Science.gov

Sample records for active contractile properties

  1. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  2. Motor units in incomplete spinal cord injury: electrical activity, contractile properties and the effects of biofeedback.

    PubMed

    Stein, R B; Brucker, B S; Ayyar, D R

    1990-10-01

    The electrical and contractile properties of hand muscles in a selected population of quadriplegic subjects were studied intensively before and after EMG biofeedback. Spontaneously active motor units and units that could only be slowly and weakly activated were observed in these subjects, in addition to units that were voluntarily activated normally. This suggests a considerable overlap of surviving motor neurons to a single muscle that are below, near or above the level of a lesion. Despite the common occurrence of polyphasic potentials and other signs of neuromuscular reinnervation, the average twitch tension of single motor units in hand muscles of quadriplegic subjects was not significantly different from that in control subjects. Nor did it increase after biofeedback training that typically increased the peak surface EMG by a factor of 2-5 times. The percentage of spontaneously active units was also constant. The surface EMG may be increased during biofeedback by using higher firing rates in motor units that can already be activated, rather than by recruiting previously unavailable motor units. PMID:2266370

  3. Contractile Function During Angiotensin-II Activation

    PubMed Central

    Zhang, Min; Prosser, Benjamin L.; Bamboye, Moradeke A.; Gondim, Antonio N.S.; Santos, Celio X.; Martin, Daniel; Ghigo, Alessandra; Perino, Alessia; Brewer, Alison C.; Ward, Christopher W.; Hirsch, Emilio; Lederer, W. Jonathan; Shah, Ajay M.

    2015-01-01

    Background Renin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function. Objectives This study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation. Methods We generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding. Results Chronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice. Conclusions We identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation. PMID:26184620

  4. Contractile activity of cultured adult Dirofilaria immitis.

    PubMed

    Bowen, John M; Vitayavirasuk, Banjong

    2004-01-30

    A method for long-term maintenance of adult heartworms (HW) in culture for use in contractile activity studies was developed. Culture conditions included Eagle's minimum essential medium (MEM) containing Earle's balanced salt solution and MEM vitamins and supplemented with 10% horse serum, pH 7.6, 37 degrees C, and humidified 5% CO2:95% room air atmosphere. Motility was observed for up to 91 days. Reducing the culture atmosphere from 20% oxygen to 5% oxygen reduced acid production and survival to 28 days or less. Spontaneous contractile activity of adult HW coils (1 cm diameter) was measured using an isometric force displacement transducer system. Activity had an arrhythmic pattern of good magnitude that could be recorded after up to 50 days in culture for male HW and after up to 40 days in culture for female HW. Analyses of contractile activity included determination of its amplitude, frequency, contraction index, and basal tension. Amplitude for males (3.4 +/- 1.2 g) (mean +/- S.D.) was significantly greater (P < 0.02) than that for females (3.0 +/- 1.1 g), whereas frequency for females (8.2 +/- 2.3 min) was significantly greater (P < 0.03) than that for males (7.5 +/- 2.3 min). The contraction index for females was 16.7 +/- 13.7 mm/min and for males, 14.4 +/- 9.0 mm/min. The difference was not significant. The contraction index was based on line integration of the record of contractile activity. Amplitude and frequency of contractile activity for anterior segments (2.5 cm), suspended lengthwise, from cultured adult female HW, were not significantly different from results for coils, but the contraction index (34.5 +/- 33.8) was significantly higher (P < 0.01) indicating that the pattern of activity was more uniform in the segments. An applied basal tension of about 4 g was suitable for the coils, while a suitable basal tension for segments was about 1.5 g. For coils, amplitude, frequency, and contraction index increased significantly (P < 0.02) with increase in

  5. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  6. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system. PMID:27492182

  7. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  8. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  9. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C.

    PubMed

    Mamidi, Ranganath; Gresham, Kenneth S; Li, Amy; dos Remedios, Cristobal G; Stelzer, Julian E

    2015-08-01

    Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow β-myosin heavy chain (β-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM

  10. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells.

    PubMed

    Haage, Amanda; Schneider, Ian C

    2014-08-01

    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  11. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  12. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat

    PubMed Central

    Elmes, Matthew; Szyszka, Alexandra; Pauliat, Caroline; Clifford, Bethan; Daniel, Zoe; Cheng, Zhangrui; Wathes, Claire; McMullen, Sarah

    2015-01-01

    Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways. PMID:25876907

  13. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration

    PubMed Central

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-01-01

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca2+- and Sr2+-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had ∼10% of the maximal force producing capacity (Po) of control (uninjured) fibres, and an altered sensitivity to Ca2+ and Sr2+ at 7 days post-injury. Increased force production and a shift in Ca2+ sensitivity consistent with fibre maturation were observed during regeneration such that Po was restored to 36–45% of that in control fibres by 21 days, and sensitivity to Ca2+ and Sr2+ was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed. PMID:15181161

  14. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  15. Influence of the cardiac myosin hinge region on contractile activity.

    PubMed

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  16. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  17. Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.

    PubMed

    Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A

    2010-10-01

    Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.

  18. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo.

    PubMed Central

    Rockey, D C; Housset, C N; Friedman, S L

    1993-01-01

    Hepatic lipocytes are perisinusoidal cells that have been thought to be analogous to tissue pericytes, a cell type with purported vasoregulatory properties. However, we and others have recently demonstrated that lipocytes acquire markers of smooth muscle cells or myofibroblasts only after liver injury, via a process termed "activation." In this study, we document lipocyte contractility on collagen lattices and examine the importance of activation in this process. In culture, lipocytes became contractile only after spreading and activating, coincident with expression of smooth muscle alpha actin, a marker of activation (1990. Virchows Arch. B Cell Pathol. 59:349). After 5 d in culture, lipocytes induced rapid and sustained contraction of collagen lattices (to 43.7 +/- 2.3% of their original size 24 h after detachment). There was no contraction of lattices containing hepatocytes. Scanning electron microscopy demonstrated intimate associations of lipocyte cell membranes and collagen fibrils. Reduction in cell volume during contraction was also prominent. Lattice contraction by lipocytes was proportional to cell number. Serum was a potent stimulator of lipocyte contraction, as were endothelin types 1, 2, and 3; the effect of serum and endothelin 1 were additive. Neither thrombin, angiotensin-II, serotonin, nor the cytokines PDGF and TGF beta induced contraction. Cytochalasin B treatment resulted in concentration-dependent inhibition of contraction. As a test of the in vivo relevance of the culture findings, lipocytes were isolated from fibrotic animals and examined immediately after adherence. Whereas lipocytes from normal liver were initially compact, smooth muscle alpha actin negative and noncontractile, cells from animals with hepatic injury due to CCl4 displayed an activated appearance, expressed smooth muscle alpha actin, and were contractile immediately after adherence. Additionally, IFN-gamma, an agent which blocks lipocyte activation (1992. Hepatology. 16

  19. Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day “dry” immersion

    NASA Astrophysics Data System (ADS)

    Ogneva, I. V.; Ponomareva, E. V.; Kartashkina, N. L.; Altaeva, E. G.; Fokina, N. M.; Kurushin, V. A.; Kozlovskaya, I. B.; Shenkman, B. S.

    2011-05-01

    The simulation model of "dry" immersion was used to evaluate the effects of plantar mechanical stimulation (PMS) and high frequency electromyostimulation (EMS) on the mechanical properties of human soleus fibers under the conditions of gravitational unloading. We examined contractile properties of single fibers by means of tensometry, transversal stiffness of sarcolemma and different areas of the contractile apparatus by means of atomic force microscopy. It was shown that there is a reduction of transversal stiffness in single muscle fibers under hypogravitational conditions. Application of different countermeasures could compensate this effect. Meanwhile pneumostimulation and electro stimulation act in quite different way. Therefore, pneumostimulation seems to be more effective. The data obtained can be considered as the evidence of the fact that such countermeasures as PMS and electromyostimulation influence on muscle fibers in quite different ways and PMS efficiency is likely to be higher. On the basis of our experimental data on transverse stiffness of mechanotransductional nodes and the contractile apparatus, we can assume that support stimulation allows prevention of destructive processes in muscle fibers. Electrostimulation seems to stimulate contractile activity only without suppression of impairment of the fiber mechanical properties.

  20. Detecting cardiac contractile activity in the early mouse embryo using multiple modalities

    PubMed Central

    Chen, Chiann-Mun; Miranda, António M. A.; Bub, Gil; Srinivas, Shankar

    2015-01-01

    The heart is one of the first organs to develop during mammalian embryogenesis. In the mouse, it starts to form shortly after gastrulation, and is derived primarily from embryonic mesoderm. The embryonic heart is unique in having to perform a mechanical contractile function while undergoing complex morphogenetic remodeling. Approaches to imaging the morphogenesis and contractile activity of the developing heart are important in understanding not only how this remodeling is controlled but also the origin of congenital heart defects (CHDs). Here, we describe approaches for visualizing contractile activity in the developing mouse embryo, using brightfield time lapse microscopy and confocal microscopy of calcium transients. We describe an algorithm for enhancing this image data and quantifying contractile activity from it. Finally we describe how atomic force microscopy can be used to record contractile activity prior to it being microscopically visible. PMID:25610399

  1. Effect of season on contractile and metabolic properties of desert camel muscle (Camelus dromedarius).

    PubMed

    Abdelhadi, O M A; Babiker, S A; Picard, B; Jurie, C; Jailler, R; Hocquette, J F; Faye, B

    2012-01-01

    Thirty fattened one humped desert camels were used to examine the effect of season on contractile and metabolic properties of Longissimus thoracis (LT) muscle. Ten camels were slaughtered according to seasons of the year (winter, summer and autumn). Season significantly influenced muscle chemical composition, ultimate pH (pHu) and color. Activities of metabolic enzymes were higher during autumn season compared to summer and winter for phosphofructokinase (+64% compared to both seasons) and for isocitrate dehydrogenase (+35% and +145% in autumn vs. summer and winter, respectively). Quantification of muscle myosin heavy chain isoforms by SDS-PAGE electrophoresis showed only presence of type I and type IIa MyHC in camel muscle and indicated high proportion in winter for type I and in autumn for type IIa with respect to other seasons. Several correlations between different MyHC proportions and enzyme activities were reported. These findings indicated that muscle characteristics in camels are influenced by season.

  2. Activity-induced regulation of myosin isoform distribution - Comparison of two contractile activity programs

    NASA Technical Reports Server (NTRS)

    Diffee, Gary M.; Caiozzo, Vince J.; Mccue, Samuel A.; Herrick, Robert E.; Baldwin, Kenneth M.

    1993-01-01

    This study examined the role of specific types of contractile activity in regulating myosin heavy chain (MHC) isoform expression in rodent soleus. A combination of hindlimb suspension (SN) and two programmed contractile training activity paradigms, either isometric contractile activity (ST-IM) or high-load slowly shortening isovelocity activity, were utilized. Both training paradigms increased muscle mass compared with SN alone. However, only ST-IM resulted in a partial prevention of the suspension-induced decrease in type I MHC. With the use of a fluorescently labeled antibody to type IIa MHC, the distribution of MHCs among fibers was examined immunohistochemically. In SN, the percentage of cells staining positive for type IIa MHC was increased but the staining intensity of the positively staining cells was unchanged compared with control cells. In the ST-IM soleus, the percentage of positively staining fibers was unchanged but the intensity of the positively staining cells was decreased compared with SN values. These results suggest that 1) isometric contractile activity is more effective than isovelocity activity in preventing suspension-induced shifts in soleus MHC distribution and 2) changes associated with both suspension and training occur in only a small number of fibers, with the majority of fibers apparently unresponsive to these interventions.

  3. Locomotion as an emergent property of muscle contractile dynamics.

    PubMed

    Biewener, Andrew A

    2016-01-01

    Skeletal muscles share many common, highly conserved features of organization at the molecular and myofilament levels, giving skeletal muscle fibers generally similar and characteristic mechanical and energetic properties; properties well described by classical studies of muscle mechanics and energetics. However, skeletal muscles can differ considerably in architectural design (fiber length, pinnation, and connective tissue organization), as well as fiber type, and how they contract in relation to the timing of neuromotor activation and in vivo length change. The in vivo dynamics of muscle contraction is, therefore, crucial to assessing muscle design and the roles that muscles play in animal movement. Architectural differences in muscle-tendon organization combined with differences in the phase of activation and resulting fiber length changes greatly affect the time-varying force and work that muscles produce, as well as the energetic cost of force generation. Intrinsic force-length and force-velocity properties of muscles, together with their architecture, also play important roles in the control of movement, facilitating rapid adjustments to changing motor demands. Such adjustments complement slower, reflex-mediated neural feedback control of motor recruitment. Understanding how individual fiber forces are integrated to whole-muscle forces, which are transmitted to the skeleton for producing and controlling locomotor movement, is therefore essential for assessing muscle design in relation to the dynamics of movement.

  4. Contractile properties are disrupted in Becker muscular dystrophy, but not in limb girdle type 2I.

    PubMed

    Løkken, Nicoline; Hedermann, Gitte; Thomsen, Carsten; Vissing, John

    2016-09-01

    We investigated whether a linear relationship between muscle strength and cross-sectional area (CSA) is preserved in calf muscles of patients with Becker muscular dystrophy (BMD, n = 14) and limb-girdle type 2I muscular dystrophy (LGMD2I, n = 11), before and after correcting for muscle fat infiltration. The Dixon magnetic resonance imaging technique was used to quantify fat and calculate a fat-free contractile CSA. Strength was assessed by dynamometry. Muscle strength/CSA relationships were significantly lower in patients versus controls. The strength/contractile-CSA relationship was still severely lowered in BMD, but was almost normalized in LGMD2I. Our findings suggest close to intact contractile properties in LGMD2I, which are severely disrupted in BMD. Ann Neurol 2016;80:466-471. PMID:27463532

  5. How to make rapid eye movements "rapid": the role of growth factors for muscle contractile properties.

    PubMed

    Li, Tian; Feng, Cheng-Yuan; von Bartheld, Christopher S

    2011-03-01

    Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The "fast" EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle.

  6. Mechanisms of Discoordination of Contractile Activity in the Gastroduodenal Zone during Psychogenic Stress in Rabbits.

    PubMed

    Ovsyannikov, V I; Berezina, T P; Shemerovskii, K A

    2015-08-01

    Inhibition of the contractile activity of the stomach induced by psychogenic stress persisted after blockade of muscarinic and nicotinic cholinergic receptors and α2 and β1/β2-adrenergic receptors. Stress-induced increase in contractile activity in the proximal part of the duodenum persisted during blockade of muscarinic and nicotinic cholinergic receptors, β1/β2-adrenergic receptors. At the same time, blockade of the above cholinergic and adrenergic receptors eliminated the stress-induced increase in contractive activity in the distal part of the duodenum.

  7. Myonemal contraction of spirostomum. II. Some mechanical properties of the contractile apparatus.

    PubMed

    Hawkes, R B; Holberton, D V

    1975-06-01

    In several respects, notably the high velocity of shortening, Ca(2+) dependence, and ATP independence, contraction of Spirostomum resembles the spasmonemal mechanism of the peritrich ciliates. In this report further mechanical properties of the contractile apparatus are described that extend this comparison. The velocity-load characteristic is more appropriate to an elastomer than to a muscle where contraction force is load-dependent. Active tension is found to relate linearly to cell length for extensions up to and beyond resting length (1r), an elastic limit is reached around 1.5 1r. At resting length this tension, measured by the deformation of a glass microbalance, is similar to that predicted from consideration of the hydrodynamic forces normally resisting shortening. The tension-length relation for the unstimulated (passive) cell is also linear between 1r and the elastic limit, but is displaced from the active tension-length curve and is of reduced stiffness. Kinetic studies suggest that maximum tension and maximum velocity coincide. Calculations are presented that support a model of contraction in Spirostomum in which the myonemes behave as a mechanochemical engine powered directly by the chemical potential of Ca(2+). PMID:806604

  8. Co-ordination of contractile activity in guinea-pig mesenteric lymphatics.

    PubMed Central

    Crowe, M J; von der Weid, P Y; Brock, J A; Van Helden, D F

    1997-01-01

    1. Intraluminally perfused lymphatic vessels from the mesentery of the guinea-pig were examined in vitro to investigate their contractile activity and the co-ordination of this activity between adjacent lymphangions. 2. Lymphangions constricted at fairly regular intervals and exhibited 'refractory' periods of up to 3 s during which constrictions did not occur. 3. The contractile activity of adjacent lymphangions was highly co-ordinated. 4. The smooth muscle was found to be continuous between the adjacent lymphangions for the majority of valve regions examined morphologically (52 of 63 preparations). 5. Mechanical and electrical coupling between adjacent lymphangions was indicated, as some lymphangions underwent transient dilatations just prior to constriction, whereas direct electrophysiological measurements showed that the smooth muscle of most adjacent lymphangions was electrically coupled across the valve (15 out of 20 pairs of lymphangions). 6. It is concluded that perfused lymphangions of guinea-pig mesenteric lymphatic vessels rhythmically constrict, with the contractile activity of adjacent lymphangions highly co-ordinated. The findings also indicate that transmission of both mechanical and electrical signals between the adjacent lymphangions contribute to the co-ordination of their contractile activity. Images Figure 4 PMID:9097947

  9. Relationship between muscle volume and contractile properties of the human knee extensors.

    PubMed

    Behrens, Martin; Brown, Niklas; Bollinger, Robert; Bubeck, Dieter; Mau-Moeller, Anett; Weippert, Matthias; Zschorlich, Volker; Bruhn, Sven; Alt, Wilfried

    2016-01-01

    The present study was designed to investigate the relationship between volume and electrically evoked twitch properties of the quadriceps muscle. Supramaximal single and doublet stimulation of the femoral nerve was used to assess contractile properties at 45° and 80° knee flexion. Muscle volume was measured using a 1.5-Tesla magnetic resonance imaging scanner. Quadriceps muscle volume was only significantly correlated (r = 0.629) with peak twitch torque induced by doublet stimulation at 80° but not at 45° knee flexion.

  10. Physiological Studies on Pea Tendrils. III. ATPase Activity and Contractility Associated with Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Extracts of the tendrils of Pisum sativum, Var. Alaska, exhibit adenosine triphosphatase activity which is inversely proportional to the amount the tendrils have coiled. The specific viscosity of the extract decreases when ATP is added. This evidence indicates a possible role of a contractile adenosine triphosphatase in coiling. PMID:16656580

  11. Effects of sex hormones on genioglossal muscle contractility and SR Ca2+-ATPase activity in aged rat.

    PubMed

    Liu, Yue-Hua; Qi, Juan; Hou, Yu-Xia; Wang, Fei

    2008-04-01

    This investigation was designed to examine whether short-term administration of sex hormones could produce changes in contractile properties and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) function in genioglossal muscle (GG) of aged male rats. Twenty-four aged male rats were randomly divided into three groups to receive an intramuscular injection of either 0.1mg/kg oestrogen (group A), 2.5 mg/kg testosterone (group B), or 0.2 ml sterile peanut oil (group C, control), twice a week, during 4 weeks. After hormone treatment, in vivo isometric contractile properties were determined using surgically prepared GG muscles with platinum electrodes for stimulation of the medial branch of the hypoglossus nerve. Sarcoplasmic reticulum Ca(2+)-ATPase activity was measured in muscle homogenates by detecting the amount of inorganic phosphorus ion released in a standard coupled enzyme assay. SERCA1 mRNA level was observed using a real-time quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR). It was found that, compared with group C, testosterone treatment decreased the fatigue resistance in GG muscles (p<.05), whereas no change was observed in the isometric twitch (P(t)) and tetanic tension (P(0)) (p>.05). By contrast, in oestrogen treated GG muscles, no significant modification was found either in the contractile or in endurance properties (p>.05). The change in GG fatigue resistance of group B was associated with a marked decrease in SR Ca(2+)-ATPase activity when compared with that of the control group (p<.01). Furthermore, SERCA1 mRNA level was also down regulated in group B (p<.05). No prominent differences in SR Ca(2+)-ATPase activity and SERCA1 mRNA expression existed between group A and group C (p>.05). The present results show that exogenous testosterone produces more pronounced changes in GG muscle fatigue resistance than oestrogen does by acting at SR Ca(2+)-ATPase activity and SERCA gene expression.

  12. Effect of spironolactone and its metabolites on contractile property of isolated rat aorta rings.

    PubMed

    Sorrentino, R; Autore, G; Cirino, G; d'Emmanuele de Villa Bianca, R; Calignano, A; Vanasia, M; Alfieri, C; Sorrentino, L; Pinto, A

    2000-08-01

    Spironolactone and its active metabolites canrenone and potassium canrenoate are normally used as antihypertensive drugs. Although they are classified as antagonists of aldosterone, their mechanism of action cannot be ascribed solely to the regulation of ion transport in the distal tubule of nephrons. Here we have evaluated the effects of spironolactone, canrenone, and potassium canrenoate on contractile properties of isolated rat aorta rings. Spironolactone (1-300 microM), canrenone (1-300 microM), and potassium canrenoate (0.01-10 mM), in a concentration-dependent manner, relaxed rat aorta rings precontracted with phenylephrine (1 microM) or KCl (40 mM). These relaxant effects were not affected by prior treatment with either aldosterone (100 microM), glibenclamide (10 microM), or tetraethylammonium (10 mM), excluding the possibility that these drugs can be involved in either the nongenomic effect of aldosterone or on activation of potassium channels. Spironolactone and canrenone at concentrations of 30 and 100 microM, but not at 10 microM, and potassium canrenoate at concentrations of 0.3 and 1 mM, but not at 0.1 mM, significantly inhibited the phenylephrine (0.001-3 microM) concentration-response curve. Conversely, all tested concentrations of spironolactone (10, 30, and 100 microM), canrenone (10, 30, and 100 microM), and potassium canrenoate (0.1, 0.3, and 1 mM) significantly inhibited the concentration-response curve induced by cumulative concentrations of KCI (10-80 mM). Because both phenylephrine- and KCl-induced contractions imply an intracellular Ca2+ influx, we suggest that these drugs could act through an inhibition of voltage-dependent Ca2+ channels. PMID:10942165

  13. Hypothyroid-mediated changes in adult rat diaphragm muscle contractile properties and MHC isoform expression.

    PubMed

    Gosselin, L E; Zhan, W Z; Sieck, G C

    1996-06-01

    The purpose of the present study was to examine the effect of acute hypothyroidism on myosin heavy chain (MHC) isoform composition and contractile properties in the adult rat diaphragm muscle. Hypothyroidism was induced by the addition of propylthiouracil (0.05%) in the drinking water for a period of 3 wk. MHC isoform composition of control and hypothyroid diaphragm muscles was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vitro isometric contractile properties of midcostal diaphragm muscle segements were measured at 26 degrees C, whereas the maximal unloaded shortening velocity was measured at 15 degrees C with the "slack test" method. Serum triiodothyronine and thyroxine values were significantly lower in the hypothyroid compared with the control group. A small but significant increase in the percentage of slow MHC isoform in the diaphragm was observed with acute hypothyroidism, whereas the percentage of the fast MHC isoforms (2A, 2X, and 2B) did not significantly differ between groups. Peak twitch force did not differ between groups. However, twitch contraction and half-relaxation times were significantly prolonged in the hypothyroid group compared with control. Maximal specific force was reduced in the hypothyroid compared with the control group, averaging 15.7 and 19.8 N/cm2, respectively (P < 0.05). The maximal unloaded shortening velocity averaged 4.3 and 8.2 muscle lengths/s in the hypothyroid and control groups, respectively (P < 0.05). We conclude that acute hypothyroidism results in alterations in adult diaphragm muscle contractile properties that cannot be attributed solely to changes in MHC isoform composition.

  14. Contractile properties and temperature sensitivity of the extraocular muscles, the levator and superior rectus, of the rabbit.

    PubMed Central

    Frueh, B R; Hayes, A; Lynch, G S; Williams, D A

    1994-01-01

    1. Contractile and fatigue-resistance characteristics, temperature sensitivity (10-37 degrees C) of contraction, and histochemical fibre types were determined for two of the extraocular muscles, the superior rectus and levator palpebrae superioris (levator), of the rabbit. 2. The levator displayed similar contractile characteristics (time to peak, half-relaxation time of twitch response, and twitch-tetanus force ratio) to mammalian fast-twitch limb muscle at room temperature (20 degrees C). However, normalized twitch and tetanic force levels were significantly less than those found in limb muscle. The superior rectus displayed the characteristics of even faster contraction than the levator at 20 degrees C, but generated lower maximum force levels than the levator. 3. The twitch response of the superior rectus showed a biphasic relaxation phase. This response was not due to non-twitch (tonic) fibres present in the superior rectus as it was unaffected by propranolol application during muscle stimulation. 4. The superior rectus and levator displayed significantly less fatigue in the tetanic force response than fast-twitch limb muscles did in response to a fatiguing electrical stimulation protocol. The levator was significantly more fatigue resistant than the superior rectus. 5. The force responses of both extraocular muscles displayed a similar dependence on temperature (10-37 degrees C) to limb skeletal muscles. 6. The superior rectus and levator exhibited a high proportion of fast-twitch muscle fibres (type II) as shown by myosin ATPase staining. Succinate dehydrogenase activity indicated that these muscles showed a high oxidative capacity, with a staining intensity typical of type I or type II A fibres of limb muscles. 7. The results emphasize the morphological and functional complexity of mammalian extraocular muscles. The combination of very fast contractile properties with high oxidative capacity make these muscles well suited to their role in eye

  15. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea.

    PubMed

    Vasconcelos, T B; Ribeiro-Filho, H V; Lucetti, L T; Magalhães, P J C

    2016-02-01

    β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K(+)-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor

  16. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    PubMed Central

    Vasconcelos, T.B.; Ribeiro-Filho, H.V.; Lucetti, L.T.; Magalhães, P.J.C.

    2015-01-01

    β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor

  17. Assessment of Muscle Contractile Properties at Acute Moderate Altitude Through Tensiomyography.

    PubMed

    Morales-Artacho, Antonio J; Padial, Paulino; Rodríguez-Matoso, Dario; Rodríguez-Ruiz, David; García-Ramos, Amador; García-Manso, Juan Manuel; Calderón, Carmen; Feriche, Belén

    2015-12-01

    Under hypoxia, alterations in muscle contractile properties and faster fatigue development have been reported. This study investigated the efficacy of tensiomyography (TMG) in assessing muscle contractile function at acute moderate altitude. Biceps femoris (BF) and vastus lateralis (VL) muscles of 18 athletes (age 20.1 ± 6.1 years; body mass 65.4 ± 13.9 kg; height 174.6 ± 9.5 cm) were assessed at sea level and moderate altitude using electrically evoked contractions on two consecutive days. Maximum radial displacement (Dm), time of contraction (Tc), reaction time (Td), sustained contraction time (Ts), and relaxation time (Tr) were recorded at 40, 60, 80, and 100 mA. At altitude, VL showed lower Dm values at 40 mA (p = 0.008; ES = -0.237). Biceps femoris showed Dm decrements in all electrical stimulations (p < 0.001, ES > 0.61). In VL, Tc was longer at altitude at 40 (p = 0.031, ES = 0.56), and 100 mA (p = 0.03, ES = 0.51). Regarding Td, VL showed significant increases in all electrical intensities under hypoxia (p ≤ 0.03, ES ≥ 0.33). TMG appears effective at detecting slight changes in the muscle contractile properties at moderate altitude. Further research involving TMG along with other muscle function assessment methods is needed to provide additional insight into peripheral neuromuscular alterations at moderate altitude.

  18. [The effect of prostatic peptides on the contractile activity of smooth-muscle cells from the bladder].

    PubMed

    Barabanova, V V; Gorbachev, A G; Parastaeva, M M; Khavinson, V Kh

    1993-02-01

    Prostatilene (PST) enhanced the functional activity of the bladder smooth-muscle cells (SMC). The possibility of activation of the SMC contractility by the PST through pharmacomechanical associations, is discussed.

  19. Inhibitory effect of pinaverium bromide on gastrointestinal contractile activity in conscious dogs.

    PubMed

    Itoh, Z; Takahashi, I

    1981-01-01

    The inhibitory effect of 4-(6-bromoveratryl)-4-(2-[2-(6,6-dimethyl-2-norpinyl)-ethoxy]-ethyl)-morpholinium hydroxide (pinaverium bromide), a quaternary ammonium derivative, on the contractile activity of the gastrointestinal tract from the stomach to the colon was investigated in six conscious dogs. Gastrointestinal motor activity was monitored by means of chronically implanted force transducers. Pinaverium bromide was continuously administered i.v. for 30 min in doses of 10 and 20 mg/kg/h during both the digestive and interdigestive states. It was found that pinaverium bromide strongly inhibited gastrointestinal contractile activity during both the digestive and interdigestive states; contractions in the stomach were most strongly inhibited; however, those in the small and large bowels were also significantly inhibited. No significant side effects in the circulatory and respiratory systems and the gastrointestinal tract such as nausea, vomiting or diarrhea were observed during and after the infusion of this agent. PMID:7197953

  20. Effects of a hydrogen sulfide donor on spontaneous contractile activity of rat stomach and jejunum.

    PubMed

    Shafigullin, M Y; Zefirov, R A; Sabirullina, G I; Zefirov, A L; Sitdikova, G F

    2014-07-01

    We studied the effect of sodium hydrosulfite (NaHS), a donor of hydrogen sulfide (H2S), on spontaneous contractive activity of isolated preparations of rat stomach and jejunum under isometric conditions. NaHS in concentrations of 10-200 μM reduced the amplitude, tonic tension, and frequency of contractions of the preparations. Blockade of K(+) channels with a non-specific antagonist tetraethylammonium (10 mM) increased contraction amplitude in the stomach strip and jejunum segment. The effects of NaHS on all parameters of contractile activity of the stomach and jejunum were fully preserved against the background of tetraethylammonium application. These data suggest that H2S in physiologically relevant concentrations inhibited spontaneous contractile activity of smooth muscle cells in rat stomach and jejunum by reducing the amplitude and frequency of contractions and decreased tonic tension without affecting the function of voltage- and calcium-dependent K(+) channels.

  1. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  2. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    PubMed Central

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  3. Rapid fusion between mesenchymal stem cells and cardiomyocytes yields electrically active, non-contractile hybrid cells

    PubMed Central

    Shadrin, Ilya Y.; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad

    2015-01-01

    Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca2+ indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25–40% of hMSCs (from 4 independent donors) acquired periodic Ca2+ transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca2+ current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca2+ channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy. PMID:26159124

  4. Contractile activity-induced adaptations in the mitochondrial protein import system.

    PubMed

    Takahashi, M; Chesley, A; Freyssenet, D; Hood, D A

    1998-05-01

    We previously demonstrated that subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial subfractions import proteins at different rates. This study was undertaken to investigate 1) whether protein import is altered by chronic contractile activity, which induces mitochondrial biogenesis, and 2) whether these two subfractions adapt similarly. Using electrical stimulation (10 Hz, 3 h/day for 7 and 14 days) to induce contractile activity, we observed that malate dehydrogenase import into the matrix of the SS and IMF mitochondia isolated from stimulated muscle was significantly increased by 1.4-to 1.7-fold, although the pattern of increase differed for each subfraction. This acceleration of import may be mitochondrial compartment specific, since the import of Bcl-2 into the outer membrane was not affected. Contractile activity also modified the mitochondrial content of proteins comprising the import machinery, as evident from increases in the levels of the intramitochondrial chaperone mtHSP70 as well as the outer membrane import receptor Tom20 in SS and IMF mitochondria. Addition of cytosol isolated from stimulated or control muscles to the import reaction resulted in similar twofold increases in the ability of mitochondria to import malate dehydrogenase, despite elevations in the concentration of mitochondrial import-stimulating factor within the cytosol of chronically stimulated muscle. These results suggest that chronic contractile activity modifies the extra- and intramitochondrial environments in a fashion that favors the acceleration of precursor protein import into the matrix of the organelle. This increase in protein import is likely an important adaptation in the overall process of mitochondrial biogenesis. PMID:9612226

  5. Changes in contractile properties of skinned single rat soleus and diaphragm fibres after chronic hypoxia.

    PubMed

    Degens, Hans; Bosutti, Alessandra; Gilliver, Sally F; Slevin, Mark; van Heijst, Arno; Wüst, Rob C I

    2010-10-01

    Hypoxia may be one of the factors underlying muscle dysfunction during ageing and chronic lung and heart failure. Here we tested the hypothesis that chronic hypoxia per se affects contractile properties of single fibres of the soleus and diaphragm muscle. To do this, the force-velocity relationship, rate of force redevelopment and calcium sensitivity of single skinned fibres from normoxic rats and rats exposed to 4 weeks of hypobaric hypoxia (410 mmHg) were investigated. The reduction in maximal force (P(0)) after hypoxia (p=0.031) was more pronounced in type IIa than type I fibres and was mainly attributable to a reduction in fibre cross-sectional area (p=0.044). In type IIa fibres this was aggravated by a reduction in specific tension (p=0.001). The maximal velocity of shortening (V (max)) and shape of the force velocity relation (a/P(0)), however, did not differ between normoxic and hypoxic muscle fibres and the reduction in maximal power of hypoxic fibres (p=0.012) was mainly due to a reduction in P(0). In conclusion, chronic hypoxia causes muscle fibre dysfunction which is not only due to a loss of muscle mass, but also to a diminished force generating capacity of the remaining contractile material. These effects are similar in the soleus and diaphragm muscle, but more pronounced in type IIa than I fibres. PMID:20697736

  6. Atrial Natriuretic Peptide Inhibits Spontaneous Contractile Activity of Lymph Nodes.

    PubMed

    Lobov, G I; Pan'kova, M N

    2016-06-01

    Atrial natriuretic peptide dose-dependently inhibited spontaneous phase and tonic activity of smooth muscle strips from the capsule of isolated bovine mesenteric lymph nodes. Pretreatment with L-NAME, diclofenac, and methylene blue had practically no effect on the peptide-induced relaxation responses. In contrast, glibenclamide significantly reduced the inhibitory effect of atrial natriuretic peptide. We suppose that the NO-dependent and cyclooxygenase signaling pathways are not involved in implementation of the inhibitory effects of atrial natriuretic peptide. ATP-sensitive K(+)-channels of the smooth muscle cell membrane are the last component in the signaling pathway leading to relaxation of smooth muscles of the lymph node capsule caused by atrial natriuretic peptide; activation of these channels leads to membrane hyperpolarization and smooth muscle relaxation. PMID:27383173

  7. Adaptation of muscle gene expression to changes in contractile activity

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Babij, P.; Thomason, D. B.; Wong, T. S.; Morrison, P. R.

    1987-01-01

    A review of the existing literature regarding the effects of different types of physical activities on the gene expression of adult skeletal muscles leads us to conclude that each type of exercise training program has, as a result, a different phenotype, which means that there are multiple mechanisms, each producing a unique phenotype. A portion of the facts which support this position is presented and interpreted here. [Abstract translated from the original French by NASA].

  8. Contractile activity is required for Z-disc sarcomere maturation in vivo

    PubMed Central

    Geach, Timothy J; Hirst, Elizabeth MA; Zimmerman, Lyle B

    2015-01-01

    Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto-myosin contraction in embryos of the frog X. tropicalis, and Z-disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z-disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:25845369

  9. Label-free detection of cell-contractile activity with lipid nanotubes.

    PubMed

    Sugihara, Kaori; Delai, Marco; Mahnna, Rami; Kusch, Justine; Poulikakos, Dimos; Vörös, János; Zambelli, Tomaso; Ferrari, Aldo

    2013-02-01

    Surface-bound self-assembled lipid nanotubes (LNTs) made of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were used to visualize the contractile activity of spreading cells. The interaction of cells with LNTs resulted in the nucleation of new nanotubes, directed toward the cell center, from existing ones. This process depended on cell generated forces and required acto-myosin mediated contractility. The dynamics of de novo generation of LNTs upon cell spreading was captured using optical microscopy on fluorescently labeled nanotubes and revealed characteristic fingerprints for different cell types such as fibroblasts, endothelial and melanoma cells. Additionally, the method was applied to detect the effect of a specific inhibitor on the generation of cellular forces. The mechanism of the LNT-cell interaction and the potential applications are discussed.

  10. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    PubMed

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  11. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  12. Effects of testosterone on contractile properties of sexually dimorphic forelimb muscles in male bullfrogs (Rana catesbeiana, Shaw 1802)

    PubMed Central

    Kampe, Aaron R.; Peters, Susan E.

    2013-01-01

    Summary This study examined the effects of testosterone (T) on the contractile properties of two sexually dimorphic forelimb muscles and one non-dimorphic muscle in male bullfrogs (Rana catesbeiana, Shaw 1802). The dimorphic muscles in castrated males with testosterone replacement (T+) achieved higher forces and lower fatigability than did castrated males without replaced testosterone (T0 males), but the magnitude of the differences was low and many of the pair-wise comparisons of each muscle property were not statistically significant. However, when taken as a whole, the means of seven contractile properties varied in the directions expected of masculine values in T+ animals in the sexually dimorphic muscles. Moreover, these data, compared with previous data on male and female bullfrogs, show that values for T+ males are similar to normal males and are significantly different from females. The T0 males tended to be intermediate in character between T+ males and females, generally retaining masculine values. This suggests that the exposure of young males to T in their first breeding season produces a masculinizing effect on the sexually dimorphic muscles that is not reversed between breeding seasons when T levels are low. The relatively minor differences in contractile properties between T+ and T0 males may indicate that as circulating T levels rise during breeding season in normal males, contractile properties can be enhanced rapidly to maximal functional levels for breeding success. PMID:24143280

  13. Effects of single or repeated administration of a carbamate, propoxur, and an organophosphate, DDVP, on jejunal cholinergic activities and contractile responses in rats.

    PubMed

    Kobayashi, H; Sato, I; Akatsu, Y; Fujii, S; Suzuki, T; Matsusaka, N; Yuyama, A

    1994-01-01

    Wistar rats were injected once or repeatedly for 10 days with dichlorvos (DDVP, 5 mg kg-1), propoxur (10 mg kg-1), oxotremorine (0.1 mg kg-1) or atropine (5 mg kg-1). Animals were killed 20 min or 24 h after single or consecutive injections, respectively, for determinations of cholinergic activities and contractile responses to acetylcholine (ACh) of the jejunum. Single treatments: while DDVP and propoxur decreased acetylcholinesterase (AChE) activity, oxotremorine and atropine did not. Although DDVP, propoxur and oxotremorine increased levels of ACh, atropine decreased them. Contractile responses to ACh were enhanced by DDVP and reduced by oxotremorine and atropine. The Bmax value of binding of [3H]quinuclidinyl benzylate (QNB) to muscarinic ACh receptors was decreased by atropine. Consecutive treatments: DDVP and oxotremorine decreased AChE activity markedly and slightly, respectively. Although DDVP and oxotremorine increased levels of ACh, propoxur decreased them. Without affecting the contractile responses, DDVP caused a reduction and propoxur and atropine caused an increase in the Bmax value for binding of [3H]QNB. Both the contractile responses and the value of Bmax for binding of [3H]-QNB were decreased by oxotremorine. In summary, propoxur and DDVP showed similar effects mainly through their anticholinesterase properties in the case of single injection, but DDVP had similar effects to those of oxotremorine and propoxur had similar effects to those of atropine in the case of repeated injection.

  14. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  15. Serotonin regulates contractile activity of the uterus in non-pregnant rabbits.

    PubMed

    Lychkova, Alla Edward; De Pasquale, Valeria; Avallone, Luigi; Puzikov, Alexander Michael; Pavone, Luigi Michele

    2014-09-01

    Serotonin (5-HT) can stimulate the cholinergic system of the uterus by indirect actions on the modulation of reflexes and a direct action on smooth muscles. We investigated the role of 5-HT in the regulation of the cholinergic activity in the uterine parts of non-pregnant rabbits. The right vagus or pelvic nerve and the left sympathetic trunk were stimulated by an electrical field, and the uterine contractile activity was evaluated by measuring the amplitude and frequency of slow wave electromyogram (EMG), with the surface of microelectrodes applied to the uterus bottom, body, and cervix, respectively. Double stimulation of the vagus or pelvic nerve and the sympathetic trunk increased the frequency and the amplitude of the slow wave EMG in all the uterine parts. Furthermore, the administration of exogenous 5-HT increased the vagus or pelvic induced EMG activity in all parts of the uterus. Overall our results demonstrate that 5-HT enhances the vagus contractile activity with a magnitude of the effect decreasing from the bottom to the cervix, whereas 5-HT enhances the pelvic nerve contractile functions with a magnitude of the response increasing from the bottom to the cervix. The administration of droperidol, a 5-HT3 and 4 receptor inhibitor, and spiperone, a 5-HT2 receptor antagonist, inhibited the effect of the serotoninergic fibers of the sympathetic trunk to increase the vagus and pelvic nerve EMG activity. These data suggest that 5-HT stimulation of the parasympathetic nerves results in the induction of uterine contraction via the activation of 5-HT2, 3, and 4 receptor subfamilies. PMID:24892885

  16. Effect of a Periodized Power Training Program on the Functional Performances and Contractile Properties of the Quadriceps in Sprinters

    ERIC Educational Resources Information Center

    Kamandulis, Sigitas; Skurvydas, Albertas; Brazaitis, Marius; Stanislovaitis, Aleksas; Duchateau, Jacques; Stanislovaitiene, Jurate

    2012-01-01

    Our purpose was to compare the effect of a periodized preparation consisting of power endurance training and high-intensity power training on the contractile properties of the quadriceps muscle and functional performances in well trained male sprinters (n = 7). After 4 weeks of high-intensity power training, 60-m sprint running time improved by an…

  17. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  18. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  19. Dependence upon external calcium for contractile activity in two molluscan proboscis muscles.

    PubMed

    Alohan, F I

    1991-01-01

    1. Both the radular sac and odontophore retractor muscles of Buccinum undatum depend upon [Ca]0 to raise the [Ca]i concentration of the contractile system to activation level. 2. The K-induced responses of the muscles depend mainly upon [Ca]0 for activator Ca while the ACh responses depend upon [Ca]0 to raise stored intracellular Ca to activation levels. 3. In the radular sac muscle, it is probable that the inward current is carried by Na+ or is Na(+)-dependent and this current may release [Ca]i for contraction since the muscle became spontaneously active during ACh- and K-contractures in Ca-free seawater containing 2 mM EGTA as a calcium chelator. 4. It is proposed that since calcium antagonists are more inhibitory on ACh responses than on K-contractures, ACh releases the activator calcium for the contractile system through a slow-type Ca channel while high K releases Ca through a fast-type calcium channel in these muscles.

  20. Contractile and elastic ankle joint muscular properties in young and older adults.

    PubMed

    Hasson, Christopher J; Miller, Ross H; Caldwell, Graham E

    2011-01-01

    The purpose of this study was to investigate age-related differences in contractile and elastic properties of both dorsi- (DF) and plantarflexor (PF) muscles controlling the ankle joint in young and older adults. Experimental data were collected while twelve young and twelve older male and female participants performed maximal effort isometric and isovelocity contractions on a dynamometer. Equations were fit to the data to give torque-angle (Tθ) and torque-angular velocity (Tω) relations. Muscle series-elasticity was measured during ramped dynamometer contractions using ultrasonography to measure aponeurosis extension as a function of torque; second order polynomials were used to characterize the torque-extension (TΔL) relation. The results showed no age differences in DF maximal torque and none for female PF; however, older males had smaller maximal PF torques compared to young males. In both muscle groups and genders, older adults had decreased concentric force capabilities. Both DF and PF TΔL relations were more nonlinear in the older adults. Older PF, but not DF muscles, were stiffer compared to young. A simple antagonism model suggested age-related differences in Tθ and Tω relations would be magnified if antagonistic torque contributions were included. This assessment of static, dynamic, and elastic joint properties affords a comprehensive view of age-related modifications in muscle function. Although many clinical studies use maximal isometric strength as a marker of functional ability, the results demonstrate that there are also significant age-related modifications in ankle muscle dynamic and elastic properties.

  1. Stress activated contractile wavefronts in the mechanically-excitable embryonic heart

    NASA Astrophysics Data System (ADS)

    Chiou, Kevin; Majkut, Stephanie; Discher, Dennis; Lubensky, Tom; Liu, Andrea

    2014-03-01

    The heart is a prime example of a robust, active system with behavior-the heart beat-that is extraordinarily well timed and coordinated. For more than half a century, electrical activity induced by ion release and diffusion has been argued to be the mechanism driving cardiac action. But recent work indicates that this phenomenon is also regulated by mechanical activity. In the embryonic avian heart tube, the speed of the contractile wavefront traversing the heart tube with each beat is measured to be a monotonic, linear function of tissue stiffness. Traditional electrical conduction models of excitation-contraction cannot explain this dependence; such a result indicates that the myocardium is mechanically excitable. Here, we extend this work by using experimental observations of stiffness-dependent behavior in isolated cardiomyocytes as an input to study contractile wavefronts in the tissue as a whole. We model the heart tube as an active, overdamped elastic network where the primary stress mediator is the extracellular matrix. Using this simple model, we explain experimental observations of the systolic wave and predict qualitatively new behavior.

  2. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity. PMID:21427217

  3. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    PubMed Central

    Lorca, Ramón A.; Prabagaran, Monali; England, Sarah K.

    2014-01-01

    The large-conductance voltage- and Ca2+-activated K+ channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function. PMID:25132821

  4. Active self-polarization of contractile cells in asymmetrically shaped domains

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  5. Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice.

    PubMed

    Asmussen, Gerhard; Schmalbruch, Ina; Soukup, Tomás; Pette, Dirk

    2003-12-01

    This study focuses on the effects of neuromuscular hyperactivity on the contractile properties, fiber type composition, and myosin heavy chain (MHC) isoform expression of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles in Japanese waltzing mice (JWM) of the C57BL/6J-v2J strain. The same properties were studied in the homologous muscle of control CBA/J mice (CM). In comparison to CM, the JWM exhibited (i) longer activity periods, prolonged bouts of running and a higher food intake, (ii) slower twitch and tetanic contractions of both EDL and SOL muscles, decreased cold and post-tetanic potentiation of the EDL, as well as increased cold and post-tetanic depressions of the SOL. Electrophoretic analyses of MHC isoform revealed a shift toward slower isoforms in both EDL and SOL muscles of JWM as compared to the homologous muscles of CM, namely, a shift from the fastest MHCIIb to the MHCIId/x isoform in the EDL muscle and a shift from MHCIIa to MHCI in the SOL muscle. The latter also contained a higher percentage of type I fibers and displayed a higher capillary density than the SOL muscle of CM. These findings show that the inherently enhanced motor activity of the JWM leads to fiber type transitions in the direction of slower phenotypes. JWM thus represent a suitable model for studying fast-to-slow fiber transitions under the influence of spontaneous motor hyperactivity.

