Sample records for active contractile properties

  1. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2012-01-01

    SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds. PMID:22189767

  2. Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3β-mediated suppression of mitochondrial permeation pore opening.

    PubMed

    Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun

    2011-11-01

    The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.

  3. In vitro characterization of the effects of rat/mouse hemokinin-1 on mouse colonic contractile activity: a comparison with substance P.

    PubMed

    Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui

    2009-06-01

    Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.

  4. Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers.

    PubMed

    Cieniewski-Bernard, Caroline; Montel, Valerie; Berthoin, Serge; Bastide, Bruno

    2012-01-01

    O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.

  5. Impact of pregnancy and vaginal delivery on the passive and active mechanics of the rat vagina.

    PubMed

    Feola, Andrew; Moalli, Pamela; Alperin, Marianna; Duerr, Robbie; Gandley, Robin E; Abramowitch, Steven

    2011-01-01

    Remodeling of vaginal extracellular matrix and smooth muscle likely plays a critical role in reducing the risk of maternal injury during vaginal delivery by altering the mechanical properties to increase distension and reduce stress. Long-Evans rats were divided into five groups to examine the passive mechanical and active contractile properties throughout pregnancy and postpartum: virgin (n=17), mid-pregnant (Day 14-16, n=12), late-pregnant (Day 20-22, n=14), immediate postpartum (0-2 h after delivery, n=14), and 4 week postpartum (n=15). Longitudinal sections of vaginal tissue were loaded to failure uniaxially for passive mechanical or active contractile properties were examined. For passive mechanics, the tangent modulus decreased 45% by mid-pregnancy and immediately postpartum (p<0.001). The ultimate strain continuously increased up to 43% higher than virgin animals (p=0.007) in the immediate postpartum group. For active mechanics, the maximal contractile force was 36-56% lower through immediate postpartum animals, and was significantly more sensitive to K+ throughout pregnancy and postpartum (p=0.003). The changes observed in the passive and active properties of the rat vagina are consistent with what would be expected from a tissue that is remodeling to maximize its ability to distend at the time of vaginal delivery to facilitate passage of the fetus with minimal injury.

  6. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    PubMed

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  7. Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility

    NASA Astrophysics Data System (ADS)

    Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick

    While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.

  8. Effect of hindlimb immobilization on the fatigability of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1983-01-01

    The effect of 6 weeks of disuse atrophy produced by hindlimb immobilization was studied in situ (33.5 C) in the soleus and extensor digitorum longus muscles of rats. The results indicate that disuse causes preferential alterations in the isometric contractile properties of slow-twitch, as opposed to fast-twitch, skeletal muscles. During continuous contractile activity, atrophied muscles were found to have lower ATP levels and an apparent increase in their dependence on anaerobic metabolism, as reflected by the more extensive depletion of glycogen and enhanced lactate formation. Although the atrophied muscles were determined to have fewer cross bridges and thus generated lower tension, the pattern of decline in active cross-bridge formation and tetanic tension during contractile activity was found to proceed in a manner similar to controls.

  9. Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy

    PubMed Central

    Major, Brendan; Kimpinski, Kurt; Doherty, Timothy J.; Rice, Charles L.

    2013-01-01

    The objective of the study was to assess the effects of diabetic polyneuropathy (DPN) on muscle contractile properties in humans, and how these changes are related to alterations in muscle morphology and denervation. Patients with DPN (n = 12) were compared with age- and sex-matched controls (n = 12). Evoked and voluntary contractile properties, including stimulated twitch responses and maximal voluntary contractions, of the dorsiflexor muscles were assessed using an isometric ankle dynamometer. Motor unit number estimates (MUNE) of the tibialis anterior (TA) were performed via quantitative electromyography and decomposition-enhanced spike-triggered averaging. Peak tibialis anterior (TA) cross-sectional area (CSA; cm2), and relative proportion of contractile to noncontractile tissue (%) was determined from magnetic resonance images. Patients with DPN demonstrated decreased strength (−35%) and slower (−45%) dorsiflexion contractile properties for both evoked and voluntary contractions (P < 0.05). These findings were not accounted for by differences in voluntary activation (P > 0.05) or antagonist coactivation (P > 0.05). Additionally, patients with DPN were weaker when strength was normalized to TA total CSA (−30%; P < 0.05) or contractile tissue CSA (−26%; P < 0.05). In the DPN patient group, TA MUNEs were negatively related to both % noncontractile tissue (P < 0.05; r = 0.72) and twitch half-relaxation time (P < 0.05; r = 0.60), whereas no relationships were found between these variables in controls (P > 0.05). We conclude that patients with DPN demonstrated reduced strength and muscle quality as well as contractile slowing. This process may contribute to muscle power loss and functional impairments reported in patients with DPN, beyond the loss of strength commonly observed. PMID:24356519

  10. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i.

    PubMed

    Rehwaldt, Jordan D; Rodgers, Buel D; Lin, David C

    2017-12-01

    Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.

  11. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    PubMed

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  12. Effects of hindlimb unweighting on the mechanical and structure properties of the rat abdominal aorta

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Anthony; Delp, Michael D.

    2003-01-01

    Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.

  13. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.

    PubMed

    Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping

    2006-02-01

    Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.

  14. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility

    PubMed Central

    BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.

    2005-01-01

    (Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301

  15. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  16. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system.

  17. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of cAMP-stimulating receptors in heart failure than that of PTH1-Rs or beta(2)-ARS:

  18. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  19. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  20. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  1. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  2. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy

    PubMed Central

    Cheng, Yuanhua; Hogarth, Kaley A.; O'Sullivan, M. Lynne; Regnier, Michael

    2015-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca2+ sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. PMID:26497964

  3. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy.

    PubMed

    Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen

    2016-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.

  4. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  5. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  6. Ultraslow myosin molecular motors of placental contractile stem villi in humans.

    PubMed

    Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Guerin, Catherine; Hébert, Jean-Louis; Arsalane, Abdelilah; Moumen, Abdelouahab; Krokidis, Xénophon; Michel, Francine; Timbely, Oumar

    2014-01-01

    Human placental stem villi (PSV) present contractile properties. In vitro mechanics were investigated in 40 human PSV. Contraction of PSV was induced by both KCl exposure (n = 20) and electrical tetanic stimulation (n = 20). Isotonic contractions were registered at several load levels ranging from zero-load up to isometric load. The tension-velocity relationship was found to be hyperbolic. This made it possible to apply the A. Huxley formalism for determining the rate constants for myosin cross-bridge (CB) attachment and detachment, CB single force, catalytic constant, myosin content, and maximum myosin ATPase activity. These molecular characteristics of myosin CBs did not differ under either KCl exposure or tetanus. A comparative approach was established from studies previously published in the literature and driven by mean of a similar method. As compared to that described in mammalian striated muscles, we showed that in human PSV, myosin CB rate constants for attachment and detachment were about 103 times lower whereas myosin ATPase activity was 105 times lower. Up to now, CB kinetics of contractile cells arranged along the long axis of the placental sheath appeared to be the slowest ever observed in any mammalian contractile tissue.

  7. Hydrogel tissue construct-based high-content compound screening.

    PubMed

    Lam, Vy; Wakatsuki, Tetsuro

    2011-01-01

    Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.

  8. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  9. Wrinkling of a spherical lipid interface induced by actomyosin cortex

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex.

  10. Cold application for neuromuscular recovery following intense lower-body exercise.

    PubMed

    Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E

    2011-12-01

    This study examined the effects of cold therapy (COLD) on recovery of voluntary and evoked contractile properties following high-intensity, muscle-damaging and fatiguing exercise. Ten resistance-trained males performed 6 × 25 maximal concentric/eccentric muscle contractions of the dominant knee extensors (KE) followed by a 20-min recovery (COLD v control) in a randomized cross-over design. Voluntary and evoked neuromuscular properties of the right KE, ratings of perceived muscle soreness (MS) and pain, and blood markers for muscle damage were measured pre- and post-exercise, and immediately post-recovery, 2, 24 and 48-h post-recovery. Exercise resulted in decrements in voluntary and evoked torque, increased MS and elevated muscle damage markers (p < 0.05). Measures of maximal voluntary contraction (MVC) or voluntary activation (VA) were not significantly enhanced by COLD (p > 0.05). Activation of right KE decreased post-exercise with increased activation of biceps femoris (BF) (p < 0.05). However, no significant differences were evident between conditions of activation of KE and hamstrings at any time point (p > 0.05). No significant differences were observed between conditions for creatine kinase or asparate aminotransferase (p > 0.05). However, perceptual ratings of pain were significantly (p < 0.05) lower following COLD compared to control. In conclusion, following damage to the contractile apparatus, COLD did not significantly hasten the recovery of peripheral contractile trauma. Despite no beneficial effect of COLD on recovery of MVC, perceptions of pain were reduced following COLD.

  11. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  12. A biomechanical model of agonist-initiated contraction in the asthmatic airway.

    PubMed

    Brook, B S; Peel, S E; Hall, I P; Politi, A Z; Sneyd, J; Bai, Y; Sanderson, M J; Jensen, O E

    2010-01-31

    This paper presents a modelling framework in which the local stress environment of airway smooth muscle (ASM) cells may be predicted and cellular responses to local stress may be investigated. We consider an elastic axisymmetric model of a layer of connective tissue and circumferential ASM fibres embedded in parenchymal tissue and model the active contractile force generated by ASM via a stress acting along the fibres. A constitutive law is proposed that accounts for active and passive material properties as well as the proportion of muscle to connective tissue. The model predicts significantly different contractile responses depending on the proportion of muscle to connective tissue in the remodelled airway. We find that radial and hoop-stress distributions in remodelled muscle layers are highly heterogenous with distinct regions of compression and tension. Such patterns of stress are likely to have important implications, from a mechano-transduction perspective, on contractility, short-term cytoskeletal adaptation and long-term airway remodelling in asthma. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility

    PubMed Central

    Ng, Mei Rosa; Besser, Achim

    2012-01-01

    The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067

  14. Active properties of living tissues lead to size-dependent dewetting

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Carlos; Alert, Ricard; Blanch-Mercader, Carles; Gomez-Gonzalez, Manuel; Casademunt, Jaume; Trepat, Xavier

    Key biological processes such as cancer and development are characterized by drastic transitions from 2D to a 3D geometry. These rearrangements have been classically studied as a wetting problem. According to this theory, wettability of a substrate by an epithelium is determined by the competition between cell-cell and cell-substrate adhesion energies. In contrast, we found that, far from a passive process, tissue dewetting is an active process driven by tissue internal forces. Experimentally, we reproduced epithelial dewetting by promoting a progressive formation of intercellular junctions in a monolayer of epithelial cells. Interestingly, the formation of intercellular junctions produces an increase in cell contractility, with the subsequent increase in traction and intercellular stress. At a certain time, tissue tension overcomes cell-substrate maximum adhesion and the monolayer spontaneously dewets the substrate. We developed an active polar fluid model, finding both theoretically and experimentally that critical contractility to promote wetting-dewetting transition depends on cell-substrate adhesion and, unexpectedly, on tissue size. As a whole, this work generalizes wetting theory to living tissues, unveiling unprecedented properties due to their unique active nature.

  15. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling

    PubMed Central

    Cittadini, A; Monti, MG; Iaccarino, G; Di Rella, F; Tsichlis, PN; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2010-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the β-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca2+) handling, oxygen consumption, and β-adrenergic pathway. To this aim, Sprague–Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca2+ handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca2+–force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6±0.2 versus 2.7±0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca2+ available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca2+ responsiveness, documented by an increased maximal Ca2+-activated pressure (+19% versus controls) and a shift to the left of the Ca2+–force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca2+ ATPase protein levels were significantly increased in Ad.Akt rats. β-Adrenergic receptor density, affinity, kinase-1 levels, and adenylyl cyclase activity were similar in the three animal groups. In conclusion, our results support an important role for Akt/PKB in the regulation of myocardial contractility and mechanoenergetics. PMID:16094411

  17. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    PubMed

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  18. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    PubMed Central

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552

  19. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.

    PubMed

    Dutka, T L; Mollica, J P; Lamb, G D

    2011-03-01

    Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals.

  20. Effect of season on contractile and metabolic properties of desert camel muscle (Camelus dromedarius).

    PubMed

    Abdelhadi, O M A; Babiker, S A; Picard, B; Jurie, C; Jailler, R; Hocquette, J F; Faye, B

    2012-01-01

    Thirty fattened one humped desert camels were used to examine the effect of season on contractile and metabolic properties of Longissimus thoracis (LT) muscle. Ten camels were slaughtered according to seasons of the year (winter, summer and autumn). Season significantly influenced muscle chemical composition, ultimate pH (pHu) and color. Activities of metabolic enzymes were higher during autumn season compared to summer and winter for phosphofructokinase (+64% compared to both seasons) and for isocitrate dehydrogenase (+35% and +145% in autumn vs. summer and winter, respectively). Quantification of muscle myosin heavy chain isoforms by SDS-PAGE electrophoresis showed only presence of type I and type IIa MyHC in camel muscle and indicated high proportion in winter for type I and in autumn for type IIa with respect to other seasons. Several correlations between different MyHC proportions and enzyme activities were reported. These findings indicated that muscle characteristics in camels are influenced by season. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Role of nitric oxide in in vitro contractile activity of the third compartment of the stomach in llamas.

    PubMed

    Van Hoogmoed, L; Rakestraw, P C; Snyder, J R; Harmon, F A

    1998-09-01

    To determine the role of nitric oxide and an apamin-sensitive nonadrenergic-noncholinergic inhibitory transmitter in in vitro contractile activity of the third compartment in llamas. Isolated strips of third compartment of the stomach from 5 llamas. Strips were mounted in tissue baths containing oxygenated Kreb's buffer solution and connected to a polygraph chart recorder to measure contractile activity. Atropine, guanethidine, and indomethacin were added to tissue baths to inhibit muscarinic receptors, adrenoreceptors, and prostaglandin synthesis. Responses to electrical field stimulation following addition of the nitric oxide antagonist Nwo-nitro-L-arginine methyl ester (L-NAME) and apamin were evaluated. Electrical field stimulation (EFS) resulted in a reduction in the amplitude and frequency of contractile activity, followed by rebound contraction when EFS was stopped. Addition of L-NAME resulted in a significant reduction in inhibition of contractile activity. Addition of apamin also resulted in a significant reduction in inhibitory contractile activity at most stimulation frequencies. The combination of L-NAME and apamin resulted in a significant reduction in inhibition at all frequencies. Nitric oxide and a transmitter acting via an apamin-sensitive mechanism appear to be involved in inhibition of contractile activity of the third compartment in llamas. Results suggest that nitric oxide plays an important role in mediating contractile activity of the third compartment in llamas. Use of nitric oxide synthase inhibitors may have a role in the therapeutic management of llamas with lesions of the third compartment.

  2. Successive contractile periods activate mitochondria at the onset of contractions in intact rat cardiac trabeculae.

    PubMed

    Wüst, Rob C I; Stienen, Ger J M

    2018-04-01

    The rate of oxidative phosphorylation depends on the contractile activity of the heart. Cardiac mitochondrial oxidative phosphorylation is determined by free ADP concentration, mitochondrial Ca 2+ accumulation, mitochondrial enzyme activities, and Krebs cycle intermediates. The purpose of the present study was to examine the factors that limit oxidative phosphorylation upon rapid changes in contractile activity in cardiac muscle. We tested the hypotheses that prior contractile performance enhances the changes in NAD(P)H and FAD concentration upon an increase in contractile activity and that this mitochondrial "priming" depends on pyruvate dehydrogenase activity. Intact rat cardiac trabeculae were electrically stimulated at 0.5 Hz for at least 30 min. Thereafter, two equal bouts at elevated stimulation frequency of 1, 2, or 3 Hz were applied for 3 min with 3 min of 0.5-Hz stimulation in between. No discernible time delay was observed in the changes in NAD(P)H and FAD fluorescence upon rapid changes in contractile activity. The amplitudes of the rapid changes in fluorescence upon an increase in stimulation frequency (the on-transients) were smaller than upon a decrease in stimulation frequency (the off-transients). A first bout in glucose-containing superfusion solution resulted, during the second bout, in an increase in the amplitudes of the on-transients, but the off-transients remained the same. No such priming effect was observed after addition of 10 mM pyruvate. These results indicate that mitochondrial priming can be observed in cardiac muscle in situ and that pyruvate dehydrogenase activity is critically involved in the mitochondrial adaptation to increases in contractile performance. NEW & NOTEWORTHY Mitochondrial respiration increases with increased cardiac contractile activity. Similar to mitochondrial "priming" in skeletal muscle, we hypothesized that cardiac mitochondrial activity is altered upon successive bouts of contractions and depends on pyruvate dehydrogenase activity. We found altered bioenergetics upon repeated contractile periods, indicative of mitochondrial priming in rat myocardium. No effect was seen when pyruvate was added to the perfusate. As such, pyruvate dehydrogenase activity is involved in the mitochondrial adaptation to increased contractile performance.

  3. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  4. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  5. A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse

    NASA Technical Reports Server (NTRS)

    Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

    1981-01-01

    Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

  6. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  7. Prostacyclin primes pregnant human myometrium for an enhanced contractile response in parturition

    PubMed Central

    Fetalvero, Kristina M.; Zhang, Peisheng; Shyu, Maureen; Young, Benjamin T.; Hwa, John; Young, Roger C.; Martin, Kathleen A.

    2008-01-01

    An incomplete understanding of the molecular events that regulate the myometrial transition from the quiescent pregnant state to the active contractile state during labor has hindered the development of improved therapies for preterm labor. During myometrial activation, proteins that prime the smooth muscle for contraction are upregulated, allowing maximal responsiveness to contractile agonists and thereby producing strong phasic contractions. Upregulation of one such protein, COX-2, generates PGs that induce contractions. Intriguingly, the predominant myometrial PG produced just prior to labor is prostacyclin (PGI2), a smooth muscle relaxant. However, here we have shown that activation of PGI2 receptor (IP) upregulated the expression of several contractile proteins and the gap junction protein connexin 43 through cAMP/PKA signaling in human myometrial tissue in organ and cell culture. Functionally, these IP-dependent changes in gene expression promoted an enhanced contractile response to oxytocin in pregnant human myometrial tissue strips, which was inhibited by the IP antagonist RO3244794. Furthermore, contractile protein induction was dependent on the concentration and time of exposure to the PGI2 analog iloprost and was blocked by both RO3244794 and PKA knockdown. We therefore propose that PGI2-mediated upregulation of contractile proteins and connexin 43 is a critical step in myometrial activation, allowing for a maximal contractile response. Our observations have important implications regarding activation of the myometrium prior to the onset of labor. PMID:19033666

  8. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    USDA-ARS?s Scientific Manuscript database

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  9. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    PubMed

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  10. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I.

    PubMed

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2016-09-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still severely lowered in BMD, but was almost normalized in LGMD2I. Our findings suggest close to intact contractile properties in LGMD2I, which are severely disrupted in BMD. Ann Neurol 2016;80:466-471. © 2016 American Neurological Association.

  11. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.

    PubMed Central

    Williams, D A; Head, S I; Lynch, G S; Stephenson, D G

    1993-01-01

    1. Single muscle fibres were enzymatically isolated from the soleus and extensor digitorum longus (EDL) muscles of genetically dystrophic mdx and normal (C57BL/10) mice aged 3-6 or 17-23 weeks. 2. Fibres of both muscles were chemically skinned with the non-ionic detergent Triton X-100 (2% v/v). Ca(2+)- and Sr(2+)-activated contractile responses were recorded and comparisons were made between several contractile parameters of various fibre types of normal and dystrophic mice of similar age. 3. There were no significant differences in the following contractile parameters of skinned fibres of normal and mdx mice of the same age: sensitivity to activating Ca2+ (pCa50) or Sr2+ (pSr50) and differential sensitivity to the activating ions (pCa50-pSr50). However the maximum isometric tension (Po) and the frequency of myofibrillar force oscillations in EDL fast-twitch fibres of young mdx mice were significantly lower than those of soleus fast-twitch fibres of the same animals, or fast-twitch fibres (EDL or soleus) of normal mice. 4. Age-related differences were apparent in some contractile parameters of both normal and mdx mice. In particular the steepness of force-pCa and force-pSr curves increased with age in normal mice, yet decreased with age in fibres of mdx mice. 5. A fluorescent probe, ethidium bromide, which interchelates with DNA, was used with laser-scanning confocal microscopy to determine the distribution of myonuclei in fibres. Fibres isolated from either muscle type of normal animals displayed a characteristic peripheral spiral of myonuclei. Fibres from muscles of mdx mice displayed three major patterns of nuclear distribution; the normal peripheral spiral, long central strands of nuclei, and a mixture of these two patterns. 6. The contractile characteristics of mdx fibres were not markedly influenced by the nuclear distribution pattern in that there were no discernible differences in the major contractile parameters (the Hill coefficients nCa and nSr, which are associated with the steepness of the Ca2+ and Sr2+ activation curves, pCa50, pSr50, pCa50-pSr50) of skinned fibres possessing peripheral or central nuclei. However, except for nSr, these values were all lower in individual fibres which displayed similar proportions of central and peripheral nuclei. The presence of mixed nucleation and absence of fibres with embryonic contractile characteristics in mdx mice suggest that the dystrophin-negative fibres can repair locally occurring muscle damage. Images Fig. 1 Fig. 1(Contd.) Fig. 4 Fig. 5 PMID:8487206

  12. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.

    PubMed

    Duque, Julia; Gorfinkiel, Nicole

    2016-12-15

    In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  13. Esophageal Epithelial Resistance and Lower Esophageal Sphincter Muscle Contraction Increase in a Chronic Diabetic Rabbit Model.

    PubMed

    Capanoglu, Doga; Coskunsever, Deniz; Olukman, Murat; Ülker, Sibel; Bor, Serhat

    2016-07-01

    Esophageal motility disorders and possibly gastroesophageal reflux disease are common in patients with diabetes mellitus. We aimed to investigate both the electrophysiological characteristics of the esophageal epithelium and the contractility of the lower esophageal sphincter (LES) muscle in alloxane-induced diabetic rabbits. Electrophysiological properties were measured using an Ussing chamber method. An acid-pepsin model was employed with pH 1.7 or weakly acidic (pH 4) Ringer and/or pepsin. Smooth muscle strips of the LES were mounted in an isolated organ bath. Contractile responses to an electrical field stimulation and cumulative concentrations of acetylcholine were recorded. Contractility of the muscle strips were tested in the presence of Rho-kinase inhibitor (Y-27632) and nonspecific nitric oxide inhibitor (L-NAME). The resistance of diabetic tissue perfused in the pH 1.7 Ringer decreased 17 %; pepsin addition decreased it by 49 %. The same concentrations caused a more distinct loss of resistance in the control tissues (22 and 76 %, p < 0.05). The perfusion of tissues in increased concentrations of luminal and serosal glucose did not change the tissue resistance and voltage. Diabetes significantly increased both the electrical field stimulation and acetylcholine-induced contractions in the LES muscle strips (p < 0.01). Incubation with Y-27632 significantly decreased the acetylcholine-induced contractions in a concentration-dependent manner (p < 0.01). The acid-pepsin model in the diabetic rabbit esophageal tissue had less injury compared with the control. The diabetic rabbit LES muscle had higher contractility, possibly because of the activation of the Rho-Rhokinase pathway. Our results show that in a chronic diabetic rabbit model the esophagus resists reflux by activating mechanisms of mucosal defense and increasing the contractility of the LES.

  14. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  15. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    PubMed

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  16. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men.

    PubMed

    Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-12-15

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  17. Diminished contractile responses of isolated conduit arteries in two rat models of hypertension.

    PubMed

    Zemancíková, Anna; Török, Jozef

    2013-08-31

    Hypertension is accompanied by thickening of arteries, resulting in marked changes in their passive and active mechanical properties. The aim of this study was to demonstrate that the large conduit arteries from hypertensive individuals may not exhibit enhanced contractions in vitro, as is often claimed. Mechanical responses to vasoconstrictor stimuli were measured under isometric conditions using ring arterial segments isolated from spontaneously hypertensive rats, N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated Wistar rats, and untreated Wistar rats serving as normotensive control. We found that thoracic aortas from both types of hypertensive rats had a greater sensitivity but diminished maximal developed tension in response to noradrenaline, when compared with that from normotensive rats. In superior mesenteric arteries, the sensitivity to noradrenaline was similar in all examined rat groups but in L-NAME-treated rats, these arteries exhibited decreased active force when stimulated with high noradrenaline concentrations, or with 100 mM KCl. These results indicate that hypertension leads to specific biomechanical alterations in diverse arterial types which are reflected in different modifications in their contractile properties.

  18. Age-related peculiarities of contractile activity of rat myocardium during blockade of hyperpolarization-activated currents.

    PubMed

    Zefirov, T L; Gibina, A E; Sergejeva, A M; Ziyatdinova, N I; Zefirov, A L

    2007-09-01

    Contractile activity of atrial and ventricular myocardial strips isolated from rats of various age was examined under conditions of blockade of non-selective hyperpolarization-activated cation currents. Addition of ZD7288, a blocker of non-selective hyperpolarization-activated cation currents, to the perfusion solution increased the contraction force of atrial and ventricular strips in 1-, 8-, and 20-week rats, but produced an opposite effect on contractile activity of atrial and ventricular strips in 3-week rats.

  19. Phosphoinositide 3-Kinase p110β Regulates Integrin αIIbβ3 Avidity and the Cellular Transmission of Contractile Forces*

    PubMed Central

    Schoenwaelder, Simone M.; Ono, Akiko; Nesbitt, Warwick S.; Lim, Joanna; Jarman, Kate; Jackson, Shaun P.

    2010-01-01

    Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors. PMID:19940148

  20. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  1. Multiparity modifies contractile properties of pelvic muscles affecting the genesis of vaginal pressure in rabbits.

    PubMed

    López-Juárez, Rhode; Zempoalteca, René; Corona-Quintanilla, Dora Luz; Jiménez-Estrada, Ismael; Castelán, Francisco; Martínez-Gómez, Margarita

    2018-01-01

    To characterize the contractile properties of the bulbospongiosus (Bsm), isquiocavernosus (Ism), and pubococcygeus muscles (Pcm), and their involvement in the genesis of vaginal pressure in nulliparous and multiparous rabbits. Age-matched nulliparous and multiparous rabbits were used to record the isometric contractile responses of each muscle as well as the intravaginal pressure evoked by single square electrical pulses and stimulation trains of ascending frequency. To establish significant differences between groups, two-tail unpaired Student t tests were carried out. The linear correlation between intravaginal pressure and muscle contractile force was analyzed with Pearson correlation tests. For all cases, a P ≤ 0.05 was set as statistically significant. Multiparity decreased the contractile force of Bsm and Ism generated by high-frequency stimulation trains. The normalized force of the Pcm increased when evoked at 1, 4, and 10 Hz while this decreased at higher frequencies (20, 50, and 100 Hz). The contraction of both Bsm and Ism raised particularly the pressure on the perineal vagina while that of the Pcm increased the pressure in the pelvic vagina. Such a functional segregation is still present in multiparous rabbits albeit it was modified. Multiparity induces changes in the contractile responses of Bsm, Ism, and Pcm, which alterates the vaginal pressure. © 2017 Wiley Periodicals, Inc.

  2. Effect of a Periodized Power Training Program on the Functional Performances and Contractile Properties of the Quadriceps in Sprinters

    ERIC Educational Resources Information Center

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Stanislovaitis, Aleksas; Duchateau, Jacques; Stanislovaitiene, Jurate

    2012-01-01

    Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an…

  3. Contractile properties of the pig bladder mucosa in response to neurokinin A: a role for myofibroblasts?

    PubMed Central

    Sadananda, P; Chess-Williams, R; Burcher, E

    2008-01-01

    Background and purpose: The bladder urothelium is now known to have active properties. Our aim was to investigate the contractile properties of the urinary mucosa in response to the tachykinin neurokinin A (NKA) and carbachol. Experimental approach: Discrete concentration–response curves for carbachol and NKA were obtained in matched strips of porcine detrusor, mucosa and intact bladder, suspended in organ baths. The effects of inhibitors and tachykinin receptor antagonists were studied on NKA-mediated contractions in mucosal strips. Intact sections of bladder and experimental strips were processed for histology and immunohistochemistry. Key results: All types of strips contracted to both carbachol and NKA. Mucosal responses to NKA (pD2 7.2) were higher than those in intact strips and were inhibited by the NK2 receptor antagonist SR48968 (pKB 9.85) but not the NK1 receptor antagonist SR140333, tetrodotoxin or indomethacin. Immunostaining for smooth muscle actin and vimentin occurred under the urothelium and on blood vessels. Desmin immunostaining and histological studies showed only sparse smooth muscle to be present in the mucosal strips. Removal of smooth muscle remnants from mucosal strips did not alter the responses to NKA. Conclusions and implications: This study has shown both functional and histological evidence for contractile properties of the mucosa, distinct from the detrusor. Mucosal contractions to NKA appear to be directly mediated via NK2 receptors. The main cell type mediating mucosal contractions is suggested to be suburothelial myofibroblasts. Mucosal contractions may be important in vivo for matching the luminal surface area to bladder volume. PMID:18264120

  4. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    PubMed

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously undiscovered changes in myofibrillar power output were found and were associated with alterations in myofilament proteins, providing potential new targets to exploit for improved ventricular pump function in heart failure. Copyright © 2017 the American Physiological Society.

  5. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    PubMed

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  6. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    PubMed Central

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  7. Cell stiffness, contractile stress and the role of extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Steven S., E-mail: san@jhsph.edu; Kim, Jina; Ahn, Kwangmi

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genesmore » in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.« less

  8. The actions of isoprenaline and mirabegron in the isolated whole rat and guinea pig bladder.

    PubMed

    Persyn, Sara; De Wachter, Stefan; Wyndaele, Jean-Jacques; Eastham, Jane; Gillespie, James

    2016-07-01

    β3-adrenoceptor agonists influence overactive bladder in humans and animal models. However, data is emerging that the mode of action of these drugs is complex. The present study explored the actions of the β3-adrenergic agonist mirabegron and the non-selective agonist isoprenaline on the contractile systems in the rat and guinea pig bladder. Intravesical pressure was measured in isolated whole bladders from female adult animals. In both species spontaneous contractile activity was observed. The muscarinic agonist arecaidine produced complex responses consisting of an initial transient pressure rise followed by complex phasic activity. Three contractile elements were identified: intrinsic micro-contractile activity, initial transient response and steady state phasic activity. The intrinsic and steady state activity could be further divided into a baseline pressure with superimposed phasic activity. The effects of isoprenaline and mirabegron were investigated on these elements. In the rat, the micro-contractile activity could be completely inhibited by isoprenaline (full agonist). The arecaidine-induced initial and steady state baseline pressures were partially reduced, while the phasic activity was little affected. In the guinea pig, both the arecaidine-induced baseline pressure and the phasic activity were affected by isoprenaline. Mirabegron didn't produce significant inhibitory effects in any of the contractile elements in either species. These results show that complex contractile systems operate in the rat and guinea pig bladder that can be modulated by β1/β2-adrenoceptor mechanisms. No evidence was obtained for any β3-dependent regulation of contraction. These data support similar data in humans. Therefore the primary site of therapeutic action of β3-adrenergic agonists remains unknown. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles

    PubMed Central

    Park, Ki Ho; Brotto, Leticia; Lehoang, Oanh; Brotto, Marco; Ma, Jianjie; Zhao, Xiaoli

    2012-01-01

    Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle. PMID:23149471

  10. Fropofol decreases force development in cardiac muscle.

    PubMed

    Ren, Xianfeng; Schmidt, William; Huang, Yiyuan; Lu, Haisong; Liu, Wenjie; Bu, Weiming; Eckenhoff, Roderic; Cammarato, Anthony; Gao, Wei Dong

    2018-03-09

    Supranormal contractile properties are frequently associated with cardiac diseases. Anesthetic agents, including propofol, can depress myocardial contraction. We tested the hypothesis that fropofol, a propofol derivative, reduces force development in cardiac muscles via inhibition of cross-bridge cycling and may therefore have therapeutic potential. Force and intracellular Ca 2+ ([Ca 2+ ] i ) transients of rat trabecular muscles were determined. Myofilament ATPase, actin-activated myosin ATPase, and velocity of actin filaments propelled by myosin were also measured. Fropofol dose dependently decreased force without altering [Ca 2+ ] i in normal and pressure-induced hypertrophied-hypercontractile muscles. Similarly, fropofol depressed maximum Ca 2+ -activated force ( F max ) and increased the [Ca 2+ ] i required for 50% activation at steady-state (Ca 50 ) without affecting the Hill coefficient in both intact and skinned cardiac fibers. The drug also depressed cardiac myofibrillar and actin-activated myosin ATPase activity. In vitro actin sliding velocity was significantly reduced when fropofol was introduced during rigor binding of cross-bridges. The data suggest that the depressing effects of fropofol on cardiac contractility are likely to be related to direct targeting of actomyosin interactions. From a clinical standpoint, these findings are particularly significant, given that fropofol is a nonanesthetic small molecule that decreases myocardial contractility specifically and thus may be useful in the treatment of hypercontractile cardiac disorders.-Ren, X., Schmidt, W., Huang, Y., Lu, H., Liu, W., Bu, W., Eckenhoff, R., Cammarato, A., Gao, W. D. Fropofol decreases force development in cardiac muscle.

  11. Increased O-GlcNAcylation of Endothelial Nitric Oxide Synthase Compromises the Anti-contractile Properties of Perivascular Adipose Tissue in Metabolic Syndrome.

    PubMed

    da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C

    2018-01-01

    Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS generation and decreased OGA activity. These data indicate that O -GlcNAcylation contributes to metabolic syndrome-induced PVAT dysfunction and that O -GlcNAcylation of eNOS may be targeted in the development of novel therapies for vascular dysfunction in conditions associated with hyperglycemia.

  12. Macrophage migration inhibitory factor plays a permissive role in the maintenance of cardiac contractile function under starvation through regulation of autophagy.

    PubMed

    Xu, Xihui; Pacheco, Benjamin D; Leng, Lin; Bucala, Richard; Ren, Jun

    2013-08-01

    The cytokine macrophage migration inhibitory factor (MIF) protects the heart through AMPK activation. Autophagy, a conserved pathway for bulk degradation of intracellular proteins and organelles, helps preserve and recycle energy and nutrients for cells to survive under starvation. This study was designed to examine the role of MIF in cardiac homeostasis and autophagy regulation following an acute starvation challenge. Wild-type (WT) and MIF knockout mice were starved for 48 h. Echocardiographic data revealed little effect of starvation on cardiac geometry, contractile and intracellular Ca²⁺ properties. MIF deficiency unmasked an increase in left ventricular end-systolic diameter, a drop in fractional shortening associated with cardiomyocyte contractile and intracellular Ca²⁺ anomalies following starvation. Interestingly, the unfavourable effect of MIF deficiency was associated with interruption of starvation-induced autophagy. Furthermore, restoration of autophagy using rapamycin partially protected against starvation-induced cardiomyocyte contractile defects. In our in vitro model of starvation, neonatal mouse cardiomyocytes from WT and MIF-/- mice and H9C2 cells were treated with serum free-glucose free DMEM for 2 h. MIF depletion dramatically attenuated starvation-induced autophagic vacuole formation in neonatal mouse cardiomyocytes and exacerbated starvation-induced cell death in H9C2 cells. In summary, these results indicate that MIF plays a permissive role in the maintenance of cardiac contractile function under starvation by regulation of autophagy.

  13. Passive and active ventricular elastances of the left ventricle

    PubMed Central

    Zhong, Liang; Ghista, Dhanjoo N; Ng, Eddie YK; Lim, Soo T

    2005-01-01

    Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep) and active (Ea) elastance. By incorporating this concept in left ventricular (LV) models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF) are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max) is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea) can be used to characterize the ventricle's contractile state, while passive elastance (Ep) can represent a measure of resistance-to-filling. PMID:15707494

  14. Effect of acute gastric dilatation on gastric myoelectic and motor activity in dogs.

    PubMed

    Hall, J A; Solie, T N; Seim, H B; Twedt, D C

    1999-05-01

    To investigate the effects of experimentally induced acute gastric dilatation on electrical and mechanical activities of the stomach in dogs. 7 healthy dogs. Electrodes and strain-gauge force transducers were implanted on the serosal surface of the antrum and pylorus. Eight days later, baseline gastric electrical and contractile activities were recorded. The dogs were anesthetized and mechanically ventilated to maintain normocapnia while the stomach was distended (intragastric pressure, 30 mm Hg) for 180 minutes, using a thin compliant bag. Gastric electrical and contractile activities were recorded again on days 1 and 10 after dilatation. Recordings were analyzed to determine gastric slow-wave frequency, slow-wave dysrhythmia, propagation velocity of slow-waves, coupling of contractions to slow waves, motility index on the basis of relative contractile amplitudes, and onset of contractions after a standardized meal. Electrical or contractile activities were not significantly different 18 hours after acute gastric dilatation (day 1). Arrhythmias were evident before and after gastric dilatation in dogs from which food was withheld and in dogs after consumption of a meal. Variables for assessing gastric electrical and contractile activities were unaffected 18 hours after acute gastric dilatation. Analysis of results of this study indicated that altered electrical and contractile activities in dogs with short-term gastric dilatation are not likely to be secondary to the process of acute gastric dilatation.

  15. Continuum mechanical model for cross-linked actin networks with contractile bundles

    NASA Astrophysics Data System (ADS)

    Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.

    2018-01-01

    In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.

  16. Changes in force and calcium sensitivity in the developing avian heart.

    PubMed

    Godt, R E; Fogaça, R T; Nosek, T M

    1991-11-01

    The aim of this study was to characterize the development of the contractile properties of intact and chemically skinned muscle from chicken heart and to compare these characteristics with those of developing mammalian heart reported by others. Small trabeculae were dissected from left ventricles of Arbor Acre chickens between embryonic day 7 and young adulthood (7 weeks post-hatching). At all ages, increasing extracellular calcium (0.45-3.6 mM) progressively increased twitch force of electrically stimulated trabeculae. Twitch force at 1.8 mM extracellular calcium, normalized to cross-sectional area, increased to a maximum at 1 day post-hatching, remained constant through 3 weeks post-hatching, but then decreased at 7 weeks post-hatching. The maximal calcium-activated force of trabeculae chemically skinned with Triton X-100 detergent increased to a maximum 2 days before the time of hatching and was not significantly changed up to 7 weeks post-hatching. Over the ages studied, average twitch force in 1.8 mM calcium was between 26 and 66% of maximal calcium-activated force after skinning, suggesting that the contractile apparatus is not fully activated during the twitch in normal Ringer. In skinned trabeculae, the calcium sensitivity of the contractile apparatus was higher in the embryo than in the young adult. These age-dependent changes in calcium sensitivity are correlated with isoform switching in troponin T. A decrease in pH from 7.0 to 6.5 decreased the calcium sensitivity of the contractile apparatus to a greater degree in skinned trabeculae from young adult hearts than in those from embryonic hearts. This change in susceptibility to acidosis is temporally associated with isoform switching in troponin I.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Synthesis and contractile activity of the C-terminal heptapeptide of substance P with N5-dimethyl glutamine in the 6-position. Active site studies.

    PubMed

    Poulos, C P; Pinas, N; Theodoropoulos, D

    1980-09-15

    The synthesis and testing of [N5-dimethyl-Gln6]-SP5-11 showed 37 +/- 12% contractile activity relative to SP, and intrinsic efficacy 98 +/- 4%. This finding indicates that the carboxamide groups of the dual Gln5-Cln6 moiety are not equally related with the contractile response of the C-terminal heptapeptide of SP.

  18. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity.

    PubMed

    Joseph, Anna-Maria; Hood, David A

    2012-03-01

    We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  19. Differential Activity-Driven Instabilities in Biphasic Active Matter

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.

    2018-06-01

    Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.

  20. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Brimmer, C. J.

    1985-01-01

    The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.

  1. High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response.

    PubMed

    Ren, Jun; Zhu, Bang-Hao; Relling, David P; Esberg, Lucy B; Ceylan-Isik, Asli F

    2008-11-01

    Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling.

  2. Contractility and supersensitivity to adrenaline in dystrophic muscle.

    PubMed Central

    Takamori, M

    1975-01-01

    In the adductor pollicis muscle of patients with limb-girdle and facioscapulohumeral muscular dystrophies and possible carriers of Duchenne type muscular dystrophy, abnormal active state properties were found at the time when there was no alteration of needle electromyography and evoked muscle action potentials. Adrenaline induced a marked reduction of incomplete tetanus via beta receptors without change in neuromuscular transmission. PMID:1151415

  3. Contractile-Ring Assembly in Fission Yeast Cytokinesis: Recent Advances and New Perspectives

    PubMed Central

    Lee, I-Ju; Coffman, Valerie C.; Wu, Jian-Qiu

    2017-01-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. PMID:22887981

  4. Contractile-ring assembly in fission yeast cytokinesis: Recent advances and new perspectives.

    PubMed

    Lee, I-Ju; Coffman, Valerie C; Wu, Jian-Qiu

    2012-10-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. Copyright © 2012 Wiley Periodicals, Inc.

