTech Connect

    Godley, Andrew; Sheplan Olsen, Lawrence J.; Stephans, Kevin; Zhao Anzi

    2013-02-15

    Purpose: To improve the accuracy of automatically segmented prostate, rectum, and bladder contours required for online adaptive therapy. The contouring accuracy on the current image guidance [image guided radiation therapy (IGRT)] scan is improved by combining contours from earlier IGRT scans via the simultaneous truth and performance level estimation (STAPLE) algorithm. Methods: Six IGRT prostate patients treated with daily kilo-voltage (kV) cone-beam CT (CBCT) had their original plan CT and nine CBCTs contoured by the same physician. Three types of automated contours were produced for analysis. (1) Plan: By deformably registering the plan CT to each CBCT and then using the resulting deformation field to morph the plan contours to match the CBCT anatomy. (2) Previous: The contour set drawn by the physician on the previous day CBCT is similarly deformed to match the current CBCT anatomy. (3) STAPLE: The contours drawn by the physician, on each prior CBCT and the plan CT, are deformed to match the CBCT anatomy to produce multiple contour sets. These sets are combined using the STAPLE algorithm into one optimal set. Results: Compared to plan and previous, STAPLE improved the average Dice's coefficient (DC) with the original physician drawn CBCT contours to a DC as follows: Bladder: 0.81 {+-} 0.13, 0.91 {+-} 0.06, and 0.92 {+-} 0.06; Prostate: 0.75 {+-} 0.08, 0.82 {+-} 0.05, and 0.84 {+-} 0.05; and Rectum: 0.79 {+-} 0.06, 0.81 {+-} 0.06, and 0.85 {+-} 0.04, respectively. The STAPLE results are within intraobserver consistency, determined by the physician blindly recontouring a subset of CBCTs. Comparing plans recalculated using the physician and STAPLE contours showed an average disagreement less than 1% for prostate D98 and mean dose, and 5% and 3% for bladder and rectum mean dose, respectively. One scan takes an average of 19 s to contour. Using five scans plus STAPLE takes less than 110 s on a 288 core graphics processor unit. Conclusions: Combining the plan and

  18. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  19. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  20. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities....

  1. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. ... 32 National Defense 5 2010-07-01 2010-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour...

  2. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. ... 32 National Defense 5 2011-07-01 2011-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour...

  3. Contour integration and segmentation with a new lateral connections model

    NASA Astrophysics Data System (ADS)

    Cai, Chao

    2011-11-01

    Automatically target contour detection from cluttered scenes is a very difficult task for computer vision. Humans, however, have a much better background suppress ability. The preceding models could not implement such a task very well. In this letter, an effective contour integration method based on human visual perception mechanism is proposed. The algorithm combines the properties of primary visual cortex and psychology researching results to simulate the contour perception of the V1 cortex. The new lateral connection based computational model have a better texture suppress ability, while, target's contour is enhanced. Compared with traditional methods, experiments show that the new method implement a more reasonable simulation of the V1 function structure, availably enhance the target's contour while suppress the cluttered background, obtain a balance between over and lose detection, besides, it has better accuracy with less computational complexity and time-consuming.

  4. Contour-Based Surface Reconstruction using MPU Implicit Models.

    PubMed

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results.

  5. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  6. Hand contour detection in wearable camera video using an adaptive histogram region of interest

    PubMed Central

    2013-01-01

    Background Monitoring hand function at home is needed to better evaluate the effectiveness of rehabilitation interventions. Our objective is to develop wearable computer vision systems for hand function monitoring. The specific aim of this study is to develop an algorithm that can identify hand contours in video from a wearable camera that records the user’s point of view, without the need for markers. Methods The two-step image processing approach for each frame consists of: (1) Detecting a hand in the image, and choosing one seed point that lies within the hand. This step is based on a priori models of skin colour. (2) Identifying the contour of the region containing the seed point. This is accomplished by adaptively determining, for each frame, the region within a colour histogram that corresponds to hand colours, and backprojecting the image using the reduced histogram. Results In four test videos relevant to activities of daily living, the hand detector classification accuracy was 88.3%. The contour detection results were compared to manually traced contours in 97 test frames, and the median F-score was 0.86. Conclusion This algorithm will form the basis for a wearable computer-vision system that can monitor and log the interactions of the hand with its environment. PMID:24354542

  7. Common Visual Preference for Curved Contours in Humans and Great Apes

    PubMed Central

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans’ preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans’ visual preference for curved objects evolved from earlier primate species’ visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features. PMID:26558754

  8. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features. PMID:26558754

  9. Evaluation of Dosimetric Consequences of Seroma Contour Variability in Accelerated Partial Breast Irradiation Using a Constructed Representative Seroma Contour

    SciTech Connect

    Kosztyla, Robert; Olson, Robert; Carolan, Hannah; Balkwill, Susan; Moiseenko, Vitali; Kwan, Winkle

    2012-10-01

    Purpose: Contouring variability of the seroma can have important implications in the planning and delivery of accelerated partial breast irradiation (APBI). This study aimed to quantify the dosimetric impact of these interobserver and intraobserver contouring variations by construction of a representative seroma contour (RSC). Methods and Materials: Twenty-one patients with a seroma suitable for APBI underwent four computed tomography (CT) scans: one planning CT and three additional CTs on the first, third, and fifth days of treatment. Three radiation oncologists contoured the seroma on each CT scan. For 3 patients, oncologists repeated contouring twice to assess intraobserver variations. Seroma contour variability was quantified by construction of an RSC. In addition, the percent volume overlap (PVO) was calculated. Root-mean-square (RMS) differences in seroma volume, size, and center of mass position compared to those of the RSC were calculated. Treatment fields from the original plan were applied to the repeated CTs by using the same isocenter shifts as the original plan. The dosimetric impact of the contour variations was assessed using V{sub 95} (volume receiving at least 95% of the prescribed dose) and equivalent uniform dose (EUD). Results: Interobserver RMS volume differences were, on average, 5.6 times larger than intraobserver differences. The median interobserver RMS seroma volume difference was 1.48 cm{sup 3}. The median PVO was 51.6%. V{sub 95} and EUD of the seroma contours were similar for all patients. The median RMS differences of the seroma V{sub 95} and EUD were 0.01% (range, 0%-3.99%) and 0.05 Gy (range, 0-0.98 Gy). Conclusions: Construction of the RSC showed that interobserver variations were most responsible for contour variations of the seroma. Current planning margins provided adequate dose coverage of the seroma despite these contour variations.

  10. Uniqueness of two-loop master contours

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Larsen, Kasper J.

    2012-10-01

    Generalized-unitarity calculations of two-loop amplitudes are performed by expanding the amplitude in a basis of master integrals and then determining the coefficients by taking a number of generalized cuts. In this paper, we present a complete classification of the solutions to the maximal cut of integrals with the double-box topology. The ideas presented here are expected to be relevant for all two-loop topologies as well. We find that these maximal-cut solutions are naturally associated with Riemann surfaces whose topology is determined by the number of states at the vertices of the double-box graph. In the case of four massless external momenta we find that, once the geometry of these Riemann surfaces is properly understood, there are uniquely defined master contours producing the coefficients of the double-box integrals in the basis decomposition of the two-loop amplitude. This is in perfect analogy with the situation in one-loop generalized unitarity. In addition, we point out that the chiral integrals recently introduced by Arkani-Hamed et al. can be used as master integrals for the double-box contributions to the two-loop amplitudes in any gauge theory. The infrared finiteness of these integrals allow for their coefficients as well as their integrated expressions to be evaluated in strictly four dimensions, providing significant technical simplification. We evaluate these integrals at four points and obtain remarkably compact results.

  11. ANOPP/VMS HSCT ground contour system

    NASA Technical Reports Server (NTRS)

    Rawls, John, Jr.; Glaab, Lou

    1992-01-01

    This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.

  12. Discourse-level contours in Nehiyawewin

    NASA Astrophysics Data System (ADS)

    Muehlbauer, Jeff; Cook, Clare

    2005-04-01

    This study describes declination and discourse-sized intonation contours in Nehiyawewin, an Algonquian language whose pitch and intonation systems have not been previously studied. The study draws on 270 min of recordings of two female Nehiyaw elders telling their life stories to another Nehiyawewin native speaker. Data is analyzed by using Praat's default algorithm to generate f0 curves for each breath group. Preliminary results indicate: (1) When breath-group internal pitch peaks are considered, an obvious downward trend of f0 occurred in fewer than half the breath groups analyzed (about 40% or 37/90). This raises questions about the role of classical declination in natural discourse [Umeda, Journal of Phonetics 10 (1982)]. (2) When we abstract away from declination within a breath group by computing mean f0 and mean pitch peak for each breath group and tracking trends for these means, larger patterns seem to emerge; breath groups can be grouped into larger units based on raising and lowering trends. These units have a mean peak range of 150 Hz with a 30 Hz change from one breath group to the next and correspond to a domain of around five clauses (about 3-4 breath groups, about 45 syllables).

  13. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. PMID:26072333

  14. A fast quantum mechanics based contour extraction algorithm

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Sun, Yangguang; Ding, Mingyue

    2009-02-01

    A fast algorithm was proposed to decrease the computational cost of the contour extraction approach based on quantum mechanics. The contour extraction approach based on quantum mechanics is a novel method proposed recently by us, which will be presented on the same conference by another paper of us titled "a statistical approach to contour extraction based on quantum mechanics". In our approach, contour extraction was modeled as the locus of a moving particle described by quantum mechanics, which is obtained by the most probable locus of the particle simulated in a large number of iterations. In quantum mechanics, the probability that a particle appears at a point is equivalent to the square amplitude of the wave function. Furthermore, the expression of the wave function can be derived from digital images, making the probability of the locus of a particle available. We employed the Markov Chain Monte Carlo (MCMC) method to estimate the square amplitude of the wave function. Finally, our fast quantum mechanics based contour extraction algorithm (referred as our fast algorithm hereafter) was evaluated by a number of different images including synthetic and medical images. It was demonstrated that our fast algorithm can achieve significant improvements in accuracy and robustness compared with the well-known state-of-the-art contour extraction techniques and dramatic reduction of time complexity compared to the statistical approach to contour extraction based on quantum mechanics.

  15. Spatial profile of contours inducing long-range color assimilation

    PubMed Central

    DEVINCK, FRÉDÉRIC; SPILLMANN, LOTHAR; WERNER, JOHN S.

    2008-01-01

    Color induction was measured using a matching method for two spatial patterns, each composed of double contours. In one pattern (the standard), the contours had sharp edges to induce the Watercolor Effect (WCE); in the other, the two contours had a spatial taper so that the overall profile produced a sawtooth edge, or ramped stimulus. These patterns were chosen based on our previous study demonstrating that the strength of the chromatic WCE depends on a luminance difference between the two contours. Low-pass chromatic mechanisms, unlike bandpass luminance mechanisms, may be expected to be insensitive to the difference between the two spatial profiles. The strength of the watercolor spreading was similar for the two patterns at narrow widths of the contour possibly because of chromatic aberration, but with wider contours, the standard stimulus produced stronger assimilation than the ramped stimulus. This research suggests that luminance-dependent chromatic mechanisms mediate the WCE and that these mechanisms are sensitive to differences in the two spatial profiles of the pattern contours only when they are wide. PMID:16961998

  16. Low level constraints on dynamic contour path integration.

    PubMed

    Hall, Sophie; Bourke, Patrick; Guo, Kun

    2014-01-01

    Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar) in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°), temporal (200 ms), colour (over 10 colours) and luminance (-25% to 25%) information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  17. Evaluation of mandibular contour in patients with significant facial asymmetry.

    PubMed

    Fang, J-J; Tu, Y-H; Wong, T-Y; Liu, J-K; Zhang, Y-X; Leong, I-F; Chen, K-C

    2016-07-01

    Most previous studies on facial asymmetry have not specifically differentiated mandible deviation from structural asymmetry of the mandible. The purpose of this study was to assess the symmetry of the mandible by examining its contour in a cohort of patients with significant facial asymmetry. Eleven cases of facial asymmetry with chin deviation ≥10mm were enrolled. A voxel-paired median plane (optimal symmetry plane, OSP) and two landmark-based median planes were generated. The OSP was created by computing the best pairing of the bony voxels on the two sides. One side of the mandibular contour was mirrored onto the other side using the test plane. The contour differences were measured by distance and by area ratio. They were examined both in frontal and frontal downward inclined view. The contour symmetry of the mandible was that revealed by the plane that presented the best symmetry. The results showed that the OSP worked best in bisecting the contour into two symmetrical halves. Contour analysis showed relatively small discrepancies between the two sides. In conclusion, the mandibles retained an acceptable contour symmetry despite the presence of significant mandibular deviations. It is suggested that proper mandibular alignment be the primary objective in the correction of facial asymmetry.

  18. Infants' perception of curved illusory contour with motion.

    PubMed

    Sato, Kazuki; Masuda, Tomohiro; Wada, Yuji; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K

    2013-12-01

    Recently, Masuda et al. (submitted for publication) showed that adults perceive moving rigid or nonrigid motion from illusory contour with neon color spreading in which the inducer has pendular motion with or without phase difference. In Experiment 1, we used the preferential looking method to investigate whether 3-8-month-old infants can discriminate illusory and non-illusory contour figures, and found that the 7-8-month-old, but not the 3-6-month-old, infants showed significant preference for illusory contour with phase difference. In Experiment 2, we tested the validity of the visual stimuli in the present study, and whether infants could detect illusory contour from the current neon color spreading figures. The results showed that all infants might detect illusory contour figure with neon color spreading figures. The results of Experiments 1 and 2 suggest that 7-8-month-old infants potentially perceive illusory contour from the visual stimulus with phase-different movement of inducers, which elicits the perception of nonrigid dynamic subjective contour in adults.

  19. Evaluation of mandibular contour in patients with significant facial asymmetry.

    PubMed

    Fang, J-J; Tu, Y-H; Wong, T-Y; Liu, J-K; Zhang, Y-X; Leong, I-F; Chen, K-C

    2016-07-01

    Most previous studies on facial asymmetry have not specifically differentiated mandible deviation from structural asymmetry of the mandible. The purpose of this study was to assess the symmetry of the mandible by examining its contour in a cohort of patients with significant facial asymmetry. Eleven cases of facial asymmetry with chin deviation ≥10mm were enrolled. A voxel-paired median plane (optimal symmetry plane, OSP) and two landmark-based median planes were generated. The OSP was created by computing the best pairing of the bony voxels on the two sides. One side of the mandibular contour was mirrored onto the other side using the test plane. The contour differences were measured by distance and by area ratio. They were examined both in frontal and frontal downward inclined view. The contour symmetry of the mandible was that revealed by the plane that presented the best symmetry. The results showed that the OSP worked best in bisecting the contour into two symmetrical halves. Contour analysis showed relatively small discrepancies between the two sides. In conclusion, the mandibles retained an acceptable contour symmetry despite the presence of significant mandibular deviations. It is suggested that proper mandibular alignment be the primary objective in the correction of facial asymmetry. PMID:26976218

  20. The contour method: a new approach in experimental mechanics

    SciTech Connect

    Prime, Michael B

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  1. The Influence of Contour on Similarity Perception of Star Glyphs.

    PubMed

    Fuchs, Johannes; Isenberg, Petra; Bezerianos, Anastasia; Fischer, Fabian; Bertini, Enrico

    2014-12-01

    We conducted three experiments to investigate the effects of contours on the detection of data similarity with star glyph variations. A star glyph is a small, compact, data graphic that represents a multi-dimensional data point. Star glyphs are often used in small-multiple settings, to represent data points in tables, on maps, or as overlays on other types of data graphics. In these settings, an important task is the visual comparison of the data points encoded in the star glyph, for example to find other similar data points or outliers. We hypothesized that for data comparisons, the overall shape of a star glyph--enhanced through contour lines--would aid the viewer in making accurate similarity judgments. To test this hypothesis, we conducted three experiments. In our first experiment, we explored how the use of contours influenced how visualization experts and trained novices chose glyphs with similar data values. Our results showed that glyphs without contours make the detection of data similarity easier. Given these results, we conducted a second study to understand intuitive notions of similarity. Star glyphs without contours most intuitively supported the detection of data similarity. In a third experiment, we tested the effect of star glyph reference structures (i.e., tickmarks and gridlines) on the detection of similarity. Surprisingly, our results show that adding reference structures does improve the correctness of similarity judgments for star glyphs with contours, but not for the standard star glyph. As a result of these experiments, we conclude that the simple star glyph without contours performs best under several criteria, reinforcing its practice and popularity in the literature. Contours seem to enhance the detection of other types of similarity, e. g., shape similarity and are distracting when data similarity has to be judged. Based on these findings we provide design considerations regarding the use of contours and reference structures on star

  2. The Influence of Contour on Similarity Perception of Star Glyphs.

    PubMed

    Fuchs, Johannes; Isenberg, Petra; Bezerianos, Anastasia; Fischer, Fabian; Bertini, Enrico

    2014-12-01

    We conducted three experiments to investigate the effects of contours on the detection of data similarity with star glyph variations. A star glyph is a small, compact, data graphic that represents a multi-dimensional data point. Star glyphs are often used in small-multiple settings, to represent data points in tables, on maps, or as overlays on other types of data graphics. In these settings, an important task is the visual comparison of the data points encoded in the star glyph, for example to find other similar data points or outliers. We hypothesized that for data comparisons, the overall shape of a star glyph--enhanced through contour lines--would aid the viewer in making accurate similarity judgments. To test this hypothesis, we conducted three experiments. In our first experiment, we explored how the use of contours influenced how visualization experts and trained novices chose glyphs with similar data values. Our results showed that glyphs without contours make the detection of data similarity easier. Given these results, we conducted a second study to understand intuitive notions of similarity. Star glyphs without contours most intuitively supported the detection of data similarity. In a third experiment, we tested the effect of star glyph reference structures (i.e., tickmarks and gridlines) on the detection of similarity. Surprisingly, our results show that adding reference structures does improve the correctness of similarity judgments for star glyphs with contours, but not for the standard star glyph. As a result of these experiments, we conclude that the simple star glyph without contours performs best under several criteria, reinforcing its practice and popularity in the literature. Contours seem to enhance the detection of other types of similarity, e. g., shape similarity and are distracting when data similarity has to be judged. Based on these findings we provide design considerations regarding the use of contours and reference structures on star

  3. Contour shape analysis of hollow ion x-ray emission

    SciTech Connect

    Rosmej, F. B.; Angelo, P.; Aouad, Y.

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  4. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  5. Mccon - a general contouring program for personal computers. Final report

    SciTech Connect

    Palmerton, J.B.

    1992-09-01

    This report includes a description of a set of topographic contouring computer programs which are operational on DOS-based personal computers. A discussion of the mathematical procedure used to generate the contour maps and a detailed User's Guide is included. The programs were developed so that columnar types of data, often generated by various database software packages, could be directly accessed and manipulated by users. These computer programs also provide for the inclusion of internal data discontinuity boundaries such as geologic faults or groundwater flow barriers. Contour drawing may also be excluded within selected zones. Following the generation of a contouring mesh, profiles (or cross-sections) may be drawn along any plan orientation. The output of the plots may either be sent to the video screen or to a variety of pen plotters.