  6. alpha- and beta-adrenergic receptor mechanisms in spontaneous contractile activity of rat ileal longitudinal smooth muscle.

    PubMed

    Seiler, Roland; Rickenbacher, Andreas; Shaw, Sidney; Balsiger, Bruno M

    2005-02-01

    Gastrointestinal motility is influenced by adrenergic modulation. Our aim was to identify specific subtypes of adrenergic receptors involved in inhibitory mechanisms that modulate gut smooth muscle contractile activity. Muscle strips of rat ileal longitudinal muscle were evaluated for spontaneous contractile activity and for equimolar dose-responses (10(-7) to 3 x 10(-5) M) to the adrenergic agents norepinephrine (nonselective agonist), phenylephrine (alpha(1)-agonist), clonidine (alpha(2)-agonist), prenalterol (beta(1)-agonist), ritodrine (beta(2)-agonist), and ZD7114 (beta(3)-agonist) in the presence and absence of tetrodotoxin (nonselective nerve blocker). Norepinephrine (3 x 10(-5) M) inhibited 65 +/- 6% (mean +/- SEM) of spontaneous contractile activity. The same molar dose of ritodrine, phenylephrine, or ZD7114 resulted in less inhibition (46 +/- 7%, 31 +/- 5%, and 39 +/- 3%, respectively; P < 0.05). The calculated molar concentration of ZD7114 needed to induce 50% inhibition was similar to that of norepinephrine, whereas higher concentrations of phenylephrine or ritodrine were required. Clonidine and prenalterol had no effect on contractile activity. Blockade of intramural neural transmission by tetrodotoxin affected the responses to ritodrine and phenylephrine (but not to norepinephrine or ZD7114), suggesting that these agents exert part of their effects via neurally mediated enteric pathways. Our results suggest that adrenergic modulation of contractile activity in the rat ileum is mediated primarily by muscular beta(3)-, beta(2)-, and alpha(1)-receptor mechanisms; the latter two also involve neural pathways. PMID:15694819

  7. Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis.

    PubMed

    Wu, Theresa F; Carati, Colin J; Macnaughton, Wallace K; von der Weid, Pierre-Yves

    2006-10-01

    The ability of the lymphatic system to actively remove fluid from the interstitium is critical to the resolution of edema. The response of the lymphatics to inflammatory situations is poorly studied, so we examined mesenteric lymphatic contractile activity in the 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of guinea pig ileitis, a well-accepted animal model of intestinal inflammation, by videomicroscopy in vivo and in vitro 1, 3, and 6 days after induction of ileitis. Lymphatic function (diameter, constriction frequency, amplitude of constrictions, and calculated stroke volume and lymph flow rate) of isolated vessels from TNBS-treated guinea pigs were impaired compared with sham-treated controls. The dysfunction was well correlated with the degree of inflammation, with differences reaching significance (P < 0.05) at the highest inflammation-induced damage observed at day 3. In vivo, significantly fewer lymphatics exhibited spontaneous constrictions in TNBS-treated than sham-treated animals. Cyclooxygenase (COX) metabolites were suggested to be involved in this lymphatic dysfunction, since application of nonselective COX inhibitor (10 microM indomethacin) or a combination of COX-1 and COX-2 inhibitors (1 microM SC-560 and 10 microM celecoxib) markedly increased constriction frequency or induced them in lymphatics from TNBS-treated animals in vivo and in vitro. The present results demonstrate that lymphatic contractile function is altered in TNBS-induced ileitis and suggest a role for prostanoids in the lymphatic dysfunction.

  8. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    James, Rob S; Staples, James F; Brown, Jason C L; Tessier, Shannon N; Storey, Kenneth B

    2013-07-15

    Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no change in either skeletal muscle size or contractile performance. However, work loop analysis of skeletal muscle, which provides a realistic assessment of in vivo power output, has not previously been undertaken in mammals that undergo prolonged torpor during hibernation. In the present study, our aim was to assess the effects of 3 months of hibernation on contractile performance (using the work loop technique) and several biochemical properties that may affect performance. There was no significant difference in soleus muscle power output-cycle frequency curves between winter (torpid) and summer (active) animals. Total antioxidant capacity of gastrocnemius muscle was 156% higher in torpid than in summer animals, suggesting one potential mechanism for maintenance of acute muscle performance. Soleus muscle fatigue resistance was significantly lower in torpid than in summer animals. Gastrocnemius muscle glycogen content was unchanged. However, state 3 and state 4 mitochondrial respiration rates were significantly suppressed, by 59% and 44%, respectively, in mixed hindlimb skeletal muscle from torpid animals compared with summer controls. These findings in hindlimb skeletal muscles suggest that, although maximal contractile power output is maintained in torpor, there is both suppression of ATP production capacity and reduced fatigue resistance.

  9. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.

    PubMed

    James, Rob S; Staples, James F; Brown, Jason C L; Tessier, Shannon N; Storey, Kenneth B

    2013-07-15

    Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no change in either skeletal muscle size or contractile performance. However, work loop analysis of skeletal muscle, which provides a realistic assessment of in vivo power output, has not previously been undertaken in mammals that undergo prolonged torpor during hibernation. In the present study, our aim was to assess the effects of 3 months of hibernation on contractile performance (using the work loop technique) and several biochemical properties that may affect performance. There was no significant difference in soleus muscle power output-cycle frequency curves between winter (torpid) and summer (active) animals. Total antioxidant capacity of gastrocnemius muscle was 156% higher in torpid than in summer animals, suggesting one potential mechanism for maintenance of acute muscle performance. Soleus muscle fatigue resistance was significantly lower in torpid than in summer animals. Gastrocnemius muscle glycogen content was unchanged. However, state 3 and state 4 mitochondrial respiration rates were significantly suppressed, by 59% and 44%, respectively, in mixed hindlimb skeletal muscle from torpid animals compared with summer controls. These findings in hindlimb skeletal muscles suggest that, although maximal contractile power output is maintained in torpor, there is both suppression of ATP production capacity and reduced fatigue resistance. PMID:23531815

  10. The effects of endurance exercise on dystrophic mdx mice. II. Contractile properties of skinned muscle fibres.

    PubMed

    Lynch, G S; Hayes, A; Lam, M H; Williams, D A

    1993-07-22

    Dystrophic (mdx) mice were subjected to a 15 week exercise programme consisting of endurance swimming. Single fibres from the extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, mixed fast- and slow-twitch) muscles were attached to a sensitive force-recording apparatus, and activated in Ca(2+)- and Sr(2+)-buffered solutions. In addition to the normal well-defined fibre types in these muscles, a small number of fibres were also sampled from the soleus of both experimental groups, which were 'Intermediate' to the other two SOL fibre types. Type IIB fibres from the EDL and type IIA fibres from the soleus of the Swim group were significantly less sensitive to Ca2+ and Sr2+ compared with those fibres sampled from the sedentary (Sedent) group, suggesting that endurance exercise was able to modify Ca(2+)- and Sr(2+)-activated contractile characteristics. The swim-trained (Swim) group's increased incidence of SOL fibres with characteristics intermediate to those of the fast- and slow-twitch fibre types suggests a possible exercise-induced fibre type transformation as an adaptation to the functional demand. PMID:8396775

  11. Contractile and Elastic Ankle Joint Muscular Properties in Young and Older Adults

    PubMed Central

    Hasson, Christopher J.; Miller, Ross H.; Caldwell, Graham E.

    2011-01-01

    The purpose of this study was to investigate age-related differences in contractile and elastic properties of both dorsi- (DF) and plantarflexor (PF) muscles controlling the ankle joint in young and older adults. Experimental data were collected while twelve young and twelve older male and female participants performed maximal effort isometric and isovelocity contractions on a dynamometer. Equations were fit to the data to give torque-angle (Tθ) and torque-angular velocity (Tω) relations. Muscle series-elasticity was measured during ramped dynamometer contractions using ultrasonography to measure aponeurosis extension as a function of torque; second order polynomials were used to characterize the torque-extension (TΔL) relation. The results showed no age differences in DF maximal torque and none for female PF; however, older males had smaller maximal PF torques compared to young males. In both muscle groups and genders, older adults had decreased concentric force capabilities. Both DF and PF TΔL relations were more nonlinear in the older adults. Older PF, but not DF muscles, were stiffer compared to young. A simple antagonism model suggested age-related differences in Tθ and Tω relations would be magnified if antagonistic torque contributions were included. This assessment of static, dynamic, and elastic joint properties affords a comprehensive view of age-related modifications in muscle function. Although many clinical studies use maximal isometric strength as a marker of functional ability, the results demonstrate that there are also significant age-related modifications in ankle muscle dynamic and elastic properties. PMID:21264315

  12. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.

    PubMed

    Ljubicic, Vladimir; Adhihetty, Peter J; Hood, David A

    2004-09-01

    In an effort to better characterize uncoupling protein-3 (UCP3) function in skeletal muscle, we assessed basal UCP3 protein content in rat intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial subfractions in conjunction with measurements of state 4 respiration. UCP3 content was 1.3-fold (P < 0.05) greater in IMF compared with SS mitochondria. State 4 respiration was 2.6-fold greater (P < 0.05) in the IMF subfraction than in SS mitochondria. GDP attenuated state 4 respiration by approximately 40% (P < 0.05) in both subfractions. The UCP3 activator oleic acid (OA) significantly increased state 4 respiration in IMF mitochondria only. We used chronic electrical stimulation (3 h/day for 7 days) to investigate the relationship between changes in UCP3 protein expression and alterations in state 4 respiration during contractile activity-induced mitochondrial biogenesis. UCP3 content was increased by 1.9- and 2.3-fold in IMF and SS mitochondria, respectively, which exceeded the concurrent 40% (P < 0.05) increase in cytochrome-c oxidase activity. Chronic contractile activity increased state 4 respiration by 1.4-fold (P < 0.05) in IMF mitochondria, but no effect was observed in the SS subfraction. The uncoupling function of UCP3 accounted for 50-57% of the OA-induced increase in state 4 respiration in IMF mitochondria, which was independent of the induced twofold difference in UCP3 content due to chronic contractile activity. Thus modifications in UCP3 function are more important than changes in UCP3 expression in modifying state 4 respiration. This effect is evident in IMF but not SS mitochondria. We conclude that UCP3 at physiological concentrations accounts for a significant portion of state 4 respiration in both IMF and SS mitochondria, with the contribution being greater in the IMF subfraction. In addition, the contradiction between human and rat training studies with respect to UCP3 protein expression may partly be explained by the greater than twofold

  13. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles.

    PubMed

    Hokari, Fumi; Kawasaki, Emi; Sakai, Atsushi; Koshinaka, Keiichi; Sakuma, Kunihiro; Kawanaka, Kentaro

    2010-08-01

    Sirt3, a member of the sirtuin family, is known to control cellular mitochondrial function. Furthermore, because sirtuins require NAD for their deacetylase activity, nicotinamide phosphoribosyltransferase (Nampt), which is a rate-limiting enzyme in the intracellular NAD biosynthetic pathway, influences their activity. We examined the effects of exercise training and normal postural contractile activity on Sirt3 and Nampt protein expression in rat skeletal muscles. Male rats were trained by treadmill running at 20 m/min, 60 min/day, 7 days/wk for 4 wk. This treadmill training program increased the Sirt3 protein expression in the soleus and plantaris muscles by 49% and 41%, respectively (P < 0.05). Moreover, a 4-wk voluntary wheel-running program also induced 66% and 95% increases in Sirt3 protein in the plantaris and triceps muscles of rats, respectively (P < 0.05). Treadmill-running and voluntary running training induced no significant changes in Nampt protein expression in skeletal muscles. In resting rats, the soleus muscle, which is recruited during normal postural activity, possessed the greatest expression levels of the Sirt3 and Nampt proteins, followed by the plantaris and triceps muscles. Furthermore, the Sirt3, but not Nampt, protein level was reduced in the soleus muscles from immobilized hindlimbs compared with that shown in the contralateral control muscle. These results demonstrated that 1) Sirt3 protein expression is upregulated by exercise training in skeletal muscles and 2) local postural contractile activity plays an important role in maintaining a high level of Sirt3 protein expression in postural muscle.

  14. Multiple signaling pathways regulate contractile activity‐mediated PGC‐1α gene expression and activity in skeletal muscle cells

    PubMed Central

    Zhang, Yuan; Uguccioni, Giulia; Ljubicic, Vladimir; Irrcher, Isabella; Iqbal, Sobia; Singh, Kaustabh; Ding, Shuzhe; Hood, David A.

    2014-01-01

    Abstract PGC‐1α is an important transcriptional coactivator that plays a key role in mediating mitochondrial biogenesis. Within seconds of the onset of contractile activity, a number of rapid cellular events occur that form part of the initial signaling processes involved in PGC‐1α gene regulation, such as elevations in cytoplasmic calcium, AMPK and p38 activation, and elevated ROS production. We observed that basal levels of PGC‐1α promoter activity were more sensitive to resting Ca2+ levels, compared to ROS, p38 or, AMPK signaling. Moreover, enhanced PGC‐1α transcription and post‐translational activity on DNA were a result of the activation of multiple signal transduction pathways during contractile activity of myotubes. AMPK, ROS, and Ca2+ appear to be necessary for the regulation of contractile activity‐induced PGC‐1α gene expression, governed partly through p38 MAPK and CaMKII activity. Whether these signaling pathways are arranged as a linear sequence of events, or as largely independent pathways during contractile activity, remains to be determined. PMID:24843073

  15. Myosin Isoforms and Contractile Properties of Single Fibers of Human Latissimus Dorsi Muscle

    PubMed Central

    Pacelli, Quirico F.; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Reggiani, Carlo

    2013-01-01

    The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females. PMID:23971027

  16. [Mechanisms of inhibition of the contractile activity in the ileo-caecal zone in rabbits under psychogenic stress].

    PubMed

    Berezina, T P; Ovsiannikov, V I

    2005-08-01

    In experiments on unanaesthetized rabbits, myoelectric activity (contractile activity index) of distal ileum, caecum, and proximal colon in two sites was studied under stress induced by fastening a rabbit to the table in supine position. The stress caused sharp decrease (up to complete disappearance) of the contractile activity in all studied compartments of the ileocaecal intestine with partial or complete restoration after release of the animal. Nonselective blockade of pre- and postsynaptic alpha-adrenoceptor with dihydroergotoxin abolished the initial component of the specified inhibitory response. The latter was caused by "adrenergic inhibition" as a result of action of catecholamines circulating in blood on inhibitory smooth muscle alpha-adrenoceptor. Against the background of muscarinic cholinoceptor blockade, the stressor inhibition of ileocaecal contractile activity observed in control experiments was completely preserved. The periods of supression of ileoceacal contractile activity under stress resistant to blockade of alpha-, beta-adrenoceptor and muscarinic cholinoceptor, are caused by the mechanism of "nonadrenergic noncholinergic inhibition", which is realized at the expence of activation of the enteric inhibitory neurones.

  17. Effects of Using Tricaine Methanesulfonate and Metomidate before Euthanasia on the Contractile Properties of Rainbow Trout (Oncorhynchus mykiss) Myocardium.

    PubMed

    Roberts, Jordan C; Syme, Douglas A

    2016-01-01

    Because many anesthetics work through depressing cell excitability, unanesthetized euthanasia has become common for research involving excitable tissues (for example muscle and nerve) to avoid these depressive effects. However, anesthetic use during euthanasia may be indicated for studies involving isolated tissues if the potential depressive effects of brief anesthetic exposure dissipate after subsequent tissue isolation, washout, and saline perfusion. We explore this here by measuring whether, when applied prior to euthanasia, standard immersion doses of 2 fish anesthetics, tricaine methanesulfonate (TMS; 100 mg/L, n = 6) and methyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate (metomidate, 10 mg/L, n = 6), have residual effects on the contractile properties (force and work output) of isolated and saline-perfused ventricular compact myocardium from rainbow trout (Oncorhynchus mykiss). Results suggest that direct exposure of muscle to immersion doses of TMS-but not metomidate-impairs muscle contractile performance. However, brief exposure (2 to 3 min) to either anesthetic during euthanasia only-providing that the agent is washed out prior to tissue experimentation-does not have an effect on the contractile properties of the myocardium. Therefore, the use of TMS, metomidate, and perhaps other anesthetics that depress cell excitability during euthanasia may be indicated when conducting research on isolated and rinsed tissues. PMID:27657711

  18. Reptilian skeletal muscle: contractile properties of identified, single fast-twitch and slow fibers from the lizard Dipsosaurus dorsalis.

    PubMed

    Gleeson, T T; Johnston, I A

    1987-06-01

    Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Contractile properties of synthetic cationic polypeptides in guinea-pig isolated trachea.

    PubMed Central

    Spina, D.; Goldie, R. G.

    1994-01-01

    1. The synthetic polypeptides, poly-L-arginine, poly-L-lysine and poly-D-lysine contract guinea-pig isolated trachea in a concentration-dependent, epithelium-independent manner. Indomethacin augmented the contractile response to poly-L-arginine. 2. The contractile response to poly-L-arginine was not significantly inhibited by nicardipine, a selective L-type calcium channel blocker or by the histamine H1-receptor antagonist, mepyramine nor significantly augmented by the neutral endopeptidase inhibitor, phosphoramidon. 3. The contractile response to poly-L-arginine was inhibited in a concentration-dependent manner by prior incubation of guinea-pig tracheal rings with a number of anionic polypeptides including, low molecular weight heparin, poly-L-aspartic acid and bovine serum albumin. 4. In vitro capsaicin-induced desensitization failed to attenuate the contractile response to poly-L-arginine, suggesting little, if any role for sensory neuropeptides in the functional response in the guinea-pig. 5. Synthetic polypeptides induce an epithelium-independent, charge-dependent contraction of guinea-pig isolated trachea. PMID:8012709

  20. Exercise can induce temporary mitochondrial and contractile dysfunction linked to impaired respiratory chain complex activity.

    PubMed

    Schoepe, Maria; Schrepper, Andrea; Schwarzer, Michael; Osterholt, Moritz; Doenst, Torsten

    2012-01-01

    Exercise is considered to elicit a physiological response of the heart. Previous studies investigated the influence of repetitive exercise only at the end of the training period. We assessed the impact of 2 exercise protocols, differing in their treadmill inclination, on cardiac and mitochondrial function at different times during the training period. Within 10 weeks, animals trained with 16% incline developed hypertrophy (left ventricular posterior wall thickness: 1.6 ± 0.1 vs 2.4 ± 0.1 mm; P < .05) with normal function (ejection fraction: 75.2% ± 2.5% vs 75.6% ± 2.1%). However, at 6 weeks, there was temporary impairment of contractile function (ejection fraction: 74.5% ± 1.67% vs 65.8% ± 2.3%; P < .05) associated with decreased mitochondrial respiratory capacity (state 3 respiration: 326 ± 71 vs 161 ± 22 natoms/[min mg protein]; P < .05) and a gene expression shift from the adult (α) to the fetal (β) myosin heavy chain isoform. Although peroxisome proliferator-activated receptor gamma coactivator-1α expression was normal, nuclear respiratory factors (NRFs)-1 and -2 were significantly reduced (NRF-1: 1.00 ± 0.16 vs 0.55 ± 0.09; NRF-2: 1.00 ± 0.11 vs 0.63 ± 0.07; P < .05) after 6 weeks. These findings were associated with a reduction of electron transport chain complexes I and IV activity (complex I: 1016 ± 67 vs 758 ± 71 nmol/[min mg protein]; complex IV: 18768 ± 1394 vs 14692 ± 960 nmol/[min mg protein]; P < .05). Messenger RNA expression of selected nuclear encoded subunits of the electron transport chain was unchanged at all investigated time points. In contrast, animals trained with 10% incline showed less hypertrophy and normal function in echocardiography, normal maximal respiratory capacity, and unchanged complex activities at all 3 time points. Repetitive exercise may cause contractile and mitochondrial dysfunction characterized by impaired respiratory chain complex activities. This activity reduction is temporary and intensity related.

  1. Myosin heavy chain and parvalbumin expression in swimming and feeding muscles of centrarchid fishes: the molecular basis of the scaling of contractile properties.

    PubMed

    Campion, L A; Choi, S; Mistry, H L; Coughlin, D J

    2012-10-01

    In centrarchid fishes, such as bluegill (Lepomis macrochirus, Rafinesque) and largemouth bass (Micropterus salmoides, Lacepède), the contractile properties of feeding and swimming muscles show different scaling patterns. While the maximum shortening velocity (V(max)) and rate of relaxation from tetanus of swimming or myotomal muscle slow with growth, the feeding muscle shows distinctive scaling patterns. Cranial epaxial muscle, which is used to elevate the head during feeding strikes, retains fast contractile properties across a range of fish sizes in both species. In bass, the sternohyoideous muscle, which depresses the floor of the mouth during feeding strikes, shows faster contractile properties with growth. The objective of this study was to determine the molecular basis of these different scaling patterns. We examined the expression of two muscle proteins, myosin heavy chain (MyHC) and parvalbumin (PV), that affect contractile properties. We hypothesized that the relative contribution of slow and fast MyHC isoforms will modulate V(max) in these fishes, while the presence of PV in muscle will enhance rates of muscle relaxation. Myotomal muscle displays an increase in sMyHC expression with growth, in agreement with its physiological properties. Feeding muscles such as epaxial and sternohyoideus show no change or a decrease in sMyHC expression with growth, again as predicted from contractile properties. PV expression in myotomal muscle decreases with growth in both species, as has been seen in other fishes. The feeding muscles again show no change or an increase in PV expression with growth, contributing to faster contractile properties in these fishes. Both MyHC and PV appear to play important roles in modulating muscle contractile properties of swimming and feeding muscles in centrarchid fishes. PMID:22705556

  2. Changes in contractile properties by androgen hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).

    PubMed Central

    Regnier, M; Herrera, A A

    1993-01-01

    1. Male frogs (Xenopus laevis) were castrated then given either empty or testosterone-filled implants to produce animals with low or high levels of circulating testosterone. Eight weeks later the contractile properties of an androgen-sensitive forelimb flexor, the flexor carpi radialis muscle (FCR), were measured in vitro. Another forelimb flexor muscle, the coracoradialis, and a hindlimb muscle, the iliofibularis, were analysed similarly. 2. Plasma testosterone levels were 0.9 +/- 0.3 ng/ml (+/- S.E.M.) in castrated frogs with blank implants (C) and 61.3 +/- 4.7 ng/ml in castrates with testosterone implants (CT). Unoperated males, sampled at various times of the year, ranged between 10.8 and 51.0 ng/ml. 3. With direct electrical stimulation of the FCR, contraction time of the isometric twitch was not affected by testosterone levels. Relaxation times were affected, however. Half- and 90% relaxation times were 27 and 42% longer, respectively, for CT compared to C muscles. 4. Testosterone also had no effect on the contraction time of twitches elicited by stimulation of the FCR nerve. Half- and 90% relaxation times were 51 and 76% longer, respectively, for CT compared to C muscles. 5. Tetanus tension, elicited by direct stimulation of the FCR at 50 Hz, was 86% greater in CT compared to C muscles. The average cross-sectional area of FCR muscle fibres was 84% greater in CT muscles. These results implied that testosterone treatment had no effect on specific muscle tension. 6. Stimulation of the FCR nerve at 50 Hz resulted in 53% less tension than the same stimulus applied directly to CT muscles. In C muscles the difference was only 14%. This suggested that testosterone treatment reduced synaptic efficacy. 7. In CT muscles, direct or nerve stimulation of fibres in the shoulder region of the FCR elicited twitches that contracted and relaxed more slowly than fibres in the elbow region. In C muscles there was no difference in contraction or relaxation time between fibres in

  3. Calcium-activated chloride channels anoctamin 1 and 2 promote murine uterine smooth muscle contractility

    PubMed Central

    Bernstein, Kyra; Vink, Joy Y; Fu, Xiao Wen; Wakita, Hiromi; Danielsson, Jennifer; Wapner, Ronald; Gallos, George

    2014-01-01

    Objective To determine the presence of calcium activated chloride channels anoctamin 1 and 2 in human and murine uterine smooth muscle and evaluate the physiologic role for these ion channels in murine myometrial contractility. Study Design We performed reverse transcription polymerase chain reaction to determine if anoctamin 1 and 2 are expressed in human and murine uterine tissue to validate the study of this protein in mouse models. Immunohistochemical staining of anoctamin 1 and 2 was then performed to determine protein expression in murine myometrial tissue. The function of anoctamin 1 and 2 in murine uterine tissue was evaluated using electrophysiological studies, organ bath, and calcium flux experiments. Results Anoctamin 1 and 2 are expressed in human and murine USM cells. Functional studies show that selective antagonism of these channels promotes relaxation of spontaneous murine uterine smooth muscle contractions. Blockade of anoctamin 1 and 2 inhibits both agonist-induced and spontaneous transient inward currents and abolishes G-protein coupled receptor (oxytocin) mediated elevations in intracellular calcium. Conclusion The calcium activated chloride channels ANO 1 and 2 are present in human and murine myometrial tissue and may provide novel potential therapeutic targets to achieve effective tocolysis. PMID:24928056

  4. [The effect of prostatilen on the contractile activity of the smooth-muscle cells of the blood vessels and bladder in cats].

    PubMed

    al-Shchukri, S Kh; Barabanov, S V; Barabanova, V V; Bobkov, Iu A; Gorbachev, A G; Parastaeva, M M

    1996-07-01

    Prostatilene enhanced the functional activity of the bladder and blood vessels' smooth muscle cells. A possibility of activation of the smooth muscle cells contractility with prostatilene by a pharmaco-mechanical association, is discussed.

  5. Cholinoceptor Activation Subserving the Effects of Interferon Gamma on the Contractility of Rat Ileum

    PubMed Central

    Sterin-Borda, Leonor; Rodriguez, Martin; de Bracco, Maria M. E.

    1994-01-01

    Recombinant rat interferon γ stimulated the contractility of isolated rat ileum at doses of 4–12 units/ml. Muscarinic cholinoceptors were involved, as treatment of the tissue with atropine prevented the contractile response of the ileum. Furthermore, interferon γ increased the affinity of carbachol for the cholinoceptors and did not change its maximum effect. Neurogenic pathways were also involved since pretreatment of ileum with hexamethonium, hemicholinium or tetrodotoxin impaired the contractile effect of interferon γ. In contrast to the action of exogenous carbachol, the effects of interferon γ are indirect. They appear to involve a G protein regulating phosphoinositide turnover and cytoskeletal structures since they could not be induced in ileum strips that were pretreated with pertussis toxin, phospholipase C inhibitors (2-nitro-carboxyphenyl, NN-diphenyl carbamate and neomycin), cytochalasine B or colchicine. PMID:18475595

  6. The Effect of Parietal Cell and Truncal Vagotomy on Gastric and Duodenal Contractile Activity of the Unanesthetized Dog

    PubMed Central

    Walker, G. Daly; Stewart, John J.; Bass, Paul

    1974-01-01

    The antral-duodenal contractile relationship was studied in control, after parietal cell vagotomy and truncal vagotomy conditions using extraluminal strain gage transducers. All conditions were investigated under interdigestive and digestive states and after insulin, bethanechol and histamine. After parietal cell vagotomy, there was minimal alteration of the antral-duodenal relationship in both the interdigestive and digestive states. The number and amplitude of contractions on both the antrum and duodenum (as reflected by a motility index) were not changed from control by the various stimulants. The one exception was that histamine markedly stimulated the duodenal contractile activity. In the truncal vagotomy condition, there was a total disruption of the antral-duodenal relationship in the interdigestive and digestive states. There was a significant decrease in the number and amplitude of contractions occurring on the antrum during the interdigestive and after insulin stimulation. Food was ineffective in stimulating the antrum in 2 of 3 dogs. In contrast, motor activity of the duodenum was minimally influenced by truncal vagotomy. In conclusion, parietal cell vagotomy has minimal disruptive effects on the antralduodenal relationship while truncal vagotomy reduces antral contractile activity. PMID:4835504

  7. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Kijlstra, Jan David; Hu, Dongjian; Mittal, Nikhil; Kausel, Eduardo; van der Meer, Peter; Garakani, Arman; Domian, Ibrahim J.

    2015-01-01

    Summary The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening. PMID:26626178

  8. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    PubMed

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart. PMID:26680209

  9. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    PubMed

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  10. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  11. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    PubMed

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  12. Glucose-6-Phosphate Dehydrogenase and NADPH Redox Regulates Cardiac Myocyte L-Type Calcium Channel Activity and Myocardial Contractile Function

    PubMed Central

    Rawat, Dhwajbahadur K.; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J.; Okada, Takao; Edwards, John G.; Gupte, Sachin A.

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure). PMID:23071515

  13. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    PubMed Central

    2010-01-01

    Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline

  14. CALIX[4]ARENE C-99 INHIBITS MYOSIN ATPase ACTIVITY AND CHANGES THE ORGANIZATION OF CONTRACTILE FILAMENTS OF MYOMETRIUM.

    PubMed

    Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O

    2015-01-01

    Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  15. Age-related changes in the cellular, mechanical, and contractile properties of rat tail tendons.

    PubMed

    Lavagnino, Michael; Gardner, Keri; Arnoczky, Steven P

    2013-01-01

    Tendon laxity following injury, cyclic creep, or repair has been shown to alter the normal homeostasis of tendon cells, which can lead to degenerative changes in the extracellular matrix. While tendon cells have been shown to have an inherent contractile mechanism that gives them some ability to retighten lax tendons and reestablish a homeostatic cellular environment, the effect of age on this process is unknown. To determine the effect of aging on cell number, cell shape, and tensile modulus on tendons as well as the rate of cell-mediated contraction of lax tendons, tail tendon fascicles from 1-, 3-, and 12-month-old rats were analyzed. Aging results in a decrease (p < 0.001) in cell number per mm(2): 1 m (981 ± 119), 3 m (570 ± 108), and 12 m (453 ± 23), a more flattened (p < 0.001) cell nuclei shape and a higher (p < 0.001) tensile modulus (MPa) of the tendons: 1 m (291 ± 2), 3 m (527 ± 38), and 12 m (640 ± 102). Both the extent and rate of contraction over 7 days decreased with age (p = 0.007). This decrease in contraction rate with age correlates to the observed changes seen in aging tendons [increased modulus (r(2) = 0.95), decreased cell number (r(2) = 0.89)]. The ability of tendons to regain normal tension following injury or exercise-induced laxity is a key factor in the recovery of tendon function. The decreased contraction rate as a function of age observed in the current study may limit the ability of tendon cells to retighten lax tendons in older individuals. This, in turn, may place these structures at further risk for injury or altered function.

  16. Measurement of Contractile Activity in Small Animal's Digestive Organ by Carbon Nanotube-Based Force Transducer

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Takeda, Naoki; Tsutsui, Chihiro; Koike, Kanako; Shimatani, Yuichi; Sakai, Takafumi; Akiya, Masahiro; Taguchi, Akira

    2011-03-01

    A carbon nanotube (CNT)-based force transducer designed to be embedded in the body of a live animal was fabricated and implanted into the stomach of a rat omit to measure contractile movement. The transducer comprised dispersed poly(ethylene glycol)-grafted multiwalled CNTs applied to a comb-like Au-electrode formed on a poly(dimethylsiloxane) sheet. The implanted rat was injected with acetylcholine to induce muscular contractions and changes in the resistance of the transducer were measured. Such changes arise owing to strain in the CNT network upon distortion. The measured resistance change was found to be proportional to the concentration of injected acetylcholine.

  17. Nitric oxide in the bovine oviduct: influence on contractile activity and nitric oxide synthase isoforms localization.

    PubMed

    Yilmaz, O; Całka, J; Bukowski, R; Zalecki, M; Wasowicz, K; Jaroszewski, J J; Markiewicz, W; Bulbul, A; Ucar, M

    2012-04-15

    The oviducts of 64 Holstein cows in luteal (early I, early II and late) and follicular phases were evaluated to determine the protein expression and mRNA transcription of different nitric oxide synthase isoforms (eNOS, iNOS, nNOS) as well as the effect of nitric oxide (NO) on spontaneous contractility in vitro. The expression patterns of nitric oxide synthase (NOS) isoforms in isthmus and ampulla (n = 6 for each phase) were determined by immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. In the contractility studies, longitudinal and circular isolated strips of isthmus and ampulla (n = 10 for each phase) of oviducts located ipsilateral to the luteal structure or preovulatory follicle were treated as follows: a) L-arginine, an endogenous NO donor (10(-8) to 10(-3)m), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor (10(-5)m) and L-arginine (10(-3)m), c) methylene blue (MB), an inhibitor of soluble guanylate (10(-5)m) and L-arginine (10(-3)m) and d) sodium nitroprusside (SNP), an exogenous NO donor (10(-8) to 10(-4)m). Immunohistochemical evaluation revealed that endothelial NOS (eNOS) expression detected in epithelial layer of isthmus and ampulla was strong in early I luteal phase, moderate in follicular phase and weak in other phases. Neuronal NOS (nNOS) immunoreactivity was strong in isthmus and moderate in ampulla, and staining of nerve fibers was observed mostly in early I luteal and follicular phases. All eNOS, nNOS and inducible NOS (iNOS) isoforms were detected by RT-PCR. eNOS and iNOS proteins were evident, whereas nNOS was undetectable by Western blot analysis in the tissue examined. L-arginine applied alone or after L-NAME did not alter or increase the contractile tension of the strips in most tissues examined. However, L-arginine applied after MB increased contractile tension in the strips of ampulla and longitudinal isthmus from early I luteal phase and circular isthmus from

  18. Modelling maternal obesity: the effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat.

    PubMed

    Muir, Ronan; Ballan, Jean; Clifford, Bethan; McMullen, Sarah; Khan, Raheela; Shmygol, Anatoly; Quenby, Siobhan; Elmes, Matthew

    2016-02-01

    Maternal obesity is associated with prolonged and dysfunctional labour and emergency caesarean section, but the mechanisms are unknown. The present study investigated the effects of an adiposity-inducing high-fat, high-cholesterol (HFHC) diet on uterine contractile-associated protein (CAP) expression and ex vivo uterine contractility in term non-labouring (TNL) and term labouring (TL) rats. Female rats were fed either control chow (CON n=20) or HFHC (n=20) diet 6 weeks before conception and during pregnancy. On gestational day 21 (TNL) or day 22 (TL) CON and HFHC (n=10) rats were killed to determine plasma cholesterol, triacylglycerol and progesterone concentrations and collection of myometrium for contractility studies and expression of CAPs caveolin-1 (Cav-1), connexin-43 (CX-43) and it's phosphorylated form (pCX-43), oxytocin receptor (OXTR) and cyclooxygenase-2 (COX-2). HFHC feeding increased visceral fat (P≤0.001), plasma cholesterol (P≤0.001) and triacylglycerol (P=0.039) concentrations. Stage of labour effected uterine expression of CAV-1 (P<0.02), pCX43 and COX-2 (both P<0.03). CAV-1 and pCX43 decreased but COX-2 increased with parturition. Significant diet- and labour-stage interactions were evident for CX-43 and pCX43 (P<0.03 and P<0.004 respectively). CX-43 decreased with TL in HFHC animals but was unaltered in CON. pCX-43 fell with labour in CON but remained high in HFHC. OXTR expression was significantly higher in HFHC compared with CON animals (P<0.03). Progesterone was higher in HFHC rats at term (P<0.014) but fell significantly with labour to similar concentrations as CON. Contractility studies identified synchronous contractions of stable amplitude in lean animals, but unstable asynchronous contractions with obesity. Uterine dose response to oxytocin was blunted during labour in HFHC rats with a log EC50 of -8.84 compared with -10.25 M in CON for integral activity (P<0.05). In conclusion, our adiposity model exhibits adverse effects on

  19. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

    PubMed

    Trevino, Michael A; Herda, Trent J; Fry, Andrew C; Gallagher, Philip M; Vardiman, John P; Mosier, Eric M; Miller, Jonathan D

    2016-08-01

    It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo. PMID:27146989

  20. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  1. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  2. A-272651, a nonpeptidic blocker of large-conductance Ca2+-activated K+ channels, modulates bladder smooth muscle contractility and neuronal action potentials

    PubMed Central

    Shieh, C-C; Turner, S C; Zhang, X-F; Milicic, I; Parihar, A; Jinkerson, T; Wilkins, J; Buckner, S A; Gopalakrishnan, M

    2007-01-01

    Background and Purpose: The large-conductance Ca2+-activated K+ channel (BKCa, KCa1.1) links membrane excitability with intracellular Ca2+ signaling and plays important roles in smooth muscle contraction, neuronal firing, and neuroendocrine secretion. This study reports the characterization of a novel BKCa channel blocker, 2,4-dimethoxy-N-naphthalen-2-yl-benzamide (A-272651). Experimental Approach: 86Rb+ efflux in HEK-293 cells expressing BKCa was measured. Effects of A-272651 on BKCa α- and BKCa αβ1-mediated currents were evaluated by patch-clamp. Effects on contractility were assessed using low-frequency electrical field stimulated pig detrusor and spontaneously contracting guinea pig detrusor. Effects of A-272651 on neuronal activity were determined in rat small diameter dorsal root ganglia (DRG). Key Results: A-272651 (10 μM) inhibited 86Rb+ efflux evoked by NS-1608 in HEK-293 cells expressing BKCa currents. A-272651 concentration-dependently inhibited BKCa currents with IC50 values of 4.59 μM (Hill coefficient 1.04, measured at +40 mV), and 2.82 μM (Hill coefficient 0.89), respectively, for BKCa α and BKCa αβ1-mediated currents. Like iberiotoxin, A-272651 enhanced field stimulated twitch responses in pig detrusor and spontaneous contractions in guinea pig detrusor with EC50 values of 4.05±0.05 and 37.95±0.12 μM, respectively. In capsaicin-sensitive DRG neurons, application of A-272651 increased action potential firing and prolonged action potential duration. Conclusions and Implications: These data demonstrate that A-272651 modulates smooth muscle contractility and neuronal firing properties. Unlike previously reported peptide BKCa blockers, A-272651 represents one of the first small molecule BKCa channel blockers that could serve as a useful tool for further characterization of BKCa channels in physiological and pathological states. PMID:17519951

  3. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    PubMed

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones. PMID:27010903

  4. Mechanistic Heterogeneity in Contractile Properties of α-Tropomyosin (TPM1) Mutants Associated with Inherited Cardiomyopathies*

    PubMed Central

    Gupte, Tejas M.; Haque, Farah; Gangadharan, Binnu; Sunitha, Margaret S.; Mukherjee, Souhrid; Anandhan, Swetha; Rani, Deepa Selvi; Mukundan, Namita; Jambekar, Amruta; Thangaraj, Kumarasamy; Sowdhamini, Ramanathan; Sommese, Ruth F.; Nag, Suman; Spudich, James A.; Mercer, John A.

    2015-01-01

    The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca2+ sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca2+ activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca2+ concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis. PMID:25548289

  5. The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids

    PubMed Central

    Rosenbluth, Jack; Szent-Györgyi, Andrew G.; Thompson, Joseph T.

    2010-01-01

    We investigated the ultrastructure, contractile properties, and in vivo length changes of the fast-acting funnel retractor muscle of the long-finned squid Doryteuthis pealeii. This muscle is composed of obliquely striated, spindle-shaped fibers ~3 μm across that have an abundant sarcoplasmic reticulum, consisting primarily of membranous sacs that form ‘dyads’ along the surface of each cell. The contractile apparatus consists of ‘myofibrils’ ~0.25–0.5 μm wide in cross section arrayed around the periphery of each cell, surrounding a central core that contains the nucleus and large mitochondria. Thick myofilaments are ~25 nm in diameter and ~2.8 μm long. ‘Dense bodies’ are narrow, resembling Z lines, but are discontinuous and are not associated with the cytoskeletal fibrillar elements that are so prominent in slower obliquely striated muscles. The cells approximate each other closely with minimal intervening intercellular connective tissue. Our physiological experiments, conducted at 17°C, showed that the longitudinal muscle fibers of the funnel retractor were activated rapidly (8 ms latent period following stimulation) and generated force rapidly (peak twitch force occurred within 50 ms). The longitudinal fibers had low Vmax (2.15 ±0.26 L0 s−1, where L0 was the length that generated peak isometric force) but generated relatively high isometric stress (270±20 mN mm−2 physiological cross section). The fibers exhibited a moderate maximum power output (49.9 W kg−1), compared with vertebrate and arthropod cross striated fibers, at a V/Vmax of 0.33±0.044. During ventilation of the mantle cavity and locomotion, the funnel retractor muscle operated in vivo over a limited range of strains (+0.075 to −0.15 relative to resting length, LR) and at low strain rates (from 0.16 to 0.91 LR s−1 ), corresponding to a range of V/Vmax from 0.073 to 0.42. During the exhalant phase of the jet the range of strains was even narrower: maximum range less than ±0

  6. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; Fitts, R. H.

    1999-01-01

    1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact

  7. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  8. Distinct roles of L- and T-type voltage-dependent Ca2+ channels in regulation of lymphatic vessel contractile activity.

    PubMed

    Lee, Stewart; Roizes, Simon; von der Weid, Pierre-Yves

    2014-12-15

    Lymph drainage maintains tissue fluid homeostasis and facilitates immune response. It is promoted by phasic contractions of collecting lymphatic vessels through which lymph is propelled back into the blood circulation. This rhythmic contractile activity (i.e. lymphatic pumping) increases in rate with increase in luminal pressure and relies on activation of nifedipine-sensitive voltage-dependent Ca(2+) channels (VDCCs). Despite their importance, these channels have not been characterized in lymphatic vessels. We used pressure- and wire-myography as well as intracellular microelectrode electrophysiology to characterize the pharmacological and electrophysiological properties of L-type and T-type VDCCs in rat mesenteric lymphatic vessels and evaluated their particular role in the regulation of lymphatic pumping by stretch. We complemented our study with PCR and confocal immunofluorescence imaging to investigate the expression and localization of these channels in lymphatic vessels. Our data suggest a delineating role of VDCCs in stretch-induced lymphatic vessel contractions, as the stretch-induced increase in force of lymphatic vessel contractions was significantly attenuated in the presence of L-type VDCC blockers nifedipine and diltiazem, while the stretch-induced increase in contraction frequency was significantly decreased by the T-type VDCC blockers mibefradil and nickel. The latter effect was correlated with a hyperpolarization. We propose that activation of T-type VDCCs depolarizes membrane potential, regulating the frequency of lymphatic contractions via opening of L-type VDCCs, which drive the strength of contractions.

  9. Upregulation of contractile endothelin type B receptors by lipid-soluble cigarette smoking particles in rat cerebral arteries via activation of MAPK

    SciTech Connect

    Sandhu, Hardip; Xu, Cang Bao; Edvinsson, Lars

    2010-11-15

    Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSP with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B

  10. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart.

    PubMed

    Young, M E; Laws, F A; Goodwin, G W; Taegtmeyer, H

    2001-11-30

    In pressure overload-induced hypertrophy, the heart increases its reliance on glucose as a fuel while decreasing fatty acid oxidation. A key regulator of this substrate switching in the hypertrophied heart is peroxisome proliferator-activated receptor alpha (PPARalpha). We tested the hypothesis that down-regulation of PPARalpha is an essential component of cardiac hypertrophy at the levels of increased mass, gene expression, and metabolism by pharmacologically reactivating PPARalpha. Pressure overload (induced by constriction of the ascending aorta for 7 days in rats) resulted in cardiac hypertrophy, increased expression of fetal genes (atrial natriuretic factor and skeletal alpha-actin), decreased expression of PPARalpha and PPARalpha-regulated genes (medium chain acyl-CoA dehydrogenase and pyruvate dehydrogenase kinase 4), and caused substrate switching (measured ex vivo in the isolated working heart preparation). Treatment of rats with the specific PPARalpha agonist WY-14,643 (8 days) did not affect the trophic response or atrial natriuretic factor induction to pressure overload. However, PPARalpha activation blocked skeletal alpha-actin induction, reversed the down-regulation of measured PPARalpha-regulated genes in the hypertrophied heart, and prevented substrate switching. This PPARalpha reactivation concomitantly resulted in severe depression of cardiac power and efficiency in the hypertrophied heart (measured ex vivo). Thus, PPARalpha down-regulation is essential for the maintenance of contractile function of the hypertrophied heart. PMID:11574533

  11. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility

    PubMed Central

    Ivanov, Andrei I; Samarin, Stanislav N; Bachar, Moshe; Parkos, Charles A; Nusrat, Asma

    2009-01-01

    Background Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled in vitro by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Results Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase. Conclusion Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis. PMID:19422706

  12. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight.

    PubMed

    Tobalske, Bret W; Puccinelli, Lisa A; Sheridan, David C

    2005-08-01

    We studied flying zebra finch (Taeniopygia guttata, N = 12), to provide a new test of a long-standing ;fixed-gear' hypothesis that flap-bounding birds use only intermittent non-flapping phases, instead of variation in muscle activity, to vary mechanical power output in flight. Using sonomicrometry and electromyography, we measured in vivo fascicle length and neuromuscular recruitment in the pectoralis as the birds flew in different flight modes (level, ascending, descending; mean velocity 1.6+/-0.3 m s(-1)) and across velocities in a new, variable-speed wind tunnel (0-12 m s(-1)). Synchronized high-speed digital video (250 Hz) provided a record of wing kinematics. Flight mode had a significant effect upon pectoralis strain, strain rate, fractional shortening and the relative timing of muscle activity (onset, offset and duration). Among flight velocities, we observed significant variation in pectoralis strain, fractional lengthening and shortening, strain rate, relative electromyographic (EMG) amplitude, and EMG duration and offset. In particular, variation in strain rate and relative EMG amplitude indicates that the fixed-gear hypothesis should be rejected. Instead, it appears that zebra finch vary work and power output within wingbeats by modulating muscle contractile behavior and between wingbeats using intermittent bounds. Muscle activity patterns and wing kinematics were similar between free flight and wind tunnel flight at similar speeds. Comparing flights with and without surgically implanted transducers and electrodes, zebra finch exhibited a reduction in maximum velocity (from 14 to 12 m s(-1)) and a significant increase in wingbeat frequency and percent time flapping. This identifies a potential limitation of in vivo flight measurements, and similar studies of bird flight should, therefore, include measurements of the extent to which flight performance is compromised by experimental protocol.

  13. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle

    PubMed Central

    1986-01-01

    The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37 degrees C over a range of stimulation frequencies and bathing [Ca2+]o (Cao). In both rabbit myocytes and intact muscles bathed in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Cao up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in less than 15 mM Cao. Further increases in Cao caused the appearance of spontaneous asynchronous contractile waves in myocytes and in intact muscles caused scattered light intensity fluctuations (SLIF), which were previously demonstrated to be caused by Ca2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Cao. Two populations of rat myocytes were observed in 1 mM Cao: approximately 85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Cao, the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had a flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Cao in both intact rat muscles and in the myocytes with spontaneous waves. We

  14. Effect of previous strength training episode and retraining on facilitation of skeletal muscle hypertrophy and contractile properties after long-term detraining in rats.