  5. Activity-induced regulation of myosin isoform distribution - Comparison of two contractile activity programs

    NASA Technical Reports Server (NTRS)

    Diffee, Gary M.; Caiozzo, Vince J.; Mccue, Samuel A.; Herrick, Robert E.; Baldwin, Kenneth M.

    1993-01-01

    This study examined the role of specific types of contractile activity in regulating myosin heavy chain (MHC) isoform expression in rodent soleus. A combination of hindlimb suspension (SN) and two programmed contractile training activity paradigms, either isometric contractile activity (ST-IM) or high-load slowly shortening isovelocity activity, were utilized. Both training paradigms increased muscle mass compared with SN alone. However, only ST-IM resulted in a partial prevention of the suspension-induced decrease in type I MHC. With the use of a fluorescently labeled antibody to type IIa MHC, the distribution of MHCs among fibers was examined immunohistochemically. In SN, the percentage of cells staining positive for type IIa MHC was increased but the staining intensity of the positively staining cells was unchanged compared with control cells. In the ST-IM soleus, the percentage of positively staining fibers was unchanged but the intensity of the positively staining cells was decreased compared with SN values. These results suggest that 1) isometric contractile activity is more effective than isovelocity activity in preventing suspension-induced shifts in soleus MHC distribution and 2) changes associated with both suspension and training occur in only a small number of fibers, with the majority of fibers apparently unresponsive to these interventions.

  6. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties.

    PubMed

    Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P

    2013-02-15

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.

  7. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Leverson, Glen E.

    2013-01-01

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540

  8. Roles of Formin Nodes and Myosin Motor Activity in Mid1p-dependent Contractile-Ring Assembly during Fission Yeast Cytokinesis

    PubMed Central

    Coffman, Valerie C.; Nile, Aaron H.; Lee, I-Ju; Liu, Huayang

    2009-01-01

    Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30–50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. α-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis. PMID:19864459

  9. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats

    PubMed Central

    Philyppov, Igor B.; Paduraru, Oksana N.; Gulak, Kseniya L.; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M.

    2016-01-01

    TRPA1 is a Ca2+-permeable cation channel that is activated by painful low temperatures (˂17 °C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation. PMID:26935999

  10. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats.

    PubMed

    Philyppov, Igor B; Paduraru, Oksana N; Gulak, Kseniya L; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M

    2016-01-01

    TRPA1 is a Ca(2+)-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors - tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.

  11. Noncontact minimally invasive technique for the assessment of mechanical properties of single cardiac myocyte via magnetic field loading

    NASA Astrophysics Data System (ADS)

    Yin, Shizhuo; Zhang, Xueqian; Cheung, Joseph; Wu, Juntao; Zhan, Chun; Xue, Jinchao

    2004-07-01

    In this paper, a unique non-contact, minimum invasive technique for the assessment of mechanical properties of single cardiac myocyte is presented. The assessment process includes following major steps: (1) attach a micro magnetic bead to the cell to be measured, (2) measure the contractile performance of the cell under the different magnetic field loading, (3) calculate mechanical loading force, and (4) derive the contractile force from the measured contraction data under different magnetic field loading.

  12. Effects of altered loading states on muscle plasticity: what have we learned from rodents?

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.

    1996-01-01

    This paper summarizes the key findings concerning the adaptive properties of rodent muscle in response to altered loading states. When the mechanical stress on the muscle is chronically increased, the muscle adapts by hypertrophying its fibers. This response is regulated by processes resulting in contractile protein expression reflecting slower phenotypes, thereby enabling the muscle to better support load-hearing activity. In contrast, reducing the load-bearing activity induces an opposite response whereby muscles used for both antigravity function and locomotion atrophy while transforming some of the slow fibers into faster contractile phenotypes. Accompanying the atrophy is both a reduced power generating and activity sustaining capability. These adaptive processes are regulated by both transcriptional and translational processes. Available evidence further suggests that the interaction of heavy resistance activity and hormonal/growth factors (insulin-like growth factor, growth hormone, glucocorticoids, etc.) are critical in the maintenance of muscle mass and function. Also resistance training, in contrast to other activities such as endurance running, provides a more economical form of stress because less mechanical activity is required to maintain muscle homeostasis in the context of chronic states of weightlessness.

  13. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium

    PubMed Central

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS—but not metomidate—impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only—providing that the agent is washed out prior to tissue experimentation—does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues. PMID:27657711

  14. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium.

    PubMed

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS-but not metomidate-impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only-providing that the agent is washed out prior to tissue experimentation-does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues.

  15. Activation of Toll-like receptor 3 increases mouse aortic vascular smooth muscle cell contractility through ERK1/2 pathway.

    PubMed

    Hardigan, Trevor; Spitler, Kathryn; Matsumoto, Takayuki; Carrillo-Sepulveda, Maria Alicia

    2015-11-01

    Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure.

  16. Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats.

    PubMed

    Bruells, Christian S; Smuder, Ashley J; Reiss, Lucy K; Hudson, Matthew B; Nelson, William Bradley; Wiggs, Michael P; Sollanek, Kurt J; Rossaint, Rolf; Uhlig, Stefan; Powers, Scott K

    2013-09-01

    Mechanical ventilation is a life-saving intervention for patients with respiratory failure. Unfortunately, a major complication associated with prolonged mechanical ventilation is ventilator-induced diaphragmatic atrophy and contractile dysfunction, termed ventilator-induced diaphragmatic dysfunction (VIDD). Emerging evidence suggests that positive pressure ventilation (PPV) promotes lung damage (ventilator-induced lung injury [VILI]), resulting in the release of signaling molecules that foster atrophic signaling in the diaphragm and the resultant VIDD. Although a recent report suggests that negative pressure ventilation (NPV) results in less VILI than PPV, it is unknown whether NPV can protect against VIDD. Therefore, the authors tested the hypothesis that compared with PPV, NPV will result in a lower level of VIDD. Adult rats were randomly assigned to one of three experimental groups (n = 8 each): (1) acutely anesthetized control (CON), (2) 12 h of PPV, and (3) 12 h of NPV. Dependent measures included indices of VILI, diaphragmatic muscle fiber cross-sectional area, diaphragm contractile properties, and the activity of key proteases in the diaphragm. Our results reveal that no differences existed in the degree of VILI between PPV and NPV animals as evidenced by VILI histological scores (CON = 0.082 ± 0.001; PPV = 0.22 ± 0.04; NPV = 0.25 ± 0.02; mean ± SEM). Both PPV and NPV resulted in VIDD. Importantly, no differences existed between PPV and NPV animals in diaphragmatic fiber cross-sectional area, contractile properties, and the activation of proteases. These results demonstrate that NPV and PPV result in similar levels of VILI and that NPV and PPV promote comparable levels of VIDD in rats.

  17. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, M. L.; Janes, D. M.; Barclay, M. M.; Harger, L.; Decker, R. S.

    1997-01-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates cardiocyte growth to a greater extent than passive loading. Furthermore, pharmacological interventions suggest that unique pathways may mediate these cellular events in actively and passively loaded adult cardiocytes.

  18. Regulation of adult cardiocyte growth: effects of active and passive mechanical loading.

    PubMed

    Decker, M L; Janes, D M; Barclay, M M; Harger, L; Decker, R S

    1997-06-01

    Fluctuations in hemodynamic load have been documented to modulate contractile protein turnover and myofibrillar structure in the heart; however, the relative importance of active and passive loading in regulating adult cardiocyte growth remains unresolved. To address this issue at the cellular level, adult feline cardiocytes were cultured either on Silastic membranes or plastic surfaces. Cardiocyte-laden membranes were stretched 10% of their rest length to enhance passive loading, whereas heart cells cultured on plastic or Silastic were field stimulated at 1 Hz to mimic active loading. Turnover of contractile proteins and structural integrity of the contractile-cytoskeletal apparatus were monitored for periods ranging from 4 to 72 h. Active and passive loading elevated contractile protein synthesis nearly equally (approximately 50%) and promoted the attachment of remodeled myofibrils to vinculin-positive focal contacts and/or costameres during the first 24 h of loading. Thereafter, rates of contractile protein synthesis returned to control values in passively stretched heart cells but remained elevated in field-stimulated cultures. The fractional rate of growth was increased significantly (approximately 8%/day) in electrically paced cells, whereas in passively stretched cardiocytes the growth rate rose only modestly (approximately 2%/day). Changes in the rate of myocyte growth appeared more closely correlated with the development of focal contacts and myofibril remodeling than with changes in myofibrillar protein turnover per se. 2,3-Butanedione monoxime, nifedipine, and, to a lesser extent, ryanodine blocked field-stimulated contractile protein synthesis and myofibrillar remodeling but had no impact on protein turnover or myofibril reassembly in passively loaded cardiocytes. The results of these experiments imply that both active and passive loading stimulate contractile protein turnover and myofibril remodeling, but the generation of active tension accelerates cardiocyte growth to a greater extent than passive loading. Furthermore, pharmacological interventions suggest that unique pathways may mediate these cellular events in actively and passively loaded adult cardiocytes.

  19. Contractile and mechanical properties of epithelia with perturbed actomyosin dynamics.

    PubMed

    Fischer, Sabine C; Blanchard, Guy B; Duque, Julia; Adams, Richard J; Arias, Alfonso Martinez; Guest, Simon D; Gorfinkiel, Nicole

    2014-01-01

    Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.

  20. Contractile and Mechanical Properties of Epithelia with Perturbed Actomyosin Dynamics

    PubMed Central

    Fischer, Sabine C.; Blanchard, Guy B.; Duque, Julia; Adams, Richard J.; Arias, Alfonso Martinez; Guest, Simon D.; Gorfinkiel, Nicole

    2014-01-01

    Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue. PMID:24759936

  1. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  2. Temporal Adaptive Changes in Contractility and Fatigability of Diaphragm Muscles from Streptozotocin-Diabetic Rats

    PubMed Central

    Brotto, Marco; Brotto, Leticia; Jin, J.-P.; Nosek, Thomas M.; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type. PMID:20467472

  3. Temporal adaptive changes in contractility and fatigability of diaphragm muscles from streptozotocin-diabetic rats.

    PubMed

    Brotto, Marco; Brotto, Leticia; Jin, J-P; Nosek, Thomas M; Romani, Andrea

    2010-01-01

    Diabetes is characterized by ventilatory depression due to decreased diaphragm (DPH) function. This study investigated the changes in contractile properties of rat DPH muscles over a time interval encompassing from 4 days to 14 weeks after the onset of streptozotocin-induced diabetes, with and without insulin treatment for 2 weeks. Maximum tetanic force in intact DPH muscle strips and recovery from fatiguing stimulation were measured. An early (4-day) depression in contractile function in diabetic DPH was followed by gradual improvement in muscle function and fatigue recovery (8 weeks). DPH contractile function deteriorated again at 14 weeks, a process that was completely reversed by insulin treatment. Maximal contractile force and calcium sensitivity assessed in Triton-skinned DPH fibers showed a similar bimodal pattern and the same beneficial effect of insulin treatment. While an extensive analysis of the isoforms of the contractile and regulatory proteins was not conducted, Western blot analysis of tropomyosin suggests that the changes in diabetic DPH response depended, at least in part, on a switch in fiber type.

  4. Effects of platelet activating factor on contractile force and 45Ca fluxes in guinea-pig isolated atria.

    PubMed Central

    Diez, J.; Delpón, E.; Tamargo, J.

    1990-01-01

    1. The effects of platelet activating factor (PAF) were studied on the electromechanical properties and 45Ca2+ fluxes of guinea-pig isolated atria. 2 Both in spontaneously beating and electrically driven atria, PAF (10(-12)-10(-7) M) increased atrial rate but produced a biphasic effect on contractile force. At low concentrations (up to 10(-10) M) it produced a positive inotropic effect, while at higher concentrations PAF exerted a negative inotropic effect. A similar biphasic effect was observed in the slow contractions elicited by isoprenaline in K(+)-depolarized atrial fibres. 3. The positive inotropic effect of PAF was prevented by verapamil, whereas pretreatment of atria with propranolol, phentolamine, indomethacin or atropine did not modify its positive and negative inotropic actions. BN 52021, a specific PAF antagonist, abolished both the positive and negative inotropic effects. 4. PAF had no effect on the characteristics of the action potentials recorded in either normally polarized or K(+)-depolarized (slow action potential) atrial fibres. 5. At concentrations at which it increased contractile force, PAF potentiated the contractile responses to Ca2+ (0.9-9 mM), whereas at negative inotropic concentrations it inhibited them. The negative inotropic effect of PAF was partially reversed in 70% Na+ medium. 6. At 10(-11) M, PAF increased 45Ca2+ uptake and reduced the rate coefficient (kcm) for the 45Ca2+ efflux. This increase in 45Ca2+ uptake was abolished in atria pretreated with verapamil or BN 52021. However, 10(-7) M PAF modified neither 45Ca2+ uptake nor efflux in atrial muscle.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379035

  5. Synthesis and Chemical and Biological Comparison of Nitroxyl and Nitric Oxide Releasing Diazeniumdiolate-based Aspirin Derivatives

    PubMed Central

    Basudhar, Debashree; Bharadwaj, Gaurav; Cheng, Robert Y.; Jain, Sarthak; Shi, Sa; Heinecke, Julie L.; Holland, Ryan J.; Ridnour, Lisa A.; Caceres, Viviane M.; Spadari-Bratfisch, Regina C.; Paolocci, Nazareno; Velázquez-Martínez, Carlos A.; Wink, David A.; Miranda, Katrina M.

    2013-01-01

    Structural modifications of non-steroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but may increase risk of myocardial infarction with chronic use. That nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction and enhances contractility led us to synthesize a diazeniumdiolate-based HNO releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs also exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward non-small cell lung carcinoma cells (A549) but were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening compared to control on murine ventricular myocytes. Together, these anti-inflammatory, anti-neoplasic and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer or heart failure. PMID:24102516

  6. [Effect of dopamine and its antagonists on contractile activity of the lower esophageal sphincter and the stomach (author's transl)].

    PubMed

    Itoh, Z; Aizawa, I; Nakamura, T

    1980-06-01

    Effect of dopamine and its antagonists, domperidone and metoclopramide (MCP), on contractile activity of the lower esophageal sphincter (LES) and the stomach was studied in 5 healthy conscious dogs. Contractile activity was measured by means of chronically implanted force transducers. Contractile activity of the LES and the stomach was completely inhibited by an intravenous infusion of dopamine (10, 20 and 40 micrograms/kg-min) during the digestive and interdigestive state. Domperidone, when administered alone (0.5, 1.0 and 2.0 mg/kg), had no effect on contractile activity of the LES and the stomach during the both periods. Though deprived of any noticeable effect on the digestive contractions, MCP (0.25, 0.5 and 1.0 mg/kg) abolished the interdigestive contractions and produced characteristic contractions. Domperidone restored postprandial and interdigestive contractions to their initial stage before dopamine administration in a dose-related fashion. Dopamine-induced inhibition was antagonized by MCP during the digestive state, however, MCP had no effect on the interdigestive contractions that had been inhibited by dopamine. Since domperidone has no activity upon normal contractions of the gastrointestinal tract, it may be assumed that if domperidone alone has some influence upon gut motor activity or any improvement in clinical symptoms is seen after domperidone, a disorder of the dopaminergic system could be strongly suggested.

  7. Sex Differences in Neuromuscular Fatigability of the Knee Extensors Post-Stroke

    PubMed Central

    Kirking, Meghan; Berrios Barillas, Reivian; Nelson, Philip Andrew; Hunter, Sandra Kay; Hyngstrom, Allison

    2017-01-01

    Background and Purpose: Despite the implications of optimizing strength training post-stroke, little is known about the differences in fatigability between men and women with chronic stroke. The purpose of this study was to determine the sex differences in knee extensor muscle fatigability and potential mechanisms in individuals with stroke. Methods: Eighteen participants (10 men, eight women) with chronic stroke (≥6 months) and 23 (12 men, 11 women) nonstroke controls participated in the study. Participants performed an intermittent isometric contraction task (6 s contraction, 3 s rest) at 30% of maximal voluntary contraction (MVC) torque until failure to maintain the target torque. Electromyography was used to determine muscle activation and contractile properties were assessed with electrical stimulation of the quadriceps muscles. Results: Individuals with stroke had a briefer task duration (greater fatigability) than nonstroke individuals (24.1 ± 17 min vs. 34.9 ± 16 min). Men were more fatigable than women for both nonstroke controls and individuals with stroke (17.9 ± 9 min vs. 41.6 ± 15 min). Individuals with stroke had less fatigue-related changes in muscle contractile properties and women with stroke differed in their muscle activation strategy during the fatiguing contractions. Conclusions: Men and women fatigue differently post-stroke and this may be due to the way they neurally activate muscle groups. PMID:28085089

  8. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  9. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    PubMed

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  10. Relation of murine thoracic aortic structural and cellular changes with aging to passive and active mechanical properties.

    PubMed

    Wheeler, Jason B; Mukherjee, Rupak; Stroud, Robert E; Jones, Jeffrey A; Ikonomidis, John S

    2015-02-25

    Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age-related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age-related changes in altering aortic mechanical function are not well understood. Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. These results demonstrate that numerous age-related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age-related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    PubMed Central

    Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

  12. Calcium activation of frog slow muscle fibres

    PubMed Central

    Costantin, L. L.; Podolsky, R. J.; Tice, Lois W.

    1967-01-01

    1. Skinned muscle fibres were prepared from the tonus bundle of the frog iliofibularis muscle and the contractile response elicited by applied calcium ions was studied. The fibre type was determined by electron microscopy. 2. Fast fibres shortened many times more rapidly than slow fibres, indicating that the slow contraction of slow fibres is an inherent property of the contractile mechanism. 3. The extent of spread of contraction following local calcium application was much greater in slow than in fast fibres, a difference which is consistent with the relative sparsity of the sarcoplasmic reticulum in slow fibres. 4. The ability of the sarcoplasmic reticulum of slow fibres to accumulate calcium was demonstrated by the in situ immobilization of calcium when oxalate solutions were added to the skinned fibre. ImagesPlate 1Plate 2Plate 3Plate 4Plate 5AB PMID:6030519

  13. Contractile function and motor unit firing rates of the human hamstrings.

    PubMed

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris having reduced neural drive compared with the semimembranosus-semimembranosus. Comparing our results to other lower limb muscles, flexors have inherently higher firing rate compared with extensors. Copyright © 2017 the American Physiological Society.

  14. Contractile function and motor unit firing rates of the human hamstrings

    PubMed Central

    Kirk, Eric A.

    2016-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60–70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16–17 Hz. Mean MUFRs at 25–50% MVC were 9–31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. NEW & NOTEWORTHY We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris having reduced neural drive compared with the semimembranosus-semimembranosus. Comparing our results to other lower limb muscles, flexors have inherently higher firing rate compared with extensors. PMID:27784806

  15. Effects of temperature on power output and contraction kinetics in the locomotor muscle of the regionally endothermic common thresher shark (Alopias vulpinus).

    PubMed

    Donley, Jeanine M; Sepulveda, Chugey A; Aalbers, Scott A; McGillivray, David G; Syme, Douglas A; Bernal, Diego

    2012-10-01

    The common thresher shark (Alopias vulpinus) is a pelagic species with medially positioned red aerobic swimming musculature (RM) and regional RM endothermy. This study tested whether the contractile characteristics of the RM are functionally similar along the length of the body and assessed how the contractile properties of the common thresher shark compare with those of other sharks. Contractile properties of the RM were examined at 8, 16 and 24 °C from anterior and posterior axial positions (0.4 and 0.6 fork length, respectively) using the work loop technique. Experiments were performed to determine whether the contractile properties of the RM are similar along the body of the common thresher shark and to document the effects of temperature on muscle power. Axial differences in contractile properties of RM were found to be small or absent. Isometric twitch kinetics of RM were ~fivefold slower than those of white muscle, with RM twitch durations of about 1 s at 24 °C and exceeding 5 s at 8 °C, a Q(10) of nearly 2.5. Power increased approximately tenfold with the 16 °C increase in temperature, while the cycle frequency for maximal power only increased from about 0.5-1.0 Hz over this temperature range. These data support the hypothesis that the RM is functionally similar along the body of the common thresher shark and corroborate previous findings from shark species both with and without medial RM. While twitch kinetics suggest the endothermic RM is not unusually temperature sensitive, measures of power suggest that the RM is not well suited to function at cool temperatures. The cycle frequency at which power is maximized appeared relatively insensitive to temperature in RM, which may reflect the relatively cooler temperature of the thresher RM compared to that observed in lamnid sharks as well as the relatively slow RM phenotype in these large fish.

  16. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    USDA-ARS?s Scientific Manuscript database

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  17. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  18. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    PubMed

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  19. Mechanics and contraction dynamics of single platelets and implications for clot stiffening

    NASA Astrophysics Data System (ADS)

    Lam, Wilbur A.; Chaudhuri, Ovijit; Crow, Ailey; Webster, Kevin D.; Li, Tai-De; Kita, Ashley; Huang, James; Fletcher, Daniel A.

    2011-01-01

    Platelets interact with fibrin polymers to form blood clots at sites of vascular injury. Bulk studies have shown clots to be active materials, with platelet contraction driving the retraction and stiffening of clots. However, neither the dynamics of single-platelet contraction nor the strength and elasticity of individual platelets, both of which are important for understanding clot material properties, have been directly measured. Here we use atomic force microscopy to measure the mechanics and dynamics of single platelets. We find that platelets contract nearly instantaneously when activated by contact with fibrinogen and complete contraction within 15 min. Individual platelets can generate an average maximum contractile force of 29 nN and form adhesions stronger than 70 nN. Our measurements show that when exposed to stiffer microenvironments, platelets generated higher stall forces, which indicates that platelets may be able to contract heterogeneous clots more uniformly. The high elasticity of individual platelets, measured to be 10 kPa after contraction, combined with their high contractile forces, indicates that clots may be stiffened through direct reinforcement by platelets as well as by strain stiffening of fibrin under tension due to platelet contraction. These results show how the mechanosensitivity and mechanics of single cells can be used to dynamically alter the material properties of physiologic systems.

  20. Apelin Increases Cardiac Contractility via Protein Kinase Cε- and Extracellular Signal-Regulated Kinase-Dependent Mechanisms

    PubMed Central

    Perjés, Ábel; Skoumal, Réka; Tenhunen, Olli; Kónyi, Attila; Simon, Mihály; Horváth, Iván G.; Kerkelä, Risto; Ruskoaho, Heikki; Szokodi, István

    2014-01-01

    Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure. PMID:24695532

  1. First delivery and ovariectomy affect biomechanical and structural properties of the vagina in the ovine model.

    PubMed

    Urbankova, Iva; Callewaert, Geertje; Blacher, Silvia; Deprest, Dries; Hympanova, Lucie; Feola, Andrew; De Landsheere, Laurent; Deprest, Jan

    2018-01-08

    Animal models are useful for investigating the genesis of pelvic floor dysfunction and for developing novel therapies for its treatment. There is a need for an alternative large-animal model to the nonhuman primate. Therefore we studied the effects of the first vaginal delivery, ovariectomy and systemic hormonal replacement therapy (HRT) on the biomechanical and structural properties of the ovine vagina. We examined the gross anatomical properties of nulliparous, primiparous, ovariectomized multiparous, and ovariectomized hormone-replaced multiparous sheep (six animals per group). We also harvested mid-vaginal and distal vaginal tissue to determine smooth muscle contractility and passive biomechanical properties, for morphometric assessment of the vaginal wall layers, to determine collagen and elastin content, and for immunostaining for α-smooth muscle actin and estrogen receptor-α. There were no regional differences in the nulliparous vagina. One year after the first vaginal delivery, stiffness and contractility of the distal vagina were decreased, whereas the elastin content increased. The mid-vagina of ovariectomized sheep was stiff, and its epithelium was thin and lacked glycogen. HRT decreased the stiffness of the mid-vagina by 45% but had no measurable effect on contractility or elastin content, and increased epithelial thickness and glycogen content. HRT also increased the epithelial thickness and glycogen content of the distal vagina. At this location, there were no changes in morphology or stiffness. In sheep, life events including delivery and ovariectomy affect the biomechanical properties of the vagina in a region-specific way. Vaginal delivery mainly affects the distal region by decreasing stiffness and contractility. HRT can reverse the increase in stiffness of the mid-vagina observed after surgical induction of menopause. These observations are in line with scanty biomechanical measurements in comparable clinical specimens.

  2. Assembly and positioning of actomyosin rings by contractility and planar cell polarity

    PubMed Central

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861

  3. Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle

    PubMed Central

    2010-01-01

    Background An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers. Results RA muscle had higher mean fibre areas (3350 μm2 vs 2142 to 2639 μm2) than the two other muscles. In RA muscle, the slow-oxidative fibres were the largest (3957 μm2) and the fast-glycolytic the smallest (2868 μm2). The reverse was observed in TB muscle (1725 and 2436 μm2 respectively). In RA muscle, the distinction between fast-oxidative-glycolytic and fast-glycolytic fibres appeared difficult or impossible to establish, unlike in the other muscles. Consequently the classification based on ATPase and SDH activities seemed inappropriate, since the FOG fibres presented rather low SDH activity in this muscle in comparison to the other muscles of the carcass. RA muscle had a higher proportion of I fibres than TB and LT muscles, balanced by a lower proportion either of IIX fibres (in comparison to TB muscle) or of IIA fibres (in comparison to LT muscle). However, both oxidative and glycolytic enzyme activities were lower in RA than in TB muscle, although the LDH/ICDH ratio was higher in RA muscle (522 vs 340). Oxidative enzyme activities were higher in RA than in LT muscle, whereas glycolytic enzyme activity was lower. In RA muscle, contractile and metabolic properties appeared to be less well-correlated than in the two other muscles. Conclusions RA muscle has some particularities in comparison to the LT and TB muscles, especially concerning the unusual large cross-section surface of SO fibres and the very low oxidative activity of intermediate IIA fibres. PMID:20205735

  4. Contractile properties of rat skeletal muscles following storage at 4 degrees C.

    PubMed

    van der Heijden, E P; Kroese, A B; Stremel, R W; Bär, P R; Kon, M; Werker, P M

    1999-07-01

    The purpose of this study was to assess the potential of preservation solutions for protecting skeletal muscle function during storage at 4 degrees C. The soleus and the cutaneus trunci (CT) from the rat were stored for 2, 8 or 16 h at 4 degrees C in University of Wisconsin solution (UW), HTK-Bretschneider solution (HTK) or Krebs-Henseleit solution (KH). After storage, muscles were stimulated electrically to analyse the isometric contractile properties, such as the maximum tetanic tension (P(0)). Histological analysis was also performed. In separate experiments, the effect of the diffusion distance on muscle preservation was studied by bisecting the soleus. After 8 h of storage in UW or HTK, the contractile properties of the CT were similar to those of the control, whereas those of the soleus were reduced (P(0) values of 16% and 69% of control in UW and HTK respectively). At 16 h, the contractile properties of the CT (P(O) 28%) were again better preserved than those of the soleus (P(0) 9%). Muscle function deteriorated most after storage in KH (P(0) at 16 h: soleus, 3%; CT, 17%). The bisected soleus was equally well preserved as the CT (P(O) of bisected soleus at 8 h in UW and HTK: 86%). The functional data corresponded well with the histological data, which showed increasing muscle fibre derangement with increasing storage time. For both muscles and all solutions, the threshold stimulus current increased with increasing storage time (control, 0.1 mA; 16 h, 1.2 mA) and was strongly correlated with the deterioration in contractile properties. It is concluded that, at 4 degrees C, muscle is preserved better in UW and HTK (intracellular-like solutions) than in KH (extracellular-like solution). The soleus and CT were best protected in HTK. The diffusion distance is a critical factor for successful preservation of muscle function at 4 degrees C. The reduced function after 16 h of storage at 4 degrees C was caused by hypercontraction and necrosis of about 25% of the muscle fibres, and by deterioration of the electrical component of excitation-contraction coupling of the remaining fibres.

  5. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis

    PubMed Central

    Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael

    2016-01-01

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  6. Tamsulosin modulates, but does not abolish the spontaneous activity in the guinea pig prostate gland.

    PubMed

    Chakrabarty, Basu; Dey, Anupa; Lam, Michelle; Ventura, Sabatino; Exintaris, Betty

    2015-06-01

    To examine the effects of the α1A -adrenoceptor antagonist, tamsulosin, on spontaneous contractile and electrical activity in the guinea-pig prostate gland. The effects of tamsulosin (0.1 and 0.3 nM) were investigated in adult and ageing male guinea pig prostate glands using conventional tension recording and electrophysiological intracellular microelectrode recording techniques. Tamsulosin reduced spontaneous activity, and had different age-dependent effects on adult and ageing guinea pigs at different concentrations. 0.1 nM tamsulosin caused a significantly greater reduction of spontaneous contractile and electrical activity in ageing guinea pigs in comparison to adult guinea pigs. In contrast, 0.3 nM tamsulosin had a significantly greater reduction of spontaneous contractile and electrical activity in adult guinea pigs in comparison to ageing guinea pigs. This study demonstrates that tamsulosin can modulate spontaneous myogenic stromal contractility and the underlying spontaneous electrical activity; tamsulosin does not block spontaneous activity. This reduction in spontaneous activity suggests that downstream cellular mechanisms underlying smooth muscle tone are being targeted, and these may represent novel therapeutic targets to better treat benign prostatic hyperplasia. © 2014 Wiley Periodicals, Inc.

  7. An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity

    PubMed Central

    Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl

    2017-01-01

    Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699

  8. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  9. Long-term effects of extrinsic denervation on VIP and substance P innervation in circular muscle of rat jejunum.

    PubMed

    Kasparek, Michael S; Fatima, Javairiah; Iqbal, Corey W; Duenes, Judith A; Sarr, Michael G

    2007-10-01

    Intestinal denervation contributes to enteric motor dysfunction after small bowel transplantation (SBT). Our aim was to determine long-term effects of extrinsic denervation on function of nonadrenergic, noncholinergic innervation with substance P and vasoactive intestinal polypeptide (VIP). Contractile activity of jejunal circular muscle strips from six age-matched, naive control rats (NC) and eight rats 1 year after syngeneic SBT was studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently to a comparable degree in both groups. The VIP antagonist ([D-p-Cl-Phe(6),Leu(17)]-VIP) and the nitric oxide synthase inhibitor L-NG-nitro-arginine did not affect VIP-induced inhibition but increased contractile activity during electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than SBT. The substance P antagonist ([D-Pro(2),D-Trp(7,9)]-substance P) inhibited effects of exogenous substance P and decreased the excitatory EFS response. Immunohistofluorescence showed tyrosine hydroxylase staining after SBT indicating sympathetic reinnervation. In jejunal circular muscle after chronic denervation, response to exogenous substance P, but not VIP, is decreased, whereas endogenous release of both neurotransmitters is preserved. Alterations in balance of excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT.

  10. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones.

    PubMed

    Horackova, M; Huang, M H; Armour, J A

    1994-05-01

    To determine the capacity of ATP to modify cardiomyocytes directly or indirectly via peripheral autonomic neurones, the effects of various purinergic agents were studied on long term cultures of adult guinea pig ventricular myocytes and their co-cultures with extracardiac (stellate ganglion) or intrinsic cardiac neurones. Ventricular myocytes and cardiac neurones were enzymatically dissociated and plated together or alone (myocytes only). Myocyte cultures were used for experiments after three to six weeks. The electrical and contractile properties of cultured myocytes and myocyte-neuronal networks were investigated. The spontaneous beating frequency of ventricular myocytes co-cultured with stellate ganglion neurones increased by approximately 140% (p < 0.001) following superfusion with 10(-5) M ATP. This effect was not modified significantly by tetrodotoxin or by beta adrenoceptor blockade (10(-5) M timolol), but was eliminated following application of the P2 antagonist suramin (10(-5) M). Basal spontaneous contractile rate was reduced by approximately 86% (p < 0.001) in the presence of suramin, indicating the existence of tonically active purinergic synaptic mechanisms in stellate ganglion neurone-myocyte cocultures. Suramin did not significantly affect non-innervated myocyte cultures. ATP increased myocyte contractile rate in intrinsic cardiac neurone-myocyte co-cultures by approximately 40% (p < 0.01) under control conditions, but when beta adrenergic receptors of tetrodotoxin sensitive neural responses were blocked, ATP induced greater augmentation (> 100%). In contrast, ATP induced much smaller effects in non-innervated myocyte cultures (approximately 26%, p < 0.01). Analogues of AT) showed the following order of potency: ATP > UTP > MSATP > beta gamma ATP > alpha beta ATP. Adenosine (10(-4) M) attenuated the beating frequency of myocytes in both types of co-culture, while not significantly affecting non-innervated myocyte cultures. The experimental model used in this study showed that extrinsic and intrinsic cardiac neurones which possess P2 receptors can greatly enhance cardiac myocyte contractile rate when activated by ATP. Since adenosine reduced contractile rate in both types of co-cultures while not affecting non-innervated myocytes, it is concluded that some of these neurones possess P1 receptors.

  11. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  12. Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.

    PubMed

    Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R

    2015-06-16

    Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.

  13. Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.

    PubMed

    Prochniewicz, Ewa; Lowe, Dawn A; Spakowicz, Daniel J; Higgins, LeeAnn; O'Conor, Kate; Thompson, LaDora V; Ferrington, Deborah A; Thomas, David D

    2008-02-01

    To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spin-labeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function.

  14. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    PubMed

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  15. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament.

    PubMed

    Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin-Biao; Irving, Malcolm

    2018-01-01

    Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co-operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament

    PubMed Central

    Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin‐Biao

    2017-01-01

    Key points Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle.Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament.Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle.Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase.Thick filament regulation is a promising target for novel therapeutics in heart disease. Abstract Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin‐containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules – omecamtiv mecarbil (OM) and blebbistatin (BS) – that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small‐molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin‐myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin‐myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co‐operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. PMID:29052230

  17. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Hardip, E-mail: sandhu.hardip@gmail.co; Xu, Cang Bao; Edvinsson, Lars

    2010-11-15

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSPmore » with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B} receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke.« less

  18. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue.

    PubMed

    Rebolledo, Alejandro; Rebolledo, Oscar R; Marra, Carlos A; García, María E; Roldán Palomo, Ana R; Rimorini, Laura; Gagliardino, Juan J

    2010-10-21

    To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function.

  20. Internal viscoelastic loading in cat papillary muscle.

    PubMed Central

    Chiu, Y L; Ballou, E W; Ford, L E

    1982-01-01

    The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation. Images FIGURE 7 FIGURE 8 PMID:7171707

  1. Chronic levothyroxine and acute T3 treatments enhance the amplitude and time course of uterine contractions in human.

    PubMed

    Corriveau, Stéphanie; Pasquier, Jean-Charles; Blouin, Simon; Bellabarba, Diego; Rousseau, Éric

    2013-03-01

    This study compares the functional consequences of levothyroxine (T4) treatment during pregnancy as well as the acute affects of triiodothyronine (T3) on spontaneous uterine contractile activities observed in vitro. Uterine biopsies were obtained from consenting women undergoing elective caesarean at term (n = 28). Spontaneous contractile activities from T4-treated pregnant women (n = 8) were compared with control patients (n = 20) by isometric tension measurements. Effects of acute T3 and T4 on control tissues were also monitored. Area under the curve, amplitude, time to peak, duration, and frequency were quantified. In uterine strips from women treated for hypothyroidism, phasic uterine contractions of larger amplitude (+77%) were observed, with a prolonged duration at 90% relaxation (+138%) and reduced frequency (-55%) compared with values of the control group. The addition of exogenous T3 in vitro on control strips induced a significant increase in the duration of the contractions and a significant decrease in frequency (P < 0.05), which partially mimics the results obtained in strips from T4-treated women. Significant modifications of contractile properties were observed in strips from pregnant women treated with levothyroxine, consistent with those observed with the addition of exogenous T3. Clinical practices of modern obstetrics should take into account the effect of thyroid hormones on uterine contractions' time course to ensure a tighter followup at the end of pregnancy to achieve safer delivery.

  2. The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes.

    PubMed

    Oreščanin-Dušić, Zorana; Tatalović, Nikola; Vidonja-Uzelac, Teodora; Nestorov, Jelena; Nikolić-Kokić, Aleksandra; Mijušković, Ana; Spasić, Mihajlo; Paškulin, Roman; Bresjanac, Mara; Blagojević, Duško

    2018-01-01

    Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga . It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H 2 O 2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H 2 O 2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.

  3. The Effects of Ibogaine on Uterine Smooth Muscle Contractions: Relation to the Activity of Antioxidant Enzymes

    PubMed Central

    Paškulin, Roman

    2018-01-01

    Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis. PMID:29599898

  4. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  5. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  6. In situ assessment of shortening and lengthening contractile properties of hind limb ankle flexors in intact mice.

    PubMed

    Gorselink, M; Drost, M R; de Louw, J; Willems, P J; Hesselink, M K; Dekkers, E C; Rosielle, N; van der Vusse, G J

    2001-05-01

    The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.

  7. The effect of exercise hypertrophy and disuse atrophy on muscle contractile properties: a mechanomyographic analysis.

    PubMed

    Than, Christian; Tosovic, Danijel; Seidl, Laura; Mark Brown, J

    2016-12-01

    To determine whether mechanomyographic (MMG) determined contractile properties of the biceps brachii change during exercise-induced hypertrophy and subsequent disuse atrophy. Healthy subjects (mean ± SD, 23.7 ± 2.6 years, BMI 21.8 ± 2.4, n = 19) performed unilateral biceps curls (9 sets × 12 repetitions, 5 sessions per week) for 8 weeks (hypertrophic phase) before ceasing exercise (atrophic phase) for the following 8 weeks (non-dominant limb; treatment, dominant limb; control). MMG measures of muscle contractile properties (contraction time; T c , maximum displacement; D max , contraction velocity; V c ), electromyographic (EMG) measures of muscle fatigue (median power frequency; MPF), strength measures (maximum voluntary contraction; MVC) and measures of muscle thickness (ultrasound) were obtained. Two-way repeated measures ANOVA showed significant differences (P < 0.05) between treatment and control limbs. During the hypertrophic phase treatment MVC initially declined (weeks 1-3), due to fatigue (decline in MPF), followed by improvement against control during weeks 6-8. Between weeks 5 and 8 treatment, muscle thickness was greater than control, reflecting gross hypertrophy. MMG variables Dmax (weeks 2, 7) and Vc (weeks 7, 8) declined. During the atrophic phase, MVC (weeks 9-12) and muscle thickness (weeks 9, 10) initially remained high before declining to control levels, reflecting gross atrophy. MMG variables D max (weeks 9, 14) and V c (weeks 9, 14, 15) also declined during the atrophic phase. No change in T c was found throughout the hypertrophic or atrophic phases. MMG detects changes in contractile properties during stages of exercise-induced hypertrophy and disuse atrophy suggesting its applicability as a clinical tool in musculoskeletal rehabilitation.

  8. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.

    PubMed

    Schroer, Alison K; Shotwell, Matthew S; Sidorov, Veniamin Y; Wikswo, John P; Merryman, W David

    2017-01-15

    This companion study presents the biomechanical analysis of the "I-Wire" platform using a modified Hill model of muscle mechanics that allows for further characterization of construct function and response to perturbation. The I-Wire engineered cardiac tissue construct (ECTC) is a novel experimental platform to investigate cardiac cell mechanics during auxotonic contraction. Whereas passive biomaterials often exhibit nonlinear and dissipative behavior, active tissue equivalents, such as ECTCs, also expend metabolic energy to perform mechanical work that presents additional challenges in quantifying their properties. The I-Wire model uses the passive mechanical response to increasing applied tension to measure the inherent stress and resistance to stretch of the construct before, during, and after treatments. Both blebbistatin and isoproterenol reduced prestress and construct stiffness; however, blebbistatin treatment abolished subsequent force-generating potential while isoproterenol enhanced this property. We demonstrate that the described model can replicate the response of these constructs to intrinsic changes in force-generating potential in response to both increasing frequency of stimulation and decreasing starting length. This analysis provides a useful mathematical model of the I-Wire platform, increases the number of parameters that can be derived from the device, and serves as a demonstration of quantitative characterization of nonlinear, active biomaterials. We anticipate that this quantitative analysis of I-Wire constructs will prove useful for qualifying patient-specific cardiomyocytes and fibroblasts prior to their utilization for cardiac regenerative medicine. Passive biomaterials may have non-linear elasticity and losses, but engineered muscle tissue also exhibits time- and force-dependent contractions. Historically, mathematical muscle models include series-elastic, parallel-elastic, contractile, and viscous elements. While hearts-on-a-chip can demonstrate in vitro the contractile properties of engineered cardiac constructs and their response to drugs, most of these use cellular monolayers that cannot be readily probed with controlled forces. The I-Wire platform described in the preceding paper by Sidorov et al. addresses these limitations with three-dimensional tissue constructs to which controlled forces can be applied. In this companion paper, we show how to characterize I-Wire constructs using a non-linear, active Hill model, which should be useful for qualifying cells prior to their use in cardiac regenerative medicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte.