  6. Shaping of the continental rise by deep geostrophic contour currents.

    PubMed

    Heezen, B C; Hollister, C D; Ruddiman, W F

    1966-04-22

    Geostrophic contour-following bottom currents involved in the deep thermohaline circulation of the world ocean appear to be the principal agents which control the shape of the continental rise and other sediment bodies.

  7. Shaping of the continental rise by deep geostrophic contour currents.

    PubMed

    Heezen, B C; Hollister, C D; Ruddiman, W F

    1966-04-22

    Geostrophic contour-following bottom currents involved in the deep thermohaline circulation of the world ocean appear to be the principal agents which control the shape of the continental rise and other sediment bodies. PMID:17815077

  8. Robust contour decomposition using a constant curvature criterion

    NASA Technical Reports Server (NTRS)

    Wuescher, Daniel M.; Boyer, Kim L.

    1991-01-01

    The problem of decomposing an extended boundary or contour into simple primitives is addressed with particular emphasis on Laplacian-of-Gaussian (LoG) zero-crossing contours. A technique is introduced for partitioning such contours into constant curvature segments. A nonlinear `blip' filter matched to the impairment signature of the curvature computation process, an overlapped voting scheme, and a sequential contiguous segment extraction mechanism are used. This technique is insensitive to reasonable changes in algorithm parameters and robust to noise and minor viewpoint-induced distortions in the contour shape, such as those encountered between stereo image pairs. The results vary smoothly with the data, and local perturbations induce only local changes in the result. Robustness and insensitivity are experimentally verified.

  9. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  10. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  11. Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators.

    PubMed

    Ghosh, Siddhartha; Piazza, Gianluca

    2015-06-15

    We present a fully-integrated monolithic aluminum nitride optomechanical device in which lateral vibrations generated by a piezoelectric contour mode acoustic ring resonator are used to produce amplitude modulation of an optical signal in a whispering gallery mode photonic ring resonator. Acoustic and optical resonances are independently characterized in this contour mode optomechanical resonator (CMOMR). Electrically driven mechanical modes are optically detected at 35MHz, 654MHz and 884MHz.

  12. Auto-propagation of contours for adaptive prostate radiation therapy

    NASA Astrophysics Data System (ADS)

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  13. A fast contour descriptor algorithm for supernova imageclassification

    SciTech Connect

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  14. Anomalous contours and illusion of angularity: phenomenal and theoretical comparisons.

    PubMed

    Pinna, B

    1991-01-01

    Many experimental comparisons between real and anomalous contours have proven the functional equivalence of the two conditions; however, there are some contradictory findings. One of these is obtained by analyzing the anomalous contours in the light of a new illusion, called the 'illusion of angularity'. A circle becomes a polygon when it covers the centre of a radial arrangement of black stripes, and a polygon changes its perceptual shape depending on its orientation with respect to the same radial arrangement. Phenomenally, it appears like a very pointed polygon, in which every side is concave or, alternatively, a shape that looks like a circle with angles added in the spaces between the radial stripes, or a polygonal shape in which every side is convex. The reciprocal anomalous counterparts of these conditions, obtained by removing the geometrical/polygonal contours, reveal different results. In the first case, one sees a perfect circle; in the second case, a polygon with blunted vertices, or a circular shape with angular protrusions; in the third case, a deformed circle. These results are inconsistent with some theoretical models proposed to explain the emergence of anomalous contours, namely, all the top-down models expressed in terms of cognitive constructions and perceptual hypotheses, or in terms of global figural organizations. Rather, these comparisons suggest a different interpretation for the two phenomena (the illusion of angularity and anomalous contours). This interpretation is based on dynamic interactions or on network computations that synthesize both real and anomalous contours.

  15. The role of crowding in contextual influences on contour integration.

    PubMed

    Robol, Valentina; Casco, Clara; Dakin, Steven C

    2012-01-01

    Dakin and Baruch (2009) investigated how context influences contour integration, specifically reporting that near-perpendicular surrounding-elements reduced the exposure-duration observers required to localize and determine the shape of contours (compared to performance with randomly oriented surrounds) while near-parallel surrounds increased this time. Here, we ask if this effect might be a manifestation of visual crowding (the disruptive influence of "visual clutter" on object recognition). We first report that the effect generalizes to simple contour-localization (without explicit shape-discrimination) and influences tolerance to orientation jitter in the same way it affects threshold exposure-duration. We next directly examined the role of crowding by quantifying observers' local uncertainty (about the orientation of the elements that comprised our contours), showing that this largely accounts for the effects of context on global contour integration. These findings support the idea that context influences contour integration at a predominantly local stage of processing and that the local effects of crowding eventually influence downstream stages in the cortical processing of visual form.

  16. Three-dimensional statistical model for gingival contour reconstruction.

    PubMed

    Wu, Ting; Liao, Wenhe; Dai, Ning

    2012-04-01

    Optimal gingival contours around restored teeth and implants are of critical importance for restorative success and esthetics. This paper describes a novel computer-aided methodology for building a 3-D statistical model of gingival contours from a 3-D scan dental dataset and reconstructing missing gingival contours in partially edentulous patients. The gingival boundaries were first obtained from the 3-D dental model through a discrete curvature analysis and shortest path searching algorithm. Based on the gingival shape differential characteristics, the boundaries were demarcated to construct the gingival contour of each individual tooth. Through B-spline curve approximation to each gingival contour, the control points of the B-spline curves are used as the shape vector for training the model. Statistical analysis results demonstrate that the method can give a simple but compact model that effectively capture the most important variations in arch width and shape as well as gingival morphology and position. Within this statistical model, the morphologically plausible missing contours can be inferred based on a nonlinear optimization fitting from the global similarity transformation, the model shape deformation and a Mahalanobis prior. The reconstruction performance is evaluated through large simulated experimental data and a real patient case, which demonstrates the effectiveness of this approach.

  17. Do we need another neural correlate of contour integration?

    PubMed

    de-Wit, Lee; Schwarzkopf, Dietrich Samuel

    2014-01-01

    Gilad and colleagues use an elegant combination of voltage-sensitive dyes and high temporal and spatial resolution optical imaging to visualize a differential response to collinear contour elements in monkey V1. This result adds to the literature on the neural correlates of contour integration, but does not yet tackle (or seek to tackle) the question as to whether contour integration is mediated by lateral connections within an area (e.g., V1), through pooling of feedfoward connections, or feedback mechanisms. Moreover, while Gilad et al. find that their differential response is correlated with the behavioral performance of each monkey, there are reasons to suspect that the correlation they observe is a consequence of processing in higher regions, and that the differential V1 response may not play a critical role in integrating contour elements, or in generating the monkey's response. Moreover, this differential V1 response was not observed in a monkey who was not trained on the task, a result that can only be reconciled, if one assumes that the monkey could not see the contour prior to training. If valid, this could raise doubts as to whether the study of contour integration really provides insights into the processes by which normal visual perception is achieved.

  18. The development of contour processing: evidence from physiology and psychophysics.

    PubMed

    Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.

  19. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  20. A possible analogy between contours in mathematics--as exemplified by Cauchy's integral formula--and contours in the arts.

    PubMed

    Gerr, S

    1982-01-01

    An attempt is made to draw an analogy between contour drawing and a particular mathematical theorem. The analogy is seen to depend on the fact that both methods use definite values along a contour to imply a totality of values within the contour; thus, the use of a part to suggest the whole, by way of a hypothetical 'gestalt-like integration' in the case of the art contour, and the usual process of mathematical integration in the case of Cauchy's formula. Examples illustrating the analogy are drawn from a wide range of artistic work: a modern American drawing, a Cro-Magnon cave painting, and two Chinese works. The traditional Chinese philosophy of painting is invoked in support of the analogy because of its explicit emphasis on the primacy of outline drawing in Chinese painting. Some speculations are offered on further development and application of the analogy.

  1. A possible analogy between contours in mathematics--as exemplified by Cauchy's integral formula--and contours in the arts.

    PubMed

    Gerr, S

    1982-01-01

    An attempt is made to draw an analogy between contour drawing and a particular mathematical theorem. The analogy is seen to depend on the fact that both methods use definite values along a contour to imply a totality of values within the contour; thus, the use of a part to suggest the whole, by way of a hypothetical 'gestalt-like integration' in the case of the art contour, and the usual process of mathematical integration in the case of Cauchy's formula. Examples illustrating the analogy are drawn from a wide range of artistic work: a modern American drawing, a Cro-Magnon cave painting, and two Chinese works. The traditional Chinese philosophy of painting is invoked in support of the analogy because of its explicit emphasis on the primacy of outline drawing in Chinese painting. Some speculations are offered on further development and application of the analogy. PMID:7182805

  2. Contour mapping of Europa using frequency diverse spatial heterodyne imaging

    NASA Astrophysics Data System (ADS)

    Kendrick, R. L.; Höft, Thomas; Marron, J. C.; Pitman, Joe; Seldomridge, Nathan

    2006-09-01

    Three dimensional imaging of planetary and lunar surfaces has traditionally been the purview of Synthetic Aperture Radar payloads. We propose an active imaging technique that utilizes laser frequency diversity coupled with spatial heterodyne imaging. Spatial heterodyne imaging makes use of a local oscillator which encodes pupil plane object information on a carrier frequency. The object information is extracted via Fourier analysis. Snapshots of the encoded pupil plane information are acquired as the frequency of the illumination laser is varied in small steps (GHz). The resulting three-dimensional data cube is processed to provide angle-angle-range information. The range resolution can be adjusted from microns to meters simply by adjusting the range over which the illuminator laser frequency is varied. The proposed technique can provide fine resolution contour maps of planetary surfaces having widely varying characteristics of importance to science exploration, such as the search for astrobiological habitat niches near the surface of heavily irradiated Europa. This information can be used to better understand the geological processes that form the surface features, and help characterize candidate potential habitat sites on the surface of Europa and other planetary bodies of interest. In this paper we present simulations and experimental data that demonstrate the concept.

  3. [I have tested for you. The contour tonometer. IOP analysis using "Dynamic Contour Tonometry"].

    PubMed

    Lachkar, Y

    2006-05-01

    The Pascal tonometer, or the Dynamic Contour Tonometer (DCT) (Swiss Microtechnology, Zurich) is a device that differs from the Goldmann applanation tonometer (GAT) in its IOP sensor at the center of the cone that measures pressure by a means less dependent on corneal structure. The efficacy of this device in measuring IOP after LASIK surgery has been demonstrated. It can be used to obtain more precise IOP measurements in glaucoma patients or ocular hypertension in cases where the measurement is debatable because of a very thin or very thick cornea. We studied the relations between the measurements with the two devices on thin, normal, and thick corneas. The Pascal tonometer generally showed a good correlation with the Goldmann applanation tonometer, but the limits of agreement are wide. For thin corneas, this device seems more reliable than the GAT, but for thick corneas, no difference was found between the two methods. PMID:17072219

  4. [Body contouring procedures for massive weight loss patients and their complications].

    PubMed

    Long, Xiao; Wang, Xiao-jun

    2011-06-01

    An increasing number of patients require body contouring procedures after massive weight loss. Body contouring can bring better quality of life and increase their satisfaction towards weight loss procedures. However, due to the special body status after massive weight loss, the complications of body contouring can be high. This article briefly describes body contouring procedures and summarizes their indications and complications.

  5. Brightness/darkness induction and the genesis of a contour.

    PubMed

    Roncato, Sergio

    2014-01-01

    Visual contours often result from the integration or interpolation of fragmented edges. The strength of the completion increases when the edges share the same contrast polarity (CP). Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP). The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different gray shades. These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in is blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this "solution" by the visual system.

  6. Contour interaction for foveal acuity targets at different luminances.

    PubMed

    Bedell, Harold E; Siderov, John; Waugh, Sarah J; Zemanová, Romana; Pluháček, František; Musilová, Lenka

    2013-08-30

    Single-letter visual acuity is impaired by nearby flanking stimuli, a phenomenon known as contour interaction. We showed previously that when foveal acuity is degraded by a reduction of letter contrast, both the magnitude and angular spatial extent of foveal contour interaction remain unchanged. In this study, we asked whether contour interaction also remains unchanged when foveal visual acuity is degraded by a reduction of the target's background luminance. Percent correct letter identification was measured for isolated, near-threshold black Sloan letters and for letters surrounded by 4 flanking bars in 10 normal observers, 5 at Anglia Ruskin University, UK (ARU) and 5 at Palacky University, Czech Republic (PU). A stepwise reduction in the background luminance over 3 log units resulted in an approximately threefold increase in the near-threshold letter size. At each background luminance, black flanking bars with a width equal to 1 letter stroke were presented at separations between approximately 0.45 and 4.5 min arc (ARU) or 0.32 and 3.2 min arc (PU). The results indicate that the angular extent of contour interaction remains unchanged at approximately 4 min arc at all background luminances. On the other hand, the magnitude of contour interaction decreases systematically as luminance is reduced, from approximately a 50% reduction to a 30% reduction in percent correct. The constant angular extent and decreasing magnitude of contour interaction with a reduction of background luminance suggest foveal contour interaction is mediated by luminance-dependent lateral inhibition within a fixed angular region.

  7. Brightness/darkness induction and the genesis of a contour

    PubMed Central

    Roncato, Sergio

    2014-01-01

    Visual contours often result from the integration or interpolation of fragmented edges. The strength of the completion increases when the edges share the same contrast polarity (CP). Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP). The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different gray shades. These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in is blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this “solution” by the visual system. PMID:25368570

  8. Contour Tracking with a Spatio-Temporal Intensity Moment.

    PubMed

    Demi, Marcello

    2016-06-01

    Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.

  9. Incorporating Stream Features into Groundwater Contouring Tools Within GIS.

    PubMed

    Bannister, Roger; Kennelly, Patrick

    2016-03-01

    Hydrogeologists often are called upon to estimate surfaces from discrete, sparse data points. This estimation is often accomplished by manually drawing contours on maps using interpolation methods between points of known value while accounting for features known to influence the water table's surface. By contrast, geographic information systems (GIS) are good at creating smooth continuous surfaces from limited data points and allowing the user to represent the resulting surface resulting with contours, but these automated methods often fail to meet the expectations of many hydrogeologists because they do not include knowledge of other influences on the water table. In this study, we seek to fill this gap in the GIS-based methodology for hydrogeologists through an interactive tool that shapes an interpolated surface based on additional knowledge of the water table inferred from gaining or losing streams. The modified surface is reflected in water table contours that, for example, "V" upstream for gaining streams, and can be interactively adjusted to fit the user's expectations. By modifying not only the contours but also the associated interpolated surface, additional contours will follow the same trend, and the modified surface can be used for other analyses like calculating average gradients and flow paths. The tool leverages Esri's ArcGIS Desktop software, building upon a robust suite of mapping tools. We see this as a prototype for other tools that could be developed for hydrogeologists to account for variations in the water table inferred from local topographic trends, pumping or injection wells, and other hydrogeologic features. PMID:25810357

  10. Reading acquisition enhances an early visual process of contour integration.

    PubMed

    Szwed, Marcin; Ventura, Paulo; Querido, Luis; Cohen, Laurent; Dehaene, Stanislas

    2012-01-01

    The acquisition of reading has an extensive impact on the developing brain and leads to enhanced abilities in phonological processing and visual letter perception. Could this expertise also extend to early visual abilities outside the reading domain? Here we studied the performance of illiterate, ex-illiterate and literate adults closely matched in age, socioeconomic and cultural characteristics, on a contour integration task known to depend on early visual processing. Stimuli consisted of a closed egg-shaped contour made of disconnected Gabor patches, within a background of randomly oriented Gabor stimuli. Subjects had to decide whether the egg was pointing left or right. Difficulty was varied by jittering the orientation of the Gabor patches forming the contour. Contour integration performance was lower in illiterates than in both ex-illiterate and literate controls. We argue that this difference in contour perception must reflect a genuine difference in visual function. According to this view, the intensive perceptual training that accompanies reading acquisition also improves early visual abilities, suggesting that the impact of literacy on the visual system is more widespread than originally proposed.

  11. Principles of contour information: Reply to Lim and Leek (2012).

    PubMed

    Singh, Manish; Feldman, Jacob

    2012-07-01

    Lim and Leek (2012) presented a formalization of information along object contours, which they argued was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we summarize the 2 approaches, showing that--notwithstanding Lim and Leek's (2012) critical rhetoric--their approach is substantially identical to ours, except for the technical details of the formalism. Following the logic of our article point by point, Lim and Leek (a) defined probabilistic expectations about the geometry of smooth contours (which they based on differential contour geometry, while we used a discrete approximation--the only essential difference in their approach), (b) assumed that information along the contour was proportional to the negative logarithm of probability, following standard information theory, and then (c) extended this formulation to closed contours. We analyze what they described as errors in our approach, all of which rest on mathematical misunderstandings or bizarre misreadings of our article. We also show that their extension to 3-dimensional surfaces and their "modified minima rule" contain fatal deficiencies. PMID:22775501

  12. Incorporating Stream Features into Groundwater Contouring Tools Within GIS.

    PubMed

    Bannister, Roger; Kennelly, Patrick

    2016-03-01

    Hydrogeologists often are called upon to estimate surfaces from discrete, sparse data points. This estimation is often accomplished by manually drawing contours on maps using interpolation methods between points of known value while accounting for features known to influence the water table's surface. By contrast, geographic information systems (GIS) are good at creating smooth continuous surfaces from limited data points and allowing the user to represent the resulting surface resulting with contours, but these automated methods often fail to meet the expectations of many hydrogeologists because they do not include knowledge of other influences on the water table. In this study, we seek to fill this gap in the GIS-based methodology for hydrogeologists through an interactive tool that shapes an interpolated surface based on additional knowledge of the water table inferred from gaining or losing streams. The modified surface is reflected in water table contours that, for example, "V" upstream for gaining streams, and can be interactively adjusted to fit the user's expectations. By modifying not only the contours but also the associated interpolated surface, additional contours will follow the same trend, and the modified surface can be used for other analyses like calculating average gradients and flow paths. The tool leverages Esri's ArcGIS Desktop software, building upon a robust suite of mapping tools. We see this as a prototype for other tools that could be developed for hydrogeologists to account for variations in the water table inferred from local topographic trends, pumping or injection wells, and other hydrogeologic features.

  13. Infants' perception of subjective contours from apparent motion.

    PubMed

    Yamaguchi, Masami K; Kanazawa, So; Okamura, Hiromi

    2008-01-01

    We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli.

  14. The application of barbed sutures in body contouring surgery.

    PubMed

    Shermak, Michele A

    2013-09-01

    Even with the evolution of primary surgical techniques in body contouring, wound closure remains primarily traditional and has not advanced beyond the techniques followed in past decades. Streamlining wound closure would be the next advance for body contouring surgery. Absorbable barbed sutures offer a potential solution, and they are the subject of this review investigating the applications of absorbable barbed sutures in body contouring surgery. Barbed sutures hold tension as closure proceeds, theoretically decreasing the time required for wound closure, approximating dead space, and obliterating subcutaneous knots that may result in palpable, painful granulomas. Review of the literature reveals some evidence of time savings (in some cases significant and, in some, not); however, the literature also shows some wound complications from the use of barbed sutures, including infections and extrusions. Barbed sutures have not yet been conventionally embraced, and the technology will certainly continue to evolve in order to make the devices more desirable for plastic surgeons.

  15. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, L.F.

    1995-05-30

    A method is disclosed for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining. 5 figs.

  16. Method for measuring the contour of a machined part

    DOEpatents

    Bieg, Lothar F.