    PubMed

    Lee, Sukho; Hong, Kwang-Seok; Kim, Kijeong

    2016-04-01

    In the present study, we investigated the effects of previous strength training and retraining following long-term cessation of exercise on muscle mass and contractile properties. Female Sprague-Dawley rats (n=24) aged eight weeks were randomly assigned one of the four groups: control (CON), detraining (DT), training (TR), and retraining (RT). The training regimen consisted of climbing ladder 5×3 sets, once every third day for eight weeks with weight attached to the tail. The weight carried during each training session was initially 50% of body weight and progressively increased by 10% per session. The rats in DT were detained for 20 weeks followed by eight weeks strength training. The rats in the both TR and RT groups underwent eight weeks training. DT was age matched new training group while RT was retraining group after 20 weeks of detraining. Soleus, gastrocnemius, tibialis anterior, and flexor hallucis longus (FHL) muscles were harvested in order to measure the weight, and in situ contractile properties of FHL were measured including specific twitch tension (Spt) and specific tetanic tension (Spo). TR showed significant increase in muscle mass compared to CON (P<0.05). DT and RT showed significant increase in muscle mass when compared to all other groups (P<0.05). There was no statistical difference in Spt and Spo among the groups. The present study showed that previous strength training facilitates retraining-induced muscle hypertrophy following long-term cessation of exercise. PMID:27162768

  15. Effect of previous strength training episode and retraining on facilitation of skeletal muscle hypertrophy and contractile properties after long-term detraining in rats

    PubMed Central

    Lee, Sukho; Hong, Kwang-Seok; Kim, Kijeong

    2016-01-01

    In the present study, we investigated the effects of previous strength training and retraining following long-term cessation of exercise on muscle mass and contractile properties. Female Sprague-Dawley rats (n=24) aged eight weeks were randomly assigned one of the four groups: control (CON), detraining (DT), training (TR), and retraining (RT). The training regimen consisted of climbing ladder 5×3 sets, once every third day for eight weeks with weight attached to the tail. The weight carried during each training session was initially 50% of body weight and progressively increased by 10% per session. The rats in DT were detained for 20 weeks followed by eight weeks strength training. The rats in the both TR and RT groups underwent eight weeks training. DT was age matched new training group while RT was retraining group after 20 weeks of detraining. Soleus, gastrocnemius, tibialis anterior, and flexor hallucis longus (FHL) muscles were harvested in order to measure the weight, and in situ contractile properties of FHL were measured including specific twitch tension (Spt) and specific tetanic tension (Spo). TR showed significant increase in muscle mass compared to CON (P<0.05). DT and RT showed significant increase in muscle mass when compared to all other groups (P<0.05). There was no statistical difference in Spt and Spo among the groups. The present study showed that previous strength training facilitates retraining-induced muscle hypertrophy following long-term cessation of exercise. PMID:27162768

  16. C-Type Natriuretic Peptide Induces Anti-contractile Effect Dependent on Nitric Oxide, Oxidative Stress, and NPR-B Activation in Sepsis

    PubMed Central

    Pernomian, Laena; Prado, Alejandro F.; Silva, Bruno R.; Azevedo, Aline; Pinheiro, Lucas C.; Tanus-Santos, José E.; Bendhack, Lusiane M.

    2016-01-01

    Aims: To evaluate the role of nitric oxide, reactive oxygen species (ROS), and natriuretic peptide receptor-B activation in C-type natriuretic peptide-anti-contractile effect on Phenylephrine-induced contraction in aorta isolated from septic rats. Methods and Results: Cecal ligation and puncture (CLP) surgery was used to induce sepsis in male rats. Vascular reactivity was conducted in rat aorta and resistance mesenteric artery (RMA). Measurement of survival rate, mean arterial pressure (MAP), plasma nitric oxide, specific protein expression, and localization were evaluated. Septic rats had a survival rate about 37% at 4 h after the surgery, and these rats presented hypotension compared to control-operated (Sham) rats. Phenylephrine-induced contraction was decreased in sepsis. C-type natriuretic peptide (CNP) induced anti-contractile effect in aortas. Plasma nitric oxide was increased in sepsis. Nitric oxide-synthase but not natriuretic peptide receptor-B expression was increased in septic rat aortas. C-type natriuretic peptide-anti-contractile effect was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. Natriuretic peptide receptor-C, protein kinase-Cα mRNA, and basal nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS production were lower in septic rats. Phenylephrine and CNP enhanced ROS production. However, stimulated ROS production was low in sepsis. Conclusion: CNP induced anti-contractile effect on Phenylephrine contraction in aortas from Sham and septic rats that was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. PMID:27445832

  17. Endothelium dependency of contractile activity differs in infant and adult vertebral arteries.

    PubMed Central

    Charpie, J R; Schreur, K D; Papadopoulos, S M; Webb, R C

    1994-01-01

    Contractions to serotonin (5-HT) and endothelin-1 (ET-1) in infant (0-2 yr) and adult (38-71 yr) vertebral arteries were examined in the presence of either the cyclooxygenase inhibitor indomethacin or NG-monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide production. In addition, endothelium-dependent relaxations to acetylcholine were characterized in arteries contracted with agonist. The results showed that: (a) Contractions of infant arteries to 5-HT or ET-1 decreased to 44 +/- 8% and 27 +/- 13%, respectively, within 10 min. Indomethacin or removal of endothelium abolished this decreased response, whereas L-NMMA had no effect. (b) Adult arteries produced sustained contractions to 5-HT or ET-1 that were unaffected by indomethacin, endothelium denudation, or L-NMMA. (c) Endothelium-dependent relaxations to acetylcholine were greater in infant than adult arteries and were abolished by indomethacin (but not L-NMMA) in infants and L-NMMA (but not indomethacin) in adults. Thus, endothelium-dependent responses in infant arteries are attenuated because of increased prostaglandin activity not observed in adult tissues. Additionally, there is an age-dependent change in the primary mechanism responsible for acetylcholine-induced vasodilation. Apparently, endothelium dependency of acetylcholine-induced relaxation is highly dependent on cyclooxygenase activity in the infant vertebral artery, but in the adult artery, nitric oxide is linked to the vasodilator response. Images PMID:8132776

  18. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    PubMed

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  19. Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase

    PubMed Central

    Loehr, James A.; Abo-Zahrah, Reem; Pal, Rituraj; Rodney, George G.

    2015-01-01

    Elevated concentrations of sphingomyelinase (SMase) have been detected in a variety of diseases. SMase has been shown to increase muscle derived oxidants and decrease skeletal muscle force; however, the sub-cellular site of oxidant production has not been elucidated. Using redox sensitive biosensors targeted to the mitochondria and NADPH oxidase (Nox2), we demonstrate that SMase increased Nox2-dependent ROS and had no effect on mitochondrial ROS in isolated FDB fibers. Pharmacological inhibition and genetic knockdown of Nox2 activity prevented SMase induced ROS production and provided protection against decreased force production in the diaphragm. In contrast, genetic overexpression of superoxide dismutase within the mitochondria did not prevent increased ROS production and offered no protection against decreased diaphragm function in response to SMase. Our study shows that SMase induced ROS production occurs in specific sub-cellular regions of skeletal muscle; however, the increased ROS does not completely account for the decrease in muscle function. PMID:25653619

  20. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.

    PubMed Central

    Ranatunga, K W

    1994-01-01

    Temperature dependence of the isometric tension was examined in chemically skinned, glycerinated, rabbit Psoas, muscle fibers immersed in relaxing solution (pH approximately 7.1 at 20 degrees C, pCa approximately 8, ionic strength 200 mM); the average rate of heating/cooling was 0.5-1 degree C/s. The resting tension increased reversibly with temperature (5-42 degrees C); the tension increase was slight in warming to approximately 25 degrees C (a linear thermal contraction, -alpha, of approximately 0.1%/degree C) but became more pronounced above approximately 30 degrees C (similar behavior was seen in intact rat muscle fibers). The extra tension rise at the high temperatures was depressed in acidic pH and in the presence of 10 mM inorganic phosphate; it was absent in rigor fibers in which the tension decreased with heating (a linear thermal expansion, alpha, of approximately 4 x 10(-5)/degree C). Below approximately 20 degrees C, the tension response after a approximately 1% length increase (complete < 0.5 ms) consisted of a fast decay (approximately 150.s-1 at 20 degrees C) and a slow decay (approximately 10.s-1) of tension. The rate of fast decay increased with temperature (Q10 approximately 2.4); at 35-40 degrees C, it was approximately 800.s-1, and it was followed by a delayed tension rise (stretch-activation) at 30-40.s-1. The linear rise of passive tension in warming to approximately 25 degrees C may be due to increase of thermal stress in titin (connectin)-myosin composite filament, whereas the extra tension above approximately 30 degrees C may arise from cycling cross-bridges; based on previous findings from regulated actomyosin in solution (Fuchs, 1975), it is suggested that heating reversibly inactivates the troponin-tropomyosin control mechanism and leads to Ca-independent thin filament activation at high temperatures. Additionally, we propose that the heating-induced increase of endo-sarcomeric stress within titin-myosin composite filament makes the

  1. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    PubMed Central

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when

  2. [The influence of the bupivacaine regional anesthesia on the contractile activity of the uterus and the functional state of the fetus].

    PubMed

    Baziian, E V; Konstantinova, N N; Nazarova, L A; Pervak, V A; Pavlova, N G

    2013-01-01

    The study in chronic experiment on 26 pregnant rabbit females induced in labor by oxytocin on the 30th day ofpregnancy was conducted. The effects of bupivacaine (0,5% - I ml) epidural anesthesia (EA) on the contractile activity of the uterus, the functional state of the females and their fetuses were studied. On the 28th day of pregnancy under thiopental anesthesia electrodes were administered: to thefetus - ECG, in the female myometrium for recording electrical activity. In order to check the uterus mechanical activity the original sensor was used filled by graphite, which was placed around one horn of the uterus. The contractile activity of the myometrium was evaluatedfor each 5-minute interval by the number ofuterine contractions, duration and amplitude of one uterine contraction. The functional state offemale fetuses and rabbit female were evaluated by the frequency change of the heart rate. In 12 females occured to delivery. Registration of uterine contractions, heart rate of the female and fetuses were carried out simultaneously and continuously throughout the whole experiment. It was shown that under standard conditions EA didn't induce changes in uterine activity parameters of the female located in its natural position, and didn't affect on the fetal heart rate (3-factor analysis of variance - ANOVA). 10minutes after EA, the momentary acceleration of female heart rate (9%) was recorded in relation to the reference level, which may be associated with transient hypotension. Thus, in conditions of our experience the bupivacaine (0,5% - 1,0 ml) EA in induced labor of female rabbit has no significant effect on the uterus contractile activity and the functional state of the fetus. Short-term adaptive tachycardia is registered in females.

  3. Spontaneous Formation of a Globally Connected Contractile Network in a Microtubule-Motor System.

    PubMed

    Torisawa, Takayuki; Taniguchi, Daisuke; Ishihara, Shuji; Oiwa, Kazuhiro

    2016-07-26

    Microtubule (MT) networks play key roles in cell division, intracellular transport, and cell motility. These functions of MT networks occur through interactions between MTs and various associated proteins, notably motor proteins that bundle and slide MTs. Our objective in this study was to address the question of how motors determine the nature of MT networks. We conducted in vitro assays using homotetrameric kinesin Eg5, a motor protein involved in the formation and maintenance of the mitotic spindle. The mixing of Eg5 and MTs produced a range of spatiotemporal dynamics depending on the motor/filament ratio. Low motor/filament ratios produced globally connected static MT networks with sparsely distributed contractile active nodes (motor-accumulating points with radially extending MTs). Increasing the motor/filament ratio facilitated the linking of contractile active nodes and led to a global contraction of the network. When the motor/filament ratio was further increased, densely distributed active nodes formed local clusters and segmented the network into pieces with their strong contractile forces. Altering the properties of the motor through the use of chimeric Eg5, which has kinesin-1 heads, resulted in the generation of many isolated asters. These results suggest that the spatial distribution of contractile active nodes determines the dynamics of MT-motor networks. We then developed a coarse-grained model of MT-motor networks and identified two essential features for reproducing the experimentally observed patterns: an accumulation of motors that form the active nodes necessary to generate contractile forces, and a nonlinear dependency of contractile force on motor densities. Our model also enabled us to characterize the mechanical properties of the contractile network. Our study provides insight into how local motor-MT interactions generate the spatiotemporal dynamics of macroscopic network structures. PMID:27463139

  4. Characteristics of nobiletin-induced effects on jejunal contractility.

    PubMed

    Xiong, Yong-Jian; Chen, Da-Peng; Lv, Bo-Chao; Liu, Fang-Fei; Wang, Li; Lin, Yuan

    2014-04-01

    Nobiletin, a citrus polymethoxylated flavone, exhibits multiple biological properties including anti-inflammatory, anti-carcinogenic, and anti-insulin resistance effects. The present study found that nobiletin exerted significant stimulatory effects on the contractility of isolated rat jejunal segments in all 6 different low contractile states, and meanwhile significant inhibitory effects in all 6 different high contractile states, showing characteristics of bidirectional regulation (BR). Nobiletin-exerted BR on jejunal contractility was abolished in the presence of c-kit receptor tyrosine kinase inhibitor imatinib or Ca(2+) channel blocker verapamil. In the presence of neuroxin tetrodotoxin, nobiletin only exerted stimulatory effects on jejunal contractility in both low and high contractile states. Hemicholinium-3 and atropine partially blocked nobiletin-exerted stimulatory effects on jejunal contractility in low-Ca(2+)-induced low contractile state. Phentolamine or propranolol or l-NG-nitro-arginine significantly blocked nobiletin-exerted inhibitory effects on jejunal contractility in high-Ca(2+)-induced high contractile state respectively. The effects of nobiletin on myosin light chain kinase (MLCK) mRNA expression, MLCK protein content, and myosin light chain phosphorylation extent were also bidirectional. In summary, nobiletin-exerted BR depends on the contractile states of rat jejunal segments. Nobiletin-exerted BR requires the enteric nervous system, interstitial cell of Cajal, Ca(2+), and myosin phosphorylation-related mechanisms.

  5. Nitric oxide regulation of monkey myometrial contractility

    PubMed Central

    Kuenzli, Karri A; Buxton, Iain L O; Bradley, Michael E

    1998-01-01

    We evaluated the effect of the nitric oxide (NO) donor CysNO (S-nitroso-L-cysteine) and endogenous NO upon spontaneous contractility in non-pregnant cynomolgus monkeys. We also assessed the role of intracellular guanosine 3′,5′-cyclic monophosphate ([cyclic GMP]i) as a second messenger for NO in monkey uterine smooth muscle.CysNO reduced spontaneous contractility by 84% (P<0.05) at maximal concentrations, and significantly elevated [cyclic GMP]i (P<0.05). However, increases in [cyclic GMP]i were not required for CysNO-induced relaxations; CysNO inhibited contractile activity despite the complete inhibition of guanylyl cyclase by methylene blue or LY83,583.Analogues of cyclic GMP had no significant effect upon spontaneous contractile activity. L-arginine produced a 62% reduction in spontaneous activity (P<0.05) while D-arginine had no effect. The competitive nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine (L-NOARG) not only blocked L-arginine-induced relaxations, but also significantly increased spontaneous contractile activity when added alone (P<0.05); the inactive D-enantiomer of NOARG had no such effect.While both endogenous NO and the NO donor CysNO relax monkey myometrium, this effect is not causally related to CysNO-induced elevations in [cyclic GMP]i. The failure of cyclic GMP analogues to alter monkey uterine smooth muscle tension also argues against a role for [cyclic GMP]i in the regulation of uterine contractility. Not only do these findings argue for the existence of a functionally-relevant NOS in the monkey uterus, but increases in contractile activity seen in the presence of NOS inhibitors suggest a role for NO in the moment-to-moment regulation of contractile activity in this organ. PMID:9630344

  6. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility.

    PubMed

    Parajuli, Shankar P; Soder, Rupal P; Hristov, Kiril L; Petkov, Georgi V

    2012-01-01

    Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.

  7. Active fascial contractility: Fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics.

    PubMed

    Schleip, R; Klingler, W; Lehmann-Horn, F

    2005-01-01

    Dense connective tissue sheets, commonly known as fascia, play an important role as force transmitters in human posture and movement regulation. Fascia is usually seen as having a passive role, transmitting mechanical tension which is generated by muscle activity or external forces. However, there is some evidence to suggest that fascia may be able to actively contract in a smooth muscle-like manner and consequently influence musculoskeletal dynamics. General support for this hypothesis came with the discovery of contractile cells in fascia, from theoretical reflections on the biological advantages of such a capacity, and from the existence of pathological fascial contractures. Further evidence to support this hypothesis is offered by in vitro studies with fascia which have been reported in the literature: the biomechanical demonstration of an autonomous contraction of the human lumbar fascia, and the pharmacological induction of temporary contractions in normal fascia from rats. If verified by future research, the existence of an active fascial contractility could have interesting implications for the understanding of musculoskeletal pathologies with an increased or decreased myofascial tonus. It may also offer new insights and a deeper understanding of treatments directed at fascia, such as manual myofascial release therapies or acupuncture. Further research to test this hypothesis is suggested.

  8. The Role of Rac1 on Carbachol-induced Contractile Activity in Detrusor Smooth Muscle from Streptozotocin-induced Diabetic Rats.

    PubMed

    Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes

    2015-06-01

    This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity.

  9. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels. PMID:18038419

  10. Spasmogenic effect of the aqueous extract of Tamarindus indica L. (Caesalpiniaceae) on the contractile activity of guinea-pig taenia coli.

    PubMed

    Souza, A; Aka, K J

    2007-02-16

    The effect of aqueous extract of Tamarindus indica (AETI) was studied on the guinea pig taenia coli, due to its use for treatment of constipation in traditional medicines. AETI, at concentrations ranging from 10(-8) mg/ml to 10(-2) mg/ml, increased the spontaneous contractile activity of guinea pig taenia coli in a dose-dependent manner (EC50 = 4x10(-6) mg/ml). This activity was unaffected by atropine. In high K(+), Ca(2+)-free solution containing EDTA, AETI as well as acetylcholine, used as a control, induced tonic contraction. These results suggest that the plant extract exert a spasmogenic effect that would not involve cholinergic mechanism of action. However, these active principles could mobilize both extra cellular calcium and intracellular calcium from internal stores.

  11. Cell stiffness, contractile stress and the role of extracellular matrix

    SciTech Connect

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2009-05-15

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.

  12. Cell stiffness, contractile stress and the role of extracellular matrix

    PubMed Central

    An, Steven S.; Kim, Jina; Ahn, Kwangmi; Trepat, Xavier; Drake, Kenneth J.; Kumar, Sarvesh; Ling, Guoyu; Purington, Carolyn; Rangasamy, Tirumalai; Kensler, Thomas W.; Mitzner, Wayne; Fredberg, Jeffrey J.; Biswal, Shyam

    2010-01-01

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genes in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses. PMID:19327344

  13. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.

    PubMed

    Rösner, Harald; Möller, Wolfgang; Wassermann, Torsten; Mihatsch, Julia; Blum, Martin

    2007-10-24

    The myosinII-specific inhibitor blebbistatin was used to attenuate actinomyosinII contractility in E7-chicken retina explant, medulla and spinal cord neuronal cell cultures. Addition of 20-100 microM blebbistatin, a concentration range that reversibly disrupts actin stress fibers, led to a reduction of growth cone lamellipodial areas and to an elongation of filopodia within 5 to 10 min. These morphological changes were completely reversed after removing the inhibitor. In the continued presence of blebbistatin for several hours, a dose-dependent acceleration (up to 6-fold) of neurite outgrowth was observed. The rapidly elongating neuritic processes displayed narrowed growth cones with one to three long filopodia at the leading edge. At the same time, thin neuritic branches emerged in a "push"-like fashion guided by filopodial extensions. Immunocytochemical characterization of these thin sprouts revealed that they contained actin filaments, myosinIIA, phosphorylated neurofilament/tau epitopes, MAP2, NCAM-PSA, and microtubules, demonstrating that these processes presented neurites and not filopodia. The crucial involvement of microtubules in blebbistatin-induced accelerated neurite extension was confirmed by its inhibition in the presence of nocodazole or taxol. The promotion by blebbistatin of neurite outgrowth occurred on polylysine, laminin, as well as on fibronectin as substrate. The presence of the Rho/ROCK-inhibitor Y-27632 also caused a dose-dependent promotion of neurite growth which was, however, 3-fold less pronounced as compared to blebbistatin. In contrast to blebbistatin, Y-27632 led to the enlargement of growth cone lamellipodial extensions. Our data demonstrate that neurite outgrowth and branching are inversely correlated with the degree of actinomyosinII contractility which determines the speed of retrograde flow and turnover of actin filaments and, by this, microtubule extension.

  14. Continuum theory of contractile fibres

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Zumdieck, A.; Jülicher, F.

    2003-12-01

    The generation of contractile forces by living cells often involves linear arrangements of actively interacting polar filaments. We develop a physical description of the dynamics of active fibers based on a general expression for the tension in terms of the filament density and the bundle polarisation. We discuss the long-time behaviour of oriented and of nonpolar fibres, discuss effects of polymerization and depolymerization, and relate this continuum theory to nonlocal descriptions of filament-motor systems. We show that a nonpolar arrangement of filaments suppresses oscillatory instabilities which could be relevant for muscle fibers.

  15. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    SciTech Connect

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or the maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).

  16. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    PubMed

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  17. Correlation between selective inhibition of the cyclic nucleotide phosphodiesterases and the contractile activity in human pregnant myometrium near term.

    PubMed

    Leroy, M J; Cedrin, I; Breuiller, M; Giovagrandi, Y; Ferre, F

    1989-01-01

    The present study was carried out to determine the ability of various pharmacological agents to selectively inhibit each cytosolic form of phosphodiesterase isolated from the longitudinal layer of human myometria near term. Among the drugs tested, zaprinast specifically inhibits the first form of PDE which hydrolyses both substrates (cAMP and cGMP) and is stimulated by the Ca2+-calmodulin complex. A second form of PDE specific for cAMP hydrolysis and Ca2+-calmodulin insensitive is only present during pregnancy. Rolipram is the most potent and selective inhibitor of this second form. It is also the most efficient compound to inhibit in vitro the spontaneous contractions of near term myometria. The double effect of rolipram suggests an important role of the second form of PDE in the mechanisms of contractility during the pregnancy. In addition rolipram or other derivatives might be of a therapeutic interest in the prevention of prematurity in so far as they are devoid of undesirable maternal and fetal side effects.

  18. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers.

    PubMed

    Ramón-Azcón, Javier; Ahadian, Samad; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Kaji, Hirokazu; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Khademhosseini, Ali; Matsue, Tomokazu

    2013-08-01

    Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with cells cultured on pristine and randomly distributed CNTs in GelMA hydrogels.

  19. Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy

    PubMed Central

    Major, Brendan; Kimpinski, Kurt; Doherty, Timothy J.; Rice, Charles L.

    2013-01-01

    The objective of the study was to assess the effects of diabetic polyneuropathy (DPN) on muscle contractile properties in humans, and how these changes are related to alterations in muscle morphology and denervation. Patients with DPN (n = 12) were compared with age- and sex-matched controls (n = 12). Evoked and voluntary contractile properties, including stimulated twitch responses and maximal voluntary contractions, of the dorsiflexor muscles were assessed using an isometric ankle dynamometer. Motor unit number estimates (MUNE) of the tibialis anterior (TA) were performed via quantitative electromyography and decomposition-enhanced spike-triggered averaging. Peak tibialis anterior (TA) cross-sectional area (CSA; cm2), and relative proportion of contractile to noncontractile tissue (%) was determined from magnetic resonance images. Patients with DPN demonstrated decreased strength (−35%) and slower (−45%) dorsiflexion contractile properties for both evoked and voluntary contractions (P < 0.05). These findings were not accounted for by differences in voluntary activation (P > 0.05) or antagonist coactivation (P > 0.05). Additionally, patients with DPN were weaker when strength was normalized to TA total CSA (−30%; P < 0.05) or contractile tissue CSA (−26%; P < 0.05). In the DPN patient group, TA MUNEs were negatively related to both % noncontractile tissue (P < 0.05; r = 0.72) and twitch half-relaxation time (P < 0.05; r = 0.60), whereas no relationships were found between these variables in controls (P > 0.05). We conclude that patients with DPN demonstrated reduced strength and muscle quality as well as contractile slowing. This process may contribute to muscle power loss and functional impairments reported in patients with DPN, beyond the loss of strength commonly observed. PMID:24356519

  20. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  1. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery.

    PubMed

    Kuriyama, H; Suzuki, H

    1978-12-01

    1 Effects of acetylcholine (ACh) on the membrane potential and mechanical properties of rabbit superior mesenteric artery were investigated by the use of microelectrode and isometric tension recording methods. The membrane potential was -62.5 +/- 3.0 mV (s.d.). The maximum slope of the membrane depolarization produced by tenfold increase in [K](0) plotted on a log scale was 48 mV. Excess [K](0) and low [K](0) depolarized the membrane and produced contraction (contracture). The minimum depolarization to produce contraction was 10 mV.2 Low concentrations (10 and 100 ng/ml) of ACh hyperpolarized the membrane. Increased concentrations of ACh (1 and 10 mug/ml) hyperpolarized the membrane further in adult rabbit, while increased concentrations of ACh produced a smaller hyperpolarization in young rabbit. These potential changes produced by ACh in immature and adult rabbits were suppressed by treatment with atropine (0.1 mug/ml).3 ACh (10 ng to 1 mug/ml) consistently generated contraction in Krebs solution. However, ACh relaxed the contraction induced by either K(+) or noradrenaline in the adult rabbit, and it enhanced contraction produced by this treatment in the immature rabbit. In Ca-free EGTA solution, the action of ACh on the mechanical response was markedly suppressed, although high concentrations of ACh still evoked contraction. However, treatment with atropine (1 mug/ml) completely prevented these actions of ACh.4 ACh-induced relaxation during either K(+)-induced or noradrenaline-induced contraction was not caused by the hyperpolarization of the membrane.5 It is concluded that ACh possesses dual actions on smooth muscle cells of the rabbit superior mesenteric artery in Krebs solution, i.e. ACh hyperpolarizes the membrane, while it consistently generates contraction. These ACh actions on the muscle cells were modified by aging.

  2. Evidence that spontaneous contractile activity in the rat myometrium is not inhibited by NO-mediated increases in tissue levels of cyclic GMP

    PubMed Central

    Hennan, James K; Diamond, Jack

    1998-01-01

    There is conflicting evidence in the literature concerning the role of cyclic GMP in the regulation of myometrial contractility and the importance of hormonal status on the uterine response to cyclic GMP-elevating agents. The objective of the present study was to investigate further the importance of cyclic GMP in the control of uterine contractility, by monitoring the effects of cyclic GMP-elevating agents on spontaneous contractions and cyclic GMP levels in myometrial strips from pregnant rats and from ovariectomized rats under the influence of oestrogen and/or progesterone.Sodium nitroprusside (SNP) 5 mM, atrial natriuretic peptide (ANP) 100 nM, L-arginine 1 mM and 8-bromo-cyclic GMP 100 mM had no relaxant effect on the spontaneous contractions of myometria from pregnant rats or from ovariectomized rats under the influence of oestrogen or progesterone.Tissue levels of cyclic GMP were significantly elevated by SNP in all treatment groups, including pregnant animals. For example, in ovariectomized, progesterone-treated rats, SNP raised cyclic GMP levels approximately 8 fold from a basal level of 2.9±0.4 pmol mg−1 protein to 24.8±4.0 pmol mg−1 protein. ANP increased cyclic GMP levels approximately 2 fold in all treatment groups, except in the pregnant animals. L-Arginine elevated cyclic GMP significantly only in ovariectomized, vehicle-treated myometria.The activity of cyclic GMP-dependent protein kinase (PKG) was significantly increased (3 fold) in myometria exposed to SNP (5 mM). Thus, the inability of SNP to relax uterine preparations was not due to a failure of SNP-elevated cyclic GMP to activate PKG.The more potent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), at a concentration of 100 μM was able to inhibit spontaneous contractions significantly in myometrial preparations from both non-ovariectomized and ovariectomized rats treated with oestrogen or progesterone.Tissue levels of cyclic GMP were markedly increased by SNAP at

  3. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    PubMed

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  4. Proteinase-activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways

    PubMed Central

    El-Daly, Mahmoud; Saifeddine, Mahmoud; Mihara, Koichiro; Ramachandran, Rithwik; Triggle, Christopher R; Hollenberg, Morley D

    2014-01-01

    Background and Purpose Because angiotensin-II-mediated porcine coronary artery (PCA) vasoconstriction is blocked by protein tyrosine kinase (PYK) inhibitors, we hypothesized that proteinase-activated receptors (PARs), known to regulate vascular tension, like angiotensin-II, would also cause PCA contractions via PYK-dependent signalling pathways. Experimental Approach Contractions of intact and endothelium-free isolated PCA rings, stimulated by PAR1/PAR2-activating peptides, angiotensin-II, PGF2α, EGF, PDGF and KCl, were monitored with/without multiple signalling pathway inhibitors, including AG-tyrphostins AG18 (non-specific PYKs), AG1478 (EGF-receptor kinase), AG1296 (PDGF receptor kinase), PP1 (Src kinase), U0126 and PD98059 (MEK/MAPKinase kinase), indomethacin/SC-560/NS-398 (COX-1/2) and L-NAME (NOS). Key Results AG18 inhibited the contractions induced by all the agonists except KCl, whereas U0126 attenuated contractions induced by PAR1/PAR2 agonists, EGF and angiotensin-II, but not by PGF2α, the COX-produced metabolites of arachidonate and KCl. PP1 only affected the responses to PAR1/PAR2-activating peptides and angiotensin-II. The EGF-kinase inhibitor, AG1478, attenuated contractions initiated by the PARs (PAR2 >> PAR1) and EGF itself, but not by angiotensin-II, PGF2α or KCl. COX-1/2 inhibitors blocked the contractions induced by all the agonists, except KCl and PGF2α. Conclusion and Implications PAR1/2-mediated contractions of the PCA are dependent on Src and MAPKinase and, in part, involve EGF-receptor-kinase transactivation and the generation of a COX-derived contractile agonist. However, the PYK signalling pathways used by PARs are distinct from each other and from those triggered by angiotensin-II and EGF. These signalling pathways may be therapeutic targets for managing coagulation-proteinase-induced coronary vasospasm. PMID:24506284

  5. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats

    PubMed Central

    Dalpiaz, P. L. M.; Lamas, A. Z.; Caliman, I. F.; Ribeiro, R. F.; Abreu, G. R.; Moyses, M. R.; Andrade, T. U.; Gouvea, S. A.; Alves, M. F.; Carmona, A. K.; Bissoli, N. S.

    2015-01-01

    Background There is growing interest in sex differences and RAS components. However, whether gender influences cardiac angiotensin I-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity is still unknown. In the present work, we determined the relationship between ACE and ACE2 activity, left ventricular function and gender in spontaneously hypertensive rats (SHRs). Methodology / Principal Findings Twelve-week-old female (F) and male (M) SHRs were divided into 2 experimental groups (n = 7 in each group): sham (S) and gonadectomized (G). Fifty days after gonadectomy, we measured positive and negative first derivatives (dP/dt maximum left ventricle (LV) and dP/dt minimum LV, respectively), hypertrophy (morphometric analysis) and ACE and ACE2 catalytic activity (fluorimetrically). Expression of calcium handling proteins was measured by western blot. Male rats exhibited higher cardiac ACE and ACE2 activity as well as hypertrophy compared to female rats. Orchiectomy decreased the activity of these enzymes and hypertrophy, while ovariectomy increased hypertrophy and ACE2, but did not change ACE activity. For cardiac function, the male sham group had a lower +dP/dt than the female sham group. After gonadectomy, the +dP/dt increased in males and reduced in females. The male sham group had a lower -dP/dt than the female group. After gonadectomy, the -dP/dt increased in the male and decreased in the female groups when compared to the sham group. No difference was observed among the groups in SERCA2a protein expression. Gonadectomy increased protein expression of PLB (phospholamban) and the PLB to SERCA2a ratio in female rats, but did not change in male rats. Conclusion Ovariectomy leads to increased cardiac hypertrophy, ACE2 activity, PLB expression and PLB to SERCA2a ratio, and worsening of hemodynamic variables, whereas in males the removal of testosterone has the opposite effects on RAS components. PMID:26010093

  6. Differential effect of neocuproine, a copper(I) chelator, on contractile activity in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus.

    PubMed

    Kumcu, Eda Karabal; Büyüknacar, Hacer Sinem Göktürk; Göçmen, Cemil; Evrüke, Ismail Cüneyt; Onder, Serpil

    2009-03-01

    The study was conducted to examine effects of a selective copper(I) chelator, neocuproine on the spontaneous or oxytocin-induced contractions in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus. Uterus activity was evaluated in tissues obtained from bilaterally ovariectomized non-pregnant rats on the 21st day of the operation (n = 24), pregnant rats on the 19-21st day of gestation (n = 24) and women undergoing caesarean section at 38-42 weeks of pregnancy (n = 15). Neocuproine (100 microM) significantly suppressed the amplitude and frequency of the spontaneous contractions in the ovariectomized non-pregnant rat uterus while this agent facilitated the frequency of the spontaneous or oxytocin-induced contractions in the pregnant rat and human uterus without altering the amplitude of these contractions. At high concentration of 200 microM, neocuproine could enhance the amplitude of the contractions in the pregnant uterus. These effects were blocked by a purinergic receptor antagonist, suramin (100 microM) and did not occur following the administration of neocuproine-copper(I) complex or copper(II) chelator cuprizone. alpha, beta-methylene ATP increased the amplitude and frequency of contractions in the pregnant uterus, but not affected the contractions in the ovariectomized non-pregnant rat uterus, and neocuproine potentiated this facilitation effect. However, the suppressive effect of neocuproine on the ovariectomized non-pregnant rat uterus increased in the presence of alpha,beta-methylene ATP. Beta-adrenoceptor blocker, propranolol or nitric oxide synthase inhibitor, L-nitroarginine did not affect the responses to neocuproine. These findings suggest that neocuproine can affect the uterus contractile activity by modulation purinergic excitatory responses and that copper(I)-sensitive mechanisms may play a role in this effect.

  7. Postovulatory effect of repeated intravenous administration of ACTH on the contractile activity of the oviduct, ova transport and endocrine status of recently ovulated and unrestrained sows.

    PubMed

    Mwanza, A M; Madej, A; Kindahl, H; Lundeheim, N; Einarsson, S

    2000-11-01

    The effect of repeated intravenous administration of ACTH (Synacthen depot) on the contractile activity of the oviduct, ova transport and endocrine status was studied in 11 Swedish crossbred (Landrace x Yorkshire) multiparous sows. In the second estrus after weaning, the ACTH group (Group A, n=6) sows were administered 0.01 mg/kg body weight of ACTH every 6 h commencing 4 to 8 h after ovulation, whereas the control group (Group C, n=5) sows were administered saline solution. Immediately after standing estrus, a Millar pressure transducer was placed about 3 cm into the isthmus via a laparotomy. Blood samples for hormonal analyses and pressure recordings of the oviduct were collected from all sows until slaughter. After slaughter, the genital tract opposite to the side with the transducer was retrieved, and 3 equal isthmic segments and the first third of the uterine horn portion adjacent to the UTJ were flushed separately for ova recovery. Cortisol levels were significantly (P<0.05) elevated after ACTH administration. Progesterone and PGF2alpha metabolite levels were significantly (P<0.05) elevated only after the first ACTH administration. No significant differences (P>0.05) were seen in the mean pressure and frequencies of phasic pressure fluctuations either before or after every ACTH administration between Groups A and C. No significant difference (P>0.05) was seen in the proportion of ova recovered in the different segments between Groups A and C. It can be concluded from the present study that the administration of ACTH (0.01 mg/kg body weight) to sows at 4 to 8 h after ovulation, and after each subsequent ACTH administration, elevates cortisol levels, whereas progesterone and PGF2alpha metabolite levels are elevated only after the first treatment, and that this has no effect on the mean isthmic pressure, the frequency of phasic pressure fluctuations or ova transport. PMID:11192189

  8. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine

    PubMed Central

    Telinius, Niklas; Mohanakumar, Sheyanth; Majgaard, Jens; Kim, Sukhan; Pilegaard, Hans; Pahle, Einar; Nielsen, Jørn; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs

    2014-01-01

    Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l−1 nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo. PMID:25172950

  9. Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia-reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake.

    PubMed

    Pyla, Rajkumar; Pichavaram, Prahalathan; Fairaq, Arwa; Park, Mary Anne; Kozak, Mark; Kamath, Vinayak; Patel, Vijay S; Segar, Lakshman

    2015-09-01

    Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

  10. Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia-reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake

    PubMed Central

    Pyla, Rajkumar; Pichavaram, Prahalathan; Fairaq, Arwa; Park, Mary Anne; Kozak, Mark; Kamath, Vinayak; Patel, Vijay S.; Segar, Lakshman

    2015-01-01

    Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ~80% (from ~1.78 μmol/g under normoxia to ~0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (~6-fold ↑) and 5-HT-induced AMPK phosphorylation (~19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (~68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease. PMID:26212549

  11. Elastomeric contractile actuators for hand rehabilitation splints

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  12. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  13. Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium.

    PubMed

    Canan, Benjamin D; Haizlip, Kaylan M; Xu, Ying; Monasky, Michelle M; Hiranandani, Nitisha; Milani-Nejad, Nima; Varian, Kenneth D; Slabaugh, Jessica L; Schultz, Eric J; Fedorov, Vadim V; Billman, George E; Janssen, Paul M L

    2016-04-15

    It is well known that moderate exercise training elicits a small increase in ventricular mass (i.e., a physiological hypertrophy) that has many beneficial effects on overall cardiac health. It is also well known that, when a myocardial infarction damages part of the heart, the remaining myocardium remodels to compensate for the loss of viable functioning myocardium. The effects of exercise training, myocardial infarction (MI), and their interaction on the contractile performance of the myocardium itself remain largely to be determined. The present study investigated the contractile properties and kinetics of right ventricular myocardium isolated from sedentary and exercise trained (10-12 wk progressively increasing treadmill running, begun 4 wk after MI induction) dogs with and without a left ventricular myocardial infarction. Exercise training increased force development, whereas MI decreased force development that was not improved by exercise training. Contractile kinetics were significantly slower in the trained dogs, whereas this impact of training was less or no longer present after MI. Length-dependent activation, both evaluated on contractile force and kinetics, was similar in all four groups. The control exercise-trained group exhibited a more positive force-frequency relationship compared with the sedentary control group while both sedentary and trained post-MI dogs had a more negative relationship. Last, the impact of the β-adrenergic receptor agonist isoproterenol resulted in a similar increase in force and acceleration of contractile kinetics in all groups. Thus, exercise training increased developed force but slowed contractile kinetics in control (noninfarcted animals), actions that were attenuated or completely absent in post-MI dogs.

  14. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro.

    PubMed

    Capulli, Andrew K; MacQueen, Luke A; O'Connor, Blakely B; Dauth, Stephanie; Parker, Kevin Kit

    2016-01-01

    Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD. PMID:27174867

  15. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  16. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling.

    PubMed

    Cittadini, A; Monti, M G; Iaccarino, G; Di Rella, F; Tsichlis, P N; Di Gianni, A; Strömer, H; Sorriento, D; Peschle, C; Trimarco, B; Saccà, L; Condorelli, G

    2006-01-01

    The serine-threonine kinase Akt/PKB mediates stimuli from different classes of cardiomyocyte receptors, including the growth hormone/insulin like growth factor and the beta-adrenergic receptors. Whereas the growth-promoting and antiapoptotic properties of Akt activation are well established, little is known about the effects of Akt on myocardial contractility, intracellular calcium (Ca(2+)) handling, oxygen consumption, and beta-adrenergic pathway. To this aim, Sprague-Dawley rats were subjected to a wild-type Akt in vivo adenoviral gene transfer using a catheter-based technique combined with aortopulmonary crossclamping. Left ventricular (LV) contractility and intracellular Ca(2+) handling were evaluated in an isolated isovolumic buffer-perfused, aequorin-loaded whole heart preparations 10 days after the surgery. The Ca(2+)-force relationship was obtained under steady-state conditions in tetanized muscles. No significant hypertrophy was detected in adenovirus with wild-type Akt (Ad.Akt) versus controls rats (LV-to-body weight ratio 2.6+/-0.2 versus 2.7+/-0.1 mg/g, controls versus Ad.Akt, P, NS). LV contractility, measured as developed pressure, increased by 41% in Ad.Akt. This was accounted for by both more systolic Ca(2+) available to the contractile machinery (+19% versus controls) and by enhanced myofilament Ca(2+) responsiveness, documented by an increased maximal Ca(2+)-activated pressure (+19% versus controls) and a shift to the left of the Ca(2+)-force relationship. Such increased contractility was paralleled by a slight increase of myocardial oxygen consumption (14%), while titrated dose of dobutamine providing similar inotropic effect augmented oxygen consumption by 39% (P<0.01). Phospholamban, calsequestrin, and ryanodine receptor LV mRNA and protein content were not different among the study groups, while sarcoplasmic reticulum Ca(2+) ATPase protein levels were significantly increased in Ad.Akt rats. beta-Adrenergic receptor density, affinity, kinase-1

  17. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  18. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  19. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  20. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  1. Mechanisms of impaired gallbladder contractile response in chronic acalculous cholecystitis.

    PubMed

    Merg, Anders R; Kalinowski, Scott E; Hinkhouse, Marilyn M; Mitros, Frank A; Ephgrave, Kimberly S; Cullen, Joseph J

    2002-01-01

    The mechanisms involved in the impaired gallbladder contractile response in chronic acalculous cholecystitis are unknown. To determine the mechanisms that may lead to impaired gallbladder emptying in chronic acalculous cholecystitis, gallbladder specimens removed during hepatic resection (controls) and after cholecystectomy for chronic acalculous cholecystitis were attached to force transducers and placed in tissue baths with oxygenated Krebs solution. Electrical field stimulation (EFS) (1 to 10 Hz, 0.1 msec, 70 V) or the contractile agonists, CCK-8 (10(-9) to 10(-5)) or K(+) (80 mmol/L), were placed separately in the tissue baths and changes in tension were determined. Patients with chronic acalculous cholecystitis had a mean gallbladder ejection fraction of 12% +/- 4%. Pathologic examination of all gallbladders removed for chronic acalculous cholecystitis revealed chronic cholecystitis. Spontaneous contractile activity was present in gallbladder strips in 83% of control specimens but only 29% of gallbladder strips from patients with chronic acalculous cholecystitis (P < 0.05 vs. controls). CCK-8 contractions were decreased by 54% and EFS-stimulated contractions were decreased by 50% in the presence of chronic acalculous cholecystitis (P < 0.05 vs. controls). K(+)-induced contractions were similar between control and chronic acalculous cholecystitis gallbladder strips. The impaired gallbladder emptying in chronic acalculous cholecystitis appears to be due to diminished spontaneous contractile activity and decreased contractile responsiveness to both CCK and EFS.

  2. Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle.

    PubMed

    Chaze, T; Meunier, B; Chambon, C; Jurie, C; Picard, B

    2009-07-01

    Contractile and metabolic properties of bovine muscles play an important role in meat sensorial quality, particularly tenderness. Earlier studies based on Myosin heavy chain isoforms analyses and measurements of glycolytic and oxidative enzyme activities have demonstrated that the third trimester of foetal life in bovine is characterized by contractile and metabolic differentiation. In order to complete this data and to obtain a precise view of this phase and its regulation, we performed a proteomic analysis of Semitendinosus muscle from Charolais foetuses analysed at three stages of the third trimester of gestation (180, 210 and 260 days). The results complete the knowledge of important changes in the profiles of proteins from metabolic and contractile pathways. They provide new insights about proteins such as Aldehyde dehydrogenase family, Enolase, Dihydrolipoyl dehydrogenase, Troponin T or Myosin light chains isoforms. These data have agronomical applications not only for the management of beef sensorial quality but also in medical context, as bovine myogenesis appears very similar to human one. PMID:22444818

  3. Property Blocks: Games and Activities.

    ERIC Educational Resources Information Center

    Humphreys, Alan, Ed.; Dailey, Jean, Ed.

    This pamphlet describes the property blocks produced by MINNEMAST, and discusses their use in the development of thinking processes. Classification systems, including block diagrams and tree diagrams, are discussed. Sixteen classroom activities and eleven games which use the blocks are described. Suggestions to the teacher for further reading are…

  4. Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure.

    PubMed

    Coggan, Andrew R; Peterson, Linda R

    2016-08-01

    Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem. PMID:27271563

  5. Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles

    PubMed Central

    Park, Ki Ho; Brotto, Leticia; Lehoang, Oanh; Brotto, Marco; Ma, Jianjie; Zhao, Xiaoli

    2012-01-01

    Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle. PMID:23149471

  6. Spontaneous contractility of human placental vessels in vitro axipetal and isometric recording.

    PubMed

    Gonzalez Panizza, V H; Benedetti, W L; Alvarez, H

    1980-01-01

    In vitro contractility of isolated cylindrical segments of chorial arteries and veins from 40 human term placentas was studied. Contractility was recorded by an isometrical and axipetal method. Spontaneous contractility was observed in 75% of the arteries and in 45% of veins. In both types of vessels, contractility was similar and characterized by development of tonic circumferential tension, between 100 and 200 mg/mm. Clonic activity consisting of rhythmic contractions with an average frequency between 0.7 and 0.9/min and an average intensity of 5--40 mg/min was superimposed. Vasoconstrictor drugs (PGF2 alpha, histamine and adrenaline) increase tonic tension without modifying the frequency of clonic activity. It is suggested that spontaneous contractility may be the expression of myogenic excitability related to the regulation of fetal placental blood flow.