    PubMed

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-05-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.

  10. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  11. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  13. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity

    PubMed Central

    Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György

    2017-01-01

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338

  14. Low concentrations of niflumic acid enhance basal spontaneous and carbachol-induced contractions of the detrusor.

    PubMed

    Lam, Wai Ping; Tang, Hong Chai; Zhang, Xin; Leung, Ping Chung; Yew, David Tai Wai; Liang, Willmann

    2014-02-01

    The urinary bladder expresses Ca(2+)-activated Cl(-) channels (CACC), but its physiological role in governing contractility remains to be defined. The CACC modulator niflumic acid (NFA) is widely used despite the variable results arisen from different drug concentrations used. This study was designed to examine the effects of NFA at low concentrations on detrusor strip contractility. Rat detrusor strips with mucosa-intact (+MU) and mucosa-denuded (-MU) were prepared in transverse (Tr) and longitudinal (Lg) with respect to the bladder orientation. Isometric force measurements were made at baseline (for spontaneous phasic contractile activity) and during drug stimulation (by carbachol, CCh) with and without NFA. NFA (1 and 10 μmol/L) pretreatment enhanced CCh-induced contractions more in +MU than -MU strips with no selectivity on contractile direction. For spontaneous phasic contractions, NFA-treated strips in the Tr direction showed increased phasic amplitude, while phasic frequency was unchanged. The findings suggest low concentrations of NFA having a potentiating effect on detrusor contractions that was sensitive to the MU and contractile direction.

  15. AMP-Activated Protein Kinase Deficiency Rescues Paraquat-Induced Cardiac Contractile Dysfunction Through an Autophagy-Dependent Mechanism

    PubMed Central

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-01-01

    Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649

  16. The comparative morphology of the muscle tissues and changes in constituents in the pig types.

    PubMed

    Fehér, G; Fazekas, S; Sándor, I; Kollár, N

    1990-09-01

    The authors have revealed the main value characteristics of pork production by testing in five different types of pig the volume of contractile and collagen proteins, that of proteoglycans, the constituents of blood and the enzymes of the blood plasma. The contractile proteins of the muscle tissues basically determine the quality of pork. The same applies to the water retention capacity, colloidal characteristics and glycogen content of meat. The amount of contractile proteins has decreased in the best meat producing types of pig. Parallel with the decrease of white meat, and with the increase in the volume of ham, chop and chuck the contractile protein content of muscles decreased. The scientific fact according to which there is a certain correlation among the changes in the volume of contractile proteins, blood sugar level, blood serum CPK and the intensity of activity of the LDH enzymes promotes the qualifying of live animals and the work of the geneticists aiming at the increasing of the contractile protein content of the muscle tissues of pigs by selection. According to tests carried out by us the primary cause of PSE changes is a decreased volume of contractile proteins. Increased stress sensitivity and all the other factors have but a secondary importance and are all consequential. The decrease in the quantity of contractile proteins or--it is better to put it this way--the lack of the proper amount of such proteins characterizing a fully developed pig's organism is caused by the nowadays usual breeding technologies and can be well explained by those selection activities which aim at a one-sided kind of pork production.

  17. Vasopressin-induced constriction of the isolated rat occipital artery is segment-dependent

    PubMed Central

    Chelko, Stephen P.; Schmiedt, Chad W.; Lewis, Tristan H.; Lewis, Stephen J.; Robertson, Tom P.

    2014-01-01

    Background Circulating factors delivered to the nodose ganglion (NG) by the occipital artery (OA) have shown to affect vagal afferent activity, and thus the contractile state of the OA may influence blood flow to the NG. Methods OA were isolated and bisected into proximal and distal segments, relative to the external carotid artery. Results Bisection, highlighted stark differences between maximal contractile responses and OA sensitivity. Specifically, maximum responses to vasopressin and the V1 receptor agonist, were significantly higher in distal than proximal segments. Distal segments were significantly more sensitive to 5-HT and the 5-HT2 receptor agonist than proximal segments. AT2, V2 and 5-HT1B/1D receptor agonists did not elicit vascular responses. Additionally, AT1 receptor agonists elicited mild, yet not significantly different maximal responses between segments. Conclusion The results of this study are consistent with contractile properties of rat OA being mediated via AT1, V1 and 5-HT2 receptors, and are dependent upon the OA segment. Furthermore, vasopressin-induced constriction of the OA, regardless of a bolus dose or a first and second concentration response curve retained this unique segmental difference and therefore we hypothesize this may be a pathophysiological response in the regulation of blood flow through the OA. PMID:24192548

  18. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  19. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players.

    PubMed

    Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.

  20. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players

    PubMed Central

    Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898

  1. Human thoracic duct in vitro: diameter-tension properties, spontaneous and evoked contractile activity.

    PubMed

    Telinius, Niklas; Drewsen, Nanna; Pilegaard, Hans; Kold-Petersen, Henrik; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2010-09-01

    The current study characterizes the mechanical properties of the human thoracic duct and demonstrates a role for adrenoceptors, thromboxane, and endothelin receptors in human lymph vessel function. With ethical permission and informed consent, portions of the thoracic duct (2-5 cm) were resected and retrieved at T(7)-T(9) during esophageal and cardia cancer surgery. Ring segments (2 mm long) were mounted in a myograph for isometric tension (N/m) measurement. The diameter-tension relationship was established using ducts from 10 individuals. Peak active tension of 6.24 +/- 0.75 N/m was observed with a corresponding passive tension of 3.11 +/- 0.67 N/m and average internal diameter of 2.21 mm. The equivalent active and passive transmural pressures by LaPlace's law were 47.3 +/- 4.7 and 20.6 +/- 3.2 mmHg, respectively. Subsequently, pharmacology was performed on rings from 15 ducts that were normalized by stretching them until an equivalent pressure of 21 mmHg was calculable from the wall tension. At low concentrations, norepinephrine, endothelin-1, and the thromboxane-A(2) analog U-46619 evoked phasic contractions (analogous to lymphatic pumping), whereas at higher contractions they induced tonic activity (maximum tension values of 4.46 +/- 0.63, 5.90 +/- 1.4, and 6.78 +/- 1.4 N/m, respectively). Spontaneous activity was observed in 44% of ducts while 51% of all the segments produced phasic contractions after agonist application. Acetylcholine and bradykinin relaxed norepinephrine preconstrictions by approximately 20% and approximately 40%, respectively. These results demonstrate that the human thoracic duct can develop wall tensions that permit contractility to be maintained across a wide range of transmural pressures and that isolated ducts contract in response to important vasoactive agents.

  2. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway

    PubMed Central

    Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C.; Hill, Warren G.

    2013-01-01

    Bladder dysfunction characterized by abnormal bladder smooth muscle (BSM) contractions is pivotal to the disease process in overactive bladder, urge incontinence, and spinal cord injury. Purinergic signaling comprises one key pathway in modulating BSM contractility, but molecular mechanisms remain unclear. Here we demonstrate, using myography, that activation of P2Y6 by either UDP or a specific agonist (MRS 2693) induced a sustained increase in BSM tone (up to 2 mN) in a concentration-dependent manner. Notably, activation of P2Y6 enhanced ATP-mediated BSM contractile force by up to 45%, indicating synergistic interactions between P2X and P2Y signaling. P2Y6-activated responses were abolished by phospholipase C (PLC) and inositol trisphosphate (IP3) receptor antagonists U73122 and xestospongin C, demonstrating involvement of the PLC/IP3 signal pathway. Mice null for Entpd1, an ectonucleotidase on BSM, demonstrated increased force generation on P2Y6 activation (150%). Thus, in vivo perturbations to purinergic signaling resulted in altered P2Y6 activity and bladder contractility. We conclude that UDP, acting on P2Y6, regulates BSM tone and in doing so selectively maximizes P2X1-mediated contraction forces. This novel neurotransmitter pathway may play an important role in urinary voiding disorders characterized by abnormal bladder motility.—Yu, W., Sun, X., Robson, S. C., Hill, W. G. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway. PMID:23362118

  3. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle

    PubMed Central

    Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.

    2015-01-01

    Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492

  4. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    PubMed Central

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  5. Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    NASA Technical Reports Server (NTRS)

    Pruss, G. M.; Kuznetsov, V. I.; Zhilinskaya, A. A.

    1980-01-01

    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia.

  6. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    PubMed Central

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  7. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring.

    PubMed

    Gregory, Stephen L; Ebrahimi, Saman; Milverton, Joanne; Jones, Whitney M; Bejsovec, Amy; Saint, Robert

    2008-01-08

    The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein complex creates a band of activated RhoA [6], which subsequently recruits contractile-ring components such as actin, myosin, and Anillin [1-3]. Equatorial microtubules are essential for continued constriction, but how they interact with the contractile apparatus is unknown. Here, we report the first direct molecular link between the microtubule spindle and the actomyosin contractile ring. We find that the spindle-associated component, RacGAP50C, which specifies the site of cleavage [1-5], interacts directly with Anillin, an actin and myosin binding protein found in the contractile ring [7-10]. Both proteins depend on this interaction for their localization. In the absence of Anillin, the spindle-associated RacGAP loses its association with the equatorial cortex, and cytokinesis fails. These results account for the long-observed dependence of cytokinesis on the continual presence of microtubules at the cortex.

  8. Variations in carbachol- and ATP-induced contractions of the rat detrusor: effects of gender, mucosa and contractile direction.

    PubMed

    Liang, Willmann; Leung, Ping Chung

    2012-12-01

    Contractile characteristics of the bladder may depend on variables such as gender, mucosa (MU) and direction of the contractions. However, definitive information is not yet available despite earlier studies on the effects of one variable or another. Here, we explored the differences in the rat detrusor attributable to gender, mucosa and contractile direction. K+, carbachol (CCh) and ATP were used as contractile stimuli on rat detrusor strips with and without MU. Contractility was monitored using a myograph system. Both tonic and phasic contractile activities were analyzed. MU-independent contractions induced by CCh were more potent in females, an effect specific to the longitudinal direction only. The maximal CCh response was larger also in females when MU was removed, suggesting a stronger MU-independent component in the contraction. The larger area under curves of the females under ATP stimulation showed dependence on MU and contractile direction as well. ATP-induced contractions in the males were affected more by MU in the transverse direction than in the females. Direction- and MU-dependent variability of ATP responses was also observed in the males but not in females. Findings here added new information to the understanding of bladder contractile physiology, providing insights into the quest for better drugs in managing bladder disorders.

  9. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    NASA Astrophysics Data System (ADS)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  10. Smooth muscle-protein translocation and tissue function.

    PubMed

    Eddinger, Thomas J

    2014-09-01

    Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.

  11. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels.

    PubMed

    Zhang, Xian-Xia; Lu, Li-Min; Wang, Li

    2016-08-05

    Previous studies have demonstrated vitamin K3 had a great relief to smooth muscle spastic disorders, but no researches have yet pinpointed its possible anti-contractile activity in the uterus. Here, we evaluated the effect of vitamin K3 on myometrial contractility and explored the possible mechanisms of vitamin K3 action. Myograph apparatus were used to record the changes in contractility of isolated mouse uterine strips in a tissue bath. Uterine strips were exposed to vitamin K3 or vehicle. Vitamin K3 suppressed spontaneous contractions in a concentration dependent manner. It significantly decreased the contractile frequency induced by PGF2ɑ but not their amplitude (expect 58.0 μM). Prior incubation with vitamin K3 reduced the effectiveness of PGF2ɑ-induced contraction. The antispasmodic effect of vitamin K3 was also sensitive to potassium channel blockers, such as tetraethylammonium, 4-aminopyridine, iberiotoxin) but not to the nitric oxide related pathway blockers. High concentrations (29.0, 58.0 μM) of vitamin K3 weakened the Ca(2+) dose response and inhibited phase 1 contraction (intracellular stored calcium release). These dates suggest that vitamin K3 specifically suppresses myometrial contractility by affecting calcium and potassium channels; thus, this approach has potential therapy for uterine contractile activity related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. An internal regulatory element controls troponin I gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yutzey, K.E.; Kline, R.L.; Konieczmy, S.F.

    1989-04-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein genemore » has not been identified. In contrast to the results of these earlier studies, the authors have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.« less

  13. An internal regulatory element controls troponin I gene expression.

    PubMed Central

    Yutzey, K E; Kline, R L; Konieczny, S F

    1989-01-01

    During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene. Images PMID:2725509

  14. Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart

    PubMed Central

    Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich

    2013-01-01

    Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371

  15. Role of VIP and substance P in NANC innervation in the longitudinal smooth muscle of the rat jejunum - influence of extrinsic denervation.

    PubMed

    Kasparek, Michael S; Fatima, Javairiah; Iqbal, Corey W; Duenes, Judith A; Sarr, Michael G

    2007-07-01

    This study was designed to determine changes in nonadrenergic, noncholinergic (NANC) neurotransmission mediated by Vasoactive Intestinal Polypeptide (VIP) and Substance P after small bowel transplantation (SBT). Six groups of rats (n > or = 6 per group) were studied: naïve controls (NC); 1 wk after anesthesia/sham celiotomy (SC-1); 1 or 8 wk after jejunal and ileal transection/reanastomosis (TA-1, TA-8), or syngeneic, orthotopic SBT (SBT-1, SBT-8). Jejunal longitudinal muscle strips were studied under NANC-conditions for spontaneous contractile activity, response to exogenous VIP and Substance P, and electrical field stimulation (EFS). Spontaneous activity did not differ between the six groups. VIP inhibited contractile activity in all groups 1 wk postoperatively (P < 0.05), which was prevented by the NO synthase inhibitor L-N(G)-nitro arginine (L-NNA). In contrast, VIP had no effect in the other groups. Precontraction with Substance P exposed an inhibitory effect of VIP in all groups (P < 0.05 each). Substance P increased contractile activity in all groups, but to a lesser extent in SBT-8 compared with NC, TA-8, and SBT-1 (P < 0.05). The inhibitory effect of EFS at 6 Hz was prevented by L-NNA in NC and TA-8; addition of the VIP antagonist ([D-p-Cl-Phe(6), Leu(17)]-VIP) increased contractile activity in NC, but not in TA-8 and SBT-8. The Substance P antagonist ([D-Pro(2), D-Trp(7,9)]-Substance P) decreased contractile activity during EFS at 50 Hz in NC and SBT-8. SBT decreased response to exogenous Substance P, although release of endogenous Substance P (EFS) is preserved. Changes in VIP signaling are acute and reversible and not caused by effects of SBT.

  16. Actomyosin-based tissue folding requires a multicellular myosin gradient

    PubMed Central

    Miller, Pearson W.; Chanet, Soline; Stoop, Norbert; Dunkel, Jörn

    2017-01-01

    Tissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the Drosophila ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding. Here, we use quantitative microscopy to measure the pattern of transcription, signaling, myosin activation and cell shape in the Drosophila mesoderm. We found that cells within the ventral domain accumulate different amounts of active apical non-muscle myosin 2 depending on the distance from the ventral midline. This gradient in active myosin depends on a newly quantified gradient in upstream signaling proteins. A 3D continuum model of the embryo with induced contractility demonstrates that contractility gradients, but not contractility per se, promote changes to surface curvature and folding. As predicted by the model, experimental broadening of the myosin domain in vivo disrupts tissue curvature where myosin is uniform. Our data argue that apical contractility gradients are important for tissue folding. PMID:28432215

  17. A comparison of the contractile properties of smooth muscle from pig urethra and internal anal sphincter.

    PubMed

    Ramalingam, Thanesan; Durlu-Kandilci, N Tugba; Brading, Alison F

    2010-09-01

    Smooth muscles from the urethra and internal anal sphincter (IAS) play an essential role in the maintenance of urinary and fecal continence. Any damage in these muscles may cause serious problems. The aim of this study was to directly compare the contractile properties of pig urethra and IAS taken from the same animal. Smooth muscle strips of urethra and IAS dissected from the same pig were transferred to organ baths superfused with Krebs' solution, loaded with 1 g tension and equilibrated for 1 hr. Carbachol and phenylephrine response curves and EFS responses were elicited in the absence and presence of inhibitors. Both tissues developed tone during the 1 hr equilibration period. Carbachol (3 × 10(-6)-10(-3) M) contracted urethra whilst relaxing IAS. Guanethidine (10(-6) M) inhibited the carbachol responses in both tissues. L-NOARG (10(-4) M) decreased carbachol responses in IAS, but not in urethra. Phenylephrine (3 × 10(-6)-10(-2) M) contracted both tissues. EFS (1-40 Hz) induced a contractile response in urethra which was decreased with guanethidine (10(-6) M) and further blocked by atropine (10(-6) M). In the presence of both, a relaxation response was observed that is sensitive to NOS inhibitors especially at low frequencies. EFS induced a relaxation followed by a contraction in IAS strips. This contraction was blocked by guanethidine but not by atropine, and the remaining relaxation at 20 Hz was decreased with L-NOARG and increased with L-arginine. There are differences between urethra and IAS in terms of muscarinic activation and neural innervation, relevant for pharmacotherapy. © 2010 Wiley-Liss, Inc.

  18. Comparison of isometric contractile properties of the tongue muscles in three species of frogs, Litoria caerulea, Dyscophus guinetti, and Bufo marinus.

    PubMed

    Peters, S E; Nishikawa, K C

    1999-11-01

    Previous studies show that anurans feed in at least three different ways. Basal frogs have a broad tongue that shortens during protraction and emerges only a short distance from the mouth. Some frogs have long, narrow tongues that elongate dramatically due primarily to inertia from mouth opening, which is transferred to the tongue. A few species have a hydrostatic mechanism that produces tongue elongation during protraction. This functional diversity occurs among frogs that share the same two pairs of tongue muscles. Our study compares the isometric contractile properties of these tongue muscles among three frog species that represent each feeding mechanism. Nerves to the paired protractors and retractors were stimulated electrically in each species to record the force properties, contraction speeds, and fatigabilites of these muscles. Few differences were found in the isometric contractile properties of tongue muscles, and the greatest differences were found in the retractors, not the protractors. We propose that the unique arrangement of the tongue muscles in frogs results in a retractor that may also be coactivated with the protractor in order to produce normal tongue protraction. Inertial effects from body, head, and jaw movements, along with clear differences that we found in passive resistance of the tongues to elongation, may explain much of the behavioral variation in tongue use among species. Copyright 1999 Wiley-Liss, Inc.

  19. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area.

    PubMed

    Miller, Mark S; Bedrin, Nicholas G; Ades, Philip A; Palmer, Bradley M; Toth, Michael J

    2015-03-15

    Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. Copyright © 2015 the American Physiological Society.

  20. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area

    PubMed Central

    Bedrin, Nicholas G.; Ades, Philip A.; Palmer, Bradley M.; Toth, Michael J.

    2015-01-01

    Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca2+-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca2+-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24–42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7–15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. PMID:25567808

  1. Early alterations in vascular contractility associated to changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue

    PubMed Central

    2010-01-01

    Aim To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Methods Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Results Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. Conclusions FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function. PMID:20964827

  2. Phrenic Motor Unit Recruitment during Ventilatory and Non-Ventilatory Behaviors

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2011-01-01

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. PMID:21763470

  3. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    PubMed

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Robust gap repair in the contractile ring ensures timely completion of cytokinesis

    PubMed Central

    Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization–dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. PMID:27974482

  5. [Subcellular basis of disorders of the contractile capacity of the heart in L-thyroxine-induced thyrotoxicosis].

    PubMed

    Karsanov, N V; Melashvili, N O; Khugashvili, Z G; Mamulashvili, L D; Azrumelashvili, M I; Khaindrava, G K; Kapanadze, R V

    1990-02-01

    In experiments on dogs, the authors examined the functional activity of three cardiomyocyte systems responsible for contraction-relaxation (the systems of contractile proteins, calcium transport and energy supply) in the dynamics of L-thyroxine-induced toxicosis. A fall in the capacity of the contractile protein system to generate energy and to perform was shown to play the leading role in decrease of myocardial reserve forces and reduction in cardiac contractility. There was a drop in the intensity of calcium transport through the membranes of the sarcoplasmic reticulum and mitochondria and a deficiency of the direct energy source for contraction only in the late period of the disease.

  6. Boundaries steer the contraction of active gels

    NASA Astrophysics Data System (ADS)

    Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.

    2016-10-01

    Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.

  7. Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.

    PubMed

    Mayfield, Dean L; Launikonis, Bradley S; Cresswell, Andrew G; Lichtwark, Glen A

    2016-11-15

    There are high mechanical demands placed on skeletal muscles in movements requiring rapid acceleration of the body or its limbs. Tendons are responsible for transmitting muscle forces, but, because of their elasticity, can manipulate the mechanics of the internal contractile apparatus. Shortening of the contractile apparatus against the stretch of tendon affects force generation according to known mechanical properties; however, the extent to which differences in tendon compliance alter force development in response to a burst of electrical impulses is unclear. To establish the influence of series compliance on force summation, we studied electrically evoked doublet contractions in the cane toad peroneus muscle in the presence and absence of a compliant artificial tendon. Additional series compliance reduced tetanic force by two-thirds, a finding predicted based on the force-length property of skeletal muscle. Doublet force and force-time integral expressed relative to the twitch were also reduced by additional series compliance. Active shortening over a larger range of the ascending limb of the force-length curve and at a higher velocity, leading to a progressive reduction in force-generating potential, could be responsible. Muscle-tendon interaction may also explain the accelerated time course of force relaxation in the presence of additional compliance. Our findings suggest that a compliant tendon limits force summation under constant-length conditions. However, high series compliance can be mechanically advantageous when a muscle-tendon unit is actively stretched, permitting muscle fibres to generate force almost isometrically, as shown during stretch-shorten cycles in locomotor activities. Restricting active shortening would likely favour rapid force development. © 2016. Published by The Company of Biologists Ltd.

  8. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy.

    PubMed

    Mutlak, Michael; Schlesinger-Laufer, Michal; Haas, Tali; Shofti, Rona; Ballan, Nimer; Lewis, Yair E; Zuler, Mor; Zohar, Yaniv; Caspi, Lilac H; Kehat, Izhak

    2018-05-24

    Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload. Copyright © 2017. Published by Elsevier B.V.

  9. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less

  10. Changes in rat muscle with compensatory overload occur in a sequential manner.

    PubMed

    Macpherson, P C; Thayer, R E; Rodgers, C; Taylor, A W; Noble, E G

    1999-01-01

    The present study was initiated to determine the time course of changes in the profile of selected skeletal muscle myofibril proteins during compensatory overload. Whole muscle isometric contractile properties were measured to assess the physiological consequences of the overload stimulus. Compensatory overload of plantaris muscle of rats was induced by surgical ablation of the synergistic soleus and gastrocnemius muscles. Myosin light chain (LC) and tropomyosin (TM) compositions of control (CP) and overloaded plantaris (OP) muscles were determined by electrophoresis and myofibrillar ATPase assays were performed to assess changes in contractile protein interactions. Within one week of overload decreases in the alpha:beta TM ratio and myofibrillar ATPase activity were observed. Following 30 days of overload, a transition in type II to type I fibres was associated with an increase in slow myosin LC1. Interestingly, after 77 days of overload, the TM subunit ratio returned to one resembling a fast twitch muscle. It is proposed that the early and transitory changes in the TM subunits of OP, as well as the rapid initial depression in maximum tetanic isometric force and myofibrillar ATPase activity may be explained as a result of muscle fibre degeneration-regeneration. We propose that alterations in protein expression induced by compensatory overload reflect both degenerative-regenerative change and increased neuromuscular activity.

  11. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue.

    PubMed

    Klotz, J L; Brown, K R; Xue, Y; Matthews, J C; Boling, J A; Burris, W R; Bush, L P; Strickland, J R

    2012-02-01

    As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P < 0.05) for steers grazing LE pastures than HE pastures for 5HT (73.3 vs. 48.9 ± 2.1%), ME5HT (52.7 vs. 24.9 ± 1.5%), and ERV (65.7 vs. 49.1 ± 2.6%). Onset of contractile response did not differ for 5HT (P = 0.26) and ERV (P = 0.93), but onset of ME5HT contraction was not initiated (P < 0.05) in HE steers until 10(-4) compared with 10(-5) M in LE-grazing steers. For Exp. 2, maximal contractile intensities achieved with DOI were 35% less (P < 0.05), whereas those achieved with 5CT were 37% greater (P < 0.05), in steers grazing HE pastures. Contractile response to CGS did not differ between pasture groups, and there was an absence of contractile response to BW7 in both groups. There were no differences between endophyte content in contractile responses after animals were finished for >91 d. Experiment 1 demonstrated that grazing of HE pastures for 89 to 105 d induces functional alterations in blood vessels, as evidenced by reduced contractile capacity and altered serotonergic receptor activity. Experiment 2 demonstrated that grazing HE pastures alters vascular responses, which may be mediated through altered serotonin receptor activities, and these alterations may be ameliorated by the removal of ergot alkaloid exposure as demonstrated by the absence of differences in finished steers.

  12. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation.

    PubMed

    Cano-Martínez, Agustina; Vargas-González, Alvaro; Guarner-Lans, Verónica; Prado-Zayago, Esteban; León-Oleda, Martha; Nieto-Lima, Betzabé

    2010-01-01

    "In the present study we evaluated the effect of partial ventricular amputation (PVA) in the heart of the adult urodele amphibian (Ambystoma mexicanum) in vivo on spontaneous heart contractile activity recorded in vitro in association to the structural recovery at one, five, 30 and 90 days after injury. One day after PVA, ventricular-tension (VT) (16 ± 3%), atrium-tension (AT) (46 ± 4%) and heart rate (HR) (58+10%) resulted lower in comparison to control hearts. On days five, 30 and 90 after damage, values achieved a 61 ± 5, 93 ± 3, and 98 ± 5% (VT), 60 ± 4, 96 ± 3 and 99 ± 5% (AT) and 74 ± 5, 84 ± 10 and 95 ± 10% (HR) of the control values, respectively. Associated to contractile activity recovery we corroborated a gradual tissue restoration by cardiomyocyte proliferation. Our results represent the first quantitative evidence about the recovery of heart of A. mexicanum restores its functional capacity concomitantly to the structural recovery of the myocardium by proliferation of cardiomyocytes after PVA. These properties make the heart of A. mexicanum a potential model to study the mechanisms underlying heart regeneration in adult vertebrates in vivo.

  13. Vasopressin-induced constriction of the isolated rat occipital artery is segment dependent.

    PubMed

    Chelko, Stephen P; Schmiedt, Chad W; Lewis, Tristan H; Lewis, Stephen J; Robertson, Tom P

    2013-01-01

    Circulating factors delivered to the nodose ganglion (NG) by the occipital artery (OA) have been shown to affect vagal afferent activity, and thus the contractile state of the OA may influence blood flow to the NG. OA were isolated and bisected into proximal and distal segments relative to the external carotid artery. Bisection highlighted stark differences between maximal contractile responses and OA sensitivity. Specifically, maximum responses to vasopressin and the V1 receptor agonist were significantly higher in distal than proximal segments. Distal segments were significantly more sensitive to 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor agonist than proximal segments. Angiotensin II (AT)2, V2 and 5-HT(1B/1D) receptor agonists did not elicit vascular responses. Additionally, AT1 receptor agonists elicited mild, yet not significantly different maximal responses between segments. The results of this study are consistent with contractile properties of rat OA being mediated via AT1, V1 and 5-HT2 receptors and dependent upon the OA segment. Furthermore, vasopressin-induced constriction of the OA, regardless of a bolus dose or a first and second concentration-response curve, retained this unique segmental difference. We hypothesize that these segmental differences may be important in the regulation of blood flow through the OA in health and disease. © 2013 S. Karger AG, Basel.

  14. Contractile function of the myocardium with prolonged hypokinesia in patients with surgical tuberculosis

    NASA Technical Reports Server (NTRS)

    Zakutayeva, V. P.; Matiks, N. I.

    1978-01-01

    The changes in the myocardial contractile function with hypokinesia in surgical tuberculosis patients are discussed. The phase nature of the changes is noted, specifically the changes in the various systoles, diastole, and other parts of the cardiac cycle. The data compare these changes during confinement in bed with no motor activity to and with a return to motor activity after leaving the in-bed regimen.

  15. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    PubMed

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage.

  16. Low thermal dependence of the contractile properties of a wing muscle in the bat Carollia perspicillata.

    PubMed

    Rummel, Andrea D; Swartz, Sharon M; Marsh, Richard L

    2018-05-29

    Temperature affects contractile rate properties in muscle, which may affect locomotor performance. Endotherms are known to maintain high core body temperatures, but temperatures in the periphery of the body can fluctuate. Such a phenomenon occurs in bats, whose wing musculature is relatively poorly insulated, resulting in substantially depressed temperatures in the distal wing. We examined a wing muscle in the small-bodied tropical bat Carollia perspicillata and a hindlimb muscle in the laboratory mouse at 5°C intervals from 22 to 42°C to determine the thermal dependence of the contractile properties of both muscles. We found that the bat ECRL had low thermal dependence from near body temperature to 10°C lower, with Q 10 values of less than 1.5 for relaxation from contraction and shortening velocities in that interval, and with no significant difference in some rate properties in the interval between 32 and 37°C. In contrast, for all temperature intervals below 37°C, Q 10 values for the mouse EDL were 1.5 or higher, and rate properties differed significantly across successive temperature intervals from 37 to 22°C. An ANCOVA analysis found that the thermal dependencies of all measured isometric and isotonic rate processes were significantly different between the bat and mouse muscles. The relatively low thermal dependence of the bat muscle likely represents a downward shift of its optimal temperature and may be functionally significant in light of the variable operating temperatures of bat wing muscles. © 2018. Published by The Company of Biologists Ltd.

  17. Stimulation of airway sensory nerves by cyclosporin A and FK506 in guinea-pig isolated bronchus.

    PubMed

    Harrison, S; Reddy, S; Page, C P; Spina, D

    1998-12-01

    We have investigated the contractile property of cyclosporin A and FK506 in guinea-pig isolated bronchus. Cyclosporin A (10 microM) failed to significantly attenuate the excitatory non-adrenergic non-cholinergic (eNANC) and cholinergic contractile response (per cent methacholine Emax) induced by electrical field stimulation (EFS). In contrast, eNANC responses were significantly attenuated by both the neurokinin (NK)-1 and (NK)-2 receptor antagonists, N-acetyl-L-tryptophan 3,5-bis (trifluoromethyl)-benzyl and SR48968, respectively. Cyclosporin A and FK506 caused a concentration-dependent contraction in guinea-pig isolated bronchus, which was significantly attenuated by NK-1 and NK-2 receptor antagonists. The capsaicin receptor antagonist, capsazepine (10 microM) significantly reduced the contractile response to cyclosporin A and capsaicin, but not to FK506. The N-type calcium channel blocker, omega-Conotoxin (omegaCTX: 10 nM), significantly reduced the contractile response to FK506 and the eNANC response following EFS. In contrast, omega-CTX failed to significantly reduce the contractile potency to capsaicin or cyclosporin A. In bronchial preparations desensitized by repeated application of capsaicin (1 microM), the contractile responses to both cyclosporin A (100 microM) and FK506 (100 microM), were significantly reduced. In contrast, the contractile responses to substance P and neurokinin A (10 microM) were not altered. Furthermore, repeated application of cyclosporin A (100 microM) significantly inhibited the contractile response to capsaicin (1 microM). The findings from this study would indicate that cyclosporin A and FK506 mediate contraction of guinea-pig isolated bronchus secondary to the release of neuropeptides from airway sensory nerves. However, the release of sensory neuropeptides appears to be mediated via different mechanisms for cyclosporin A and FK506, the former by stimulation of the vanilloid receptor and the latter via opening of N-type calcium channels.

  18. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  19. Contractile forces originating from Cancer Diskiod regulated by geometrical ECM properties

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration in three-dimensional extracellular matrix is a major cause of death for cancer patients. Although extensive studies have enlightened detailed mechanism of single cell 3D invasion and cell-ECM interaction, 3D collective cancer invasion is still poorly understood. To capture collective cancer invasion with more realistic, we developed a novel 3D invasion assay, Diskiod In Geometrically Micropatterned ECM (DIGME). DIGME allows us to independently controlling the shape the shape of tumor organoids, microstructure and spatial heterogeneity of the extracellular matrix all at the same time. Here we study the affect of contractile forces originating from different geometrical cancer diskiods. We show that cancer invasion could be regulated by geometrical ECM properties.

  20. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes.

  1. DETERIORATION IN BIOMECHANICAL PROPERTIES OF THE VAGINA FOLLOWING IMPLANTATION OF A HIGH STIFFNESS PROLAPSE MESH

    PubMed Central

    Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela

    2012-01-01

    Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801

  2. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh.

    PubMed

    Feola, A; Abramowitch, S; Jallah, Z; Stein, S; Barone, W; Palcsey, S; Moalli, P

    2013-01-01

    To define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon) to two new-generation lower stiffness meshes, SmartMesh (Coloplast) and UltraPro (Ethicon). A study employing a nonhuman primate model. University of Pittsburgh, PA, USA. Forty-five parous rhesus macaques. Meshes were implanted via sacrocolpopexy after hysterectomy and compared with sham. Because its stiffness is highly directional, UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the position of the blue orientation lines relative to the longitudinal axis of the vagina. The mesh-vaginal complex (MVC) was excised in toto after 3 months. Active mechanical properties were quantified as the contractile force generated in the presence of 120 mmol/l KCl. Passive mechanical properties (a tissue's ability to resist an applied force) were measured using a multiaxial protocol. Vaginal contractility decreased by 80% following implantation with the Gynemesh PS (P = 0.001), 48% after SmartMesh (P = 0.001), 68% after UltraPro Parallel (P = 0.001) and was highly variable after UltraPro Perpendicular (P = 0.16). The tissue contribution to the passive mechanical behaviour of the MVC was drastically reduced for Gynemesh PS (P = 0.003), but not for SmartMesh (P = 0.9) or UltraPro independent of the direction of implantation (P = 0.68 and P = 0.66, respectively). Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  3. Diabetes attenuates urothelial modulation of detrusor contractility and spontaneous activity.

    PubMed

    Wang, Yi; Tar, Moses T; Fu, Shibo; Melman, Arnold; Davies, Kelvin P

    2014-10-01

    To investigate the effect of diabetes on urothelial modulation of bladder contractility. Bladder strips (urothelium intact or denuded) were prepared from 8-week-old streptozotocin-induced diabetic (n = 19) and non-diabetic control rats (n = 10). The effect of modulators of MaxiK (iberiotoxin and tetraethylammonium) and Kv7 (XE991 and retigabine) potassium channel activity were investigated for their effects on both carbachol-induced force generation and spontaneous contractile activity. In bladder strips from non-diabetic animals, the presence of the urothelium resulted in marked sensitivity to carbachol-induced force generation by modulators of MaxiK and Kv7 channel activity, whereas in the diabetic animal urothelial sensitivity to these agents was significantly diminished. Urothelial-intact bladder strips from non-diabetic animals were more sensitive to modulators of Kv7 activity in reducing the amplitude of spontaneous phasic contractions than urothelial-denuded bladder strips, whereas in diabetic animals the presence or absence of the urothelium did not alter the sensitivity to modulators of Kv7 activity. Spontaneous activity in the presence of tetraethylammonium was not affected by the urothelium in bladder strips from either diabetic or non-diabetic animals. The presence of the urothelium in bladders from non-diabetic animals modulates the activity of potassium blockers to affect bladder contractility, whereas in the diabetic bladder this effect is attenuated. These findings could help to explain the lack of success of pharmaceutical treatments targeting potassium channels to treat bladder pathology in patients with diseases imparing urothelial function. © 2014 The Japanese Urological Association.

  4. Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon.

    PubMed

    Lies, Barbara; Beck, Katharina; Keppler, Jonas; Saur, Dieter; Groneberg, Dieter; Friebe, Andreas

    2015-10-15

    In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol.

    PubMed

    Moro, Christian; Uchiyama, Jumpei; Chess-Williams, Russ

    2011-12-01

    To investigate the effects of tissue stretch and muscarinic receptor stimulation on the spontaneous activity of the urothelium/lamina propria and identify the specific receptor subtype mediating these responses. Isolated strips of porcine urothelium with lamina propria were set up for in vitro recording of contractile activity. Muscarinic receptor subtype-selective antagonists were used to identify the receptors influencing the contractile rate responses to stretch and stimulation with carbachol. Isolated strips of urothelium with lamina propria developed spontaneous contractions (3.7 cycles/min) that were unaffected by tetrodotoxin, Nω-nitro-L-arginine, or indomethacin. Carbachol (1 μM) increased the spontaneous contractile rate of these tissue strips by 122% ± 27% (P < .001). These responses were significantly depressed in the presence of the M3-selective muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (10-30 nM) but were not affected by the M1-selective antagonist pirenzepine (30-100 nM) or the M2-selective antagonist methoctramine (0.1-1 μM). Stretching of the tissue also caused an increase in the spontaneous contractile rate, and these responses were abolished by atropine (1 μM) and low concentrations of 4-diphenylacetoxy-N-methylpiperidine methiodide (10 nM). Darifenacin, oxybutynin, tolterodine, and solifenacin (1 μM) all significantly depressed the frequency responses to carbachol (1 μM). The urothelium with the lamina propria exhibits a spontaneous contractile activity that is increased during stretch. The mechanism appears to involve endogenous acetylcholine release acting on M3 muscarinic receptors. Anticholinergic drugs used clinically depress the responses of these tissues, and this mechanism might represent an additional site of action for these drugs in the treatment of bladder overactivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1

    PubMed Central

    Doleschal, Bernhard; Primessnig, Uwe; Wölkart, Gerald; Wolf, Stefan; Schernthaner, Michaela; Lichtenegger, Michaela; Glasnov, Toma N.; Kappe, C. Oliver; Mayer, Bernd; Antoons, Gudrun; Heinzel, Frank; Poteser, Michael; Groschner, Klaus

    2015-01-01

    Aim TRPC3 is a non-selective cation channel, which forms a Ca2+ entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. Methods and results We used a murine model of cardiac TRPC3 overexpression and a novel TRPC3 agonist, GSK1702934A, to uncover (patho)physiological functions of TRPC3. GSK1702934A induced a transient, non-selective conductance and prolonged action potentials in TRPC3-overexpressing myocytes but lacked significant electrophysiological effects in wild-type myocytes. GSK1702934A transiently enhanced contractility and evoked arrhythmias in isolated Langendorff hearts from TRPC3-overexpressing but not wild-type mice. Interestingly, pro-arrhythmic effects outlasted TRPC3 current activation, were prevented by enhanced intracellular Ca2+ buffering, and suppressed by the NCX inhibitor 3′,4′-dichlorobenzamil hydrochloride. GSK1702934A substantially promoted NCX currents in TRPC3-overexpressing myocytes. The TRPC3-dependent electrophysiologic, pro-arrhythmic, and inotropic actions of GSK1702934A were mimicked by angiotensin II (AngII). Immunocytochemistry demonstrated colocalization of TRPC3 with NCX1 and disruption of local interaction upon channel activation by either GSK1702934A or AngII. Conclusion Cardiac TRPC3 mediates Ca2+ and Na+ entry in proximity of NCX1, thereby elevating cellular Ca2+ levels and contractility. Excessive activation of TRPC3 is associated with transient cellular Ca2+ overload, spatial uncoupling between TRPC3 and NCX1, and arrhythmogenesis. We propose TRPC3-NCX micro/nanodomain communication as determinant of cardiac contractility and susceptibility to arrhythmogenic stimuli. PMID:25631581

  7. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.

    PubMed

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark

    2017-07-24

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.

  8. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability

    PubMed Central

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark

    2017-01-01

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169

  9. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Gunst, Susan J

    2016-09-01

    In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-βPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G‐protein‐coupled receptor kinase‐interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak–GIT1–βPIX–paxillin complex was necessary for cdc42 and neuronal Wiskott–Aldrich syndrome protein (N‐WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N‐WASP activation, actin dynamics and cell contractility. PMID:27038336

  11. Passive heating following the prematch warm-up in soccer: examining the time-course of changes in muscle temperature and contractile function.