    1995-05-30

    A method for measuring the contour of a machined part with a contour gage apparatus, having a probe assembly including a probe tip for providing a measure of linear displacement of the tip on the surface of the part. The contour gage apparatus may be moved into and out of position for measuring the part while the part is still carried on the machining apparatus. Relative positions between the part and the probe tip may be changed, and a scanning operation is performed on the machined part by sweeping the part with the probe tip, whereby data points representing linear positions of the probe tip at prescribed rotation intervals in the position changes between the part and the probe tip are recorded. The method further allows real-time adjustment of the apparatus machining the part, including real-time adjustment of the machining apparatus in response to wear of the tool that occurs during machining.

  17. Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task

    PubMed Central

    Al-Subari, Karema; Al-Baddai, Saad; Tomé, Ana Maria; Volberg, Gregor; Hammwöhner, Rainer; Lang, Elmar W.

    2015-01-01

    We discuss a data-driven analysis of EEG data recorded during a combined EEG/fMRI study of visual processing during a contour integration task. The analysis is based on an ensemble empirical mode decomposition (EEMD) and discusses characteristic features of event related modes (ERMs) resulting from the decomposition. We identify clear differences in certain ERMs in response to contour vs noncontour Gabor stimuli mainly for response amplitudes peaking around 100 [ms] (called P100) and 200 [ms] (called N200) after stimulus onset, respectively. We observe early P100 and N200 responses at electrodes located in the occipital area of the brain, while late P100 and N200 responses appear at electrodes located in frontal brain areas. Signals at electrodes in central brain areas show bimodal early/late response signatures in certain ERMs. Head topographies clearly localize statistically significant response differences to both stimulus conditions. Our findings provide an independent proof of recent models which suggest that contour integration depends on distributed network activity within the brain. PMID:25910061

  18. Interactive Medical Image Segmentation using PDE Control of Active Contours

    PubMed Central

    Karasev, Peter; Kolesov, Ivan; Fritscher, Karl; Vela, Patricio; Mitchell, Phillip; Tannenbaum, Allen

    2014-01-01

    Segmentation of injured or unusual anatomic structures in medical imagery is a problem that has continued to elude fully automated solutions. In this paper, the goal of easy-to-use and consistent interactive segmentation is transformed into a control synthesis problem. A nominal level set PDE is assumed to be given; this open-loop system achieves correct segmentation under ideal conditions, but does not agree with a human expert's ideal boundary for real image data. Perturbing the state and dynamics of a level set PDE via the accumulated user input and an observer-like system leads to desirable closed-loop behavior. The input structure is designed such that a user can stabilize the boundary in some desired state without needing to understand any mathematical parameters. Effectiveness of the technique is illustrated with applications to the challenging segmentations of a patellar tendon in MR and a shattered femur in CT. PMID:23893712

  19. Pitch contour stylization using an optimal piecewise polynomial approximation

    PubMed Central

    Ghosh, Prasanta Kumar; Narayanan, Shrikanth S.

    2014-01-01

    We propose a dynamic programming (DP) based piecewise polynomial approximation of discrete data such that the L2 norm of the approximation error is minimized. We apply this technique for the stylization of speech pitch contour. Objective evaluation verifies that the DP based technique indeed yields minimum mean square error (MSE) compared to other approximation methods. Subjective evaluation reveals that the quality of the synthesized speech using stylized pitch contour obtained by the DP method is almost identical to that of the original speech. PMID:24453471

  20. Prevention and management of complications in body contouring surgery.

    PubMed

    Gusenoff, Jeffrey A

    2014-10-01

    This patient safety article discusses strategies to prevent, diagnose, and manage complications from body contouring surgery. Preoperative, intraoperative, and postoperative approaches to avoiding, identifying, and treating complications are addressed. Individual complications, such as hematoma, seroma, infection, dehiscence, suture extrusion, deep venous thrombosis, and pulmonary embolism are discussed and a review of complication rates in the body contouring literature is provided. The article addresses procedure-specific complications and pearls to avoiding complications in these cases. Difficult problems such as skin relaxation and management of the disappointed patient are also discussed.

  1. Ideality contours and thermodynamic regularities in supercritical molecular fluids

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Margo, Abigail; Delhommelle, Jerome

    2016-08-01

    Using Expanded Wang-Landau simulations, we calculate the ideality contours for 3 molecular fluids (SF6, CO2 and H2O). We analyze how the increase in polarity, and thus, in the strength of the intermolecular interactions, impacts the contours and thermodynamic regularities. This effect results in the increase in the Boyle and H parameters, that underlie the Zeno line and the curve of ideal enthalpy. Furthermore, a detailed analysis reveals that dipole-dipole interactions lead to much larger enthalpic contributions to the Gibbs free energy. This accounts for the much higher temperatures and pressures that are necessary for supercritical H2O to achieve ideal-like thermodynamic properties.

  2. Contour detect in the medical image by shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Rios, Ramiro; Simonov, Konstantin; Romanenko, Alexey

    2015-07-01

    Contour detect in the urology medical image. The investigation algorithm FFST revealed that the contours of objects can be obtained as the sum of the coefficients shearlet transform a fixed value for the last scale and the of all possible values of the shift parameter. The results of this task using a modified algorithm FFST for data processing urology image is show. In the results of the corresponding calculations for some images and a comparison with filters Sobel and Prewitt. Shows the relevant calculations for some images and a comparison with Sobel and Prewitt filters respectively.

  3. Changes of contour of the spine caused by load carrying.

    PubMed

    Vacheron, J J; Poumarat, G; Chandezon, R; Vanneuville, G

    1999-01-01

    The development of new leisure activities such as walking has spread the use of the backpack as a means of carrying loads. The aim of this work was to present a way of defining the movements imposed on the trunk by this type of load carrying. A 20 kg load situated at the thoracic level (T9) of the trunk, was placed in a backpack (2.5 kg). The 12 subjects were average mountain guides of Auvergne region, intermediate level and complete beginners. External markers were glued to the projecting contours of the spinous processes of the C7, T7, T12, L3 and S1 vertebrae, the shin and the external occipital tuberosity (EOT). Using a Vicon 140 3-D system we measured the effective mobility of the different spinal segments in the sagittal plane during one step. For every subject, we noticed a significant decrease of the effective inter-segmental mobility (EISM) between S1-L3-T12 (p < .01) while backpacking a 22.5 kg load. A decrease of EISM also appeared at the next level between L3-T12-T7 (p < .05). An increase of the EISM between T7-C7-EOT was noted (p < .05). We supposed that strength loss of the back muscles and/or angular oscillations of the trunk could be a common cause of symptoms during backpacking. The subjects using this type of load carrying have to adopt an adequate position of the lumbar, dorsal and cervical vertebrae. PMID:10399210

  4. The role of "contrast enhancement" in the detection and appearance of visual contours.

    PubMed

    Hess, R F; Dakin, S C; Field, D J

    1998-03-01

    We test the proposition that the appearance and detection of visual contours is based on an increase in the perceived contrast of contour elements. First we show that detection of contours is quite possible in the presence of very high levels of variability in contrast. Second we show that inclusion in a contour does not induce Gabor patches to appear to be of higher contrast than patches outside of a contour. These results suggest that, contrary to a number of current models, contrast or its assumed physiological correlate (the mean firing rate of early cortical neurons) is not the determining information for identifying the contour.

  5. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  6. Shifted-Contour Monte Carlo Method for Nuclear Structure

    SciTech Connect

    Stoitcheva, G.S.; Dean, D.J.

    2004-09-13

    We propose a new approach for alleviating the 'sign' problem in the nuclear shell model Monte Carlo method. The approach relies on modifying the integration contour of the Hubbard-Stratonovich transformation to pass through an imaginary stationary point in the auxiliary-field associated with the Hartree-Fock density.

  7. National commissioning guidelines: body contouring surgery after massive weight loss.

    PubMed

    Soldin, M; Mughal, M; Al-Hadithy, N

    2014-08-01

    The guidelines for body contouring reconstructive surgery present an evidence-based guide for management of redundant tissue after massive weight loss. A standardised referral pathway to ensure safe and equitable patient care on the National Health Service (NHS) throughout England is recommended. A database of all patients for research purposes is suggested.

  8. Temperature Contours and Ghost Surfaces for Chaotic Magnetic Fields

    SciTech Connect

    Hudson, S. R.; Breslau, J.

    2008-03-07

    Steady state solutions for anisotropic heat transport in a chaotic magnetic field are determined numerically and compared to a set of 'ghost surfaces' -surfaces constructed via an action-gradient flow between the minimax and minimizing periodic orbits. The ghost surfaces are in remarkable agreement with the temperature contours.

  9. Temperature Contours and Ghost-Surfaces for Chaotic Magnetic Fields

    SciTech Connect

    S.R. Hudson and J. Breslau

    2008-01-31

    Steady state solutions for anisotropic heat transport in a chaotic magnetic field are determined numerically and compared to a set of "ghost-surfaces", surfaces constructed via an action-gradient flow between the minimax and minimizing periodic orbits. The ghost-surfaces are in remarkable agreement with the temperature contours.

  10. Effects of Lexical Tone Contour on Mandarin Sentence Intelligibility

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Hu, Yi

    2014-01-01

    Purpose: This study examined the effects of lexical tone contour on the intelligibility of Mandarin sentences in quiet and in noise. Method: A text-to-speech synthesis engine was used to synthesize Mandarin sentences with each word carrying the original lexical tone, flat tone, or a tone randomly selected from the 4 Mandarin lexical tones. The…

  11. Two-dimensional flow patterns near contour grass hedges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass hedges are narrow strips of stiff-stemmed vegetation used to control erosion and sediment delivery. When planted on the contour, the hydraulic resistance of the vegetation slows runoff, creates ponding, and promotes sediment deposition. In addition, when tillage is performed between grass he...

  12. Are Children with Autistic Spectrum Disorders Susceptible to Contour Illusions?

    ERIC Educational Resources Information Center

    Milne, Elizabeth; Scope, Alison

    2008-01-01

    Children with autism have been shown to be less susceptible to Kanisza type contour illusions than children without autism (Happe, 1996). Other authors have suggested that this finding could be explained by the fact that participants with autism were required to make a potentially ambiguous verbal response which may have masked whether or not they…

  13. 22. NORTH BRANCH, PRAIRIE CITY DITCH, CONTOURING AROUND SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. NORTH BRANCH, PRAIRIE CITY DITCH, CONTOURING AROUND SIDE OF KNOLL. DITCH LIES BETWEEN OAK TREE AND POINTED ROCKS, AND EXITS PHOTOGRAPH AT LOWER RIGHT CORNER. VIEW TO NORTHEAST. - Natomas Ditch System, Rhodes Ditch, West of Bidwell Street, north of U.S. Highway 50, Folsom, Sacramento County, CA

  14. 8. RHODES DITCH: VIEW TO SOUTHEAST, SHOWING SHARP 'U' CONTOURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. RHODES DITCH: VIEW TO SOUTHEAST, SHOWING SHARP 'U' CONTOURED ABOVE SWALE. DITCH IS ALSO VISIBLE IN DISTANCE, RUNNING HORIZONTALLY ACROSS PHOTO, ON FAR HILLSIDE. - Natomas Ditch System, Rhodes Ditch, West of Bidwell Street, north of U.S. Highway 50, Folsom, Sacramento County, CA

  15. Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Hunter, Craig A.

    1999-01-01

    An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.

  16. Principles of Contour Information: Reply to Lim and Leek (2012)

    ERIC Educational Resources Information Center

    Singh, Manish; Feldman, Jacob

    2012-01-01

    Lim and Leek (2012) presented a formalization of information along object contours, which they argued was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we summarize the 2 approaches, showing that--notwithstanding Lim and Leek's (2012) critical rhetoric--their approach is substantially identical to ours, except…

  17. Runoff through and upslope of contour switchgrass hedges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass hedges are specialized vegetative buffers effective in trapping sediment but less is known about their ability to reduce and/or redirect runoff. Runoff and sediment yield from natural rainfall were measured during eight years from 0.1-ha contour-planted plots with and without 1-m wide switchgr...

  18. Simple computer method provides contours for radiological images

    NASA Technical Reports Server (NTRS)

    Newell, J. D.; Keller, R. A.; Baily, N. A.

    1975-01-01

    Computer is provided with information concerning boundaries in total image. Gradient of each point in digitized image is calculated with aid of threshold technique; then there is invoked set of algorithms designed to reduce number of gradient elements and to retain only major ones for definition of contour.

  19. A general algorithm for the construction of contour plots

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Silva, F.

    1981-01-01

    An algorithm is described that performs the task of drawing equal level contours on a plane, which requires interpolation in two dimensions based on data prescribed at points distributed irregularly over the plane. The approach is described in detail. The computer program that implements the algorithm is documented and listed.

  20. ``Lozenge'' Contour Plots in Scattering from Polymer Networks

    NASA Astrophysics Data System (ADS)

    Read, D. J.; McLeish, T. C. B.

    1997-07-01

    We present a consistent explanation for the appearance of ``lozenge'' shapes in contour plots of the two dimensional scattering intensity from stretched polymer networks. By explicitly averaging over quenched variables in a tube model, we show that lozenge patterns arise as a result of chain material that is not directly deformed by the stretch. We obtain excellent agreement with experimental data.

  1. Acoustical Measurements of Selected Intonation Contours of French.

    ERIC Educational Resources Information Center

    Howie, John M.

    Recent studies of rising intonation contours in French, in particular the acoustical differences that serve to distinguish Yes/No questions from other rising intonations are reviewed. The preliminary results of a pilot study of rising intonations in French, in which average curves were obtained from spectrographic measurements of fundamental…

  2. Induction of Kanizsa Contours Requires Awareness of the Inducing Context

    PubMed Central

    Banica, Theodora; Schwarzkopf, D. Samuel

    2016-01-01

    It remains unknown to what extent the human visual system interprets information about complex scenes without conscious analysis. Here we used visual masking techniques to assess whether illusory contours (Kanizsa shapes) are perceived when the inducing context creating this illusion does not reach awareness. In the first experiment we tested perception directly by having participants discriminate the orientation of an illusory contour. In the second experiment, we exploited the fact that the presence of an illusory contour enhances performance on a spatial localization task. Moreover, in the latter experiment we also used a different masking method to rule out the effect of stimulus duration. Our results suggest that participants do not perceive illusory contours when they are unaware of the inducing context. This is consistent with theories of a multistage, recurrent process of perceptual integration. Our findings thus challenge some reports, including those from neurophysiological experiments in anaesthetized animals. Furthermore, we discuss the importance to test the presence of the phenomenal percept directly with appropriate methods. PMID:27518569

  3. Ladder contours are undetectable in the periphery: a crowding effect?

    PubMed

    May, Keith A; Hess, Robert F

    2007-10-29

    We studied the perceptual integration of contours consisting of Gabor elements positioned along a smooth path, embedded among distractor elements. Contour elements either formed tangents to the path ("snakes") or were perpendicular to it ("ladders"). Perfectly straight snakes and ladders were easily detected in the fovea but, at an eccentricity of 6 degrees , only the snakes were detectable. The disproportionate impairment of peripheral ladder detection remained when we brought foveal performance away from ceiling by jittering the orientations of the elements. We propose that the failure to detect peripheral ladders is a form of crowding, the phenomenon observed when identification of peripherally located letters is disrupted by flanking letters. D. G. Pelli, M. Palomares, and N. J. Majaj (2004) outlined a model in which simple feature detectors are followed by integration fields, which are involved in tasks, such as letter identification, that require the outputs of several detectors. They proposed that crowding occurs because small integration fields are absent from the periphery, leading to inappropriate feature integration by large peripheral integration fields. We argue that the "association field," which has been proposed to mediate contour integration (D. J. Field, A. Hayes, & R. F. Hess, 1993), is a type of integration field. Our data are explained by an elaboration of Pelli et al.'s model, in which weak ladder integration competes with strong snake integration. In the fovea, the association fields were small, and the model integrated snakes and ladders with little interference. In the periphery, the association fields were large, and integration of ladders was severely disrupted by interference from spurious snake contours. In contrast, the model easily detected snake contours in the periphery. In a further demonstration of the possible link between contour integration and crowding, we ran our contour integration model on groups of three-letter stimuli

  4. Standardization of surgical techniques used in facial bone contouring.

    PubMed

    Lee, Tae Sung

    2015-12-01

    Since the introduction of facial bone contouring surgery for cosmetic purposes, various surgical methods have been used to improve the aesthetics of facial contours. In general, by standardizing the surgical techniques, it is possible to decrease complication rates and achieve more predictable surgical outcomes, thereby increasing patient satisfaction. The technical strategies used by the author to standardize facial bone contouring procedures are introduced here. The author uses various pre-manufactured surgical tools and hardware for facial bone contouring. During a reduction malarplasty or genioplasty procedure, double-bladed reciprocating saws and pre-bent titanium plates customized for the zygomatic body, arch and chin are used. Various guarded oscillating saws are used for mandibular angloplasty. The use of double-bladed saws and pre-bent plates to perform reduction malarplasty reduces the chances of post-operative asymmetry or under- or overcorrection of the zygoma contours due to technical faults. Inferior alveolar nerve injury and post-operative jawline asymmetry or irregularity can be reduced by using a guarded saw during mandibular angloplasty. For genioplasty, final placement of the chin in accordance with preoperative quantitative analysis can be easily performed with pre-bent plates, and a double-bladed saw allows more procedural accuracy during osteotomies. Efforts by the surgeon to avoid unintentional faults are key to achieving satisfactory results and reducing the incidence of complications. The surgical techniques described in this study in conjunction with various in-house surgical tools and modified hardware can be used to standardize techniques to achieve aesthetically gratifying outcomes.

  5. Standardization of surgical techniques used in facial bone contouring.

    PubMed

    Lee, Tae Sung

    2015-12-01

    Since the introduction of facial bone contouring surgery for cosmetic purposes, various surgical methods have been used to improve the aesthetics of facial contours. In general, by standardizing the surgical techniques, it is possible to decrease complication rates and achieve more predictable surgical outcomes, thereby increasing patient satisfaction. The technical strategies used by the author to standardize facial bone contouring procedures are introduced here. The author uses various pre-manufactured surgical tools and hardware for facial bone contouring. During a reduction malarplasty or genioplasty procedure, double-bladed reciprocating saws and pre-bent titanium plates customized for the zygomatic body, arch and chin are used. Various guarded oscillating saws are used for mandibular angloplasty. The use of double-bladed saws and pre-bent plates to perform reduction malarplasty reduces the chances of post-operative asymmetry or under- or overcorrection of the zygoma contours due to technical faults. Inferior alveolar nerve injury and post-operative jawline asymmetry or irregularity can be reduced by using a guarded saw during mandibular angloplasty. For genioplasty, final placement of the chin in accordance with preoperative quantitative analysis can be easily performed with pre-bent plates, and a double-bladed saw allows more procedural accuracy during osteotomies. Efforts by the surgeon to avoid unintentional faults are key to achieving satisfactory results and reducing the incidence of complications. The surgical techniques described in this study in conjunction with various in-house surgical tools and modified hardware can be used to standardize techniques to achieve aesthetically gratifying outcomes. PMID:26346781

  6. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    SciTech Connect

    Zhou, R; Yang, J; Pan, T; Milgrom, S; Pinnix, C; Shi, A; Yang, J; Liu, Y; Nguyen, Q; Gomez, D; Dabaja, B; Balter, P; Court, L; Liao, Z

    2015-06-15

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  7. Local and global components of texture-surround suppression of contour-shape coding.