  7. Cardiac-Specific Overexpression of Metallothionein Rescues against Cigarette Smoking Exposure-Induced Myocardial Contractile and Mitochondrial Damage

    PubMed Central

    Hu, Nan; Han, Xuefeng; Lane, Erin K.; Gao, Feng; Zhang, Yingmei; Ren, Jun

    2013-01-01

    Objectives Second hand cigarette smoke is an independent risk factor for cardiovascular disease. Although a tie between smoking and cardiovascular disease is well established, the underlying mechanisms still remains elusive due to the lack of adequate animal models. This study was designed to use a mouse model of exposure to cigarette smoke, a surrogate of environmental tobacco smoke, to evaluate the impact of cardiac overexpression of heavy metal scavenger metallothionein on myocardial geometry, contractile and intracellular Ca2+ properties and apoptosis following side-stream smoke exposure. Methods Adult male wild-type FVB and metallothionein transgenic mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties, fibrosis, apoptosis and mitochondrial damage were examined. Results Our data revealed that smoke exposure enlarged ventricular end systolic and diastolic diameters, reduced myocardial and cardiomyocyte contractile function, disrupted intracellular Ca2+ homeostasis, facilitated fibrosis, apoptosis and mitochondrial damage (cytochrome C release and aconitase activity), the effects of which were attenuated or mitigated by metallothionein. In addition, side-stream smoke expose enhanced phosphorylation of Akt and GSK3β without affecting pan protein expression in the heart, the effect of which was abolished or ameliorated by metallothionein. Cigarette smoke extract interrupted cardiomyocyte contractile function and intracellular Ca2+ properties, the effect of which was mitigated by wortmannin and NAC. Conclusions These data suggest that side-stream smoke exposure led to myocardial dysfunction, intracellular Ca2+ mishandling, apoptosis, fibrosis and mitochondrial damage, indicating the therapeutic potential of antioxidant against in second smoking-induced cardiac defects possibly via mitochondrial damage and apoptosis. PMID:23431404

  8. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury.

  9. Implementing cell contractility in filament-based cytoskeletal models.

    PubMed

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well. PMID:26899417

  10. Cortical actin regulation modulates vascular contractility and compliance in veins

    PubMed Central

    Saphirstein, Robert J; Gao, Yuan Z; Lin, Qian Qian; Morgan, Kathleen G

    2015-01-01

    Abstract The literature on arterial mechanics is extensive, but far less is known about mechanisms controlling mechanical properties of veins. We use here a multi-scale approach to identify subcellular sources of venous stiffness. Portal vein tissue displays a severalfold decrease in passive stiffness compared to aortic tissues. The α-adrenergic agonist phenylephrine (PE) increased tissue stress and stiffness, both attenuated by cytochalasin D (CytoD) and PP2, inhibitors of actin polymerization and Src activity, respectively. We quantify, for the first time, cortical cellular stiffness in freshly isolated contractile vascular smooth muscle cells using magnetic microneedle technology. Cortical stiffness is significantly increased by PE and CytoD inhibits this increase but, surprisingly, PP2 does not. No detectable change in focal adhesion size, measured by immunofluorescence of FAK and zyxin, accompanies the PE-induced changes in cortical stiffness. Probing with phospho-specific antibodies confirmed activation of FAK/Src and ERK pathways and caldesmon phosphorylation. Thus, venous tissue stiffness is regulated both at the level of the smooth muscle cell cortex, via cortical actin polymerization, and by downstream smooth muscle effectors of Src/ERK signalling pathways. These findings identify novel potential molecular targets for the modulation of venous capacitance and venous return in health and disease. Key points Most cardiovascular research focuses on arterial mechanisms of disease, largely ignoring venous mechanisms. Here we examine ex vivo venous stiffness, spanning tissue to molecular levels, using biomechanics and magnetic microneedle technology, and show for the first time that venous stiffness is regulated by a molecular actin switch within the vascular smooth muscle cell in the wall of the vein. This switch connects the contractile apparatus within the cell to adhesion structures and facilitates stiffening of the vessel wall, regulating blood flow return

  11. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  12. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  13. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function

    PubMed Central

    Simard, Elie; Söllradl, Thomas; Maltais, Jean-Sébastien; Boucher, Julie; D’Orléans-Juste, Pédro; Grandbois, Michel

    2015-01-01

    Increased blood glucose concentrations promote reactions between glucose and proteins to form advanced glycation end-products (AGE). Circulating AGE in the blood plasma can activate the receptor for advanced end-products (RAGE), which is present on both endothelial and vascular smooth muscle cells (VSMC). RAGE exhibits a complex signaling that involves small G-proteins and mitogen activated protein kinases (MAPK), which lead to increased nuclear factor kappa B (NF-κB) activity. While RAGE signaling has been previously addressed in endothelial cells, little is known regarding its impact on the function of VSMC. Therefore, we hypothesized that RAGE signaling leads to alterations in the mechanical and functional properties of VSMC, which could contribute to complications associated with diabetes. We demonstrated that RAGE is expressed and functional in the A7r5 VSMC model, and its activation by AGE significantly increased NF-κB activity, which is known to interfere with the contractile phenotype of VSMC. The protein levels of the contraction-related transcription factor myocardin were also decreased by RAGE activation with a concomitant decrease in the mRNA and protein levels of transgelin (SM-22α), a regulator of VSMC contraction. Interestingly, we demonstrated that RAGE activation increased the overall cell rigidity, an effect that can be related to an increase in myosin activity. Finally, although RAGE stimulation amplified calcium signaling and slightly myosin activity in VSMC challenged with vasopressin, their contractile capacity was negatively affected. Overall, RAGE activation in VSMC could represent a keystone in the development of vascular diseases associated with diabetes by interfering with the contractile phenotype of VSMC through the modification of their mechanical and functional properties. PMID:26248341

  14. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function.

    PubMed

    Simard, Elie; Söllradl, Thomas; Maltais, Jean-Sébastien; Boucher, Julie; D'Orléans-Juste, Pédro; Grandbois, Michel

    2015-01-01

    Increased blood glucose concentrations promote reactions between glucose and proteins to form advanced glycation end-products (AGE). Circulating AGE in the blood plasma can activate the receptor for advanced end-products (RAGE), which is present on both endothelial and vascular smooth muscle cells (VSMC). RAGE exhibits a complex signaling that involves small G-proteins and mitogen activated protein kinases (MAPK), which lead to increased nuclear factor kappa B (NF-κB) activity. While RAGE signaling has been previously addressed in endothelial cells, little is known regarding its impact on the function of VSMC. Therefore, we hypothesized that RAGE signaling leads to alterations in the mechanical and functional properties of VSMC, which could contribute to complications associated with diabetes. We demonstrated that RAGE is expressed and functional in the A7r5 VSMC model, and its activation by AGE significantly increased NF-κB activity, which is known to interfere with the contractile phenotype of VSMC. The protein levels of the contraction-related transcription factor myocardin were also decreased by RAGE activation with a concomitant decrease in the mRNA and protein levels of transgelin (SM-22α), a regulator of VSMC contraction. Interestingly, we demonstrated that RAGE activation increased the overall cell rigidity, an effect that can be related to an increase in myosin activity. Finally, although RAGE stimulation amplified calcium signaling and slightly myosin activity in VSMC challenged with vasopressin, their contractile capacity was negatively affected. Overall, RAGE activation in VSMC could represent a keystone in the development of vascular diseases associated with diabetes by interfering with the contractile phenotype of VSMC through the modification of their mechanical and functional properties.

  15. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity.

    PubMed

    Svalø, Julie; Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik; Korstanje, Cees; Bouchelouche, Pierre

    2013-01-15

    β(3)-Adrenoceptors are major players in detrusor relaxation and have been suggested as a new putative target for the treatment of overactive bladder syndrome. We determined the effects of mirabegron (YM178), a novel β(3)-adrenoceptor agonist, on carbachol-induced tone in isolated human detrusor preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced carbachol-induced tone in tissues from all groups. Isoprenaline decreased tension with higher potency than mirabegron in normal, BOO and BOO+DO detrusor strips with pIC(50) values of 7.49 ± 0.16 vs. 6.23 ± 0.26 (P=0.0002), 6.89 ± 0.34 vs. 6.04 ± 0.31 (P=0.01), and 6.57 ± 0.20 vs. 5.41 ± 0.08 (P<0.0001, n=4), respectively. The maximal relaxant effect of isoprenaline and mirabegron in the normal, BOO and BOO+DO detrusor was 37.7 ± 14.4% and 36.1 ± 23.3%, 14.4 ± 12.2% vs. 33.4 ± 21.0% and 18.3 ± 10.0% vs. 28.3 ± 12.2% (n=4, P>0.05), respectively. Mirabegron and isoprenaline reduced carbachol-induced tone in both normal bladders and obstructed bladder with and without DO. Isoprenaline had higher potency than mirabegron, but the efficacy of mirabegron effect was the same as that of isoprenaline. PMID:23246623

  16. Cellular membranes that undergo cyclic changes in tension: Direct measurement of force generation by an in vitro contractile vacuole of Paramecium multimicronucleatum.

    PubMed

    Tani, T; Allen, R D; Naitoh, Y

    2001-02-01

    The contractile vacuole of the fresh water protozoan Paramecium is a membrane-bound vesicle that expels excess cytosolic water, acquired osmotically, through its periodic exocytotic activity. The in vitro contractile vacuole, isolated in a small amount of cytosol from the Paramecium cell and confined under mineral oil, showed periodic rounding and slackening at regular intervals for an extended time. The contractile vacuole rounded against the cytosol-mineral oil boundary tension. The tension at the surface of the contractile vacuole is, therefore, assumed to increase during the rounding phase. We first estimated the tension relative to the boundary tension from the degree of compression of the contractile vacuole by the boundary. We then determined the absolute value for the tension at the surface of the contractile vacuole from the degree of bending of an elastic carbon fiber microcantilever (8 microm thick; 2 mm long), whose free end was placed at the surface of an in vitro contractile vacuole. The tension was found to increase to its maximum value of approximately 5 mN m(-)(1) when the contractile vacuole rounded. This value was more than 35 times higher than that for the slackened contractile vacuole. Electron micrographs of conventional thin sections of chemically fixed in vitro contractile vacuoles as well as those of in vivo contractile vacuoles obtained from rapid frozen and cryosubstituted cells revealed the lack of any ultrastructural evidence for the presence of a fibrous network system surrounding the contractile vacuole. Thus we conclude that the mechanism(s) by which tension is developed at the surface of the contractile vacuole membrane resides in the contractile vacuole membrane itself. We propose a hypothesis that periodic changes in the spontaneous curvature of the contractile vacuole's lipid bilayer membrane is involved in the periodic development of higher contractile vacuole membrane tension. The isolated CV promises to be an excellent model

  17. Role of L-type Ca(2+) channels, sarcoplasmic reticulum and Rho kinase in rat basilar artery contractile properties in a new model of subarachnoid hemorrhage.

    PubMed

    Egea-Guerrero, Juan José; Murillo-Cabezas, Francisco; Muñoz-Sánchez, María Ángeles; Vilches-Arenas, Angel; Porras-González, Cristina; Castellano, Antonio; Ureña, Juan; González-Montelongo, María del Carmen

    2015-09-01

    We have previously described that L-type Ca(2+) channels' (LTCCs) activation and metabotropic Ca(2+) release from the sarcoplasmic reticulum (SR) regulate RhoA/Rho kinase (ROCK) activity and sustained arterial contraction. We have investigated whether this signaling pathway can be altered in a new experimental model of subarachnoid hemorrhage (SAH). For this purpose, arterial reactivity was evaluated on days 1 to 5 after surgery. A significant increase of basal tone, measured 4 and 60min after normalization, was observed on day 5 after SAH and at 60min on days 2 and 3 after SAH. This phenomenon was suppressed with LTCCs and ROCK inhibitors. We have also studied arterial rings vasoreactivity in response to high K(+) solutions. Interestingly, there were no significant differences in the phasic component of the high K(+)-induced contraction between sham and SAH groups, whereas a significant increase in the sustained contraction was observed on day 5 after SAH. This latter component was sensitive to fasudil, and selectively reduced by low nifedipine concentration, and phospholipase C and SR-ATPase inhibitors. Therefore, our data suggest that the metabotropic function of LTCCs is potentiated in SAH. Our results could provide a new strategy to optimize the pharmacological treatment of this pathological process.

  18. Sperm flagella: autonomous oscillations of the contractile system.

    PubMed

    Lindemann, C B; Rikmenspoel, R

    1972-01-21

    Bull sperm are deactivated, losing all motility, when they are impaled or dissected with a microprobe. Loss of activity is due to the creation of a hole or break in the cell membrane. Uncoordinated contractile activity is retained if external adenosine triphosphate and adenosine diphosphate are present. When these substances are in the medium, coordinated wave motion can be initiated in impaled or dissected sperm by bending a segment of the flagellum.

  19. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts

    PubMed Central

    Grubb, David R.; McMullen, Julie R.; Woodcock, Elizabeth A.

    2016-01-01

    Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCβ1a caused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function. PMID:27359099

  20. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    PubMed Central

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-01-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. PMID:27558758

  1. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ian; Banerjee, Shiladitya; Oakes, Patrick W.; Jung, Wonyeong; Kim, Taeyoon; Murrell, Michael P.

    2016-08-01

    While the molecular interactions between individual myosin motors and F-actin are well established, the relationship between F-actin organization and actomyosin forces remains poorly understood. Here we explore the accumulation of myosin-induced stresses within a two-dimensional biomimetic model of the disordered actomyosin cytoskeleton, where myosin activity is controlled spatiotemporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actin networks is highly cooperative, telescopic with the activation size, and capable of generating non-uniform patterns of mechanical stress. We quantitatively reproduce these collective biomimetic properties using an isotropic active gel model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations.

  2. Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    NASA Technical Reports Server (NTRS)

    Pruss, G. M.; Kuznetsov, V. I.; Zhilinskaya, A. A.

    1980-01-01

    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia.

  3. Contractile forces in tumor cell migration.

    PubMed

    Mierke, Claudia Tanja; Rösel, Daniel; Fabry, Ben; Brábek, Jan

    2008-09-01

    Cancer is a deadly disease primarily because of the ability of tumor cells to spread from the primary tumor, to invade into the connective tissue, and to form metastases at distant sites. In contrast to cell migration on a planar surface where large cell tractions and contractile forces are not essential, tractions and forces are thought to be crucial for overcoming the resistance and steric hindrance of a dense three-dimensional connective tissue matrix. In this review, we describe recently developed biophysical tools, including 2-D and 3-D traction microscopy to measure contractile forces of cells. We discuss evidence indicating that tumor cell invasiveness is associated with increased contractile force generation.

  4. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility

    PubMed Central

    Ng, Mei Rosa; Besser, Achim

    2012-01-01

    The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067

  5. [Ventricular contractility: Physiology and clinical projection].

    PubMed

    Domenech, Raúl J; Parra, Víctor M

    2016-06-01

    The contractile state of the heart is the result of myocardial contractility, the intrinsic mechanism that regulates the force and the shortening of the ventricle and determines the ventricular ejection volume. However, the ejection volume is also modulated by ventricular preload (diastolic ventricular volume) and afterload (resistance to ejection). Accordingly, a decrease in contractility may be masked by changes in preload or afterload, maintaining a normal ejection volume and delaying the diagnosis of myocardial damage. Thus, it is necessary to develop a non-invasive method to measure contractility in the clinical practice. We review in this article the basic principles of cardiac contraction, the concept of contractility and its measurement with the ventricular pressure-volume loop, an experimental method that also measures most of the hemodynamic variables of the cardiac cycle including preload, afterload, ventricular work, ventricular lusitropy and arterial elastance. This method has been recently validated in cardiac patients and allows to evaluate the evolution of contractility in heart failure in a non invasive way. Although some modifications are still necessary, it will probably have an extensive use in practical cardiology in the near future. PMID:27598497

  6. Effect of hypokinesia on contractile function of cardiac muscle

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Trikhpoyeva, A. M.; Gorina, M. S.

    1980-01-01

    Rats were subjected to hypokinesia for two months and the contractile function of isolated papillary muscle was studied. Hypokinesia reduced significantly the isotonic contraction rate which depended on the ATPase activity of the myofibrils; it also reduced the rate and index of relaxation which depended on the functional capacity of the Ca(++) pump of the sarcoplasmic reticulum. The maximum force of isometric contraction determined by the quantity of actomyosin bridges in the myofibrils did not change after hypokinesia. This complex of changes is contrary to that observed in adaptation to exercise when the rate of isotonic contraction and relaxation increases while the force of isometric contraction does not change. The possible mechanism of this stability of the contractile force during adaptation and readaptation of the heart is discussed.

  7. Whole cell mechanics of contractile fibroblasts: relations between effective cellular and extracellular matrix moduli

    PubMed Central

    Marquez, J. Pablo; Elson, Elliot L.; Genin, Guy M.

    2010-01-01

    While much is known about the subcellular structures responsible for the mechanical functioning of a contractile fibroblast, debate exists about how these components combine to endow a cell with its form and mechanical function. We present an analysis of mechanical characterization experiments performed on bio-artificial tissue constructs, which we believe serve as a more realistic testing environment than two-dimensional cell culture. These model tissues capture many features of real tissues with the advantage that they can be engineered to model different physiological and pathological characteristics. We study here a model tissue consisting of reconstituted type I collagen and varying concentrations of activated contractile fibroblasts that is relevant to modelling different stages of wound healing. We applied this system to assess how cell and extracellular matrix (ECM) mechanics vary with cell concentration. Short-term and long-term moduli of the ECM were estimated through analytical and numerical analysis of two-phase elastic solids containing cell-shaped voids. The relative properties of cells were then deduced from the results of numerical analyses of two-phase elastic solids containing mechanically isotropic cells of varying modulus. With increasing cell concentration, the short-term and long-term tangent moduli of the reconstituted collagen ECM increased sharply from a baseline value, while those of the cells decreased monotonically. PMID:20047943

  8. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation.

    PubMed Central

    Schunkert, H; Dzau, V J; Tang, S S; Hirsch, A T; Apstein, C S; Lorell, B H

    1990-01-01

    We compared the activity and physiologic effects of cardiac angiotensin converting enzyme (ACE) using isovolumic hearts from male Wistar rats with left ventricular hypertrophy due to chronic experimental aortic stenosis and from control rats. In response to the infusion of 3.5 X 10(-8) M angiotensin I in the isolated buffer perfused beating hearts, the intracardiac fractional conversion to angiotensin II was higher in the hypertrophied hearts compared with the controls (17.3 +/- 4.1% vs 6.8 +/- 1.3%, P less than 0.01). ACE activity was also significantly increased in the free wall, septum, and apex of the hypertrophied left ventricle, whereas ACE activity from the nonhypertrophied right ventricle of the aortic stenosis rats was not different from that of the control rats. Northern blot analyses of poly(A)+ purified RNA demonstrated the expression of ACE mRNA, which was increased fourfold in left ventricular tissue obtained from the hearts with left ventricular hypertrophy compared with the controls. In both groups, the intracardiac conversion of angiotensin I to angiotensin II caused a comparable dose-dependent increase in coronary resistance. In the control hearts, angiotensin II activation had no significant effect on systolic or diastolic function; however, it was associated with a dose-dependent depression of left ventricular diastolic relaxation in the hypertrophied hearts. These novel observations suggest that cardiac ACE is induced in hearts with left ventricular hypertrophy, and that the resultant intracardiac activation of angiotensin II may have differential effects on myocardial relaxation in hypertrophied hearts relative to controls. Images PMID:2174912

  9. Effect of hydrogen peroxide on contractility and citrate synthase activity of the rabbit urinary bladder in the presence and absence of resveratrol and a whole-grape suspension.

    PubMed

    Francis, Johdi-Ann; Leggett, Robert E; Schuler, Catherine; Levin, Robert M

    2014-06-01

    One etiology related directly to obstructive urinary bladder dysfunction is ischemia/reperfusion resulting in significant oxidative stress to the bladder. Grapes, a natural source of antioxidants, have been proven effective in preventing obstructive and ischemic bladder dysfunction. Many investigators believe that resveratrol is the primary active antioxidant ingredient in grapes. We compared the ability of a whole-grape suspension with pure resveratrol in their ability to protect the bladder from in vitro oxidative stress mediated by hydrogen peroxide (H2O2). Four male rabbit bladders were used. Two strips from each bladder were incubated in the presence of 1 mg/mL grape suspension for 30 min, another two strips were incubated in the presence of 1 mg/mL resveratrol solution, and the last two strips were incubated in the presence of 1 mg/mL sucrose/and fructose as controls. The rest of the bladder was separated into muscle and mucosa, frozen and stored for biochemical evaluation. (1) Chemically, resveratrol has about 20 times the antioxidant capacity of the grape suspension. (2) The grape suspension had significant protective effects when the rate of tension was quantitated at all concentrations of H2O2, while the resveratrol had no effect. (3) Citrate synthase activities of the muscle and mucosa were significantly protected by the grape suspension but not by resveratrol. These data demonstrate that the grape suspension protects the mitochondria to a significantly greater degree than resveratrol, which suggests that the antioxidant activities are due to the combination of active components found in the grape suspension and not just resveratrol.

  10. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-02-19

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  11. Activated T Cell Trans-Endothelial Migration Relies on Myosin-IIA Contractility for Squeezing the Cell Nucleus through Endothelial Cell Barriers

    PubMed Central

    Jacobelli, Jordan; Estin Matthews, Miriam; Chen, Stephanie; Krummel, Matthew F.

    2013-01-01

    Following activation, T cells are released from lymph nodes to traffic via the blood to effector sites. The re-entry of these activated T cells into tissues represents a critical step for them to carry out local effector functions. Here we have assessed defects in effector T cells that are acutely depleted in Myosin-IIA (MyoIIA) and show a T cell intrinsic requirement for this motor to facilitate the diapedesis step of extravasation. We show that MyoIIA accumulates at the rear of T cells undergoing trans-endothelial migration. T cells can extend protrusions and project a substantial portion of their cytoplasm through the endothelial wall in the absence of MyoIIA. However, this motor protein plays a crucial role in allowing T cells to complete the movement of their relatively rigid nucleus through the endothelial junctions. In vivo, this defect manifests as poor entry into lymph nodes, tumors and into the spinal cord, during tissue-specific autoimmunity, but not the spleen. This suggests that therapeutic targeting of this molecule may allow for differential attenuation of tissue-specific inflammatory responses. PMID:24069389

  12. Measurement of cytosolic Ca2+ in isolated contractile lymphatics.

    PubMed

    Souza-Smith, Flavia M; Kurtz, Kristine M; Breslin, Jerome W

    2011-01-01

    Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed. Contraction of smooth muscle is generally regulated by the cytosolic Ca(2+) concentration ([Ca(2+)](i)) plus sensitivity to Ca(2+) of the contractile elements in response to changes in the environment surrounding the cell. [Ca(2+)](i) is determined by the combination of the movement of Ca(2+) through plasma membrane ligand or voltage gated Ca(2+) channels and the release and uptake of Ca(2+) from internal stores. Cytosolic Ca(2+) binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction. However, the sensitivity of this pathway to Ca(2+) can be regulated by the MLC phosphatase (MLCP). MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17. Here, we present a method to evaluate changes in [Ca(2+)](i

  13. Dimethyl sulphoxide enhances the effects of P(i) in myofibrils and inhibits the activity of rabbit skeletal muscle contractile proteins.

    PubMed Central

    Mariano, A C; Alexandre, G M; Silva, L C; Romeiro, A; Cameron, L C; Chen, Y; Chase, P B; Sorenson, M M

    2001-01-01

    In the catalytic cycle of skeletal muscle, myosin alternates between strongly and weakly bound cross-bridges, with the latter contributing little to sustained tension. Here we describe the action of DMSO, an organic solvent that appears to increase the population of weakly bound cross-bridges that accumulate after the binding of ATP, but before P(i) release. DMSO (5-30%, v/v) reversibly inhibits tension and ATP hydrolysis in vertebrate skeletal muscle myofibrils, and decreases the speed of unregulated F-actin in an in vitro motility assay with heavy meromyosin. In solution, controls for enzyme activity and intrinsic tryptophan fluorescence of myosin subfragment 1 (S1) in the presence of different cations indicate that structural changes attributable to DMSO are small and reversible, and do not involve unfolding. Since DMSO depresses S1 and acto-S1 MgATPase activities in the same proportions, without altering acto-S1 affinity, the principal DMSO target apparently lies within the catalytic cycle rather than with actin-myosin binding. Inhibition by DMSO in myofibrils is the same in the presence or the absence of Ca(2+) and regulatory proteins, in contrast with the effects of ethylene glycol, and the Ca(2+) sensitivity of isometric tension is slightly decreased by DMSO. The apparent affinity for P(i) is enhanced markedly by DMSO (and to a lesser extent by ethylene glycol) in skinned fibres, suggesting that DMSO stabilizes cross-bridges that have ADP.P(i) or ATP bound to them. PMID:11535124

  14. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  15. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  16. Regional myocardial contractile function: multiparametric strain mapping.

    PubMed

    Cupps, Brian P; Taggar, Ajay K; Reynolds, Lina M; Lawton, Jennifer S; Pasque, Michael K

    2010-06-01

    Magnetic resonance imaging (MRI) with tissue tagging enables the quantification of multiple strain indices that can be combined through normalization into a single multiparametric index of regional myocardial contractile function. The aim of this study was to test the ability of multiparametric strain analysis to quantify regional differences in contractile function in an ovine model of myocardial injury. Regional variance in myocardial contractile function was induced in eight sheep by the ligation of the blood supply to the anterior and apical left ventricular (LV) myocardial walls. LV systolic strain was obtained from tissue tagged MRI images. A normal strain database (n=50) defines all parameters of systolic strain and allows normalization of regional function at 15,300 LV points by calculation of a z-score. Multiparametric systolic strain z-scores were therefore determined for 15,300 points in each injured sheep left ventricle. Multiparametric z-scores were found to vary significantly by region (P<0.001). z-Scores in regions remote to the infarct were found to be significantly smaller than those in the regions most likely to include infarcted myocardium. In this pre-clinical evaluation of MRI-based multiparametric strain analysis, it accurately quantified and visually defined regional differences in myocardial contractile function.

  17. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  18. Platelet contractile proteins: separation and characterization of the actin and myosin-like components.

    PubMed

    Cove, D H; Crawford, N

    1975-01-01

    Solution of thrombosthenin, the contractile protein complex isolated from pig platelets, have been studied by analytical ultracentrifugation and zone sedimentation in sucrose density gradients. Freshly prepared thrombosthenin in 0.6 M KCl shows a prominent peak in the ultracentrifuge with S degrees 20w about 5.5 and higher molecular weight aggregates (greater than 100S) sedimenting quickly to the bottom of the cell. Short term storage of high ionic strength solutions of thrombosthenin induces actomyosin-like gel formation and these gels dissociate with ATP and Mg2+ ions into two components of S degrees 20w 8.0 and S degrees 20w50. The supernatant, after actomyosin gel removal, contains only the S degrees 20w5.5 protein. From results of Ca2+ ATPase activity measurements and SDS polyacrylamide gel electrophoretic mobilities of dissociated thrombosthenin separated into fractions in sucrose density gradients, it is concluded that the S degrees20w5.5 protein species is the myosin-like protein of thrombosthenin. The S degrees 20w8.0 protein is not fibrinogen but also has myosin-like properties and is believed to be myosin dimer. Species of higher S values seen in the presence of ATP and Mg2+ in the analytical ultracentrifuge and located in the higher density zones of the sucrose gradients all gave in SDS polyacrylamide gel electrophoresis a single band of molecular weight 46-47,000 daltons. These subunit proteins appear to be derived from a range of polymeric variants of the F-actin-like protein of the contractile complex. All these higher density F-actin-like proteins readily form superprecipitates and display syneresis when combined with rabbit skeletal muscle myosin or platelet myosin. They are also all capable of conferring upon these two myosins a Mg2+ activated ATPase activity. It is suggested that in thrombosthenin solutions a myosin monomer-dimer equilibrium state exists which can be directionally influenced by a number of factors. The coexistence in the solution

  19. Postovulatory effect of intravenous administration of lipopolysaccharide (E. coli, O55:B5) on the contractile activity of the oviduct, ova transport, binding of accessory spermatozoa to the zona pellucida and embryo development in sows.

    PubMed

    Mwanza, A M; Rodríguez-Martínez, H; Kindahl, H; Einarsson, S

    2002-10-01

    The effect of lipopolysaccharide (LPS) (E. coli, O55:B5), administered 18 h after ovulation in the second oestrus after weaning, on the contractile activity of the oviduct, ova transport, sperm binding to zona pellucida (ZP) and embryo development, was studied in 14 Swedish crossbred (Landrace Yorkshire) multiparous sows. The endotoxin group (E-group) sows were administered with 300 ng/kg of LPS while the control group (C-group) sows were administered with 5 ml of saline i.v. via an indwelling jugular cannula. Immediately after evidence of standing oestrus, a Millar pressure transducer was placed intraluminally about 3 cm into the mid-isthmus, via laparotomy. Pressure recordings of the oviduct were collected from all conscious sows until slaughter. After slaughter, the genital tract opposite to the side with the transducer was retrieved, and three equal isthmic segments and the first third of the uterine horn part adjacent to the utero-tubal-junction (UTJ) were flushed separately to recover the ova. The intervals (mean+/-SD) from ovulation to slaughter (OS) and insemination to ovulation (IO) were not different between the E-group (44.5 +/- 5.7 h; 13.3 +/- 6.5 h) and the C-group (42.7 +/- 5.9 h; 14.8 +/- 4.1 h), respectively. Ova recovery rate (RR) in the E-group (80.2 +/- 22.9%) did not differ from that in the C-group (85.2 +/- 4.5%). The frequency distribution of ova recovered in the different segments did not significantly (p > 0.05) differ between the groups. The E-group showed higher cleavage rate than controls. A higher proportion of spermatozoa bound to the ZP was also found in the E-group compared with controls. The isthmic intraluminal pressure slightly increased (p = 0.07) 18 h after ovulation and immediately following LPS in the E-group, compared with the C-group. The frequencies of phasic pressure fluctuations were significantly (p < 0.05) lower at 30 and 38 h after ovulation in the E- than in the C-group. It can be concluded from the present study that

  20. Acute and long-term effects of tissue culture on contractile reactivity in renal arteries of the rat.

    PubMed

    De Mey, J G; Uitendaal, M P; Boonen, H C; Vrijdag, M J; Daemen, M J; Struyker-Boudier, H A

    1989-10-01

    To evaluate long-term effects of contractile and mitogenic stimuli on the contractile reactivity of arterial smooth muscle, we measured the incorporation of the thymidine analogue 5-bromo-2'-deoxyuridine (BrdUrd) and mechanical responses in arterial segments that had been maintained in tissue culture. The experiments were performed on renal arteries that had been isolated from adult rats, chemically sympathectomized, mechanically denuded from endothelium and mounted under distension. Exposure of arterial segments for up to 3 weeks to culture medium supplemented with fetal calf serum resulted in the following consecutive changes: a strong acute contraction, selective pharmacological changes that included decreased contractile responses to phenylephrine and vasopressin and increased relaxing responses to isoproterenol, increased incorporation of BrdUrd, a progressive fall in contractile responses to all vasoconstrictor stimuli, and an increase in excitability. Serum-free medium resulted in a much smaller acute arterial contraction, induced less incorporation of BrdUrd, accelerated the occurrence of hyperexcitability, but did not affect early pharmacological changes or the subsequent fall in overall arterial contractility with tissue culture. Dialysis of the serum or addition of ketanserin abolished the contractile effect of serum but did not affect the incorporation of BrdUrd or the loss of contractility with tissue culture. Addition of serotonin to serum-free culture medium mimicked the contractile response to serum but not the stimulation of BrdUrd incorporation. These data indicate that tissue culture alters the properties of the arterial wall, that contraction does not underlie the proliferative response of arterial smooth muscle to serum-derived mitogens in vitro, and that stimulation of DNA synthesis does in itself not lead to selective changes in arterial contractility.

  1. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility

    PubMed Central

    McIntosh, Victoria J.; Abou Samra, Abdul B.; Mohammad, Ramzi M.; Lasley, Robert D.

    2016-01-01

    Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility. PMID:27441649

  2. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    PubMed Central

    Smith, Ryan C; McClure, Marisa C; Smith, Margaret A; Abel, Peter W; Bradley, Michael E

    2007-01-01

    Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium

  3. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose

    PubMed Central

    Bhatt, Niraj M.; Aon, Miguel A.; Tocchetti, Carlo G.; Shen, Xiaoxu; Dey, Swati; Ramirez-Correa, Genaro; O′Rourke, Brian; Gao, Wei Dong

    2014-01-01

    Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function. PMID:25485897

  4. Active Microwave Properties of Vegetation Canopies

    NASA Technical Reports Server (NTRS)

    Paris, J. F. (Principal Investigator)

    1985-01-01

    Potential users of radar imagery need a better fundamental understanding of the capabilities of radar systems for vegetation studies than past studies provide. One approach is the use of theoretical models to predict observable active microwave properties of vegetation. This in turn requires accurate observations of backscattering coefficients and other active microwave properties in field research studies. The background document for the SRAEC program emphasizes the need to relate electromagnetic parameters to classical biophysical descriptors and to understand the role of polarization, especially cross-polarization. The broad goal of this study is to increase the understanding of the effects of canopy structure on the active microwave properties of vegetation canopies, with particular attention to polarization.

  5. Effects of ageing on single muscle fibre contractile function following short-term immobilisation.

    PubMed

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per; Kjaer, Michael; Suetta, Charlotte

    2011-10-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile properties of single muscle fibres (n = 378) from vastus lateralis of nine young (24 ± 1 years) and eight old (67 ± 2 years) healthy men with comparable levels of physical activity. Prior to immobilisation, MHC IIa fibres produced higher maximum Ca(2+)-activated force (approx. 32%) and specific force (approx. 33%) and had lower Ca(2+) sensitivity than MHC I fibres (P < 0.05), with no differences between young and old. After immobilisation, the decline in single fibre force (MHC I: young 21% and old 22%; MHC IIa: young 22% and old 30%; P < 0.05) as well as specific force (MHC I: young 14% and old 13%; MHC IIa: young 18% and old 25%; P < 0.05) was more pronounced in MHC IIa fibres compared to MHC I fibres (P < 0.05), with no differences between young and old. Notably, there was a selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P < 0.05) and in MHC I fibres of old individuals (P < 0.05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform.

  6. [Effect of D-(-)-norgestrel on uterine contractility in the puerperium (author's transl)].

    PubMed

    Romero-Salinas, G; La Torre-Rasguido, F; Vera-Cáceres, R; Escalera-Villarreal, G; Bandera-Gonzalez, B

    1981-01-01

    It is usual for women to ask for temporary control of fertility during the puerperium. When hormonal therapy is administered, the selection of the adequate pill is very important. The effect of D-(-)-norgestrel 300mg was studied on uterine contractility values during puerperium is seven patients breast feeding and was compared with a control group of 26. The 33 patients had the following characteristics: multiparous during puerperium without recent episiotomy, with healthy cervix, absence of genital septic focus, uterine tumours or malformations; all of them breast feeding. In the hypothesis, it was considered that the endogenous oxytocin increases and stimulates the mammary mioepithelium and uterine contractilities. For recording uterine contractility, the technique of Jaumandreu and Hendricks was used. The recordings were made during 24 hours postpartum, and at 5, 10, 20, 30, and 40 days with a duration 2 to 3 hours. All the studies were longitudinal. The changes of the human uterine contractility during normal puerperium were estimated. The range of the tonus was 22--41 mm Hg, the intensity 5--18 mm Hg, the frequency 17--23 contractions in 10 minutes, and the uterine activity 102--223 Montevideo Units. In the control group the following results were obtained: The range of the tonus was 24--34 mm Hg, the intensity 9--16 mm Hg, the frequency 17--37 contractions in 10 minutes, and the uterine contractility 137--524 Montevideo Units. In the comparative study Student's t test was used and p estimated.

  7. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-06-30

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity.

  8. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility

    PubMed Central

    García Ponce, Alexander; Citalán Madrid, Alí F.; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  9. Cocaine directly augments the alpha-adrenergic contractile response of the pregnant rabbit uterus.

    PubMed

    Hurd, W W; Robertson, P A; Riemer, R K; Goldfien, A; Roberts, J M

    1991-01-01

    Cocaine use in pregnancy is associated with a premature labor rate as high as 50%, but little is known about its effect on uterine contractility. To determine whether cocaine directly augments pregnant uterus contractility, uterine strips from 27-day pregnant New Zealand White rabbits (term, 31 days) were exposed to cocaine alone (30 mumol/L) or cocaine plus epinephrine (10(-9) to 10(-5) mol/L) or oxytocin (10(-10) to 10(-6) mol/L). Cocaine alone produced no contractions, but increased the epinephrine sensitivity by 51% and the maximal response by 33%. When beta-adrenoceptors were blocked with DL-propranolol (2 mumol/L), the contractile response to epinephrine was increased, and cocaine's effect was blocked. In the presence of the stereoisomer D-propranolol (2 mumol/L) with no beta-adrenergic antagonist activity, the contractile response to epinephrine was unchanged, but the effect of cocaine was still blocked. We conclude that cocaine directly augments the alpha-adrenergic contractile response of the pregnant rabbit uterus by a mechanism that is blocked by the non-beta-adrenergic effects of propranolol.

  10. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility.

    PubMed

    García Ponce, Alexander; Citalán Madrid, Alí F; Vargas Robles, Hilda; Chánez Paredes, Sandra; Nava, Porfirio; Betanzos, Abigail; Zarbock, Alexander; Rottner, Klemens; Vestweber, Dietmar; Schnoor, Michael

    2016-01-01

    Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity. PMID:27357373

  11. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  12. Resolving the Role of Actoymyosin Contractility in Cell Microrheology

    PubMed Central

    Hale, Christopher M.; Sun, Sean X.; Wirtz, Denis

    2009-01-01

    Einstein's original description of Brownian motion established a direct relationship between thermally-excited random forces and the transport properties of a submicron particle in a viscous liquid. Recent work based on reconstituted actin filament networks suggests that nonthermal forces driven by the motor protein myosin II can induce large non-equilibrium fluctuations that dominate the motion of particles in cytoskeletal networks. Here, using high-resolution particle tracking, we find that thermal forces, not myosin-induced fluctuating forces, drive the motion of submicron particles embedded in the cytoskeleton of living cells. These results resolve the roles of myosin II and contractile actomyosin structures in the motion of nanoparticles lodged in the cytoplasm, reveal the biphasic mechanical architecture of adherent cells—stiff contractile stress fibers interdigitating in a network at the cell cortex and a soft actin meshwork in the body of the cell, validate the method of particle tracking-microrheology, and reconcile seemingly disparate atomic force microscopy (AFM) and particle-tracking microrheology measurements of living cells. PMID:19756147

  13. Effects of abnormal cannabidiol on oxytocin-induced myometrial contractility.

    PubMed

    Houlihan, Diarmaid D; Dennedy, Michael C; Morrison, John J

    2010-04-01

    The objective of this study was to investigate the effects of abnormal cannabidiol (abn-cbd) on oxytocin-induced myometrial contractility occurring during pregnancy. Isometric tension recordings were performed in isolated myometrial strips from biopsies obtained at elective cesarean section. The effects of cumulative doses of abn-cbd (10(-9)-10(-5) M) on oxytocin-induced myometrial contractions alone, and on those following pre-incubation with SR 144528, AM 251, methylene blue, and iberiotoxin were measured, and dose-response curves were constructed. The pD(2) (-log EC(50)) values and the maximal inhibitory (MMI) values that were achieved were compared for each tissue type. Abn-cbd exerted a potent relaxant effect on oxytocin-induced myometrial contractions in vitro. Pre-incubation with the guanylate cyclase inhibitor, methylene blue, and the BK(Ca) channel antagonist, iberiotoxin, significantly attenuated this effect (for pD(2), P<0.01; for MMI, P<0.01). Abn-cbd exerts a potent inhibitory effect on human uterine contractility. This effect is partially mediated through modulation of guanylate cyclase and activation of BK(Ca) channel activity. These findings have implications for physiologic regulation of myometrial quiescence.

  14. Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy

    PubMed Central

    Waddingham, Mark T; Edgley, Amanda J; Tsuchimochi, Hirotsugu; Kelly, Darren J; Shirai, Mikiyasu; Pearson, James T

    2015-01-01

    Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients. Independent of hypertension and coronary artery disease, diabetes is associated with a specific cardiomyopathy, known as diabetic cardiomyopathy (DCM). Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease, beginning early after the onset of type 1 and type 2 diabetes, ahead of left ventricular remodeling and overt diastolic dysfunction. Although the molecular pathogenesis of early DCM still remains largely unclear, activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction. Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development, relaxation and stability under pathophysiological stresses. These changes include perturbed calcium handling, suppressed activity of aerobic energy producing enzymes, altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins, reduced actin-myosin cross-bridge cycling and dynamics, and changed myofilament calcium sensitivity. In this review, we will present and discuss novel aspects of the molecular pathogenesis of early DCM, with a special focus on the sarcomeric contractile apparatus. PMID:26185602

  15. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.

  16. Relationship between membrane Cl− conductance and contractile endurance in isolated rat muscles

    PubMed Central

    de Paoli, Frank Vincenzo; Broch-Lips, Martin; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    2013-01-01

    Resting skeletal muscle fibres have a large membrane Cl− conductance (GCl) that dampens their excitability. Recently, however, muscle activity was shown to induce PKC-mediated reduction in GCl in rat muscles of 40–90%. To examine the physiological significance of this PKC-mediated GCl reduction for the function of muscles, this study explored effects of GCl reductions on contractile endurance in isolated rat muscles. Contractile endurance was assessed from the ability of muscle to maintain force during prolonged stimulation under conditions when GCl was manipulated by: (i) inhibition of PKC, (ii) reduction of solution Cl− or (iii) inhibition of ClC-1 Cl− channels using 9-anthracene-carboxylic acid (9-AC). Experiments showed that contractile endurance was optimally preserved by reductions in GCl similar to what occurs in active muscle. Contrastingly, further GCl reductions compromised the endurance. The experiments thus show a biphasic relationship between GCl and contractile endurance in which partial GCl reduction improves endurance while further GCl reduction compromises endurance. Intracellular recordings of trains of action potentials suggest that this biphasic dependency of contractile endurance on GCl reflects that lowering GCl enhances muscle excitability but low GCl also increases the depolarisation of muscle fibres during excitation and reduces their ability to re-accumulate K+ lost during excitation. If GCl becomes very low, the latter actions dominate causing reduced endurance. It is concluded that the PKC-mediated ClC-1 channel inhibition in active muscle reduces GCl to a level that optimises contractile endurance during intense exercise. PMID:23045345

  17. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.

    PubMed

    de Paoli, Frank Vincenzo; Broch-Lips, Martin; Pedersen, Thomas Holm; Nielsen, Ole Bækgaard

    2013-01-15

    Resting skeletal muscle fibres have a large membrane Cl(-) conductance (G(Cl)) that dampens their excitability. Recently, however, muscle activity was shown to induce PKC-mediated reduction in G(Cl) in rat muscles of 40-90%. To examine the physiological significance of this PKC-mediated G(Cl) reduction for the function of muscles, this study explored effects of G(Cl) reductions on contractile endurance in isolated rat muscles. Contractile endurance was assessed from the ability of muscle to maintain force during prolonged stimulation under conditions when G(Cl) was manipulated by: (i) inhibition of PKC, (ii) reduction of solution Cl(-) or (iii) inhibition of ClC-1 Cl(-) channels using 9-anthracene-carboxylic acid (9-AC). Experiments showed that contractile endurance was optimally preserved by reductions in G(Cl) similar to what occurs in active muscle. Contrastingly, further G(Cl) reductions compromised the endurance. The experiments thus show a biphasic relationship between G(Cl) and contractile endurance in which partial G(Cl) reduction improves endurance while further G(Cl) reduction compromises endurance. Intracellular recordings of trains of action potentials suggest that this biphasic dependency of contractile endurance on G(Cl) reflects that lowering G(Cl) enhances muscle excitability but low G(Cl) also increases the depolarisation of muscle fibres during excitation and reduces their ability to re-accumulate K(+) lost during excitation. If G(Cl) becomes very low, the latter actions dominate causing reduced endurance. It is concluded that the PKC-mediated ClC-1 channel inhibition in active muscle reduces G(Cl) to a level that optimises contractile endurance during intense exercise.

  18. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. PMID:27558729

  19. Contractile forces generated by striae distensae fibroblasts embedded in collagen lattices.

    PubMed

    Viennet, Céline; Bride, Jacqueline; Armbruster, Vincent; Aubin, François; Gabiot, Anne-Claude; Gharbi, Tijani; Humbert, Philippe

    2005-07-01

    Striae distensae are characterized by linear, smooth bands of atrophic-appearing skin that are reddish at first and finally white. They are due to stretching of the skin, as in rapid weight gain, or mechanical stress, as in weight lifting. The pathogenesis of striae distensae is unknown but probably relates to changes in the fibroblast phenotype. In order to characterize striae distensae fibroblasts, alpha-smooth muscle actin expression and contractile forces were studied. Five healthy women with early erythematous striae and five healthy women with older striae were selected. Paired biopsies were taken from the center of lesional striae and adjacent normal skin. Fibroblasts were obtained by an explant technique and expanded in vitro in Dulbecco's modified Eagle's medium. Contractile forces generated by fibroblasts in collagen lattices were measured with the Glasbox device developed in our laboratory. Alpha-smooth muscle actin expression was studied by immunofluorescence labeling of cells and by flow cytometry. Fibroblasts from early striae distensae were the richest cells in alpha-smooth muscle actin filaments and generated the highest contractile forces. Their peak contractile force was 26% greater than normal fibroblasts. There was a 150% higher level of alpha-smooth muscle actin content in fibroblasts from early striae distensae compared with fibroblasts from normal skin. In contrast, there was no significant difference in force generation between old striae fibroblasts and normal fibroblasts with cells expressing no alpha-smooth muscle actin. The contractile properties of fibroblasts from striae distensae varies depending on the stage of the disease. In early striae distensae, fibroblasts acquire a more contractile phenotype, corresponding to that of myofibroblasts.

  20. Contractile Film Model for Polymorphism in Adherent Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Giomi, Luca

    2013-03-01

    The optimal shapes attained by contractile cells on elastic substrates are determined by the crosstalk between intracellular forces and extracellular forces of adhesion. We model an adherent stationary cell as a contractile film bounded by an elastic cortex and connected to the substrate via elastic links. When the adhesion sites are continuously distributed, optimal cell shape is constrained by the adhesion geometry, with a spread area sensitively dependent on the substrate stiffness and contractile tension. For discrete adhesion sites, equilibrium cell shape is convex at weak contractility, while developing local concavities at intermediate values of contractility. Increasing contractility beyond a critical value, controlled by substrate stiffness, cell contour undergoes a discontinuous transition to a star-shaped configuration with cusps and protrusions, accompanied by a region of bistability and hysteresis.