    PubMed

    Marshall, Paul W M; Cross, Rebecca; Lovell, Ric

    2015-12-01

    This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P < 0.001). Voluntary and evoked rates of torque development increased after the warm-up between 20% and 30% (P < 0.05), despite declines in both maximal voluntary torque and voluntary activation (P < 0.05). Application of a passive heating garment in the cool-down period after the warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P < 0.001), this value was still higher than pre warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P < 0.05). The soccer specific warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Effects of minoxidil and nitroprusside on reflex increases in myocardial contractility.

    PubMed Central

    Robie, N W

    1978-01-01

    1 The effects of nitroprusside and minoxidil on increases in myocardial contractility resulting from carotid artery occlusion were investigated in anaesthetized dogs. The results were compared with those produced by intravenous influsion of noradrenaline. 2 Nitroprusside and minoxidil attenuated the pressor responses produced by carotid artery occlusion. 3 Nitroprusside, but not minoxidil, attenuated the maximal myocardial contractility resulting from carotid occlusion. 4 The pressor and contractility responses to noradrenaline infusion were unaffected by either agent. 5 Nitroprusside failed to alter the myocardial responses produced by dimethylphenylpiperazinium. 6 These results, in conjunction with those of other investigators who have demonstrated that nitroprusside does not affect the release of noradrenaline from adrenergic neurons, suggest that nitroprusside may inhibit sympathetic nervous system reflex activity via an afferent and/or central component. PMID:620094

  13. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury.

    PubMed

    Sato, M; Maulik, G; Ray, P S; Bagchi, D; Das, D K

    1999-06-01

    There is increasing evidence to indicate cardioprotective effects of red wine consumption. Such cardioprotective properties of wine have been attributed to certain polyphenolic constituents of grapes. The purpose of this investigation was to examine whether proanthocyanidins derived from grape seeds possess cardioprotective properties. Rats were randomly divided into two groups: grape-seed proanthocyanidin was administered orally to one group of rats (100 mg/kg/day) for 3 weeks while the other group served as control. After 3 weeks, rats were killed, hearts excised, mounted on the perfusion apparatus and perfused with Krebs-Henseleit bicarbonate (KHB) buffer. After stabilization hearts were perfused in the working mode for baseline measurements of contractile functions. Hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. Coronary perfusates were collected to monitor malonaldehyde formation, a presumptive marker for oxidative stress development. At the end of each experiment, the heart was processed for infarct size determination. Peroxyl radical scavenging activity of proanthocyanidin was determined by examining its ability to remove peroxyl radical generated by 2,2'-azobis (2-amidinopropane) dihydrochloride while hydroxyl radical scavenging activity was tested with its ability to reduce 7-OH.-coumarin-3-carboxylic acid. The results of our study demonstrated that proanthocyanidin-fed animals were resistant to myocardial ischemia reperfusion injury as evidenced by improved recovery of post-ischemic contractile functions. The proanthocyanidin-fed group revealed reduced extent of myocardial infarction compared to the control group. Fluorimetric study demonstrated the antioxidant property of proanthocyanidin as judged by its ability to directly scavenge peroxyl radicals. Taken together, the results of this study showed that grape seed-proanthocyanidins possess a cardioprotective effect against ischemia reperfusion injury. Such cardioprotective property, at least in part, may be attributed to its ability to directly scavenge peroxyl and hydroxyl radicals and to reduce oxidative stress developed during ischemia and reperfusion. Copyright 1999 Academic Press.

  14. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex.

    PubMed

    Arasada, Rajesh; Pollard, Thomas D

    2014-09-11

    Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Fiber Contractility and Cytoskeleton Losses in Space are Less Pronounced in Mongolian Gerbils

    NASA Astrophysics Data System (ADS)

    Lipets, E. N.; Ponomareva, E. V.; Ogneva, I. V.; Vikhliantsev, I. M.; Karaduleva, E. V.; Kartashkina, N. L.; Kuznetsov, S. L.; Podlubnaia, Z. A.; Shenkman, B. S.

    2008-06-01

    This work was purposed on the comparison of space flight effects on m. soleus and m. tibialis anterior of Mongolian gerbils. The animals have been flown onboard biosatellite Foton-M3 for 12 days. Contractile properties of single skinned muscle fibers were studied. It was revealed that diameter of m. soleus skinned fibers and maximal isometric tension were decreased by 19.7% and 21.8% respectively. The Ca-sensitivity reduction wasn't significant, that was in accordance with absence of changes of titin and nebulin relative content in soleus and minor manifestations in slow-to-fast fiber ratio (9%, p<0.05). There weren't observed significant changes of the same parameters in m. tibialis anterior. Ultimately the fiber contractility and cytoskeleton losses in space are less pronounced in Mongolian gerbils than in rats.

  16. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training.

    PubMed

    Burgos, Juan I; Yeves, Alejandra M; Barrena, Jorge P; Portiansky, Enrique L; Vila-Petroff, Martín G; Ennis, Irene L

    2017-11-01

    Cardiac adaptation to endurance training includes improved contractility by a non-yet clarified mechanism. Since IGF-1 is the main mediator of the physiological response to exercise, we explored its effect on cardiac contractility and the putative involvement of nitric oxide (NO) and CaMKII in control and swim-trained mice. IGF-1 increased cardiomyocyte shortening (128.1±4.6% vs. basal; p˂0.05) and accelerated relaxation (time to 50% relengthening: 49.2±2.0% vs. basal; p˂0.05), effects abrogated by inhibition of: AKT with MK-2206, NO production with the NO synthase (NOS) inhibitor L-NAME and the specific NOS1 inhibitor nitroguanidine (NG), and CaMKII with KN-93. In agreement, an increase in NO in response to IGF-1 (133.8±2.2%) was detected and prevented by both L-NAME and NG but not KN-93, suggesting that CaMKII activation was downstream NO. In addition, we determined CaMKII activity (P-CaMKII) and phosphorylation of its target, Thr17-PLN. IGF-1, by a NO-dependent mechanism, significantly increased both (227.2±29.4% and 145.3±5.4%, respectively) while no changes in the CaMKII phosphorylation site of ryanodine receptor were evident. The improvement in contractility induced by IGF-1 was associated with increased Ca 2+ transient amplitude, rate of decay and SR content. Interestingly, this response was absent in cardiomyocytes from transgenic mice that express a CaMKII inhibitory peptide (AC3-I strain). Moreover, AC3-I mice subjected to swim training did develop physiological cardiac hypertrophy but not the contractile adaptation. Therefore, we conclude that NO-dependent CaMKII activation plays a critical role in the improvement in contractility induced by IGF-1 and exercise training. Interestingly, this pathway would not contribute to the adaptive hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids.

    PubMed

    Yang, Ying-Ying; Liu, Hongqun; Nam, Soon Woo; Kunos, George; Lee, Samuel S

    2010-08-01

    Chronic liver disease is associated with endotoxemia, oxidative stress, increased endocannabinoids and decreased cardiac responsiveness. Endocannabinoids activate the tumor necrosis factor-alpha (TNFalpha)-nuclear factor kappaB (NFkappaB) pathway. However, how they interact with each other remains obscure. We therefore aimed to clarify the relationship between the TNFalpha-NFkappaB pathway and endocannabinoids in the pathogenesis of cardiodepression of cholestatic bile duct ligated (BDL) mice. BDL mice with TNFalpha knockout (TNFalpha-/-) and infusion of anti-TNFalpha antibody were used. Cardiac mRNA and protein expression of NFkappaBp65, c-Jun-N-terminal kinases (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracelullar-signal- regulated kinase (ERK), inducible nitric oxide synthase (iNOS), Copper/Zinc and Magnesium-superoxide dismutase (Cu/ Zn- and Mn-SOD), cardiac anandamide, 2-arachidonoylglycerol (2-AG), nitric oxide (NOx) and glutathione, and plasma TNFalpha were measured. The effects of TNFalpha, cannabinoid receptor (CB1) antagonist AM251 and the endocannabinoid reuptake inhibitor UCM707, on the contractility of isolated cardiomyocytes, were assessed. In BDL mice, cardiac mRNA and protein expression of NFkappaBp65, p38MAPK, iNOS, NOx, anandamide, and plasma TNFa were increased, whereas glutathione, Cu/Zn-SOD, and Mn-SOD were decreased. Cardiac contractility was blunted in BDL mice. Anti-TNFa treatment in BDL mice decreased cardiac anandamide and NOx, reduced expression of NFkappaBp65, p38MAPK, and iNOS, enhanced expression of Cu/Zn-SOD and Mn-SOD, increased reductive glutathione and restored cardiomyocyte contractility. TNFa-depressed contractility was worsened by UCM707, whereas AM251 improved contractility. Increased TNFalpha, acting via NFkappaB-iNOS and p38MAPK signaling pathways, plays an important role in the pathogenesis of cardiodepression in BDL mice. TNFalpha also suppressed contractility by increasing oxidative stress and endocannabinoid activity.

  18. BK Channel-Mediated Relaxation of Urinary Bladder Smooth Muscle: A Novel Paradigm for Phosphodiesterase Type 4 Regulation of Bladder Function

    PubMed Central

    Xin, Wenkuan; Li, Ning; Cheng, Qiuping

    2014-01-01

    Elevation of intracellular cAMP and activation of protein kinase A (PKA) lead to activation of large conductance voltage- and Ca2+-activated K+ (BK) channels, thus attenuation of detrusor smooth muscle (DSM) contractility. In this study, we investigated the mechanism by which pharmacological inhibition of cAMP-specific phosphodiesterase 4 (PDE4) with rolipram or Ro-20-1724 (C15H22N2O3) suppresses guinea pig DSM excitability and contractility. We used high-speed line-scanning confocal microscopy, ratiometric fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp techniques on freshly isolated DSM cells, along with isometric tension recordings of DSM isolated strips. Rolipram caused an increase in the frequency of Ca2+ sparks and the spontaneous transient BK currents (TBKCs), hyperpolarized the cell membrane potential (MP), and decreased the intracellular Ca2+ levels. Blocking BK channels with paxilline reversed the hyperpolarizing effect of rolipram and depolarized the MP back to the control levels. In the presence of H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride], a PKA inhibitor, rolipram did not cause MP hyperpolarization. Rolipram or Ro-20-1724 reduced DSM spontaneous and carbachol-induced phasic contraction amplitude, muscle force, duration, and frequency, and electrical field stimulation-induced contraction amplitude, muscle force, and tone. Paxilline recovered DSM contractility, which was suppressed by pretreatment with PDE4 inhibitors. Rolipram had reduced inhibitory effects on DSM contractility in DSM strips pretreated with paxilline. This study revealed a novel cellular mechanism whereby pharmacological inhibition of PDE4 leads to suppression of guinea pig DSM contractility by increasing the frequency of Ca2+ sparks and the functionally coupled TBKCs, consequently hyperpolarizing DSM cell MP. Collectively, this decreases the global intracellular Ca2+ levels and DSM contractility in a BK channel-dependent manner. PMID:24459245

  19. mTOR-Independent Autophagy Inducer Trehalose Rescues against Insulin Resistance-Induced Myocardial Contractile Anomalies: Role of p38 MAPK and Foxo1

    PubMed Central

    Wang, Qiurong; Ren, Jun

    2016-01-01

    Insulin resistance is associated with cardiovascular diseases although the precise mechanisms remain elusive. Akt2, a critical member of the Akt family, plays an essential role in insulin signaling. This study was designed to examine the effect of trehalose, an mTOR-independent autophagy inducer, on myocardial function in an Akt2 knockout-induced insulin resistance model. Adult WT and Akt2 knockout (Akt2−/−) mice were administered trehalose (1 mg/g/day, i.p.) for two days and were then given 2% trehalose in drinking water for two more months. Echocardiographic and myocardial mechanics, intracellular Ca2+ properties, glucose tolerance, and autophagy were assessed. Apoptosis and ER stress were evaluated using TUNEL staining, Caspase 3 assay and Western blot. Autophagy and autophagy flux were examined with a focus on p38 mitogen activated protein kinase (MAPK), Forkhead box O (Foxo1) and Akt. Akt2 ablation impaired glucose tolerance, myocardial geometry and function accompanied with pronounced apoptosis, ER stress and dampened autophagy, the effects of which were ameliorated by trehalose treatment. Inhibition of lysosomal activity using bafilomycin A1 negated trehalose–induced induction of autophagy (LC3B–II and p62). Moreover, phosphorylation of p38 MAPK and Foxo1 were upregulated in Akt2−/− mice, the effect of which was attenuated by trehalose. Phosphorylation of Akt was suppressed in Akt2−/− mice and was unaffected by trehalose. In vitro findings revealed that the p38 MAPK activator anisomycin and the Foxo1 inhibitor (through phosphorylation) AS1842856 effectively masked trehalose-offered beneficial cardiomyocyte contractile response against Akt2 ablation. These data suggest that trehalose may rescue against insulin resistance-induced myocardial contractile defect and apoptosis, via autophagy associated with dephosphorylation of p38 MAPK and Foxo1 without affecting phosphorylation of Akt. PMID:27363949

  20. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1.

    PubMed

    Wang, Qiurong; Ren, Jun

    2016-09-01

    Insulin resistance is associated with cardiovascular diseases although the precise mechanisms remain elusive. Akt2, a critical member of the Akt family, plays an essential role in insulin signaling. This study was designed to examine the effect of trehalose, an mTOR-independent autophagy inducer, on myocardial function in an Akt2 knockout-induced insulin resistance model. Adult WT and Akt2 knockout (Akt2(-/-)) mice were administered trehalose (1mg/g/day, i.p.) for two days and were then given 2% trehalose in drinking water for two more months. Echocardiographic and myocardial mechanics, intracellular Ca(2+) properties, glucose tolerance, and autophagy were assessed. Apoptosis and ER stress were evaluated using TUNEL staining, Caspase 3 assay and Western blot. Autophagy and autophagy flux were examined with a focus on p38 mitogen activated protein kinase (MAPK), Forkhead box O (Foxo1) and Akt. Akt2 ablation impaired glucose tolerance, myocardial geometry and function accompanied with pronounced apoptosis, ER stress and dampened autophagy, the effects of which were ameliorated by trehalose treatment. Inhibition of lysosomal activity using bafilomycin A1 negated trehalose-induced induction of autophagy (LC3B-II and p62). Moreover, phosphorylation of p38 MAPK and Foxo1 were upregulated in Akt2(-/-) mice, the effect of which was attenuated by trehalose. Phosphorylation of Akt was suppressed in Akt2(-/-) mice and was unaffected by trehalose. In vitro findings revealed that the p38 MAPK activator anisomycin and the Foxo1 inhibitor (through phosphorylation) AS1842856 effectively masked trehalose-offered beneficial cardiomyocyte contractile response against Akt2 ablation. These data suggest that trehalose may rescue against insulin resistance-induced myocardial contractile defect and apoptosis, via autophagy associated with dephosphorylation of p38 MAPK and Foxo1 without affecting phosphorylation of Akt. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation.

    PubMed

    Ren, Jun; Yang, Lifang; Zhu, Li; Xu, Xihui; Ceylan, Asli F; Guo, Wei; Yang, Jian; Zhang, Yingmei

    2017-10-01

    Aging is accompanied with unfavorable geometric and functional changes in the heart involving dysregulation of Akt and autophagy. This study examined the impact of Akt2 ablation on life span and cardiac aging as well as the mechanisms involved with a focus on autophagy and mitochondrial integrity. Cardiac geometry, contractile, and intracellular Ca 2+ properties were evaluated using echocardiography, IonOptix ® edge-detection and fura-2 techniques. Levels of Sirt1, mitochondrial integrity, autophagy, and mitophagy markers were evaluated using Western blot. Our results revealed that Akt2 ablation prolonged life span (by 9.1%) and alleviated aging (24 months)-induced unfavorable changes in myocardial function and intracellular Ca 2+ handling (SERCA2a oxidation) albeit with more pronounced cardiac hypertrophy (58.1%, 47.8%, and 14.5% rises in heart weight, wall thickness, and cardiomyocyte cross-sectional area). Aging downregulated levels of Sirt1, increased phosphorylation of Akt, and the nuclear transcriptional factor Foxo1, as well as facilitated acetylation of Foxo1, the effects of which (except Sirt1 and Foxo1 acetylation) were significantly attenuated or negated by Akt2 ablation. Advanced aging disturbed autophagy, mitophagy, and mitochondrial integrity as evidenced by increased p62, decreased levels of beclin-1, Atg7, LC3B, BNIP3, PTEN-induced putative kinase 1 (PINK1), Parkin, UCP-2, PGC-1α, and aconitase activity, the effects of which were reversed by Akt2 ablation. Aging-induced cardiomyocyte contractile dysfunction and loss of mitophagy were improved by rapamycin and the Sirt1 activator SRT1720. Activation of Akt using insulin or Parkin deficiency prevented SRT1720-induced beneficial effects against aging. In conclusion, our data indicate that Akt2 ablation protects against cardiac aging through restored Foxo1-related autophagy and mitochondrial integrity. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    PubMed

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function. © 2013 Elsevier B.V. All rights reserved.

  3. Stimulatory action of itopride hydrochloride on colonic motor activity in vitro and in vivo.

    PubMed

    Tsubouchi, Tadashi; Saito, Takaharu; Mizutani, Fujie; Yamauchi, Toshie; Iwanaga, Yuji

    2003-08-01

    We investigated the effects of itopride hydrochloride (itopride, N-[4-[2-(dimethylamino)ethoxy]benzyl]-3,4-dimethoxybenzamide hydrochloride), a gastroprokinetic agent, on the colonic motor activity in vitro and in vivo, in comparison with benzamides, cisapride hydrate (cisapride), and mosapride citrate (mosapride). Itopride stimulated both peristaltic and segmental motility induced by applying intraluminal pressure to the isolated guinea pig colon. Although cisapride and mosapride enhanced the segmental motility, they markedly reduced the peristaltic motility. In conscious dogs with implanted strain gauge force transducers, itopride stimulated contractile activity in the gastrointestinal tract from the stomach to the colon. Cisapride stimulated contractile activity in the gastric antrum, ileum, and ascending colon. Mosapride stimulated contractile activity only in the gastric antrum and ileum. In guinea pigs and rats, itopride accelerated colonic luminal transit. On the other hand, cisapride and mosapride failed to enhance colonic transit. These results demonstrate that itopride has a stimulatory action on colonic peristalsis, propelling colonic luminal contents, different from that of cisapride and mosapride. Therefore, itopride may be a useful drug for the treatment of functional bowel disorders such as functional constipation.

  4. Why eicosanoids could represent a new class of tocolytics on uterine activity in pregnant women.

    PubMed

    Corriveau, Stéphanie; Berthiaume, Maryse; Rousseau, Eric; Pasquier, Jean-Charles

    2009-10-01

    The purpose of this study was to assess the effects of exogenous eicosanoids on spontaneous uterine contractile activity. Eight uterine biopsies were performed from women who were undergoing elective cesarean delivery. Tension measurements were performed in vitro on myometrial strips. Contractile activities were quantified by the calculation of the area under the curve. The effects of eicosanoids and specific enzyme inhibitors were assessed. Fractions from various uterine tissues were analyzed by Western blot. Data demonstrate the presence, in some tested tissues, of cytochrome P-450 epoxygenase and soluble epoxide hydrolase, which respectively produce and degrade epoxyeicosatrienoic acid regioisomers. Inhibition of soluble epoxide hydrolase with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid or omega-hydroxylase with N-methylsulfonyl-12,12-dibromododec-11-enamide resulted in a tocolytic effect; N-methylsulfonyl-6-[2-propargyloxyphenyl] hexanamide, which is an epoxygenase inhibitor, had no effect. Exogenous epoxyeicosatrienoic acids displayed significant tocolytic effects on spontaneous contractile activities. Epoxy- and hydroxyeicosanoids represent new bioactive, arachidonic acid by-products with in vitro tocolytic activities. These findings suggest that cytochrome P-450 isozymes may represent relevant pharmacologic targets under physiopathologic conditions.

  5. Role of mechanics in the appearance of oscillatory instability and standing waves of the mechanochemical activity in the Physarum polycephalum plasmodium

    NASA Astrophysics Data System (ADS)

    Teplov, Vladimir A.

    2017-06-01

    The modes of continuously distributed mechanochemical self-sustained oscillations (autowaves) exhibited by the Physarum plasmodium under different experimental conditions are reviewed. The role of the stretch-induced activation of contractile oscillations in the spatiotemporal self-organization of the plasmodium is elucidated. Different mathematical models describing contractile autowaves in ectoplasm and the streaming of the endoplasm are considered. Our mathematical models, which are based on the hypothesis of local positive feedback between the deformation and contraction of the contractile apparatus, are also presented. The feedback is mediated through a chemical regulatory system, whose kinetics involves the coupling to the mechanical strain. The mathematical analysis and computer simulations have demonstrated that the solutions of the models agree quantitatively with the experimental data. In particular, the only hydrodynamic interactions between the different parts of the plasmodium via the streaming endoplasm can lead to globally coordinated ectoplasmic contractions and vigorous shuttle endoplasmic streaming. These models, with empirically determined values of the viscoelastic parameters, well simulate the form and duration of the transient contractile processes observed after the isolation of the strands as well as the subsequent excitation of auto-oscillations and their stretch-induced activation under isotonic and isometric conditions.

  6. Digitalis-like and vasoconstrictor effects of endogenous digoxin-like factor(s) from the venom of Bufo marinus toad.

    PubMed

    Bagrov, A Y; Roukoyatkina, N I; Fedorova, O V; Pinaev, A G; Ukhanova, M V

    1993-04-06

    Digitalis glycoside-like properties of the Bufo marinus toad crude venom and one of its constituents, bufalin, were studied in various assay systems. In concentrations 0.3-30 micrograms/ml crude venom increased the contractility of isolated electrically driven rat atria, constricted rat aortic rings, inhibited ouabain-sensitive Na+,K(+)-ATPase in rat erythrocytes and the Na+,K(+)-pump in rat aorta, and cross-reacted with antidigoxin antibody from the dissociation enhanced lanthanide fluoroimmunoassay (DELFIA). These effects were unaffected by adrenoceptor blockers and the 5-HT antagonist, deseril, but were blocked by antidigoxin antibody. Bufalin (10-30 microM) increased myocardial contractility and inhibited Na+,K(+)-ATPase in rat erythrocytes similarly to crude Bufo marinus venom. In rat aorta bufalin showed weak and delayed vasoconstrictor activity which was antagonized by 2 microM phentolamine, and had a biphasic effect on the Na+,K(+)-pump; 0.5-1.0 microM bufalin stimulated the pump, while higher concentrations inhibited its activity. Although the effects of bufalin were blocked by antidigoxin antibody, bufalin showed very low digoxin-like immunoreactivity in the DELFIA. These observations suggest that, in addition to bufalin, Bufo marinus venom contains at least one more digitalis-like steroid with significant intrinsic vasoconstrictor activity which, unlike bufalin, constricts the blood vessels acting directly via inhibition of the sodium pump in the vascular smooth muscle membrane.

  7. Skeletal muscle plasticity with marathon training in novice runners.

    PubMed

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (P<0.05). All soleus parameters were unchanged. VL MHC I fiber diameter increased (+8%; P<0.05) from T1 to T2. VL MHC I V(o) (-12%), MHC I power (-22%) and MHC IIa power (-29%) were reduced from T1 to T2 (P<0.05). No changes in VL single fiber contractile properties were observed from T2 to T3. No change was observed in soleus CS activity, whereas VL CS activity increased 66% (P<0.05). Our observations indicate that modest marathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  8. Increased CCT-eta expression is a marker of latent and active disease and a modulator of fibroblast contractility in Dupuytren's contracture.

    PubMed

    Satish, Latha; O'Gorman, David B; Johnson, Sandra; Raykha, Christina; Gan, Bing Siang; Wang, James H-C; Kathju, Sandeep

    2013-07-01

    Dupuytren's contracture (DC) is a fibroproliferative disorder of unknown etiology characterized by a scar-like contracture that develops in the palm and/or digits. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is increased in fibrotic wound healing, and is essential for the accumulation of α-smooth muscle actin (α-SMA) in fibroblasts. The purpose of this study was to determine if CCT-eta is similarly implicated in the aberrant fibrosis seen in DC and to investigate the role of CCT-eta in the behavior of myo/fibroblasts in DC. Fibroblasts were obtained from DC-affected palmar fascia, from adjacent phenotypically normal palmar fascia in the same DC patients (PF), and from non-DC palmar fascial tissues in patients undergoing carpal tunnel (CT) release. Inherent contractility in these three populations was examined using fibroblast-populated collagen lattices (FPCLs) and by cell traction force microscopy. Expression of CCT-eta and α-SMA protein was determined by Western blot. The effect of CCT-eta inhibition on the contractility of DC cells was determined by deploying an siRNA versus CCT-eta. DC cells were significantly more contractile than both matching palmar fascial (PF) cells and CT cells in both assays, with PF cells demonstrating an intermediate contractility in the FPCL assay. Whereas α-SMA protein was significantly increased only in DC cells compared to PF and CT cells, CCT-eta protein was significantly increased in both PF and DC cells compared to CT cells. siRNA-mediated depletion of CCT-eta inhibited the accumulation of both CCT-eta and α-SMA protein in DC cells, and also significantly decreased the contractility of treated DC cells. These observations suggest that increased expression of CCT-eta appears to be a marker for latent and active disease in these patients and to be essential for the increased contractility exhibited by these fibroblasts.

  9. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle

    PubMed Central

    Remy, Kenneth E.; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W.

    2013-01-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma. PMID:23997176

  10. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle.

    PubMed

    Gallos, George; Remy, Kenneth E; Danielsson, Jennifer; Funayama, Hiromi; Fu, Xiao Wen; Chang, Herng-Yu Sucie; Yim, Peter; Xu, Dingbang; Emala, Charles W

    2013-11-01

    Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.

  11. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    PubMed

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA p<0.01). Other measured parameters, including the duration, amplitude and membrane potential of spontaneous electrical and contractile activity, were not altered from control values. The guanylate cyclase inhibitor ODQ (10 μM) significantly increased the frequency of spontaneous activity by 10% to 30% in 6 young guinea pig prostates (Student paired t test p<0.05). However, it had no effect on aging prostates. The cGMP analogue 8-Br-GMP (1 μM) and the PDE5 inhibitor dipyridamole (1 μM) significantly decreased the frequency of contractile activity by about 70% in 4 to 9 young and older prostates (Student paired t test p<0.05). The decrease in the response to L-NAME in spontaneous contractile and slow wave activity in aging prostate tissue compared to that in young prostates suggests that with age there is a decrease in nitric oxide production. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Pharmacological characterisation of extracts of coffee dusts.

    PubMed Central

    Zuskin, E; Duncan, P G; Douglas, J S

    1983-01-01

    The contractile or relaxant activities or both of aqueous extracts of green and roasted coffees were assayed on isolated guinea pig tracheal spirals. Contractile and relaxant activities were compared with histamine and theophylline, respectively. Green coffee extracts induced concentration dependent contraction, but the maximal tension never exceeded 76.3% +/- 5.2 of a maximal histamine contraction (0.69 +/- 0.07 g/mm2 v 0.52 +/- 0.05 g/mm2; p (0.01). One gram of green coffee dust had a biological activity equivalent to 1.23 +/- 0.1 mg of histamine. The pD2 value of histamine was -5.17 +/- 0.05. The potency of green coffee was unaffected by mepyramine maleate (1 micrograms/ml, final bath concentration) while that of histamine was reduced 500 fold. Tissues contracted with histamine were not significantly relaxed by green coffee extracts. By contrast, roasted coffee extracts induced concentration dependent relaxation of uncontracted and histamine contracted tissues. Tissues contracted with green coffee extracts were also completely relaxed by roasted coffee extracts. The pD2 value of theophylline was -4.10 +/- 0.03. The relaxant activity of 1 g of roasted coffee was equivalent to 1.95 +/- 0.16 mg of theophylline. The potency of these extracts was significantly reduced after propranolol (1 micrograms/ml; dose ratio 1.56). Our results show that coffee dust extracts have considerable biological activity which changes from a contractile to a relaxant action as a consequence of processing. The greater incidence of adverse reactions to green coffee dust(s) in coffee workers may be related to the contractile activity present in green coffee dust. PMID:6830717

  13. Altered in vivo left ventricular torsion and principal strains in hypothyroid rats

    PubMed Central

    Chen, Yong; Somji, Aleefia; Yu, Xin

    2010-01-01

    The twisting and untwisting motions of the left ventricle (LV) lead to efficient ejection of blood during systole and filling of the ventricle during diastole. Global LV mechanical performance is dependent on the contractile properties of cardiac myocytes; however, it is not known how changes in contractile protein expression affect the pattern and timing of LV rotation. At the myofilament level, contractile performance is largely dependent on the isoforms of myosin heavy chain (MHC) that are expressed. Therefore, in this study, we used MRI to examine the in vivo mechanical consequences of altered MHC isoform expression by comparing the contractile properties of hypothyroid rats, which expressed only the slow β-MHC isoform, and euthyroid rats, which predominantly expressed the fast α-MHC isoform. Unloaded shortening velocity (Vo) and apparent rate constants of force development (ktr) were measured in the skinned ventricular myocardium isolated from euthyroid and hypothyroid hearts. Increased expression of β-MHC reduced LV torsion and fiber strain and delayed the development of peak torsion and strain during systole. Depressed in vivo mechanical performance in hypothyroid rats was related to slowed cross-bridge performance, as indicated by significantly slower Vo and ktr, compared with euthyroid rats. Dobutamine infusion in hypothyroid hearts produced smaller increases in torsion and strain and aberrant transmural torsion patterns, suggesting that the myocardial response to β-adrenergic stress is compromised. Thus, increased expression of β-MHC alters the pattern and decreases the magnitude of LV rotation, contributing to reduced mechanical performance during systole, especially in conditions of increased workload. PMID:20729398

  14. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.

    PubMed

    van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C

    2018-06-01

    Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.

  15. Superoxide anion stress attenuates the contractile response of the Guinea pig vas deferens to ATP and diadenosine tetraphosphate. Possible effect on calcium dysregulation.

    PubMed

    Al-Rawi, Mahmood B; Aleisa, Abdulaziz M; Khattab, Mahmoud M

    2008-01-01

    Induction of endogenous superoxide anion stress by the use of the superoxide dismutase inhibitor diethylthiocarbamate (DETCA; 10 mmol/l) produced a potent inhibition of the ATP (0.3-10 mmol/l) and diadenosine tetraphosphate (AP(4)A) contractile activity in the isolated vas deferens by 29-92 and 24-90%, respectively. Pyrogallol (0.1 mmol/l), the exogenous superoxide anion generator, produced a significant inhibition on the contractile activity of the vas deferens induced by ATP and AP(4)A by 33-89 and 25-82%, respectively. DETCA (10 mmol/l) and pyrogallol (0.1 mmol/l) attenuated the contractile response of isolated guinea pig vas deferens strips to the selective P2X agonist alpha,beta-methyleneATP (alpha,beta-meATP; 50 micromol/l) by 25 and 47%, respectively. In Ca(2+)-free high-K(+) (80 mmol/l) Krebs solution, pyrogallol and DETCA produced inhibition of the contractile response to alpha,beta-meATP (50 micromol/l) in similar way to that in normal Krebs solution. The further addition of CaCl(2) (1 mmol/l) abolished the inhibitory effects exerted by pyrogallol and DETCA. The control contractile response to alpha,beta-meATP (50 micromol/l) was not affected in Ca(2+)-free high-K(+) (80 mmol/l) Krebs solution. It may be concluded that superoxide anion stress produces a significant inhibitory effect on both mono- and di-nucleotide purinergic contraction of the vas deferens. Superoxide anion appears to interrupt the P2X(1)-mediated transduction cascade at some step(s) of intracellular calcium handling. Copyright 2008 S. Karger AG, Basel.

  16. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction.

    PubMed

    Gupte, Sachin A; Kaminski, Pawel M; George, Shimran; Kouznestova, Lioubov; Olson, Susan C; Mathew, Rajamma; Hintze, Thomas H; Wolin, Michael S

    2009-04-01

    Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.

  17. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  18. Isolation and maintenance-free culture of contractile myotubes from Manduca sexta embryos.

    PubMed

    Baryshyan, Amanda L; Woods, William; Trimmer, Barry A; Kaplan, David L

    2012-01-01

    Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS) and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment, combined with the interesting metabolic properties, suggests that this cell source is a promising candidate for further investigation toward bioactuator applications.

  19. Contractile activity of the bladder urothelium/lamina propria and its regulation by nitric oxide.

    PubMed

    Moro, Christian; Leeds, Charlotte; Chess-Williams, Russ

    2012-01-15

    In the bladder, nitric oxide (NO) is released from neuronal and non-neuronal sources, but its actions are unclear. Strips of urothelium plus lamina propria contract in response to agonists and develop spontaneous phasic contractions, and the aim of this study was to investigate the influence of NO on this activity. Isolated strips of urothelium/lamina propria from porcine bladder developed spontaneous contractions (3.5 ± 0.3 cycles/min) and contracted in response to carbachol and electrical field stimulation (EFS). The NO synthase inhibitor N(ω)-nitro-l-arginine (L-NNA, 100 μM) had no effects on the tissues, but the NO donors diethylamine NONOate (DEANO, 100 μM) and nitroprusside (10 μM) caused relaxation, slowed the spontaneous rate of contractions and inhibited responses to carbachol. Maximum tonic contractions to carbachol were reduced by 17 ± 4% (P<0.001) and 35 ± 5% (P<0.001) by DEANO and nitroprusside respectively and the potency of carbachol was also reduced. Carbachol also increased the spontaneous frequency of contraction and these rate responses were again inhibited by DEANO and nitroprusside, but unaffected by L-NNA. Similarly, responses to EFS were significantly depressed (52-70%) by DEANO (P<0.05), but were unaffected by L-NNA. These data demonstrate spontaneous contractile activity and also nerve and agonist-induced tonic contractile activity within the urothelium and lamina propria. This activity is sensitive to depression by NO, but NO does not appear to be spontaneously released to influence this activity, nor does it appear to be released by muscarinic receptor stimulation. However the results suggest that in situations where NO production is increased, NO can influence the contractile activity of this tissue. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Why is alpha-actinin-3 deficiency so common in the general population? The evolution of athletic performance.

    PubMed

    North, Kathryn

    2008-08-01

    'We can now explain how this common genetic variation influences athletic performance as well as why it has become so common in the general population. There is a fascinating link between factors that influence survival in ancient humans and the factors that contribute to athletic abilities in modern man.' The human ACTN3 gene encodes the protein alpha-actinin-3, a component of the contractile apparatus in fast skeletal muscle fibers. In 1999, we identified a common polymorphism in ACTN3 (R577X) that results in absence of alpha-actinin-3 in more than one billion people worldwide, despite the ACTN3 gene being highly conserved during human evolution. In 2003, we demonstrated that ACTN3 genotype influences elite athletic performance, and the association between ACTN3 genotype and skeletal muscle performance has since been replicated in athletes and non-athlete cohorts. We have also studied the evolution of the R577X allele during human evolution and demonstrated that the null (X) allele has undergone strong, recent positive selection in Europeans and Asian populations. We have developed an Actn3 knockout mouse model that replicates alpha-actinin-3 deficiency in humans and has already provided insight into the role of alpha-actinin-3 in the regulation of skeletal muscle metabolism, fibre size, muscle mass and contractile properties. In particular, mouse muscle lacking alpha-actinin-3 uses energy more efficiently, with the fast fibers displaying metabolic and contractile properties of slow oxidative fibers. While this favors endurance activities, the trade off is that the muscle cannot generate the rapid contractions needed to excel in sprinting. We propose that the shift towards more efficient aerobic muscle metabolism associated with alpha-actinin-3 deficiency also underlies the adaptive benefit of the 577X allele. Our future studies will focus on the effect of ACTN3 genotype on response to exercise and ageing, and the onset and severity of muscle disease phenotype.

  1. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    PubMed

    Broos, Siacia; Malisoux, Laurent; Theisen, Daniel; van Thienen, Ruud; Ramaekers, Monique; Jamart, Cécile; Deldicque, Louise; Thomis, Martine A; Francaux, Marc

    2016-01-01

    To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men. A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0), maximal unloading velocity (V0) and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity. No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001). P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001) but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype. The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  2. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization

    PubMed Central

    Mao, Lan; Pierce, Stephanie L.; Swamy, Geeta K.; Heine, R. Phillips; Murtha, Amy P.

    2016-01-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  3. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  4. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    PubMed

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.

  5. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    PubMed

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on contractile activity during labour that can be investigated further to unravel the mechanisms causing uterine dystocia in obese women. © 2016 The Author(s).

  6. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    PubMed Central

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  7. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    PubMed

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclinmore » D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.« less

  9. Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Feaster, Tromondae K; Cadar, Adrian G; Wang, Lili; Williams, Charles H; Chun, Young Wook; Hempel, Jonathan E; Bloodworth, Nathaniel; Merryman, W David; Lim, Chee Chew; Wu, Joseph C; Knollmann, Björn C; Hong, Charles C

    2015-12-04

    The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa). The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing. © 2015 American Heart Association, Inc.

  10. Effect of chronic, extrinsic denervation on functional NANC innervation with vasoactive intestinal polypeptide and substance P in longitudinal muscle of rat jejunum.

    PubMed

    Kasparek, M S; Fatima, J; Iqbal, C W; Duenes, J A; Sarr, M G

    2008-03-01

    Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe(6),Leu(17)]-VIP) and the nitric oxide synthase inhibitor l-N(G)-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro(2),D-Trp(7,9)]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT.

  11. Effect of chronic, extrinsic denervation on functional NANC innervation with vasoactive intestinal polypeptide and substance P in longitudinal muscle of rat jejunum1

    PubMed Central

    KASPAREK, M. S.; FATIMA, J.; IQBAL, C. W.; DUENES, J. A.; SARR, M. G.

    2008-01-01

    Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe6,Leu17]-VIP) and the nitric oxide synthase inhibitor L-NG-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro2,D-Trp7,9]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT. PMID:17971029

  12. Effect of sexual maturation on thermal stability, viscoelastic properties, and texture of rainbow trout, Oncorhynchus mykiss, fillets

    USDA-ARS?s Scientific Manuscript database

    The nutrient and energy demand of sexual maturation in many fish cultivars causes structural change to key contractile proteins and thereby, affects fillet firmness. Thermal denaturation and viscoelastic properties of white muscle from diploid (2N; fertile) and triploid (3N; sterile) female rainbow...

  13. First report on an inotropic peptide activating tetrodotoxin-sensitive, "neuronal" sodium currents in the heart.

    PubMed

    Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe

    2015-01-01

    New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.

  14. Calcium-responsive contractility during fertilization in sea urchin eggs.

    PubMed

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  15. Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs

    PubMed Central

    Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.

    2008-01-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603

  16. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    NASA Astrophysics Data System (ADS)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  17. Probing the contractile vacuole as Achilles' heel of the biotrophic grapevine pathogen Plasmopara viticola.

    PubMed

    Tröster, Viktoria; Setzer, Tabea; Hirth, Thomas; Pecina, Anna; Kortekamp, Andreas; Nick, Peter

    2017-09-01

    The causative agent of Grapevine Downy Mildew, the oomycete Plasmopara viticola, poses a serious threat to viticulture. In the current work, the contractile vacuole of the zoospore is analysed as potential target for novel plant protection strategies. Using a combination of electron microscopy, spinning disc confocal microscopy, and video differential interference contrast microscopy, we have followed the genesis and dynamics of this vacuole required during the search for the stomata, when the non-walled zoospore is exposed to hypotonic conditions. This subcellular description was combined with a pharmacological study, where the functionality of the contractile vacuole was blocked by manipulation of actin, by Na, Cu, and Al ions or by inhibition of the NADPH oxidase. We further observe that RGD peptides (mimicking binding sites for integrins at the extracellular matrix) can inhibit the function of the contractile vacuole as well. Finally, we show that an extract from Chinese liquorice (Glycyrrhiza uralensis) proposed as biocontrol for Downy Mildews can efficiently induce zoospore burst and that this activity depends on the activity of NADPH oxidase. The effect of the extract can be phenocopied by its major compound, glycyrrhizin, suggesting a mode of action for this biologically safe alternative to copper products.

  18. Effect of Aging on Tongue Protrusion Forces in Rats

    PubMed Central

    Nagai, Hiromi; Russell, John A.; Jackson, Michelle A.