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A

    2012-06-15

    Evidence that contour-shapes and texture-shapes are processed by different mechanisms included the finding that contour-shape aftereffects are reduced when the adaptation stimulus is a texture made of contours rather than a single contour. This phenomenon has been termed texture-surround suppression of contour-shape, or TSSCS. How does TSSCS operate and over what spatial extent? We measured the postadaptation shift in the apparent shape frequency of a single sinusoidal-shaped contour as a function of the number of contours in the adaptor stimulus. Contours were Gabor strings in which the Gabor orientations were either tangential (snakes) or orthogonal (ladders) to the path of the contour. We found that for extended surrounds, the aftereffect was strongly reduced when the surround contours were the same as the central adaptor contour, but not when the Gabors making up the surround contours were opposite-in-orientation to those of the central adaptor. For near surrounds, the aftereffect in a snake contour was unaffected by same-orientation but strongly suppressed by opposite-orientation surrounds, whereas the aftereffect for a ladder-contour was suppressed equally by both same- and opposite-orientation near surrounds. Finally, the strength of surround suppression decreased gradually with increasing spatial separation between center and surround. These results indicate that there are two components to texture-surround suppression in our shape aftereffect: one that is sensitive to opposite-orientation texture surrounds, operates locally, and disrupts contour-processing; the other that is sensitive to same-orientation texture surrounds, is spatially extended, and prevents the shape of the contour from being processed as a contour. We also demonstrate that the observed shape aftereffects are not due to changes in the apparent shape-frequency of the adaptors or the precision with which their shape-frequency is encoded, indicating that TSSCS is not an instance of crowding.

  8. An investigation into positron emission tomography contouring methods across two treatment planning systems

    SciTech Connect

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-04-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

  9. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  10. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  11. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    PubMed Central

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  12. WCPP-THE WOLF PLOTTING AND CONTOURING PACKAGE

    NASA Technical Reports Server (NTRS)

    Masaki, G. T.

    1994-01-01

    The WOLF Contouring and Plotting Package provides the user with a complete general purpose plotting and contouring capability. This package is a complete system for producing line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The package has been designed to be highly flexible and easy to use. Any plot from a quick simple plot (which requires only one call to the package) to highly sophisticated plots (including motion picture plots) can be easily generated with only a basic knowledge of FORTRAN and the plot commands. Anyone designing a software system that requires plotted output will find that this package offers many advantages over the standard hardware support packages available. The WCPP package is divided into a plot segment and a contour segment. The plot segment can produce output for any combination of line printer, SC4020, Gerber, Calcomp, and SD4060 plots. The line printer plots allow the user to have plots available immediately after a job is run at a low cost. Although the resolution of line printer plots is low, the quick results allows the user to judge if a high resolution plot of a particular run is desirable. The SC4020 and SD4060 provide high speed high resolution cathode ray plots with film and hard copy output available. The Gerber and Calcomp plotters provide very high quality (of publishable quality) plots of good resolution. Being bed or drum type plotters, the Gerber and Calcomp plotters are usually slow and not suited for large volume plotting. All output for any or all of the plotters can be produced simultaneously. The types of plots supported are: linear, semi-log, log-log, polar, tabular data using the FORTRAN WRITE statement, 3-D perspective linear, and affine transformations. The labeling facility provides for horizontal labels, vertical labels, diagonal labels, vector characters of a requested size (special character fonts are easily implemented), and rotated letters. The gridding routines label the grid lines according to

  13. An EPROM-based programmable contour generator for use in flow cytometry.

    PubMed

    Wheeless, D M; Cambier, J L; Wheeless, L L

    1988-09-01

    An erasable programmable read-only memory (EPROM) contour generator has been fabricated to produce contours for use in flow cytometry. Contours are analog waveforms representing the fluorescence or light-scatter intensity distribution along a cell or object. The generator has particular utility in the development and testing of slit-scan instrumentation and analysis algorithms. Contours are generated without the requirement of specimens or full operation of the flow instrumentation. The generator provides control of contour height, width, offset, and rate. The EPROM may be custom programmed to produce contours for specific test applications or for reproducing "real" contour events. The generator is useful in situations where constant repetitive contours of predetermined characteristics are required.

  14. Contour integration and aging: the effects of element spacing, orientation alignment and stimulus duration.

    PubMed

    Roudaia, Eugenie; Bennett, Patrick J; Sekuler, Allison B

    2013-01-01

    The ability to extract contours in cluttered visual scenes, which is a crucial step in visual processing, declines with healthy aging, but the reasons for this decline are not well understood. In three experiments, we examined how the effect of aging on contour discrimination varies as a function of contour and distracter inter-element spacing, collinearity, and stimulus duration. Spiral-shaped contours composed of Gabors were embedded within a field of distracter Gabors of uniform density. In a four alternative forced-choice task, younger and older subjects were required to report the global orientation of the contour. In Experiment 1, the absolute contour element spacing varied from two to eight times the Gabor wavelength and contour element collinearity was disrupted with five levels of orientation jitter. Contour discrimination accuracy was lower in older subjects, but the effect of aging did not vary with contour spacing or orientation jitter. Experiment 2 found that decreasing stimulus durations from 0.8 to 0.04 s had a greater effect on older subjects' performance, but only for less salient contours. Experiment 3 examined the effect of the background on contour discrimination by varying the spacing and orientation of the distracter elements for contours with small and large absolute spacing. As in Experiment, the effect of aging did not vary with absolute contour spacing. Decreasing the distracter spacing, however, had a greater detrimental effect on accuracy in older subjects compared to younger subjects. Finally, both groups showed equally high accuracy when all distracters were iso-oriented. In sum, these findings suggest that aging does not affect the sensitivity of contour integration to proximity or collinearity. However, contour integration in older adults is slower and is especially vulnerable when distracters are denser than contour elements.

  15. Binding and segmentation of multiple objects through neural oscillators inhibited by contour information.

    PubMed

    Ursino, Mauro; La Cara, Giuseppe-Emiliano; Sarti, Alessandro

    2003-07-01

    Temporal correlation of neuronal activity has been suggested as a criterion for multiple object recognition. In this work, a two-dimensional network of simplified Wilson-Cowan oscillators is used to manage the binding and segmentation problem of a visual scene according to the connectedness Gestalt criterion. Binding is achieved via original coupling terms that link excitatory units to both excitatory and inhibitory units of adjacent neurons. These local coupling terms are time independent, i.e., they do not require Hebbian learning during the simulations. Segmentation is realized by a two-layer processing of the visual image. The first layer extracts all object contours from the image by means of "retinal cells" with an "on-center" receptive field. Information on contour is used to selectively inhibit Wilson-Cowan oscillators in the second layer, thus realizing a strong separation among neurons in different objects. Accidental synchronism between oscillations in different objects is prevented with the use of a global inhibitor, i.e., a global neuron that computes the overall activity in the Wilson-Cowan network and sends back an inhibitory signal. Simulations performed in a 50 x 50 neural grid with 21 different visual scenes (containing up to eight objects + background) with random initial conditions demonstrate that the network can correctly segment objects in almost 100% of cases using a single set of parameters, i.e., without the need to adjust parameters from one visual scene to the next. The network is robust with reference to dynamical noise superimposed on oscillatory neurons. Moreover, the network can segment both black objects on white background and vice versa and is able to deal with the problem of "fragmentation."The main limitation of the network is its sensitivity to static noise superimposed on the objects. Overcoming this problem requires implementation of more robust mechanisms for contour enhancement in the first layer in agreement with

  16. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOEpatents

    Sullivan, James S.; Hawkins, Steven A.

    2012-09-04

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  17. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... protected contour. 74.792 Section 74.792 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... translator station protected contour. (a) A digital low power TV or TV translator will be protected from..., TV translator or Class A TV stations within the following predicted contours: (1) 43 dBu for...

  18. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protected contour. 74.792 Section 74.792 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... translator station protected contour. (a) A digital low power TV or TV translator will be protected from..., TV translator or Class A TV stations within the following predicted contours: (1) 43 dBu for...

  19. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protected contour. 74.792 Section 74.792 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... translator station protected contour. (a) A digital low power TV or TV translator will be protected from..., TV translator or Class A TV stations within the following predicted contours: (1) 43 dBu for...

  20. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... protected contour. 74.792 Section 74.792 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... translator station protected contour. (a) A digital low power TV or TV translator will be protected from..., TV translator or Class A TV stations within the following predicted contours: (1) 43 dBu for...

  1. The Effect of Contouring Variability on Dosimetric Parameters for Brain Metastases Treated With Stereotactic Radiosurgery

    SciTech Connect

    Stanley, Julia; Dunscombe, Peter; Lau, Harold; Burns, Paul; Lim, Gerald; Liu, Hong-Wei; Nordal, Robert; Starreveld, Yves; Valev, Boris; Voroney, Jon-Paul; Spencer, David P.

    2013-12-01

    Purpose: To quantify the effect of contouring variation on stereotactic radiosurgery plan quality metrics for brain metastases. Methods and Materials: Fourteen metastases, each contoured by 8 physicians, formed the basis of this study. A template-based dynamic conformal 5-arc dose distribution was developed for each of the 112 contours, and each dose distribution was applied to the 7 other contours in each patient set. Radiation Therapy Oncology Group (RTOG) plan quality metrics and the Paddick conformity index were calculated for each of the 896 combinations of dose distributions and contours. Results: The ratio of largest to smallest contour volume for each metastasis varied from 1.25 to 4.47, with a median value of 1.68 (n=8). The median absolute difference in RTOG conformity index between the value for the reference contour and the values for the alternative contours was 0.35. The variation of the range of conformity index for all contours for a given tumor varied with the tumor size. Conclusions: The high degree of interobserver contouring variation strongly suggests that peer review or consultation should be adopted to standardize tumor volume prescription. Observer confidence was not reflected in contouring consistency. The impact of contouring variability on plan quality metrics, used as criteria for clinical trial protocol compliance, was such that the category of compliance was robust to interobserver effects only 70% of the time.

  2. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  3. Computation of contour integrals on {{M}}_{0,n}

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; Gomez, Humberto

    2016-04-01

    Contour integrals of rational functions over {{M}}_{0,n} , the moduli space of n-punctured spheres, have recently appeared at the core of the tree-level S-matrix of massless particles in arbitrary dimensions. The contour is determined by the critical points of a certain Morse function on {{M}}_{0,n} . The integrand is a general rational function of the puncture locations with poles of arbitrary order as two punctures coincide. In this note we provide an algorithm for the analytic computation of any such integral. The algorithm uses three ingredients: an operation we call general KLT, Petersen's theorem applied to the existence of a 2-factor in any 4-regular graph and Hamiltonian decompositions of certain 4-regular graphs. The procedure is iterative and reduces the computation of a general integral to that of simple building blocks. These are integrals which compute double-color-ordered partial amplitudes in a bi-adjoint cubic scalar theory.

  4. The contoured auricular projection graft for nasal tip projection.

    PubMed

    Porter, J P; Tardy, M E; Cheng, J

    1999-01-01

    In all rhinoplasty surgery, the universal need exists to increase, decrease, or preserve existing tip projection. When proper tip projection is lacking, a variety of techniques are useful for improving projection. We describe a valuable technique for tip projection, particularly useful and indicated in the Asian rhinoplasty, African American rhinoplasty, and in certain revision rhinoplasties. In the past 15 years, the senior author (M.E.T.) has used the contoured auricular projection graft in selected patients for achieving satisfactory tip projection in patients with blunted tips. The aesthetic outcomes have been predictable, pleasing, and reliable for the long term. Precision pocket preparation for auricular conchal cartilage graft placement is key to symmetry and projection of the final outcome. The results yielded a rounded nasal tip that may be more natural-appearing in Asians, African Americans, and selected patients with revision rhinoplasty. The contoured auricular projection graft provides a highly useful graft for the nasal tip. PMID:10937122

  5. Patient Expectations of Bariatric and Body Contouring Surgery

    PubMed Central

    Klassen, Anne; Jhanwar, Sabrina; Pusic, Andrea; Roessler, Kirsten K.; Rose, Michael; Sørensen, Jens Ahm

    2016-01-01

    Background: Patient expectations are important in bariatric and body contouring surgery because the goals include improvements in health-related quality of life, appearance, and body image. The aim of this study was to identify patient expectations along the weight loss journey and/or body contouring surgery. Methods: This qualitative study took an interpretive description approach. Between September 2009 and February 2012, 49 patients were interviewed postbody contouring surgery. Data were analyzed using a line-by-line approach whereby expectations were identified and labeled as expected, unexpected, or neutral. Constant comparison was used to ensure coding was done consistently. Interviews continued until no new themes emerged. Results: Participants described expectations according to appearance, health-related quality of life, and patient experience of care. Two areas stood out in terms of unmet expectations and included appearance and physical health, ie, recovery from body contouring surgery. Most participants, who underwent bariatric surgery, expected neither the extent of excess skin after weight loss nor how the excess skin would make them look and feel. For recovery, participants did not expect that it would be as long or as hard as it was in reality. Conclusions: A full understanding of outcomes and expectations for this patient population is needed to enhance patient education and improve shared medical decision making. Education materials should be informed by the collection of evidence-based patient-reported outcome information using measures such as the BODY-Q. A patient-reported outcome scale measuring patient expectations is needed for obese and bariatric patients. PMID:27200256

  6. Multiscale approach to contour fitting for MR images

    NASA Astrophysics Data System (ADS)

    Rueckert, Daniel; Burger, Peter

    1996-04-01

    We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.

  7. Yet another method for triangulation and contouring for automated cartography

    NASA Technical Reports Server (NTRS)

    De Floriani, L.; Falcidieno, B.; Nasy, G.; Pienovi, C.

    1982-01-01

    An algorithm is presented for hierarchical subdivision of a set of three-dimensional surface observations. The data structure used for obtaining the desired triangulation is also singularly appropriate for extracting contours. Some examples are presented, and the results obtained are compared with those given by Delaunay triangulation. The data points selected by the algorithm provide a better approximation to the desired surface than do randomly selected points.

  8. Contour Map for the Gravitational Potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2006-12-01

    One usually does not draw a 2D contour plot for the gravitational potential of an astronomical system. It is too boring. For the solar system, the plot of equipotentials is simply a nest of circles about the sun as the center. Replace the sun with a black hole, squash the inner contours towards the x-y plane, and voila, the Milky Way. The situation is entirely different with the non-Newtonian sinusoidal potential. Here φ = -GM cos(2πr/λ)/r, λ =Ro/20, and Ro is the distance from the sun to the center of the Galaxy.[1] Now the contour plot for the Milky Way has an infinite number of minima and maxima. In this poster I show the contours for a disk galaxy having about 20 equal-spaced rings of mass mi = ai exp[-a&i/ 5λ ], ai = (i+1/4) λ, i=0,1,..19. The λ /4 offset is essential if this toy galaxy is to model the Milky Way that has, I predict, a physical bar in its center. (Other choices for the offset can model M31 or M33). Close to the center this model generates a dynamical disk of λ /4 = 100 pc half-thickness that is separate from the bulge. Evidence of this separation is clearly seen in CO (Fukui et al 2006). Near the solar circle, there are strong radial tidal forces. These forces appear in the data on long-period comets (Matese & Whitmire 1996) and on the position and kinematics of stars in the Gould Belt (Elias et al 2006). Finally the model accommodates the 3 evenly spaced stellar arcs at the periphery of the Milky Way (Grillmair 2006). I thank Peter Bender for suggesting this plot and John Cumulat for continual support. [1] D. F. Bartlett, "Analogies between Electricity and Gravity", Metrologia 41, 2004, S115-S124.

  9. Phased-array ultrasonic surface contour mapping system. Technical note

    SciTech Connect

    Fasching, G.E.; Loudin, W.J.; Paton, D.E.; Smith, N.S. Jr.

    1992-11-01

    The development of reliable mechanistic models for prediction of conventional and fluidized-bed combustor and gasifier operation and solids flow behavior in silos or other solids handling and storage components requires knowledge of the contained solids flow characteristics. This knowledge is gained from dynamic experimental measurements of bed top surface contours in addition to measurements of bulk bed properties. The surface contour mapping system (SCMS) provides a means of generating surface contour maps in real time with a unique, automatically focused, density-compensated, digital phased-array scanning, ultrasonic-range measurement system. The system is designed to operate in environments having gas temperatures up to 1,600 {degree}F and pressures to 1,000 psig. Computer simulation of several SCMS candidates and acoustic carrier modulation techniques indicates that a surface measurement resolution of {plus_minus}2 inches over a range of 5 to 20 feet distance between the transmit/receive (T/R) transducers and the bed surface can be expected. The simulation of a particular design, a 9-T/R, 25-pixel bed surface, in which the level of each pixel was randomly set between 5 and 7 feet below the plane of the T/R transducers, then measured using two different modulation techniques, produced excellent results. The simulation of this surface contour mapping system determined the value of the level of each of the 25 pixels to within {plus_minus}1 inch for over 95 percent of more than 100 test cases for one of the modulation techniques, and for over 99 percent of about 100 test cases for a second modulation technique. A hardware implementation of the design simulated but using only a two-T/R, three-pixel SCMS produced results very closely approximating those obtained during the simulation.

  10. Contour tracking and probabilistic segmentation of tissue phase mapping MRI

    NASA Astrophysics Data System (ADS)

    Chitiboi, Teodora; Hennemuth, Anja; Schnell, Susanne; Chowdhary, Varun; Honarmand, Amir; Markl, Michael; Linsen, Lars; Hahn, Horst

    2016-03-01

    Many cardiovascular diseases manifest as an abnormal motion pattern of the heart muscle (myocardium). Local cardiac motion can be non-invasively quantified with magnetic resonance imaging (MRI), using methods such as tissue phase mapping (TPM), which directly measures the local myocardial velocities over time with high temporal and spatial resolution. The challenges for routine clinical use of TPM for the diagnosis and monitoring of cardiac function lie in providing a fast and accurate myocardium segmentation and a robust quantitative analysis of the velocity field. Both of these tasks are difficult to automate on routine clinical data because of the reduced contrast in the presence of noise. In this work, we propose to address these challenges with a segmentation approach that combines smooth, iterative contour displacement and probabilistic segmentation using particle tracing, based on the underlying velocity field. The proposed solution enabled the efficient and reproducible segmentation of TPM datasets from 27 patients and 14 volunteers, showing good potential for routine use in clinical studies. Our method allows for a more reliable quantitative analysis of local myocardial velocities, by giving a higher weight to velocity vectors corresponding to pixels more likely to belong to the myocardium. The accuracy of the contour propagation was evaluated on nine subjects, showing an average error smaller than the spatial resolution of the image data. Statistical analysis concluded that the difference between the segmented contours and the ground truths was not significantly higher than the variability between the manual ground truth segmentations.