  1. Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats

    PubMed Central

    Zaborska, K E; Wareing, M; Edwards, G; Austin, C

    2016-01-01

    Rationale: Maternal obesity pre-programmes offspring to develop obesity and associated cardiovascular disease. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the vasculature, which is reduced in hypertension and obesity. Objective: The objective of this study was to determine whether maternal obesity pre-programmes offspring to develop PVAT dysfunction in later life. Methods: Female Sprague–Dawley rats were fed a diet containing 10% (control) or 45% fat (high fat diet, HFD) for 12 weeks prior to mating and during pregnancy and lactation. Male offspring were killed at 12 or 24 weeks of age and tension in PVAT-intact or -denuded mesenteric artery segments was measured isometrically. Concentration–response curves were constructed to U46619 and norepinephrine. Results: Only 24-week-old HFD offspring were hypertensive (P<0.0001), although the anti-contractile effect of PVAT was lost in vessels from HFD offspring of each age. Inhibition of nitric oxide (NO) synthase with 100 μM l-NMMA attenuated the anti-contractile effect of PVAT and increased contractility of PVAT-denuded arteries (P<0.05, P<0.0001). The increase in contraction was smaller in PVAT-intact than PVAT-denuded vessels from 12-week-old HFD offspring, suggesting decreased PVAT-derived NO and release of a contractile factor (P<0.07). An additional, NO-independent effect of PVAT was evident only in norepinephrine-contracted vessels. Activation of AMP-activated kinase (with 10 μM A769662) was anti-contractile in PVAT-denuded (P<0.0001) and -intact (P<0.01) vessels and was due solely to NO in controls; the AMPK effect was similar in HFD offspring vessels (P<0.001 and P<0.01, respectively) but was partially NO-independent. Conclusions: The diminished anti-contractile effects of PVAT in offspring of HFD dams are primarily due to release of a PVAT-derived contractile factor and reduced NO bioavailability. PMID:27102050

  2. Is action potential duration of the intact dog heart related to contractility or stimulus rate?

    PubMed

    Drake, A J; Noble, M I; Schouten, V; Seed, A; Ter Keurs, H E; Wohlfart, B

    1982-10-01

    1. The contractility (maximum rate of rise of left ventricular pressure) and action potential duration were measured in intact closed-chest anaesthetized dogs with complete atrioventricular dissociation and beta-adrenergic blockade.2. Measurements were confined to test beats following a 1 sec interval. Prior to the test interval (priming period) a variety of potentiating stimulus trains were introduced.3. When the frequency of stimulation was increased in the priming period (frequency potentiation), there was an inverse relationship between action potential duration and contractility of the test beat.4. When the test beat was potentiated by a single beat terminating the priming period with one short interval (post-extrasystolic potentiation), there was no relationship between the action potential duration and contractility of the test beat.5. Paired pulse stimulation was used for any given frequency to vary contractility by short interval potentiation. For any given frequency of stimulation there was no relationship between action potential duration and contractility of the test beat. For any given value of contractility, action potential duration decreased with increased frequency of stimulation.6. The introduction of a high frequency train caused a step decrease in action potential duration on the first beat of the train. This was followed by a further slow decline in action potential duration with a time course of over 3 min. These two changes could be dissociated by the introduction during the train of one second interval test pulses, which only showed the slow shortening.7. The lack of a consistent relationship between action potential duration and contractility of the test beat disagrees with the hypothesis that repolarization is controlled by the activator calcium responsible for the contractility. The action potential shortening associated with increased frequency is related to the frequency change per se.8. The slow time course of change in action

  3. Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast

    PubMed Central

    Stachowiak, Matthew R.; Laplante, Caroline; Chin, Harvey F.; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D.; O’Shaughnessy, Ben

    2014-01-01

    SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. PMID:24914559

  4. Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George

    1993-04-01

    Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.

  5. Regulation of tissue morphodynamics: an important role for actomyosin contractility

    PubMed Central

    Siedlik, Michael J.; Nelson, Celeste M.

    2015-01-01

    Forces arising from contractile actomyosin filaments help shape tissue form during morphogenesis. Developmental events that result from actomyosin contractility include tissue elongation, bending, budding, and collective migration. Here, we highlight recent insights into these morphogenetic processes from the perspective of actomyosin contractility as a key regulator. Emphasis is placed on a range of results obtained through live imaging, culture, and computational methods. Combining these approaches in the future has the potential to generate a robust, quantitative understanding of tissue morphodynamics. PMID:25748251

  6. O-GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle

    PubMed Central

    Cieniewski-Bernard, Caroline; Lambert, Matthias; Dupont, Erwan; Montel, Valérie; Stevens, Laurence; Bastide, Bruno

    2014-01-01

    O-GlcNAcylation, a generally undermined atypical protein glycosylation process, is involved in a dynamic and highly regulated interplay with phosphorylation. Akin to phosphorylation, O-GlcNAcylation is also involved in the physiopathology of several acquired diseases, such as muscle insulin resistance or muscle atrophy. Recent data underline that the interplay between phosphorylation and O-GlcNAcylation acts as a modulator of skeletal muscle contractile activity. In particular, the O-GlcNAcylation level of the phosphoprotein myosin light chain 2 seems to be crucial in the modulation of the calcium activation properties, and should be responsible for changes in calcium properties observed in functional atrophy. Moreover, since several key structural proteins are O-GlcNAc-modified, and because of the localization of the enzymes involved in the O-GlcNAcylation/de-O-GlcNAcylation process to the nodal Z disk, a role of O-GlcNAcylation in the modulation of the sarcomeric structure should be considered. PMID:25400587

  7. Diminished contractile responses of isolated conduit arteries in two rat models of hypertension.

    PubMed

    Zemancíková, Anna; Török, Jozef

    2013-08-31

    Hypertension is accompanied by thickening of arteries, resulting in marked changes in their passive and active mechanical properties. The aim of this study was to demonstrate that the large conduit arteries from hypertensive individuals may not exhibit enhanced contractions in vitro, as is often claimed. Mechanical responses to vasoconstrictor stimuli were measured under isometric conditions using ring arterial segments isolated from spontaneously hypertensive rats, N(omega)-nitro-L-arginine methyl ester (L-NAME)-treated Wistar rats, and untreated Wistar rats serving as normotensive control. We found that thoracic aortas from both types of hypertensive rats had a greater sensitivity but diminished maximal developed tension in response to noradrenaline, when compared with that from normotensive rats. In superior mesenteric arteries, the sensitivity to noradrenaline was similar in all examined rat groups but in L-NAME-treated rats, these arteries exhibited decreased active force when stimulated with high noradrenaline concentrations, or with 100 mM KCl. These results indicate that hypertension leads to specific biomechanical alterations in diverse arterial types which are reflected in different modifications in their contractile properties.

  8. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays.

    PubMed

    Morton, M J; Armstrong, D; Abi Gerges, N; Bridgland-Taylor, M; Pollard, C E; Bowes, J; Valentin, J-P

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies - radioligand-binding or automated electrophysiology - was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost.

  9. The use of a compact protable microcomputer system (EPSON HX 20) to measure on-line the contractile activity of the digestive tract from eight channels. Application to pharmacological tests.

    PubMed

    Hachet, T; Bueno, L; Fioramonti, J; Rode, C

    1986-09-01

    The chronically prepared gut with strain-gauge transducers is a useful model to evaluate the effects of drugs affecting the digestive motility in fed and fasted animals. This paper describes a rapid and reproducible on-line microcomputerized technique to evaluate continuously, 23 hr per day, the level of gut motility using a portable compact microcomputer (EPSON HX 20). The gastric, intestinal, and colonic motility indexes were automatically determined from the surface of the contractile waves from eight different sites over periods of time varying from 1 to 120 min. This system has been successfully used to investigate the motor effects of spasmolytic or antidiarrheal drugs inravenously (N-butyl-hyoscine, trospium, secoverine, and prifinium) or orally (trimebutine, loperamide) administered in conscious, fed dogs. PMID:3755780

  10. Assembly and positioning of actomyosin rings by contractility and planar cell polarity

    PubMed Central

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861

  11. Assembly and positioning of actomyosin rings by contractility and planar cell polarity.

    PubMed

    Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di

    2015-01-01

    The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells' anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. PMID:26486861

  12. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.

    PubMed

    Sakamoto, Yusuke; Buchanan, Rachel M; Sacks, Michael S

    2016-02-01

    Heart valve interstitial cells (VICs) play a critical role in the maintenance and pathophysiology of heart valve tissues. Normally quiescent in the adult, VICs can become activated in periods of growth and disease. When activated, VICs exhibit increased levels of cytokines and extracellular matrix (ECM) synthesis, and upregulated expression and strong contraction of α-smooth muscle actin (α-SMA) fibers. However, it remains unknown how expression and contraction of the α-SMA fibers, which vary among different VIC types, contribute to the overall VIC mechanical responses, including the nucleus and cytoskeleton contributions. In the present study, we developed a novel solid-mixture model for VIC biomechanical behavior that incorporated 1) the underlying cytoskeletal network, 2) the oriented α-SMA stress fibers with passive elastic and active contractile responses, 3) a finite deformable elastic nucleus. We implemented the model in a full 3D finite element simulation of a VIC based on known geometry. Moreover, we examined the respective mechanical responses of aortic and pulmonary VICs (AVICs and PVICs, respectively), which are known to have different levels of α-SMA expression levels and contractile behaviors. To calibrate the model, we simulated the combined mechanical responses of VICs in both micropipette aspiration (MA) and atomic force microscopy (AFM) experiments. These two states were chosen as the VICs were under significantly different mechanical loading conditions and activation states, with the α-SMA fibers inactivated in the MA studies while fully activated in the AFM studies. We also used the AFM to study the mechanical property of the nucleus. Our model predicted that the substantial differences found in stiffening of the AVIC compared to the PVICs was due to a 9 to 16 times stronger intrinsic AVIC α-SMA stress fiber contractile force. Model validation was done by simulating a traction force microscopy experiment to estimate the forces the VICs

  13. Redundant Mechanisms Recruit Actin into the Contractile Ring in Silkworm Spermatocytes

    PubMed Central

    Chen, Wei; Foss, Margit; Tseng, Kuo-Fu; Zhang, Dahong

    2008-01-01

    Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage. PMID:18767903

  14. Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy.

    PubMed

    MacIver, David H; Clark, Andrew L

    2016-09-01

    The pathophysiological mechanisms underlying the clinical phenotype of sarcomeric hypertrophic cardiomyopathy are controversial. The development of cardiac hypertrophy in hypertension and aortic stenosis is usually described as a compensatory mechanism that normalizes wall stress. We suggest that an important abnormality in hypertrophic cardiomyopathy is reduced contractile stress (the force per unit area) generated by myocardial tissue secondary to abnormalities such as cardiomyocyte disarray. In turn, a progressive deterioration in contractile stress provokes worsening hypertrophy and disarray. A maintained or even exaggerated ejection fraction is explained by the increased end-diastolic wall thickness producing augmented thickening. We propose that the nature of the hemodynamic load in an individual with hypertrophic cardiomyopathy could determine its phenotype. Hypertensive patients with hypertrophic cardiomyopathy are more likely to develop exaggerated concentric hypertrophy; athletic individuals an asymmetric pattern; and inactive individuals a more apical hypertrophy. The development of a left ventricular outflow tract gradient and mitral regurgitation may be explained by differential regional strain resulting in mitral annular rotation.

  15. Inhibition of contractile vacuole function by brefeldin A.

    PubMed

    Becker, Burkhard; Hickisch, Angela

    2005-01-01

    Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells. In the scaly green flagellate Scherffelia dubia, BFA also interfered with the function of the contractile vacuoles (CVs). The CV is an osmoregulatory organelle which periodically expels fluid from the cell in many freshwater protists. Fusion of the CV membrane with the plasma membrane is apparently blocked by BFA in S. dubia. The two CVs of S. dubia swell and finally form large central vacuoles (LCVs). BFA-induced formation of LCVs depends on V-ATPase activity, and can be reversed by hypertonic media, suggesting that water accumulation in the LCVs is driven by osmosis. We suggest that the BFA-induced formation of LCVs represents a prolonged diastole phase. A normal diastole phase takes about 20 s and is difficult to investigate. Therefore, BFA-induced formation of LCVs in S. dubia represents a unique model system to investigate the diastole phase of the CV cycle.

  16. Cellular Polarization and Contractility in Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Utuje, Kazage J. Christophe; Notbohm, Jacob; Banerjee, Shiladitya; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P.; Fredberg, Jeffrey J.; Marchetti, M. Cristina

    Collective cell migration drives many biological processes such as metastasis, morphogenesis and wound healing. These coordinated motions are driven by active forces. The physical nature of these forces and the mechanisms by which they generate collective cell migration are still not fully understood. We have developed a minimum physical model of a cell monolayer as an elastic continuum whose deformation field is coupled to two internal degrees of freedom: the concentration of a chemical signal, controlling cell Contractility, and the polarization field controlling the direction of local cell motion. By combining theory with experiments, we show that these two internal variables account for the sloshing waves and the systematic deviations of the direction of cell polarization from that of local cell velocity observed in confined cell monolayers. KJCU and MCM were supported by the Simons Foundation.

  17. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    SciTech Connect

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  18. PKCβII Modulation of Myocyte Contractile Performance

    PubMed Central

    Hwang, Hyosook; Robinson, Dustin A; Stevenson, Tamara K; Wu, Helen C; Kampert, Sarah E; Pagani, Francis D; Dyke, D. Brad; Martin, Jody L; Sadayappan, Sakthival; Day, Sharlene M; Westfall, Margaret V

    2012-01-01

    Significant up-regulation of the protein kinase CβII (PKCβII) develops during heart failure and yet divergent functional outcomes are reported in animal models. The goal here is to investigate PKCβII modulation of contractile function and gain insights into downstream targets in adult cardiac myocytes. Increased PKCβII protein expression and phosphorylation developed after gene transfer into adult myocytes while expression remained undetectable in controls. The PKCβII was distributed in a perinuclear pattern and this expression resulted in diminished rates and amplitude of shortening and re-lengthening compared to controls and myocytes expressing dominant negative PKCβII (PKCβDN). Similar decreases were observed in the Ca2+ transient and the Ca2+ decay rate slowed in response to caffeine in PKCβII-expressing myocytes. Parallel phosphorylation studies indicated PKCβII targets phosphatase activity to reduce phospholamban (PLB) phosphorylation at residue Thr17 (pThr17-PLB). The PKCβ inhibitor, LY379196 (LY) restored pThr17-PLB to control levels. In contrast, myofilament protein phosphorylation was enhanced by PKCβII expression, and individually, LY and the phosphatase inhibitor, calyculin A each failed to block this response. Further work showed PKCβII increased Ca2+- activated, calmodulin-dependent kinase IIδ (CaMKIIδ) expression and enhanced both CaMKIIδ and protein kinase D (PKD) phosphorylation. Phosphorylation of both signaling targets also was resistant to acute inhibition by LY. These later results provide evidence PKCβII modulates contractile function via intermediate downstream pathway(s) in cardiac myocytes. PMID:22587992

  19. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  20. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis

    PubMed Central

    Vasquez, Claudia G.; Tworoger, Mike

    2014-01-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  1. The formins Cdc12 and For3 cooperate during contractile ring assembly in cytokinesis

    PubMed Central

    Coffman, Valerie C.; Sees, Jennifer A.; Kovar, David R.

    2013-01-01

    Both de novo–assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation. PMID:24127216

  2. A device for rapid and quantitative measurement of cardiac myocyte contractility

    NASA Astrophysics Data System (ADS)

    Gaitas, Angelo; Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-03-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l-1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions.

  3. A device for rapid and quantitative measurement of cardiac myocyte contractility

    PubMed Central

    Malhotra, Ricky; Li, Tao; Herron, Todd; Jalife, José

    2015-01-01

    Cardiac contractility is the hallmark of cardiac function and is a predictor of healthy or diseased cardiac muscle. Despite advancements over the last two decades, the techniques and tools available to cardiovascular scientists are limited in their utility to accurately and reliably measure the amplitude and frequency of cardiomyocyte contractions. Isometric force measurements in the past have entailed cumbersome attachment of isolated and permeabilized cardiomyocytes to a force transducer followed by measurements of sarcomere lengths under conditions of submaximal and maximal Ca2+ activation. These techniques have the inherent disadvantages of being labor intensive and costly. We have engineered a micro-machined cantilever sensor with an embedded deflection-sensing element that, in preliminary experiments, has demonstrated to reliably measure cardiac cell contractions in real-time. Here, we describe this new bioengineering tool with applicability in the cardiovascular research field to effectively and reliably measure cardiac cell contractility in a quantitative manner. We measured contractility in both primary neonatal rat heart cardiomyocyte monolayers that demonstrated a beat frequency of 3 Hz as well as human embryonic stem cell-derived cardiomyocytes with a contractile frequency of about 1 Hz. We also employed the β-adrenergic agonist isoproterenol (100 nmol l−1) and observed that our cantilever demonstrated high sensitivity in detecting subtle changes in both chronotropic and inotropic responses of monolayers. This report describes the utility of our micro-device in both basic cardiovascular research as well as in small molecule drug discovery to monitor cardiac cell contractions. PMID:25832250

  4. Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells

    SciTech Connect

    Leatherman, G.F.; Kim, D.; Smith, T.W.

    1987-07-01

    Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on the cardiac muscle contractility, the authors examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane /sup 45/Ca fluxes, and cytosolic free Ca concentration ((Ca)/sub i/) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion (half maximum inhibitory concentration) with maximal effect observed at 1 ..mu..M. PMA (1 ..mu..M) reduced /sup 45/Ca uptake rate by 16 /plus minus/ 4% and the size of the rapidly exchangeable Ca pool by 11 /plus minus/ 2%, but did not alter the /sup 45/Ca efflux rate. In fura-2-loaded cells. PMA produced a decrease in (Ca)/sub i/ from 96 /plus minus/ 7 to 72 /plus minus/ 5 nM with a time course similar to that of alteration in contractile amplitude. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostassis and contractile state.

  5. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction.

    PubMed

    Wenk, Jonathan F; Sun, Kay; Zhang, Zhihong; Soleimani, Mehrdad; Ge, Liang; Saloner, David; Wallace, Arthur W; Ratcliffe, Mark B; Guccione, Julius M

    2011-04-01

    Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure.

  6. Emerging trends in the pathophysiology of lymphatic contractile function.

    PubMed

    Chakraborty, Sanjukta; Davis, Michael J; Muthuchamy, Mariappan

    2015-02-01

    Lymphatic contractile dysfunction is central to a number of pathologies that affect millions of people worldwide. Due to its critical role in the process of inflammation, a dysfunctional lymphatic system also compromises the immune response, further exacerbating a number of inflammation related diseases. Despite the critical physiological functions accomplished by the transport of lymph, a complete understanding of the contractile machinery of the lymphatic system lags far behind that of the blood vasculature. However, there has been a surge of recent research focusing on different mechanisms that underlie both physiological and pathophysiological aspects of lymphatic contractile function. This review summarizes those emerging paradigms that shed some novel insights into the contractile physiology of the lymphatics in normal as well as different disease states. In addition, this review emphasizes the recent progress made in our understanding of various contractile parameters and regulatory elements that contribute to the normal functioning of the lymphatics.

  7. Effects of Acetaminophen on Left Atrial Contractility

    PubMed Central

    Chang, Jun-Hei; Cheng, Pao-Yun; Hsu, Chih-Hsueng; Chen, Yao-Chang; Hong, Po-Da

    2016-01-01

    Background It has been observed that acetaminophen shows cardioprotective efficacy in mammals. In this study, we investigated the electromechanical effects of acetaminophen on the left atrium (LA). Methods Conventional microelectrodes were used to record the action potentials (AP) in rabbit LA preparations. The action potential duration (APD) at repolarization levels of 90%, 50% and 20% of the AP amplitude (APD90, APD50, and APD20, respectively), resting membrane potential, and contractile force were measured during 2 Hz electrical stimulation before and after sequential acetaminophen administration to the LA. Results Acetaminophen (0.1, 0.3, 1, and 3 mM) reduced APD20 from 9.4 ± 1.2 to 8.0 ± 1.1 (p < 0.05), 7.1 ± 0.8 (p < 0.05), 7.8 ± 1.1, and 6.8 ± 1.2 ms (p < 0.05), respectively, and APD50 from 20.2 ± 1.9 to 17.4 ± 2.0, 15.6 ± 1.8 (p < 0.05), 15.8 ± 2.2 (p < 0.05), and 14.1 ± 2.4 ms (p < 0.05), respectively, in a concentration-dependent manner. APD90 was reduced from 72.0 ± 3.6 to 64.7 ± 4.2, 61.9 ± 4.3, 60.5 ± 3.7, and 53.4 ± 4.4 ms (p < 0.05), respectively. Acetaminophen increased LA contractility from 45 ± 9 to 52 ± 10 (p < 0.05), 55 ± 9 (p < 0.01), 58 ± 9 (p < 0.01), and 60 ± 9 mg (p < 0.01), respectively, in a concentration-dependent manner. In the presence of the NOS inhibitor L-NAME or PKG-I inhibitor DT-2, additional acetaminophen treatment did not significantly increase LA contractility. Conclusions Acetaminophen modulated the electromechanical characteristics of LA by inhibiting the NOS and PKG I pathway, and then contributed to the positive inotropic effect. PMID:27471362

  8. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex

    PubMed Central

    Fabritius, Amy S.; Flynn, Jonathan R.; McNally, Francis J.

    2011-01-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. PMID:21889938

  9. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  10. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  11. Considerations For Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, Lewis D. Meixler and Charles A. Gentile

    2012-02-29

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  12. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Meixler, Lewis D.; Gentile, Charles A.

    2012-04-01

    Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.

  13. Electrically contractile polymers augment right ventricular output in the heart.

    PubMed

    Ruhparwar, Arjang; Piontek, Patricia; Ungerer, Matthias; Ghodsizad, Ali; Partovi, Sasan; Foroughi, Javad; Szabo, Gabor; Farag, Mina; Karck, Matthias; Spinks, Geoffrey M; Kim, Seon Jeong

    2014-12-01

    Research into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n = 5), strips of polymers (3 × 20 mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 ± 875 U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 ± 1334 U vs. 4318 ± 691 U, P ≤ 0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes.

  14. Contractile function of the myocardium with prolonged hypokinesia in patients with surgical tuberculosis

    NASA Technical Reports Server (NTRS)

    Zakutayeva, V. P.; Matiks, N. I.

    1978-01-01

    The changes in the myocardial contractile function with hypokinesia in surgical tuberculosis patients are discussed. The phase nature of the changes is noted, specifically the changes in the various systoles, diastole, and other parts of the cardiac cycle. The data compare these changes during confinement in bed with no motor activity to and with a return to motor activity after leaving the in-bed regimen.

  15. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  16. Effect of vasopressin on electrical and contractile responses of vascular smooth muscles in animals of different ages

    SciTech Connect

    Frol'kis, I.V.

    1987-07-01

    The authors analyze the effects of vasopressin on electrical and contractile properties of smooth-muscle cells of the femoral artery of adult and old rats and the possible role of cyclic AMP (cAMP) in its realization. Calculations were done with the aid of standard curves and radioactivity was counted on a liquid scintillator.

  17. Stretch-induced increase in cardiac contractility is independent of myocyte Ca2+ while block of stretch channels by streptomycin improves contractility after ischemic stunning

    PubMed Central

    Rhodes, Samhita S; Camara, Amadou K S; Aldakkak, Mohammed; Heisner, James S; Stowe, David F

    2015-01-01

    Stretching the cardiac left ventricle (LV) enhances contractility but its effect on myoplasmic [Ca2+] is controversial. We measured LV pressure (LVP) and [Ca2+] as a function of intra-LV stretch in guinea pig intact hearts before and after 15 min global stunning ± perfusion with streptomycin (STM), a stretch-activated channel blocker. LV wall [Ca2+] was measured by indo-1 fluorescence and LVP by a saline-filled latex balloon inflated in 50 μL steps to stretch the LV. We implemented a mathematical model to interpret cross-bridge dynamics and myofilament Ca2+ responsiveness from the instantaneous relationship between [Ca2+] and LVP ± stretching. We found that: (1) stretch enhanced LVP but not [Ca2+] before and after stunning in either control (CON) and STM groups, (2) after stunning [Ca2+] increased in both groups although higher in STM versus CON (56% vs. 39%), (3) STM-enhanced LVP after stunning compared to CON (98% vs. 76% of prestunning values), and (4) stretch-induced effects on LVP were independent of [Ca2+] before or after stunning in both groups. Mathematical modeling suggested: (1) cooperativity in cross-bridge kinetics and myofilament Ca2+ handling is reduced after stunning in the unstretched heart, (2) stunning results in depressed myofilament Ca2+ sensitivity in the presence of attached cross-bridges regardless of stretch, and (3) the initial mechanism responsible for increased contractility during stretch may be enhanced formation of cross-bridges. Thus stretch-induced enhancement of contractility is not due to increased [Ca2+], whereas enhanced contractility after stunning in STM versus CON hearts results from improved Ca2+ handling and/or enhanced actinomyosin cross-bridge cycling. PMID:26290532

  18. The Fiber Contractility and Cytoskeleton Losses in Space are Less Pronounced in Mongolian Gerbils

    NASA Astrophysics Data System (ADS)

    Lipets, E. N.; Ponomareva, E. V.; Ogneva, I. V.; Vikhliantsev, I. M.; Karaduleva, E. V.; Kartashkina, N. L.; Kuznetsov, S. L.; Podlubnaia, Z. A.; Shenkman, B. S.

    2008-06-01

    This work was purposed on the comparison of space flight effects on m. soleus and m. tibialis anterior of Mongolian gerbils. The animals have been flown onboard biosatellite Foton-M3 for 12 days. Contractile properties of single skinned muscle fibers were studied. It was revealed that diameter of m. soleus skinned fibers and maximal isometric tension were decreased by 19.7% and 21.8% respectively. The Ca-sensitivity reduction wasn't significant, that was in accordance with absence of changes of titin and nebulin relative content in soleus and minor manifestations in slow-to-fast fiber ratio (9%, p<0.05). There weren't observed significant changes of the same parameters in m. tibialis anterior. Ultimately the fiber contractility and cytoskeleton losses in space are less pronounced in Mongolian gerbils than in rats.

  19. Uterine contractility of plants used to facilitate childbirth in Nigerian ethnomedicine

    PubMed Central

    Attah, Alfred F.; O'Brien, Margaret; Koehbach, Johannes; Sonibare, Mubo A.; Moody, Jones O.; Smith, Terry J.; Gruber, Christian W.

    2012-01-01

    Ethnopharmacological relevance Pregnant women in Nigeria use plant preparations to facilitate childbirth and to reduce associated pain. The rationale for this is not known and requires pharmacological validation. Aim of study Obtain primary information regarding the traditional use of plants and analyze their uterine contractility at cellular level. Materials and methods Semi-structured, open interviews using questionnaires of traditional healthcare professionals and other informants triggered the collection and identification of medicinal plant species. The relative traditional importance of each medicinal plant was determined by its use-mention index. Extracts of these plants were analyzed for their uterotonic properties on an in vitro human uterine cell collagen model. Result The plants Calotropis procera, Commelina africana, Duranta repens, Hyptis suaveolens, Ocimum gratissimum, Saba comorensis, Sclerocarya birrea, Sida corymbosa and Vernonia amygdalina were documented and characterized. Aqueous extracts from these nine plants induced significant sustained increases in human myometrial smooth muscle cell contractility, with varying efficiencies, depending upon time and dose of exposure. Conclusion The folkloric use of several plant species during childbirth in Nigeria has been validated. Seven plants were for the first time characterized to have contractile properties on uterine myometrial cells. The results serve as ideal starting points in the search for safe, longer lasting, effective and tolerable uterotonic drug leads. PMID:22766472

  20. The myogenic electric organ of Sternopygus macrurus: a non-contractile tissue with a skeletal muscle transcriptome

    PubMed Central

    Samanta, Manoj P.; Chaidez, Alexander

    2016-01-01

    In most electric fish species, the electric organ (EO) derives from striated muscle cells that suppress many muscle properties. In the gymnotiform Sternopygus macrurus, mature electrocytes, the current-producing cells of the EO, do not contain sarcomeres, yet they continue to make some cytoskeletal and sarcomeric proteins and the muscle transcription factors (MTFs) that induce their expression. In order to more comprehensively examine the transcriptional regulation of genes associated with the formation and maintenance of the contractile sarcomere complex, results from expression analysis using qRT-PCR were informed by deep RNA sequencing of transcriptomes and miRNA compositions of muscle and EO tissues from adult S. macrurus. Our data show that: (1) components associated with the homeostasis of the sarcomere and sarcomere-sarcolemma linkage were transcribed in EO at levels similar to those in muscle; (2) MTF families associated with activation of the skeletal muscle program were not differentially expressed between these tissues; and (3) a set of microRNAs that are implicated in regulation of the muscle phenotype are enriched in EO. These data support the development of a unique and highly specialized non-contractile electrogenic cell that emerges from a striated phenotype and further differentiates with little modification in its transcript composition. This comprehensive analysis of parallel mRNA and miRNA profiles is not only a foundation for functional studies aimed at identifying mechanisms underlying the transcription-independent myogenic program in S. macrurus EO, but also has important implications to many vertebrate cell types that independently activate or suppress specific features of the skeletal muscle program. PMID:27114860

  1. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial

    PubMed Central

    Vandenabeele, Frank; Grevendonk, Lotte; Verboven, Kenneth; Hansen, Dominique

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type II (+23±7%) and IIa (+23±6%,) CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13±7% and +45±20%) and body fat percentage tended to decrease (HITR: -3.9±2.0% and HCTR: -2.5±1.2%). Furthermore, endurance capacity (Wmax +21±4%, time to exhaustion +24±5%, VO2max +17±5%) and lean tissue mass (+1.4±0.5%) only increased in HITR. Finally self-reported physical activity levels increased 73±19% and 86±27% in HCTR and HITR, respectively. Conclusion High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS. Trial Registration ClinicalTrials.gov NCT01845896 PMID:26418222

  2. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation.

    PubMed

    Halayko, Andrew J; Kartha, Sreedharan; Stelmack, Gerald L; McConville, John; Tam, John; Camoretti-Mercado, Blanca; Forsythe, Sean M; Hershenson, Marc B; Solway, Julian

    2004-09-01

    Increased airway smooth muscle in airway remodeling results from myocyte proliferation and hypertrophy. Skeletal and vascular smooth muscle hypertrophy is induced by phosphatidylinositide-3 kinase (PI(3) kinase) via mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K). We tested the hypothesis that this pathway regulates contractile protein accumulation in cultured canine airway myocytes acquiring an elongated contractile phenotype in serum-free culture. In vitro assays revealed a sustained activation of PI(3) kinase and p70S6K during serum deprivation up to 12 d, with concomitant accumulation of SM22 and smooth muscle myosin heavy chain (smMHC) proteins. Immunocytochemistry revealed that activation of PI3K/mTOR/p70S6K occurred almost exclusively in myocytes that acquire the contractile phenotype. Inhibition of PI(3) kinase or mTOR with LY294002 or rapamycin blocked p70S6K activation, prevented formation of large elongated contractile phenotype myocytes, and blocked accumulation of SM22 and smMHC. Inhibition of MEK had no effect. Steady-state mRNA abundance for SM22 and smMHC was unaffected by blocking p70S6K activation. These studies provide primary evidence that PI(3) kinase and mTOR activate p70S6K in airway myocytes leading to the accumulation of contractile apparatus proteins, differentiation, and growth of large, elongated contractile phenotype airway smooth muscle cells. PMID:15105162

  3. Rho-mediated Contractility Exposes a Cryptic Site in Fibronectin and Induces Fibronectin Matrix Assembly

    PubMed Central

    Zhong, Cuiling; Chrzanowska-Wodnicka, Magdalena; Brown, James; Shaub, Amy; Belkin, Alexey M.; Burridge, Keith

    1998-01-01

    Many factors influence the assembly of fibronectin into an insoluble fibrillar extracellular matrix. Previous work demonstrated that one component in serum that promotes the assembly of fibronectin is lysophosphatidic acid (Zhang, Q., W.J. Checovich, D.M. Peters, R.M. Albrecht, and D.F. Mosher. 1994. J. Cell Biol. 127:1447–1459). Here we show that C3 transferase, an inhibitor of the low molecular weight GTP-binding protein Rho, blocks the binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment to cells and blocks the assembly of fibronectin into matrix induced by serum or lysophosphatidic acid. Microinjection of recombinant, constitutively active Rho into quiescent Swiss 3T3 cells promotes fibronectin matrix assembly by the injected cells. Investigating the mechanism by which Rho promotes fibronectin polymerization, we have used C3 to determine whether integrin activation is involved. Under conditions where C3 decreases fibronectin assembly we have only detected small changes in the state of integrin activation. However, several inhibitors of cellular contractility, that differ in their mode of action, inhibit cell binding of fibronectin and the 70-kD NH2-terminal fibronectin fragment, decrease fibronectin incorporation into the deoxycholate insoluble matrix, and prevent fibronectin's assembly into fibrils on the cell surface. Because Rho stimulates contractility, these results suggest that Rho-mediated contractility promotes assembly of fibronectin into a fibrillar matrix. One mechanism by which contractility could enhance fibronectin assembly is by tension exposing cryptic self-assembly sites within fibronectin that is being stretched. Exploring this possibility, we have found a monoclonal antibody, L8, that stains fibronectin matrices differentially depending on the state of cell contractility. L8 was previously shown to inhibit fibronectin matrix assembly (Chernousov, M.A., A.I. Faerman, M.G. Frid, O.Y. Printseva, and V.E. Koteliansky. 1987

  4. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis. PMID:27548633

  5. Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts.

    PubMed

    Feest, Erik R; Steven Korte, F; Tu, An-Yue; Dai, Jin; Razumova, Maria V; Murry, Charles E; Regnier, Michael

    2014-07-01

    Many current pharmaceutical therapies for systolic heart failure target intracellular [Ca(2+)] ([Ca(2+)]i) metabolism, or cardiac troponin C (cTnC) on thin filaments, and can have significant side-effects, including arrhythmias or adverse effects on diastolic function. In this study, we tested the feasibility of directly increasing the Ca(2+) binding properties of cTnC to enhance contraction independent of [Ca(2+)]i in intact cardiomyocytes from healthy and myocardial infarcted (MI) hearts. Specifically, cardiac thin filament activation was enhanced through adenovirus-mediated over-expression of a cardiac troponin C (cTnC) variant designed to have increased Ca(2+) binding affinity conferred by single amino acid substitution (L48Q). In skinned cardiac trabeculae and myofibrils we and others have shown that substitution of L48Q cTnC for native cTnC increases Ca(2+) sensitivity of force and the maximal rate of force development. Here we introduced L48Q cTnC into myofilaments of intact cardiomyocytes via adeno-viral transduction to deliver cDNA for the mutant or wild type (WT) cTnC protein. Using video-microscopy to monitor cell contraction, relaxation, and intracellular Ca(2+) transients (Fura-2), we report that incorporation of L48Q cTnC significantly increased contractility of cardiomyocytes from healthy and MI hearts without adversely affecting Ca(2+) transient properties or relaxation. The improvements in contractility from L48Q cTnC expression are likely the result of enhanced contractile efficiency, as intracellular Ca(2+) transient amplitudes were not affected. Expression and incorporation of L48Q cTnC into myofilaments was confirmed by Western blot analysis of myofibrils from transduced cardiomyocytes, which indicated replacement of 18±2% of native cTnC with L48Q cTnC. These experiments demonstrate the feasibility of directly targeting cardiac thin filament proteins to enhance cardiomyocyte contractility that is impaired following MI.

  6. Hydrogen sulfide alleviates cardiac contractile dysfunction in an Akt2-knockout murine model of insulin resistance: role of mitochondrial injury and apoptosis

    PubMed Central

    Hu, Nan; Dong, Maolong

    2014-01-01

    Hydrogen sulfide (H2S) is a toxic gas now being recognized as an endogenous signaling molecule in multiple organ systems, in particular, the cardiovascular system. H2S is known to regulate cardiac function and protect against ischemic injury. However, little information is available regarding the effect of H2S on cardiac function in insulin resistance. This study was designed to examine the impact of H2S supplementation on cardiac function using an Akt2 knockout model of insulin resistance. Wild-type and Akt2 knockout mice were treated with NaHS (50 μM·kg−1·day−1 ip for 10 days) prior to evaluation of echocardiographic, cardiomyocyte contractile, and intracellular Ca2+ properties, apoptosis, and mitochondrial damage. Our results revealed that Akt2 ablation led to overtly enlarged ventricular end-systolic diameter, reduced myocardial and cardiomyocyte contractile function, and disrupted intracellular Ca2+ homeostasis and apoptosis, the effects of which were ameliorated by H2S. Furthermore, Akt2 knockout displayed upregulated apoptotic protein markers (Bax, caspase-3, caspase-9, and caspace-12) and mitochondrial damage (reduced aconitase activity and NAD+, elevated cytochrome-c release from mitochondria) along with reduced phosphorylation of PTEN, Akt, and GSK3β in the absence of changes in pan protein expression, the effects of which were abolished or significantly ameliorated by H2S treatment. In vitro data revealed that H2S-induced beneficial effect against Akt2 ablation was obliterated by mitochondrial uncoupling. Taken together, our findings suggest the H2S may reconcile Akt2 knockout-induced myocardial contractile defect and intracellular Ca2+ mishandling, possibly via attenuation of mitochondrial injury and apoptosis. PMID:24622975

  7. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  8. Geometrical Origins of Contractility in Disordered Actomyosin Networks

    NASA Astrophysics Data System (ADS)

    Lenz, Martin

    2014-10-01

    Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.

  9. Optimum periodicity of repeated contractile actions applied in mass transport

    PubMed Central

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications. PMID:25622949

  10. [Oregano: properties, composition and biological activity].

    PubMed

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  11. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin

    PubMed Central

    Zhou, Jian; Kim, Hye Young; Wang, James H.-C.; Davidson, Lance A.

    2010-01-01

    During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues. PMID:20630946

  12. The effects of commercial preparations of red raspberry leaf on the contractility of the rat's uterus in vitro.

    PubMed

    Jing Zheng; Pistilli, Marc J; Holloway, Alison C; Crankshaw, Denis J

    2010-05-01

    We investigated the direct effects of various commercially available preparations of red raspberry leaf (RRL) on the in vitro contractility of uteri collected from diethylstilbestrol (DES)-treated nonpregnant (NP) and late pregnant rats. In DES-treated NP rats, RRL tea and capsule caused weak contractions. Neither preparation affected the ability of oxytocin to initiate contractions; however, both partially inhibited preexisting oxytocin-driven contractions at the highest concentration tested. Red raspberry leaf ethanol extract had little effect on contractility. Pretreatment with tea did not alter the ability of oxytocin to initiate contractions. In pregnant animals red raspberry leaf tea had variable effects on preexisting oxytocin-induced contractions, sometimes augmenting oxytocin's effect and sometimes causing augmentation followed by inhibition. We conclude that the biological activity of RRL varies depending on the herbal preparation used and pregnancy status. These results do not support the hypothesis that RRL augments labor by a direct effect on uterine contractility.

  13. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility.

    PubMed

    Choe, Kibaek; Jang, Jeon Yeob; Park, Intae; Kim, Yeseul; Ahn, Soyeon; Park, Dae-Young; Hong, Young-Kwon; Alitalo, Kari; Koh, Gou Young; Kim, Pilhan

    2015-11-01

    Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility. PMID:26436648

  14. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility

    PubMed Central

    Choe, Kibaek; Jang, Jeon Yeob; Park, Intae; Kim, Yeseul; Ahn, Soyeon; Park, Dae-Young; Hong, Young-Kwon; Alitalo, Kari; Koh, Gou Young; Kim, Pilhan

    2015-01-01

    Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility. PMID:26436648

  15. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

    PubMed Central

    Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt

    2014-01-01

    Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054

  16. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  17. Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Callan-Jones, Andrew; Smutny, Michael; Morita, Hitoshi; Sako, Keisuke; Barone, Vanessa; Ritsch-Marte, Monika; Sixt, Michael; Voituriez, Raphaël; Heisenberg, Carl-Philipp

    2015-01-01

    Summary 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. PMID:25679761

  18. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice

    PubMed Central

    Green, Eric M.; Wakimoto, Hiroko; Anderson, Robert L.; Evanchik, Marc J.; Gorham, Joshua M.; Harrison, Brooke C.; Henze, Marcus; Kawas, Raja; Oslob, Johan D.; Rodriguez, Hector M.; Song, Yonghong; Wan, William; Leinwand, Leslie A.; Spudich, James A.; McDowell, Robert S.; Seidman, J. G.; Seidman, Christine E.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM. PMID:26912705

  19. The effects of Ginseng Java root extract on uterine contractility in nonpregnant rats

    PubMed Central

    Sukwan, Catthareeya; Wray, Susan; Kupittayanant, Sajeera

    2014-01-01

    Abstract Ginseng Java or Talinum paniculatum (Jacq.) Geartn has long been used in herbal recipes because of its various therapeutic properties. Ginseng Java is believed to be beneficial to the female reproductive system by inducing lactation and restoring uterine functions after the postpartum period. There are, however, no scientific data on verifying the effects on the uterus to support its therapeutic relevance. Therefore, the purpose of this study was to investigate the effects of Ginseng Java root extract and its possible mechanism(s) of action on uterine contractility. Female virgin rats were humanely killed by CO2 asphyxia and uteri removed. Isometric force was measured in strips of longitudinal myometrium. The effects of Ginseng Java root extract at its IC50 concentration (0.23 mg/mL) on spontaneous, oxytocin‐induced (10 nmol/L), and depolarized (KCl 40 mmol/L) contraction were investigated. After establishing regular phasic contractions, the application of Java root extract significantly inhibited spontaneous uterine contractility (n =5). The extract also significantly inhibited the contraction induced by high KCl solution (n =5) and oxytocin (n =5). The extract also inhibited oxytocin‐induced contraction in the absence of external Ca entry (n =7) and the tonic force induced by oxytocin in the presence of high KCl solution. Taken together, the data demonstrate a potent and consistent ability of extract from Ginseng Java root to reduce myometrial contractility. The tocolytic effects were demonstrated on both spontaneous and agonist‐induced contractions. The fact that force was inhibited in depolarized conditions suggests that the possible mechanisms may be blockade of Ca influx via L‐type Ca channels. The data in Ca‐free solutions suggest that the extract also reduces IP3‐induced Ca release from the internal store. These tocolytic effects do not support the use of ginseng to help with postpartum contractility, but instead suggest it may be

  20. Myocardial contractile function and intradialytic hypotension.

    PubMed

    Owen, Paul J; Priestman, William S; Sigrist, Mhairi K; Lambie, Stewart H; John, Stephen G; Chesterton, Lindsay J; McIntyre, Christopher W

    2009-07-01

    Dialysis-induced hypotension remains a significant problem in hemodialysis (HD) patients. Numerous factors result in dysregulation of blood pressure control and impaired myocardial reserve in response to HD-induced cardiovascular stress. Episodic intradialytic hypotension may be involved in the pathogenesis of evolving myocardial injury. We performed an initial pilot investigation of cardiovascular functional response to pharmacological cardiovascular stress in hypotension-resistant (HR) and hypotension-prone (HP) HD patients. We studied 10 matched chronic HD patients (5 HP, 5 HR). Dobutamine-atropine stress (DAS) was performed on a nondialysis short interval day, with noninvasive pulse-wave analysis using the Finometer to continuously measure hemodynamic variables. Baroreflex sensitivity was assessed at rest and during DAS. Baseline hemodynamic variables were not significantly different. The groups had differing hemodynamic responses to DAS. The Mean arterial pressure was unchanged in the HR group but decreased in HP patients (-13.6 +/- 3.5 mmHg; P<0.001). This was associated with failure to significantly increase cardiac output in the HP group (cf. increase in cardiac output in the HR group of +33.4 +/- 6%; P<0.05), and a reduced response in total peripheral resistance (HP -10.3 +/- 6.8%, HR -22.7 +/- 2.9%, P=NS). Baroreflex sensitivity was not significantly different between groups at baseline or within groups with increasing levels of DAS; however, the mean baroreflex sensitivity was higher in HR cf. HP subjects throughout pharmacological stress (P<0.05). Hypotension-prone patients appear to have an impaired cardiovascular response to DAS. The most significant abnormality is an impaired myocardial contractile reserve. Early identification of these patients would allow utilization of therapeutic strategies to improve intradialytic tolerability, potentially abrogating aggravation of myocardial injury.

  1. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  2. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery.

    PubMed

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-04-15

    Clenbuterol is a β2 -adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg(-1) day(-1) ) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po ) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca(2+) transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (-19%, P < 0.01) and 21 days (-25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca(2+) release during contraction could partially explain these deleterious effects. PMID:25656230

  3. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics.

    PubMed

    Durham, Jennifer T; Surks, Howard K; Dulmovits, Brian M; Herman, Ira M

    2014-11-01

    Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction.

  4. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  5. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  6. The actions of neurotensin in rat bladder detrusor contractility

    PubMed Central

    Dong, Xingyou; Bai, Xinyu; Zhao, Jiang; Wang, Liang; Wang, Qingqing; Li, Longkun

    2015-01-01

    This study assessed the expression, distribution and function of neurotensin (NTs) and two main neurotensin receptors (NTSR), NTSR1 and NTSR2 in normal rat urinary bladders. NTs is primarily located in the suburothelium and the interstitium of smooth muscle bundles. The NTSR1 and NTSR2 receptor subtypes are found to co-localize with smooth muscle cells (SMCs). NTs not only can directly act on bladder SMCs to induce intracellular calcium mobilization by activating the phospholipase C/inositol triphosphate (PLC/IP3) pathway, promoting extracellular calcium influx through a non-selective cation channels, but may be also involved in the modulation of the cholinergic system. Nowadays, the selective antimuscarinic drugs (solifenacin) and the selective beta 3-adrenergic agonist (mirabegron) are used as the first-line pharmacotherapy for overactive bladder (OAB), but without satisfactory treatment benefits in some patients. This study provided evidence suggesting that bladder NTs may play an important role in the regulation of micturition. Further research is needed to investigate the effects of NTs on bladder contractility and the underlying mechanism, which might reveal that the administration of NTSR antagonists can potentially relieve the symptoms of OAB by coordination with antimuscarinic pharmacotherapy. PMID:26053252

  7. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    SciTech Connect

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  8. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    PubMed Central

    Guo, Hongmei; Gao, Zhipeng; Chen, Weiyi

    2016-01-01

    Aim. The length-contractile force relationships of six human extraocular muscles (EOMs) in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely. PMID:27087774

  9. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

    PubMed Central

    Cáceres, Mónica; Ortiz, Liliana; Recabarren, Tatiana; Romero, Anibal; Colombo, Alicia; Leiva-Salcedo, Elías; Varela, Diego; Rivas, José; Silva, Ian; Morales, Diego; Campusano, Camilo; Almarza, Oscar; Simon, Felipe; Toledo, Hector; Park, Kang-Sik; Trimmer, James S.; Cerda, Oscar

    2015-01-01

    Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility. PMID:26110647

  10. Ghrelin does not affect gastrointestinal contractility in rainbow trout and goldfish in vitro.

    PubMed

    Kitazawa, Takio; Itoh, Kentaro; Yaosaka, Noriko; Maruyama, Keisuke; Matsuda, Kouhei; Teraoka, Hiroki; Kaiya, Hiroyuki

    2012-09-15

    Ghrelin has been identified in rainbow trout and goldfish, and it has been shown to regulate growth hormone release and food intake in these species as seen in mammals. The aim of this study was to investigate the functional role of ghrelin in regulation of gastrointestinal contractility in both fishes. Neither rainbow trout ghrelin nor rat ghrelin affected the contractility of gastrointestinal strips of rainbow trout. Similarly, goldfish ghrelin-17 and rat ghrelin did not cause marked contraction in the goldfish intestinal bulb. Detail examinations using the goldfish intestine revealed that human neurotensin, substance-P, goldfish neuromedine-U and carbachol showed apparent contractile activities in the intestinal strips. Electrical field stimulation (EFS, 1-20 Hz) caused a frequency-dependent contraction of the intestinal bulb. Atropine partially inhibited and tetrodotoxin abolished the EFS-induced contraction. Pretreatments with goldfish ghrelin-17 and rat ghrelin did not modify the EFS-induced contraction. The mRNAs of two types of growth hormone secretagogue receptor (GHS-R), GHS-R1a-1 and GHS-R1a-2, were detected in the goldfish intestine, and the expression level of GHS-R1a-2 was 4-times higher than that of GHS-R1a-1. The expression levels of GHS-R1a-1 and GHS-R1a-2 in four regions of the goldfish intestine (intestinal bulb, intestine-1, intestine-2 and intestine-3) were almost the same. In conclusion, ghrelin does not affect gastrointestinal contractility of the rainbow trout and goldfish, although GHSR-like receptor/GHS-R1a is expressed entire intestine. These results suggest diversity of ghrelin function in vertebrates.