    2010-01-01

    The purpose of this study was to ascertain the effect of aging on muscle contractile properties associated with tongue protrusion in a rat model. Fischer 344/Brown Norway hybrid rats, ten young (9 months old) and ten old (32 months old), were used to measure protrusive contractile properties. Results showed a significant reduction in tetanic forces in the old animals. The following measures of muscle contraction were not different between age groups: mean twitch contraction force, twitch contraction time, twitch contraction half-decay time, and a calculated measure of fatigability. In conclusion, aging influenced protrusive tongue muscle contractions in a rat model such that tetanic forces were reduced. The reduction of tetanus force may parallel findings in human subjects relative to isometric tongue force generation and may be associated with age-related disorders of swallowing. PMID:17694408

  19. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  20. Osmolality- and Na+ -dependent effects of hyperosmotic NaCl solution on contractile activity and Ca2+ cycling in rat ventricular myocytes.

    PubMed

    Ricardo, Rafael A; Bassani, Rosana A; Bassani, José W M

    2008-01-01

    Hypertonic NaCl solutions have been used for small-volume resuscitation from hypovolemic shock. We sought to identify osmolality- and Na(+)-dependent components of the effects of the hyperosmotic NaCl solution (85 mOsm/kg increment) on contraction and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in isolated rat ventricular myocytes. The biphasic change in contraction and Ca(2+) transient amplitude (decrease followed by recovery) was accompanied by qualitatively similar changes in sarcoplasmic reticulum (SR) Ca(2+) content and fractional release and was mimicked by isosmotic, equimolar increase in extracellular [Na(+)] ([Na(+)](o)). Raising osmolality with sucrose, however, augmented systolic [Ca(2+)](i) monotonically without change in SR parameters and markedly decreased contraction amplitude and diastolic cell length. Functional SR inhibition with thapsigargin abolished hyperosmolality effects on [Ca(2+)](i). After 15-min perfusion, both hyperosmotic solutions slowed mechanical relaxation during twitches and [Ca(2+)](i) decline during caffeine-evoked transients, raised diastolic and systolic [Ca(2+)](i), and depressed systolic contractile activity. These effects were greater with sucrose solution, and were not observed after isosmotic [Na(+)](o) increase. We conclude that under the present experimental conditions, transmembrane Na(+) redistribution apparently plays an important role in determining changes in SR Ca(2+) mobilization, which markedly affect contractile response to hyperosmotic NaCl solutions and attenuate the osmotically induced depression of contractile activity.

  1. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R.

    PubMed

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J; Zawieja, David C; Muthuchamy, Mariappan

    2011-01-01

    The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. © 2010 John Wiley & Sons Ltd.

  2. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R

    PubMed Central

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J.; Zawieja, David C.; Muthuchamy, Mariappan

    2010-01-01

    Objective The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. Methods A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP mediated signaling pathways in lymphatics. Results We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC20) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC20 after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. Conclusions These data provide the first evidence that SP mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. PMID:21166923

  3. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    PubMed

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates airway smooth muscle contraction by mediating activation of the serine-threonine kinase, Pak, to promote actin polymerization. Pak catalyzes paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signaling module to paxillin, which activates the GEF activity βPIX towards cdc42. Cdc42 is required for the activation of Neuronal Wiskott-Aldrich Syndrome protein (N-WASp), which transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Effects of divalent cations and La3+ on contractility and ecto-ATPase activity in the guinea-pig urinary bladder.

    PubMed Central

    Ziganshin, A U; Ziganshina, L E; Hoyle, C H; Burnstock, G

    1995-01-01

    1. Several cations (Ba2+, Cd2+, Co2+, Cu2+, Mn2+, Ni2+, Zn2+ and La3+, all as chloride salts, 1-1000 microM) were tested in the guinea-pig urinary bladder for their ability to: (i) modify contractile responses to electrical field stimulation (EFS), ATP, alpha,beta-methylene ATP (alpha,beta-meATP), carbachol (CCh), and KCl; (ii) affect ecto-ATPase activity. 2. Ba2+ (10-1000 microM) concentration-dependently potentiated contractile responses evoked by EFS (4-16 Hz), ATP (100 microM), alpha,beta-meATP (1 microM), CCh (0.5 microM), and KCl (30 mM). Ni2+ at concentrations of 1-100 microM also potentiated contractility of the urinary bladder, but at concentrations tested its effect was not concentration-dependent. Cu2+ at a concentration of 10 microM and Cd2+ at a concentration of 1 microM potentiated responses to all stimuli, except KCl. Ni2+ at a concentration of 1000 microM and Cd2+ at a concentration of 100 microM inhibited contractions evoked by all stimuli, and at a concentration of 1000 microM Cd2+ abolished any contractions. Responses to ATP and alpha,beta-meATP were selectively inhibited by Cu2+, Zn2+ or La3+, each at a concentration of 1 mM. 3. Cu2+, Ni2+, Zn2+ and La3+ (100-1000 microM) concentration-dependently inhibited ecto-ATPase activity in the urinary bladder smooth muscle preparations, while Ba2+ and Mn2+ were without effect, and Cd2+ and Co2+ caused significant inhibition only at a concentration of 1000 microM. 4. There was no correlation between the extent of ecto-ATPase inhibition and the effect on contractile activity of any of the cations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7735690

  5. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.

    PubMed

    Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C

    2008-08-01

    Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.

  6. Effects of Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) on contractile activity of circular smooth muscle of the rat distal colon.

    PubMed

    Kito, Yoshihiko; Teramoto, Noriyoshi

    2012-11-01

    The Japanese Kampo medicines Hange-shashin-to (TJ-14) and Keishi-ka-shakuyaku-to (TJ-60) have been used to treat symptoms of human diarrhea on an empirical basis as Japanese traditional medicines. However, it remains unclear how these drugs affect smooth muscle tissues in the distal colon. The aim of the present study was to investigate the effects of TJ-14 and TJ-60 on the contractile activity of circular smooth muscle from the rat distal colon. TJ-14 and TJ-60 (both 1 mg/ml) inhibited spontaneous contractions of circumferentially cut preparations with the mucosa intact. Blockade of nitric oxide (NO) synthase or soluble guanylate cyclase activity abolished the inhibitory effects of TJ-60 but only attenuated the inhibitory effects of TJ-14. Apamin (1 μM), a blocker of small-conductance Ca(2+)-activated K(+) channels (SK channels), attenuated the inhibitory effects of 5 mg/ml TJ-60 but not those of 5 mg/ml TJ-14. TJ-14 suppressed contractile responses (phasic contractions and off-contractions) evoked by transmural nerve stimulation and increased basal tone, whereas TJ-60 had little effect on these parameters. These results suggest that 1 mg/ml TJ-14 or TJ-60 likely inhibits spontaneous contractions of the rat distal colon through the production of NO. Activation of SK channels seems to be involved in the inhibitory effects of 5 mg/ml TJ-60. Since TJ-14 has potent inhibitory effects on myogenic and neurogenic contractile activity, TJ-14 may be useful in suppressing gastrointestinal motility.

  7. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate

    PubMed Central

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384

  8. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate.

    PubMed

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-09-16

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis.

  9. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.

    PubMed

    Bonelli, Francesco; Gonnella, Giuseppe; Tiribocchi, Adriano; Marenduzzo, Davide

    2016-01-01

    We present hybrid lattice Boltzmann simulations of extensile and contractile active fluids where we incorporate phenomenologically the tendency of active particles such as cell and bacteria, to move, or swim, along the local orientation. Quite surprisingly, we show that the interplay between alignment and activity can lead to completely different results, according to geometry (periodic boundary conditions or confinement between flat walls) and nature of the activity (extensile or contractile). An interesting generic outcome is that the alignment interaction can transform stationary active patterns into continuously moving ones: the dynamics of these evolving patterns can be oscillatory or chaotic according to the strength of the alignment term. Our results suggest that flow-polarisation alignment can have important consequences on the collective dynamics of active fluids and active gel.

  10. Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts

    PubMed Central

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C.

    2009-01-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or absence of slow, bi-directional perfusion that enhanced transport and provided shear stress. Structural, molecular, and electrophysiologic properties of the resulting grafts were quantified on culture day 8. IGF had independent, beneficial effects on apoptosis (p < 0.01), cellular viability (p < 0.01), contractile amplitude (p < 0.01), and excitation threshold (p < 0.01). Perfusion independently affected the four aforementioned parameters and also increased amounts of cardiac troponin-I (p < 0.01), connexin-43 (p < 0.05), and total protein (p < 0.01) in the grafts. Interactive effects of IGF and perfusion on apoptosis were also present (p < 0.01). Myofibrillogenesis and spontaneous contractility were present only in grafts cultured with perfusion, although contractility was inducible by electrical field stimulation of grafts from all groups. Our findings demonstrate that multi-factorial stimulation of tissue-engineered cardiac grafts using IGF and perfusion resulted in independent and interactive effects on heart cell survival, differentiation, and contractility. PMID:18759675

  11. Effects of temperature and calcium availability on ventricular myocardium from rainbow trout.

    PubMed

    Coyne, M D; Kim, C S; Cameron, J S; Gwathmey, J K

    2000-06-01

    We studied the mechanical and electrophysiological properties of ventricular myocardium from rainbow trout (Oncorhynchus mykiss) in vitro at 4, 10, and 18 degrees C from fish acclimated at 10 degrees C. Temperature alone did not significantly alter the contractile force of the myocardium, but the time to peak tension and time to 80% relaxation were prolonged at 4 degrees C and shortened at 18 degrees C. The duration of the action potential was also prolonged at 4 degrees C and progressively shortened at higher temperatures. An alteration of the stimulation frequency did not affect contraction amplitude at any temperature. Calcium influx via L-type calcium channels was increased by raising extracellular calcium concentration (¿Ca(2+)(o)) or including Bay K 8644 (Bay K) and isoproterenol in the bathing medium. These treatments significantly enhanced the contractile force at all temperatures. Calcium channel blockers had a reverse-negative inotropic effect. Unexpectedly, the duration of the action potential at 10 degrees C was shortened as ¿Ca(2+)(o) increased. However, Bay K prolonged the plateau phase at 4 degrees C. Caffeine, which promotes the release of sarcoplasmic reticulum (SR) calcium, increased contractile force eightfold at all three temperatures, but the SR blocker ryanodine was only inhibitory at 4 degrees C. Our results suggest that contractile force in ventricular myocardium from Oncorhynchus mykiss is primarily regulated by sarcolemmal calcium influx and that ventricular contractility is maintained during exposure to a wide range of temperatures.

  12. Linear fully dry polymer actuators

    NASA Astrophysics Data System (ADS)

    De Rossi, Danilo; Mazzoldi, Alberto

    1999-05-01

    In the last period, the interest in the development of devices that emulate the properties of the 'par excellence' biological actuator, the human muscle, is considerably grown. The recent advances in the field of conducting polymers open new interesting prospects in this direction: from this point of view polyaniline (PANi), since it is easily produced in fiber form, represents an interesting material. In this conference we report the development of a linear actuator prototype that makes use of PANi fiber. All fabrication steps (fiber extrusion, solid polymer electrolyte preparation, compound realization) and experimental set-up for the electromechanical characterization are described. Quantitative measurements of isotonic length changes and isometric stress generation during electrochemical stimulation are reported. An overall assessment of PANi fibers actuative properties in wet and dry conditions is reported and possible future developments are proposed. Finally, continuum and lumped parameter models formulated to describe passive and active contractile properties of conducting polymer actuators are briefly outlined.

  13. Actin dynamics, architecture, and mechanics in cell motility.

    PubMed

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  14. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans

    PubMed Central

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-01-01

    This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca2+ content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca2+ sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf) markedly increased Ca2+ sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca2+ content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca2+ by a combined caffeine and low Mg2+ stimulus, whereas in fibres of Old the amount of non-releasable Ca2+ was significantly increased (by > 12% of endogenous Ca2+ content). Western blotting showed an increased proportion of type I fibres in Old subjects, and increased amounts of calsequestrin-2 and calsequestrin-like protein. The findings suggest that muscle weakness in old age is probably attributable in part to (i) an increased proportion of type I fibres, (ii) a reduction in both maximum specific force and Ca2+ sensitivity in type II fibres, and also a decreased ability of S-glutathionylation of TnIf to counter the fatiguing effects of metabolites on Ca2+ sensitivity, and (iii) a reduction in the amount of releasable SR Ca2+ in both fibre types. Key points Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. PMID:25809942

  15. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    PubMed

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western blotting showed an increased proportion of type I fibres in Old subjects, and increased amounts of calsequestrin-2 and calsequestrin-like protein. The findings suggest that muscle weakness in old age is probably attributable in part to (i) an increased proportion of type I fibres, (ii) a reduction in both maximum specific force and Ca(2+) sensitivity in type II fibres, and also a decreased ability of S-glutathionylation of TnIf to counter the fatiguing effects of metabolites on Ca(2+) sensitivity, and (iii) a reduction in the amount of releasable SR Ca(2+) in both fibre types. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  16. Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue.

    PubMed

    Kisiel-Sajewicz, Katarzyna; Davis, Mellar P; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Wyant, Alexandria; Walsh, Declan; Hou, Juliet; Yue, Guang H

    2012-09-01

    Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms. Copyright © 2012. Published by Elsevier Inc.

  17. Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice

    PubMed Central

    Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.

    2012-01-01

    Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364

  18. Cross-linked xenogenic collagen implantation in the sheep model for vaginal surgery.

    PubMed

    Endo, Masayuki; Urbankova, Iva; Vlacil, Jaromir; Sengupta, Siddarth; Deprest, Thomas; Klosterhalfen, Bernd; Feola, Andrew; Deprest, Jan

    The properties of meshes used in reconstructive surgery affect the host response and biomechanical characteristics of the grafted tissue. Whereas durable synthetics induce a chronic inflammation, biological grafts are usually considered as more biocompatible. The location of implantation is another determinant of the host response: the vagina is a different environment with specific function and anatomy. Herein, we evaluated a cross-linked acellular collagen matrix (ACM), pretreated by the anti-calcification procedure ADAPT® in a sheep model for vaginal surgery. Ten sheep were implanted with a cross-linked ACM, and six controls were implanted with a polypropylene (PP; 56 g/m 2 ) control. One implant was inserted in the lower rectovaginal septum, and one was used for abdominal wall defect reconstruction. Grafts were removed after 180 days; all graft-related complications were recorded, and explants underwent bi-axial tensiometry and contractility testing. Half of ACM-implanted animals had palpable induration in the vaginal implantation area, two of these also on the abdominal implant. One animal had a vaginal exposure. Vaginal ACMs were 63 % less stiff compared to abdominal ACM explants ( p  = 0.01) but comparable to vaginal PP explants. Seven anterior vaginal ACM explants showed areas of graft degradation on histology. There was no overall difference in vaginal contractility. Considering histologic degradation in the anterior vaginal implant as representative for the host, posterior ACM explants of animals with degradation had a 60 % reduced contractility as compared to PP ( p  = 0.048). Three abdominal implants showed histologic degradation; those were more compliant than non-degraded implants. Vaginal implantation with ACM was associated with graft-related complications (GRCs) and biomechanical properties comparable to PP. Partially degraded ACM had a decreased vaginal contractility.

  19. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca2+ Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction.

    PubMed

    Zhang, Ying; Jiao, Lei; Sun, Lihua; Li, Yanru; Gao, Yuqiu; Xu, Chaoqian; Shao, Yingchun; Li, Mengmeng; Li, Chunyan; Lu, Yanjie; Pan, Zhenwei; Xuan, Lina; Zhang, Yiyuan; Li, Qingqi; Yang, Rui; Zhuang, Yuting; Zhang, Yong; Yang, Baofeng

    2018-05-11

    Ca 2+ homeostasis-a critical determinant of cardiac contractile function-is critically regulated by SERCA2a (sarcoplasmic reticulum Ca 2+ -ATPase 2a). Our previous study has identified ZFAS1 as a new lncRNA biomarker of acute myocardial infarction (MI). To evaluate the effects of ZFAS1 on SERCA2a and the associated Ca 2+ homeostasis and cardiac contractile function in the setting of MI. ZFAS1 expression was robustly increased in cytoplasm and sarcoplasmic reticulum in a mouse model of MI and a cellular model of hypoxia. Knockdown of endogenous ZFAS1 by virus-mediated silencing shRNA partially abrogated the ischemia-induced contractile dysfunction. Overexpression of ZFAS1 in otherwise normal mice created similar impairment of cardiac function as that observed in MI mice. Moreover, at the cellular level, ZFAS1 overexpression weakened the contractility of cardiac muscles. At the subcellular level, ZFAS1 deleteriously altered the Ca 2+ transient leading to intracellular Ca 2+ overload in cardiomyocytes. At the molecular level, ZFAS1 was found to directly bind SERCA2a protein and to limit its activity, as well as to repress its expression. The effects of ZFAS1 were readily reversible on knockdown of this lncRNA. Notably, a sequence domain of ZFAS1 gene that is conserved across species mimicked the effects of the full-length ZFAS1 . Mutation of this domain or application of an antisense fragment to this conserved region efficiently canceled out the deleterious actions of ZFAS1 . ZFAS1 had no significant effects on other Ca 2+ -handling regulatory proteins. ZFAS1 is an endogenous SERCA2a inhibitor, acting by binding to SERCA2a protein to limit its intracellular level and inhibit its activity, and a contributor to the impairment of cardiac contractile function in MI. Therefore, anti- ZFAS1 might be considered as a new therapeutic strategy for preserving SERCA2a activity and cardiac function under pathological conditions of the heart. © 2018 The Authors.

  20. Repeated high-intensity exercise modulates Ca(2+) sensitivity of human skeletal muscle fibers.

    PubMed

    Gejl, K D; Hvid, L G; Willis, S J; Andersson, E; Holmberg, H-C; Jensen, R; Frandsen, U; Hansen, J; Plomgaard, P; Ørtenblad, N

    2016-05-01

    The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.

    PubMed

    Gavara, Núria; Sunyer, Raimon; Roca-Cusachs, Pere; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2006-08-01

    Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 +/- 12.0 nN (mean +/- SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 microM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 microM, 30 min) and Rho kinase with Y-27632 (10 microM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.

  2. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model.

    PubMed

    Hsu, Yu-Juei; Hsu, Shih-Che; Hsu, Chiao-Po; Chen, Yen-Hui; Chang, Yung-Lung; Sadoshima, Junichi; Huang, Shih-Ming; Tsai, Chien-Sung; Lin, Chih-Yuan

    2017-02-01

    The longevity regulator Sirtuin 1 is an NAD + -dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1 -/- ) and control (Sirt1 f/f ) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. Compared with 6-month-old Sirt1 f/f mice, marked impaired contractility was observed in 12-month-old Sirt1 -/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1 -/- mice compared with those in Sirt1 f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1 -/- mice injected with a protein disulphide isomerase inhibitor. The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  4. Tumor Growth Increases Neuroinflammation, Fatigue and Depressive-like Behavior Prior to Alterations in Muscle Function

    PubMed Central

    Norden, Diana M.; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J.; Wold, Loren E.; Reiser, Peter J.; Godbout, Jonathan P.; McCarthy, Donna O.

    2014-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. PMID:25102452

  5. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    PubMed

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.

    2017-01-01

    ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584

  7. Expansion and concatenation of nonmuscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis

    PubMed Central

    Fenix, Aidan M.; Taneja, Nilay; Buttler, Carmen A.; Lewis, John; Van Engelenburg, Schuyler B.; Ohi, Ryoma; Burnette, Dylan T.

    2016-01-01

    Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, nonmuscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks), but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non–mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-Fs/NMIIA-F stacks move together and align. We found that NMIIA-F stack formation was regulated by both motor activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II–based contractile systems are assembled. PMID:26960797

  8. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560

  9. Non-adrenergic, non-cholinergic neural activation in guinea-pig bronchi: powerful and frequency-dependent stabilizing effect on tone.

    PubMed Central

    Lindén, A.; Ullman, A.; Löfdahl, C. G.; Skoogh, B. E.

    1993-01-01

    1. We examined non-adrenergic, non-cholinergic (NANC) stimulation for its stabilizing effect on bronchial smooth-muscle tone with respect to its regulatory power and the effect of variations in neural impulse frequency. 2. The guinea-pig isolated main bronchus (n = 4-12) was pretreated with indomethacin (10 microM) and incubated with atropine (1 microM) and guanethidine (10 microM). Electrical field stimulation (EFS: 1200 mA, 0.5 ms, 240 s) was applied at various levels of tone prior to EFS: first without tone, then at a moderate tone induced by histamine (0.3 microM) and, finally, at a high tone induced by histamine (6 microM). Three different stimulation frequencies (1, 3 or 10 Hz) were used in order to produce moderate to near-maximum contractile and relaxant NANC neural responses. Both the contractile and the relaxant NANC responses were tetrodotoxin-sensitive in the guinea-pig isolated main bronchus (3 Hz). 3. Without tone prior to EFS, NANC activation (1, 3 or 10 Hz) induced a pronounced contractile response. At a moderate level of tone prior to EFS, NANC activation induced a less pronounced contractile response. At the highest level of tone prior to EFS, NANC activation induced a relaxant response. All these NANC responses adjusted the tone towards a similar level and this 'stabilization level' was 56(6)% at 1 Hz, 65(3)% at 3 Hz and 56(5)% at 10 Hz, expressed as a percentage of the maximum histamine-induced (0.1 mM) tone in each airway preparation. 4. There was a difference of approximately 90% of maximum between the highest and the lowest tone level prior to NANC activation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358575

  10. Rheological behavior of mammalian cells.

    PubMed

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  11. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  12. The effects of local forearm muscle cooling on motor unit properties.

    PubMed

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P < 0.05). Surface EMG decomposition showed muscle cooling increased the number of motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P < 0.001), but decreased MUAP amplitude (d = 0.2, P = 0.012). Individually, neither motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P < 0.001) and had an increased y-intercept (d = 0.9, P = 0.007) with muscle cooling. Since muscle contractility is impaired with muscle cooling, these findings suggest a compensatory increase in the number of active motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  13. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    PubMed

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  14. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  15. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    NASA Astrophysics Data System (ADS)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  16. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  17. Effects of the Tibetan herbal formula Padma Lax on visceral nociception and contractility of longitudinal smooth muscle in a rat model.

    PubMed

    Gschossmann, J M; Krayer, M; Flogerzi, B; Balsiger, B M

    2010-09-01

    The high prevalence of functional bowel disorders among the general population contrasts with the limited number of pharmacological treatment options for this condition. This has led to an interest for alternative therapeutic approaches. Padma Lax is an herbal laxative on the basis of Tibetan formulas. Our aim is to examine the effect of Padma Lax on visceral nociception in vivo and (B) on contractile activity of longitudinal smooth muscle of the lower gut in vitro and ex vivo. (A) Visceral sensory function in response to colorectal distension was assessed by abdominal wall electromyography in male Wistar rats pretreated with Padma Lax. (B) Effects of Padma Lax on contractility of gut smooth muscles were studied both in vitro with superfusion of the agent and ex vivo following oral administration of the preparation. Activities were measured as area under the curve. (A) For visceral sensitivity, no differences were observed between the Padma Lax and the control group. (B) Proximal colon muscle strips of the Padma Lax pretreated group showed significantly lower spontaneous contractility ex vivo than controls. Cholinergic procontractile stimulation was reduced in Padma Lax pretreated group and in colon strips of naive rats when Padma Lax was superfused in vitro (all P < 0.05). Cholinergic mechanisms appear to be important in the modulation of rat proximal colon contractility of orally and directly applied Padma Lax. These findings help elucidate a potential mechanism of action of this herbal remedy which has undergone clinical testing in patients with constipation predominant irritable bowel syndrome.

  18. A thermodynamical model for stress-fiber organization in contractile cells.

    PubMed

    Foucard, Louis; Vernerey, Franck J

    2012-01-02

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.

  19. Defect Proliferation in Active Nematic Suspensions

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant; Bowick, Mark J.; Giomi, Luca; Marchetti, M. Cristina

    2014-03-01

    The rich structure of equilibrium nematic suspensions, with their characteristic disclination defects, is modified when active forces come into play. The uniform nematic state is known to be unstable to splay (extensile) or bend (contractile) deformations above a critical activity. At even higher activity the flow becomes oscillatory and eventually turbulent. Using hydrodynamics, we classify the active flow regimes as functions of activity and order parameter friction for both contractile and extensile systems. The turbulent regime is marked by a non-zero steady state density of mobile defect pairs. The defect density itself scales with an ``active Ericksen number,'' defined as the ratio of the rate at which activity is injected into the system to the relaxation rate of orientational deformations. The work at Syracuse University was supported by the NSF on grant DMR-1004789 and by the Syracuse Soft Matter Program.

  20. Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis

    DTIC Science & Technology

    2015-12-01

    capsules were suspended in platelet - rich plasma , which was subsequently exposed to 1 U/mL of thrombin, the capsules successfully targeted target...activated platelets . As thrombi in myocardial infarctions and strokes are platelet - rich , this is an ideal system to achieve high concentrations of...AWARD NUMBER: W81XWH-13-1-0495 TITLE: Platelets as Contractile Nanomachines for Targeting Drug Delivery in Hemostasis and Thrombosis PRINCIPAL

  1. The complex field of interplay between vasoactive agents.

    PubMed

    Hansen, Pernille B

    2009-11-01

    Lai et al. provide important new information regarding the interaction between the sympathetic and renin-angiotensin systems in the regulation of glomerular afferent arteriolar contractility. Their study demonstrates a calcium-independent enhanced contractile response to angiotensin II following norepinephrine administration. The interplay between the norepinephrine- and angiotensin II-stimulated pathways could potentially be important in physiological as well as pathophysiological situations with increased sympathetic nervous system activity, such as hypertension.

  2. Long-term effects of UV light on contractility of rat arteries in vivo.

    PubMed

    Morimoto, Yuji; Kohyama, Shinya; Nakai, Kanji; Matsuo, Hirotaka; Karasawa, Fujio; Kikuchi, Makoto

    2003-10-01

    Several studies have shown that UV irradiation may be effective for preventing vascular restenosis or vasopasm. However, the long-term effects of UV light on the physiological properties of vessels such as arterial tension have not been elucidated. We therefore studied the long-term effects of UV using rat carotid arteries treated with UV-B light (wavelength = 313 nm, total energy = 14 mJ/mm2). The animals were sacrificed at 1, 7 and 14 days after UV light exposure, and the carotid arteries were studied by light microscopy and the contractile responses of isolated arterial rings were recorded under isometric tension. UV treatment had induced a substantial loss of smooth muscle cells (SMC) along the entire circumference of the media on days 7 and 14, whereas loss of SMC on day 1 was negligible. Contractile responses of arteries that had been exposed to UV light were significantly reduced on days, 1, 7 and 14. The susceptibility of UV-treated arteries to phenylephrine and prostaglandin F2 alpha was significantly decreased on days 1 and 7, but decreased susceptibility was not seen on day 14. Acetylcholine-induced relaxations were not altered by UV treatment. These results suggest that the long-term effect of UV light is an attenuation of smooth muscle contractility without impairment of endothelial function.

  3. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel

    PubMed Central

    Poincloux, Renaud; Collin, Olivier; Lizárraga, Floria; Romao, Maryse; Debray, Marcel; Piel, Matthieu; Chavrier, Philippe

    2011-01-01

    Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement. PMID:21245302

  4. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.

    PubMed

    Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J

    2011-11-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.

  5. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium

    PubMed Central

    Loza, Andrew J.; Koride, Sarita; Schimizzi, Gregory V.; Li, Bo; Sun, Sean X.; Longmore, Gregory D.

    2016-01-01

    The mechanisms underlying collective migration are important for understanding development, wound healing, and tumor invasion. Here we focus on cell density to determine its role in collective migration. Our findings show that increasing cell density, as might be seen in cancer, transforms groups from broad collectives to small, narrow streams. Conversely, diminishing cell density, as might occur at a wound front, leads to large, broad collectives with a distinct leader–follower structure. Simulations identify force-sensitive contractility as a mediator of how density affects collectives, and guided by this prediction, we find that the baseline state of contractility can enhance or reduce organization. Finally, we test predictions from these data in an in vivo epithelium by using genetic manipulations to drive collective motion between predicted migratory phases. This work demonstrates how commonly altered cellular properties can prime groups of cells to adopt migration patterns that may be harnessed in health or exploited in disease. PMID:27605707

  6. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  7. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    PubMed

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental observations qualitatively, as well as quantitatively within a range of physiological parametric values. The model also illustrated how increased intercellular coupling led to smooth muscle coordination and the genesis of vascular tone. © 2018 The Authors.

  8. Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery.

    PubMed

    Rolando, Monica; Stefani, Caroline; Doye, Anne; Acosta, Maria I; Visvikis, Orane; Yevick, Hannah G; Buchrieser, Carmen; Mettouchi, Amel; Bassereau, Patricia; Lemichez, Emmanuel

    2015-10-01

    It remains a challenge to decode the molecular basis of the long-term actin cytoskeleton rearrangements that are governed by the reprogramming of gene expression. Bacillus anthracis lethal toxin (LT) inhibits mitogen-activated protein kinase (MAPK) signaling, thereby modulating gene expression, with major consequences for actin cytoskeleton organization and the loss of endothelial barrier function. Using a laser ablation approach, we characterized the contractile and tensile mechanical properties of LT-induced stress fibers. These actin cables resist pulling forces that are transmitted at cell-matrix interfaces and at cell-cell discontinuous adherens junctions. We report that treating the cells with trichostatin A (TSA), a broad range inhibitor of histone deacetylases (HDACs), or with MS-275, which targets HDAC1, 2 and 3, induces stress fibers. LT decreased the cellular levels of HDAC1, 2 and 3 and reduced the global HDAC activity in the nucleus. Both the LT and TSA treatments induced Rnd3 expression, which is required for the LT-mediated induction of actin stress fibers. Furthermore, we reveal that treating the LT-intoxicated cells with garcinol, an inhibitor of histone acetyl-transferases (HATs), disrupts the stress fibers and limits the monolayer barrier dysfunctions. These data demonstrate the importance of modulating the flux of protein acetylation in order to control actin cytoskeleton organization and the endothelial cell monolayer barrier. © 2015 Wiley Periodicals, Inc.

  9. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells.

    PubMed

    Shadrin, Ilya Y; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-07-10

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca(2+) indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25-40% of hMSCs (from 4 independent donors) acquired periodic Ca(2+) transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca(2+) current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca(2+) channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy.

  10. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    PubMed

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The effects of tapering on strength performance in trained athletes.

    PubMed

    Gibala, M J; MacDougall, J D; Sale, D G

    1994-11-01

    The optimum pre-competition taper procedure for "strength athletes" is not known. We examined voluntary strength and evoked contractile properties of the elbow flexors over a 10 day rest only (ROT) and a 10 day reduced volume taper (RVT) in 8 resistance trained males (23 +/- 2.1 years). Following 3 wks of standardized training of the elbow flexors, subjects were randomly assigned to one of the tapers. Upon completion, they resumed training for 3 wks and completed the other taper. No arm training was performed during the ROT, while high intensity, low volume training was done every second day during the RVT. Maximum isometric (MVC), low (0.52 rad.s-1; LV) and high velocity (3.14 rad.s-1; HV) concentric peak torque, and evoked isometric twitch contractile properties were measured before and after each training phase and every 48 h during each taper. ANOVA comparison of the tapers revealed that MVC increased (p < or = 0.05) over pre-taper values throughout the RVT (measurement days 2, 4, 6, 8 and 10), as did LV at 2, 4, 6, and 8 d. MVC did not change over the ROT but LV was significantly higher on day 2 and lower on days 8 and 10. LV was also greater on days 4, 6, 8 and 10 during the RVT compared to the ROT. The evoked contractile properties remained largely unchanged. The data indicate that resistance-trained athletes can improve low velocity concentric strength for at least 8 days by greatly reducing training volume, but maintaining training intensity.

  12. The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction.

    PubMed

    Tosovic, D; Than, C; Brown, J M M

    2016-08-01

    Muscle fatigue has been identified as a risk factor for spontaneous muscle injuries in sport. However, few studies have investigated the accumulated effects of muscle fatigue on human muscle contractile properties. This study aimed to determine whether repeated bouts of exercise inducing acute fatigue leads to longer-term fatigue-related changes in muscle contractile properties. Maximum voluntary contraction (MVC), electromyographic (EMG) and mechanomyographic (MMG) measures were recorded in the biceps brachii of 11 participants for 13 days, before and after a maximally fatiguing exercise protocol. The exercise protocol involved participants repetitively lifting a weight (concentric contractions only) equal to 40 % MVC, until failure. A significant (p < 0.05) acute pre- to post-exercise decline of biceps brachii MVC and median power frequency (MPF) was observed each day, whilst no difference existed between pre-exercise MVC or MPF values on subsequent days (days 2-13). However, decreases in number of lift repetitions and in pre-exercise MMG values of muscle belly displacement, contraction velocity and half-relaxation velocity were observed through to day 13. Whilst MVC and MPF measures resolved by the following day's test session, MMG measures indicated an ongoing decrement in muscle performance through days 2-13 consistent with the decline in lift repetitions observed. These results suggest that MMG may be more sensitive in detecting accumulated muscle fatigue than the 'gold standard' measures of MVC/MPF. Considering that muscle fatigue leads to injury, the on-going monitoring of MMG derived contractile properties of muscles in athletes may aid in the prediction of fatigued-induced muscle injury.

  13. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants. PMID:25939652

  14. Effects of intra-aortic balloon pump counterpulsation on left ventricular mechanoenergetics in a porcine model of acute ischemic heart failure.

    PubMed

    Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John

    2014-12-01

    We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.

  15. A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes

    PubMed Central

    Bun, Philippe; Dmitrieff, Serge; Belmonte, Julio M

    2018-01-01

    While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development. PMID:29350616

  16. Mechanics of epithelial closure over non-adherent environments

    NASA Astrophysics Data System (ADS)

    Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit

    2015-01-01

    The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level.

  17. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness.

    PubMed

    van Soest, A J Knoek; Rozendaal, Leonard A

    2008-07-01

    Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.

  18. Mechanics of epithelial closure over non-adherent environments

    PubMed Central

    Vedula, Sri Ram Krishna; Peyret, Grégoire; Cheddadi, Ibrahim; Chen, Tianchi; Brugués, Agustí; Hirata, Hiroaki; Lopez-Menendez, Horacio; Toyama, Yusuke; Neves de Almeida, Luís; Trepat, Xavier; Lim, Chwee Teck; Ladoux, Benoit

    2015-01-01

    The closure of gaps within epithelia is crucial to maintain its integrity during biological processes such as wound healing and gastrulation. Depending on the distribution of extracellular matrix, gap closure occurs through assembly of multicellular actin-based contractile cables or protrusive activity of border cells into the gap. Here we show that the supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on the surrounding tissue to promote closure of non-adherent gaps. Using traction force microscopy, we observe that cell-generated forces on the substrate at the gap edge first point away from the centre of the gap and then increase in the radial direction pointing into the gap as closure proceeds. Combining with numerical simulations, we show that the increase in force relies less on localized purse-string contractility and more on large-scale remodelling of the suspended tissue around the gap. Our results provide a framework for understanding the assembly and the mechanics of cellular contractility at the tissue level. PMID:25608921

  19. Ginseng Is Useful to Enhance Cardiac Contractility in Animals

    PubMed Central

    Cherng, Yih-Giun; Chen, Li-Jen; Niu, Ho-Shan; Chang, Chen Kuei; Niu, Chiang-Shan

    2014-01-01

    Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδ in ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginseng ex vivo and in vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamic dP/dt max significantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδ expression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδ expression in cardiac cells. PMID:24689053

  20. Blood pressure and the contractility of a human leg muscle.

    PubMed

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  1. Blood pressure and the contractility of a human leg muscle

    PubMed Central

    Luu, Billy L; Fitzpatrick, Richard C

    2013-01-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946

  2. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency.

    PubMed

    Chettimada, Sukrutha; Joshi, Sachindra Raj; Dhagia, Vidhi; Aiezza, Alessandro; Lincoln, Thomas M; Gupte, Rakhee; Miano, Joseph M; Gupte, Sachin A

    2016-10-01

    Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1,N 2 -etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways. Copyright © 2016 the American Physiological Society.

  3. How does the urothelium affect bladder function in health and disease?

    PubMed Central

    Birder, L.A.; Ruggieri, M.; Takeda, M.; van Koeveringe, G.; Veltkamp, S.A.; Korstanje, C.; Parsons, B.A.; Fry, C.H.

    2011-01-01

    The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. PMID:22275289

  4. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    PubMed Central

    2012-01-01

    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases. PMID:23259712

  5. Hibiscus Sabdariffa L. Flowers and Olea Europea L. Leaves Extract-Based Formulation for Hypertension Care: In Vitro Efficacy and Toxicological Profile.

    PubMed

    Micucci, Matteo; Angeletti, Andrea; Cont, Massimiliano; Corazza, Ivan; Aldini, Rita; Donadio, Elisa; Chiarini, Alberto; Budriesi, Roberta

    2016-05-01

    Olea europaea L. leaves extract (Oe) and Hybiscus sabdariffa L. flowers extract (Hs) have calcium antagonistic properties. Aim of this work was to study the cardiovascular effects of Pres Phytum(®), a nutraceutical formulation containing a mixture of the two extracts and the excipients, and investigate its possible off-target effects, using in vitro biological assays on guinea pig isolated organs. Cardiovascular effects were assessed using guinea pig atria and aorta. The effects of Pres Phytum on spontaneous gastrointestinal, urinary, and respiratory tracts smooth muscle contractility were evaluated. Pres Phytum exerted a vasorelaxant effect (IC50 = 2.38 mg/mL) and a negative chronotropic effect (IC50 = 1.04 mg/mL) at concentrations lower than those producing smooth muscle spontaneous contractility alterations in the other organs. Compared to Pres Phytum, the mixture did not exert negative inotropic activity, while it maintained a negative chronotropic efficacy (IC50 = 1.04 mg/mL). These experimental data suggest a possible nutraceutical use of this food supplement for the management of preclinical hypertension.

  6. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  7. Resistance to radial expansion limits muscle strain and work

    PubMed Central

    Deslauriers, A. R.; Holt, N. C.; Eaton, C. E.

    2018-01-01

    The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance. PMID:28432448

  8. Introduction of non-linear elasticity models for characterization of shape and deformation statistics: application to contractility assessment of isolated adult cardiocytes.

    PubMed

    Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul

    2011-08-22

    We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.

  9. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  10. Cardiac Dysfunction in HIV-1 Transgenic Mouse: Role of Stress and BAG3.

    PubMed

    Cheung, Joseph Y; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Tilley, Douglas G; Gao, Erhe; Koch, Walter J; Rabinowitz, Joseph; Klotman, Paul E; Khalili, Kamel; Feldman, Arthur M

    2015-08-01

    Since highly active antiretroviral therapy improved long-term survival of acquired immunodeficiency syndrome (AIDS) patients, AIDS cardiomyopathy has become an increasingly relevant clinical problem. We used human immunodeficiency virus (HIV)-1 transgenic (Tg26) mouse to explore molecular mechanisms of AIDS cardiomyopathy. Tg26 mice had significantly lower left ventricular (LV) mass and smaller end-diastolic and end-systolic LV volumes. Under basal conditions, cardiac contractility and relaxation and single myocyte contraction dynamics were not different between wild-type (WT) and Tg26 mice. Ten days after open heart surgery, contractility and relaxation remained significantly depressed in Tg26 hearts, suggesting that Tg26 mice did not tolerate surgical stress well. To simulate heart failure in which expression of Bcl2-associated athanogene 3 (BAG3) is reduced, we down-regulated BAG3 by small hairpin ribonucleic acid in WT and Tg26 hearts. BAG3 down-regulation significantly reduced contractility in Tg26 hearts. BAG3 overexpression rescued contractile abnormalities in myocytes expressing the HIV-1 protein Tat. We conclude: (i) Tg26 mice exhibit normal contractile function at baseline; (ii) Tg26 mice do not tolerate surgical stress well; (iii) BAG3 down-regulation exacerbated cardiac dysfunction in Tg26 mice; (iv) BAG3 overexpression rescued contractile abnormalities in myocytes expressing HIV-1 protein Tat; and (v) BAG3 may occupy a role in pathogenesis of AIDS cardiomyopathy. © 2015 Wiley Periodicals, Inc.

  11. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  12. Adenosine triphosphate as a molecular mediator of the vascular response to injury.

    PubMed

    Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M

    2017-08-01

    Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates.