  11. Radial Frequency Analysis of Contour Shapes in the Visual Cortex

    PubMed Central

    Salmela, Viljami R.; Henriksson, Linda; Vanni, Simo

    2016-01-01

    Cumulative psychophysical evidence suggests that the shape of closed contours is analysed by means of their radial frequency components (RFC). However, neurophysiological evidence for RFC-based representations is still missing. We investigated the representation of radial frequency in the human visual cortex with functional magnetic resonance imaging. We parametrically varied the radial frequency, amplitude and local curvature of contour shapes. The stimuli evoked clear responses across visual areas in the univariate analysis, but the response magnitude did not depend on radial frequency or local curvature. Searchlight-based, multivariate representational similarity analysis revealed RFC specific response patterns in areas V2d, V3d, V3AB, and IPS0. Interestingly, RFC-specific representations were not found in hV4 or LO, traditionally associated with visual shape analysis. The modulation amplitude of the shapes did not affect the responses in any visual area. Local curvature, SF-spectrum and contrast energy related representations were found across visual areas but without similar specificity for visual area that was found for RFC. The results suggest that the radial frequency of a closed contour is one of the cortical shape analysis dimensions, represented in the early and mid-level visual areas. PMID:26866917

  12. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGES

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  13. Estimation of uncertainty for contour method residual stress measurements

    SciTech Connect

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).

  14. Is interpolation cognitively encapsulated? Measuring the effects of belief on Kanizsa shape discrimination and illusory contour formation

    PubMed Central

    Keane, Brian P.; Lu, Hongjing; Papathomas, Thomas V.; Silverstein, Steven M.; Kellman, Philip J.

    2012-01-01

    Contour interpolation is a perceptual process that fills-in missing edges on the basis of how surrounding edges (inducers) are spatiotemporally related. Cognitive encapsulation refers to the degree to which perceptual mechanisms act in isolation from beliefs, expectations, and utilities (Pylyshyn, 1999). Is interpolation encapsulated from belief? We addressed this question by having subjects discriminate briefly-presented, partially-visible fat and thin shapes, the edges of which either induced or did not induce illusory contours (relatable and non-relatable conditions, respectively). Half the trials in each condition incorporated task-irrelevant distractor lines, known to disrupt the filling-in of contours. Half of the observers were told that the visible parts of the shape belonged to a single thing (group strategy); the other half were told that the visible parts were disconnected (ungroup strategy). It was found that distractor lines strongly impaired performance in the relatable condition, but minimally in the non-relatable condition; that strategy did not alter the effects of the distractor lines for either the relatable or non-relatable stimuli; and that cognitively grouping relatable fragments improved performance whereas cognitively grouping non-relatable fragments did not. These results suggest that 1) filling-in effects during illusory contour formation cannot be easily removed via strategy; 2) filling-in effects cannot be easily manufactured from stimuli that fail to elicit interpolation; and 3) actively grouping fragments can readily improve discrimination performance, but only when those fragments form interpolated contours. Taken together, these findings indicate that discriminating filled-in shapes depends on strategy but filling-in itself may be encapsulated from belief. PMID:22440789

  15. Abnormal contextual modulation of visual contour detection in patients with schizophrenia.

    PubMed

    Schallmo, Michael-Paul; Sponheim, Scott R; Olman, Cheryl A

    2013-01-01

    Schizophrenia patients demonstrate perceptual deficits consistent with broad dysfunction in visual context processing. These include poor integration of segments forming visual contours, and reduced visual contrast effects (e.g. weaker orientation-dependent surround suppression, ODSS). Background image context can influence contour perception, as stimuli near the contour affect detection accuracy. Because of ODSS, this contextual modulation depends on the relative orientation between the contour and flanking elements, with parallel flankers impairing contour perception. However in schizophrenia, the impact of abnormal ODSS during contour perception is not clear. It is also unknown whether deficient contour perception marks genetic liability for schizophrenia, or is strictly associated with clinical expression of this disorder. We examined contour detection in 25 adults with schizophrenia, 13 unaffected first-degree biological relatives of schizophrenia patients, and 28 healthy controls. Subjects performed a psychophysics experiment designed to quantify the effect of flanker orientation during contour detection. Overall, patients with schizophrenia showed poorer contour detection performance than relatives or controls. Parallel flankers suppressed and orthogonal flankers enhanced contour detection performance for all groups, but parallel suppression was relatively weaker for schizophrenia patients than healthy controls. Relatives of patients showed equivalent performance with controls. Computational modeling suggested that abnormal contextual modulation in schizophrenia may be explained by suppression that is more broadly tuned for orientation. Abnormal flanker suppression in schizophrenia is consistent with weaker ODSS and/or broader orientation tuning. This work provides the first evidence that such perceptual abnormalities may not be associated with a genetic liability for schizophrenia.

  16. A Genetic-Algorithm-Based Explicit Description of Object Contour and its Ability to Facilitate Recognition.

    PubMed

    Wei, Hui; Tang, Xue-Song

    2015-11-01

    Shape representation is an extremely important and longstanding problem in the field of pattern recognition. Closed contour, which refers to shape contour, plays a crucial role in the comparison of shapes. Because shape contour is the most stable, distinguishable, and invariable feature of an object, it is useful to incorporate it into the recognition process. This paper proposes a method based on genetic algorithms. The proposed method can be used to identify the most common contour fragments, which can be used to represent the contours of a shape category. The common fragments clarify the particular logics included in the contours. This paper shows that the explicit representation of the shape contour contributes significantly to shape representation and object recognition.

  17. The precision of visual memory for a complex contour shape measured by a freehand drawing task.

    PubMed

    Osugi, Takayuki; Takeda, Yuji

    2013-03-01

    Contour information is an important source for object perception and memory. Three experiments examined the precision of visual short-term memory for complex contour shapes. All used a new procedure that assessed recall memory for holistic information in complex contour shapes: Participants studied, then reproduced (without cues), a contoured shape by freehand drawing. In Experiment 1 memory precision was measured by comparing Fourier descriptors for studied and reproduced contours. Results indicated survival of lower (holistic) frequency information (i.e., ⩽5cycles/perimeter) and loss of higher (detail) frequency information. Secondary tasks placed demands on either verbal memory (Experiment 2) or visual spatial memory (Experiment 3). Neither secondary task interfered with recall of complex contour shapes, suggesting that the memory system maintaining holistic shape information was independent of both the verbal memory system and the visual spatial memory subsystem of visual short-term memory. The nature of memory for complex contour shape is discussed.

  18. A Word by Any Other Intonation: FMRI Evidence for Implicit Memory Traces for Pitch Contours of Spoken Words in Adult Brains

    PubMed Central

    Inspector, Michael; Manor, David; Amir, Noam; Kushnir, Tamar; Karni, Avi

    2013-01-01

    Objectives Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. Experimental design Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition. Principal findings The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. Conclusions Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words. PMID:24391713

  19. Melodic Contour Identification Reflects the Cognitive Threshold of Aging.

    PubMed

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon - post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon - post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  20. The hydrological impact of contour trenching in Vietnam

    NASA Astrophysics Data System (ADS)

    Pramana, K. E. R.; Ertsen, M. W.; Uhlenbrook, S.; de Laat, P.; Nonner, J.

    2009-04-01

    At the foothill in the driest rural area in Vietnam, at Ninh Thuan province, poor farmers cultivate up-land crops during the wet season. The area is about 9 hectares of deforested land with a slope up to 8% and has a geology surface of crusted sands and gravels. Water is scarce during the dry season and runs off rapidly during the wet season. Hence, to provide sustainable water resources and support crop growth, a project started in 2007 aiming introducing contour trenching. The main purpose of contour trenching is to trap run off, increase soil moisture for vegetation growth and recharge the groundwater. In order to investigate the impact of the trenches, a field monitoring program was initiated measuring rainfall, soil moisture content, surface water levels and groundwater levels. Recorded annual rainfall reached 600 mm. The groundwater levels are relatively deep and constant at -8 and -10 meters. The soil moisture content ranged from 3% at the driest condition to 37% below the trench at ponding. Water levels in trenches differed from uphill to downhill with higher levels at the first trench uphill. After ponding, water in the trenches infiltrates within a period of days. In this contribution, available field measurements are analyzed in two ways. First, runoff is analyzed. Immediately after significant rainfall events, the observed ponding levels in the trenches with defined uphill runoff areas can be related to the rainfall. The results show reduction of runoff coefficients per trench in downhill direction. Second, the two dimension numerical saturated-unsaturated model Hydrus 2-D was used to simulate the soil moisture content measurements. Model results confirm that infiltration is a quick process in this area with its loamy sand soils. Based on these analyzes, potential of contour trenches for local water retention and groundwater recharge will be discussed.

  1. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    PubMed Central

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon – post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon – post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  2. Melodic Contour Identification Reflects the Cognitive Threshold of Aging.

    PubMed

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon - post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon - post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline.

  3. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    PubMed

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  4. Interactive segmentation of tongue contours in ultrasound video sequences using quality maps

    NASA Astrophysics Data System (ADS)

    Ghrenassia, Sarah; Ménard, Lucie; Laporte, Catherine

    2014-03-01

    Ultrasound (US) imaging is an effective and non invasive way of studying the tongue motions involved in normal and pathological speech, and the results of US studies are of interest for the development of new strategies in speech therapy. State-of-the-art tongue shape analysis techniques based on US images depend on semi-automated tongue segmentation and tracking techniques. Recent work has mostly focused on improving the accuracy of the tracking techniques themselves. However, occasional errors remain inevitable, regardless of the technique used, and the tongue tracking process must thus be supervised by a speech scientist who will correct these errors manually or semi-automatically. This paper proposes an interactive framework to facilitate this process. In this framework, the user is guided towards potentially problematic portions of the US image sequence by a segmentation quality map that is based on the normalized energy of an active contour model and automatically produced during tracking. When a problematic segmentation is identified, corrections to the segmented contour can be made on one image and propagated both forward and backward in the problematic subsequence, thereby improving the user experience. The interactive tools were tested in combination with two different tracking algorithms. Preliminary results illustrate the potential of the proposed framework, suggesting that the proposed framework generally improves user interaction time, with little change in segmentation repeatability.

  5. Body Contouring Surgery in the Massive Weight Loss Patient.

    PubMed

    Hurwitz, Dennis J; Ayeni, Omodele

    2016-08-01

    Plastic surgeons subspecializing in body contouring are meeting the challenge of postbariatric surgery massive weight loss patients. With an appreciation of the magnitude of the surface deformity, and altered metabolism, nutrition, and psychological makeup of these patients, innovative plastic surgeons have forged an organized approach to preparation, operative technique, and postoperative care. Patients at greatest risk for complications are identified, appraised, and either their condition improved or they are counselled to reduce expectations. Beyond the removal of excess skin and adipose tissue, advanced gender-specific techniques have improved aesthetics.

  6. Controlling cavitation in the 1990s: Contours, materials, monitors

    SciTech Connect

    Fulton, E.

    1996-10-01

    Case studies of cavitation control methods at hydroelectric power plants are presented in the article. The control methods described include contouring of turbine blades, stainless steel runners and overlays (including 309L) and super-resistant alloys (Hydroloy 914), and cavitation monitoring equipment. Hydroelectric plants highlighted in the article include Central Maine Power Company`s Hiram Unit 2, U.S. Army Corps of Engineers` Dworshak Dam, Transalta Utilities` Spray Station, and Tennessee Valley Authority`s Raccoon Mountain. The development and testing of new materials is also highlighted.

  7. Comparison of Experimental and Analytical Performance for Contoured Endwall Stators

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Haas, J. E.

    1982-01-01

    Comparisons between predicted and experimental stator losses showed that the analysis was able to predict the change in stator loss when contoured endwalls with highly three dimensional passage geometry were used. The level of loss was predicted to within 75 percent of that measured. The predicted loss was due only to profile loss and boundary layer growth on the endwalls. The 25 percent difference was approximately 0.015 at design pressure ratio. The analysis was shown to predict the trend in stator flow angle, even for small stator geometries.

  8. Body Contouring Surgery in the Massive Weight Loss Patient.

    PubMed

    Hurwitz, Dennis J; Ayeni, Omodele

    2016-08-01

    Plastic surgeons subspecializing in body contouring are meeting the challenge of postbariatric surgery massive weight loss patients. With an appreciation of the magnitude of the surface deformity, and altered metabolism, nutrition, and psychological makeup of these patients, innovative plastic surgeons have forged an organized approach to preparation, operative technique, and postoperative care. Patients at greatest risk for complications are identified, appraised, and either their condition improved or they are counselled to reduce expectations. Beyond the removal of excess skin and adipose tissue, advanced gender-specific techniques have improved aesthetics. PMID:27473807

  9. Independence of the completion effect from the noncompletion effect in illusory contour perception.

    PubMed

    Yang, Junkai; Yue, Zhenzhu; Wu, Xiang

    2015-01-01

    Spatially separated object information can be effortlessly completed in the visual system, as demonstrated by the well-known Kanizsa-type illusory contours. The perception of illusory contours is closely associated with the spatial configuration of contour fragments, leading to the long-lasting difficulty in distinguishing the effect of the completion process that interpolates the contour fragments from the effect of the noncompletion process that analyzes the contour fragments. However, a close relationship does not necessarily imply nonindependence, e.g., two people may show similar behaviors in one situation but may not in another situation. Inspired by this simple common sense, we conducted a contour discrimination task (i.e., discriminating between the interpolated contours) and a fragment discrimination task (i.e., discriminating between the physically-specified contour fragments) for Kanizsa squares and Kanizsa circles. The performance difference between the contour and fragment discrimination tasks was much larger for Kanizsa circles than for Kanizsa squares. This independence of the completion effect--as indicated by the performance in the contour task--from the noncompletion effect--as indicated by the performance in the fragment task--provides new insights into the understanding of the mechanism of visual completion.

  10. The contour method cutting assumption: error minimization and correction

    SciTech Connect

    Prime, Michael B; Kastengren, Alan L

    2010-01-01

    The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

  11. Hotspot monitoring system with contour-based metrology

    NASA Astrophysics Data System (ADS)

    Kawamoto, A.; Tanaka, Y.; Tsuda, S.; Shibayama, K.; Furukawa, S.; Abe, H.; Mitsui, T.; Yamazaki, Y.

    2009-03-01

    As design rules shrink, hotspot management is becoming increasingly important. In this paper, an automatic system of hotspot monitoring that is the final step in the hotspot management flow is proposed. The key technology for the automatic hotspot monitoring is contour-based metrology. It is an effective method of evaluating complex patterns, such as hotspots, whose efficiency has been proved in the field of optical proximity correction (OPC) calibration. The contour-based metrology is utilized in our system as a process control tool available on mass-production lines. The pattern evaluation methodology has been developed in order to achieve high sensitivity. Lithography simulation decides a hotspot to be monitored and furthermore indicates the most sensitive points in the field of view (FOV) of a hotspot image. And quantification of the most sensitive points is consistent with an engineer's visual check of a shape of a hotspot. Its validity has been demonstrated in process window determination. This system has the potential to substantially shorten turnaround time (TAT) for hotspot monitoring.

  12. Application of contoured beam shaped reflector antennas to mission requirements

    NASA Astrophysics Data System (ADS)

    Pearson, R. A.; Kalatidazeh, Y.; Driscoll, B. G.; Philippou, G. Y.; Claydon, B.; Brain, D. J.

    Contoured beam antennas are now widely used on-board communications and broadcast satellites to provide the optimum coverage of irregular shaped regions on earth and to minimize the interference outside the coverage boundaries. Unshaped array-fed reflector systems have been successfully implemented, for example in the EUTELSAT 2 series, however these systems suffer from the need for relatively large feed arrays. A number of international satellite organizations, including INTELSAT, EUTELSAT, and European Space Agency (ESA) are interested in the use of shaped reflector antennas for single and multiple coverage scenarios. This technology offers the potential to reduce or completely remove the beamforming network and its associated losses and weight. In recent years, ERA has carried out a number of studies involving the design of shaped reflector antennas for particular mission requirements. This paper reviews a number of these case studies and highlights the coverage specifications and the advantages of adopting shaped reflectors, as well as the factors which limit their use. A description of a number of contoured beam scenarios is provided, and a summary of these is given.

  13. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  14. Modelization of fetal cranial contour from ultrasound axial slices

    NASA Astrophysics Data System (ADS)

    Duquenoy, Eric; Taleb-Ahmed, Abdelmalik; Reboul, Serge; Beral, Y.; Dubus, Jean-Paul

    1995-10-01

    The problem of the choice of slices angles, at the time of diagnosis of brain fetal malformations, is linked to the position of the fetus inside the uterus. The 3D reconstruction of intern parts of the brain and especially the callosus corpus can help to detect some malformations. This kind of reconstruction pass by several steps that depend all on the initial segmentation step. The main difficulties of the segmentation are linked on the one hand to the inherent noise of ultrasound imaging and on the other hand to the matching of views of the 2D sequence to process. The 3D reconstruction stage require the definition of a marker in the sequence of process. In agreement with physicians, we have used the cranial contour as reference on the one hand because it is considered as invariable and fixed and on the other hand because of its more pronounced contrast (due to the fact of its cartilaginous nature) than the other structures. Nevertheless, the classic techniques of segmentations have remained without effect (open contour, too noisy). Therefore, we have developed an algorithm allowing to define automatically the ellipse. This method is based on a parametrically deformable model using elliptic FOURIER decomposition.

  15. Gestalten of today: early processing of visual contours and surfaces.

    PubMed

    Kovács, I

    1996-12-01

    While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.

  16. Some effects of intonation contour on sentence intelligibility

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.

    2003-10-01

    This experiment was designed to measure the effects of pitch movement on sentence intelligibility. A source-filter synthesizer was used to generate three synthetic versions of 60 sentences drawn from the TIMIT multi-talker speech database: (1) an original pitch (OP) condition in which the fundamental frequency (F0) contour matched that of the original utterance, (2) a monotone pitch (MP) condition in which F0 was held constant at the median value measured from the original utterance, and (3) an inverted pitch (IP) condition in which the F0 contour was reflected around the median F0 value (i.e., pitch rises were changed to pitch drops, and vice versa). Results from 30 listeners showed a small but statistically reliable drop in intelligibility from the OP condition to either the MP or IP condition, with no difference between the MP and IP conditions. A second group of 22 listeners was tested on the same task, but with overall sentence intelligibility reduced by running all signals through a 2-kHz low-pass filter. As with the unfiltered signals, intelligibility was reduced for the MP and IP conditions relative to OP; however, the decrements in intelligibility were somewhat larger for the filtered signals, and inverting pitch caused a larger intelligibility decrement than flattening pitch.

  17. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  18. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    PubMed

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development. PMID:25846115

  19. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    PubMed

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development.

  20. Multiple contour sequences' segmentation and entity recognition methods in vision measurement

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Liu, Shoubin

    2012-01-01

    In this paper, an approach is proposed for segmentation of multiple contour sequences and recognition of entities for vision measurement of small precision parts. The approach includes several steps as follows. All contour sequences of the part are detected at the first place. Secondly, a circle identification method is used to find circular contours in contour sequences. The identified circular contours are further fitted as individual circles. Then, curvature method is selected to detect dominant points in the rest contours and height projection method is adopted to classify them as line or arc entities. In the end, the least-squares method is used to merge and add dominant points. Experimental results show lines, arcs and circles can be recognized satisfactorily by using the approach presented.

  1. 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level.