  11. Oxytocin plus antibiotics: A synergism of potentiation to enhance bovine uterine contractility.

    PubMed

    Piccinno, M; Rizzo, A; Cariello, G; Staffieri, F; Sciorsci, R L

    2016-09-15

    This in vitro study investigates the modulatory effect of three antibiotics (amoxicillin, enrofloxacin, and rifaximin) on contractility of the bovine uterine tissue, in follicular and luteal phases. The evaluation of the effects of these antibiotics (10(-4) M) was performed on oxytocin-induced contractility. The decision to test these antibiotics with the oxytocin (10(-6) M) comes from the reported ability of these combinations of hinder the antibiotic resistance and the formation of bacterial biofilms. The procedures were carried out in isolated organ bath, and the contractile functionality of the strip throughout the experiment was evaluated after a dose of carbachol (10(-5) M). The results demonstrate the different modulatory activity of these antibiotics, on the plateau of contraction induced by oxytocin, in both phases of the estrus cycle. The differing individual antibiotic effects of our testing made it possible to identify, only in some cases. Rifaximin in the follicular phase and enrofloxacin in both phases of the estrous cycle, induced a synergistic enhancement (potentiation) of uterine strip contraction induced by oxytocin. This result is thought important because these associations might enable, in vivo, a simultaneous increase of uterine cleaning and the antimicrobial action on bacteria in planktonic form and of those organized in biofilms. PMID:27173953

  12. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells.

    PubMed

    Du, Juan; Sours-Brothers, Sherry; Coleman, Rashadd; Ding, Min; Graham, Sarabeth; Kong, De-Hu; Ma, Rong

    2007-05-01

    Contractility of mesangial cells (MC) is tightly controlled by [Ca(2+)](i). Ca(2+) influx across the plasma membrane constitutes a major component of mesangial responses to vasoconstrictors. Canonical transient receptor potential 1 (TRPC1) is a Ca(2+)-permeable cation channel in a variety of cell types. This study was performed to investigate whether TRPC1 takes part in vasoconstrictor-induced mesangial contraction by mediating Ca(2+) entry. It was found that angiotensin II (AngII) evoked remarkable contraction of the cultured MC. Downregulation of TRPC1 using RNA interference significantly attenuated the contractile response. Infusion of AngII or endothelin-1 in rats caused a decrease in GFR. The GFR decline was significantly reduced by infusion of TRPC1 antibody that targets an extracellular domain in the pore region of TRPC1 channel. However, the treatment of TRPC1 antibody did not affect the AngII-induced vasopressing effect. Electrophysiologic experiments revealed that functional or biologic inhibition of TRPC1 significantly depressed AngII-induced channel activation. Fura-2 fluorescence-indicated that Ca(2+) entry in response to AngII stimulation was also dramatically inhibited by TRPC1 antibody and TRPC1-specific RNA interference. These results suggest that TRPC1 plays an important role in controlling contractile function of MC. Mediation of Ca(2+) entry might be the underlying mechanism for the TRPC1-associated MC contraction. PMID:17389736

  13. A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep with Left Ventricular Aneurysm

    PubMed Central

    Sun, Kay; Stander, Nielen; Jhun, Choon-Sik; Zhang, Zhihong; Suzuki, Takamaro; Wang, Guan-Ying; Saeed, Maythem; Wallace, Arthur W.; Tseng, Elaine E.; Baker, Anthony J.; Saloner, David; Einstein, Daniel R.; Ratcliffe, Mark B.; Guccione, Julius M.

    2009-01-01

    A non-invasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step towards developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, 3-dimensional (3D) myocardial strains, LV volumes and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (Tmax_B and Tmax_R) in the non-infarcted myocardium adjacent to the aneurysm (borderzone) and in myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized Tmax_B relative to Tmax_R was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of Tmax_B and Tmax_R were not overly sensitive to the passive material parameters specified. The computation time of less than 5 hours associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool. PMID:20016753

  14. Modulation of ureteric Ca signaling and contractility in humans and rats by uropathogenic E. coli.

    PubMed

    Floyd, Rachel V; Winstanley, Craig; Bakran, Ali; Wray, Susan; Burdyga, Theodor V

    2010-04-01

    Ascending urinary tract infections, a significant cause of kidney damage, are predominantly caused by uropathogenic Escherichia coli (UPEC). However, the role and mechanism of changes in ureteric function during infection are poorly understood. We therefore investigated the effects of UPEC on Ca signaling and contractions in rat (n = 17) and human (n = 6) ureters. Ca transients and force were measured and effects of UPEC on the urothelium were monitored in live tissues. In both species, luminal exposure of ureters to UPEC strains J96 and 536 caused significant time-dependent decreases in phasic and high K depolarization-induced contractility, associated with decreases in the amplitude and duration of the Ca transients. These changes were significant after 3-5 h and irreversible over the next 5 h. The infection causes increased activity of K channels, causing inhibition of voltage-gated Ca entry, and K channel blockers could reverse the effects of UPEC on ureteric function. A smaller direct effect on Ca entry also occurs. Nonpathogenic E. coli (TG2) or abluminal application of UPEC did not produce changes in Ca signaling or contractility. UPEC exposure also caused significant impairment of urothelial barrier function; luminal application of the Ca channel blocker nifedipine caused a reduction in contractions as it entered the tissue, an effect not observed in untreated ureters. Thus, UPEC impairs ureteric contractility in a Ca-dependent manner, largely caused by stimulation of potassium channels and this mechanism is dependent on host-urothelium interaction.

  15. Effects of Hindlimb Unweighting on Arterial Contractile Responses in Mice

    NASA Technical Reports Server (NTRS)

    Ma, Jia; Ren, Xin-Ling; Purdy, Ralph E.

    2003-01-01

    The aim of this work was to determine if hindlimb unweighting in mice alters arterial contractile responses. Sixteen male C57B/6 mice and 16 male Chinese Kunming mice were divided into control and 3 weeks hindlimb unweighting groups, respectively. Using isolated arterial rings from different arteries of mouse, effects of 3 weeks hindlimb unweighting on arterial contractile responsiveness were examined in vitro. The results showed that, in arterial rings from both C57B/6 and Chinese Kunming mice, maximum isometric contractile tensions evoked by either KCl or phenylephrine were significantly lower in abdominal aortic, mesenteric arterial and femoral arterial rings from hindlimb unweighting, compared to control mice. However, the maximal contractile responses of common carotid rings to KCl and PE were not significantly different between control and hindlimb unweighting groups. The sensitivity (EC(sub 50)) of all arteries to KCl or PE showed no significant differences between control and hindlimb unweighting mice. These data indicated that 3 weeks hindlimb unweighting results in a reduced capacity of the arterial smooth muscle of the hindquarter to develop tension. In addition, the alterations in arterial contractile responses caused by hindlimb unweighting in mice are similar as those in rats. Our work suggested that hindlimb unweighting mouse model may be used as a model for the study of postflight cardiovascular deconditioning.

  16. Evidence for contractile protein translocation in macrophage spreading, phagocytosis, and phagolysosome formation.

    PubMed

    Hartwig, J H; Davies, W A; Stossel, T P

    1977-12-01

    Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of beta-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle

  17. Quantifying inter-species differences in contractile function through biophysical modelling.

    PubMed

    Tøndel, Kristin; Land, Sander; Niederer, Steven A; Smith, Nicolas P

    2015-03-01

    Animal models and measurements are frequently used to guide and evaluate clinical interventions. In this context, knowledge of inter-species differences in physiology is crucial for understanding the limitations and relevance of animal experimental assays for informing clinical applications. Extensive effort has been put into studying the structure and function of cardiac contractile proteins and how differences in these translate into the functional properties of muscles. However, integrating this knowledge into a quantitative description, formalising and highlighting inter-species differences both in the kinetics and in the regulation of physiological mechanisms, remains challenging. In this study we propose and apply a novel approach for the quantification of inter-species differences between mouse, rat and human. Assuming conservation of the fundamental physiological mechanisms underpinning contraction, biophysically based computational models are fitted to simulate experimentally recorded phenotypes from multiple species. The phenotypic differences between species are then succinctly quantified as differences in the biophysical model parameter values. This provides the potential of quantitatively establishing the human relevance of both animal-based experimental and computational models for application in a clinical context. Our results indicate that the parameters related to the sensitivity and cooperativity of calcium binding to troponin C and the activation and relaxation rates of tropomyosin/crossbridge binding kinetics differ most significantly between mouse, rat and human, while for example the reference tension, as expected, shows only minor differences between the species. Hence, while confirming expected inter-species differences in calcium sensitivity due to large differences in the observed calcium transients, our results also indicate more unexpected differences in the cooperativity mechanism. Specifically, the decrease in the unbinding rate of

  18. Spectroscopic properties of pharmacologically active phenols

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Bel'kov, M. V.; Shadyro, O. I.; Polozov, G. I.; Sorokin, V. L.; Ksendzova, G. A.

    2012-05-01

    The IR Fourier-transform spectra of pharmacologically active phenol molecules in solutions in CCl4 and in the crystalline state have been studied. Phenol derivatives with different directivities and different levels of pharmacological efficiency have been examined. Based on analysis of the IR spectra of screened phenols, the antimicrobial activity of phenols with free hydroxyl groups has been shown to be highest. The high antimicrobial activity of aminophenols is related to the formation of intramolecular hydrogen bonds. For aminophenols that are active against herpesviruses, O-H...N hydrogen bonds are formed in molecules. The main characteristic of the high antiviral activity against A-type influenza is predominance of intramolecular hydrogen bonds of the O-H...O=C type in molecules. Sulfur-containing aminophenols, which manifest activity against HIV infection, are characterized by the occurrence of hydrogen bonds that involve the participation of the OH, NH, and SO2 groups.

  19. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  20. Emergent properties in experiments with active microparticles

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie

    Self-propelled micro-particles are intrinsically out-of-equilibrium. This renders their physics far richer than passive colloids and give rise to the emergence of complex phenomena e.g. collective behavior, swarming... I will present experimental demonstration of emergent properties beyond equilibrium.

  1. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization.

    PubMed

    Grotegut, Chad A; Mao, Lan; Pierce, Stephanie L; Swamy, Geeta K; Heine, R Phillips; Murtha, Amy P

    2016-04-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  2. Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece.

    PubMed

    Pavlović, Dragana R; Branković, Suzana; Kovačević, Nada; Kitić, Dušanka; Veljković, Slavimir

    2011-05-01

    Arbutus unedo leaf is used traditionally for gastrointestinal complaints. Ethanol extracts from Arbutus unedo collected in both Montenegro (AuM) and Greece (AuG) were found to decrease the ileal basal tonus, with AuG producing a significantly higher (p < 0.05) reduction in contractile response to acetylcholine. AuM and AuG relaxed 80 mM K(+) induced contractions and shifted the Ca(++) concentration-response curves to the right, similar to that caused by verapamil, suggesting that the spasmolytic effect was induced through calcium channel inhibition. The antioxidant activity of AuM and AuG and the phenolic content of the extracts and dry plant material were studied, and both extracts were found to possess considerable antioxidant properties. AuG showed a stronger in vitro antioxidative activity in the DPPH assay and in the TBA test. Polyphenol, tannin and flavonoid levels were higher in AuG, supporting the more potent spasmolytic and antioxidative effects, whereas the arbutin content was higher in dry plant material collected in Montenegro.

  3. Comparative study of spasmolytic properties, antioxidant activity and phenolic content of Arbutus unedo from Montenegro and Greece.

    PubMed

    Pavlović, Dragana R; Branković, Suzana; Kovačević, Nada; Kitić, Dušanka; Veljković, Slavimir

    2011-05-01

    Arbutus unedo leaf is used traditionally for gastrointestinal complaints. Ethanol extracts from Arbutus unedo collected in both Montenegro (AuM) and Greece (AuG) were found to decrease the ileal basal tonus, with AuG producing a significantly higher (p < 0.05) reduction in contractile response to acetylcholine. AuM and AuG relaxed 80 mM K(+) induced contractions and shifted the Ca(++) concentration-response curves to the right, similar to that caused by verapamil, suggesting that the spasmolytic effect was induced through calcium channel inhibition. The antioxidant activity of AuM and AuG and the phenolic content of the extracts and dry plant material were studied, and both extracts were found to possess considerable antioxidant properties. AuG showed a stronger in vitro antioxidative activity in the DPPH assay and in the TBA test. Polyphenol, tannin and flavonoid levels were higher in AuG, supporting the more potent spasmolytic and antioxidative effects, whereas the arbutin content was higher in dry plant material collected in Montenegro. PMID:21438047

  4. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    PubMed Central

    Henke, Alex; Franco, Omar E.; Stewart, Grant D.; Riddick, Antony C.P.; Katz, Elad; Hayward, Simon W.; Thomson, Axel A.

    2016-01-01

    Background: Prostate cancer-associated fibroblasts (CAF) can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90) inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2) levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment. PMID:27563925

  5. Immunostimulatory properties and antitumor activities of glucans

    PubMed Central

    VANNUCCI, LUCA; KRIZAN, JIRI; SIMA, PETR; STAKHEEV, DMITRY; CAJA, FABIAN; RAJSIGLOVA, LENKA; HORAK, VRATISLAV; SAIEH, MUSTAFA

    2013-01-01

    New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments. PMID:23739801

  6. Contractile properties of isolated vascular smooth muscle after photoradiation

    SciTech Connect

    Freas, W.; Hart, J.L.; Golightly, D.; McClure, H.; Muldoon, S.M.

    1989-03-01

    The purpose of this study was to characterize the responses of various types of vascular smooth muscle to conditions that would be encountered during photodynamic therapy, namely laser illumination of photosensitizer-pretreated tissue. Vascular smooth muscle obtained from representative canine, rodent, and rabbit vascular beds was cut into rings and placed in organ baths (37 degrees C, aerated with 95% O2-5% CO2). These vessels were pretreated for 30 min with the photosensitizer hematoporphyrin derivative (HpD, 3-30 micrograms/ml) washed, and then exposed to red laser light (633 nm, 1-3.5 mW) for up to 20 min. Under basal tension conditions laser illumination of HpD-pretreated vessels resulted in an increase in tension, whereas laser illumination of vessels not exposed to HpD did not contract. This sustained contraction was not reversed by washing the tissue with fresh Krebs-Ringer solution. Responses to norepinephrine, transmural electrical stimulation, and elevated concentrations of KCl were reduced in blood vessels tested after HpD laser illumination. Laser-induced contractions of canine carotid arteries did not require the presence of an intact vascular endothelium. Vascular effect of these photosensitizers appears to involve the formation of oxygen-derived radicals. This preparation could provide a good model for examining the effects of free radicals on vascular physiology.

  7. Dosimetric properties of activated lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Majchrowski, Andrzej; Malecki, M.; Zmija, Jozef; Warkocki, Stanislaw; Warkocki, Wodzislaw

    1993-10-01

    This paper describes preliminary investigations of Li2B4O7 thermoluminescent phosphors as candidates for gamma radiation dosimetry materials. Single crystals, glasses, and polycrystals of lithium tetraborate activated with different dopants have been investigated.

  8. Muscle fatigue in frog semitendinosus: alterations in contractile function

    NASA Technical Reports Server (NTRS)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.

    PubMed

    Willet, Alaina H; McDonald, Nathan A; Gould, Kathleen L

    2015-12-01

    The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.

  10. Contractile basis of ameboid movement VIII. Aequorin luminescence during ameboid movement, endocytosis, and capping

    SciTech Connect

    Taylor, D.L.; Blinks, J.R.; Reynolds, G.

    1980-08-01

    Aequorin luminescence has been utilized to determine the spatial and temporal fluctuations of the free calcium ion concentration (Ca/sup + +/) in chaos carolinensis during ameboid movement, pinocytosis, and capping. Three types of luminescent signals are detected in cells: continuous luminescence, spontaneous pulses, and stimulated pulses. Continuous luminescence is localized in the tails of actively motile cells, and spontaneous pulses occur primarily over the anterior regions of cells. The localization of both distinct actin structures and sites where (Ca/sup + +/) increases suggests cellular sites of contractile activity.

  11. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  12. Targeted deletion of PTEN in cardiomyocytes renders cardiac contractile dysfunction through interruption of Pink1-AMPK signaling and autophagy.

    PubMed

    Roe, Nathan D; Xu, Xihui; Kandadi, Machender R; Hu, Nan; Pang, Jiaojiao; Weiser-Evans, Mary C M; Ren, Jun

    2015-02-01

    Phosphatase and tensin homolog (PTEN) deleted from chromosome 10 has been implicated in the maintenance of cardiac homeostasis although the underlying mechanism(s) remains elusive. We generated a murine model of cardiomyocyte-specific knockout of PTEN to evaluate cardiac geometry and contractile function, as well as the effect of metformin on PTEN deficiency-induced cardiac anomalies, if any. Cardiac histology, autophagy and related signaling molecules were evaluated. Cardiomyocyte-specific PTEN deletion elicited cardiac hypertrophy and contractile anomalies (echocardiographic and cardiomyocyte contractile dysfunction) associated with compromised intracellular Ca(2+) handling. PTEN deletion-induced cardiac hypertrophy and contractile anomalies were associated with dampened phosphorylation of PTEN-inducible kinase 1 (Pink1) and AMPK. Interestingly, administration of AMPK activator metformin (200mg/kg/d, in drinking H2O for 4weeks) rescued against PTEN deletion-induced geometric and functional defects as well as interrupted autophagy and autophagic flux in the heart. Moreover, metformin administration partially although significantly attenuated PTEN deletion-induced accumulation of superoxide. RNA interference against Pink1 in H9C2 myoblasts overtly increased intracellular ATP levels and suppressed AMPK phosphorylation, confirming the role of AMPK as a downstream target for PTEN-Pink1. Further scrutiny revealed that activation of AMPK and autophagy using metformin and rapamycin, respectively, rescued against PTEN deletion-induced mechanical anomalies with little additive effect. These data demonstrated that cardiomyocyte-specific deletion of PTEN leads to the loss of Pink1-AMPK signaling, development of cardiac hypertrophy and contractile defect. Activation of AMPK rescued against PTEN deletion-induced cardiac anomalies associated with restoration of autophagy and autophagic flux. This article is part of a Special Issue entitled: Autophagy and protein quality control

  13. Statistical Properties of Extreme Solar Activity Intervals

    NASA Astrophysics Data System (ADS)

    Lioznova, A. V.; Blinov, A. V.

    2014-01-01

    A study of long-term solar variability reflected in indirect indices of past solar activity leads to stimulating results. We compare the statistics of intervals of very low and very high solar activity derived from two cosmogenic radionuclide records and look for consistency in their timing and physical interpretation. According to the applied criteria, the numbers of minima and of maxima are 61 and 68, respectively, from the 10Be record, and 42 and 46 from the 14C record. The difference between the enhanced and depressed states of solar activity becomes apparent in the difference in their statistical distributions. We find no correlation between the level or type (minimum or maximum) of an extremum and the level or type of the predecessor. The hypothesis of solar activity as a periodic process on the millennial time scale is not supported by the existing proxies. A new homogeneous series of 10Be measurements in polar ice covering the Holocene would be of great value for eliminating the existing discrepancy in the available solar activity reconstructions.

  14. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.

    PubMed

    Dhawan, Jyotsna; Helfman, David M

    2004-08-01

    Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G(0) arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27(kip1) but not p21(cip1), and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and

  15. Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study.

    PubMed

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W

    2016-09-01

    Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected. PMID:27534882

  16. Modification of abomasum contractility by flavonoids present in ruminants diet: in vitro study.

    PubMed

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W

    2016-09-01

    Flavonoid supplementation is likely to be beneficial in improving rumen fermentation and in reducing the incidence of rumen acidosis and bloat. Flavonoids are also said to increase the metabolic performance during the peripartum period. Ruminants are constantly exposed to flavonoids present in feed. However, it is not clear if these phytochemicals can affect the activity of the gut smooth muscle. Therefore, the aim of the study was to verify the effect of three flavonoids on bovine isolated abomasum smooth muscle. The study was carried out on bovine isolated circular and longitudinal abomasal smooth muscle specimens. All experiments were conducted under isometric conditions. The effect of apigenin, luteolin and quercetin (0.001 to 100 µM) was evaluated on acetylcholine-precontracted preparations. The effect of multiple, but not cumulative, treatment and single treatment with each flavonoid on abomasum strips was compared. Apigenin (0.1 to 100 µM) dose-dependently showed myorelaxation effects. Luteolin and quercetin applied in low doses increased the force of the ACh-evoked reaction. However, if used in high doses in experiments testing a wide range of concentrations, their contractile effect either declined (luteolin) or was replaced by an antispasmodic effect (quercetin). Surprisingly, the reaction induced by flavonoids after repeated exposure to the same phytochemical was not reproducible in experiments testing only single exposure of abomasum strips to the same flavonoid used in a high concentration. Taking into account the physicochemical properties of flavonoids, this data suggests the ability of flavonoids to interfere with cell membranes and, subsequently, to modify their responsiveness. Assuming ruminant supplementation with luteolin or quercetin or their presence in daily pasture, a reduction of the likelihood of abomasum dysmotility should be expected.

  17. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    SciTech Connect

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan Cui, Yong-Yao

    2012-07-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  18. Expansion and concatenation of nonmuscle myosin IIA filaments drive cellular contractile system formation during interphase and mitosis

    PubMed Central

    Fenix, Aidan M.; Taneja, Nilay; Buttler, Carmen A.; Lewis, John; Van Engelenburg, Schuyler B.; Ohi, Ryoma; Burnette, Dylan T.

    2016-01-01

    Cell movement and cytokinesis are facilitated by contractile forces generated by the molecular motor, nonmuscle myosin II (NMII). NMII molecules form a filament (NMII-F) through interactions of their C-terminal rod domains, positioning groups of N-terminal motor domains on opposite sides. The NMII motors then bind and pull actin filaments toward the NMII-F, thus driving contraction. Inside of crawling cells, NMIIA-Fs form large macromolecular ensembles (i.e., NMIIA-F stacks), but how this occurs is unknown. Here we show NMIIA-F stacks are formed through two non–mutually exclusive mechanisms: expansion and concatenation. During expansion, NMIIA molecules within the NMIIA-F spread out concurrent with addition of new NMIIA molecules. Concatenation occurs when multiple NMIIA-Fs/NMIIA-F stacks move together and align. We found that NMIIA-F stack formation was regulated by both motor activity and the availability of surrounding actin filaments. Furthermore, our data showed expansion and concatenation also formed the contractile ring in dividing cells. Thus interphase and mitotic cells share similar mechanisms for creating large contractile units, and these are likely to underlie how other myosin II–based contractile systems are assembled. PMID:26960797

  19. Airway contractility and remodeling: links to asthma symptoms.

    PubMed

    West, Adrian R; Syyong, Harley T; Siddiqui, Sana; Pascoe, Chris D; Murphy, Thomas M; Maarsingh, Harm; Deng, Linhong; Maksym, Geoffrey N; Bossé, Ynuk

    2013-02-01

    Respiratory symptoms are largely caused by obstruction of the airways. In asthma, airway narrowing mediated by airway smooth muscle (ASM) contraction contributes significantly to obstruction. The spasmogens produced following exposure to environmental triggers, such as viruses or allergens, are initially responsible for ASM activation. However, the extent of narrowing of the airway lumen due to ASM shortening can be influenced by many factors and it remains a real challenge to decipher the exact role of ASM in causing asthmatic symptoms. Innovative tools, such as the forced oscillation technique, continue to develop and have been proven useful to assess some features of ASM function in vivo. Despite these technologic advances, it is still not clear whether excessive narrowing in asthma is driven by ASM abnormalities, by other alterations in non-muscle factors or simply because of the overexpression of spasmogens. This is because a multitude of forces are acting on the airway wall, and because not only are these forces constantly changing but they are also intricately interconnected. To counteract these limitations, investigators have utilized in vitro and ex vivo systems to assess and compare asthmatic and non-asthmatic ASM contractility. This review describes: 1- some muscle and non-muscle factors that are altered in asthma that may lead to airway narrowing and asthma symptoms; 2- some technologies such as the forced oscillation technique that have the potential to unveil the role of ASM in airway narrowing in vivo; and 3- some data from ex vivo and in vitro methods that probe the possibility that airway hyperresponsiveness is due to the altered environment surrounding the ASM or, alternatively, to a hypercontractile ASM phenotype that can be either innate or acquired.

  20. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow. PMID:7830505

  1. Biohybrid Thin Films for Measuring Contractility in Engineered Cardiovascular Muscle

    PubMed Central

    Alford, Patrick W.; Feinberg, Adam W.; Sheehy, Sean P.; Parker, Kevin Kit

    2010-01-01

    In vitro cardiovascular disease models need to recapitulate tissue-scale function in order to provide in vivo relevance. We have developed a new method for measuring the contractility of engineered cardiovascular smooth and striated muscle in vitro during electrical and pharmacological stimulation. We present a growth theory-based finite elasticity analysis for calculating the contractile stresses of a 2D anisotropic muscle tissue cultured on a flexible synthetic polymer thin film. Cardiac muscle engineered with neonatal rat ventricular myocytes and paced at 0.5 Hz generated stresses of 9.2 ± 3.5 kPa at peak systole, similar to measurements of the contractility of papillary muscle from adult rats. Vascular tissue engineered with human umbilical arterial smooth muscle cells maintained a basal contractile tone of 13.1 ± 2.1 kPa and generated another 5.1 ± 0.8 kPa when stimulated with endothelin-1. These data suggest that this method may be useful in assessing the efficacy and safety of pharmacological agents on cardiovascular tissue. PMID:20149449

  2. Computational analysis of contractility in engineered heart tissue.

    PubMed

    Mathews, Grant; Sondergaard, Claus; Jeffreys, Angela; Childs, William; Le, Bao Linh; Sahota, Amrit; Najibi, Skender; Nolta, Jan; Si, Ming-Sing

    2012-05-01

    Engineered heart tissue (EHT) is a potential therapy for heart failure and the basis of functional in vitro assays of novel cardiovascular treatments. Self-organizing EHT can be generated in fiber form, which makes the assessment of contractile function convenient with a force transducer. Contractile function is a key parameter of EHT performance. Analysis of EHT force data is often performed manually; however, this approach is time consuming, incomplete and subjective. Therefore, the purpose of this study was to develop a computer algorithm to efficiently and objectively analyze EHT force data. This algorithm incorporates data filtering, individual contraction detection and validation, inter/intracontractile analysis and intersample analysis. We found the algorithm to be accurate in contraction detection, validation and magnitude measurement as compared to human operators. The algorithm was efficient in processing hundreds of data acquisitions and was able to determine force-length curves, force-frequency relationships and compare various contractile parameters such as peak systolic force generation. We conclude that this computer algorithm is a key adjunct to the objective and efficient assessment of EHT contractile function. PMID:22361653

  3. Antimalarial properties of orally active iron chelators.

    PubMed

    Heppner, D G; Hallaway, P E; Kontoghiorghes, G J; Eaton, J W

    1988-07-01

    The appearance of widespread multiple drug resistance in human malaria has intensified the search for new antimalarial compounds. Metal chelators, especially those with high affinity for iron, represent one presently unexploited class of antimalarials. Unfortunately the use of previously identified chelators as antimalarials has been precluded by their toxicity and, in the case of desferrioxamine, the necessity for parenteral administration. The investigators now report that a new class of orally active iron chelators, namely the derivatives of alpha-ketohydroxypyridines (KHPs), are potent antimalarials against cultured Plasmodium falciparum. The KHPs evidently exert this effect by sequestering iron because a preformed chelator:iron complex has no antimalarial action. The pool(s) of iron being sequestered by the chelators have not been identified but may not include serum transferrin. Preincubation of human serum with KHPs followed by removal of the drug results in the removal of greater than 97% of total serum iron. Nonetheless, this serum effectively supports the growth of P falciparum cultures. Therefore the KHPs may exert antimalarial effect through chelation of erythrocytic rather than serum iron pool(s). The investigators conclude that these powerful, orally active iron chelators may form the basis of a new class of antimalarial drugs. PMID:3291984

  4. MDMA induces cardiac contractile dysfunction through autophagy upregulation and lysosome destabilization in rats.

    PubMed

    Shintani-ishida, Kaori; Saka, Kanju; Yamaguchi, Koji; Hayashida, Makiko; Nagai, Hisashi; Takemura, Genzou; Yoshida, Ken-ichi

    2014-05-01

    The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, "ecstasy") abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.

  5. Identification of contractile vacuole proteins in Trypanosoma cruzi.

    PubMed

    Ulrich, Paul N; Jimenez, Veronica; Park, Miyoung; Martins, Vicente P; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N J; Orlando, Ron; Docampo, Roberto

    2011-03-18

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  6. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1.

    PubMed

    Wang, Qiurong; Ren, Jun

    2016-09-01

    Insulin resistance is associated with cardiovascular diseases although the precise mechanisms remain elusive. Akt2, a critical member of the Akt family, plays an essential role in insulin signaling. This study was designed to examine the effect of trehalose, an mTOR-independent autophagy inducer, on myocardial function in an Akt2 knockout-induced insulin resistance model. Adult WT and Akt2 knockout (Akt2(-/-)) mice were administered trehalose (1mg/g/day, i.p.) for two days and were then given 2% trehalose in drinking water for two more months. Echocardiographic and myocardial mechanics, intracellular Ca(2+) properties, glucose tolerance, and autophagy were assessed. Apoptosis and ER stress were evaluated using TUNEL staining, Caspase 3 assay and Western blot. Autophagy and autophagy flux were examined with a focus on p38 mitogen activated protein kinase (MAPK), Forkhead box O (Foxo1) and Akt. Akt2 ablation impaired glucose tolerance, myocardial geometry and function accompanied with pronounced apoptosis, ER stress and dampened autophagy, the effects of which were ameliorated by trehalose treatment. Inhibition of lysosomal activity using bafilomycin A1 negated trehalose-induced induction of autophagy (LC3B-II and p62). Moreover, phosphorylation of p38 MAPK and Foxo1 were upregulated in Akt2(-/-) mice, the effect of which was attenuated by trehalose. Phosphorylation of Akt was suppressed in Akt2(-/-) mice and was unaffected by trehalose. In vitro findings revealed that the p38 MAPK activator anisomycin and the Foxo1 inhibitor (through phosphorylation) AS1842856 effectively masked trehalose-offered beneficial cardiomyocyte contractile response against Akt2 ablation. These data suggest that trehalose may rescue against insulin resistance-induced myocardial contractile defect and apoptosis, via autophagy associated with dephosphorylation of p38 MAPK and Foxo1 without affecting phosphorylation of Akt. PMID:27363949

  7. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate

    PubMed Central

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384

  8. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate.

    PubMed

    Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384

  9. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1996-01-01

    Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.

  10. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  11. The Inhibitory Effect of Botulinum Toxin Type A on Rat Pyloric Smooth Muscle Contractile Response to Substance P In Vitro

    PubMed Central

    Shao, Yu-Feng; Xie, Jun-Fan; Ren, Yin-Xiang; Wang, Can; Kong, Xiang-Pan; Zong, Xiao-Jian; Fan, Lin-Lan; Hou, Yi-Ping

    2015-01-01

    A decrease in pyloric myoelectrical activity and pyloric substance P (SP) content following intrasphincteric injection of botulinum toxin type A (BTX-A) in free move rats have been demonstrated in our previous studies. The aim of the present study was to investigate the inhibitory effect of BTX-A on rat pyloric muscle contractile response to SP in vitro and the distributions of SP and neurokinin 1 receptor (NK1R) immunoreactive (IR) cells and fibers within pylorus. After treatment with atropine, BTX-A (10 U/mL), similar to [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-SP (APTL-SP, 1 μmol/L) which is an NK1R antagonist, decreased electric field stimulation (EFS)-induced contractile tension and frequency, whereas, subsequent administration of APTL-SP did not act on contractility. Incubation with BTX-A at 4 and 10 U/mL for 4 h respectively decreased SP (1 μmol/L)-induced contractions by 26.64% ± 5.12% and 74.92% ± 3.62%. SP-IR fibers and NK1R-IR cells both located within pylorus including mucosa and circular muscle layer. However, fewer SP-fibers were observed in pylorus treated with BTX-A (10 U/mL). In conclusion, BTX-A inhibits SP release from enteric terminals in pylorus and EFS-induced contractile responses when muscarinic cholinergic receptors are blocked by atropine. In addition, BTX-A concentration- and time-dependently directly inhibits SP-induced pyloric smooth muscle contractility. PMID:26501321

  12. Adult progenitor cell transplantation influences contractile performance and calcium handling of recipient cardiomyocytes.

    PubMed

    Lee, Joon; Stagg, Mark A; Fukushima, Satsuki; Soppa, Gopal K R; Siedlecka, Urszula; Youssef, Samuel J; Suzuki, Ken; Yacoub, Magdi H; Terracciano, Cesare M N

    2009-04-01

    Adult progenitor cell transplantation has been proposed for the treatment of heart failure, but the mechanisms effecting functional improvements remain unknown. The aim of this study was to test the hypothesis that, in failing hearts treated with cell transplantation, the mechanical properties and excitation-contraction coupling of recipient cardiomyocytes are altered. Adult rats underwent coronary artery ligation, leading to myocardial infarction and chronic heart failure. After 3 wk, they received intramyocardial injections of either 10(7) green fluorescence protein (GFP)-positive bone marrow mononuclear cells or 5 x 10(6) GFP-positive skeletal myoblasts. Four weeks after injection, both cell types increased ejection fraction and reduced cardiomyocyte size. The contractility of isolated GFP-negative cardiomyocytes was monitored by sarcomere shortening assessment, Ca(2+) handling by indo-1 and fluo-4 fluorescence, and electrophysiology by patch-clamping techniques. Injection of either bone marrow cells or skeletal myoblasts normalized the impaired contractile performance and the prolonged time to peak of the Ca(2+) transient observed in failing cardiomyocytes. The smaller and slower L-type Ca(2+) current observed in heart failure normalized after skeletal myoblast, but not bone marrow cell, transplantation. Measurement of Ca(2+) sparks suggested a normalization of sarcoplasmic reticulum Ca(2+) leak after skeletal myoblast transplantation. The increased Ca(2+) wave frequency observed in failing myocytes was reduced by either bone marrow cells or skeletal myoblasts. In conclusion, the morphology, contractile performance, and excitation-contraction coupling of individual recipient cardiomyocytes are altered in failing hearts treated with adult progenitor cell transplantation. PMID:19181964

  13. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype.

    PubMed

    Nakai, Tomoko; Sakai, Daisuke; Nakamura, Yoshihiko; Nukaga, Tadashi; Grad, Sibylle; Li, Zhen; Alini, Mauro; Chan, Danny; Masuda, Koichi; Ando, Kiyoshi; Mochida, Joji; Watanabe, Masahiko

    2016-08-01

    Characterization of cells is important for facilitating cell-based therapies for degenerative diseases of intervertebral discs. For this purpose, we analyzed mouse annulus fibrosus cells by flowcytometory to detect phenotypic change in their primary cultures. After examination of sixteen cell surface proteins, we focused on CD146 that solely increased during culture expansion. CD146 is known to be a marker for mesenchymal stem cells and for their vascular smooth muscle commitment with expression of contractile phenotype enhanced by SM22α. We sorted CD146+ cells to elucidate their characteristics and the key factors that play a role in this change. Whole cell cultures showed the ability for tripotent differentiation toward mesenchymal lineages, whereas sorted CD146+ cells did not. Expression of CD146 was elevated by addition of transforming growth factor β1, and sorted CD146+ cells expressed higher levels of mRNA for SM22α and Elastin than did CD146- cells. Morphologically, CD146+ cells more broadly deposited extracellular type I collagen than CD146- cells and showed filamentous actin bundles traversing their cytoplasm and cell-cell junctions. Moreover, CD146+ cells demonstrated significantly higher gel contraction properties than CD146- cells when they were embedded in collagen gels. Human annulus fibrosus CD146+ cells also showed higher contractility. Immunohistochemistry determined CD146+ cells localized to the outermost annulus layers of mouse intervertebral disc tissue with co-expression of SM22α. These results suggest that increment of CD146 expression indicates gradual change of cultured annulus fibrosus cells to express a contractile phenotype and that transforming growth factor β1 enhances this cellular commitment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1361-1372, 2016. PMID:27273299

  14. Psychometric Properties of the Commitment to Physical Activity Scale

    ERIC Educational Resources Information Center

    DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley

    2009-01-01

    Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…

  15. Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.

    PubMed

    Moshal, Karni S; Kumar, Munish; Tyagi, Neetu; Mishra, Paras K; Metreveli, Naira; Rodriguez, Walter E; Tyagi, Suresh C

    2009-03-01

    Homocysteine (HCY) activated mitochondrial matrix metalloproteinase-9 and led to cardiomyocyte dysfunction, in part, by inducing mitochondrial permeability (MPT). Treatment with MK-801 [N-methyl-d-aspartate (NMDA) receptor antagonist] ameliorated the HCY-induced decrease in myocyte contractility. However, the role of cardiomyocyte NMDA-receptor 1 (R1) activation in hyperhomocysteinemia (HHCY) leading to myocyte dysfunction was not well understood. We tested the hypothesis that the cardiac-specific deletion of NMDA-R1 mitigated the HCY-induced decrease in myocyte contraction, in part, by decreasing nitric oxide (NO). Cardiomyocyte-specific knockout of NMDA-R1 was generated using cre/lox technology. NMDA-R1 expression was detected by Western blot and confocal microscopy. MPT was determined using a spectrophotometer. Myocyte contractility and calcium transients were studied using the IonOptix video-edge detection system and fura 2-AM loading. We observed that HHCY induced NO production by agonizing NMDA-R1. HHCY induced the MPT by agonizing NMDA-R1. HHCY caused a decrease in myocyte contractile performance, maximal rate of contraction and relaxation, and prolonged the time to 90% peak shortening and 90% relaxation by agonizing NMDA-R1. HHCY decreased contraction amplitude with the increase in calcium concentration. The recovery of calcium transient was prolonged in HHCY mouse myocyte by agonizing NMDA-R1. It was suggested that HHCY increased mitochondrial NO levels and induced MPT, leading to the decline in myocyte mechanical function by agonizing NMDA-R1.

  16. α,β-Unsaturated aldehyde crotonaldehyde triggers cardiomyocyte contractile dysfunction: role of TRPV1 and mitochondrial function.

    PubMed

    Pei, Zhaohui; Zhuang, Zhiqiang; Sang, Hanfei; Wu, Zhenbiao; Meng, Rongsen; He, Emily Y; Scott, Glenda I; Maris, Jackie R; Li, Ruiman; Ren, Jun

    2014-04-01

    Recent evidence has suggested that cigarette smoking is associated with an increased prevalence of heart diseases. Given that cigarette smoking triggers proinflammatory response via stimulation of the capsaicin-sensitive transient receptor potential cation channel TRPV1, this study was designed to evaluate the effect of an essential α,β-unsaturated aldehyde from cigarette smoke crotonaldehyde on myocardial function and the underlying mechanism with a focus on TRPV1 and mitochondria. Cardiomyocyte mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), intracellular Ca2+ decay and SERCA activity. Apoptosis and TRPV1 were evaluated using Western blot analysis. Production of reactive oxygen species (ROS) and DNA damage were measured using the intracellular fluoroprobe 5-(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and 8-hydroxy-2'-deoxyguanosine (8-OHdG), respectively. Our data revealed that crotonaldehyde interrupted cardiomyocyte contractile and intracellular Ca2+ property including depressed PS, ±dL/dt, ΔFFI and SERCA activity, as well as prolonged TR90 and intracellular Ca2+ decay. Crotonaldehyde exposure increased TRPV1 and NADPH oxidase levels, promoted apoptosis, mitochondrial injury (decreased aconitase activity, PGC-1α and UCP-2) as well as production of ROS and 8-OHdG. Interestingly, crotonaldehyde-induced cardiac defect was obliterated by the ROS scavenger glutathione and the TRPV1 inhibitor capsazepine. Capsazepine (not glutathione) ablated crotonaldehyde-induced mitochondrial damage. Capsazepine, glutathione and the NADPH inhibitor apocynin negated crotonaldehyde-induced ROS accumulation. Our data suggest a role of crotonaldehyde compromises cardiomyocyte mechanical function possibly through a TRPV1- and mitochondria-dependent oxidative stress mechanism.

  17. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease.

    PubMed

    Huveneers, Stephan; Daemen, Mat J A P; Hordijk, Peter L

    2015-02-27

    Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.

  18. Comparison of cloned and non-cloned Holstein heifers in muscle contractile and metabolic characteristics.

    PubMed

    Jurie, C; Picard, B; Heyman, Y; Cassar-Malek, I; Chavatte-Palmer, P; Richard, C; Hocquette, J F

    2009-02-01

    Muscle contractile and metabolic characteristics were studied on nine cloned and eight non-cloned (control) heifers. The animals were submitted to repeated biopsies of the semitendinosus (ST) muscle at the ages of 8, 12, 18 and 24 months. The contractile type was determined from the proportion of the different myosin heavy chain (MyHC) isoforms separated by electrophoresis. Glycolytic metabolism was assessed by lactate dehydrogenase (LDH) activity, and oxidative metabolism was assessed by isocitrate dehydrogenase (ICDH), cytochrome-c oxidase (COX) and β-hydroxyacyl-CoA dehydrogenase (HAD) activities. In cloned heifers at 8 months of age, there was a greater proportion of MyHC I (slow oxidative isoform) and MyHC IIa (fast oxido-glycolytic isoform), a lower proportion of MyHC IIx (fast glycolytic isoform), greater COX and HAD activity and a lower LDH/ICDH ratio compared with control heifers. Thus, young cloned heifers had slower muscle types associated with a more oxidative muscular metabolism than control heifers. From 12 months of age onwards, no significant differences were observed between cloned and control heifers. A delay in muscle differentiation and maturation in cloned heifers is hypothesised and discussed.

  19. [The effect of physical properties of chitosan on cell activity and on its mechanics property].

    PubMed

    Tian, Shengli; Ye, Zhiyi

    2012-12-01

    Chitosan is a natural biopolymer and is made up of D-glucosamine subunits linked by beta-(1,4) glycosidic bond. In recent years, the application of chitosan has attracted more and more attention because of its good biological function in cell biology. The properties of chitosan-based biomaterial are attributed to the physical properties and chemical composition of chitosan. The author of this paper summarized recent related studies and progresses of the influence of physical properties of chitosan on cell activity and cell mechanics property at home and abroad. The findings show that most studies mainly focused on the influence of chitosan and cell activity, while few were on cell mechanics property. The related studies of the influence of chitosan on cell will contribute to the explanation for the mechanism of the interaction between chitosan and cell, and provide the theoretical support for the further study.

  20. Quantifying inter-species differences in contractile function through biophysical modelling

    PubMed Central

    Tøndel, Kristin; Land, Sander; Niederer, Steven A; Smith, Nicolas P

    2015-01-01

    Abstract Animal models and measurements are frequently used to guide and evaluate clinical interventions. In this context, knowledge of inter-species differences in physiology is crucial for understanding the limitations and relevance of animal experimental assays for informing clinical applications. Extensive effort has been put into studying the structure and function of cardiac contractile proteins and how differences in these translate into the functional properties of muscles. However, integrating this knowledge into a quantitative description, formalising and highlighting inter-species differences both in the kinetics and in the regulation of physiological mechanisms, remains challenging. In this study we propose and apply a novel approach for the quantification of inter-species differences between mouse, rat and human. Assuming conservation of the fundamental physiological mechanisms underpinning contraction, biophysically based computational models are fitted to simulate experimentally recorded phenotypes from multiple species. The phenotypic differences between species are then succinctly quantified as differences in the biophysical model parameter values. This provides the potential of quantitatively establishing the human relevance of both animal-based experimental and computational models for application in a clinical context. Our results indicate that the parameters related to the sensitivity and cooperativity of calcium binding to troponin C and the activation and relaxation rates of tropomyosin/crossbridge binding kinetics differ most significantly between mouse, rat and human, while for example the reference tension, as expected, shows only minor differences between the species. Hence, while confirming expected inter-species differences in calcium sensitivity due to large differences in the observed calcium transients, our results also indicate more unexpected differences in the cooperativity mechanism. Specifically, the decrease in the unbinding

  1. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  2. Contractility and protein phosphorylation in cardiomyocytes: effects of isoproterenol and AR-L57.