    PubMed

    Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J

    2017-11-15

    Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and electrical activity, calcium cycling, and force generation, is therefore of paramount importance. hPSC-CMs cultured on stiff substrates like glass or polystyrene do not have the ability to shorten during contraction, making them less suitable for the study of hPSC-CM contractile function. Other approaches require highly specialized hardware and are difficult to reproduce. Here we describe a protocol for the preparation of hPSC-CMs on soft substrates that enable shortening, and subsequently the simultaneous quantitative analysis of their contractile and electrical activity, calcium cycling, and force generation at single-cell resolution. This protocol requires only affordable and readily available materials and works with standard imaging hardware. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece.

    PubMed

    Pavlović, Dragana R; Branković, Suzana; Kovačević, Nada; Kitić, Dušanka; Veljković, Slavimir

    2011-05-01

    Arbutus unedo leaf is used traditionally for gastrointestinal complaints. Ethanol extracts from Arbutus unedo collected in both Montenegro (AuM) and Greece (AuG) were found to decrease the ileal basal tonus, with AuG producing a significantly higher (p < 0.05) reduction in contractile response to acetylcholine. AuM and AuG relaxed 80 mM K(+) induced contractions and shifted the Ca(++) concentration-response curves to the right, similar to that caused by verapamil, suggesting that the spasmolytic effect was induced through calcium channel inhibition. The antioxidant activity of AuM and AuG and the phenolic content of the extracts and dry plant material were studied, and both extracts were found to possess considerable antioxidant properties. AuG showed a stronger in vitro antioxidative activity in the DPPH assay and in the TBA test. Polyphenol, tannin and flavonoid levels were higher in AuG, supporting the more potent spasmolytic and antioxidative effects, whereas the arbutin content was higher in dry plant material collected in Montenegro. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

    PubMed

    Land, Sander; Gurev, Viatcheslav; Arens, Sander; Augustin, Christoph M; Baron, Lukas; Blake, Robert; Bradley, Chris; Castro, Sebastian; Crozier, Andrew; Favino, Marco; Fastl, Thomas E; Fritz, Thomas; Gao, Hao; Gizzi, Alessio; Griffith, Boyce E; Hurtado, Daniel E; Krause, Rolf; Luo, Xiaoyu; Nash, Martyn P; Pezzuto, Simone; Plank, Gernot; Rossi, Simone; Ruprecht, Daniel; Seemann, Gunnar; Smith, Nicolas P; Sundnes, Joakim; Rice, J Jeremy; Trayanova, Natalia; Wang, Dafang; Jenny Wang, Zhinuo; Niederer, Steven A

    2015-12-08

    Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.

  16. Effect of oxytocin on contraction of rabbit proximal colon in vitro

    PubMed Central

    Xie, Dong-Ping; Chen, Lian-Bi; Liu, Chuan-Yong; Liu, Jing-Zhang; Liu, Ke-Jing

    2003-01-01

    AIM: To investigate the effects of oxytocin (OT) on isolated rabbit proximal colon and its mechanism. METHODS: Both longitudinal muscle (LM) and circular muscle (CM) were suspended in a tissue chamber containing 5 mL Krebs solution (37 °C), bubbled continuously with 950 mL·L-1 O2 and 50 mL·L-1 CO2. Isometric spontaneous contractile responses to oxytocin or other drugs were recorded in circular and longitudinal muscle strips. RESULTS: OT (0.1 U·L-1) failed to elicit significant effects on the contractile activity of proximal colonic smooth muscle strips (P > 0.05). OT (1 to 10 U·L-1) decreased the mean contractile amplitude and the contractile frequency of CM and LM. Hexamethonium (10 μmol·L-1) partly blocked the inhibition of oxytocin (1 U·L-1) on the contractile frenquency of CM. Nω-nitro-L-arginine-methylester (L-NAME, 1 μmol·L-1), progesterone (32 μmol·L-1) and estrogen (2.6 μmol·L-1) had no effects on OT-induced responses. CONCLUSION: OT inhibits the motility of proximal colon in rabbits. The action is partly relevant with N receptor, but irrelevant with that of NO, progesterone or estrogen. PMID:12508375

  17. A cdk1 gradient guides surface contraction waves in oocytes.

    PubMed

    Bischof, Johanna; Brand, Christoph A; Somogyi, Kálmán; Májer, Imre; Thome, Sarah; Mori, Masashi; Schwarz, Ulrich S; Lénárt, Péter

    2017-10-11

    Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase. The SCW's directionality and speed are controlled by a spatiotemporal gradient of cdk1-cyclinB. This gradient is formed by the release of cdk1-cyclinB from the asymmetrically located nucleus, and progressive degradation of cyclinB. By combining quantitative imaging, biochemical and mechanical perturbations with mathematical modeling, we demonstrate that the SCWs result from the spatiotemporal integration of two conserved regulatory modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.Surface contraction waves (SCWs) are prominent shape changes coupled to cell cycle transitions in oocytes. Here the authors show that SCWs are patterned by the spatiotemporal integration of two conserved modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.

  18. [A basis for application of cardiac contractility variability in the Evaluation and assessment of exercise and fitness].

    PubMed

    Bu, Bin; Wang, Aihua; Han, Haijun; Xiao, Shouzhong

    2010-06-01

    Cardiac contractility variability (CCV) is a new concept which is introduced in the research field of cardiac contractility in recent years, that is to say, there are some disparities between cardiac contractilities when heart contracts. The changing signals of cardiac contractility contain a plenty of information on the cardiovascular function and disorder. In order to collect and analyze the message, we could quantitatively evaluate the tonicity and equilibrium of cardiac sympathetic nerve and parasympathetic nerve, and the effects of bio-molecular mechanism on the cardiovascular activities. By analyzing CCV, we could further understand the background of human being's heritage characteristics, nerve types, the adjusting mechanism, the molecular biology, and the adjustment of cardiac automatic nerve. With the development of the computing techniques, the digital signal processing method and its application in medical field, this analysis has been progressing greatly. By now, the assessment of CCV, just like the analysis of heart rate variability, is mainly via time domain and frequency domain analysis. CCV is one of the latest research fields in human cardiac signals being scarcely reported in the field of sports medicine; however, its research progresses are of important value for cardiac physiology and pathology in sports medicine and rehabilitation medicine.

  19. Fatigability and Blood Flow in the Rat Gastrocnemius-Plantaris-Soleus after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to test the hypothesis that hindlimb suspension increases the fatigability of the soleus during intense contractile activity and determine whether the increased fatigue is associated with a reduced muscle blood flow. Cage-control (C) and 15-day hindlimb-suspended (HS) rats were anesthetized, and either the gastrocnemius-plantaris-soleus (G-P-S) muscle group or the soleus was stimulated (100 Hz, 100-ms trains at 120/min) for 10 min in situ. In the G-P-S preparation, blood flow was measured with radiolabeled microspheres before and at 2 and 10 min of contractile activity. The G-P-S fatigued markedly at this stimulation frequency, and the differences between C and HS animals were not significant until the 9th min of contractile activity. In contrast, the stimulation resulted in faster rates and significantly larger amounts of fatigue in the soleus from HS than from C animals. The atrophied soleus showed significant differences by I min of stimulation (C = 70 +/- 1% vs. HS = 57 +/- 2% of peak train force) and remained different at 10 min (C = 64 +/- 4% vs. HS = 45 +/- 2% peak train force). Relative blood flow to the soleus was similar between groups before and during contractile activity (rest: C = 20 +/- 3 vs. HS= 12 +/- 3; 2 min: C= 128 +/- 6 vs. HS = 118 +/- 4; 10 min: C = 123 +/- 11 vs. HS = 105 +/- 11 ml min(exp -1) 100 g(exp -1)). In conclusion, these results established that 15 days of HS increased the fatigability of the soleus, but the effect was not caused by a reduced muscle blood flow.

  20. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    PubMed Central

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  1. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit.

    PubMed

    Lentle, Roger G; Janssen, Patrick W M; Asvarujanon, Patchana; Chambers, Paul; Stafford, Kevin J; Hemar, Yacine

    2008-03-01

    Four types of contractile activity were identified and characterised in the isolated triple haustrated proximal colon of the rabbit using high-definition spatiotemporal mapping techniques. Mass peristalses were hexamethonium-sensitive deep circular contractions with associated taenial longitudinal contractile activity that occurred irregularly and propagated rapidly aborad, preceded by a zone of local lumen distension. They were sufficiently sustained for each event to occupy the length of the isolated colonic segment and the contraction persisted longer orally than aborally, the difference being more pronounced when lumen contents were viscous. Haustra were bounded by deep even-spaced ring contractions that progressed slowly aborad (haustral progression). Haustral formation and progression were hexamethonium-sensitive and coordinated across intertaenial domains. Ripples were hexamethonium-resistant phasic circular contractions that propagated predominantly orad at varying rates. In the presence of haustra, they were uncoordinated across intertaenial domains but were more coordinated when haustra were absent. Fast phasic contractions were relatively shallow hexamethonium-resistant contractions that propagated rapidly in a predominantly aborad direction. Fast phasic circular contractions were accompanied by taenial longitudinal muscle contractions which increased in amplitude prior to a mass peristaltic event and following the administration of hexamethonium. On the basis of the concurrence and interaction of these contractile activities, we hypothesise that dual pacemakers are present with fast phasic contractions being modulated by the interstitial cells of Cajal in the Auerbach's plexus (ICC-MY) while ripples are due to the submucosal ICC (ICC-SM). Further, that ICC-SM mediate the enteric motor neurons that generate haustral progression, while the intramuscular ICC (ICC-IM) mediate mass peristalsis. The orad movement of watery fluid was possibly due to ripples in the absence of haustra.

  2. Characterizing the Propagation of Uterine Electrophysiological Signals Recorded with a Multi-Sensor Abdominal Array in Term Pregnancies.

    PubMed

    Escalona-Vargas, Diana; Govindan, Rathinaswamy B; Furdea, Adrian; Murphy, Pam; Lowery, Curtis L; Eswaran, Hari

    2015-01-01

    The objective of this study was to quantify the number of segments that have contractile activity and determine the propagation speed from uterine electrophysiological signals recorded over the abdomen. The uterine magnetomyographic (MMG) signals were recorded with a 151 channel SARA (SQUID Array for Reproductive Assessment) system from 36 pregnant women between 37 and 40 weeks of gestational age. The MMG signals were scored and segments were classified based on presence of uterine contractile burst activity. The sensor space was then split into four quadrants and in each quadrant signal strength at each sample was calculated using center-of-gravity (COG). To this end, the cross-correlation analysis of the COG was performed to calculate the delay between pairwise combinations of quadrants. The relationship in propagation across the quadrants was quantified and propagation speeds were calculated from the delays. MMG recordings were successfully processed from 25 subjects and the average values of propagation speeds ranged from 1.3-9.5 cm/s, which was within the physiological range. The propagation was observed between both vertical and horizontal quadrants confirming multidirectional propagation. After the multiple pairwise test (99% CI), significant differences in speeds can be observed between certain vertical or horizontal combinations and the crossed pair combinations. The number of segments containing contractile activity in any given quadrant pair with a detectable delay was significantly higher in the lower abdominal pairwise combination as compared to all others. The quadrant-based approach using MMG signals provided us with high spatial-temporal information of the uterine contractile activity and will help us in the future to optimize abdominal electromyographic (EMG) recordings that are practical in a clinical setting.

  3. Characterizing the Propagation of Uterine Electrophysiological Signals Recorded with a Multi-Sensor Abdominal Array in Term Pregnancies

    PubMed Central

    Escalona-Vargas, Diana; Govindan, Rathinaswamy B.; Furdea, Adrian; Murphy, Pam; Lowery, Curtis L.; Eswaran, Hari

    2015-01-01

    The objective of this study was to quantify the number of segments that have contractile activity and determine the propagation speed from uterine electrophysiological signals recorded over the abdomen. The uterine magnetomyographic (MMG) signals were recorded with a 151 channel SARA (SQUID Array for Reproductive Assessment) system from 36 pregnant women between 37 and 40 weeks of gestational age. The MMG signals were scored and segments were classified based on presence of uterine contractile burst activity. The sensor space was then split into four quadrants and in each quadrant signal strength at each sample was calculated using center-of-gravity (COG). To this end, the cross-correlation analysis of the COG was performed to calculate the delay between pairwise combinations of quadrants. The relationship in propagation across the quadrants was quantified and propagation speeds were calculated from the delays. MMG recordings were successfully processed from 25 subjects and the average values of propagation speeds ranged from 1.3–9.5 cm/s, which was within the physiological range. The propagation was observed between both vertical and horizontal quadrants confirming multidirectional propagation. After the multiple pairwise test (99% CI), significant differences in speeds can be observed between certain vertical or horizontal combinations and the crossed pair combinations. The number of segments containing contractile activity in any given quadrant pair with a detectable delay was significantly higher in the lower abdominal pairwise combination as compared to all others. The quadrant-based approach using MMG signals provided us with high spatial-temporal information of the uterine contractile activity and will help us in the future to optimize abdominal electromyographic (EMG) recordings that are practical in a clinical setting. PMID:26505624

  4. Myotropic Effects of Cholinergic Muscarinic Agonists and Antagonists in the Beetle Tenebrio molitor L.

    PubMed

    Chowanski, Szymon; Rosinski, Grzegorz

    2017-01-01

    In mammals, the cholinergic nervous system plays a crucial role in neuronal regulation of physiological processes. It acts on cells by two types of receptors - nicotinic and muscarinic receptors. Both signal transmission pathways also operate in the central and peripheral cholinergic nervous system of insects. In our pharmacological experiments, we studied the effects of two muscarinic agonists (carbachol, pilocarpine) and two muscarinic antagonists (atropine, scopolamine) on the muscle contractile activity of visceral organs in the beetle, Tenebrio molitor. Both antagonists, when injected to haemolymph at concentration 10-5 M, caused delayed and prolonged cardioinhibitory effects on heart contractility in ortho- and antidromic phases of heart activity in T. molitor pupa what was observed as negative chrono- and inotropic effects. Agonist of muscarinic receptors - carbachol evoked opposite effect and increased contraction rate but only in antidromic phase. Pilocarpine, the second agonist induced weak negative chronotropic effects in the antiand orthodromic phases of heart activity. However, neither agonists had an effect on semi-isolated beetle heart in vitro. Only atropine at the highest tested concentrations slightly decreased the frequency of myocardial contractions. These suggest the regulation of heart activity by muscarinic system indirectly. The tested compounds also affected the contractility of the oviduct and hindgut, but the responses of these organs were varied and depended on the concentration of the applied compounds. These pharmacological experiments suggest the possible modulation of insect visceral muscle contractility by the cholinergic nervous system and indirectly indicate the presence of muscarinic receptor(s) in the visceral organs of the beetle T. molitor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Activation of neurokinin NK(2) receptors by tachykinin peptides causes contraction of uterus in pregnant women near term.

    PubMed

    Patak, E N; Ziccone, S; Story, M E; Fleming, A J; Lilley, A; Pennefather, J N

    2000-06-01

    The aim of this study was firstly to elucidate whether the mammalian tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB)-regulated contractility of myometrium obtained from near-term pregnant women, and secondly to investigate the receptor subtype(s) responsible. In the presence of peptidase inhibitors, i.e. thiorphan (3 micromol/l; endopeptidase 24.11 inhibitor), captopril (10 micromol/l; angiotensin converting enzyme inhibitor) and bestatin (10 micromol/l; aminopeptidase inhibitor); all three mammalian tachykinins elicited concentration-related contractions of isolated myometrial preparations. The rank order of agonist potency of the mammalian tachykinins in the presence of the peptidase inhibitors was NKA > SP = NKB, indicating that the contractile effects were mediated by activation of an NK(2) receptor. The NK(2) receptor-selective agonist, [Lys(5), MeLeu(9), Nle(10)]NKA(4-10), produced concentration-related contractile responses, while the respective NK(1) and NK(3) receptor-selective agonists, [Sar(9), Met(O(2))(11)]SP and [N-MePhe(7)]NKB, had no effect either in the absence or presence of the peptidase inhibitors. The NK(2) receptor-selective antagonist, SR48968, produced concentration-related rightward shift in the log concentration curve to [Lys(5), MeLeu(9), Nle(10)]NKA(4-10). This study shows that tachykinins elicit contractile effects on human myometrium obtained from pregnant women near term, and that these effects are mediated by an NK(2) receptor. An excitatory effect of the tachykinins on these preparations could indicate a physiological role for these peptides in enhancing contractility of the uterus in women at term.

  6. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics.

    PubMed

    Durham, Jennifer T; Surks, Howard K; Dulmovits, Brian M; Herman, Ira M

    2014-11-01

    Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction. Copyright © 2014 the American Physiological Society.

  7. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  8. Using Force to Punch Holes: Mechanics of Contractile Nanomachines.

    PubMed

    Brackmann, Maximilian; Nazarov, Sergey; Wang, Jing; Basler, Marek

    2017-09-01

    Using physical force to translocate macromolecules across a membrane has the advantage of being a universal solution independent of the properties of the target membrane. However, physically punching a stiff membrane is not a trivial task and three things are necessary for success: a sharp tip, a source of energy, and the ability to strongly bind to the target. In this review we describe the basic mechanism of membrane puncturing by contractile nanomachines with a focus on the T4 phage, R-type pyocin, and the bacterial Type VI secretion system (T6SS) based on recent studies of the structures and dynamics of their assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The role of titin in eccentric muscle contraction.

    PubMed

    Herzog, Walter

    2014-08-15

    Muscle contraction and force regulation in skeletal muscle have been thought to occur exclusively through the relative sliding of and the interaction between the contractile filaments actin and myosin. While this two-filament sarcomere model has worked well in explaining the properties of isometrically and concentrically contracting muscle, it has failed miserably in explaining experimental observations in eccentric contractions. Here, I suggest, and provide evidence, that a third filament, titin, is involved in force regulation of sarcomeres by adjusting its stiffness in an activation-dependent (calcium) and active force-dependent manner. Upon muscle activation, titin binds calcium at specific sites, thereby increasing its stiffness, and cross-bridge attachment to actin is thought to free up binding sites for titin on actin, thereby reducing titin's free-spring length, thus increasing its stiffness and force upon stretch of active muscle. This role of titin as a third force regulating myofilament in sarcomeres, although not fully proven, would account for many of the unexplained properties of eccentric muscle contraction, while simultaneously not affecting the properties predicted by the two-filament cross-bridge model in isometric and concentric muscle function. Here, I identify the problems of the two-filament sarcomere model and demonstrate the advantages of the three-filament model by providing evidence of titin's contribution to active force in eccentric muscle function. © 2014. Published by The Company of Biologists Ltd.

  10. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    PubMed

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  11. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy.

    PubMed

    Guo, Rui; Zhang, Yingmei; Turdi, Subat; Ren, Jun

    2013-08-01

    Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22weeks. After 40day feeding, mice were treated with 2mg/kg rapamycin or vehicle every other day for 42days on respective fat diet. Cardiomyocyte contractile and Ca(2+) transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca(2+) derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The influence of muscle length on the fatigue-related reduction in joint range of motion of the human dorsiflexors.

    PubMed

    Cheng, Arthur J; Davidson, Andrew W; Rice, Charles L

    2010-06-01

    The fatigue-related reduction in joint range of motion (ROM) during dynamic contraction tasks may be related to muscle length-dependent alterations in torque and contractile kinetics, but this has not been systematically explored previously. Twelve young men performed a repetitive voluntary muscle shortening contraction task of the dorsiflexors at a contraction load of 30% of maximum voluntary isometric contraction (MVC) torque, until total 40 degrees ROM had decreased by 50% at task failure (POST) to 20 degrees ROM. At both a short (5 degrees dorsiflexion) and long muscle length (35 degrees plantar flexion joint angle relative to a 0 degrees neutral ankle joint position), voluntary activation, MVC torque, and evoked tibialis anterior contractile properties of a 52.8 Hz high-frequency isometric tetanus [peak evoked torque, maximum rate of torque development (MRTD), maximum rate of relaxation (MRR)] were evaluated at baseline (PRE), at POST, and up to 10 min of recovery. At POST, we measured similar fatigue-related reductions in torque (voluntary and evoked) and slowing of contractile kinetics (MRTD and MRR) at both the short and long muscle lengths. Thus, the fatigue-related reduction in ROM could not be explained by length-dependent fatigue. Although torque (voluntary and evoked) at both muscle lengths was depressed and remained blunted throughout the recovery period, this was not related to the rapid recovery of ROM at 0.5 min after task failure. The reduction in ROM, however, was strongly related to the reduction in joint angular velocity (R(2) = 0.80) during the fatiguing task, although additional factors cannot yet be overlooked.

  13. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

  14. Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation.

    PubMed

    Yang, Lifang; Gao, Jian-Yuan; Ma, Jipeng; Xu, Xihui; Wang, Qiurong; Xiong, Lize; Yang, Jian; Ren, Jun

    2015-09-02

    Hypertension is an independent risk factor for heart disease and is responsible for the increased cardiac morbidity and mortality. Oxidative stress plays a key role in hypertensive heart diseases although the precise mechanism remains unclear. This study was designed to examine the effect of cardiac-specific overexpression of metallothionein, a cysteine-rich antioxidant, on myocardial contractile and intracellular Ca(2+) anomalies in N(G)-nitro-l-arginine methyl ester (l-NAME)-induced experimental hypertension and the mechanism involved with a focus on autophagy. Our results revealed that l-NAME treatment (14 days) led to hypertension and myocardial anomalies evidenced by interstitial fibrosis, cardiomyocyte hypertrophy, increased LV end systolic and diastolic diameters (LVESD and LVEDD) along with suppressed fractional shortening. l-NAME compromised cardiomyocyte contractile and intracellular Ca(2+) properties manifested as depressed peak shortening, maximal velocity of shortening/relengthening, electrically-stimulated rise in intracellular Ca(2+), elevated baseline and peak intracellular Ca(2+). These l-NAME-induced histological and mechanical changes were attenuated or reconciled by metallothionein. Protein levels of autophagy markers LC3B and p62 were decreased and increased, respectively. Autophagy signaling molecules AMPK, TSC2 and ULK1 were inactivated while those of mTOR and p70s6K were activated by l-NAME, the effects of which were ablated by metallothionein. Autophagy induction mimicked whereas autophagy inhibition nullified the beneficial effect of metallothionein against l-NAME. These findings suggested that metallothionein protects against l-NAME-induced myocardial anomalies possibly through restoration of autophagy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Geraniol blocks calcium and potassium channels in the mammalian myocardium: useful effects to treat arrhythmias.

    PubMed

    de Menezes-Filho, José Evaldo Rodrigues; Gondim, Antônio Nei Santana; Cruz, Jader Santos; de Souza, Américo Azevedo; Santos, José Nilson Andrade Dos; Conde-Garcia, Eduardo Antônio; de Sousa, Damião Pergentino; Santos, Michel Santana; de Oliveira, Evaleide Diniz; de Vasconcelos, Carla Maria Lins

    2014-12-01

    Geraniol is a monoterpene present in several essential oils, and it is known to have a plethora of pharmacological activities. In this study, we explored the contractile and electrophysiological properties of geraniol and its antiarrhythmic effects in the heart. The geraniol effects on atrial contractility, L-type Ca(2+) current, K(+) currents, action potential (AP) parameters, ECG profile and on the arrhythmia induced by ouabain were evaluated. In the atrium, geraniol reduced the contractile force (~98%, EC = 1,510 ± 160 μM) and diminished the positive inotropism of CaCl2 and BAY K8644. In cardiomyocytes, the IC a,L was reduced by 50.7% (n = 5) after perfusion with 300 μM geraniol. Moreover, geraniol prolonged the AP duration (APD) measured at 50% (n = 5) after repolarization, without changing the resting potential. The increased APD could be attributed to the blockade of the transient outward K(+) current (Ito ) (59.7%, n = 4), the non-inactivation K(+) current (Iss ) (39.2%, n = 4) and the inward rectifier K(+) current (IK 1 ) (33.7%, n = 4). In isolated hearts, geraniol increased PRi and QTi without affecting the QRS complex (n = 6), and it reduced both the left ventricular pressure (83%) and heart rate (16.5%). Geraniol delayed the time to onset of ouabain-induced arrhythmias by 128%, preventing 30% of the increase in resting tension (n = 6). Geraniol exerts its negative inotropic and chronotropic responses in the heart by decreasing both L-type Ca(2+) and voltage-gated K(+) currents, ultimately acting against ouabain-induced arrhythmias. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: Role of autophagy

    PubMed Central

    Guo, Rui; Zhang, Yingmei; Turdi, Subat; Ren, Jun

    2013-01-01

    Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22 weeks. After 40 day feeding, mice were treated with 2 mg/kg rapamycin or vehicle every other day for 42 days on respective fat diet. Cardiomyocyte contractile and Ca2+ transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca2+ derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy. PMID:23524376

  17. Urothelium-dependent and urothelium-independent detrusor contractility mediated by nitric oxide synthase and cyclooxygenase inhibition.

    PubMed

    Santoso, Aneira Gracia Hidayat; Lo, Wan Ning; Liang, Willmann

    2011-04-01

    The urothelium has been implicated in regulating detrusor smooth muscle contractility but the identity of the putative urothelium-derived inhibitory factor remains unconfirmed. There was inconclusive evidence on the role of nitric oxide synthase (NOS) and cyclooxygenase (COX) in mediating detrusor contractions. This study examined varying regulation by NOS and COX in transverse and longitudinal carbachol (CCh)-induced and unstimulated phasic contractions. Rat detrusor strips with the urothelium-intact (+UE) and urothelium-denuded (-UE) were isolated in both transverse and longitudinal directions. Isometric tension of the detrusor strips was recorded both during stimulation with CCh and at the unstimulated state. In the unstimulated state, phasic contractile activity was measured. Tension recordings were made with and without the NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and COX inhibitor indomethacin (Indo). Only transverse +UE strips responded convincingly to L-NAME and Indo treatment, generating larger CCh-induced contractions. In unstimulated tissues, L-NAME treatment increased phasic amplitude in -UE strips only. Indo treatment failed to elicit any change in the amplitude but suppressed frequency of the phasic activity in transverse +UE strips. There was no significant Indo-mediated change in other strips. The data suggested heterogeneity in the regulation of directional detrusor contractility via NOS- and COX-associated mechanisms. Copyright © 2011 Wiley-Liss, Inc.

  18. Cerebral Artery Alpha-1 AR Subtypes: High Altitude Long-Term Acclimatization Responses

    PubMed Central

    Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D.

    2014-01-01

    In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10−5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function. PMID:25393740

  19. Bone Morphogenetic Protein 4 Promotes Vascular Smooth Muscle Contractility by Activating MicroRNA-21 (miR-21), which Down-regulates Expression of Family of Dedicator of Cytokinesis (DOCK) Proteins*

    PubMed Central

    Kang, Hara; Davis-Dusenbery, Brandi N.; Nguyen, Peter H.; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-01-01

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins. PMID:22158624

  20. Cerebral artery alpha-1 AR subtypes: high altitude long-term acclimatization responses.

    PubMed

    Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D

    2014-01-01

    In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10-5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.

  1. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus)

    PubMed Central

    West, T.G.; Toepfer, Christopher N.; Woledge, Roger C.; Curtin, N.A.; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M.

    2015-01-01

    SUMMARY Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were “skinned” to remove all membranes leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (Type I) or fast (Type II). The power output of cheetah Type II fibre segments was 92.5 ± 4.3 W kg−1 (mean ±s.e., 14 fibres) during shortening at relative stress 0.15 (=stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably Type IIX) the corresponding value was significantly higher (P<0.001), 119.7 ± 6.2 W kg−1 (mean ±s.e.,7 fibres). These values are our best estimates of the maximum power output under the conditions used here. Thus the contractile filament power from cheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah. PMID:23580727

  2. Power output of skinned skeletal muscle fibres from the cheetah (Acinonyx jubatus).

    PubMed

    West, Timothy G; Toepfer, Christopher N; Woledge, Roger C; Curtin, Nancy A; Rowlerson, Anthea; Kalakoutis, Michaeljohn; Hudson, Penny; Wilson, Alan M

    2013-08-01

    Muscle samples were taken from the gluteus, semitendinosus and longissimus muscles of a captive cheetah immediately after euthanasia. Fibres were 'skinned' to remove all membranes, leaving the contractile filament array intact and functional. Segments of skinned fibres from these cheetah muscles and from rabbit psoas muscle were activated at 20°C by a temperature-jump protocol. Step and ramp length changes were imposed after active stress had developed. The stiffness of the non-contractile ends of the fibres (series elastic component) was measured at two different stress values in each fibre; stiffness was strongly dependent on stress. Using these stiffness values, the speed of shortening of the contractile component was evaluated, and hence the power it was producing. Fibres were analysed for myosin heavy chain content using gel electrophoresis, and identified as either slow (type I) or fast (type II). The power output of cheetah type II fibre segments was 92.5±4.3 W kg(-1) (mean ± s.e., 14 fibres) during shortening at relative stress 0.15 (the stress during shortening/isometric stress). For rabbit psoas fibre segments (presumably type IIX) the corresponding value was significantly higher (P<0.001), 119.7±6.2 W kg(-1) (mean ± s.e., 7 fibres). These values are our best estimates of the maximum power output under the conditions used here. Thus, the contractile filament power from cheetah was less than that of rabbit when maximally activated at 20°C, and does not account for the superior locomotor performance of the cheetah.

  3. Pharmacological characterization and chemical fractionation of a liposterolic extract of saw palmetto (Serenoa repens): effects on rat prostate contractility.

    PubMed

    Chua, Thiam; Eise, Nicole T; Simpson, Jamie S; Ventura, Sabatino

    2014-03-14

    Saw palmetto (Serenoa repens) was first used medicinally by native American Indians to treat urological disorders. Nowadays, saw palmetto extracts are widely used in Europe and North America to treat the urinary symptoms associated with benign prostatic hyperplasia even though its mechanisms of action are poorly understood. This study aimed to characterize the bioactive constituents of a lipid extract of saw palmetto that are able to affect contractility of the rat prostate gland. The mechanism of action will also be investigated. A commercially available lipid extract of saw palmetto was subjected to fractionation using normal phase column chromatography. Composition of fractions was assessed by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and mass spectrometry (MS). Contractile activities of these fractions were evaluated pharmacologically using isolated preparations of rat prostate gland and compared to the activity of the crude extract. Saw palmetto extract inhibited contractions of the rat prostate gland which were consistent with smooth muscle relaxant activity. Only the ethyl acetate fraction resulting from chromatography inhibited contractions of isolated rat prostates similarly to the inhibition produced by the crude lipid extract. Comparison with authentic samples and analysis of NMR data revealed that this bioactivity was due to the fatty acid components present in the ethyl acetate fraction. Bioassay using various pharmacological tools identified multiple contractile mechanisms which were affected by the bioactive constituents. A fatty acid component of saw palmetto extract causes inhibition of prostatic smooth muscle contractions via a non-specific mechanism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. [Role of sialic acid loss in the myocardium in depressing the contractile function of the heart muscle during stress].

    PubMed

    Meerson, F Z; Saulia, A I; Gudumak, V S

    1985-01-01

    Under conditions of stress a time-dependent decrease in content of sialic acids was found in adult rats; within 9 hrs of the animal immobilization the sialic acid content was decreased by 40% as compared with controls. At the same time, activities of trypsin and LDHI were increased in blood serum. The data obtained suggest that activation of proteases occurring during the stress led to increased hydrolysis of base components of glycocalyx and to impairment of the cardiomyocyte sarcolemma. These phenomena appear to be responsible for the post-stress deterioration of heart muscle contractile functions.

  5. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.

    PubMed

    Kranias, Evangelia G; Hajjar, Roger J

    2012-06-08

    Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.

  6. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.

    PubMed

    Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M

    2017-05-01

    Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.

  7. Effect of hypokinesia on contractile function of cardiac muscle

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Trikhpoyeva, A. M.; Gorina, M. S.

    1980-01-01

    Rats were subjected to hypokinesia for two months and the contractile function of isolated papillary muscle was studied. Hypokinesia reduced significantly the isotonic contraction rate which depended on the ATPase activity of the myofibrils; it also reduced the rate and index of relaxation which depended on the functional capacity of the Ca(++) pump of the sarcoplasmic reticulum. The maximum force of isometric contraction determined by the quantity of actomyosin bridges in the myofibrils did not change after hypokinesia. This complex of changes is contrary to that observed in adaptation to exercise when the rate of isotonic contraction and relaxation increases while the force of isometric contraction does not change. The possible mechanism of this stability of the contractile force during adaptation and readaptation of the heart is discussed.

  8. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  9. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro

    PubMed Central

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-01-01

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility. PMID:26501321

  10. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro.

    PubMed

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-10-15

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg¹, D-Phe⁵, D-Trp(7,9), Leu(11)]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility.

  11. Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.

    PubMed

    Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong

    2015-03-01

    DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.

  12. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    PubMed Central

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  13. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox).

    PubMed

    Fortuna, Rafael; Vaz, Marco Aurélio; Youssef, Aliaa Rehan; Longino, David; Herzog, Walter

    2011-01-04

    Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80-64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Exposure to As(III) and As(V) changes the Ca²⁺-activation properties of the two major fibre types from the chelae of the freshwater crustacean Cherax destructor.

    PubMed

    Williams, Gemma; Snow, Elizabeth T; West, Jan M

    2014-10-01

    Arsenic is a known carcinogen found in the soil in gold mining regions at concentrations thousands of times greater than gold. Mining releases arsenic into the environment and surrounding water bodies. The main chemical forms of arsenic found in the environment are inorganic arsenite (As(III)) and arsenate (As(V)). Yabbies (Cherax destructor) accumulate arsenic at levels comparable to those in the sediment of their environment but the effect on their physiological function is not known. The effects of arsenic exposure (10 ppm sodium arsenite, AsNaO2 - 5.7 ppm As(III)) and 10 ppm arsenic acid, Na2HAsO4·7H2O - 2.6 ppm As(V)) for 40 days on the contractile function of the two major fibre types from the chelae were determined. After exposure, individual fibres were isolated from the chela, "skinned" (membrane removed) and attached to the force recording apparatus. Contraction was induced in solutions containing increasing [Ca(2+)] until a maximum Ca(2+)-activation was obtained. Submaximal force responses were plotted as a percentage of the maximum Ca(2+)-activated force. As(V) exposure resulted in lower levels of calcium required for activation than As(III) indicating an increased sensitivity to Ca(2+) after long term exposure to arsenate compared to arsenite. Myosin heavy chain and tropomyosin content in individual fibres was also decreased as a result of arsenic exposure. Single fibres exposed to As(V) produced significantly more force than muscle fibres from control animals. Long-term exposure of yabbies to arsenic alters the contractile function of the two major fibre types in the chelae. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  16. Bistable front dynamics in a contractile medium: travelling wave and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    NASA Astrophysics Data System (ADS)

    Neufeld, Zoltan

    Recent studies have demonstrated that mechanical forces can lead to novel mechanisms of pattern formation such as clustering and oscillations in contractile systems. We investigate how contractile forces in mechanically active media can affect bistable front propagation. We found that contraction regulates the front speed or can fully suppress its propagation in space to create a static localized zone. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the actomyosin cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. The dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behaviour of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. In collaboration with: Zoltan Neufeld, Guillermo A. Gomez, and Alpha S. Yap, University of Queensland, Brisbane, Australia

  17. CALIX[4]ARENE C-99 INHIBITS MYOSIN ATPase ACTIVITY AND CHANGES THE ORGANIZATION OF CONTRACTILE FILAMENTS OF MYOMETRIUM.

    PubMed

    Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O

    2015-01-01

    Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  18. Fetal Growth Restriction Induces Heterogeneous Effects on Vascular Biomechanical and Functional Properties in Guinea Pigs (Cavia porcellus)

    PubMed Central

    Cañas, Daniel; Herrera, Emilio A.; García-Herrera, Claudio; Celentano, Diego; Krause, Bernardo J.

    2017-01-01

    Aim: Fetal growth restriction (FGR) is associated with a variety of cardiometabolic diseases in adulthood which could involve remodeling processes of the vascular walls that could start in the fetal period. However, there is no consensus whether this remodeling affects in a similar way the whole vascular system. We aimed to determine the effects of FGR on the vasoactive and biomechanical properties of umbilical and systemic vessels in fetal guinea pigs. Methods: FGR was induced by implanting ameroid occluders at mid-gestation in uterine arteries of pregnant guinea pigs, whilst the control group was exposed to simulated surgery. At the term of gestation, systemic arteries (aorta, carotid and femoral) and umbilical vessels were isolated to determine ex vivo contractile and biomechanical responses (stretch-stress until rupture) on a wire myograph, as well as opening angle and residual stresses. Histological characteristics in tissue samples were measured by van Gieson staining. Results: Aorta and femoral arteries from FGR showed an increased in biomechanical markers of stiffness (p < 0.01), contractile capacity (p < 0.05) and relative media thickness (p < 0.01), but a reduced internal diameter (p < 0.001), compared with controls. There were no differences in the biomechanical properties of carotid and umbilical from control and FGR fetuses, but FGR umbilical arteries had a decreased contractile response to KCl (p < 0.05) along with a reduced relative media thickness (p < 0.05). Conclusion: Altogether, these changes in functional, mechanical and morphological properties suggest that FGR is associated with a heterogeneous pro-constrictive vascular remodeling affecting mainly the lower body fetal arteries. These effects would be set during a pathologic pregnancy in order to sustain the fetal blood redistribution in the FGR and may persist up to adulthood increasing the risk of a cardiovascular disease. PMID:28344561

  19. Transmural heterogeneity of cellular level power output is reduced in human heart failure.

    PubMed

    Haynes, Premi; Nava, Kristofer E; Lawson, Benjamin A; Chung, Charles S; Mitov, Mihail I; Campbell, Stuart G; Stromberg, Arnold J; Sadayappan, Sakthivel; Bonnell, Mark R; Hoopes, Charles W; Campbell, Kenneth S

    2014-07-01

    Heart failure is associated with pump dysfunction and remodeling but it is not yet known if the condition affects different transmural regions of the heart in the same way. We tested the hypotheses that the left ventricles of non-failing human hearts exhibit transmural heterogeneity of cellular level contractile properties, and that heart failure produces transmural region-specific changes in contractile function. Permeabilized samples were prepared from the sub-epicardial, mid-myocardial, and sub-endocardial regions of the left ventricular free wall of non-failing (n=6) and failing (n=10) human hearts. Power, an in vitro index of systolic function, was higher in non-failing mid-myocardial samples (0.59±0.06μWmg(-1)) than in samples from the sub-epicardium (p=0.021) and the sub-endocardium (p=0.015). Non-failing mid-myocardial samples also produced more isometric force (14.3±1.33kNm(-2)) than samples from the sub-epicardium (p=0.008) and the sub-endocardium (p=0.026). Heart failure reduced power (p=0.009) and force (p=0.042) but affected the mid-myocardium more than the other transmural regions. Fibrosis increased with heart failure (p=0.021) and mid-myocardial tissue from failing hearts contained more collagen than matched sub-epicardial (p<0.001) and sub-endocardial (p=0.043) samples. Power output was correlated with the relative content of actin and troponin I, and was also statistically linked to the relative content and phosphorylation of desmin and myosin light chain-1. Non-failing human hearts exhibit transmural heterogeneity of contractile properties. In failing organs, region-specific fibrosis produces the greatest contractile deficits in the mid-myocardium. Targeting fibrosis and sarcomeric proteins in the mid-myocardium may be particularly effective therapies for heart failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The effect of cleft palate repair on contractile properties of single permeabilized muscle fibers from congenitally cleft goat palates.

    PubMed

    Hanes, Michael C; Weinzweig, Jeffrey; Panter, Kip E; McClellan, W Thomas; Caterson, Stefanie A; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M

    2008-02-01

    Inherent differences in the levator veli palatini (LVP) muscle of cleft palates before palatoplasty may play a role in persistent postrepair velopharyngeal insufficiency (VPI). Contractile properties of LVP muscle fibers were analyzed from young (2-month) normal (YNP), young congenitally cleft (YCP) and again on the same YCP subjects 6 months after palatoplasty, mature repaired palate (MRP). The cross-sectional area and rate of force development (ktr) were measured. Specific force (sF(0)) and normalized power (nP(max)) were calculated. Using k(tr) to determine fiber type composition, YNP was 44% type 1 and 56% type 2, while YCP was 100% type 2. Two MRP subjects shifted to 100% type 1; 1 demonstrated increased resistance to fatigue. No differences in sF(0) were observed. nP(max) increased with presence of type 2 fibers. The persistent state of type 2 fibers following palatoplasty leads to increased fatigue in the LVP of MRP subjects and may cause VPI symptoms.

  1. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  2. Models of disuse - A comparison of hindlimb suspension and immobilization

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.

    1986-01-01

    The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.

  3. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function.