  2. Development of visually guided behaviour requires oriented contours.

    PubMed

    Brenner, E; Cornelissen, F W

    1992-01-20

    Kittens do not learn to use visual information to guide their behaviour if they are deprived of the optic flow that accompanies their own movements. We show that the optic flow that is required for developing visually guided behaviour is derived from changes in contour orientations, rather than from velocity patterns. We used several tests to assess visually guided behaviour. The performance of kittens that had only been allowed to see isolated dots of light was indistinguishable from that of kittens that had received no visual exposure at all. Kittens that had seen streaks of light performed better on several tasks. We discuss this finding with relation to the visual pathways that are presumably involved. PMID:1542442

  3. Modified technique for performing STARR with Contour Transtar™.

    PubMed

    Brescia, Antonio; Gasparrini, Marcello; Cosenza, Umile Michele; Laracca, Giovanni; Milillo, Andrea; Pancaldi, Alessandra; Vitale, Valeria; Mari, Francesco Saverio

    2013-01-01

    Stapled Transanal Rectal Resection (STARR) performed using CCS-30 Contour Transtar™ despite its recent introduction seems to be an effective surgical procedure to treat obstructed defecation syndrome. The major constraint of this procedure is the need to open the prolapse longitudinally using the CCS-30. This is often difficult and can lead to an inadequate or spiralling resection. Our modified technique, presented in this paper, creates the prolapse opening with an electric scalpel between two Kocher clamps, placed to grab the whole prolapsed tissue at 2 and 4 o'clock, respectively. The results of the first 83 procedures confirm that this technique allows the surgeon to simplify the prolapse's longitudinal opening and especially the first loading of the tissue between the CCS-30 jaws, which is necessary to start the circular resection, as confirmed by the absence of spiralling and major complications in this series.

  4. Device for measuring the contour of a surface

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Katzberg, S. J.; Kelly, W. L., IV (Inventor)

    1978-01-01

    Light from a source is imaged by a lens onto a surface so that the energy from the source is concentrated into a spot. As the spot across the surface is scanned, the surface moves relative to the point of perfect focus. When the surface moves away from perfect focus the spot increases in size, while the total energy in the spot remains virtually constant. The lens then reimages the light reflected by the surface onto two detectors through two different sized apertures. The light energy going to the two detectors is separated by a beam splitter. This second path of the light energy through the lens further defocuses the spot, but as a result of the different sizes of the apertures in each light detector path, the amount of defocus for each is different. The ratio of the outputs of the two detectors which are indicative of the contour of the surface is obtained by a divider.

  5. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    SciTech Connect

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  6. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  7. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    SciTech Connect

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  8. Evaluation of the new flexible contour backrest for wheelchairs.

    PubMed

    Parent, F; Dansereau, J; Lacoste, M; Aissaoui, R

    2000-01-01

    A new flexible contour backrest for wheelchairs was designed with the objectives of offering adequate posture, uniform pressure distribution, and comfort to the users while keeping the advantages of conventional sling backrests, such as easy to fold, light weight, unobtrusive, and airy. The purpose of this study is to compare the new backrest with two commercially available wheelchair backrests, an adjustable-tension (AT) backrest and a back cushion on a rigid support (RS), in terms of pressure distribution, back profile accommodation, and short-term comfort. Evaluations were done with 15 nonimpaired subjects in a static position. It was shown that the new backrest distributes pressure in a more uniform way than the AT and in a way similar to the RS, while giving a better fit to subjects' trunks than other backrests because of its multiple adjustments. Finally, subjects felt that the new backrest is as comfortable as the RS and more comfortable than the AT.

  9. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

    PubMed

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R

    2015-10-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies.

  10. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    PubMed Central

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies

  11. Sagittal back contour and craniofacial morphology in preadolescents

    PubMed Central

    Lippold, Carsten; Végh, András; Drerup, Burkhard; Moiseenko, Tatjana; Danesh, Gholamreza

    2009-01-01

    The aim of this study was to analyze the correlation ratios between the sagittal back contour (flèche cervicale and lombaire, trunk inclination) and selected parameters of craniofacial morphology in children. The patient sample consisted of 66 healthy children with a mean age of 11.2 years (SD 1.6 years), of which 34 were male (mean age 11.5 years, SD 1.3 years) and 32 were females (mean age 10.9 years, SD 1.9 years). The children were recruited during the preparation of the initial orthodontic treatment records. Craniofacial morphology was analyzed by six angular measurements: facial axis, mandibular plane angle, inner gonial angle, lower facial height, facial depth and maxilla position. Rasterstereography was used for reconstruction of the spinal back sagittal profile. From the profile flèche cervicale, flèche lombaire and trunk inclination were determined and the correlations with the craniofacial morphology were calculated (Pearson and Mann–Whitney U test). Significant correlations were found with respect to the inner gonial angle and the flèche cervicale, the mandibular plane angle and the flèche lombaire, the inner gonial angle and the flèche lombaire, and the angular lower facial height and the flèche lombaire, as well as the inner gonial angle and the trunk inclination. The craniofacial vertical growth pattern, presented by mandibular plane angle, inner gonial angle and the angular lower facial height, and the correlation to flèche cervicale and lombaire as well as trunk inclination reveal correlations between growth pattern and sagittal back contour. PMID:19946733

  12. Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction.

    PubMed

    Krueger, Nils; Mai, Sophia V; Luebberding, Stefanie; Sadick, Neil S

    2014-01-01

    In recent years, a number of modalities have become available for the noninvasive reduction of adipose tissue, including cryolipolysis, radiofrequency, low-level laser, and high-intensity focused ultrasound. Each technology employs a different mechanism of action to cause apoptosis or necrosis of the targeted adipocytes. Among these technologies, cryolipolysis has not only been commercially available for the longest time, but has also been best researched including in vitro and animal models and randomized controlled clinical trials in humans. The principle behind cryolipolysis exploits the premise that adipocytes are more susceptible to cooling than other skin cells. The precise application of cold temperatures triggers apoptosis of the adipocytes, which invokes an inflammatory response and leads to slow digestion by surrounding macrophages. In clinical studies, cryolipolysis was shown to reduce subcutaneous fat at the treatment site by up to 25% after one treatment. Improvements were seen in 86% of treated subjects. At 73%, the patient satisfaction rate is higher than with other technologies used for noninvasive lipolysis. Cryolipolysis has been proven to be a very safe method for body contouring, and is accomplished with only minimal discomfort. Expected side effects are temporary erythema, bruising, and transient numbness that usually resolve within 14 days after treatment. With a prevalence of 0.1%, the most common complaint is late-onset pain, occurring 2 weeks post-procedure, which resolves without intervention. Although no procedure has been accepted as the gold standard for noninvasive body contouring as yet, cryolipolysis is considered to be both safe and efficient with a high patient satisfaction rate.

  13. New method of 2-dimensional metrology using mask contouring

    NASA Astrophysics Data System (ADS)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  14. When things go pear shaped: contour variations of contacts

    NASA Astrophysics Data System (ADS)

    Utzny, Clemens

    2013-04-01

    Traditional control of critical dimensions (CD) on photolithographic masks considers the CD average and a measure for the CD variation such as the CD range or the standard deviation. Also systematic CD deviations from the mean such as CD signatures are subject to the control. These measures are valid for mask quality verification as long as patterns across a mask exhibit only size variations and no shape variation. The issue of shape variations becomes especially important in the context of contact holes on EUV masks. For EUV masks the CD error budget is much smaller than for standard optical masks. This means that small deviations from the contact shape can impact EUV waver prints in the sense that contact shape deformations induce asymmetric bridging phenomena. In this paper we present a detailed study of contact shape variations based on regular product data. Two data sets are analyzed: 1) contacts of varying target size and 2) a regularly spaced field of contacts. Here, the methods of statistical shape analysis are used to analyze CD SEM generated contour data. We demonstrate that contacts on photolithographic masks do not only show size variations but exhibit also pronounced nontrivial shape variations. In our data sets we find pronounced shape variations which can be interpreted as asymmetrical shape squeezing and contact rounding. Thus we demonstrate the limitations of classic CD measures for describing the feature variations on masks. Furthermore we show how the methods of statistical shape analysis can be used for quantifying the contour variations thus paving the way to a new understanding of mask linearity and its specification.

  15. Chromatic properties of texture-shape and of texture-surround suppression of contour-shape mechanisms.

    PubMed

    Gheorghiu, Elena; Kingdom, Frederick A A

    2012-06-12

    Contour-shape coding is color selective (Gheorghiu & Kingdom, 2007a) and surround textures inhibit the processing of contour shapes (Gheorghiu & Kingdom, 2011; Kingdom & Prins, 2009). These two findings raise two questions: (1) is texture-surround suppression of contour shape color selective, and (2) is texture-shape processing color selective? To answer these questions, we measured the shape-frequency aftereffect using contours constructed from strings of Gabors defined along the red-green, blue-yellow, and luminance axes of cardinal color space. The stimuli were either single sinusoidal-shaped contours or textures made of sinusoidal-shaped contours arranged in parallel. We measured aftereffects for (A) single-contour adaptors and single-contour tests defined along the same versus different cardinal directions, (B) texture adaptors and single-contour tests in which the central-adaptor contour/single-contour test and surround adaptor contours were defined along the same versus different cardinal directions, and (C) texture adaptors and texture tests defined along same versus different cardinal directions. We found that color selectivity was most prominent for contour-shape processing, weaker for texture-surround suppression of contour-shape processing, and absent for texture-shape processing.

  16. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect

    Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  17. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    SciTech Connect

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  18. The Role of Tone Height, Melodic Contour, and Tone Chroma in Melody Recognition.

    ERIC Educational Resources Information Center

    Massaro, Dominic W.; And Others

    1980-01-01

    Relationships among tone height, melodic contour, tone chroma, and recognition of recently learned melodies were investigated. Results replicated previous studies using familiar folk songs, providing evidence that melodic contour, tone chroma, and tone height contribute to recognition of both highly familiar and recently learned melodies.…

  19. Musically Tone-Deaf Individuals Have Difficulty Discriminating Intonation Contours Extracted from Speech

    ERIC Educational Resources Information Center

    Patel, Aniruddh D.; Foxton, Jessica M.; Griffiths, Timothy D.

    2005-01-01

    Musically tone-deaf individuals have psychophysical deficits in detecting pitch changes, yet their discrimination of intonation contours in speech appears to be normal. One hypothesis for this dissociation is that intonation contours use coarse pitch contrasts which exceed the pitch-change detection thresholds of tone-deaf individuals (Peretz &…

  20. HP-9825A calculator programs for plotting orbiter RCS jet dynamic pressure contours

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1977-01-01

    Computer programs which generate displays of the dynamic pressure fields generated by orbiter RCS thruster firings are described. The programs can be used to generate dynamic contours for an isolated RCS jet and to superimpose the plume contours for specific jets or jet clusters on front and side views of the orbiter profile.

  1. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  2. 47 CFR 73.215 - Contour protection for short-spaced assignments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class... 47 Telecommunication 4 2013-10-01 2013-10-01 false Contour protection for short-spaced assignments... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.215 Contour protection for...

  3. 47 CFR 80.753 - Signal strength requirements at the service area contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Signal strength requirements at the service area contour. 80.753 Section 80.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Station VHF Coverage § 80.753 Signal strength requirements at the service area contour. (a)...

  4. 47 CFR 73.215 - Contour protection for short-spaced assignments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class... 47 Telecommunication 4 2012-10-01 2012-10-01 false Contour protection for short-spaced assignments... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.215 Contour protection for...

  5. 47 CFR 73.215 - Contour protection for short-spaced assignments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class... 47 Telecommunication 4 2010-10-01 2010-10-01 false Contour protection for short-spaced assignments... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.215 Contour protection for...

  6. An exploration of the spatial scale over which orientation-dependent surround effects affect contour detection.

    PubMed

    Schumacher, Jennifer F; Quinn, Christina F; Olman, Cheryl A

    2011-07-21

    Contour detection is a crucial component of visual processing; however, performance on contour detection tasks can vary depending on the context of the visual scene. S. C. Dakin and N. J. Baruch (2009) showed that detection of a contour in an array of distracting elements depends on the orientation of flanking elements. Here, using a line of five collinear Gabor elements ("target contour") in a field of distractor Gabor elements, we systematically measured the effects of eccentricity, spacing, and spatial frequency on contour detection performance in three different contexts: randomly oriented distractors (control condition), flanking distractors (on either side of the collinear Gabors) aligned approximately parallel to the target contour, and flanking distractors aligned approximately orthogonal to the target contour. In the control condition, contour detection performance was best for larger Gabors (2 cpd) spaced farther apart (1.2°). Parallel flankers reduced performance for intermediate and large spacings and sizes compared to the control condition, while orthogonal flankers increased performance for the smallest spacing and size compared to the control condition. The results are fit by a model in which collinear facilitation, which is size-dependent but can persist for several degrees of visual angle, competes with orientation-dependent suppression from the flanking context when elements are separated by less than a degree of visual angle.

  7. 47 CFR 80.753 - Signal strength requirements at the service area contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Signal strength requirements at the service area contour. 80.753 Section 80.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Station VHF Coverage § 80.753 Signal strength requirements at the service area contour. (a)...

  8. Cue combination anisotropies in contour integration: The role of lower spatial frequencies.

    PubMed

    Persike, Malte; Meinhardt, Günter

    2015-01-01

    The combination of local orientation collinearity and spatial frequency contrast in contour integration was studied in two experiments using a 2AFC contour detection and discrimination task. Target contours were defined by local orientation collinearity, spatial frequency contrast between contour and background elements, or both cues. Experiments differed in the source of spatial frequency contrast by manipulating the spatial frequency of either contour or background elements. Cue summation gains, defined as the performance benefit of double cue conditions over single cue conditions, were evaluated and tested against the predictions derived from probability summation and linear summation. Summation gains were generally stronger than linear summation and tended to increase with the single-cue performance level until limited by ceiling effects. Cue summation was particularly large when contour elements exhibited a lower spatial frequency than background elements, regardless of the absolute spatial frequency ranges. The highly effective integration of lower spatial frequency contours in cluttered surrounds is discussed in the context of recent findings on high-level neural representations of contour integration as well as feature synergy.

  9. Contour Planting: A Strategy to Reduce Soil Erosion on Steep Slopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practices that combine GPS-based guidance for terrain contouring and tillage for runoff detention have potential to increase water infiltration and reduce runoff. The objective of this study was to investigate contour planting as a means to reduce soil erosion on steep slopes of the Columbia Platea...

  10. 47 CFR 73.215 - Contour protection for short-spaced assignments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class... 47 Telecommunication 4 2011-10-01 2011-10-01 false Contour protection for short-spaced assignments... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.215 Contour protection for...

  11. 47 CFR 80.753 - Signal strength requirements at the service area contour.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Signal strength requirements at the service area contour. 80.753 Section 80.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Station VHF Coverage § 80.753 Signal strength requirements at the service area contour. (a)...

  12. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  13. 47 CFR 73.215 - Contour protection for short-spaced assignments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station pursuant to 47 CFR 73.211(b)(3): 6 kW ERP/240 meters HAAT—Class A 25 kW ERP/150 meters HAAT—Class... 47 Telecommunication 4 2014-10-01 2014-10-01 false Contour protection for short-spaced assignments... SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.215 Contour protection for...

  14. 47 CFR 80.753 - Signal strength requirements at the service area contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Signal strength requirements at the service area contour. 80.753 Section 80.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Station VHF Coverage § 80.753 Signal strength requirements at the service area contour. (a)...

  15. The Role of Kinetic Information in Newborns' Perception of Illusory Contours

    ERIC Educational Resources Information Center

    Valenza, Eloisa; Bulf, Hermann

    2007-01-01

    Previous research, in which static figures were used, showed that the ability to perceive illusory contours emerges around 7 months of age. However, recently, evidence has suggested that 2-3-month-old infants are able to perceive illusory contours when motion information is available (Johnson & Mason, 2002; Otsuka & Yamaguchi, 2003). The present…

  16. 47 CFR 80.753 - Signal strength requirements at the service area contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Signal strength requirements at the service area contour. 80.753 Section 80.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... Station VHF Coverage § 80.753 Signal strength requirements at the service area contour. (a)...

  17. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Permits incorporating variances from approximate original contour restoration requirements for steep slope mining. 785.16 Section 785.16 Mineral... approximate original contour restoration requirements for steep slope mining. (a) The regulatory authority...

  18. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Permits incorporating variances from approximate original contour restoration requirements for steep slope mining. 785.16 Section 785.16 Mineral... approximate original contour restoration requirements for steep slope mining. (a) The regulatory authority...

  19. An Investigation of Visual Contour Integration Ability in Relation to Writing Performance in Primary School Students

    ERIC Educational Resources Information Center

    Li-Tsang, Cecilia W. P.; Wong, Agnes S. K.; Chan, Jackson Y.; Lee, Amos Y. T.; Lam, Miko C. Y.; Wong, C. W.; Lu, Zhonglin

    2012-01-01

    A previous study found a visual deficit in contour integration in English readers with dyslexia (Simmers & Bex, 2001). Visual contour integration may play an even more significant role in Chinese handwriting particularly due to its logographic presentation (Lam, Au, Leung, & Li-Tsang, 2011). The current study examined the relationship between…

  20. Tonal Language Background and Detecting Pitch Contour in Spoken and Musical Items

    ERIC Educational Resources Information Center

    Stevens, Catherine J.; Keller, Peter E.; Tyler, Michael D.

    2013-01-01

    An experiment investigated the effect of tonal language background on discrimination of pitch contour in short spoken and musical items. It was hypothesized that extensive exposure to a tonal language attunes perception of pitch contour. Accuracy and reaction times of adult participants from tonal (Thai) and non-tonal (Australian English) language…

  1. Contour definition and tracking in cardiac imaging through the integration of knowledge and image evidence.

    PubMed

    Baroni, Maurizio; Barletta, Giuseppe

    2004-05-01

    The main contribution of this paper is the use of simple processing techniques, incorporated in a new multistage approach, to automatically delineate left ventricle contours. Another contribution is the proposal of the centerline distances for contour comparison, which promises a more accurate measurement than the common method, based on the distance to the closest point. Edges are detected by Gaussian filtering at coarse and fine scale. The region of interest is defined as a binary map where coarse edges are extracted throughout image sequence. A contour template is matched against the gradient of the first image. Candidate boundary points are instantiated by scanning the coarse edge map perpendicularly to the matched template. A candidate contour is estimated from these points by maximizing an edge likelihood function. A region growing algorithm gives another candidate contour. Both edge and region candidate contours are then integrated with the edge map computed at fine scale by maximizing another likelihood function. Evaluation was carried out on 12 echocardiographic and 4 angiocardiographic sequences (for a total of 289 frames). Distances between computer-generated contours and the contours traced by three experts were within interobserver variability, unlike the results obtained by Acoustic Quantification and by a general-purpose deformable model.

  2. Imitation and repetition of prosodic contour in vocal interaction at 3 months.

    PubMed

    Gratier, Maya; Devouche, Emmanuel

    2011-01-01

    This study investigates vocal imitation of prosodic contour in ongoing spontaneous interaction with 10- to 13-week-old infants. Audio recordings from naturalistic interactions between 20 mothers and infants were analyzed using a vocalization coding system that extracted the pitch and duration of individual vocalizations. Using these data, the authors categorized a sample of 1,359 vocalizations on the basis of 7 predetermined contours. Pairs of identical successive vocalizations were considered to be imitations if they involved both partners or repetitions if they were produced by the same partner. Results show that not only do mothers and infants imitate and repeat prosodic contour types in the course of vocal interaction but they do so selectively. Indeed, different contours are imitated and repeated by each partner. These findings suggest that imitation and repetition of prosodic contours have specific functions for communication and vocal development in the 3rd month of life.

  3. Optical contouring of an acrylic surface for non-intrusive diagnostics in pipe-flow investigations

    NASA Astrophysics Data System (ADS)

    de Witt, Benjamin J.; Coronado-Diaz, Haydee; Hugo, Ronald J.