    PubMed

    Hayes, J S; Bowling, N; Boder, G B

    1984-08-01

    The cardiotonic drugs AR-L57 [2-(2,4-dimethoxyphenyl)-1H-imidazo(4,5b)-pyridine] and isoproterenol stimulated contractility in cultured heart cells in concentration-dependent manners; only the effects of isoproterenol were blocked by propranolol. Isoproterenol, but not AR-L57, enhanced the phosphorylation state of seven protein bands [relative molecular weights (MrS) 155,000, 96,000, 27,000, 24,000, 20,000, 16,000, 12,000] and resulted in the dephosphorylation of one protein band (Mr 21,000). Also, only isoproterenol increased the activation states of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase and glycogen phosphorylase. The eight protein bands resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and detected by autoradiography were altered by isoproterenol in time- and concentration-dependent manners. The 24,000-Mr protein substrate phosphorylated in response to isoproterenol was converted to a 12,000-Mr species by heating in the presence of SDS prior to electrophoresis, suggesting that the two substrates were in fact identical proteins. A comparison of the 2-min responses to varying concentrations of isoproterenol resulted in excellent correlations between the phosphorylation states of individual protein bands and contractility. This was true even for the 21,000-Mr species that was dephosphorylated. However, only the 27,000-, 24-12,000-, and 16,000-Mr substrates were phosphorylated rapidly enough to be associated with the onset of the inotropic response. Cultured myocytes are an important feature of these studies as they are 84% pure ventricular cells that remain 100% viable throughout an experiment. Because this system is suitable for biochemical measurements and the effects of agents on heart cell contractility can be determined, it is possible to correlate changes in biochemical parameters with alterations in physiological state.

  3. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex

    PubMed Central

    Arasada, Rajesh; Pollard, Thomas D.

    2014-01-01

    Summary Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but helps to anchor the ring to the plasma membrane. Cdc15p has a lipid binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ~2000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p. PMID:25159149

  4. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  5. In Vivo Assessment of Muscle Contractility in Animal Studies.

    PubMed

    Iyer, Shama R; Valencia, Ana P; Hernández-Ochoa, Erick O; Lovering, Richard M

    2016-01-01

    In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Animal models provide unmitigated access to histological samples, which provide a "direct measure" of damage. However, even with unconstrained access to tissue morphology and biochemistry assays, the findings typically do not account for loss of muscle function. Thus, the most comprehensive measure of the overall health of the muscle is assessment of its primary function, which is to produce contractile force. The majority of animal models testing contractile force have been limited to the muscle groups moving the ankle, with advantages and disadvantages depending on the equipment. Here, we describe in vivo methods to measure torque, to produce a reliable muscle injury, and to follow muscle function within the same animal over time. We also describe in vivo methods to measure tension in the leg and thigh muscles.

  6. In Vivo Assessment of Muscle Contractility in Animal Studies.

    PubMed

    Iyer, Shama R; Valencia, Ana P; Hernández-Ochoa, Erick O; Lovering, Richard M

    2016-01-01

    In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies. Animal models provide unmitigated access to histological samples, which provide a "direct measure" of damage. However, even with unconstrained access to tissue morphology and biochemistry assays, the findings typically do not account for loss of muscle function. Thus, the most comprehensive measure of the overall health of the muscle is assessment of its primary function, which is to produce contractile force. The majority of animal models testing contractile force have been limited to the muscle groups moving the ankle, with advantages and disadvantages depending on the equipment. Here, we describe in vivo methods to measure torque, to produce a reliable muscle injury, and to follow muscle function within the same animal over time. We also describe in vivo methods to measure tension in the leg and thigh muscles. PMID:27492180

  7. Spontaneous Oscillations of Elastic Contractile Materials with Turnover

    NASA Astrophysics Data System (ADS)

    Dierkes, Kai; Sumi, Angughali; Solon, Jérôme; Salbreux, Guillaume

    2014-10-01

    Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.

  8. Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules

    PubMed Central

    Mandelkern, L.

    1967-01-01

    The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598

  9. An Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis

    PubMed Central

    Guglielmi, Giorgia; Barry, Joseph D.; Huber, Wolfgang; De Renzis, Stefano

    2015-01-01

    Summary Morphogenesis of multicellular organisms is driven by localized cell shape changes. How, and to what extent, changes in behavior in single cells or groups of cells influence neighboring cells and large-scale tissue remodeling remains an open question. Indeed, our understanding of multicellular dynamics is limited by the lack of methods allowing the modulation of cell behavior with high spatiotemporal precision. Here, we developed an optogenetic approach to achieve local modulation of cell contractility and used it to control morphogenetic movements during Drosophila embryogenesis. We show that local inhibition of apical constriction is sufficient to cause a global arrest of mesoderm invagination. By varying the spatial pattern of inhibition during invagination, we further demonstrate that coordinated contractile behavior responds to local tissue geometrical constraints. Together, these results show the efficacy of this optogenetic approach to dissect the interplay between cell-cell interaction, force transmission, and tissue geometry during complex morphogenetic processes. PMID:26777292

  10. Characterization of contractile adrenoceptors in the human umbilical artery.

    PubMed

    Bodelsson, G; Stjernquist, M

    1995-08-25

    Adrenoceptors mediating contraction in ring segments of human umbilical arteries from normal term pregnancies were investigated in vitro. Contraction was elicited by (order of potency indicated): noradrenaline = the alpha 2-adrenoceptor agonist oxymetazoline > the alpha 1-adrenoceptor agonist phenylephrine. The alpha 1-adrenoceptor antagonist prazosin antagonized the contraction elicited by noradrenaline and phenylephrine. The alpha 2-adrenoceptor antagonist rauwolscine antagonized the contraction elicited by noradrenaline and oxymetazoline. Oxymetazoline had an efficacy 5 times higher than that of noradrenaline and the 5-hydroxytryptamine receptor antagonist methysergide antagonized the contraction elicited by oxymetazoline. It is suggested that the contractile adrenoceptors in the human umbilical artery consist of both alpha 1 and alpha 2 subtypes. Furthermore, the contractile effect of oxymetazoline seems to be mediated via both alpha 2-adrenoceptors and 5-hydroxytryptamine receptors.

  11. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    NASA Astrophysics Data System (ADS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  12. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  13. Protrusive and Contractile Forces of Spreading Human Neutrophils

    PubMed Central

    Henry, Steven J.; Chen, Christopher S.; Crocker, John C.; Hammer, Daniel A.

    2015-01-01

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil’s morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell’s mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (−20 ± 10 pN/post) than those residing at the geometric perimeter (−106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the

  14. Protrusive and Contractile Forces of Spreading Human Neutrophils.

    PubMed

    Henry, Steven J; Chen, Christopher S; Crocker, John C; Hammer, Daniel A

    2015-08-18

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil's morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell's mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (-20 ± 10 pN/post) than those residing at the geometric perimeter (-106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of

  15. Protrusive and Contractile Forces of Spreading Human Neutrophils.

    PubMed

    Henry, Steven J; Chen, Christopher S; Crocker, John C; Hammer, Daniel A

    2015-08-18

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil's morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell's mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (-20 ± 10 pN/post) than those residing at the geometric perimeter (-106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of

  16. Metamorphosis of the American eel, Anguilla rostrata LeSeur: III. Contractile characteristics of skeletal muscle.

    PubMed

    Egginton, S

    1987-07-01

    Previous work has suggested a common migratory strategy among fishes may involve changes in recruitment pattern of skeletal muscle types, allowing fast muscle to function continuously. In this study no evidence was found for changes in adenine nucleotide metabolism, thought to be important in fatigued muscle, with metamorphosis from the nonmigratory yellow to migratory silver eel in either slow or fast muscle tissue. Myofibrillar ATPase activity was found to be lower than reported values for other teleosts, around 0.075 and 0.17 microM inorganic phosphate mg-1 min-1 for slow and fast muscle, respectively. No change was found in the Ca++-kinetics of the enzyme within either muscle type. Likewise, no change in the contractile performance of fast muscle was evident, arguing against changes in activity pattern. In contrast to mammalian endurance exercise training where major changes in aerobic capacity occur in fast muscle, migratory pre-adaptation in eel appears to be restricted to changes in slow muscle performance. A displacement of the slow muscle force-velocity curve to the right upon metamorphosis results in 30% increase in the tension developed at maximal power output from 2.4 to 3.2 N cm-2. The difference in migratory potential between yellow and silver eels was shown previously to involve an increased aerobic capacity. The change in contractile characteristics may further improve endurance by permitting a portion of the tissue to periodically replenish endogenous energy stores.

  17. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.

    PubMed

    Albini, Sonia; Coutinho, Paula; Malecova, Barbora; Giordani, Lorenzo; Savchenko, Alex; Forcales, Sonia Vanina; Puri, Pier Lorenzo

    2013-03-28

    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.

  18. Isolation and initial characterization of the bipartite contractile vacuole complex from Dictyostelium discoideum.

    PubMed

    Nolta, K V; Steck, T L

    1994-01-21

    The contractile vacuole complex serves to excrete excess cytosolic water from protists. In the amoeba, Dictyostelium discoideum, the organelle had a bipartite morphology: a large main vacuole (bladder) marked by lumenal alkaline phosphatase was surrounded by numerous satellite vacuoles (spongiomes). Bladders and spongiomes have now been purified for the first time. The spongiome membranes had a high density of surface projections identified as catalytically-active vacuolar proton pumps (V-H(+)-ATPase). Spongiomes were resolved from the pump-poor bladders by immunogold buoyant density shift with antibodies to the V-H(+)-ATPase; they contained little protein other than this pump. It appears that, following homogenization, most of the spongiome dissociated from bladders and populated the proton pump-rich membrane fraction called acidosomes. Isolated bladders were enriched > 40-fold in alkaline phosphatase and phosphodiesterase, the activities of which were > 85% latent. Bladders depleted of spongiomes bore several distinctive polypeptides; they also had an excess of the basepieces of the proton pump over the catalytic heads. Bladder membranes were also lipid-rich and had a distinctive lipid composition. We conclude that the contractile vacuole system in Dictyostelium is a complex of discrete, separable bladder and spongiome membranes. The V-H(+)-ATPase in the spongiome may catalyze the primary energy transduction step for pumping water out of the cytoplasm.

  19. Human capacity for explosive force production: neural and contractile determinants.

    PubMed

    Folland, J P; Buckthorpe, M W; Hannah, R

    2014-12-01

    This study assessed the integrative neural and contractile determinants of human knee extension explosive force production. Forty untrained participants performed voluntary and involuntary (supramaximally evoked twitches and octets - eight pulses at 300 Hz that elicit the maximum possible rate of force development) explosive isometric contractions of the knee extensors. Explosive force (F0-150 ms) and sequential rate of force development (RFD, 50-ms epochs) were measured. Surface electromyography (EMG) amplitude was recorded (superficial quadriceps and hamstrings, 50-ms epochs) and normalized (quadriceps to Mmax, hamstrings to EMGmax). Maximum voluntary force (MVF) was also assessed. Multiple linear regressions assessed the significant neural and contractile determinants of absolute and relative (%MVF) explosive force and sequential RFD. Explosive force production exhibited substantial interindividual variability, particularly during the early phase of contraction [F50, 13-fold (absolute); 7.5-fold (relative)]. Multiple regression explained 59-93% (absolute) and 35-60% (relative) of the variance in explosive force production. The primary determinants of explosive force changed during the contraction (F0-50, quadriceps EMG and Twitch F; RFD50-100, Octet RFD0-50; F100-150, MVF). In conclusion, explosive force production was largely explained by predictor neural and contractile variables, but the specific determinants changed during the phase of contraction.

  20. Collective cancer cell invasion induced by coordinated contractile stresses

    PubMed Central

    Valencia, Angela M. Jimenez; Wu, Pei-Hsun; Yogurtcu, Osman N.; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X.; Wirtz, Denis

    2015-01-01

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix. PMID:26528856

  1. Contractile dynamics change before morphological cues during florescence illumination

    PubMed Central

    Knoll, S. G.; Ahmed, W. W.; Saif, T. A.

    2015-01-01

    Illumination can have adverse effects on live cells. However, many experiments, e.g. traction force microscopy, rely on fluorescence microscopy. Current methods to assess undesired photo-induced cell changes rely on qualitative observation of changes in cell morphology. Here we utilize a quantitative technique to identify the effect of light on cell contractility prior to morphological changes. Fibroblasts were cultured on soft elastic hydrogels embedded with fluorescent beads. The adherent cells generated contractile forces that deform the substrate. Beads were used as fiducial markers to quantify the substrate deformation over time, which serves as a measure of cell force dynamics. We find that cells exposed to moderate fluorescence illumination (λ = 540–585 nm, I = 12.5 W/m2, duration = 60 s) exhibit rapid force relaxation. Strikingly, cells exhibit force relaxation after only 2 s of exposure, suggesting that photo-induced relaxation occurs nearly immediately. Evidence of photo-induced morphological changes were not observed for 15–30 min after illumination. Force relaxation and morphological changes were found to depend on wavelength and intensity of excitation light. This study demonstrates that changes in cell contractility reveal evidence of a photo-induced cell response long before any morphological cues. PMID:26691776

  2. Collective cancer cell invasion induced by coordinated contractile stresses.

    PubMed

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.

  3. Soluble miniagrin enhances contractile function of engineered skeletal muscle

    PubMed Central

    Bian, Weining; Bursac, Nenad

    2012-01-01

    Neural agrin plays a pleiotropic role in skeletal muscle innervation and maturation, but its specific effects on the contractile function of aneural engineered muscle remain unknown. In this study, neonatal rat skeletal myoblasts cultured within 3-dimensional engineered muscle tissue constructs were treated with 10 nM soluble recombinant miniagrin and assessed using histological, biochemical, and functional assays. Depending on the treatment duration and onset time relative to the stage of myogenic differentiation, miniagrin was found to induce up to 1.7-fold increase in twitch and tetanus force amplitude. This effect was associated with the 2.3-fold up-regulation of dystrophin gene expression at 6 d after agrin removal and enhanced ACh receptor (AChR) cluster formation, but no change in cell number, expression of muscle myosin, or important aspects of intracellular Ca2+ handling. In muscle constructs with endogenous ACh levels suppressed by the application of α-NETA, miniagrin increased AChR clustering and twitch force amplitude but failed to improve intracellular Ca2+ handling and increase tetanus-to-twitch ratio. Overall, our studies suggest that besides its synaptogenic function that could promote integration of engineered muscle constructs in vivo, neural agrin can directly promote the contractile function of aneural engineered muscle via mechanisms distinct from those involving endogenous ACh.—Bian, W., Bursac, N. Soluble miniagrin enhances contractile function of engineered skeletal muscle. PMID:22075647

  4. IP3 receptors regulate vascular smooth muscle contractility and hypertension

    PubMed Central

    Lin, Qingsong; Zhao, Guiling; Fang, Xi; Peng, Xiaohong; Tang, Huayuan; Wang, Hong; Jing, Ran; Liu, Jie; Ouyang, Kunfu

    2016-01-01

    Inositol 1, 4, 5-trisphosphate receptor–mediated (IP3R-mediated) calcium (Ca2+) release has been proposed to play an important role in regulating vascular smooth muscle cell (VSMC) contraction for decades. However, whether and how IP3R regulates blood pressure in vivo remains unclear. To address these questions, we have generated a smooth muscle–specific IP3R triple-knockout (smTKO) mouse model using a tamoxifen-inducible system. In this study, the role of IP3R-mediated Ca2+ release in adult VSMCs on aortic vascular contractility and blood pressure was assessed following tamoxifen induction. We demonstrated that deletion of IP3Rs significantly reduced aortic contractile responses to vasoconstrictors, including phenylephrine, U46619, serotonin, and endothelin 1. Deletion of IP3Rs also dramatically reduced the phosphorylation of MLC20 and MYPT1 induced by U46619. Furthermore, although the basal blood pressure of smTKO mice remained similar to that of wild-type controls, the increase in systolic blood pressure upon chronic infusion of angiotensin II was significantly attenuated in smTKO mice. Taken together, our results demonstrate an important role for IP3R-mediated Ca2+ release in VSMCs in regulating vascular contractility and hypertension. PMID:27777977

  5. Mechanism of action of Trolox on duodenal contractility.

    PubMed

    Fagundes, D S; Grasa, L; Gonzalo, S; Martinez de Salinas, F; Arruebo, M P; Plaza, M A; Murillo, M D

    2013-12-01

    Trolox is a hydrophilic analogue of vitamin E. The aim of this work was to study the mechanism of action of Trolox on rabbit duodenal spontaneous motility and contractility. The duodenal contractility studies in vitro were carried out in an organ bath. Trolox (12 mM) reduced the amplitude and frequency of spontaneous contractions and the acetylcholine-induced contractions in the longitudinal and circular smooth muscle of rabbit duodenum. Quinine reverted the Trolox-induced (12 mM) reduction on the amplitude and frequency of spontaneous contractions in the longitudinal and circular muscle. Charibdotoxin and glibenclamide reverted only the amplitude of spontaneous contractions in circular muscle of the duodenum. The decrease of ACh-induced contractions evoked by Trolox 12 mM in the longitudinal and circular smooth muscle of the duodenum was antagonized by quinine in longitudinal and circular muscle and by Bay K8644, 1H-[1,2,4]oxadiazolo [4, 3-α]quinoxalin-1-one (ODQ) and nimesulide in circular muscle. We conclude that in the decrease of duodenal contractility induced by Trolox participate K(+) and Ca(2+) channels, adenylyl cyclase, guanylyl cyclase and cyclooxygenase-2.

  6. Collective cancer cell invasion induced by coordinated contractile stresses.

    PubMed

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix. PMID:26528856

  7. Multicellular contractility contributes to the emergence of mesothelioma nodules

    NASA Astrophysics Data System (ADS)

    Czirok, Andras

    Malignant pleural mesothelioma (MPM) nodules arise from the mesothelial lining of the pleural cavity by a poorly understood mechanism. We demonstrate that macroscopic multicellular aggregates, reminiscent of the MPM nodules found in patients, develop when MPM cell lines are cultured at high cell densities for several weeks. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Contractile nodules contain prominent actin cables that can span several cells. Several features of the in vitro MPM nodule development can be explained by a computational model that assumes uniform and steady intercellular contractile forces within a monolayer of cells, and a mechanical load-dependent lifetime of cell-cell contacts. The model behaves as a self-tensioned Maxwell fluid and exhibits an instability that leads to pattern formation. Altogether, our findings suggest that inhibition of the actomyosin system may provide a hitherto not utilized therapeutic approach to affect MPM growth. NIH R01-GM102801.

  8. Effect of pinaverium bromide on stress-induced colonic smooth muscle contractility disorder in rats

    PubMed Central

    Dai, Yun; Liu, Jian-Xiang; Li, Jun-Xia; Xu, Yun-Feng

    2003-01-01

    AIM: To investigate the effect of pinaverium bromide, a L-type calcium channel blocker with selectivity for the gastrointestinal tract on contractile activity of colonic circular smooth muscle in normal or cold-restraint stressed rats and its possible mechanism. METHODS: Cold-restraint stress was conducted on rats to increase fecal pellets output. Each isolated colonic circular muscle strip was suspended in a tissue chamber containing warm oxygenated Tyrode-Ringer solution. The contractile response to ACh or KCl was measured isometrically on ink-writing recorder. Incubated muscle in different concentrations of pinaverium and the effects of pinaverium were investigated on ACh or KCl-induced contraction. Colon smooth muscle cells were cultured from rats and [Ca2+]i was measured in cell suspension using the Ca2+ fluorescent dye fura-2/AM. RESULTS: During stress, rats fecal pellet output increased 61% (P < 0.01). Stimulated with ACh or KCl, the muscle contractility was higher in stress than that in control. Pinaverium inhibited the increment of [Ca2+]i and the muscle contraction in response to ACh or KCl in a dose dependent manner. A significant inhibition of pinaverium to ACh or KCl induced [Ca2+]i increment was observed at 10-6 mol/L. The IC50 values for inhibition of ACh induced contraction for the stress and control group were 1.66 × 10-6 mol/L and 0.91 × 10-6 mol/L, respectively. The IC50 values for inhibition of KCl induced contraction for the stress and control group were 8.13 × 10-7 mol/L and 3.80 × 10-7 mol/L, respectively. CONCLUSION: Increase in [Ca2+]i of smooth muscle cells is directly related to the generation of contraction force in colon. L-type Ca2+ channels represent the main route of Ca2+ entry. Pinaverium inhibits the calcium influx through L-type channels; decreases the contractile response to many kinds of agonists and regulates the stress-induced colon hypermotility. PMID:12632518

  9. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries. PMID:26008718

  10. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries.

  11. Monitoring contractile dermal lymphatic activity following uniaxial mechanical loading.

    PubMed

    Gray, R J; Worsley, P R; Voegeli, D; Bader, D L

    2016-09-01

    It is proposed that direct mechanical loading can impair dermal lymphatic function, contributing to the causal pathway of pressure ulcers. The present study aims to investigate the effects of loading on human dermal lymphatic vessels. Ten participants were recruited with ages ranging from 24 to 61 years. Participants had intradermal Indocyanine Green injections administrated between left finger digits. Fluorescence was imaged for 5min sequences with an infra-red camera prior to lymph vessel loading, immediately after axial loading (60mmHg) and following a recovery period. Image processing was employed to defined transient lymph packets and compare lymph function between each test phase. The results revealed that between 1-8 transient events (median=4) occurred at baseline, with a median velocity of 8.1mm/sec (range 4.1-20.1mm/sec). Immediately post-loading, there was a significant (p<0.05) reduction in velocity (median=6.4, range 2.2-13.5mm/sec), although the number of transient lymph packages varied between participants. During the recovery period the number (range 1-7) and velocity (recovery median=9.6mm/sec) of transient packets were largely restored to basal values. The present study revealed that some individuals present with impaired dermal lymphatic function immediately after uniaxial mechanical loading. More research is needed to investigate the effects of pressure and shear on lymphatic vessel patency. PMID:27245749

  12. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness.

    PubMed

    van Soest, A J Knoek; Rozendaal, Leonard A

    2008-07-01

    Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.

  13. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  14. AP180-mediated trafficking of Vamp7B limits homotypic fusion of Dictyostelium contractile vacuoles.

    PubMed

    Wen, Yujia; Stavrou, Irene; Bersuker, Kirill; Brady, Rebecca J; De Lozanne, Arturo; O'Halloran, Theresa J

    2009-10-01

    Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane-coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.

  15. Environment and properties of obscured and unobscured active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Taormina, M.; Bornancini, C.

    We analyze the properties of obscured and unobscured active galactic nuclei selected using mid-infrared colors in the redshift range 1 < z < 3. We find that obscured objects are located in a denser local galaxy environment compared to the unobscured sample.

  16. Cardiomyocyte-Specific Deletion of Endothelin Receptor A Rescues Ageing-Associated Cardiac Hypertrophy and Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Ceylan-Isik, Asli F.; Dong, Maolong; Zhang, Yingmei; Dong, Feng; Turdi, Subat; Nair, Sreejayan; Yanagisawa, Masashi; Ren, Jun

    2013-01-01

    Cardiac ageing is manifested as cardiac remodeling and contractile dysfunction although precise mechanisms remain elusive. This study was designed to examine the role of endothelin-1 (ET-1) in ageing-associated myocardial morphological and contractile defects. Echocardiographic and cardiomyocyte contractile properties were evaluated in young (5–6 mo) and old (26–28 mo) C57BL/6 wild-type and cardiomyocyte-specific ETA receptor knockout (ETAKO) mice. Cardiac ROS production and histology were examined. Our data revealed that ETAKO mice displayed an improved survival. Ageing increased plasma levels of ET-1 and Ang II, compromised cardiac function (fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/ relengthening and prolonged relengthening) and intracellular Ca2+ handling (reduced intracellular Ca2+ release and decay), the effects of which with the exception of ET-1 and Ang II levels was improved by ETAKO. Histological examination displayed cardiomyocyte hypertrophy and interstitial fibrosis associated with cardiac remodeling in aged C57 mice, which were alleviated in ETAKO mice. Ageing promoted ROS generation, protein damage, ER stress, upregulated GATA4, ANP, NFATc3, and the autophagosome cargo protein p62, downregulated intracellular Ca2+ regulatory proteins SERCA2a and phospholamban as well as the autophagic markers Beclin-1, Atg7, Atg5 and LC3BII, which were ablated by ETAKO. ET-1 triggered a decrease in autophagy and increased hypertrophic markers in vitrothe effect of which were reversed by the ETA receptor antagonist BQ123 and the autophagy inducer rapamycin. Antagonism of ETA but not ETB receptor rescued cardiac ageing, which was negated by autophagy inhibition. Taken together, our data suggest that cardiac ETA receptor ablation protects against ageing-associated myocardial remodeling and contractile dysfunction possibly through autophagy regulation. PMID:23381122

  17. The effect of sodium removal on the contractile response of the guinea-pig taenia coli to carbachol.

    PubMed Central

    Brading, A F; Burnett, M; Sneddon, P

    1980-01-01

    1. The effects of Na-free solutions (using Li, Tris, sucrose or Mg as Na substitutes) on the contractile responses, membrane depolarization and 42K efflux produced by carbachol in the smooth muscle of the guinea-pig taenia coli have been investigated. The effect of these Na-free solutions on intracellular ion content of the muscle has also been studied. 2. Na removal induced a pattern of changes in the tone of the muscle characteristic of the substitute used, probably reflecting changes in transmembrane Ca fluxes involving Na. 3. Contractile responses to 10 sec application of 5 x 10(-5) M-carbachol were greatly reduced in Na-free solutions with all the Na substitutes used. This did not correlate with reduction in membrane depolarization or 42K efflux produced by the drug in the various Na-free medial used. 4. Intracellular Na seems important for maintaining the contractile response, since in Na-free solutions cellular Na levels and contractile responses were better maintained at 13 degrees than 34 degrees C and in tissues stimulated with carbachol every 10 min the final magnitude of the response was related to cellular Na content. If, however, the tissues was left unstimulated in Na-free Mg or sucrose solution a large response could still be obtained when cellular Na content was very low. A model is described which could account for these results in terms of an intracellular Ca store released by carbachol and requiring intracellular Na. 5. In tissues continuously exposed to 10(-4) M-carbachol Na removal, even for only 10 sec, produced rapid relaxation, probably secondary to changes in electrical properties of the membrane caused by removal of external Na. PMID:7463367

  18. Comparison of pulsatile and continuous ritodrine administration: effects on uterine contractility and beta-adrenergic receptor cascade.

    PubMed

    Caritis, S N; Chiao, J P; Kridgen, P

    1991-04-01

    In this study we compare the uterine contractility and beta-adrenergic receptor effects of identical doses of ritodrine administered intermittently or continuously for 24 hours in pregnant sheep. Ritodrine was administered intravenously to five animals as a pulse, 16 micrograms/kg every 1.5 hours, whereas five other animals received ritodrine as a continuous infusion of 0.18 microgram/kg/min. Ritodrine plasma concentrations at steady state were comparable in both groups and averaged 18 ng/ml. Animals receiving ritodrine pulses demonstrated no alteration of myometrial beta-adrenergic receptors or adenylyl cyclase activity, and ritodrine inhibited oxytocin-induced contractility comparably at 4 and 24 hours. Animals receiving ritodrine continuously had a significant decrease in myometrial beta-adrenergic receptors and adenylyl cyclase activity, yet ritodrine inhibition of oxytocin-induced uterine contractility was sustained for 24 hours. Oxytocin receptors were not affected by ritodrine administration and were similar in both groups. At the dose studied, oxytocin-induced contractions are comparably inhibited by ritodrine for 24 hours whether the drug is given continuously or in a pulsatile fashion.

  19. Patterned Contractile Forces Promote Epidermal Spreading and Regulate Segment Positioning during Drosophila Head Involution.

    PubMed

    Czerniak, Natalia Dorota; Dierkes, Kai; D'Angelo, Arturo; Colombelli, Julien; Solon, Jérôme

    2016-07-25

    Epithelial spreading is a fundamental mode of tissue rearrangement occurring during animal development and wound closure. It has been associated either with the collective migration of cells [1, 2] or with actomyosin-generated forces acting at the leading edge (LE) and pulling the epithelial tissue [3, 4]. During the process of Drosophila head involution (HI), the epidermis spreads anteriorly to envelope the head tissues and fully cover the embryo [5]. This results in epidermal segments of equal width that will give rise to the different organs of the fly [6]. Here we perform a quantitative analysis of tissue spreading during HI. Combining high-resolution live microscopy with laser microsurgery and genetic perturbations, we show that epidermal movement is in part, but not solely, driven by a contractile actomyosin cable at the LE. Additional driving forces are generated within each segment by a gradient of actomyosin-based circumferential tension. Interfering with Hedgehog (Hh) signaling can modulate this gradient, thus suggesting the involvement of polarity genes in the regulation of HI. In particular, we show that disruption of these contractile forces alters segment widths and leads to a mispositioning of segments. Within the framework of a physical description, we confirm that given the geometry of the embryo, a patterned profile of active circumferential tensions can indeed generate propelling forces and control final segment position. Our study thus unravels a mechanism by which patterned tensile forces can regulate spreading and positioning of epithelial tissues. PMID:27397891

  20. Contractile effects of 3,4-methylenedioxymethamphetamine on the human internal mammary artery.

    PubMed

    Silva, Sónia; Carvalho, Félix; Fernandes, Eduarda; Antunes, Manuel J; Cotrim, Maria Dulce

    2016-08-01

    Since the late 1980s numerous reports have detailed adverse reactions to the use of 3,4-methylenedioxymethamphetamine (MDMA) associated with cardiovascular collapse and sudden death, following ventricular tachycardia and hypertension. For a better understanding of the effects of MDMA on the cardiovascular system, it is critical to determine their effects at the vasculature level, including the transporter or neurotransmitter systems that are most affected at the whole range of drug doses. With this purpose in mind, the aim of our study was to evaluate the contractile effect of MDMA in the human internal mammary artery, the contribution of SERT for this effect and the responsiveness of this artery to 5-HT in the presence of MDMA. We have also studied the possible involvement of 5-HT2 receptors on the MDMA contractile effect in this human blood vessel using ketanserin. Our results showed that MDMA contracted the studied human's internal mammary artery in a SERT-independent form, through activation of 5-HT2A receptors. Considering the high plasma concentrations achieved in heavy users or in situations of acute exposure to drugs, this effect is probably involved in the cardiovascular risk profile of this psychostimulant, especially in subjects with pre-existing cardiovascular disease. PMID:27079619

  1. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    NASA Astrophysics Data System (ADS)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  2. Dynamics of myosin II organization into cortical contractile networks and fibers

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  3. Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation

    PubMed Central

    Kannan, Nivetha

    2015-01-01

    The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components. PMID:26504173

  4. Oncometabolite d-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart.

    PubMed

    Karlstaedt, Anja; Zhang, Xiaotian; Vitrac, Heidi; Harmancey, Romain; Vasquez, Hernan; Wang, Jing Han; Goodell, Margaret A; Taegtmeyer, Heinrich

    2016-09-13

    Hematologic malignancies are frequently associated with cardiac pathologies. Mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a subset of acute myeloid leukemia patients, causing metabolic and epigenetic derangements. We have now discovered that altered metabolism in leukemic cells has a profound effect on cardiac metabolism. Combining mathematical modeling and in vivo as well as ex vivo studies, we found that increased amounts of the oncometabolite d-2-hydroxyglutarate (D2-HG), produced by IDH2 mutant leukemic cells, cause contractile dysfunction in the heart. This contractile dysfunction is associated with impaired oxidative decarboxylation of α-ketoglutarate, a redirection of Krebs cycle intermediates, and increased ATP citrate lyase (ACL) activity. Increased availability of D2-HG also leads to altered histone methylation and acetylation in the heart. We propose that D2-HG promotes cardiac dysfunction by impairing α-ketoglutarate dehydrogenase and induces histone modifications in an ACL-dependent manner. Collectively, our results highlight the impact of cancer cell metabolism on function and metabolism of the heart. PMID:27582470

  5. Relationship between anticoagulant activities and polyanionic properties of rabbit thrombomodulin.

    PubMed

    Bourin, M C; Ohlin, A K; Lane, D A; Stenflo, J; Lindahl, U

    1988-06-15

    Rabbit thrombomodulin displays three distinct blood anticoagulant activities: it promotes the activation of protein C by thrombin (protein C activation cofactor activity); it promotes the inactivation of thrombin by thrombin (direct anticoagulant activity). The effects on these activities of mouse anti-thrombomodulin monoclonal antibodies and of the heparin-neutralizing proteins, platelet factor 4, histidine-rich glycoprotein, and S-protein, were investigated. One of the antibodies, which did not influence the functional properties of thrombomodulin, was used as an immunoaffinity ligand for purification of the protein. Two other antibodies, which were found to abrogate the protein C activation cofactor activity of the purified thrombomodulin, also abolished the antithrombin-dependent and the direct anticoagulant activities. The heparin-neutralizing proteins all inhibited the two latter activities, albeit to a varying extent, but did not appreciably affect the activation of protein C. These results are interpreted in relation to our previous finding that rabbit thrombomodulin contains an acidic domain, tentatively identified as a sulfated glycosaminoglycan (Bourin, M.-C., Boffa, M.-C., Björk, I., and Lindahl, U. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5924-5928). It is proposed that the acidic domain interacts with thrombin at the protein C activation site and that this interaction is a prerequisite to the expression of direct as well as antithrombin-dependent anticoagulant activity. The interaction is not essential to, but compatible with, the activation of protein C. Experiments involving treatment of thrombomodulin with various glycanases or with nitrous acid, followed by measurement of anticoagulant activities, indicated that the acidic domain is constituted by a sulfated galactosaminoglycan and not by a heparin-related polysaccharide as previously suggested.

  6. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  7. Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Thoresen, Todd; Gardel, Margaret L.; Dinner, Aaron R.

    2012-06-01

    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic motor head detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the “contractile units” associated with this process. Consistent with these results, our reconstituted actomyosin bundles show contraction at relatively high motor density, and we observe buckling at the predicted length scale.

  8. Non-neuronal, but atropine-sensitive ileal contractile responses to short-chain fatty acids: age-dependent desensitization and restoration under inflammatory conditions in mice.

    PubMed

    Yajima, Masako; Kimura, Shunsuke; Karaki, Shinichiro; Nio-Kobayashi, Junko; Tsuruta, Takeshi; Kuwahara, Atsukazu; Yajima, Takaji; Iwanaga, Toshihiko

    2016-04-01

    Intestinal epithelial cells sense short-chain fatty acids (SCFAs) to secrete non-neuronal acetylcholine (ACh). However, the roles of luminalSCFAs and epithelialACh under normal and pathological conditions remain unknown. We examined ileal contractile responses toSCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses toSCFAs in 1-day-old pups to 7-week-old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7-week-old mice. ThemRNAexpression levels of aSCFAactivate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter-like protein 4 (CTL4) were measured using real-time quantitativeRT-PCRAChE was analyzed by histochemical and optical enzymatic assays. Atropine-sensitive ileal contractile responses toSCFAs occurred in all 1-day-old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7-week-old mice was abolished in the presence of theAChE inhibitor, eserine, which was consistent with increasedAChE activity after weaning. Ileal contractions toSCFAs in adult mice were restored byLPS, which significantly increased the epithelialmRNAexpression of Chat andCTL4. Atropine-sensitive ileal contractile responses toSCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up-regulated expression ofAChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelialACh. PMID:27053293

  9. Cell motion, contractile networks, and the physics of interpenetrating reactive flow.

    PubMed Central

    Dembo, M; Harlow, F

    1986-01-01

    In this paper we propose a physical model of contractile biological polymer networks based on the notion of reactive interpenetrating flow. We show how our model leads to a mathematical formulation of the dynamical laws governing the behavior of contractile networks. We also develop estimates of the various parameters that appear in our equations, and we discuss some elementary predictions of the model concerning the general scaling principles that pertain to the motions of contractile networks. PMID:3730497

  10. The role of microtubules in contractile ring function

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Paulsen, A. Q.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.

  11. Caveolin-3 Promotes a Vascular Smooth Muscle Contractile Phenotype

    PubMed Central

    Gutierrez-Pajares, Jorge L.; Iturrieta, Jeannette; Dulam, Vipin; Wang, Yu; Pavlides, Stephanos; Malacari, Gabriella; Lisanti, Michael P.; Frank, Philippe G.

    2015-01-01

    Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle (SM) cells are believed to play an essential role in the development of these illnesses. Vascular SM cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature, contractile SM cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of SM cell phenotype. Caveolin-3 is expressed in vivo in normal arterial SM cells, but its expression appears to be lost in cultured SM cells. Our data show that caveolin-3 expression in the A7r5 SM cell line is associated with increased expression of contractility markers such as SM α-actin, SM myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing SM cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic SM cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating SM function in atherosclerosis and restenosis. PMID:26664898

  12. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization.

    PubMed

    Hien, Tran Thi; Turczyńska, Karolina M; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F; Albinsson, Sebastian

    2016-02-12

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.

  13. Effects of calcium, sodium and potassium ions on contractility of isolated atria and their responses to noradrenaline.

    PubMed

    Toda, N

    1969-06-01

    1. Rabbit left atrial preparations driven electrically at different rates were used for studies on inotropic effects of cations, drugs and coupled pacing. Sino-atrial node-atrial preparations were used for investigating the chronotropic effect of noradrenaline.2. The contractile tension-driving rate relationship was moved upwards by an elevation of [Ca(++)]o, coupled pacing and noradrenaline. In preparations exposed to Na(+)-poor and K(+)-free solutions the contractile strength at low driving rates (6 to 30 c/min) was markedly enhanced, but at high rates (120 to 240 c/min) it was not influenced. The contractile strength was reduced at low [Ca(++)]o and at high [K(+)]o.3. The positive inotropic effect of noradrenaline was markedly inhibited by a reduction of [Ca(++)]o and to some extent by a reduction of [K(+)]o. The noradrenaline-inotropy was not appreciably affected by an elevation of [Ca(++)]o and a reduction of [Na(+)]o.4. Cardiac excitability studied in preparations driven at high rates was enhanced by noradrenaline, a reduction of [K(+)]o and an elevation of [Ca(++)]o, but was reduced at low [Ca(++)]o, low [Na(+)]o and high [K(+)]o.5. The positive chronotropic response to noradrenaline was enhanced at high [Ca(++)]o, low [Na(+)]o and low [K(+)]o, but was reduced in solutions deficient in Ca(++) or rich in K(+).6. Inotropic effects of the ions and of coupled pacing were compared with those of ouabain. It is suggested that characteristic changes in the tension-rate curve seen in Na(+)-poor, K(+)-free and ouabain-containing solutions are correlated with an inhibition of active processes in the cardiac cell membrane, which affect ionic movements across it. It seems likely that mechanisms mediating adrenergic responses of the contractile tissue and the S-A node are associated with [Ca(++)]o.

  14. Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility

    PubMed Central

    Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras; Samanta, Saheli; Roby, Katherine F.; Dawn, Buddhadeb; Rajasingh, Johnson

    2015-01-01

    Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs. PMID:26237415

  15. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.

    PubMed

    Brook, Bindi S

    2014-04-15

    Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of "force transmission pathways"; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior.

  16. High-throughput screening for modulators of cellular contractile force†

    PubMed Central

    Park, Chan Young; Zhou, Enhua H.; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J.; Marinkovic, Aleksandar; Tschumperlin, Daniel J.; Burger, Stephanie; Frykenberg, Matthew; Butler, James P.; Stamer, W. Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J.

    2015-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signalling intermediates with poorly defined relationships to such a physiological endpoint. Using cellular force as the target, here we report a new screening technology and demonstrate its applications using human airway smooth muscle cells in the context of asthma and Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery. PMID:25953078

  17. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    SciTech Connect

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro; Bartolome, Maria Visitacion; Fernandes, Aurelia Araujo; Cachofeiro, Victoria; Lahera, Vicente; Salaices, Mercedes; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2011-09-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small

  18. Contractile and electromyographic characteristics of rat plantaris motor unit types during fatigue in situ.

    PubMed Central

    Gardiner, P F; Olha, A E

    1987-01-01

    1. The ventral root dissection technique was used to obtain contractile and electromyogram (e.m.g.) characteristics of ninety-five plantaris motor units in situ in pentobarbitone-anaesthetized rats (n = 20). 2. Motor units demonstrated a wide spectrum of sizes, contractile speeds, and fatigue indices, and were categorized in the same manner as cat hind-limb motor units. Fast-fatigable (f.f.) and fast-intermediate fatigue resistant (f.i.) motor units constituted 20.2 and 25.5% of the motor unit population but together generated over 75% of the cumulative tetanic force. Fast-fatigue resistant (f.r.) and slow motor units composed 43.6 and 10.6% of the population while producing less than 25% of the aggregate tetanic force. 3. Only f.f. and a portion of f.i. motor units demonstrated extensive e.m.g. amplitude reductions during a standard fatigue test. Mean percentage e.m.g. decrease (from the first spike of the first burst to the last spike of the last burst) was 74.0 +/- 27.7% for f.f. units and 28.3 +/- 31.0% (mean +/- S.D.) for f.i. motor units. Relationships between percentage e.m.g. decline and motor unit size (tetanic force) showed significant (P less than 0.01) positive correlations in f.f. (r = 0.71) and f.i. (r = 0.69) motor units. 4. Backward extrapolation of the time course of the force-e.m.g. relationship during the fatigue test revealed that declines in e.m.g. may explain 15, 21 and 66% of the force losses in f.r., f.i. and f.f. motor units. Slow motor units were fatigue resistant and demonstrated a mean e.m.g. decline of 4.3 +/- 6.2%. 5. Indirectly stimulated whole muscle was more fatigable than a composite constructed from motor unit data because of more severe e.m.g. amplitude reductions in the former. 6. The motor unit mechanical and electrical responses during the fatigue test do not summate linearly during whole muscle contractile activity. This is most likely due to the presence, during whole muscle activity, of metabolic changes during the fatigue

  19. Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters.

    PubMed

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air-water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect.

  20. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  1. Lidocaine and structure-related mexiletine induce similar contractility-enhancing effects in ischaemia-reperfusion injured equine intestinal smooth muscle in vitro.

    PubMed

    Tappenbeck, Karen; Hoppe, Susanne; Hopster, Klaus; Kietzmann, Manfred; Feige, Karsten; Huber, Korinna

    2013-06-01

    Postoperative ileus (POI) is a severe complication following small intestinal surgery in horses. It was hypothesised that prokinetic effects of lidocaine, the most commonly chosen drug for treatment of POI, resulted from drug integration into smooth muscle (SM) cell membranes, thereby modulating cell membrane properties. This would probably depend on the structural and lipophilic characteristics of lidocaine. To assess the influence of molecular structure and lipophilicity on prokinetic effects in vitro, the current study compared the effects of lidocaine with four structure-related drugs, namely, mexiletine, bupivacaine, tetracaine and procaine. The response to cumulative drug administration and reversibility of effects were tested by measuring isometric contractile performance of equine jejunal circular SM strips, challenged by a standardised, artificial in vivo ischaemia-reperfusion injury. A second set of SM strips were incubated with the different drugs to determine changes in creatine kinase (CK) release. All drugs caused a drug-specific increase in contractility, although only lidocaine and mexiletine induced similar concentration-dependent curve progressions, significantly reduced CK release, and featured shorter recovery times of tissue contractility after washing, compared to bupivacaine and tetracaine. In was concluded that the structural and lipophilic similarity of mexiletine and lidocaine were responsible for the similar effects of these drugs on SM contractility and cell membrane permeability, which supported the hypothesis that prokinetic effects of lidocaine are based on interactions with SM cell membranes modulated by these features. PMID:23265867

  2. Mesenteric lymph from rats with trauma-hemorrhagic shock causes abnormal cardiac myocyte function and induces myocardial contractile dysfunction.

    PubMed

    Sambol, Justin T; Lee, Marlon A; Jiang, Mingshan; Dosi, Garima; Dong, Wei; Deitch, Edwin A; Yatani, Atsuko

    2011-09-01

    Myocardial contractile dysfunction develops following trauma-hemorrhagic shock (T/HS). We have previously shown that, in a rat fixed pressure model of T/HS (mean arterial pressure of 30-35 mmHg for 90 min), mesenteric lymph duct ligation before T/HS prevented T/HS-induced myocardial contractile depression. To determine whether T/HS lymph directly alters myocardial contractility, we examined the functional effects of physiologically relevant concentrations of mesenteric lymph collected from rats undergoing trauma-sham shock (T/SS) or T/HS on both isolated cardiac myocytes and Langendorff-perfused whole hearts. Acute application of T/HS lymph (0.1-2%), but not T/SS lymph, induced dual inotropic effects on myocytes with an immediate increase in the amplitude of cell shortening (1.4 ± 0.1-fold) followed by a complete block of contraction. Similarly, T/HS lymph caused dual, positive and negative effects on cellular Ca²⁺ transients. These effects were associated with changes in the electrophysiological properties of cardiac myocytes; T/HS lymph initially prolonged the action potential duration (action potential duration at 90% repolarization, 3.3 ± 0.4-fold), and this was followed by a decrease in the plateau potential and membrane depolarization. Furthermore, intravenous infusion of T/HS lymph, but not T/SS lymph, caused myocardial contractile dysfunction at 24 h after injection, which mimicked actual T/HS-induced changes; left ventricular developed pressure (LVDP) and the maximal rate of LVDP rise and fall (±dP/dt(max)) were decreased and inotropic response to Ca²⁺ was blunted. However, the contractile responsiveness to β-adrenergic receptor stimulation in the T/HS lymph-infused hearts remained unchanged. These results suggest that T/HS lymph directly causes negative inotropic effects on the myocardium and that T/HS lymph-induced changes in myocyte function are likely to contribute to the development of T/HS-induced myocardial dysfunction.

  3. Mesenteric lymph from rats with trauma-hemorrhagic shock causes abnormal cardiac myocyte function and induces myocardial contractile dysfunction

    PubMed Central

    Sambol, Justin T.; Lee, Marlon A.; Jiang, Mingshan; Dosi, Garima; Dong, Wei; Deitch, Edwin A.