    PubMed

    Rawat, Dhwajbahadur K; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J; Okada, Takao; Edwards, John G; Gupte, Sachin A

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca(2+) currents (I(Ca-L)) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit I(Ca-L) and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca(2+) channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and I(Ca-L) were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of -80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO(2) and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak I(Ca-L) amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of I(Ca-L) by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca(2+) channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).

  4. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle

    PubMed Central

    Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John

    2013-01-01

    Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333

  5. The slow inward calcium current is responsible for a part of the contraction of patch-clamped rat myoballs.

    PubMed

    Rivet, M; Cognard, C; Raymond, G

    1989-01-01

    The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.

  6. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells

    PubMed Central

    Baird, Michelle A.; Billington, Neil; Wang, Aibing; Adelstein, Robert S.; Sellers, James R.; Fischer, Robert S.; Waterman, Clare M.

    2017-01-01

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A “pulses” occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell–cell or cell–ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase– or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. PMID:27881665

  7. Decreased muscle endurance associated with diabetic neuropathy may be attributed partially to neuromuscular transmission failure

    PubMed Central

    Kimpinski, Kurt; Doherty, Timothy J.; Rice, Charles L.

    2015-01-01

    Diabetic polyneuropathy (DPN) can cause muscle atrophy, weakness, contractile slowing, and neuromuscular transmission instability. Our objective was to assess the response of the impaired neuromuscular system of DPN in humans when stressed with a sustained maximal voluntary contraction (MVC). Baseline MVC and evoked dorsiflexor contractile properties were assessed in DPN patients (n = 10) and controls (n = 10). Surface electromyography was used to record tibialis anterior evoked maximal compound muscle action potentials (CMAPs) and neuromuscular activity during MVCs. Participants performed a sustained isometric dorsiflexion MVC for which task termination was determined by the inability to sustain ≥60% MVC torque. The fatigue protocol was immediately followed by a maximal twitch, with additional maximal twitches and MVCs assessed at 30 s and 2 min postfatigue. DPN patients fatigued ∼21% more quickly than controls (P < 0.05) and featured less relative electromyographic activity during the first one-third of the fatigue protocol compared with controls (P < 0.05). Immediately following fatigue, maximal twitch torque was reduced similarly (∼20%) in both groups, and concurrently CMAPs were reduced (∼12%) in DPN patients, whereas they were unaffected in controls (P > 0.05). Twitch torque and CMAP amplitude recovered to baseline 30 s postfatigue. Additionally, at 30 s postfatigue, both groups had similar (∼10%) reductions in MVC torque relative to baseline, and MVC strength recovered by 2 min postfatigue. We conclude DPN patients possess less endurance than controls, and neuromuscular transmission failure may contribute to this greater fatigability. PMID:25663671

  8. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide

    PubMed Central

    Scott, Glenda I; Colligan, Peter B; Ren, Bonnie H; Ren, Jun

    2001-01-01

    Panax ginseng is used to enhance stamina and relieve fatigue as well as physical stress. Ginsenoside, the effective component of ginseng, regulates cardiovascular function. This study was to examine the effect of ginsenosides Rb1 and Re on cardiac contractile function at the cellular level. Ventricular myocytes were isolated from adult rat hearts and were stimulated to contract at 0.5 Hz. Contractile properties analysed included: peak shortening (PS), time-to-90%PS (TPS), time-to-90% relengthening (TR90), and fluorescence intensity change (ΔFFI). Nitric oxide synthase (NOS) activity was determined by the 3H-arginine to 3H-citrulline conversion assay. Both Rb1 and Re exhibited dose-dependent (1 – 1000 nM) inhibition in PS and ΔFFI, with maximal inhibitions between 20 – 25%. Concurrent application Rb1 and Re did not produce any additive inhibition on peak shortening amplitude (with a maximal inhibition of 24.9±6.1%), compared to Rb1 or Re alone. Pretreatment with the NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 100 μM) abolished the effect of Rb1 and Re. Both Rb1 and Re significantly (P<0.05) stimulated NOS activity concentration-dependently. This study demonstrated a direct depressant action of ginsenosides on cardiomyocyte contraction, which may be mediated in part through increased NO production. PMID:11704635

  9. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study.

    PubMed

    Pandy, Vijayapandi; Narasingam, Megala; Kunasegaran, Thubasni; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  10. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft.

    PubMed

    Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y

    2009-03-01

    Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.

  11. Contractile activity of ATP and diadenosine tetraphosphate on urinary bladder in the rats: role of superoxide anion and urothelium.

    PubMed

    Khattab, M M; Al-Hrasen, M N

    2006-04-01

    Both ATP and diadenosine tetraphosphate (AP(4)A) produced a dose-dependent contraction of rat isolated urinary bladder rings. The AP(4)A dose-response curve was to the left of that of ATP, and the maximum response was greater than that produced by ATP. Mechanical removal of the urothelium increased the contractile response to ATP by between 53% and 71%, and that to AP(4)A by 42% (at highest AP(4)A concentration) to 68% at lower concentration. Inhibition of Cu/Zn superoxide dismutase with diethylthiocarbamate (DETCA, 5 mm) significantly reduced the ATP-evoked contraction by 31% (at high ATP concentration) to 40% at low ATP concentration. Similarly, the AP(4)A-induced contractions were significantly decreased by 27% at low AP(4)A level to 38% at higher concentrations. Induction of exogenous superoxide anion stress by the use of the superoxide anion generator, pyrogallol (0.5 mm), significantly decreased both ATP- and AP(4)A-induced contractions of the rat urinary bladder over the whole dose range. Contractile responses to ATP decreased by 36-40%, and those to AP(4)A by 44-49%. In conclusion, the urinary bladder urothelium exerts an inhibitory control over the purinergic contractility produced by adenine mononucleotides and dinucleotides. Superoxide anion stress, whether endogenous or exogenous, attenuates the ATP-induced as well as AP(4)A-induced contractility.

  12. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  13. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding

    PubMed Central

    Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C

    2016-01-01

    Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903

  14. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles.

    PubMed

    Piette, Antoine Boulanger; Dufresne, Sébastien S; Frenette, Jérôme

    2016-10-28

    Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles. Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey's test. The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles. An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles.

  15. Biochemical assessment of the hibernator skeletal muscle properties in search of a potential countermeasure against muscle atrophy in space microgravity

    NASA Astrophysics Data System (ADS)

    Lee, K.; Park, J. Y.; Gwag, T.; Yoo, W.; Choi, I.

    Mammalian skeletal muscle undergoes significant loss of mass and tension capacity during spaceflight or hindlimb suspension This is contrasted by observed features of hibernators in that muscle mass and contractility remain fairly unchanged during a prolonged period of dormancy In an effort of finding potential countermeasure against muscle atrophy in space microgravity we thereby investigated the biochemical properties of the pectoral muscle in a winter-hibernating bat Murina leucogaster Two-dimensional electrophoresis on overall muscle proteins and western blot analysis on heat shock proteins HSP 60 kD 70 kD and 90 kD were conducted to compare levels of myofiber proteins and the stress responsive chaperone molecules in winter-hibernation WH versus summer-active bats SA No seasonal difference was found in the ratio of muscle mass to body mass for the pectoral muscles confirming similar results in previous reports Among more than thirty proteins identified only 14 of the proteins showed significant reduction in the level for WH compared to SA The level of HSP60 and HSP90 in WH were 63 and 71 that in SA respectively P quad 0 05 whereas that of HSP70 was not different between the two groups However when the WH were forced to arouse for 40 min from hibernation the level of HSP70 increased 1 4-fold and 1 51-fold that of WH and SA respectively while the level of HSP90 increased 1 57-fold that of WH These results suggest that the levels of many key contractile and regulatory proteins were retained during

  16. Effects of epidermal growth factor, interleukin 1 and nitric oxide on prostaglandin production by guinea-pig uterus.

    PubMed

    Keeble, J E; Poyser, N L

    2002-08-01

    Initial experiments in the present study investigated the effects of epidermal growth factor (EGF), interleukin 1beta (IL-1beta) and sodium nitroprusside (a nitric oxide donor) on the output of prostaglandins from guinea-pig uterus on day 7 of the oestrous cycle. Superfusion of day 7 guinea-pig uterus in vitro with either EGF or sodium nitroprusside increased the output of PGF(2alpha) and 6-keto-PGF(1alpha), but not of PGE(2). IL-1beta had no effect on the output of these three prostaglandins. EGF still increased the output of PGF(2alpha), but did not increase the output of 6-keto-PGF(1alpha) in a calcium-depleted superfusate. Subsequent experiments investigated the effect of sodium nitroprusside on contractile activity of day 7 guinea-pig uterus. Basal spontaneous activity of both the intact uterus and isolated myometrium superfused in vitro was low. Sodium nitroprusside increased the contractile activity of these tissues two- to fourfold. EGF did not affect the contractile activity of the uterus, indicating that sodium nitroprusside-induced contractions are not due to increased prostaglandin production. Overall, the findings indicate that EGF and nitric oxide may act as mediators in the mechanism by which oestradiol acting on a progesterone-primed uterus stimulates the increase in PGF(2alpha) production by the guinea-pig uterus necessary for luteolysis. Nitric oxide may increase the spontaneous activity of the uterus when this activity is low.

  17. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  18. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  19. The role of skeletal muscle contractile duration throughout the whole day: reducing sedentary time and promoting universal physical activity in all people

    PubMed Central

    2017-01-01

    Abstract A shared goal of many researchers has been to discover how to improve health and prevent disease, through safely replacing a large amount of daily sedentary time with physical activity in everyone, regardless of age and current health status. This involves contrasting how different muscle contractile activity patterns regulate the underlying molecular and physiological responses impacting health‐related processes. It also requires an equal attention to behavioural feasibility studies in extremely unfit and sedentary people. A sound scientific principle is that the body is constantly sensing and responding to changes in skeletal muscle metabolism induced by contractile activity. Because of that, the rapid time course of health‐related responses to physical inactivity/activity patterns are caused in large part directly because of the variable amounts of muscle inactivity/activity throughout the day. However, traditional modes and doses of exercise fall far short of replacing most of the sedentary time in the modern lifestyle, because both the weekly frequency and the weekly duration of exercise time are an order of magnitude less than those for people sitting inactive. This can explain why high amounts of sedentary time produce distinct metabolic and cardiovascular responses through inactivity physiology that are not sufficiently prevented by low doses of exercise. For these reasons, we hypothesize that maintaining a high metabolic rate over the majority of the day, through safe and sustainable types of muscular activity, will be the optimal way to create a healthy active lifestyle over the whole lifespan. PMID:28657123

  20. Effects of geometry and cell-matrix interactions on the mechanics of 3D engineered microtissues

    NASA Astrophysics Data System (ADS)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    Approaches to measure and control cell-extracellular matrix (ECM) interactions in a dynamic mechanical environment are important both for studies of mechanobiology and for tissue design for bioengineering applications. We have developed a microtissue-based platform capable of controlling the ECM alignment of 3D engineered microtissues while simultaneously permitting measurement of cellular contractile forces and the tissues' mechanical properties. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of flexible elastic pillars. Tissue geometry and ECM alignment are controlled by the pillars' number, shape and location. Optical tracking of the pillars provides readout of the tissues' contractile forces. Magnetic materials bound to selected pillars allow quasi-static or dynamic stretching of the tissue, and together with simultaneous measurements of the tissues' local dynamic strain field, enable characterization of the mechanical properties of the system, including their degree of anisotropy. Results on the effects of symmetry and degree of ECM alignment and organization on the role of cell-ECM interactions in determining tissue mechanical properties will be discussed. This work is supported by NSF CMMI-1463011 and CMMI-1462710.

  1. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity.

    PubMed

    Richard-Bulteau, Hélène; Serrurier, Bernard; Crassous, Brigitte; Banzet, Sébastien; Peinnequin, André; Bigard, Xavier; Koulmann, Nathalie

    2008-02-01

    The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration.

  2. Myosin isoforms and contractile properties of single fibers of human Latissimus Dorsi muscle.

    PubMed

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Reggiani, Carlo

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females.

  3. Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J

    The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquelymore » triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.« less

  4. How does the urothelium affect bladder function in health and disease? ICI-RS 2011.

    PubMed

    Birder, L A; Ruggieri, M; Takeda, M; van Koeveringe, G; Veltkamp, S; Korstanje, C; Parsons, B; Fry, C H

    2012-03-01

    The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally, consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. Copyright © 2012 Wiley Periodicals, Inc.

  5. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype.

    PubMed

    Koulmann, Nathalie; Richard-Bulteau, Hélène; Crassous, Brigitte; Serrurier, Bernard; Pasdeloup, Marielle; Bigard, Xavier; Banzet, Sébastien

    2017-01-01

    As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91-100, 2017. © 2016 Wiley Periodicals, Inc.

  6. Evidence that simulated microgravity may alter the vascular nonreceptor tyrosine kinase second messenger pathway

    NASA Technical Reports Server (NTRS)

    Kahwaji, C. I.; Sheibani, S.; Han, S.; Siu, W. O.; Kaka, A. H.; Fathy, T. M.; el-Abbadi, N. H.; Purdy, R. E.

    2000-01-01

    Simulated microgravity (hind limb unweighting; HU) reduces maximal contractile capacity to norepinephrine (NE) but not 5-hydroxytryptamine (5-HT) in the rat abdominal aorta of male Wistar rats. Our earlier study showed that voltage-operated calcium channels, the MAPK pathway [1], and vasoconstrictive prostaglandins contribute to the NE-induced contraction of control (C) but not HU, aorta rings. Genistein, a general tyrosine kinase inhibitor, caused a significant reduction in vascular contractility in C but not HU arteries. The present study explored the role of protein kinase C (PKC) and extracellular receptor-activated kinase 1 and 2 (ERK1/2) in the HU-induced vascular hyporesponsiveness to NE. Microgravity was simulated in Wistar rats by 20 day HU. The abdominal aorta was removed from control and HU rats, cut into 3 mm rings, and mounted in tissue baths to measure isometric contraction. Protein levels were determined using Western blot analysis. PD98059, a selective MAPKK inhibitor, caused a marked inhibition of NE-induced contraction in both C and HU arteries. Calphostin C, a PKC inhibitor, completely abolished the contractile response to NE in both C and HU tissues. Phosphorylated (activated) ERK1/2 protein mass was greater in C, compared to HU, aortas, and was reduced by genistein only in C tissues. MAPK total protein levels in the rat aorta were increased in the HU-treated, compared to C, animals. These results indicate that PKC represents an early transduction step in the contractile response to NE in the rat abdominal aorta. That inhibition of the step immediately before activation of MAPK reduced contraction in both C and HU tissues, while general tyrosine kinase inhibition with genistein blocked only the control responses, suggests that a nonreceptor tyrosine kinase may be involved in HU-induced vascular hyporesponsiveness to NE.

  7. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium.

    PubMed

    Tica, Andrei A; Dun, Erica C; Tica, Oana S; Gao, Xin; Arterburn, Jeffrey B; Brailoiu, G Cristina; Oprea, Tudor I; Brailoiu, Eugen

    2011-11-01

    G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells.

  8. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys.

    PubMed

    Aye, Irving L M H; Moraitis, Alexandros A; Stanislaus, Dinesh; Charnock-Jones, D Stephen; Smith, Gordon C S

    2018-03-01

    Stretch of the myometrium promotes its contractility and is believed to contribute to the control of parturition at term and to the increased risk of preterm birth in multiple pregnancies. To determine the effects of the putative oxytocin receptor (OTR) inverse agonist retosiban on (1) the contractility of human myometrial explants and (2) labor in nonhuman primates. Human myometrial biopsies were obtained at planned term cesarean, and explants were exposed to stretch in the presence and absence of a range of drugs, including retosiban. The in vivo effects of retosiban were determined in cynomolgus monkeys. Prolonged mechanical stretch promoted myometrial extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Moreover, stretch-induced stimulation of myometrial contractility was prevented by ERK1/2 inhibitors. Retosiban (10 nM) prevented stretch-induced stimulation of myometrial contractility and phosphorylation of ERK1/2. Moreover, the inhibitory effect of retosiban on stretch-induced ERK1/2 phosphorylation was prevented by coincubation with a 100-fold excess of a peptide OTR antagonist, atosiban. Compared with vehicle-treated cynomolgus monkeys, treatment with oral retosiban (100 to 150 days of gestational age) reduced the risk of spontaneous delivery (hazard ratio = 0.07, 95% confidence interval 0.01 to 0.60, P = 0.015). The OTR acts as a uterine mechanosensor, whereby stretch increases myometrial contractility through agonist-free activation of the OTR. Retosiban prevents this through inverse agonism of the OTR and, in vivo, reduced the likelihood of spontaneous labor in nonhuman primates. We hypothesize that retosiban may be an effective preventative treatment of preterm birth in high-risk multiple pregnancies, an area of unmet clinical need.

  9. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase

    PubMed Central

    Nandi, Shyam Sundar; Zheng, Hong; Sharma, Neeru M.; Shahshahan, Hamid R.; Patel, Kaushik P.

    2016-01-01

    MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or β-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat’s heart concomitant with upregulation of TH, cardiac NE, β-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, β-AR and cardiac function. PMID:27411382

  10. Adiponectin downregulation is associated with volume overload-induced myocyte dysfunction in rats

    PubMed Central

    Wang, Li-li; Miller, Dori; Wanders, Desiree; Nanayakkara, Gayani; Amin, Rajesh; Judd, Robert; Morrison, Edward E; Zhong, Ju-ming

    2016-01-01

    Aim: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. Methods: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca2+ transient. Results: A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca2+ transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 μg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. Conclusion: These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure. PMID:26616727

  11. Increased longitudinal contractility and diastolic function at rest in well-trained amateur Marathon runners: a speckle tracking echocardiography study

    PubMed Central

    2014-01-01

    Background Regular physical activity reduces cardiovascular risk. There is concern that Marathon running might acutely damage the heart. It is unknown to what extent intensive physical endurance activity influences the cardiac mechanics at resting condition. Methods Eighty-four amateur marathon runners (43 women and 41 men) from Berlin-Brandenburg area who had completed at least one marathon previously underwent clinical examination and echocardiography at least 10 days before the Berlin Marathon at rest. Standard transthoracic echocardiography and 2D strain and strain rate analysis were performed. The 2D Strain and strain rate values were compared to previous published data of healthy untrained individuals. Results The average global longitudinal peak systolic strain of the left ventricle was -23 +/- 2% with peak systolic strain rate -1.39 +/- 0.21/s, early diastolic strain rate 2.0 +/- 0.40/s and late diastolic strain rate 1.21 +/- 0.31/s. These values are significantly higher compared to the previous published values of normal age-adjusted individuals. In addition, no age-related decline of longitudinal contractility in well-trained athletes was observed. Conclusions There is increased overall longitudinal myocardial contractility at rest in experienced endurance athletes compared to the published normal values in the literature indicating a preserved and even supra-normal contractility in the athletes. There is no age dependent decline of the longitudinal 2D Strain values. This underlines the beneficial effects of regular physical exercise even in advanced age. PMID:24571726

  12. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization

    PubMed Central

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel H.; Jedlicka, Sabrina S.; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802

  13. Involvement of connexin 43 phosphorylation and gap junctional communication between smooth muscle cells in vasopressin-induced ROCK-dependent vasoconstriction after hemorrhagic shock.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Wu, Yue; Li, Tao; Liu, Liangming

    2017-10-01

    We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser 262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser 262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process. Copyright © 2017 the American Physiological Society.

  14. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    PubMed

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  15. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    PubMed

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  16. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function.

    PubMed

    Montezano, Augusto C; De Lucca Camargo, Livia; Persson, Patrik; Rios, Francisco J; Harvey, Adam P; Anagnostopoulou, Aikaterini; Palacios, Roberto; Gandara, Ana Caroline P; Alves-Lopes, Rheure; Neves, Karla B; Dulak-Lis, Maria; Holterman, Chet E; de Oliveira, Pedro Lagerblad; Graham, Delyth; Kennedy, Christopher; Touyz, Rhian M

    2018-06-15

    NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus , an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N -acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca 2+ ] i , increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus , gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  18. Effects of St John's wort and its active constituents, hypericin and hyperforin, on isolated rat urinary bladder.

    PubMed

    Valeri, Aurora; Capasso, Raffaele; Valoti, Massimo; Pessina, Federica

    2012-12-01

    To investigate the effect of St John's wort (SJW) and its active constituents hypericin and hyperforin on detrusor smooth muscle contractility and their possible neuroprotective role against ischaemic-like conditions, which could arise during overactive bladder disease. In whole bladders, intrinsic nerves underwent electrical field stimulation (EFS). The effect of drugs on the contractile response and its recovery in reperfusion phase (R) was monitored at different concentrations during 1 or 2 h of anoxia-glucopenia (A-G) and the first 30 min of R. The effects of the drugs were also investigated on rat detrusor muscle strips contracted with carbachol, KCl and electrically. SJW has spasmolytic activity, which increases with increasing concentration and it worsens the damage induced by A-G/R on rat urinary bladder. Hypericin and hyperforin had no effect during ischemic-like conditions but they both exert a dual modulation of rat detrusor strips contraction. At high micromolar concentrations they showed a relaxing effect, but at submicromolar range hypericin increased the plasma membrane depolarisation and hyperforin showed a stimulatory effect on the cholinergic system. The results of our study showed that SJW and its constituents could modulate urinary bladder contractility and even worsen A-G/R injury. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  19. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction

    PubMed Central

    Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer

    2016-01-01

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089

  20. The effects of different durations of static stretching within a comprehensive warm-up on voluntary and evoked contractile properties.

    PubMed

    Reid, Jonathan C; Greene, Rebecca; Young, James D; Hodgson, Daniel D; Blazevich, Anthony J; Behm, David G

    2018-05-02

    Evidence for performance decrements following prolonged static stretching (SS) has led to a paradigm shift in stretching routines within a warm-up. Rather than SS, dynamic stretching (DS) and dynamic activity (DA) have replaced SS within warm-up routines. The objective of the present study was to compare the effect of differing lower limb SS durations (30 [SS30s], 60 [SS60s] or 120 s [SS120s] of SS per muscle group or no-stretch control) within a comprehensive warm-up protocol consisting of aerobic activity, DS and DA. Sixteen male participants completed the four stretching conditions in a randomized order, after a 5-min low-intensity (cycle) warm-up and before a DS/DA component on separate days. Tests included passive hip and knee ranges of motion (ROM), maximum voluntary knee extensor/flexor force, force produced at 100 ms (F100), vertical jump height and evoked knee extensor contractile properties. For hip flexion (hamstrings) ROM, SS120s provided the largest increase (5.6-11.7%) followed by SS60s (4.3-11.4%), control (4.4-10.6%) and SS30s (3.6-11.1%). For knee flexion (quadriceps) ROM, SS30s provided the largest increase (9.3-18.2%) followed by SS120s (6.5-16.3%), SS60s (7.2-15.2%) and control (6.3-15.2%). There were decreases in quadriceps F100 following SS in SS120s (29.6%) only. There were increases in vertical jump performance in the control (6.2%), SS60s (4.6%) and SS30s (3.3%). While 120 s SS per muscle increased ROM, even within a comprehensive warm-up routine, it also elicited notable performance decrements. However, moderate durations of SS were observed to improve ROM whilst either having negligible or beneficial (but not detrimental) effects on specific aspects of athletic performance.

  1. Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction.

    PubMed

    Troupes, Constantine D; Wallner, Markus; Borghetti, Giulia; Zhang, Chen; Mohsin, Sadia; von Lewinski, Dirk; Berretta, Remus M; Kubo, Hajime; Chen, Xiongwen; Soboloff, Jonathan; Houser, Steven

    2017-07-07

    Pathological increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical and mechanical phenotype. Remodeling of contractile and signaling Ca 2+ occurs in pathological hypertrophy and is central to myocyte remodeling. STIM1 (stromal interaction molecule 1) regulates Ca 2+ signaling in many cell types by sensing low endoplasmic reticular Ca 2+ levels and then coupling to plasma membrane Orai channels to induce a Ca 2+ influx pathway. Previous reports suggest that STIM1 may play a role in cardiac hypertrophy, but its role in electrical and mechanical phenotypic alterations is not well understood. To define the contributions of STIM1-mediated Ca 2+ influx on electrical and mechanical properties of normal and diseased myocytes, and to determine whether Orai channels are obligatory partners for STIM1 in these processes using a clinically relevant large animal model of hypertrophy. Cardiac hypertrophy was induced by slow progressive pressure overload in adult cats. Hypertrophied myocytes had increased STIM1 expression and activity, which correlated with altered Ca 2 + -handling and action potential (AP) prolongation. Exposure of hypertrophied myocytes to the Orai channel blocker BTP2 caused a reduction of AP duration and reduced diastolic Ca 2+ spark rate. BTP2 had no effect on normal myocytes. Forced expression of STIM1 in cultured adult feline ventricular myocytes increased diastolic spark rate and prolonged AP duration. STIM1 expression produced an increase in the amount of Ca 2+ stored within the sarcoplasmic reticulum and activated Ca 2+ /calmodulin-dependent protein kinase II. STIM1 expression also increased spark rates and induced spontaneous APs. STIM1 effects were eliminated by either BTP2 or by coexpression of a dominant negative Orai construct. STIM1 can associate with Orai in cardiac myocytes to produce a Ca 2+ influx pathway that can prolong the AP duration and load the sarcoplasmic reticulum and likely contributes to the altered electromechanical properties of the hypertrophied heart. © 2017 American Heart Association, Inc.

  2. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    PubMed

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  3. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements

    PubMed Central

    Vohra, Ravneet S.; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C.; Sweeney, H. Lee; Walter, Glenn A.; Vandenborne, Krista

    2015-01-01

    Introduction The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Methods Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Results Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Discussion Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD. PMID:26103164

  4. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation.more » - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.« less

  5. Izalpinin from fruits of Alpinia oxyphylla with antagonistic activity against the rat bladder contractility.

    PubMed

    Yuan, Yuan; Tan, Yin-Feng; Xu, Peng; Li, Hailong; Li, Yong-Hui; Chen, Wen-Ya; Zhang, Jun-Qing; Chen, Feng; Huang, Guo-Jun

    2014-01-01

    Alpinia oxyphylla (Zingiberaceae), an herbaceous perennial plant, its capsular fruit is commonly used in traditional Chinese medicine for the treatment of different urinary incontinence symptoms including frequency, urgency and nocturia. These symptoms are similar to the overactive bladder syndrome. In our lab, we found that the 95% ethanol extract of the capsular fruits exhibited significant anti-muscarinic activity. Some constituents in capsular fruits including flavonoids (e.g., izalpinin and tectochrysin), diarylheptanoids (e.g., yakuchinone A and yakuchinone B) and sesquiterpenes (e.g., nootkatone), are regarded as representative chemicals with putative pharmacological activities. This study aimed to evaluate the in vitro antagonistic actions of izalpinin on carbachol-induced contraction of the rat detrusor muscle. In vitro inhibition of rat detrusor contractile response to carbachol was used to study the functional activity of izalpinin. The isolated detrusor strips of rats were mounted in organ baths containing oxygenated Krebs' solution. The cumulative consecutive concentration-response curves to carbachol-evoked contractions in strips of rat bladder were obtained. Carbachol induced concentration-dependent contractions of isolated rat bladder detrusor strips. The vehicle DMSO had no impact on the contraction response. The contraction effects were concentration-dependently antagonized by izalpinin, with a mean EC50 value of 0.35 µM. The corresponding cumulative agonist concentration-response curves shifted right-ward. Izalpinin exhibits inhibitory role of muscarinic receptor-related detrusor contractile activity, and it may be a promising lead compound to treat overactive bladder.

  6. Focal Contacts as Mechanosensors

    PubMed Central

    Riveline, Daniel; Zamir, Eli; Balaban, Nathalie Q.; Schwarz, Ulrich S.; Ishizaki, Toshimasa; Narumiya, Shuh; Kam, Zvi; Geiger, Benjamin; Bershadsky, Alexander D.

    2001-01-01

    The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force. PMID:11402062

  7. Single cell active force generation under dynamic loading - Part I: AFM experiments.

    PubMed

    Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P

    2015-11-01

    A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Antioxidant Phytochemicals of Opuntia ficus-indica (L.) Mill. Cladodes with Potential Anti-spasmodic Activity.

    PubMed

    Lanuzza, Francesco; Occhiuto, Francesco; Monforte, Maria Teresa; Tripodo, Maria Marcella; D'Angelo, Valeria; Galati, Enza Maria

    2017-10-01

    Opuntia ficus-indica (OFI) (L.) Mill. (Cactaceae), a plant widespread in dry regions of the world, shows interesting biological activities (cicatrizant, antiulcer, anti-inflammatory, and hypolipidemic) and is widely used in traditional medicine. Phytochemical analysis and antispasmodic effect of wild OFI cladodes were carried out. Polyphenols and Vitamin E occurrence, in antioxidant pool of OFI cladodes, were quantified by high-performance liquid chromatography. The antispasmodic effect of OFI cladodes was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Catechin, quercetin, kaempferol, isorhamnetin and chlorogenic, ferulic, and p-coumaric acid were identified. α-, β-, and γ-tocopherols have been highlighted and α-tocopherol is the major component. OFI cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%. OFI cladodes caused a light inhibition of amplitude and frequency of spontaneous contractions and a marked decrease in muscle basal tone of rabbit jejunum preparations. On spontaneously contracting uterus preparations, the addition of increasing concentrations of cladode extract caused uterine muscle relaxation. The contraction of smooth muscle preparations depends on an increase in cytoplasmic free calcium ion concentration, which activates the contractile elements. The flavonoids may suppress the contractility of smooth myocytes, by an inhibition of availability of Ca 2+ for muscle contraction. Opuntia ficus-indica (OFI) cladodes contain significant amount of polyphenols and tocopherols that are effective radical scavengers and inhibited ethanol 1,1-diphenyl-2-picrylhydrazyl formation by 50%Polyphenols and Vitamin E complex occurrence in OFI cladodes were characterized by high-performance liquid chromatographyOFI cladodes exhibited significative antispasmodic activity. The antispasmodic effect was assessed in isolated rabbit smooth muscle tissues. The experiments were carried out with preparations of rabbit jejunum and uterus with the spontaneous contractile activity, to evaluate the effect of cumulative concentrations of the extract on basal tone, amplitude, and frequency of contractions. Abbreviations used: OFI: Opuntia ficus-indica , DPPH: Ethanol 1,1-diphenyl-2-picrylhydrazyl.

  9. Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mIgf-1 Transgenic Mice

    PubMed Central

    Cannone, Maria; Liantonio, Antonella; De Bellis, Michela; Digennaro, Claudio; Gramegna, Gianluca; De Luca, Annamaria; Germinario, Elena; Danieli-Betto, Daniela; Betto, Romeo; Dobrowolny, Gabriella; Rizzuto, Emanuele; Musarò, Antonio; Desaphy, Jean-François; Camerino, Diana Conte

    2013-01-01

    Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations. PMID:23755187

  10. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models.

    PubMed

    Mátyás, Csaba; Kovács, Attila; Németh, Balázs Tamás; Oláh, Attila; Braun, Szilveszter; Tokodi, Márton; Barta, Bálint András; Benke, Kálmán; Ruppert, Mihály; Lakatos, Bálint Károly; Merkely, Béla; Radovits, Tamás

    2018-01-16

    Measurement of systolic and diastolic function in animal models is challenging by conventional non-invasive methods. Therefore, we aimed at comparing speckle-tracking echocardiography (STE)-derived parameters to the indices of left ventricular (LV) pressure-volume (PV) analysis to detect cardiac dysfunction in rat models of type-1 (T1DM) and type-2 (T2DM) diabetes mellitus. Rat models of T1DM (induced by 60 mg/kg streptozotocin, n = 8) and T2DM (32-week-old Zucker Diabetic Fatty rats, n = 7) and corresponding control animals (n = 5 and n = 8, respectively) were compared. Echocardiography and LV PV analysis were performed. LV short-axis recordings were used for STE analysis. Global circumferential strain, peak strain rate values in systole (SrS), isovolumic relaxation (SrIVR) and early diastole (SrE) were measured. LV contractility, active relaxation and stiffness were measured by PV analysis. In T1DM, contractility and active relaxation were deteriorated to a greater extent compared to T2DM. In contrast, diastolic stiffness was impaired in T2DM. Correspondingly, STE described more severe systolic dysfunction in T1DM. Among diastolic STE parameters, SrIVR was more decreased in T1DM, however, SrE was more reduced in T2DM. In T1DM, SrS correlated with contractility, SrIVR with active relaxation, while in T2DM SrE was related to cardiac stiffness, cardiomyocyte diameter and fibrosis. Strain and strain rate parameters can be valuable and feasible measures to describe the dynamic changes in contractility, active relaxation and LV stiffness in animal models of T1DM and T2DM. STE corresponds to PV analysis and also correlates with markers of histological myocardial remodeling.

  11. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. Copyright © 2017 the American Physiological Society.

  12. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy

    PubMed Central

    Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.

    2017-01-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. PMID:27979985

  13. Molecular Regulation of Parturition: A Myometrial Perspective

    PubMed Central

    Renthal, Nora E.; Williams, Koriand’r C.; Montalbano, Alina P.; Chen, Chien-Cheng; Gao, Lu; Mendelson, Carole R.

    2015-01-01

    The molecular mechanisms that maintain quiescence of the myometrium throughout most of pregnancy and promote its transformation to a highly coordinated contractile unit culminating in labor are complex and intertwined. During pregnancy, progesterone (P4) produced by the placenta and/or ovary serves a dominant role in maintaining myometrial quiescence by blocking proinflammatory response pathways and expression of so-called “contractile” genes. In the majority of placental mammals, increased uterine contractility near term is heralded by an increase in circulating estradiol-17β (E2) and/or increased estrogen receptor α (ERα) activity and a sharp decline in circulating P4 levels. However, in women, circulating levels of P4 and progesterone receptors (PR) in myometrium remain elevated throughout pregnancy and into labor. This has led to the concept that increased uterine contractility leading to term and preterm labor is mediated, in part, by a decline in PR function. The biochemical mechanisms for this decrease in PR function are also multifaceted and interwoven. In this paper, we focus on the molecular mechanisms that mediate myometrial quiescence and contractility and their regulation by the two central hormones of pregnancy, P4 and estradiol-17β. The integrative roles of microRNAs also are considered. PMID:26337112

  14. Development and maintenance of force and stiffness in airway smooth muscle.

    PubMed

    Lan, Bo; Norris, Brandon A; Liu, Jeffrey C-Y; Paré, Peter D; Seow, Chun Y; Deng, Linhong

    2015-03-01

    Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.

  15. Electrical and contractile activities of the human rectosigmoid.

    PubMed Central

    Sarna, S; Latimer, P; Campbell, D; Waterfall, W E

    1982-01-01

    Electrical and mechanical activities were recorded from the rectosigmoid of normal subjects using an intraluminal recording tube with two sets of bipolar electrodes and strain gauges. Four distinct types of electrical activities were recorded. (1) Electrical control activity (ECA). This activity varied in amplitude and frequency over time and the control waves were not phase-locked. The means of dominant frequency components in the lower and higher frequency ranges were 3.86 +/- 0.18 SD and 10.41 +/- 0.46 SD c/min, respectively. The overall dominant frequency component was mostly in the lower frequency range of 2.0-9.0 c/min. (2) Discrete electrical response activity (DERA). This activity appeared as short duration bursts (less than 10 s) of response potentials whose repetition rate was in the total colonic electrical control activity frequency range of 2.0-13.0 c/min. The mean duration of this activity was 2.24 +/- 1.30 SD s. (3) Continuous electrical response activity (CERA). This activity appeared as long duration bursts (greater than 10 s) of response potentials which were not related to electrical control activity. Its mean duration was 14.78 +/- 3.68 SD s. This activity generally did not propagate. (4) Contractile electrical complex (CEC). This activity appeared as oscillations in the frequency range of 25-40 c/min and was also not related to electrical control activity. This activity propagated, sometimes proximally and sometimes distally. Its mean duration was 18.87 +/- 9.22 SD s. The latter three types of electrical activities were all associated with different types of contractions. These contractions, however, did not always occlude the lumen. Colonic electrical control activity controls the appearance of discrete electrical response activity in time and space. The mechanism of generation of continuous electrical response activity and contractile electrical complex is not yet known. PMID:7095566

  16. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  17. Mediation by SRIF1 receptors of the contractile action of somatostatin in rat isolated distal colon; studies using some novel SRIF analogues.

    PubMed Central

    McKeen, E S; Feniuk, W; Humphrey, P P

    1994-01-01

    1. The motor effects of somatostatin-14 (SRIF), and several SRIF peptide analogues were investigated on the rat isolated distal colon. The objective of these studies was to characterize the receptor mediating the contractile action of SRIF by comparing the relative agonist potencies of a range of SRIF analogues. 2. SRIF (1 nM-1 microM) produced concentration-dependent contractions with an EC50 value of approximately 10 nM. Contractile responses induced by SRIF were insensitive to atropine (1 microM) or naloxone (1 microM) but abolished by tetrodotoxin (1 microM). Somatostatin-28 (SRIF28), also induced concentration-dependent contractions and was equipotent with SRIF. Phosphoramidon (1 microM) and amastatin (10 microM) did not increase the potency of either SRIF or SRIF28. 3. The SRIF peptide analogues, octreotide, SRIF25, seglitide, angiopeptin and CGP23996 (1 nM-1 microM) produced contractile responses in the rat distal colon, each having similar potency and maximal activity relative to SRIF. The SSTR2 receptor-selective hexapeptide, BIM23027 (0.1 nM-1 microM), and the SRIF stereoisomer, D-Trp8-SRIF (0.1 nM-1 microM), were the most potent agonists examined being approximately 12 and 7 times more potent than SRIF, respectively. In contrast, the SSTR5 receptor-selective analogue, L362,855, was approximately 120 times weaker than SRIF, whilst the SSTR3 receptor-selective analogue, BIM23056, was inactive at concentrations up to 3 microM. 4. The putative SRIF receptor antagonist, (cyclo(7-aminoheptanoyl Phe-D-Trp-Lys-Thr[Bzl]))(CPP) (1 microM), had no agonist activity and had no effect on contractions induced by SRIF. 5. The contractile actions of BIM23027 and seglitide were subject to pronounced desensitization.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834217

  18. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1996-01-01

    Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.

  19. The muscle fiber type–fiber size paradox: hypertrophy or oxidative metabolism?

    PubMed Central

    van Wessel, T.; de Haan, A.; van der Laarse, W. J.

    2010-01-01

    An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type–fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine. Electronic supplementary material The online version of this article (doi:10.1007/s00421-010-1545-0) contains supplementary material, which is available to authorized users. PMID:20602111

  20. Acid-gastric antisecretory effect of the ethanolic extract from Arctium lappa L. root: role of H+, K+-ATPase, Ca2+ influx and the cholinergic pathway.

    PubMed

    da Silva, Luisa Mota; Burci, Ligia de Moura; Crestani, Sandra; de Souza, Priscila; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; Dartora, Nessana; de Souza, Lauro Mera; Cipriani, Thales Ricardo; da Silva-Santos, José Eduardo; André, Eunice; Werner, Maria Fernanda de Paula

    2018-04-01

    Arctium lappa L., popularly known as burdock, is a medicinal plant used worldwide. The antiulcer and gastric-acid antisecretory effects of ethanolic extract from roots of Arctium lappa (EET) were already demonstrated. However, the mechanism by which the extract reduces the gastric acid secretion remains unclear. Therefore, this study was designed to evaluate the antisecretory mode of action of EET. The effects of EET on H + , K + -ATPase activity were verified in vitro, whereas the effects of the extract on cholinergic-, histaminergic- or gastrinergic-acid gastric stimulation were assessed in vivo on stimulated pylorus ligated rats. Moreover, ex vivo contractility studies on gastric muscle strips from rats were also employed. The incubation with EET (1000 µg/ml) partially inhibited H + , K + -ATPase activity, and the intraduodenal administration of EET (10 mg/kg) decreased the volume and acidity of gastric secretion stimulated by bethanechol, histamine, and pentagastrin. EET (100-1000 µg/ml) did not alter the gastric relaxation induced by histamine but decreased acetylcholine-induced contraction in gastric fundus strips. Interestingly, EET also reduced the increase in the gastric muscle tone induced by 40 mM KCl depolarizing solution, as well as the maximum contractile responses evoked by CaCl 2 in Ca 2+ -free depolarizing solution, without impairing the effect of acetylcholine on fundus strips maintained in Ca 2+ -free nutritive solution. Our results reinforce the gastric antisecretory properties of preparations obtained from Arctium lappa, and indicate that the mechanisms involved in EET antisecretory effects include a moderate reduction of the H + , K + -ATPase activity associated with inhibitory effects on calcium influx and of cholinergic pathways in the stomach muscle.