    2008-07-01

    In this work, an acrylic surface was optically contoured to correct for the optical distortion caused by a transparent pipe wall. This method can be applied to non-invasive viewing/imaging techniques for fluid flow experiments. Software tools were developed to aid in the design of an optically contoured acrylic test section for pipe-flow experiments. Numerical models were computed for a standard acrylic pipe, inner diameter 57.15 mm, with water enclosed. An optical contour prototype was machined on a 5-axis CNC machine, and polished with 1-15 μm diamond paste, alleviating any surface imperfections without significantly altering the contoured surface. Experiments were then performed to measure the emerging optical wavefront and was found to emerge planar when utilizing the optical contour. It was determined that the wavefront was corrected to within ten wavelengths of a Helium-Neon (He-Ne) laser beam.

  4. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an FMRI study.

    PubMed

    Kyong, Jeong S; Scott, Sophie K; Rosen, Stuart; Howe, Timothy B; Agnew, Zarinah K; McGettigan, Carolyn

    2014-08-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information [Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155-163, 2000; Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000]. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al. [Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000], where greater sentence intelligibility was predominately associated with increased activity in the left STS, and the greatest response to normal sentence melody was found in right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps

  5. Cortical pitch response components index stimulus onset/offset and dynamic features of pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Voice pitch is an important information-bearing component of language that is subject to experience dependent plasticity at both early cortical and subcortical stages of processing. We’ve already demonstrated that pitch onset component (Na) of the cortical pitch response (CPR) is sensitive to flat pitch and its salience. In regards to dynamic pitch, we do not yet know whether the multiple pitch-related transient components of the CPR reflect specific temporal attributes of such stimuli. Here we examine the sensitivity of the multiple transient components of CPR to changes in pitch acceleration associated with the Mandarin high rising lexical tone. CPR responses from Chinese listeners were elicited by three citation forms varying in pitch acceleration and duration. Results showed that the pitch onset component (Na) was invariant to changes in acceleration. In contrast, Na-Pb and Pb-Nb showed a systematic increase in the interpeak latency and decrease in amplitude with increase in pitch acceleration that followed the time course of pitch change across the three stimuli. A strong correlation with pitch acceleration was observed for these two components only – a putative index of pitch-relevant neural activity associated with the more rapidly-changing portions of the pitch contour. Pc-Nc marks unambiguously the stimulus offset. We therefore propose that in the early stages of cortical sensory processing, a series of neural markers flag different temporal attributes of a dynamic pitch contour: onset of temporal regularity (Na); changes in temporal regularity between onset and offset (Na-Pb, Pb-Nb); and offset of temporal regularity (Pc-Nc). At the temporal electrode sites, the stimulus with the most gradual change in pitch acceleration evoked a rightward asymmetry. Yet within the left hemisphere, stimuli with more gradual change were indistinguishable. These findings highlight the emergence of early hemispheric preferences and their functional roles as related to

  6. An evaluation of the contouring abilities of medical dosimetry students for the anatomy of a prostate cancer patient

    SciTech Connect

    Collins, Kevin S.

    2012-10-01

    Prostate cancer is one of the most common diseases treated in a radiation oncology department. One of the major predictors of the treatment outcome and patient side effects is the accuracy of the anatomical contours for the treatment plan. Therefore, the purpose of this study was to determine which anatomical structures are most often contoured correctly and incorrectly by medical dosimetry students. The author also wanted to discover whether a review of the contouring rules would increase contouring accuracy. To achieve this, a male computed tomography dataset consisting of 72 transverse slices was sent to students for contouring. The students were instructed to import this dataset into their treatment planning system and contour the following structures: skin, bladder, rectum, prostate, penile bulb, seminal vesicles, left femoral head, and right femoral head. Upon completion of the contours, the contour file was evaluated against a 'gold standard' contour set using StructSure software (Standard Imaging, Inc). A review of the initial contour results was conducted and then students were instructed to contour the dataset a second time. The results of this study showed significant differences between contouring sessions. These results and the standardization of contouring rules should benefit all individuals who participate in the treatment planning of cancer patients.

  7. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  8. Expert consensus contouring guidelines for IMRT in esophageal and gastroesophageal junction cancer

    PubMed Central

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-01-01

    Purpose/Objective(s) Current guidelines for esophageal cancer contouring are derived from traditional two-dimensional fields based on bony landmarks, and do not provide sufficient anatomical detail to ensure consistent contouring for more conformal radiotherapy techniques such as intensity-modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials Eight expert academically-based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform CT simulation datasets and an accompanying diagnostic PET-CT were distributed to each expert, and he/she was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results Kappa statistics indicated substantial agreement between panelists for each of the three test cases. A consensus CTV atlas was generated for the three test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets utilizing these guidelines may require modification in the future. PMID:26104943

  9. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    SciTech Connect

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-07-15

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.

  10. Contours of slope as a measure of gravity-capillary wind waves

    NASA Astrophysics Data System (ADS)

    Cox, C. S.; Zhang, X.

    2012-12-01

    Contours of both x and y components of water surface slopes can be generated optically. Two horizontal arrays of thin, linear lamps placed a few meters below the water surface are photographed from above. One array, consisting of a group of colored y-parallel lamps produces contours of x-slope. The value of each contour is recognized by its color. The other array, of x -parallel lamps produces contours of y-slope. When the two arrays are pulsed alternately and photographed by a fast camera, the full structure and evolution of the water surface shape can be monitored. In order to register capillaries down to one or two millimeter wavelengths the light pulses must be as short as 200 micro seconds to avoid smearing Adequate light intensity in such short pulses is generated by a row of high intensity light emitting diodes in each linear lamp. LEDs are advantageous because several different colored types are available. permitting many different contours to be generated. When each emitter has a narrow wavelength range, problems from light dispersion and differential color absorption in the water are avoided. In analyzing the photographs, correct identification of the color in the image of each contour is essential. Color sensing cameras have only the three color coordinates, red, green and blue. It is useful to identify each colored contour image by a unit vector in the 3-space of RGB for comparison with the array of expected values. This enables recognition of the most probable color and an estimate of probable error of the choice. If the probable error is large, the contour can then be discarded because of uncertainty of its value.. The conversion from a small number of contours to a continuous representation of the water surface shape is in theory perfect for a band limited spectrum of waves, but in practice inaccuracies, even at the pixel level, in the location of contours produce errors. The spacing of contours of slope is determined by the physical spacing between

  11. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    SciTech Connect

    Yang, J; Zhang, L; Balter, P; Court, L; Zhang, Y; Dong, L

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points. It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and

  12. Statistical Modeling Approach to Quantitative Analysis of Interobserver Variability in Breast Contouring

    SciTech Connect

    Yang, Jinzhong; Woodward, Wendy A.; Reed, Valerie K.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Buchholz, Thomas A.; Zhang, Lifei; Balter, Peter; Court, Laurence E.; Li, X. Allen; Dong, Lei

    2014-05-01

    Purpose: To develop a new approach for interobserver variability analysis. Methods and Materials: Eight radiation oncologists specializing in breast cancer radiation therapy delineated a patient's left breast “from scratch” and from a template that was generated using deformable image registration. Three of the radiation oncologists had previously received training in Radiation Therapy Oncology Group consensus contouring for breast cancer atlas. The simultaneous truth and performance level estimation algorithm was applied to the 8 contours delineated “from scratch” to produce a group consensus contour. Individual Jaccard scores were fitted to a beta distribution model. We also applied this analysis to 2 or more patients, which were contoured by 9 breast radiation oncologists from 8 institutions. Results: The beta distribution model had a mean of 86.2%, standard deviation (SD) of ±5.9%, a skewness of −0.7, and excess kurtosis of 0.55, exemplifying broad interobserver variability. The 3 RTOG-trained physicians had higher agreement scores than average, indicating that their contours were close to the group consensus contour. One physician had high sensitivity but lower specificity than the others, which implies that this physician tended to contour a structure larger than those of the others. Two other physicians had low sensitivity but specificity similar to the others, which implies that they tended to contour a structure smaller than the others. With this information, they could adjust their contouring practice to be more consistent with others if desired. When contouring from the template, the beta distribution model had a mean of 92.3%, SD ± 3.4%, skewness of −0.79, and excess kurtosis of 0.83, which indicated a much better consistency among individual contours. Similar results were obtained for the analysis of 2 additional patients. Conclusions: The proposed statistical approach was able to measure interobserver variability quantitatively and to

  13. Patterns in biofilms: From contour undulations to fold focussing

    NASA Astrophysics Data System (ADS)

    Ben Amar, Martine; Wu, Min

    2014-11-01

    Morphologies of soft materials in growth, swelling or drying have been extensively studied recently. Shape modifications occur as the size varies transforming ordinary spheres, cylinders and thin plates into more or less complex objects. Here we consider the genesis of biofilm patterns when a simple disc containing initially bacteria with moderate adhesion to a rigid substrate grows according to very simple rules. The initial circular geometry is lost during the growth expansion, contour undulations and buckling appear, ultimately a rather regular periodic focussing of folds repartition emerges. We theoretically predict these morphological instabilities as bifurcations of solutions in elasticity, characterized by typical driving parameters established here. The substrate plays a critical role limiting the geometry of the possible modes of instabilities and anisotropic growth, adhesion and toughness compete to eventually give rise to wrinkling, buckling or both. Additionally, due to the substrate, we show that the ordinary buckling modes, vertical deviation of thin films, are not observed in practice and a competitive pattern with self-focussing of folds can be found analytically. These patterns are reminiscent of the blisters of delamination in material sciences and explain recent observations of bacteria biofilms. The model presented here is purely analytical, is based on a neo-Hookean elastic energy, and can be extended without difficulties and applied to polymer materials.

  14. STARR with Contour® Transtar™: prospective multicentre European study

    PubMed Central

    Lenisa, L; Schwandner, O; Stuto, A; Jayne, D; Pigot, F; Tuech, JJ; Scherer, R; Nugent, K; Corbisier, F; Espin-Basany, E; Hetzer, F H

    2009-01-01

    Objective The stapled transanal rectal resection (STARR) in patients with defecation disorders is limited by the shape and capacity of the circular stapler. A new device has been recently developed, the Contour® Transtar™ stapler, in order to improve the safety and effectiveness of the STARR technique. The study has been designed to confirm this declaration. Method From January to June 2007 a prospective European multicentre study of consecutive patients with defecation disorder caused by internal rectal prolapse underwent the new STARR technique. The assessment of perioperative morbidity and functional outcome after 6 weeks, 3 and 12 months was documented by different scores. Results In all 75 patients, median age 64, the Transtar procedure was performed with 9% intraoperative difficulties, 7% postoperative complications and no mortality. The mean reduction of the ODS score was −15.6 (95%−CI: −17.3 to −13.8, P < 0.0001), mean reduction of SSS was −12.6 (95%−CI: −14.2 to −11.2; P < 0.0001). 41% stated improvement of their continence status by CCF score, only 4 patients (5%) had deterioration. Conclusion The Transtar procedure is technically demanding, with good functional results similar to the conventional STARR. PMID:19175625

  15. Processing of contour closure by baboons (Papio papio).

    PubMed

    Barbet, Isabelle; Fagot, Joël

    2011-10-01

    This study investigated the Gestalt law of closure in baboons. Using a computer-controlled self-testing procedure, we trained baboons (Papio papio) to discriminate open versus closed shapes presented on a touch screen with a two-alternative forced choice procedure. Ten baboons (OPEN + group) were trained with the open shapes serving as the positive stimulus (S+), and nine others (CLOSE + group) were trained with the closed shape serving as S+. The OPEN + group obtained higher discrimination performance than the CLOSE + group (Exp 1), but its scores declined when new line segments were added to the stimuli (Exp 2) and after smoothing the end points of the open shapes (Exp 3). The CLOSE + group was less affected by the above manipulations of local stimulus dimension, but its performance was disrupted when the collinearity end points was reduced (Exp 3). Use of a visual search task revealed that the search for an open shape among closed distractors was less attention demanding in baboons than the search for a closed shape among open ones (Exp 4). It is concluded that (1) end lines rather than closeness per se are perceptual primitives for the open versus closed discrimination in baboons, and (2) the relative emphasis on local or configural cues when processing contour closure depends on experiential factors in baboons and is thus subject to interindividual variations.

  16. Revisiting the Rossby Haurwitz wave test case with contour advection

    NASA Astrophysics Data System (ADS)

    Smith, Robert K.; Dritschel, David G.

    2006-09-01

    This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz test case, first proposed by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221-224], has been examined using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL) models are considered, and results are compared with previous test results. We go further by modifying this test case in a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does. We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seriously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems are exacerbated by a poor resolution of potential vorticity gradients.

  17. Review on Dynamic Contour Tonometry and Ocular Pulse Amplitude.

    PubMed

    Willekens, Koen; Rocha, Rita; Van Keer, Karel; Vandewalle, Evelien; Abegão Pinto, Luís; Stalmans, Ingeborg; Marques-Neves, Carlos

    2015-01-01

    Intraocular pressure (IOP) measurement is the cornerstone of the management of glaucoma patients. The gold standard for assessing IOP is Goldmann applanation tonometry (GAT). Recently, the dynamic contour tonometer (DCT) has become available. While both devices provide reliable IOP measurements, the results are not interchangeable. DCT has the advantage of measuring an additional parameter: ocular pulse amplitude (OPA). OPA is defined as the difference between systolic and diastolic IOP and represents the pulsatile wave front produced by the varying amount of blood in the eye during the cardiac cycle. It has been shown to vary with ocular structural parameters, such as axial length, corneal thickness, and ocular rigidity, as well as with systemic variables like heart rate, blood pressure, and left ventricular ejection fraction. Although the existence of some of these associations is still controversial, the clinical relevance of OPA has been consistently suggested, especially in glaucoma. Further research on this intriguing parameter could not only provide insight into glaucoma pathophysiology but also help integrate this variable into clinical practice. PMID:26650248

  18. Effects of obstruent consonants on the F0 contour

    NASA Astrophysics Data System (ADS)

    Hanson, Helen M.

    2003-10-01

    When a vowel follows an obstruent consonant, the fundamental frequency in the first few tens of milliseconds of the vowel is influenced by the voicing characteristics of the consonant. The goal of the research reported here is to model this influence, with the intention of improving generation of F0 contours in rule-based speech synthesis. Data have been recorded from 10 subjects. Stops, fricatives, and the nasal /m/ were paired with the vowels /i,opena/ to form CVm syllables. The syllables mVm served as baselines with which to compare the obstruents. The target syllables were embedded in carrier sentences. Intonation was varied so that each target syllable was produced with either a high, low, or no pitch accent. Results vary among subjects, but in general, obstruent effects on F0 primarily occur when the syllable carries a high pitch. In that case, F0 is increased relative to the baseline following voiceless obstruents, but F0 closely follows the baseline following voiced obstruents. After voiceless obstruents, F0 may be increased for up to 80 ms following voicing onset. When a syllable carries a low or no pitch accent, F0 is increased slightly following all obstruents. [Work supported by NIH Grant No. DC04331.

  19. Dynamic contour tonometry over silicone hydrogel contact lens

    PubMed Central

    Lam, Andrew K.C.; Tse, Jimmy S.H.

    2013-01-01

    Purpose This study compared the measurements of intraocular pressure (IOP) and ocular pulse amplitude (OPA) using the Dynamic Contour Tonometry (DCT) over silicone hydrogel contact lenses of different modulus. Corneal biomechanics were also measured using the Ocular Response Analyzer (ORA). Methods Forty-seven young (mean age 22.3 years, standard deviation 1.2 years) subjects had IOP, OPA, corneal hysteresis (CH) and corneal resistance factor (CRF) measured without lens and with two brands of silicone hydrogel contact lenses. Each eye wore one brand followed by another, randomly assigned, and then the lenses switched over. Difference and agreement of IOP and OPA with and without silicone hydrogel contact lens were studied. Results The right and left eyes had similar corneal curvatures, central corneal thicknesses, IOP, OPA and corneal biomechanics at baseline. No significant difference was found in CH and CRF when they were measured over different contact lenses. IOP demonstrated a greater difference (95% limits of agreement: 2.73 mmHg) compared with no lens when it was measured over high modulus silicone hydrogel lenses. Agreement improved over low lens modulus silicone hydrogel lenses (95% limits of agreement: 2.2–2.4 mmHg). 95% limits of agreement were within 1.0 mmHg for OPA. Conclusions This study demonstrated the feasibility of DCT over silicone hydrogel lenses. Low lens modulus silicone hydrogel contact lens in situ has no clinical effect on DCT. PMID:24766866

  20. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  1. Contour integration impairment in schizophrenia and first episode psychosis: State or Trait?

    PubMed Central

    Feigenson, Keith A.; Keane, Brian P.; Roché, Matthew W.; Silverstein, Steven M.

    2014-01-01

    Contour integration is a fundamental visual process that recovers object structure by representing spatially separated edge elements as a continuous contour or shape boundary. Clinically stable persons with schizophrenia have repeatedly been shown to be impaired at contour integration but it is unclear whether this process varies with clinical state or whether it arises as early as the first episode of psychosis. To consider these issues, we administered a contour integration test to persons with chronic schizophrenia and to those with a first episode of psychosis. The test was administered twice—once at admission to short term psychiatric hospitalization and once again at discharge. A well-matched healthy control group was also tested across the same time points. We found that contour integration performance improved to the same degree in all groups over time, indicating that there were no recovery effects over and above normal practice effects. Moreover, the schizophrenia group demonstrated poorer contour integration than the control group and the first episode group exhibited intermediate performance that could not be distinguished from the other groups. These results suggest that contour integration ability does not vary as a function of short-term changes in clinical state, and that it may become further impaired with an increased number of psychotic episodes. PMID:25306205

  2. A Social Evaluation of Perception on Body Contouring Surgery by Turkish Male Aesthetic Surgery Patients.

    PubMed

    Ozel, Bora; Sezgin, Billur; Guney, Kirdar; Latifoglu, Osman; Celebi, Cemallettin

    2015-02-01

    Although aesthetic procedures are known to have a higher impact on women, men are becoming more inclined toward such procedures since the last decade. To determine the reason behind the increase in demand for male aesthetic procedures and to learn about the expectations and inquietude related to body contouring surgery, a prospective questionnaire study was conducted on 200 Turkish males from January 1, 2011-May 31, 2012. Demographic information, previous aesthetic procedures and thoughts on body contouring procedures with given reasons were questioned. The results of the study showed that 53 % of all participants considered undergoing body contouring surgery with the given reason that they believed their current body structure required it. For those who did not consider contouring operations, 92.5 % said they felt that they did not need such a procedure. The results of the statistical analysis showed that BMI was a significant factor in the decision making process for wanting to undergo body contouring procedures. The results of the study showed that men's consideration for aesthetic operations depends mainly on necessity and that the most considered region was the abdominal zone in regard to contouring. We can conclude that men are becoming more interested in body contouring operations and therefore different surgical procedures should be refined and re-defined according to the expectations of this new patient group.