  1. Effect of Noni (Morinda citrifolia Linn.) Fruit and Its Bioactive Principles Scopoletin and Rutin on Rat Vas Deferens Contractility: An Ex Vivo Study

    PubMed Central

    Narasingam, Megala; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL), scopoletin (1–200 μg/mL), and rutin hydrate (0.6–312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60–100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL) and rutin hydrate (0.5–5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC. PMID:25045753

  2. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast

    PubMed Central

    Laplante, Caroline; Huang, Fang; Tebbs, Irene R.; Bewersdorf, Joerg; Pollard, Thomas D.

    2016-01-01

    Cytokinesis in animals, fungi, and amoebas depends on the constriction of a contractile ring built from a common set of conserved proteins. Many fundamental questions remain about how these proteins organize to generate the necessary tension for cytokinesis. Using quantitative high-speed fluorescence photoactivation localization microscopy (FPALM), we probed this question in live fission yeast cells at unprecedented resolution. We show that nodes, protein assembly precursors to the contractile ring, are discrete structural units with stoichiometric ratios and distinct distributions of constituent proteins. Anillin Mid1p, Fes/CIP4 homology-Bin/amphiphysin/Rvs (F-BAR) Cdc15p, IQ motif containing GTPase-activating protein (IQGAP) Rng2p, and formin Cdc12p form the base of the node that anchors the ends of myosin II tails to the plasma membrane, with myosin II heads extending into the cytoplasm. This general node organization persists in the contractile ring where nodes move bidirectionally during constriction. We observed the dynamics of the actin network during cytokinesis, starting with the extension of short actin strands from nodes, which sometimes connected neighboring nodes. Later in cytokinesis, a broad network of thick bundles coalesced into a tight ring around the equator of the cell. The actin ring was ∼125 nm wide and ∼125 nm thick. These observations establish the organization of the proteins in the functional units of a cytokinetic contractile ring. PMID:27647921

  3. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  4. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II

    PubMed Central

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-01-01

    The calcineurin (CaN) enzyme–transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 μM, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKCɛ compared to samples incubated without PKCɛ. Endogenous cardiostimulants which activate Gαq-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate. PMID:15821752

  5. The role of skeletal muscle contractile duration throughout the whole day: reducing sedentary time and promoting universal physical activity in all people.

    PubMed

    Hamilton, Marc T

    2018-04-15

    A shared goal of many researchers has been to discover how to improve health and prevent disease, through safely replacing a large amount of daily sedentary time with physical activity in everyone, regardless of age and current health status. This involves contrasting how different muscle contractile activity patterns regulate the underlying molecular and physiological responses impacting health-related processes. It also requires an equal attention to behavioural feasibility studies in extremely unfit and sedentary people. A sound scientific principle is that the body is constantly sensing and responding to changes in skeletal muscle metabolism induced by contractile activity. Because of that, the rapid time course of health-related responses to physical inactivity/activity patterns are caused in large part directly because of the variable amounts of muscle inactivity/activity throughout the day. However, traditional modes and doses of exercise fall far short of replacing most of the sedentary time in the modern lifestyle, because both the weekly frequency and the weekly duration of exercise time are an order of magnitude less than those for people sitting inactive. This can explain why high amounts of sedentary time produce distinct metabolic and cardiovascular responses through inactivity physiology that are not sufficiently prevented by low doses of exercise. For these reasons, we hypothesize that maintaining a high metabolic rate over the majority of the day, through safe and sustainable types of muscular activity, will be the optimal way to create a healthy active lifestyle over the whole lifespan. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  6. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways.

    PubMed

    Lambernd, S; Taube, A; Schober, A; Platzbecker, B; Görgens, S W; Schlich, R; Jeruschke, K; Weiss, J; Eckardt, K; Eckel, J

    2012-04-01

    Obesity is closely associated with muscle insulin resistance and is a major risk factor for the pathogenesis of type 2 diabetes. Regular physical activity not only prevents obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. We sought to establish and characterise an in vitro model of human skeletal muscle contraction, with a view to directly studying the signalling pathways and mechanisms that are involved in the beneficial effects of muscle activity. Contracting human skeletal muscle cell cultures were established by applying electrical pulse stimulation. To induce insulin resistance, skeletal muscle cells were incubated with human adipocyte-derived conditioned medium, monocyte chemotactic protein (MCP)-1 and chemerin. Similarly to in exercising skeletal muscle in vivo, electrical pulse stimulation induced contractile activity in human skeletal muscle cells, combined with the formation of sarcomeres, activation of AMP-activated protein kinase (AMPK) and increased IL-6 secretion. Insulin-stimulated glucose uptake was substantially elevated in contracting cells compared with control. The incubation of skeletal muscle cells with adipocyte-conditioned media, chemerin and MCP-1 significantly reduced the insulin-stimulated phosphorylation of Akt. This effect was abrogated by concomitant pulse stimulation of the cells. Additionally, pro-inflammatory signalling by adipocyte-derived factors was completely prevented by electrical pulse stimulation of the myotubes. We showed that the effects of electrical pulse stimulation on skeletal muscle cells were similar to the effect of exercise on skeletal muscle in vivo in terms of enhanced AMPK activation and IL-6 secretion. In our model, muscle contractile activity eliminates insulin resistance by blocking pro-inflammatory signalling pathways. This novel model therefore provides a unique tool for investigating the molecular mechanisms that mediate the beneficial effects of muscle contraction.

  7. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction.

    PubMed

    Wang, Tao; Cleary, Rachel A; Wang, Ruping; Tang, Dale D

    2013-07-12

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.

  8. Role of the Adapter Protein Abi1 in Actin-associated Signaling and Smooth Muscle Contraction*

    PubMed Central

    Wang, Tao; Cleary, Rachel A.; Wang, Ruping; Tang, Dale D.

    2013-01-01

    Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl. PMID:23740246

  9. Cortical Flow-Driven Shapes of Nonadherent Cells.

    PubMed

    Callan-Jones, A C; Ruprecht, V; Wieser, S; Heisenberg, C P; Voituriez, R

    2016-01-15

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  10. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs

    PubMed Central

    Salazar, Betsy H.; Cashion, Avery T.; Dennis, Robert G.; Birla, Ravi K.

    2015-01-01

    Purpose The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. Methods The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-hour stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. Results An increase in contractile force was observed after the strain protocol of 10% stretch at 1Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. Conclusion In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue. PMID:26577484

  11. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.

    PubMed

    Salazar, Betsy H; Cashion, Avery T; Dennis, Robert G; Birla, Ravi K

    2015-12-01

    The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.

  12. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  13. VITRECTOMY FOR INTERMEDIATE AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH TANGENTIAL VITREOMACULAR TRACTION: A CLINICOPATHOLOGIC CORRELATION.

    PubMed

    Ziada, Jean; Hagenau, Felix; Compera, Denise; Wolf, Armin; Scheler, Renate; Schaumberger, Markus M; Priglinger, Siegfried G; Schumann, Ricarda G

    2018-03-01

    To describe the morphologic characteristics of the vitreomacular interface in intermediate age-related macular degeneration associated with tangential traction due to premacular membrane formation and to correlate with optical coherence tomography (OCT) findings and clinical data. Premacular membrane specimens were removed sequentially with the internal limiting membrane from 27 eyes of 26 patients with intermediate age-related macular degeneration during standard vitrectomy. Specimens were processed for immunocytochemical staining of epiretinal cells and extracellular matrix components. Ultrastructural analysis was performed using transmission electron microscopy. Spectral domain optical coherence tomography images and patient charts were evaluated in retrospect. Immunocytochemistry revealed hyalocytes and myofibroblasts as predominant cell types. Ultrastructural analysis demonstrated evidence of vitreoschisis in all eyes. Myofibroblasts with contractile properties were observed to span between folds of the internal limiting membrane and vitreous cortex collagen. Retinal pigment epithelial cells or inflammatory cells were not detected. Mean visual acuity (Snellen) showed significant improvement from 20/72 ± 20/36 to 20/41 ± 20/32 (P < 0.001) after a mean follow-up period of 19 months (median, 17 months). During this period, none of the eyes required anti-vascular endothelial growth factor therapy. Fibrocellular premacular proliferation in intermediate age-related macular degeneration predominantly consists of vitreous collagen, hyalocytes, and myofibroblasts with contractile properties. Vitreoschisis and vitreous-derived cells appear to play an important role in traction formation of this subgroup of eyes. In patients with intermediate age-related macular degeneration and contractile premacular membrane, release of traction by vitrectomy with internal limiting membrane peeling results in significantly functional and anatomical improvement.

  14. Two fast-type fibers in claw closer and abdominal deep muscles of the Australian freshwater crustacean, Cherax destructor, differ in Ca2+ sensitivity and troponin-I isoforms.

    PubMed

    Koenders, Annette; Lamey, Tina M; Medler, Scott; West, Jan M; Mykles, Donald L

    2004-07-01

    One type of fast fiber and two types of slow (slow-twitch, S1 and slow-tonic, S2) fibers are found in decapod crustacean skeletal muscles that differ in contractile properties and myofibrillar protein isoform compositions. In this study the structural characteristics, protein isoform compositions, and Ca2+-activation properties of fast fibers in the claw closer (F1) and abdominal deep flexor (F2) muscles of Cherax destructor were analyzed. For comparison, myofibrillar protein isoform compositions of slow (long-sarcomere) fibers from claw and abdomen were also determined; our results indicate that the slow fibers in the claw closer were the slow-twitch (S1) type and those in the abdominal superficial flexor were primarily slow-tonic (S2) type. F1 fibers had shorter resting sarcomere lengths (2.93 microm in unstretched fibers and 3.06 microm in stretched fibers) and smaller fiber diameter (256 microm) than F2 fibers (sarcomere lengths 3.48 microm in unstretched and 3.46 microm in stretched; 747 microm diameter). Moreover, F1 fibers showed a narrower range in sarcomere lengths than F2 fibers (2.81 to 3.28 microm vs. 2.47 to 4.05 micro m in unstretched fibers). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting showed that the fast fibers from claw and abdomen differed in troponin-I composition; F1 fibers expressed two isoforms of troponin-I (TnI1 and TnI2) in approximately equal amounts, whereas F2 fibers expressed primarily TnI3 and lower levels of TnI1. F1 fibers were more sensitive to Ca2+, as shown by higher pCa values at threshold activation (pCa(10)=6.50+/-0.07) and at 50% maximum force (pCa(50)=6.43+/-0.07) than F2 fibers (pCa(10)=6.12+/-0.04 and pCa(50)=5.88+/-0.03, respectively). F1 fibers also had a greater degree of co-operativity in Ca2+ activation, as shown by a higher maximum slope of the force-pCa curve (n(Ca)=12.98+/-2.27 vs. 4.34+/-0.64). These data indicate that there is a greater fast fiber-type diversity in crustacean muscles than was previously supposed. Moreover, the differences in activation properties suggest that the TnI isoform composition influences the Ca2+ sensitivity of the contractile mechanism. Copyright 2004 Wiley-Liss, Inc.

  15. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells

    DTIC Science & Technology

    2011-09-01

    application. Muscle mass, isometric contractile properties, and selected histologic properties were evaluated at 2 wk after ischemia. Results. IRI...results showed that a small number of trans- planted cells differentiated and formed muscle fibers , which could potentially contribute to force genera...the wet weight of the muscle (in g); q is the angle of fiber pinnation (12.8 for TA); Lf is the mean fiber length (57% of TAmuscle length); and r is

  16. Multi-Physics MRI-Based Two-Layer Fluid-Structure Interaction Anisotropic Models of Human Right and Left Ventricles with Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis

    PubMed Central

    Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; del Nido, Pedro J.

    2011-01-01

    Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. PMID:21765559

  17. Pericyte-targeting drug delivery and tissue engineering.

    PubMed

    Kang, Eunah; Shin, Jong Wook

    2016-01-01

    Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes.

  18. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    PubMed

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  19. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells formore » stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes a hypercontractile phenotype of ASMCs. • The hypercontractile phenotype transition was largely mediated via Rho/ROCK pathway. • ADAM33 knock-down had little effect on the stiffness, traction force and contractility of ASMCs.« less

  20. Effects of vitamin C treatment on collar-induced intimal thickening

    PubMed Central

    Arun, Mehmet Zuhuri; Üstünes, Levent; Sevin, Gülnur; Özer, Erdener

    2015-01-01

    Vitamin C has efficient antioxidant properties and is involved in important physiological processes such as collagen synthesis. As such, vitamin C deficiency leads to serious complications, including vascular diseases. The aim of this study was to investigate the effects of vitamin C treatment on collar-induced intimal thickening. Rabbits were fed a normocholesterolemic diet and a non-occlusive silicon collar was placed around the left carotid artery for 3, 7, and 14 days. The rabbits were treated with or without vitamin C (150 mg/kg/day). Collar-induced intimal thickening became apparent at day 7. The effect of the collar on intimal thickening was more prominent at day 14. Vitamin C treatment significantly inhibited collar-induced intimal thickening at day 14. The placement of the collar around the carotid artery decreased maximum contractile responses against contractile agents (KCl, phenylephrine, 5-hydroxytryptamine). The effect of the collar on contractile responses was enhanced as days elapsed. Decreased contractile responses of collared carotid arteries normalized at day 14 in the vitamin C treatment group. Vitamin C treatment also restored sensitivity to phenylephrine. The collar also significantly decreased acetylcholine-induced relaxations at day 3 and day 7. Acetylcholine-induced relaxations normalized in collared-arteries in the placebo group at day 14. Vitamin C treatment significantly increased acetylcholine-induced relaxations of both normal and collared carotid arteries at day 14. MMP-9 expression increased in collared arteries at day 3 and day 7 but did not change at day 14. MMP-2 expression increased in collared arteries at day 14. However, vitamin C treatment reduced collar-stimulated expression of MMP-2 at day 14. These findings indicate that vitamin C may have potentially beneficial effects on the early stages of atherosclerosis. Furthermore these results, for the first time, may indicate that vitamin C can also normalize decreased contractile response through perivascular collar placement. PMID:26719672

  1. Traction force dynamics predict gap formation in activated endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneousmore » distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.« less

  2. Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease.

    PubMed

    Höllmer, M; Willesen, J L; Tolver, A; Koch, J

    2017-02-01

    Myxomatous mitral valve disease (MMVD) induces progressive left atrial (LA) enlargement. The LA modulates left ventricular filling and performance through its reservoir, conduit, and contractile function. Assessment of LA size and function may provide valuable information on the level of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD. This prospective study included 205 client-owned dogs of different breeds, 114 healthy dogs, and 91 dogs with MMVD of different disease severities. Using two-dimensional echocardiography, the biplane area-length method was applied to assess LA volume and calculate volumetric indices of LA reservoir, conduit, and contractile function. Left atrial volume and LA stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume <2.25mL/kg was the optimal cut off identified for excluding congestive heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100%. An active LA emptying fraction <24% and/or a LA expansion index <126% were suggestive of congestive heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively. Dogs with MMVD appear to have larger LA volumes with poorer LA function. Deteriorating LA function, characterized by a decreasing reservoir and active contractile function, was evident in dogs with MMVD with increasing disease severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Atorvastatin Calcium Inhibits Phenotypic Modulation of PDGF-BB-Induced VSMCs via Down-Regulation the Akt Signaling Pathway

    PubMed Central

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype. PMID:25874930

  4. Calcineurin Regulates Myocardial Function during Acute Endotoxemia

    PubMed Central

    Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.

    2006-01-01

    Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445

  5. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.

    PubMed

    Zhou, Lufang; Cortassa, Sonia; Wei, An-Chi; Aon, Miguel A; Winslow, Raimond L; O'Rourke, Brian

    2009-10-07

    Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mitochondrial membrane potential (DeltaPsi(m)) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening of sarcolemmal ATP-sensitive potassium (K(ATP)) channels, contributes to electrical dysfunction during ischemia-reperfusion. Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability mediated by the sarcolemmal K(ATP) current (I(K,ATP)). Whole-cell model simulations demonstrate that increasing the fraction of oxygen diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of DeltaPsi(m), redox potential, and mitochondrial respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial uncoupling decrease the cytosolic ATP/ADP ratio and activate I(K,ATP), consequently shortening the cellular action potential duration and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes subjected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will impact the electrophysiological, contractile, and Ca(2+) handling properties of the cardiac cell. Moreover, the model is an important step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.

  6. Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique.

    PubMed

    Tallis, Jason; James, Rob S; Little, Alexander G; Cox, Val M; Duncan, Michael J; Seebacher, Frank

    2014-09-15

    Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility. Copyright © 2014 the American Physiological Society.

  7. Aspen Tension Wood Fibers Contain β-(1→4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls1[OPEN

    PubMed Central

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J.

    2015-01-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. PMID:26378099

  8. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.

    PubMed

    Gorshkova, Tatyana; Mokshina, Natalia; Chernova, Tatyana; Ibragimova, Nadezhda; Salnikov, Vadim; Mikshina, Polina; Tryfona, Theodora; Banasiak, Alicja; Immerzeel, Peter; Dupree, Paul; Mellerowicz, Ewa J

    2015-11-01

    Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    PubMed Central

    Vasconcelos, T.B.; Ribeiro-Filho, H.V.; Lucetti, L.T.; Magalhães, P.J.C.

    2015-01-01

    β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor-operated Ca2+ channels. PMID:26648088

  10. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    PubMed

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    PubMed Central

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  13. Characteristics of fast voluntary and electrically evoked isometric knee extensions during 56 days of bed rest with and without exercise countermeasure

    PubMed Central

    Gerrits, K. H. L.; Rittweger, J.; Felsenberg, D.; Stegeman, D. F.; de Haan, A.

    2008-01-01

    The contractile characteristics of fast voluntary and electrically evoked unilateral isometric knee extensions were followed in 16 healthy men during 56 days of horizontal bed rest and assessed at bed rest days 4, 7, 10, 17, 24, 38 and 56. Subjects were randomized to either an inactive control group (Ctrl, n = 8) or a resistive vibration exercise countermeasure group (RVE, n = 8). No changes were observed in neural activation, indicated by the amplitude of the surface electromyogram, or the initial rate of voluntary torque development in either group during bed rest. In contrast, for Ctrl, the force oscillation amplitude at 10 Hz stimulation increased by 48% (P < 0.01), the time to reach peak torque at 300 Hz stimulation decreased by 7% (P < 0.01), and the half relaxation time at 150 Hz stimulation tended to be slightly reduced by 3% (P = 0.056) after 56 days of bed rest. No changes were observed for RVE. Torque production at 10 Hz stimulation relative to maximal (150 Hz) stimulation was increased after bed rest for both Ctrl (15%; P < 0.05) and RVE (41%; P < 0.05). In conclusion, bed rest without exercise countermeasure resulted in intrinsic speed properties of a faster knee extensor group, which may have partly contributed to the preserved ability to perform fast voluntary contractions. The changes in intrinsic contractile properties were prevented by resistive vibration exercise, and voluntary motor performance remained unaltered for RVE subjects as well. PMID:18386049

  14. AhV_aPA-induced vasoconstriction involves the IP₃Rs-mediated Ca²⁺ releasing.

    PubMed

    Zeng, Fuxing; Zou, Zhisong; Niu, Liwen; Li, Xu; Teng, Maikun

    2013-08-01

    AhV_aPA, the acidic PLA₂ purified from Agkistrodon halys pallas venom, was previously reported to possess a strong enzymatic activity and can remarkably induce a further contractile response on the 60 mM K⁺-induced contraction with an EC₅₀ in 369 nM on mouse thoracic aorta rings. In the present study, we found that the p-bromo-phenacyl-bromide (pBPB), which can completely inhibit the enzymatic activity of AhV_aPA, did not significantly reduce the contractile response on vessel rings induced by AhV_aPA, indicating that the vasoconstrictor effects of AhV_aPA are independent of the enzymatic activity. The inhibitor experiments showed that the contractile response induced by AhV_aPA is mainly attributed to the Ca²⁺ releasing from Ca²⁺ store, especially sarcoplasmic reticulum (SR). Detailed studies showed that the Ca²⁺ release from SR is related to the activation of inositol trisphosphate receptors (IP₃Rs) rather than ryanodine receptors (RyRs). Furthermore, the vasoconstrictor effect could be strongly reduced by pre-incubation with heparin, indicating that the basic amino acid residues on the surface of AhV_aPA may be involved in the interaction between AhV_aPA and the molecular receptors. These findings offer new insights into the functions of snake PLA₂ and provide a novel pathogenesis of A. halys pallas venom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  16. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  17. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties.

    PubMed

    Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk

    2014-04-01

    The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.

  18. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  19. Time-resolved microrheology of actively remodeling actomyosin networks

    NASA Astrophysics Data System (ADS)

    Silva, Marina Soares e.; Stuhrmann, Björn; Betz, Timo; Koenderink, Gijsje H.

    2014-07-01

    Living cells constitute an extraordinary state of matter since they are inherently out of thermal equilibrium due to internal metabolic processes. Indeed, measurements of particle motion in the cytoplasm of animal cells have revealed clear signatures of nonthermal fluctuations superposed on passive thermal motion. However, it has been difficult to pinpoint the exact molecular origin of this activity. Here, we employ time-resolved microrheology based on particle tracking to measure nonequilibrium fluctuations produced by myosin motor proteins in a minimal model system composed of purified actin filaments and myosin motors. We show that the motors generate spatially heterogeneous contractile fluctuations, which become less frequent with time as a consequence of motor-driven network remodeling. We analyze the particle tracking data on different length scales, combining particle image velocimetry, an ensemble analysis of the particle trajectories, and finally a kymograph analysis of individual particle trajectories to quantify the length and time scales associated with active particle displacements. All analyses show clear signatures of nonequilibrium activity: the particles exhibit random motion with an enhanced amplitude compared to passive samples, and they exhibit sporadic contractile fluctuations with ballistic motion over large (up to 30 μm) distances. This nonequilibrium activity diminishes with sample age, even though the adenosine triphosphate level is held constant. We propose that network coarsening concentrates motors in large clusters and depletes them from the network, thus reducing the occurrence of contractile fluctuations. Our data provide valuable insight into the physical processes underlying stress generation within motor-driven actin networks and the analysis framework may prove useful for future microrheology studies in cells and model organisms.

  20. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.

    PubMed

    Lee, Yang; Fluckey, James D; Chakraborty, Sanjukta; Muthuchamy, Mariappan

    2017-07-01

    Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. © FASEB.

  1. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S.L.; Kim, H.S.; Okolie, P.

    1990-05-01

    Effects of the K+ channel blocking agent, glyburide, on the actions of two K+ channel openers, BRL 34915 (cromakalim) and P 1060 (Leo), a potent pinacidil derivative (N-(t-butyl)-N{double prime}-cyano-N{prime}-3-pyridyl-guanidine), were ascertained. Tension responses and {sup 86}Rb fluxes in rat portal vein strips and single channel electrophysiological recordings in enzymatically dissociated rat portal vein cells were obtained. Glyburide (0.3 microM) increased spontaneous contractile activity and caused concentration-dependent shifts in the relaxation responses to BRL 34915 and P 1060. Increases in {sup 86}Rb efflux were obtained only at much higher concentrations of BRL 34915 or P 1060, and these increases were blockedmore » only at higher concentrations of glyburide (5.0 microM). BRL 34915 and P 1060 specifically increase the open-state probability of the Ca+(+)-activated K+ (maxi-K+) channel, and these actions are blocked by glyburide and also by charybdotoxin. Changes in single channel activity and contractile responsiveness occur at similar concentrations of agonists and antagonists. Thus, the membrane channel in rat portal vein affected by glyburide, BRL 34915 and P 1060 appears to be the Ca+(+)-activated maxi-K+ channel (that does not show ATP dependence under the conditions of these experiments). Concentrations of agonists and antagonists effective on maxi-K+ channel activity correspond to those affecting contractile responsiveness and are lower than those eliciting changes in {sup 86}Rb flux.« less

  2. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism.

    PubMed

    Riveline, D; Zamir, E; Balaban, N Q; Schwarz, U S; Ishizaki, T; Narumiya, S; Kam, Z; Geiger, B; Bershadsky, A D

    2001-06-11

    The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.

  3. Is depressed myocyte contractility centrally involved in heart failure?

    PubMed

    Houser, Steven R; Margulies, Kenneth B

    2003-03-07

    This review examines the evidence for and against the hypothesis that abnormalities in cardiac contractility initiate the heart failure syndrome and drive its progression. There is substantial evidence that the contractility of failing human hearts is depressed and that abnormalities of basal Ca2+ regulation and adrenergic regulation of Ca2+ signaling are responsible. The cellular and molecular defects that cause depressed myocyte contractility are not well established but seem to culminate in abnormal sarcoplasmic reticulum uptake, storage, and release. There are also strong links between Ca2+ regulation, Ca2+ signaling pathways, hypertrophy, and heart failure that need to be more clearly delineated. There is not substantial direct evidence for a causative role for depressed contractility in the initiation and progression of human heart failure, and some studies show that heart failure can occur without depressed myocyte contractility. Stronger support for a causal role for depressed contractility in the initiation of heart failure comes from animal studies where maintaining or improving contractility can prevent heart failure. Recent clinical studies in humans also support the idea that beneficial heart failure treatments, such as beta-adrenergic antagonists, involve improved contractility. Current or previously used heart failure treatments that increase contractility, primarily by increasing cAMP, have generally increased mortality. Novel heart failure therapies that increase or maintain contractility or adrenergic signaling by selectively modulating specific molecules have produced promising results in animal experiments. How to reliably implement these potentially beneficial inotropic therapies in humans without introducing negative side effects is the major unanswered question in this field.

  4. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    PubMed

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  5. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    PubMed

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  6. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  7. The regulation of smooth muscle contractility by zipper-interacting protein kinase.

    PubMed

    Ihara, Eikichi; MacDonald, Justin A

    2007-01-01

    Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.

  8. Yap1 Protein Regulates Vascular Smooth Muscle Cell Phenotypic Switch by Interaction with Myocardin*

    PubMed Central

    Xie, Changqing; Guo, Yanhong; Zhu, Tianqing; Zhang, Jifeng; Ma, Peter X.; Chen, Y. Eugene

    2012-01-01

    The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs. PMID:22411986

  9. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion

    PubMed Central

    Ahmadzadeh, Hossein; Webster, Marie R.; Behera, Reeti; Jimenez Valencia, Angela M.; Wirtz, Denis; Weeraratna, Ashani T.; Shenoy, Vivek B.

    2017-01-01

    Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy–based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion. PMID:28196892

  10. Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea.

    PubMed

    Sekizawa, K; Tamaoki, J; Graf, P D; Basbaum, C B; Borson, D B; Nadel, J A

    1987-12-01

    To determine the roles of endogenous enkephalinase (EC.3.4.24.11) in regulating tachykinin-induced contraction of airway smooth muscle, the authors studied the effects of the enkephalinase inhibitor leucine-thiorphan on the contractile responses to substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) in isolated ferret tracheal smooth muscle segments. Leucine-thiorphan shifted, in concentration-dependent fashions, the dose-response curves to all tachykinins to lower concentrations. Leucine-thiorphan changed the rank order of tachykinin potency from NKA greater than SP greater than NKB to NKA = NKB greater than SP. Removal of the epithelium slightly enhanced the contractile responses to SP and NKA but not to NKB. Atropine shifted the dose-response curves of all tachykinins to higher concentrations. Each tachykinin increased the contractile response to electrical field stimulation (5 Hz, 20 sec of duration, 20 V) in a dose-dependent fashion. This effect was not altered by hexamethonium, indomethacin, BW755C or naloxone but was potentiated by leucine-thiorphan and inhibited by the tachykinin receptor antagonist (D-Pro2, D-Trp7,9)-SP and by atropine. Because tachykinins did not affect contractile responses to acetylcholine significantly, their effects were probably on presynaptic postganglionic nerves. Captopril, bestatin and leupeptin did not alter contractile responses, suggesting that angiotensin converting enzyme, aminopeptidases and serine proteinases did not modulate tachykinin-induced effects. Enkephalinase immunofluorescence was found in the smooth muscle and epithelium and confirmed the authors' finding of enkephalinase-like activity in the muscle. The results suggest that tracheal enkephalinase is an important modulator of tachykinin-induced effects.

  11. Cross-sectional area of human trunk paraspinal muscles before and after posterior lumbar surgery using magnetic resonance imaging.

    PubMed

    Ghiasi, Mohammad S; Arjmand, Navid; Shirazi-Adl, Aboulfazl; Farahmand, Farzam; Hashemi, Hassan; Bagheri, Sahar; Valizadeh, Mahsa

    2016-03-01

    Iatrogenic injuries to paraspinal muscles during the posterior lumbar surgery (PLS) cause a reduction in their cross-sectional areas (CSAs) and contractile densities over time post-surgery. This study aims to quantify such alterations. Pre- and postoperative CSAs (~6 months interval) of all paraspinal muscles were measured in six patients undergoing PLS using a 3-T magnetic resonance (MR) scanner to quantify the alterations in geometrical and tissue effective contractile (non-fatty) CSAs of these muscles at all lumbar levels. To examine the presence of any confounding effects on recorded changes within ~7-month period, measurements were also carried out on ten healthy volunteers. In the healthy population, an important (~22%) portion of CSA of the erector spinae (ES) was noncontractile at the lower lumbar levels. Negligible variations over time in both the total geometrical (<1.7% in average) and contractile (<1.2%) CSAs of muscles were observed in the healthy group (i.e., no confounding effect). Following PLS, significant reductions were observed in the geometrical CSA of only multifidus (MF) muscle by ~14 and 11% as well as in its contractile CSA by ~26 and 14% at the L5-S1 and L4-L5 levels, respectively. The total CSA of ES at lower lumbar levels shows substantial noncontractile contents in both healthy and patient populations. Biomechanical models of the spine should hence account for the noncontractile contents using only the effective contractile muscle CSAs. Postoperative variations in CSAs of paraspinal muscles may have profound effects on patterns of muscle activities, spinal loading, and stability.

  12. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro.

    PubMed

    Sun, J; Sakamoto, T; Chung, K F

    1995-08-01

    Sodium metabisulphite (MBS) is known to induce bronchoconstriction in asthmatic patients. The effects of MBS on guinea pig airway smooth muscle and on neurally mediated contraction in vitro have been examined. Tracheal and bronchial airway segments were placed in oxygenated buffer solution and electrical field stimulation was performed in the presence of indomethacin (10(-5) M) and propranolol (10(-6) M) for the measurement of isometric tension. Atropine (10(-6) M) was added to bronchial tissues. Concentrations of MBS up to 10(-3) M had no direct effect on airway smooth muscle contraction and did not alter either tracheal smooth muscle contraction induced by electrical field stimulation at all frequencies or acetylcholine-induced tracheal smooth muscle contraction. There was a similar response in the absence of epithelium, except for potentiation of the response induced by electrical field stimulation at 0.5 Hz (24 (10)% increase). However, MBS (10(-5), 10(-6) and 10(-7) M) augmented neurally-mediated non-adrenergic non-cholinergic contractile responses in the bronchi (13.3 (3.2)%, 23.8 (9.6)%, and 6.4 (1.6)%, respectively). MBS had no effect on the contractile response induced by substance P, but at higher concentrations (10(-3) M and 10(-4) M) it caused a time-dependent attenuation of responses induced by either electrical field stimulation or exogenously applied acetylcholine or substance P. MBS had no direct contractile responses but enhanced bronchoconstriction induced by activation of non-cholinergic neural pathways in the bronchus, probably through increased release of neuropeptides. At high concentrations MBS inhibited contractile responses initiated by receptor or neural stimulation.

  13. Steroid Hormones and Uterine Vascular Adaptation to Pregnancy

    PubMed Central

    Chang, Katherine; Zhang, Lubo

    2008-01-01

    Pregnancy is a physiological state that involves a significant decrease in uterine vascular tone and an increase in uterine blood flow, which is mediated in part by steroid hormones, including estrogen, progesterone, and cortisol. Previous studies have demonstrated the involvement of these hormones in the regulation of uterine artery contractility through signaling pathways specific to the endothelium and the vascular smooth muscle. Alterations in endothelial nitric oxide synthase expression and activity, nitric oxide production, and expression of enzymes involved in PGI2 production contribute to the uterine artery endothelium-specific responses. Steroid hormones also have an effect on calcium-activated potassium channel activity, PKC signaling pathway and myogenic tone, and alterations in pharmacomechanical coupling in the uterine artery smooth muscle. This review addresses current understanding of the molecular mechanisms by which steroid hormones including estrogen, progesterone, and cortisol modulate uterine artery contractility to alter uterine blood flow during pregnancy with an emphasis on the pregnant ewe model. PMID:18497342

  14. The β3 -adrenoceptor agonist mirabegron increases human atrial force through β1 -adrenoceptors: an indirect mechanism?

    PubMed

    Mo, Weilan; Michel, Martin C; Lee, Xiang Wen; Kaumann, Alberto J; Molenaar, Peter

    2017-08-01

    Mirabegron has been classified as a β 3 -adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of β-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), β 3 (L-748,337), β 1 (CGP 20712A), β 2 (ICI 118,551) -adrenoceptor antagonists, neuronal uptake inhibitors desipramine or phenoxybenzamine. Mirabegron significantly increased contractile force in human right atrium (1 μM, 7.6 ± 2.6%, n = 7; 10 μM, 10.2 ± 1.5%, n = 22 compared with (-)-isoprenaline P < 0.05). In the presence of IBMX, mirabegron (10 μM) caused a greater contraction. L-748,337 (100 nM) had no effect on the increase in contractile force caused by mirabegron (10 μM). In contrast, mirabegron (10 μM) reduced contractile force in the presence of CGP 20712A, which was not affected by L-748,337 (100 nM) or ICI 118,551 (50 nM). Mirabegron (10 μM) also reduced contractile force in the presence of desipramine or phenoxybenzamine. Mirabegron increases human atrial force through β 1 - but not β 3 -adrenoceptors. Desipramine and phenoxybenzamine block neuronal uptake and conceivably prevent mirabegron from releasing noradrenaline. A non-specific cardiodepressant effect is not mediated through β 3 (or β 2 )-adrenoceptors, consistent with lack of β 3 -adrenoceptor function on human atrial contractility. © 2017 The British Pharmacological Society.

  15. Fasudil inhibits the proliferation and contractility and induces cell cycle arrest and apoptosis of human endometriotic stromal cells: a promising agent for the treatment of endometriosis.

    PubMed

    Tsuno, Akitoshi; Nasu, Kaei; Kawano, Yukie; Yuge, Akitoshi; Li, Haili; Abe, Wakana; Narahara, Hisashi

    2011-12-01

    During the development of endometriotic lesions, excess fibrosis may lead to scarring and to the alterations of tissue function that are the characteristic features of this disease. Enhanced extracellular matrix contractility of endometriotic stromal cells (ECSC) mediated by the mevalonate-Ras homology (Rho)/Rho-associated coiled-coil-forming protein kinase (ROCK) pathway has been shown to contribute to the pathogenesis of endometriosis. To assess the use of fasudil, a selective ROCK inhibitor, for the medical treatment of endometriosis-associated fibrosis, the effects of this agent on the cell proliferation, apoptosis, cell cycle, morphology, cell density, and contractility of ECSC were investigated. The effects of fasudil on the expression of contractility-related, apoptosis-related, and cell cycle-related molecules in ECSC were also evaluated. Fasudil significantly inhibited the proliferation and contractility of ECSC and induced the cell cycle arrest in the G2/M phase and apoptosis of these cells. Morphological observation revealed the suppression of ECSC attachment to collagen fibers and decrease of cell density by fasudil. The expression of α-smooth muscle actin, RhoA, ROCK-I, and ROCK-II proteins was inhibited by fasudil administration. The expression of the antiapoptotic factors, Bcl-2 and Bcl-X(L), in two-dimensional cultured ECSC were down-regulated by the addition of fasudil, whereas, the expression of p16(INK4a) and p21(Waf1/Cip1) was up-regulated by the addition of fasudil. The present findings suggest that fasudil is a promising agent for the treatment of endometriosis. The inhibition of cell proliferation, contractility, and myofibroblastic differentiation, the attenuation of attachment to collagen fibers, the decrease of cell density, and the induction of cell cycle arrest and apoptosis of ECSC are involved in the active mechanisms of fasudil.

  16. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  17. Oxytocin plus antibiotics: A synergism of potentiation to enhance bovine uterine contractility.

    PubMed

    Piccinno, M; Rizzo, A; Cariello, G; Staffieri, F; Sciorsci, R L

    2016-09-15

    This in vitro study investigates the modulatory effect of three antibiotics (amoxicillin, enrofloxacin, and rifaximin) on contractility of the bovine uterine tissue, in follicular and luteal phases. The evaluation of the effects of these antibiotics (10(-4) M) was performed on oxytocin-induced contractility. The decision to test these antibiotics with the oxytocin (10(-6) M) comes from the reported ability of these combinations of hinder the antibiotic resistance and the formation of bacterial biofilms. The procedures were carried out in isolated organ bath, and the contractile functionality of the strip throughout the experiment was evaluated after a dose of carbachol (10(-5) M). The results demonstrate the different modulatory activity of these antibiotics, on the plateau of contraction induced by oxytocin, in both phases of the estrus cycle. The differing individual antibiotic effects of our testing made it possible to identify, only in some cases. Rifaximin in the follicular phase and enrofloxacin in both phases of the estrous cycle, induced a synergistic enhancement (potentiation) of uterine strip contraction induced by oxytocin. This result is thought important because these associations might enable, in vivo, a simultaneous increase of uterine cleaning and the antimicrobial action on bacteria in planktonic form and of those organized in biofilms. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Pharmacology of RG W-2938: a cardiotonic agent with vasodilator activity.

    PubMed

    Barrett, J A; Woltmann, R F; Swillo, R S; Kasiewski, C; Faith, W C; Campbell, H F; Perrone, M H

    1990-10-01

    The cardiovascular effects of RG W-2938, 6-[6-(3,4-dihydro-3-methyl-2(1H)-2-oxoquinazolinyl)]-4,5-dihydro-3 (2H-pyridazinone, a new nonglycoside, noncatecholamine cardiotonic/vasodilator agent were examined in vivo in anesthetized and conscious dogs and in vitro in isolated guinea pig hearts; in the latter, RG W-2938 5 nmol-5 mumol increased contractility in a dose-related fashion. RG W-2938 30-300 micrograms/kg administered intravenously (i.v.) to anesthetized dogs increased contractile force while decreasing arterial pressure and total peripheral resistance (TPR) in a dose-related manner. Heart rate (HR) was only slightly increased, and aortic flow was not appreciably altered. A single oral dose of RG W-2938 0.3 mg/kg administered to conscious chronically instrumented dogs produced a marked and sustained increase in contractility 15-240 min after treatment while only slightly increasing HR. The effects of RG W-2938 30-300 micrograms/kg, i.v. were studied in a mecamylamine-propranolol-induced model of heart failure. RG W-2938 effectively reversed the drug-induced heart failure by increasing myocardial contractility and decreasing arterial pressure while only slightly affecting HR. These studies show that RG W-2938 is an orally effective positive inotropic/vasodilator agent.

  19. Impact of tamsulosin and nifedipine on contractility of pregnant rat ureters in vitro.

    PubMed

    Haddad, Lisette; Corriveau, Stéphanie; Rousseau, Eric; Blouin, Simon; Pasquier, Jean-Charles; Ponsot, Yves; Roy-Lacroix, Marie-Ève

    2018-01-01

    To evaluate the in vitro effect of tamsulosin and nifedipine on the contractility of pregnant rat ureters and to perform quantitative analysis of the pharmacological effects. Medical expulsive therapy (MET) is commonly used to treat urolithiasis. However, this treatment is seldom used in pregnant women since no studies support this practice. This was an in vitro study on animal tissue derived from pregnant Sprague-Dawley rats. A total of 124 ureteral segments were mounted in an organ bath system and contractile response to methacholine (MCh) was assessed. Tamsulosin or nifedipine were added at cumulative concentrations (0.001-1 μM). The area under the curve (AUC) from isometric tension measurements was calculated. The effect of pharmacological agents and the respective controls were assessed by calculating the AUC for each 5-min interval. Statistical analyses were performed using the Mann-Whitney-Wilcoxon nonparametric test. Both drugs displayed statistically significant inhibitory activity at concentrations of 0.1 and 1 μM for tamsulosin and 1 μM for nifedipine when calculated as the AUC as compared to DMSO controls. Tamsulosin and nifedipine directly inhibit MCh-induced contractility of pregnant rat ureters. Further work is needed to determine the clinical efficacy of these medications for MET in pregnancy.

  20. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol.

    PubMed

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-11-16

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types.

Top