  3. A Social Evaluation of Perception on Body Contouring Surgery by Turkish Male Aesthetic Surgery Patients.

    PubMed

    Ozel, Bora; Sezgin, Billur; Guney, Kirdar; Latifoglu, Osman; Celebi, Cemallettin

    2015-02-01

    Although aesthetic procedures are known to have a higher impact on women, men are becoming more inclined toward such procedures since the last decade. To determine the reason behind the increase in demand for male aesthetic procedures and to learn about the expectations and inquietude related to body contouring surgery, a prospective questionnaire study was conducted on 200 Turkish males from January 1, 2011-May 31, 2012. Demographic information, previous aesthetic procedures and thoughts on body contouring procedures with given reasons were questioned. The results of the study showed that 53 % of all participants considered undergoing body contouring surgery with the given reason that they believed their current body structure required it. For those who did not consider contouring operations, 92.5 % said they felt that they did not need such a procedure. The results of the statistical analysis showed that BMI was a significant factor in the decision making process for wanting to undergo body contouring procedures. The results of the study showed that men's consideration for aesthetic operations depends mainly on necessity and that the most considered region was the abdominal zone in regard to contouring. We can conclude that men are becoming more interested in body contouring operations and therefore different surgical procedures should be refined and re-defined according to the expectations of this new patient group. PMID:25519035

  4. A Neurocomputational account of the role of contour facilitation in brightness perception.

    PubMed

    Domijan, Dražen

    2015-01-01

    A new filling-in model is proposed in order to account for challenging brightness illusions, where inducing background elements are spatially separated from the gray target such as dungeon, cube and grating illusions, bullseye display and ring patterns. This model implements the simple idea that neural response to low-contrast contour is enhanced (facilitated) by the presence of collinear or parallel high-contrast contours in its wider neighborhood. Contour facilitation is achieved via dendritic inhibition, which enables the computation of maximum function among inputs to the node. Recurrent application of maximum function leads to the propagation of the neural signal along collinear or parallel contour segments. When a strong global-contour signal is accompanied with a weak local-contour signal at the same location, conditions are met to produce brightness assimilation within the Filling-in Layer. Computer simulations showed that the model correctly predicts brightness appearance in all of the aforementioned illusions as well as in White's effect, Benary's cross, Todorović's illusion, checkerboard contrast, contrast-contrast illusion and various variations of the White's effect. The proposed model offers new insights on how geometric factors (contour colinearity or parallelism), together with contrast magnitude contribute to the brightness perception.

  5. Contour integration impairment in schizophrenia and first episode psychosis: state or trait?

    PubMed

    Feigenson, Keith A; Keane, Brian P; Roché, Matthew W; Silverstein, Steven M

    2014-11-01

    Contour integration is a fundamental visual process that recovers object structure by representing spatially separated edge elements as a continuous contour or shape boundary. Clinically stable persons with schizophrenia have repeatedly been shown to be impaired at contour integration but it is unclear whether this process varies with clinical state or whether it arises as early as the first episode of psychosis. To consider these issues, we administered a contour integration test to persons with chronic schizophrenia and to those with a first episode of psychosis. The test was administered twice-once at admission to short term psychiatric hospitalization and once again at discharge. A well-matched healthy control group was also tested across the same time points. We found that contour integration performance improved to the same degree in all groups over time, indicating that there were no recovery effects over and above normal practice effects. Moreover, the schizophrenia group demonstrated poorer contour integration than the control group and the first episode group exhibited intermediate performance that could not be distinguished from the other groups. These results suggest that contour integration ability does not vary as a function of short-term changes in clinical state, and that it may become further impaired with an increased number of psychotic episodes.

  6. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  7. Enabling scanning electron microscope contour-based optical proximity correction models

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Jantzen, Kenneth

    2015-04-01

    A scanning electron microscope (SEM) is the metrology tool used to accurately characterize very fine structures on wafers, usually by extracting one critical dimension (CD) per SEM image. This approach for optical proximity correction (OPC) modeling requires many measurements resulting in a lengthy cycle time for data collection, review, and cleaning, and faces reliability issues when dealing with critical two-dimensional (2-D) structures. An alternative to CD-based metrology is to use SEM image contours for OPC modeling. To calibrate OPC models with contours, reliable contours matched to traditional CD-SEM measurements are required along with a method to choose structure and site selections (number, type, and image space coverage) specific to a contour-based OPC model calibration. The potential of SEM contour model-based calibration is illustrated by comparing two contour-based models to reference models, one empirical model and a second rigorous simulation-based model. The contour-based models are as good as or better than a CD-based model with a significant advantage in the prediction of complex 2-D configurations with a reduced metrology work load.

  8. Visual hallucinosis: the major clinical determinant of distorted chromatic contour perception in Parkinson's disease.

    PubMed

    Büttner, T; Kuhn, W; Müller, T; Welter, F L; Federlein, J; Heidbrink, K; Przuntek, H

    1996-01-01

    Recently distorted chromatic contour perception has been demonstrated in Parkinson's disease (PD). The aim of our study is to determine the clinical factors which influence chromatic contour perception in PD. Chromatic and achromatic contour perception, colour discrimination and clinical data were evaluated in 73 patients with PD. We used a computer-aided method to determine the chromatic fusion time (CFT) which indicates the acuity of monochromatic contour perception. Chromatic CFT was generally shortened in patients as compared to controls (p < 0.01), whereas achromatic CFT was not significantly different. Variance analysis revealed the ability of colour discrimination and the risk of visual hallucinations as statistically significant (p < 0.05) variables influencing contour perception of certain stimuli. In contrast, disease stage, disease duration and disease severity have no relevant effect on chromatic contour perception in Parkinson's disease. On the basis of those properties one may suggest that distorted chromatic contour perception is due to an impairment at a central stage of visual processing in PD and an imbalance of the serotonergic system. Whether CFT is a reliable method to predict the individual risk of hallucinosis in PD has to be evaluated.

  9. Equal latency contours for bottlenose dolphins (Tursiops truncatus) and California sea lions (Zalophus californianus).

    PubMed

    Mulsow, Jason; Schlundt, Carolyn E; Brandt, Lacey; Finneran, James J

    2015-11-01

    Loudness perception by non-human animals is difficult to study directly. Previous research efforts have instead focused on estimating loudness perception using simple reaction time (RT) data. These data are used to generate equal latency contours that serve as a proxy for equal loudness contours. To aid the design of auditory weighting functions for marine mammals, equal latency contours were generated using RT data for two marine mammal species that are representative of broader functional hearing groups: the bottlenose dolphin (under water) and California sea lion (in air). In all cases, median RT decreased with increasing tone sound pressure level (SPL). The equal latency contours corresponding to near-threshold SPLs were similar to audiograms for both species. The sea lion contours showed some compression at frequencies below 1 kHz; however, a similar pattern was not apparent in the more variable data for dolphins. Equal latency contours for SPLs greater than approximately 40 dB above threshold diverged from predicted equal loudness contours, likely due to the asymptotic nature of RT at the highest tested SPLs. The results suggest that auditory threshold data, potentially augmented with compression at low frequencies, may provide a useful way forward when designing auditory weighting functions for marine mammals.

  10. Equal latency contours for bottlenose dolphins (Tursiops truncatus) and California sea lions (Zalophus californianus).

    PubMed

    Mulsow, Jason; Schlundt, Carolyn E; Brandt, Lacey; Finneran, James J

    2015-11-01

    Loudness perception by non-human animals is difficult to study directly. Previous research efforts have instead focused on estimating loudness perception using simple reaction time (RT) data. These data are used to generate equal latency contours that serve as a proxy for equal loudness contours. To aid the design of auditory weighting functions for marine mammals, equal latency contours were generated using RT data for two marine mammal species that are representative of broader functional hearing groups: the bottlenose dolphin (under water) and California sea lion (in air). In all cases, median RT decreased with increasing tone sound pressure level (SPL). The equal latency contours corresponding to near-threshold SPLs were similar to audiograms for both species. The sea lion contours showed some compression at frequencies below 1 kHz; however, a similar pattern was not apparent in the more variable data for dolphins. Equal latency contours for SPLs greater than approximately 40 dB above threshold diverged from predicted equal loudness contours, likely due to the asymptotic nature of RT at the highest tested SPLs. The results suggest that auditory threshold data, potentially augmented with compression at low frequencies, may provide a useful way forward when designing auditory weighting functions for marine mammals. PMID:26627745

  11. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF snake model.

    PubMed

    Guan, Tao; Zhou, Dongxiang; Liu, Yunhui

    2015-07-01

    Overlapping cells segmentation is one of the challenging topics in medical image processing. In this paper, we propose to approximately represent the cell contour as a set of sparse contour points, which can be further partitioned into two parts: the strong contour points and the weak contour points. We consider the cell contour extraction as a contour points locating problem and propose an effective and robust framework for segmentation of partially overlapping cells in cervical smear images. First, the cell nucleus and the background are extracted by a morphological filtering-based K-means clustering algorithm. Second, a gradient decomposition-based edge enhancement method is developed for enhancing the true edges belonging to the center cell. Then, a dynamic sparse contour searching algorithm is proposed to gradually locate the weak contour points in the cell overlapping regions based on the strong contour points. This algorithm involves the least squares estimation and a dynamic searching principle, and is thus effective to cope with the cell overlapping problem. Using the located contour points, the Gradient Vector Flow Snake model is finally employed to extract the accurate cell contour. Experiments have been performed on two cervical smear image datasets containing both single cells and partially overlapping cells. The high accuracy of the cell contour extraction result validates the effectiveness of the proposed method.

  12. The perception of three-dimensional contours and the effect of luminance polarity and color change on their detection.

    PubMed

    Khuu, Sieu K; Honson, Vanessa; Kim, Juno

    2016-01-01

    In the present study we investigated the detectability of three-dimensional (3D) cocircular contours defined by binocular disparity and established the influence of a number of stimulus factors to their perception. In Experiment 1 we examined the depth range over which local elements are grouped in depth, and whether contour detectability systematically changed with the degree to which they are oriented in depth. We found that increasing the orientation of curved contours in depth improved detection performance. In Experiment 2, we examined the degree to which contour detection was disrupted by varying their continuity in depth by jittering the local depth position of contour elements. Detection performance declined with the increasing displacement of local contour elements in depth away from the depth orientation of the contour. Experiments 3 and 4 ascertained whether a detection advantage is afforded to 3D contours defined by local variations in luminance polarity and color. Local color and polarity differences can disrupt the two-dimensional grouping of local contour elements on the basis of similarity, but we tested whether continuity in depth facilitates grouping of contour elements differing in polarity and color. We found no detection advantage for 3D contours defined by local color and polarity variations, suggesting binocular disparity does not facilitate grouping in depth when local elements differ in color and polarity. These findings further suggest the visual system uses binocular disparity to detect contours, but is likely to involve systems tuned to luminance polarity and color.

  13. Expansion/De-expansion Tool to Quantify the Accuracy of Prostate Contours

    SciTech Connect

    Chung, Eugene; Stenmark, Matthew H.; Evans, Cheryl; Narayana, Vrinda; McLaughlin, Patrick W.

    2012-05-01

    Purpose: Accurate delineation of the prostate gland on computed tomography (CT) remains a persistent challenge and continues to introduce geometric uncertainty into the planning and delivery of external beam radiotherapy. We, therefore, developed an expansion/de-expansion tool to quantify the contour errors and determine the location of the deviations. Methods and Materials: A planning CT scan and magnetic resonance imaging scan were prospectively acquired for 10 patients with prostate cancer. The prostate glands were contoured by 3 independent observers using the CT data sets with instructions to contour the prostate without underestimation but to minimize overestimation. The standard prostate for each patient was defined using magnetic resonance imaging and CT on multiple planes. After registration of the CT and magnetic resonance imaging data sets, the CT-defined prostates were scored for accuracy. The contours were defined as ideal if they were within a 2.5-mm expansion of the standard without underestimation, acceptable if they were within a 5.0-mm expansion and a 2.5-mm de-expansion, and unacceptable if they extended >5.0 mm or underestimated the prostate by >2.5 mm. Results: A total of 636 CT slices were individually analyzed, with the vast majority scored as ideal or acceptable. However, none of the 30 prostate contour sets had all the contours scored as ideal or acceptable. For all 3 observers, the unacceptable contours were more likely from underestimation than overestimation of the prostate. The errors were more common at the base and apex than the mid-gland. Conclusions: The expansion/de-expansion tool allows for directed feedback on the location of contour deviations, as well as the determination of over- or underestimation of the prostate. This metric might help improve the accuracy of prostate contours.

  14. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect

    Gay, Hiram A.; Barthold, H. Joseph; O'Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  15. Variations in the Contouring of Organs at Risk: Test Case From a Patient With Oropharyngeal Cancer

    SciTech Connect

    Nelms, Benjamin E.; Tome, Wolfgang A.; Robinson, Greg; Wheeler, James

    2012-01-01

    Purpose: Anatomy contouring is critical in radiation therapy. Inaccuracy and variation in defining critical volumes will affect everything downstream: treatment planning, dose-volume histogram analysis, and contour-based visual guidance used in image-guided radiation therapy. This study quantified: (1) variation in the contouring of organs at risk (OAR) in a clinical test case and (2) corresponding effects on dosimetric metrics of highly conformal plans. Methods and Materials: A common CT data set with predefined targets from a patient with oropharyngeal cancer was provided to a population of clinics, which were asked to (1) contour OARs and (2) design an intensity-modulated radiation therapy plan. Thirty-two acceptable plans were submitted as DICOM RT data sets, each generated by a different clinical team. Using those data sets, we quantified: (1) the OAR contouring variation and (2) the impact this variation has on dosimetric metrics. New technologies were employed, including a software tool to quantify three-dimensional structure comparisons. Results: There was significant interclinician variation in OAR contouring. The degree of variation is organ-dependent. We found substantial dose differences resulting strictly from contouring variation (differences ranging from -289% to 56% for mean OAR dose; -22% to 35% for maximum dose). However, there appears to be a threshold in the OAR comparison metric beyond which the dose differences stabilize. Conclusions: The effects of interclinician variation in contouring organs-at-risk in the head and neck can be large and are organ-specific. Physicians need to be aware of the effect that variation in OAR contouring can play on the final treatment plan and not restrict their focus only to the target volumes.

  16. Hybrid OPC modeling with SEM contour technique for 10nm node process

    NASA Astrophysics Data System (ADS)

    Hitomi, Keiichiro; Halle, Scott; Miller, Marshal; Graur, Ioana; Saulnier, Nicole; Dunn, Derren; Okai, Nobuhiro; Hotta, Shoji; Yamaguchi, Atsuko; Komuro, Hitoshi; Ishimoto, Toru; Koshihara, Shunsuke; Hojo, Yutaka

    2014-03-01

    Hybrid OPC modeling is investigated using both CDs from 1D and simple 2D structures and contours extracted from complex 2D structures, which are obtained by a Critical Dimension-Scanning Electron Microscope (CD-SEM). Recent studies have addressed some of key issues needed for the implementation of contour extraction, including an edge detection algorithm consistent with conventional CD measurements, contour averaging and contour alignment. Firstly, pattern contours obtained from CD-SEM images were used to complement traditional site driven CD metrology for the calibration of OPC models for both metal and contact layers of 10 nm-node logic device, developed in Albany Nano-Tech. The accuracy of hybrid OPC model was compared with that of conventional OPC model, which was created with only CD data. Accuracy of the model, defined as total error root-mean-square (RMS), was improved by 23% with the use of hybrid OPC modeling for contact layer and 18% for metal layer, respectively. Pattern specific benefit of hybrid modeling was also examined. Resist shrink correction was applied to contours extracted from CD-SEM images in order to improve accuracy of the contours, and shrink corrected contours were used for OPC modeling. The accuracy of OPC model with shrink correction was compared with that without shrink correction, and total error RMS was decreased by 0.2nm (12%) with shrink correction technique. Variation of model accuracy among 8 modeling runs with different model calibration patterns was reduced by applying shrink correction. The shrink correction of contours can improve accuracy and stability of OPC model.

  17. Speech Intonation and Melodic Contour Recognition in Children with Cochlear Implants and with Normal Hearing

    PubMed Central

    See, Rachel L.; Driscoll, Virginia D.; Gfeller, Kate; Kliethermes, Stephanie; Oleson, Jacob

    2013-01-01

    Background Cochlear implant (CI) users have difficulty perceiving some intonation cues in speech and melodic contours because of poor frequency selectivity in the cochlear implant signal. Objectives To assess perceptual accuracy of normal hearing (NH) children and pediatric CI users on speech intonation (prosody), melodic contour, and pitch ranking, and to determine potential predictors of outcomes. Hypothesis Does perceptual accuracy for speech intonation or melodic contour differ as a function of auditory status (NH, CI), perceptual category (falling vs. rising intonation/contour), pitch perception, or individual differences (e.g., age, hearing history)? Method NH and CI groups were tested on recognition of falling intonation/contour vs. rising intonation/contour presented in both spoken and melodic (sung) conditions. Pitch ranking was also tested. Outcomes were correlated with variables of age, hearing history, HINT, and CNC scores. Results The CI group was significantly less accurate than the NH group in spoken (CI, M=63.1 %; NH, M=82.1%) and melodic (CI, M=61.6%; NH, M=84.2%) conditions. The CI group was more accurate in recognizing rising contour in the melodic condition compared with rising intonation in the spoken condition. Pitch ranking was a significant predictor of outcome for both groups in falling intonation and rising melodic contour; age at testing and hearing history variables were not predictive of outcomes. Conclusions Children with CIs were less accurate than NH children in perception of speech intonation, melodic contour, and pitch ranking. However, the larger pitch excursions of the melodic condition may assist in recognition of the rising inflection associated with the interrogative form. PMID:23442568

  18. A fast hidden line algorithm with contour option. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thue, R. E.

    1984-01-01

    The JonesD algorithm was modified to allow the processing of N-sided elements and implemented in conjunction with a 3-D contour generation algorithm. The total hidden line and contour subsystem is implemented in the MOVIE.BYU Display package, and is compared to the subsystems already existing in the MOVIE.BYU package. The comparison reveals that the modified JonesD hidden line and contour subsystem yields substantial processing time savings, when processing moderate sized models comprised of 1000 elements or less. There are, however, some limitations to the modified JonesD subsystem.

  19. The design and performance of axially symmetrical contoured wall diffusers employing suction boundary layer control

    NASA Technical Reports Server (NTRS)

    Nelson, C. D., Jr.; Hudson, W. G.; Yang, T.

    1974-01-01

    This paper presents a procedure for the design and the performance prediction of axially symmetrical contoured wall diffusers employing suction boundary layer control. An inverse problem approach was used in the potential flow design of the diffuser wall contours. The experimentally observed flow characteristics and the stability of flows within the diffuser are also described. Guidelines for the design of low suction (less than 10 percent of the inlet flow) and thus high effectiveness contoured wall diffusers are also provided based on the results of the experimental program.

  20. Treatment strategies for frontal sinus anterior table fractures and contour deformities.

    PubMed

    Delaney, Sean W

    2016-08-01

    Anterior table frontal sinus fractures can result in aesthetically displeasing contour deformities. Acute anterior table frontal sinus fractures that are depressed may be reduced with an open, closed, or endoscope-assisted approach. Delayed contour deformity camouflage can be achieved using bone grafts, titanium meshes, methyl methacrylate, hydroxyapatite cement, and polyether ether ketone implants. The selection of surgical approach to repair a frontal sinus contour deformity depends on the fracture severity, chronicity, complexity, patient comorbidities, and surgeon preference and experience. Advancement in endoscopic technology and expertise has created a paradigm shift toward a less invasive approach to the frontal region, with considerably less morbidity than conventional open techniques. PMID:27345471