    2011-01-01

    Myocardial contractile dysfunction develops following trauma-hemorrhagic shock (T/HS). We have previously shown that, in a rat fixed pressure model of T/HS (mean arterial pressure of 30–35 mmHg for 90 min), mesenteric lymph duct ligation before T/HS prevented T/HS-induced myocardial contractile depression. To determine whether T/HS lymph directly alters myocardial contractility, we examined the functional effects of physiologically relevant concentrations of mesenteric lymph collected from rats undergoing trauma-sham shock (T/SS) or T/HS on both isolated cardiac myocytes and Langendorff-perfused whole hearts. Acute application of T/HS lymph (0.1–2%), but not T/SS lymph, induced dual inotropic effects on myocytes with an immediate increase in the amplitude of cell shortening (1.4 ± 0.1-fold) followed by a complete block of contraction. Similarly, T/HS lymph caused dual, positive and negative effects on cellular Ca2+ transients. These effects were associated with changes in the electrophysiological properties of cardiac myocytes; T/HS lymph initially prolonged the action potential duration (action potential duration at 90% repolarization, 3.3 ± 0.4-fold), and this was followed by a decrease in the plateau potential and membrane depolarization. Furthermore, intravenous infusion of T/HS lymph, but not T/SS lymph, caused myocardial contractile dysfunction at 24 h after injection, which mimicked actual T/HS-induced changes; left ventricular developed pressure (LVDP) and the maximal rate of LVDP rise and fall (±dP/dtmax) were decreased and inotropic response to Ca2+ was blunted. However, the contractile responsiveness to β-adrenergic receptor stimulation in the T/HS lymph-infused hearts remained unchanged. These results suggest that T/HS lymph directly causes negative inotropic effects on the myocardium and that T/HS lymph-induced changes in myocyte function are likely to contribute to the development of T/HS-induced myocardial dysfunction. PMID:21700891

  4. Type VI secretion system: secretion by a contractile nanomachine

    PubMed Central

    Basler, Marek

    2015-01-01

    The type VI secretion systems (T6SS) are present in about a quarter of all Gram-negative bacteria. Several key components of T6SS are evolutionarily related to components of contractile nanomachines such as phages and R-type pyocins. The T6SS assembly is initiated by formation of a membrane complex that binds a phage-like baseplate with a sharp spike, and this is followed by polymerization of a long rigid inner tube and an outer contractile sheath. Effectors are preloaded onto the spike or into the tube during the assembly by various mechanisms. Contraction of the sheath releases an unprecedented amount of energy, which is used to thrust the spike and tube with the associated effectors out of the effector cell and across membranes of both bacterial and eukaryotic target cells. Subunits of the contracted sheath are recycled by T6SS-specific unfoldase to allow for a new round of assembly. Live-cell imaging has shown that the assembly is highly dynamic and its subcellular localization is in certain bacteria regulated with a remarkable precision. Through the action of effectors, T6SS has mainly been shown to contribute to pathogenicity and competition between bacteria. This review summarizes the knowledge that has contributed to our current understanding of T6SS mode of action. PMID:26370934

  5. Time course analysis of mechanical ventilation-induced diaphragm contractile muscle dysfunction in the rat

    PubMed Central

    Corpeno, R; Dworkin, B; Cacciani, N; Salah, H; Bergman, H-M; Ravara, B; Vitadello, M; Gorza, L; Gustafson, A-M; Hedström, Y; Petersson, J; Feng, H-Z; Jin, J-P; Iwamoto, H; Yagi, N; Artemenko, K; Bergquist, J; Larsson, L

    2014-01-01

    Controlled mechanical ventilation (CMV) plays a key role in triggering the impaired diaphragm muscle function and the concomitant delayed weaning from the respirator in critically ill intensive care unit (ICU) patients. To date, experimental and clinical studies have primarily focused on early effects on the diaphragm by CMV, or at specific time points. To improve our understanding of the mechanisms underlying the impaired diaphragm muscle function in response to mechanical ventilation, we have performed time-resolved analyses between 6 h and 14 days using an experimental rat ICU model allowing detailed studies of the diaphragm in response to long-term CMV. A rapid and early decline in maximum muscle fibre force and preceding muscle fibre atrophy was observed in the diaphragm in response to CMV, resulting in an 85% reduction in residual diaphragm fibre function after 9–14 days of CMV. A modest loss of contractile proteins was observed and linked to an early activation of the ubiquitin proteasome pathway, myosin:actin ratios were not affected and the transcriptional regulation of myosin isoforms did not show any dramatic changes during the observation period. Furthermore, small angle X-ray diffraction analyses demonstrate that myosin can bind to actin in an ATP-dependent manner even after 9–14 days of exposure to CMV. Thus, quantitative changes in muscle fibre size and contractile proteins are not the dominating factors underlying the dramatic decline in diaphragm muscle function in response to CMV, in contrast to earlier observations in limb muscles. The observed early loss of subsarcolemmal neuronal nitric oxide synthase activity, onset of oxidative stress, intracellular lipid accumulation and post-translational protein modifications strongly argue for significant qualitative changes in contractile proteins causing the severely impaired residual function in diaphragm fibres after long-term mechanical ventilation. For the first time, the present study

  6. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  7. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  8. Protonophore properties of hyperforin are essential for its pharmacological activity

    PubMed Central

    Sell, Thomas S.; Belkacemi, Thabet; Flockerzi, Veit; Beck, Andreas

    2014-01-01

    Hyperforin is a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), recommended as a treatment for a range of ailments including mild to moderate depression. Part of its action has been attributed to TRPC6 channel activation. We found that hyperforin induces TRPC6-independent H+ currents in HEK-293 cells, cortical microglia, chromaffin cells and lipid bilayers. The latter demonstrates that hyperforin itself acts as a protonophore. The protonophore activity of hyperforin causes cytosolic acidification, which strongly depends on the holding potential, and which fuels the plasma membrane sodium-proton exchanger. Thereby the free intracellular sodium concentration increases and the neurotransmitter uptake by Na+ cotransport is inhibited. Additionally, hyperforin depletes and reduces loading of large dense core vesicles in chromaffin cells, which requires a pH gradient in order to accumulate monoamines. In summary the pharmacological actions of the “herbal Prozac” hyperforin are essentially determined by its protonophore properties shown here. PMID:25511254

  9. Protonophore properties of hyperforin are essential for its pharmacological activity.

    PubMed

    Sell, Thomas S; Belkacemi, Thabet; Flockerzi, Veit; Beck, Andreas

    2014-01-01

    Hyperforin is a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), recommended as a treatment for a range of ailments including mild to moderate depression. Part of its action has been attributed to TRPC6 channel activation. We found that hyperforin induces TRPC6-independent H(+) currents in HEK-293 cells, cortical microglia, chromaffin cells and lipid bilayers. The latter demonstrates that hyperforin itself acts as a protonophore. The protonophore activity of hyperforin causes cytosolic acidification, which strongly depends on the holding potential, and which fuels the plasma membrane sodium-proton exchanger. Thereby the free intracellular sodium concentration increases and the neurotransmitter uptake by Na(+) cotransport is inhibited. Additionally, hyperforin depletes and reduces loading of large dense core vesicles in chromaffin cells, which requires a pH gradient in order to accumulate monoamines. In summary the pharmacological actions of the "herbal Prozac" hyperforin are essentially determined by its protonophore properties shown here. PMID:25511254

  10. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  11. Orchestrated content release from Drosophila glue-protein vesicles by a contractile actomyosin network.

    PubMed

    Rousso, Tal; Schejter, Eyal D; Shilo, Ben-Zion

    2016-02-01

    Releasing content from large vesicles measuring several micrometres in diameter poses exceptional challenges to the secretory system. An actomyosin network commonly coats these vesicles, and is thought to provide the necessary force mediating efficient cargo release. Here we describe the spatial and temporal dynamics of the formation of this actomyosin coat around large vesicles and the resulting vesicle collapse, in live Drosophila melanogaster salivary glands. We identify the Formin family protein Diaphanous (Dia) as the main actin nucleator involved in generating this structure, and uncover Rho as an integrator of actin assembly and contractile machinery activation comprising this actomyosin network. High-resolution imaging reveals a unique cage-like organization of myosin II on the actin coat. This myosin arrangement requires branched-actin polymerization, and is critical for exerting a non-isotropic force, mediating efficient vesicle contraction.

  12. Sphincter Contractility After Muscle-Derived Stem Cells Autograft into the Cryoinjured Anal Sphincters of Rats

    PubMed Central

    Kang, Sung-Bum; Lee, Haet Nim; Lee, Ji Young; Park, Jun-Seok; Lee, Hye Seung

    2008-01-01

    Purpose This study was designed to determine whether the injection of muscle-derived stem cells into the anal sphincter can improve functional properties in a fecal incontinence rat model. Methods Cryoinjured rats were utilized as a fecal incontinence model. The gastrocnemius muscles of normal three-week-old female Sprague-Dawley rats were used for the purification of the muscle-derived stem cells. The experimental group was divided into three subgroups: normal control; cryoinjured; and muscle-derived stem cells (3 × 106 cells) injection group of cryoinjured rats. All groups were subsequently employed in contractility experiments using muscle strips from the anal sphincter, one week after preparation. Results Contractility in the cryoinjured group was significantly lower than in the control after treatment with acetylcholine and KCl. In the muscle-derived stem cells injection group, contraction amplitude was higher than in the cryoinjured group but not significantly (20.5 ± 21.3 vs. 17.3 ± 3.4 g per gram tissue, with acetylcholine (10−4 mol/l); 31 ± 14.2 vs. 18.4 ± 7.9 g per gram tissue, with KCl (10−4 mol/l)). PKH-26-labeled transplanted cells were detected in all of the grafted sphincters. Differentiated muscle masses stained positively for alpha smooth muscle actin and myosin heavy chain at the muscle-derived stem cells injection sites. Conclusions This is the first study reporting that autologous muscle-derived stem cell grafts may be a tool for improving anal sphincter function. PMID:18536965

  13. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  14. Inhibition of the contractile action of bradykinin on isolated smooth muscle preparations by derivatives of low molecular weight peptides.

    PubMed

    Claeson, G; Fareed, J; Larsson, C; Kindel, G; Arielly, S; Simonsson, R; Messmore, H L; Balis, J U

    1979-01-01

    The carbonyl terminal tripeptide sequence of bradykinin (Pro-Phe-Arg) is molecularly manipulated to obtain agents with potent antagonistic activity towards the smooth muscle contractile activity of bradykinin. Screening of various peptide derivatives revealed that heptyl amides or esters of H-D-Pro-Phe-Arg, and H-D-Phe-Phe-Arg possessed relatively stronger antibradykinin activity on the isolated smooth muscle preparation. The parent tripeptides, H-D-Pro-Phe-Arg-OH, and H-D-Phe-Phe-Arg-OH, and their amino acid components, i.e. D-Proline, D-Phenylalanine, L-Phenylalanine and Arginine, did not possess any antibradykinin activity in concentrations of up to 10(-4) M. When the heptyl derivatives of these peptides were incubated with either heparinized or citrated whole blood or plasma, the antibradykinin activity was not lost. Incubation of these peptide derivatives with either carboxypeptidase A or B did not result in any loss of the pharmacological effect. However, pancreatic protease extract produced a significant loss of the anti-oxytocic action on the isolated rat uterus preparation. H-D-Pro-Phe-Arg-NH-lauryl derivative also blocked the action of bradykinin and this effect sustained for a longer period of time comparative to the blockade with H-D-Pro-Phe-Arg-NH-heptyl derivative. In concentrations of 10(-7) M and 10(-8) M and 1 min incubation, which blocked the contractile action of bradykinin (1 nmole) on the isolated guinea pig ileum, these peptide derivatives did not block the action of acetylcholine, histamine, and serotonin. However, in concentrations of about 10(-6) M and higher with 5 min. incubation histamin is also blocked. On the isolated rat uterus preparation the contractile action of acetylcholine, angiotensin, oxytocin and vasopressin was blocked at concentrations of 10(-6) M. These findings warrant a differential pharmacological evaluation and in vivo testing of these peptide derivatives to investigate their therapeutic potential.

  15. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  16. Contractile effect of TRPA1 receptor agonists in the isolated mouse intestine.

    PubMed

    Penuelas, Angelica; Tashima, Kimihito; Tsuchiya, Shizuko; Matsumoto, Kenjiro; Nakamura, Tomonori; Horie, Syunji; Yano, Shingo

    2007-12-01

    TRPA1 is a member of the transient receptor potential (TRP) channel family expressed in sensory neurons. The present study focused on the effects of TRPA1 activation on contractile responses in isolated mouse intestine preparations. The jejunum, ileum, and proximal and distal colon were surgically isolated from male ddY mice. Intestinal motility was recorded as changes in isotonic tension. TRPA1, TRPM8, and TRPV1 expressions were examined by reverse transcription-polymerase chain reaction (RT-PCR). A TRPA1 agonist allyl isothiocyanate (AITC) dose-dependently induced contractions in the proximal and distal colon, whereas in the jejunum and ileum, even 100 muM AITC caused very little contraction. Likewise, a TRPA1 and TRPM8 agonist icilin, a TRPA1 agonist allicin, and a TRPV1 agonist capsaicin induced contractions in the colon. However, a TRPM8 agonist menthol induced long-lasting relaxation in the colon. Repeated exposure to AITC produced desensitization of its own contraction in the colon. Moreover, contractions induced by AITC generate cross-desensitization with icilin and capsaicin. Tetrodotoxin completely abolished AITC-induced contractions in the colon, whereas atropine significantly attenuated AITC-induced contractions in the distal colon, but not in the proximal colon. Menthol-induced relaxation in the colon was not inhibited by tetrodotoxin and atropine. RT-PCR analysis revealed the expression of TRPA1 and TRPV1, but not TRPM8, throughout the mouse intestine. These results suggest that TRPA1, but not TRPM8, are functionally expressed in the enteric nervous system throughout the mouse intestine on neurons that may also co-express TRPV1, yet the contractile responses to TRPA1 activation differ depending on their location along the intestine.

  17. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    , termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  18. Frequency dependence of power and its implications for contractile function of muscle fibers from the digital flexors of horses

    PubMed Central

    Butcher, Michael T.; Bertram, John E.A.; Syme, Douglas A.; Hermanson, John W.; Chase, P. Bryant

    2014-01-01

    Abstract The digital flexors of horses must produce high force to support the body weight during running, and a need for these muscles to generate power is likely limited during locomotion over level ground. Measurements of power output from horse muscle fibers close to physiological temperatures, and when cyclic strain is imposed, will help to better understand the in vivo performance of the muscles as power absorbers and generators. Skinned fibers from the deep (DDF) and superficial (SDF) digital flexors, and the soleus (SOL) underwent sinusoidal oscillations in length over a range of frequencies (0.5–16 Hz) and strain amplitudes (0.01–0.06) under maximum activation (pCa 5) at 30°C. Results were analyzed using both workloop and Nyquist plot analyses to determine the ability of the fibers to absorb or generate power and the frequency dependence of those abilities. Power absorption was dominant at most cycling frequencies and strain amplitudes in fibers from all three muscles. However, small amounts of power were generated (0.002–0.05 Wkg−1) at 0.01 strain by all three muscles at relatively slow cycling frequencies: DDF (4–7 Hz), SDF (4–5 Hz) and SOL (0.5–1 Hz). Nyquist analysis, reflecting the influence of cross‐bridge kinetics on power generation, corroborated these results. The similar capacity for power generation by DDF and SDF versus lower for SOL, and the faster frequency at which this power was realized in DDF and SDF fibers, are largely explained by the fast myosin heavy chain isoform content in each muscle. Contractile function of DDF and SDF as power absorbers and generators, respectively, during locomotion may therefore be more dependent on their fiber architectural arrangement than on the physiological properties of their muscle fibers. PMID:25293602

  19. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat

    PubMed Central

    McDonald, Fiona B.; Dempsey, Eugene M.; O'Halloran, Ken D.

    2016-01-01

    Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis. PMID:27462274

  20. Influence of gender on ethanol-induced ventricular myocyte contractile depression in transgenic mice with cardiac overexpression of alcohol dehydrogenase.

    PubMed

    Duan, Jinhong; Esberg, Lucy B; Ye, Gang; Borgerding, Anthony J; Ren, Bonnie H; Aberle, Nicholas S; Epstein, Paul N; Ren, Jun

    2003-03-01

    Acute ethanol exposure depresses ventricular contractility and contributes to alcoholic cardiomyopathy in both men and women chronically consuming ethanol. However, a gender-related difference in the severity of myopathy exists with female being more sensitive to ethanol-induced tissue damage. Acetaldehyde (ACA), the major oxidized product of ethanol, has been implicated to play a role in the pathogenesis and gender-related difference of alcoholic cardiomyopathy, possibly due to its direct cardiac effect and interaction with estrogen. This study was designed to compare the effects of cardiac overexpression of alcohol dehydrogenase (ADH), which converts ethanol into ACA, on the cardiac contractile response to ethanol in ventricular myocytes isolated from age-matched adult male and female transgenic (ADH) and wild-type (FVB) mice. Mechanical properties were measured with an IonOptix SoftEdge system. ACA production was assessed by gas chromatography. The ADH myocytes from both genders exhibited similar mechanical properties but a higher efficacy to produce ACA compared to FVB myocytes. Exposure to ethanol (80-640 mg/dl) for 60 min elicited concentration-dependent decrease of cell shortening in both FVB and ADH groups. The ethanol-induced depression on cell shortening was significantly augmented in female but not male ADH group. ADH transgene did not exacerbate the ethanol-induced inhibition of maximal velocity of shortening/relengthening in either gender. In addition, neither ethanol nor ADH transgene affect the duration of shortening and relengthening in male or female mice. These data suggest that females may be more sensitive to ACA-induced cardiac contractile depression than male, which may attribute to the gender-related difference of alcoholic cardiomyopathy.

  1. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    PubMed

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism.

  2. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness

    PubMed Central

    Lautscham, Lena A.; Kämmerer, Christoph; Lange, Janina R.; Kolb, Thorsten; Mark, Christoph; Schilling, Achim; Strissel, Pamela L.; Strick, Reiner; Gluth, Caroline; Rowat, Amy C.; Metzner, Claus; Fabry, Ben

    2015-01-01

    In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. PMID:26331248

  3. Psychometric properties of the Arab Heritage Activity Card Sort.

    PubMed

    Hamed, Razan; Holm, Margo B

    2013-03-01

    The Activity Card Sort is a valid and reliable assessment tool that was created to assess Participation. It has been translated to several languages and adapted to different international cultures. The most recent version of this tool is the Arabic Heritage Activity Card Sort (A-ACS). The purpose of this study was to establish the psychometric properties of the new Arabic version in Jordanian adults. Forty three Jordanian patients with multiple sclerosis (MS) and 62 healthy adults were recruited to test the psychometric properties of the tool. The A-ACS correlated moderately with the participation index of the Mayo-Portland Adaptability Inventory (r = -0.458, p < 0.00) (concurrent validity), was able to discriminate between patients and healthy participants on the current and retained levels of participation (F = 5.09, p < 0.03; F = 6.01, p < 0.02, respectively) (discriminative validity), and correlated moderately with the total scores of the Mayo-Portland Adaptability Inventory (r = -0.458, p < 0.00) and the total score on the Arabic version of the self-report Performance Assessment of Self-care Skills (r = 0.581, p < 0.00) (convergent validity). The tool also showed good test-retest reliability (r = 0.80, p < 0.00) and excellent internal consistency (α = 0.90). The Arabic Heritage of the Activity Card Sort is a valid and reliable tool for Arabic-speaking occupational therapists to use when assessing participation in Jordanian patients with MS or healthy adults. Limitations of this study include using only one diagnostic group from Jordan and examining only the Recovery and Community Versions of the tool. Future studies are needed to examine further psychometric properties for patients with different diagnoses and from different countries in the Arabic region for all three versions of the A-ACS.

  4. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  5. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy.

    PubMed

    Akima, Hiroshi; Lott, Donovan; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Arpan, Ishu; Bendixen, Roxanna; Lee Sweeney, H; Walter, Glenn; Vandenborne, Krista

    2012-01-01

    The purpose of this study was to assess the contractile and non-contractile content in thigh muscles of patients with Duchenne muscular dystrophy (DMD) and determine the relationship with functional abilities. Magnetic resonance images of the thigh were acquired in 28 boys with DMD and 10 unaffected boys. Muscle strength, timed functional tests, and the Brookes Lower Extremity scale were also assessed. Non-contractile content in the DMD group was significantly greater than in the control group for six muscles, including rectus femoris, biceps femoris-long head and adductor magnus. Non-contractile content in the total thigh musculature assessed by MRI correlated with the Brookes scale (r(s)=0.75) and supine-up test (r(s)=0.68), as well as other functional measures. An age-related specific torque increase was observed in the control group (r(s)=0.96), but not the DMD (r(s)=0.06). These findings demonstrate that MRI measures of contractile and non-contractile content can provide important information about disease progression in DMD. PMID:21807516

  6. Immunoenhancing properties and antiviral activity of 7-deazaguanosine in mice.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Gilbert, J; Burger, R A; Jin, A; Sharma, B S; Ramasamy, K; Revankar, G R; Cottam, H B; Jolley, W B

    1991-01-01

    The nucleotide analog 7-deazaguanosine has not previously been reported to possess biological (antiviral or antitumor) properties in cell culture or in vivo. Up to 10(5) U of interferon per ml was detected in mouse sera 1 to 4 h following oral (200-mg/kg of body weight) and intraperitoneal (50-mg/kg) doses of the compound. 7-Deazaguanosine also caused significant activation of natural killer and phagocytic cells but did not augment T- and B-cell blastogenesis. Intraperitoneal treatments of 50, 100, and 200 mg/kg/day administered 24 and 18 h before virus inoculation were highly protective in mice inoculated with lethal doses of Semliki Forest or San Angelo viruses. Less but still significant survivor increases were evident in treated mice infected with banzi or encephalomyocarditis viruses. In most cases, the degree of antiviral activity was similar to that exhibited by the biological response modifier 7-thia-8-oxoguanosine. 7-Thia-8-oxoguanosine was more potent than 7-deazaguanosine against encephalomyocarditis virus in mice, however. Oral efficacy was achieved with 7-deazaguanosine treatments of greater than or equal to 100 mg/kg against all virus infections, whereas 7-thia-8-oxoguanosine is reported to be devoid of oral activity in rodents. Thus, 7-deazaguanosine represents the first reported orally active nucleoside biological response modifier exhibiting broad-spectrum antiviral activity against particular types of RNA viruses. PMID:1707603

  7. Swarming Bristle-Bots: Exploring Properties of Active Matter

    NASA Astrophysics Data System (ADS)

    Forstner, Martin B.; Beasock, Damian

    Active Matter describes an ubiquitous class of non-equilibrium systems that encompasses a diverse range of phenomena in the living and non-living realm. Examples are microscopic bio-filaments and their associated motor proteins, flocks of birds and fish, vibrated rods and disks, or nanoscale colloids actuated by catalytic activity on their surface. What unifies these systems is that they are all composed of self-driven units. In consequence, these systems are not driven into non-equilibrium by energy input at their boundary, but by local energy injection. As fascinating as these systems are, there are currently barely any laboratory systems that allow for controlled experiments in dry active matter. That is, systems not immersed in a fluid that can be observed without specialized equipment. Here we present a two-dimensional `active matter' system consisting of hundreds of macroscopic (~0.05 m long), modified, commercially available bristle-bots. We show that this swarm of toys classifies as active matter as it exhibits properties such as dynamic phase separation. Because of their straight forward implementation, their size and controllability, such swarms can not only answer scientific questions, but they have great potential as educational tools in teaching labs and classrooms.

  8. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    PubMed

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted.

  9. Beneficial effect of medicinal plants on the contractility of post-hypoxic isolated guinea pig atria - Potential implications for the treatment of ischemic-reperfusion injury.

    PubMed

    Bipat, Robbert; Toelsie, Jerry R; Magali, Indira; Soekhoe, Rubaina; Stender, Karin; Wangsawirana, Angelique; Oedairadjsingh, Krishan; Pawirodihardjo, Jennifer; Mans, Dennis R A

    2016-08-01

    Context Ischemic-reperfusion injury is accompanied by a decreased contractility of the myocardium. Positive-inotropic agents have proven useful for treating this condition but may exert serious side-effects. Objective In this study, aqueous preparations from Abelmoschus esculentus L. Moench (Malvaceae), Annona muricata L. (Annonaceae), Bixa orellana L. (Bixaceae), Cecropia peltata L. (Moraceae), Erythrina fusca Lour. (Fabaceae), Psidium guajava L. (Myrtaceae) and Terminalia catappa L. (Combretaceae) were evaluated for their ability to improve the decreased contractility of isolated guinea pig atria after hypoxic stress. Materials and methods Guinea pig atria isolated in Ringer-Locke buffer gassed with 100% O2 at 30 °C were exposed for 5 min to hypoxia, then allowed to recover in oxygenated buffer alone or containing a single plant extract (0.001-1 mg/mL). The contractility (g/s) and beating frequency (beats/min), as well as troponin C contents of the bathing solution (ng/mL), were determined and expressed as means ± SDs. Results The extracts of A. muricata, B. orellana, C. peltata and T. catappa caused an increase in the contractility compared to untreated atria of 340 ± 102%, 151 ± 13%, 141 ± 14% and 238 ± 44%, respectively. However, the latter two preparations increased the troponin C contents of the bathing solution to 36 ± 11 and 69 ± 33, compared to the value of 11 ± 3 ng/mL found with untreated atria. Conclusions Preparations from A. muricata and B. orellana may possess positive-inotropic properties which may improve the contractility of the post-hypoxic myocardium. Studies to assess their usefulness in ischemic-reperfusion injury are warranted. PMID:26730936

  10. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: an ex vivo study.

    PubMed

    Pandy, Vijayapandi; Narasingam, Megala; Kunasegaran, Thubasni; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1-40 mg/mL), scopoletin (1-200 μg/mL), and rutin hydrate (0.6-312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α 1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60-100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5-5 mg/mL) and rutin hydrate (0.5-5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC.

  11. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype.

    PubMed

    Li, Jingan; Zhang, Kun; Chen, Huiqing; Liu, Tao; Yang, Ping; Zhao, Yuancong; Huang, Nan

    2014-05-01

    The method of stent implantation is currently considered an effective means of treating atherosclerosis. However, implanting of cardiovascular stent often leads to intimal breakage and hyperplasia. The phenomenon that vascular smooth muscle cells (SMCs) transform from contractile to synthetic phenotype becomes a serious obstacle to intimal recovery. To improve how SMCs transform from a synthetic to contractile phenotype, a technique of coimmobilization was used to form type IV collagen (CoIV) and hyaluronic acid (HA) coating on the widely used stent material, titanium (Ti). In this work, several bio-functional coatings made of CoIV/HA mixtures in different ratios were fabricated on the Ti surface. The quantitative characterization of CoIV showed that introducing HA could enhance the amount of the immobilized CoIV on the alkali activated Ti (TiOH) surface. The immunofluorescence staining results of myosin heavy chain (MHC) and DAPI showed that the coating of CoIV/HA in ratios of 200 μg/ml (M200) and 500 μg/ml (M500) also could promote SMCs expressing more contractile phenotype compared with TiOH/CoIV control samples, while the AO/PI staining results indicated that SMCs on the M200 and M500 samples showed less apoptosis ratio. Thus, we hope that this study can provide more helpful exploration and application for promoting the SMC contractile phenotype on the cardiovascular stents. PMID:24656374

  12. Effect of Noni (Morinda citrifolia Linn.) Fruit and Its Bioactive Principles Scopoletin and Rutin on Rat Vas Deferens Contractility: An Ex Vivo Study

    PubMed Central

    Narasingam, Megala; Murugan, Dharmani Devi; Mohamed, Zahurin

    2014-01-01

    This study examined the effect of methanolic extract of Morinda citrifolia Linn. (MMC) and its bioactive principles, scopoletin and rutin, on dopamine- and noradrenaline-evoked contractility in isolated rat vas deferens preparations. MMC (1–40 mg/mL), scopoletin (1–200 μg/mL), and rutin hydrate (0.6–312.6 μg/mL) dose-dependently inhibited the contractility evoked by submaximal concentrations of both dopamine and noradrenaline, respectively. Haloperidol and prazosin, reference dopamine D2, and α1-adrenoceptors antagonists significantly reversed the dopamine- and noradrenaline-induced contractions, respectively, in a dose-dependent manner. Interestingly, MMC per se at higher doses (60–100 mg/mL) showed dose-dependent contractile response in rat vas deferens which was partially inhibited by high doses of haloperidol but not by prazosin. These results demonstrated the biphasic effects of MMC on dopaminergic system; that is, antidopaminergic effect at lower concentrations (<40 mg/mL) and dopaminergic agonistic effect at higher concentrations (>60 mg/mL). However, similar contractile response at high doses of scopoletin (0.5–5 mg/mL) and rutin hydrate (0.5–5 mg/mL) per se was not observed. Therefore, it can be concluded that the bioactive principles of MMC, scopoletin, and rutin might be responsible for the antidopaminergic and antiadrenergic activities of MMC. PMID:25045753

  13. X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction.

    PubMed

    Ochala, Julien; Ravenscroft, Gianina; McNamara, Elyshia; Nowak, Kristen J; Iwamoto, Hiroyuki

    2015-12-01

    In humans, mutant skeletal muscle α-actin proteins are associated with contractile dysfunction, skeletal muscle weakness and a wide range of primarily skeletal muscle diseases. Despite this knowledge, the exact molecular mechanisms triggering the contractile dysfunction remain unknown. Here, we aimed to unravel these. Hence, we used a transgenic mouse model expressing a well-described D286G mutant skeletal muscle α-actin protein and recapitulating the human condition of contractile deregulation and severe skeletal muscle weakness. We then recorded and analyzed the small-angle X-ray diffraction patterns of isolated membrane-permeabilized myofibers. Results showed that upon addition of Ca(2+), the intensity changes of the second (1/19 nm(-1)) and sixth (1/5.9 nm(-1)) actin layer lines and of the first myosin meridional reflection (1/14.3 nm(-1)) were disrupted when the thin-thick filament overlap was optimal (sarcomere length of 2.5-2.6 μm). However these reflections were normal when the thin and thick filaments were not interacting (sarcomere length>3.6 μm). These findings demonstrate, for the first time, that the replacement of just one amino acid in the skeletal muscle α-actin protein partly prevents actin conformational changes during activation, disrupting the strong binding of myosin molecules. This leads to a limited myosin-related tropomyosin movement over the thin filaments, further affecting the amount of cross-bridges, explaining the contractile dysfunction. PMID:26407659

  14. ACTIVE STATE OF MUSCLE IN IODOACETATE RIGOR

    PubMed Central

    Mauriello, George E.; Sandow, Alexander

    1959-01-01

    Frog sartorius muscles, equilibrated to 2 x 10-4 M iodoacetic acid-Ringer's solution and activated by a series of twitches or a long tetanus, perform a rigor response consisting in general of a contractile change which plateaus and is then automatically reversed. Isotonic rigor shortening obeys a force-velocity relation which, with certain differences in value of the constants, accords with Hill's equation for this relation. Changes in rigidity during either isotonic or isometric rigor response show that the capacity of the rigor muscle to bear a load increases more abruptly than the corresponding onset of the ordinarily recorded response, briefly plateaus, and then decays. A quick release of about 1 mm. applied at any instant of isometric rigor output causes the tension to drop instantaneously to zero and then redevelop, the rate of redevelopment varying as does the intensity of the load-bearing capacity. These results demonstrate that rigor mechanical responses result from interaction of a passive, undamped series elastic component, and a contractile component with active state properties like those of normal contraction. Adenosinetriphosphate is known to break down in association with development of the rigor active state. This is discussed in relation to the apparent absence of ATP splitting in normal activation of the contractile component. PMID:13654738

  15. Biological activities and medicinal properties of Gokhru (Pedalium murex L.).

    PubMed

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-07-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation.

  16. Rocket effluent - Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager I and II launches. The aerosol's morphology, concentration and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a subfreezing thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei. Their consequences for potential inadvertant weather modification demand additional study.

  17. Rocket effluent: Its ice nucleation activity and related properties

    NASA Technical Reports Server (NTRS)

    Parungo, F. P.; Allee, P. A.

    1978-01-01

    To investigate the possibility of inadvertent weather modification from rocket effluent, aerosol samples were collected from an instrumented aircraft subsequent to the Voyager 1 and 2 launches. The aerosol's morphology, concentration, and size distribution were examined with an electron microscope. The elemental compositions of individual particles were analyzed with an X-ray energy spectrometer. Ice nucleus concentration was measured with a thermal diffusion chamber. The particles' physical and chemical properties were related to their ice nucleation activity. A laboratory experiment on rocket propellant exhaust was conducted under controlled conditions. Both laboratory and field experimental results indicated that rocket propellant exhaust can produce active ice nuclei and modify local weather in suitable meteorological conditions.

  18. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  19. Contractility of glycerinated Amoeba proteus and Chaos-chaos.

    PubMed

    Rinaldi, R; Opas, M; Hrebenda, B

    1975-05-01

    Immediate contact with large volumes of cold 50% (v/v) buffered glycerol preserved typical ameboid shape of Chaos chaos and Amoeba proteus with no visible distortions. These technics allowed determination of the contraction sites in these glycerinated models upon applications of ATP-Ca-Mg-solutions. The ectoplasmic tube was the main site of contraction. Preliminary EM investigations revealed thick and thin filaments, associated with the ectoplasmic tube near the plasma-lemma, which appeared to be the basis for the contractility of the ectoplasmic tube. There was no predominant contraction of the pseudopodial tips or the endoplasm in these models. The changes of volume were as much as 50%, and in some cases were not accompanied by any change in the length of the ameba; however, lengthwise contractions of the ectoplasmic tube in some amebae occurred to as much as 25%. The data substantiate a basic requirement of the ectoplasmic tube contraction theory of ameboid locomotion.

  20. Effects of hindlimb unweighting on the mechanical and structure properties of the rat abdominal aorta

    NASA Technical Reports Server (NTRS)

    Papadopoulos, Anthony; Delp, Michael D.

    2003-01-01

    Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.

  1. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  2. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression.

    PubMed

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie

    2014-07-15

    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  3. Influence of Long-Term Caloric Restriction on Myocardial and Cardiomyocyte Contractile Function and Autophagy in Mice

    PubMed Central

    Han, Xuefeng; Turdi, Subat; Hu, Nan; Guo, Rui; Zhang, Yingmei; Ren, Jun

    2012-01-01

    Both clinical and experimental evidence has revealed that calorie restriction (CR) is capable of improving heart function. However, most the reports are focused on the effect of CR on the pathological states such as obesity while the effect of CR on heart function in otherwise healthy subjects are not well understood. This study examined the long-term CR effect on cardiac contractile function and possible underlying mechanisms involved. C57BL/6 mice were subjected to a 40% CR or ad libitum feeding for 20 weeks. Echocardiographic and cardiomyocyte contractile properties were evaluated. Intracellular signaling pathways were examined using western blot analysis. Our results showed that CR overtly lessened glucose intolerance, body and heart weights (although not heart size), lowered fat tissue density, decreased left ventricular (LV) wall thickness (septum and posterior wall) in both systole and diastole, and reduced LV mass (not normalized LV mass) without affecting fractional shortening. Cardiomyocyte cell length and cross-sectional area were reduced while peak shortening amplitude was increased following CR. CR failed to affect maximal velocity of shortening/relengthening, duration of shortening and relengthening. Immunoblotting data depicted decreased and increased phosphorylation of Akt/GSK-3β and AMPK/ACC, respectively, following CR. CR also dampened the phosphorylation of mTOR, ERK1/2 and c-Jun while it increased the phosphorylation of JNK. Last but not least, CR significantly promoted cardiac autophagy as evidenced by increased expression of LC3B-II (and LC3B-IIto-LC3B-I ratio) and Beclin-1. In summary, our data suggested that long-term CR may preserve cardiac contractile function with improved cardiomyocyte function, lessen cardiac remodeling and promote autophagy. PMID:22444502

  4. Autonomic regulation of circulation and cardiac contractility during a 14-month space flight

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Moser, M.; Nikulina, G. A.; Polyakov, V. V.; Funtova, I. I.; Chernikova, A. G.

    The space flight of physician cosmonaut V.V. Polyakov, the longest to date (438 days), has yielded new data about human adaptation to long-term weightlessness. Autonomic regulation of circulation and cardiac contractility were evaluated in three experiments entitled Pulstrans, Night, and Holter. In the Pulstrans experiment electrocardiographic (ECG), ballistocardiographic (BCG), seismocardiographic (SCG), and some other parameters were recorded. In the Night experiment, only the ballistocardiogram was recorded, but a special feature of this experiment is that the BCG records were obtained with a contactless method. This method has several advantages, the most important of which are the possibility of studying slow-wave variations in physiologic parameters (ultradian rhythms) on the basis of recordings made under standard conditions over a prolonged period. The Holter experiment (24-hour electrocardiographic monitoring) used a portable cardiorecorder (Spacelab, USA). The obtained electrocardiographic data were used to analyze heart rate variability. In the first 6 months of the 14-month flight, the dynamics of cardiovascular parameters in V.V.Polyakov was virtually the same as in the other cosmonauts. The data obtained after the first 6 months of Polyakov's sojourn in space are unique and mention should be made of at least three important aspects: (1) activation of a new, additional adaptive mechanism in the 8th-9th months of flight, as is evidenced by alterations in the periodicity and power of superslow wave oscillations (ultradian rhythms) reflecting the activity of the subcortical cardiovascular centers and of the higher levels of autonomic regulation; (2) growth of cardiac contractility accompanied by a decrease in heart rate during the last few months of flight; (3) a considerable increase in the daily average values of absolute power of heart rate's variability MF component, which reflects the activity of the vasomotor center. Specific mechanisms of

  5. Coordinated Regulation of Murine Cardiomyocyte Contractility by Nanomolar (−)-Epigallocatechin-3-Gallate, the Major Green Tea Catechin

    PubMed Central

    Feng, Wei; Hwang, Hyun Seok; Kryshtal, Dmytro O.; Yang, Tao; Padilla, Isela T.; Tiwary, Asheesh K.; Puschner, Birgit; Pessah, Isaac N.

    2012-01-01

    Green tea polyphenolic catechins exhibit biological activity in a wide variety of cell types. Although reports in the lay and scientific literature suggest therapeutic potential for improving cardiovascular health, the underlying molecular mechanisms of action remain unclear. Previous studies have implicated a wide range of molecular targets in cardiac muscle for the major green tea catechin, (−)-epigallocatechin-3-gallate (EGCG), but effects were observed only at micromolar concentrations of unclear clinical relevance. Here, we report that nanomolar concentrations of EGCG significantly enhance contractility of intact murine myocytes by increasing electrically evoked Ca2+ transients, sarcoplasmic reticulum (SR) Ca2+ content, and ryanodine receptor type 2 (RyR2) channel open probability. Voltage-clamp experiments demonstrate that 10 nM EGCG significantly inhibits the Na+-Ca2+ exchanger. Of importance, other Na+ and Ca2+ handling proteins such as Ca2+-ATPase, Na+-H+ exchanger, and Na+-K+-ATPase were not affected by EGCG ≤1 μM. Thus, nanomolar EGCG increases contractility in intact myocytes by coordinately modulating SR Ca2+ loading, RyR2-mediated Ca2+ release, and Na+-Ca2+ exchange. Inhibition of Na+-K+-ATPase activity probably contributes to the positive inotropic effects observed at EGCG concentrations >1 μM. These newly recognized actions of nanomolar and micromolar EGCG should be considered when the therapeutic and toxicological potential of green tea supplementation is evaluated and may provide a novel therapeutic strategy for improving contractile function in heart failure. PMID:22918967

  6. Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechano-chemical coupling mechanism

    PubMed Central

    Chi, Qingjia; Yin, Tieying; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Zhao, Jingbo; Liao, Donghua; Wang, Guixue

    2014-01-01

    Cell migration is of vital importance in many biological processes, including organismal development, immune response and development of vascular diseases. For instance, migration of vascular smooth muscle cells from the media to intima is an essential part of the development of atherosclerosis and restenosis after stent deployment. While it is well characterized that cells use actin polymerization at the leading edge to propel themselves to move on two-dimensional substrates, the migration modes of cells in three-dimensional matrices relevant to in vivo environments remain unclear. Intracellular tension, which is created by myosin II activity, fulfils a vital role in regulating cell migration. We note that there is compelling evidence from theoretical and experimental work that myosin II accumulates at the cell rear, either isoform-dependent or -independent, leading to three-dimensional migration modes driven by posterior myosin II tension. The scenario is not limited to amoeboid migration, and it is also seen in mesenchymal migration in which a two-dimensional-like migration mode based on front protrusions is often expected, suggesting that there may exist universal underlying mechanisms. In this review, we aim to shed some light on how anisotropic myosin II localization induces cell motility in three-dimensional environments from a biomechanical view. We demonstrate an interesting mechanism where an interplay between mechanical myosin II recruitment and biochemical myosin II activation triggers directional migration in three-dimensional matrices. In the case of amoeboid three-dimensional migration, myosin II first accumulates at the cell rear to induce a slight polarization displayed as a uropod-like structure under the action of a tension-dependent mechanism. Subsequent biochemical signalling pathways initiate actomyosin contractility, producing traction forces on the adhesion system or creating prominent motile forces through blebbing activity, to drive cells

  7. Properties of light reflected from road signs in active imaging.

    PubMed

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2008-08-01

    Night vision systems in vehicles are a new emerging technology. A crucial problem in active (laser-based) systems is distortion of images by saturation and blooming due to strong retroreflections from road signs. We quantify this phenomenon. We measure the Mueller matrices and the polarization state of the reflected light from three different types of road sign commonly used. Measurements of the reflected intensity are also taken with respect to the angle of reflection. We find that different types of sign have different reflection properties. It is concluded that the optimal solution for attenuating the retroreflected intensity is using a linear polarized light source and a linear polarizer with perpendicular orientation (with regard to the source) at the detector. Unfortunately, while this solution performs well for two types of road sign, it is less efficient for the third sign type. PMID:18670559

  8. Lipoprotein electrostatic properties regulate hepatic lipase association and activity.

    PubMed

    Boucher, Jonathan G; Nguyen, Trang; Sparks, Daniel L

    2007-12-01

    The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.

  9. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties.

    PubMed

    Kazemali, MohammadReza; Majidzadeh-A, Keivan; Sardari, Soroush; Saadatirad, Amir Hossein; Khalaj, Vahid; Zarei, Najmeh; Barkhordari, Farzaneh; Adeli, Ahmad; Mahboudi, Fereidoun

    2014-12-01

    Fibrinolytic agents are widely used in treatment of the thromboembolic disorders. The new generations like recombinant tissue plasminogen activator (t-PA, alteplase) are not showing promising results in clinical practice in spite of displaying specific binding to fibrin in vitro. Vampire bat plasminogen activator (b-PA) is a plasminogen activator with higher fibrin affinity and specificity in comparison to t-PA resulting in reduced probability of hemorrhage. b-PA is also resistant to plasminogen activator inhibitor-1 (PAI-1) showing higher half-life compared to other variants of t-PA. However, its non-human origin was a driving force to design a human t-PA with favorable properties of b-PA. In the present study, we designed a chimeric t-PA with desirable b-PA properties and this new molecule was called as CT-b. The construct was prepared through kringle 2 domain removal and replacement of t-PA finger domain with b-PA one. In addition, the KHRR sequence at the initial part of protease domain was replaced by four alanine residues. The novel construct was integrated in Pichia pastoris genome by electroporation. Catalytic activity was investigated in the presence and absence of fibrin. The purified protein was analyzed by western blot. Fibrin binding and PAI resistance assays were also conducted. The activity of the recombinant protein in the presence of fibrin was 1560 times more than its activity in the absence of fibrin, showing its higher specificity to fibrin. The fibrin binding of CT-b was 1.2 fold more than t-PA. In addition, it was inhibited by PAI enzyme 44% less than t-PA. Although the presented data demonstrate a promising in vitro activity, more in vivo studies are needed to confirm the therapeutic advantage of this novel plasminogen activator.

  10. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties.

    PubMed

    Kazemali, MohammadReza; Majidzadeh-A, Keivan; Sardari, Soroush; Saadatirad, Amir Hossein; Khalaj, Vahid; Zarei, Najmeh; Barkhordari, Farzaneh; Adeli, Ahmad; Mahboudi, Fereidoun

    2014-12-01

    Fibrinolytic agents are widely used in treatment of the thromboembolic disorders. The new generations like recombinant tissue plasminogen activator (t-PA, alteplase) are not showing promising results in clinical practice in spite of displaying specific binding to fibrin in vitro. Vampire bat plasminogen activator (b-PA) is a plasminogen activator with higher fibrin affinity and specificity in comparison to t-PA resulting in reduced probability of hemorrhage. b-PA is also resistant to plasminogen activator inhibitor-1 (PAI-1) showing higher half-life compared to other variants of t-PA. However, its non-human origin was a driving force to design a human t-PA with favorable properties of b-PA. In the present study, we designed a chimeric t-PA with desirable b-PA properties and this new molecule was called as CT-b. The construct was prepared through kringle 2 domain removal and replacement of t-PA finger domain with b-PA one. In addition, the KHRR sequence at the initial part of protease domain was replaced by four alanine residues. The novel construct was integrated in Pichia pastoris genome by electroporation. Catalytic activity was investigated in the presence and absence of fibrin. The purified protein was analyzed by western blot. Fibrin binding and PAI resistance assays were also conducted. The activity of the recombinant protein in the presence of fibrin was 1560 times more than its activity in the absence of fibrin, showing its higher specificity to fibrin. The fibrin binding of CT-b was 1.2 fold more than t-PA. In addition, it was inhibited by PAI enzyme 44% less than t-PA. Although the presented data demonstrate a promising in vitro activity, more in vivo studies are needed to confirm the therapeutic advantage of this novel plasminogen activator. PMID:25442953

  11. Cleavage furrow: timing of emergence of contractile ring actin filaments and establishment of the contractile ring by filament bundling in sea urchin eggs.

    PubMed

    Mabuchi, I

    1994-07-01

    Cleavage furrow formation at the first cell division of sea urchin and sand dollar eggs was investigated in detail by fluorescence staining of actin filaments with rhodamine-phalloidin of either whole eggs or isolated egg cortices. Cortical actin filaments were clustered at anaphase and then the clusters became fibrillar at the end of anaphase. The timing when the contractile ring actin filaments appear was precisely determined in the course of mitosis: accumulation of the contractile ring actin filaments at the equatorial cell cortex is first noticed at the beginning of telophase (shortly before furrow formation), when the chromosomal vesicles are fusing with each other. The accumulated actin filaments were not well organized at the early stage but were organized into parallel bundles as the furrowing progressed. The bundles were finally fused into a tightly packed filament belt. Wheat germ agglutinin (WGA)-binding sites were distributed on the surface of the egg in a manner similar to the actin filaments after anaphase. The WGA-binding sites became accumulated in the contractile ring together with the contractile ring actin filaments, indicating an intimate relationship between these sites and actin filament-anchoring sites on the plasma membrane. Myosin also appeared in the contractile ring together with the actin filaments. The 'cleavage stimulus', a signal hypothesized by Rappaport (reviewed by R. Rappaport (1986) Int. Rev. Cytol. 105, 245-281) was suggested to induce aggregation or bundling of the actin filaments in the cortical layer.

  12. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes.

    PubMed

    Zhu, Fengli; Chu, Xi; Wang, Hua; Zhang, Xuan; Zhang, Yuanyuan; Liu, Zhenyi; Guo, Hui; Liu, Hongying; Liu, Yang; Chu, Li; Zhang, Jianping

    2016-03-01

    Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 μM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease. PMID:26762248

  13. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.

    PubMed

    Simões, Sérgio de Matos; Mainieri, Avantika; Zallen, Jennifer A

    2014-02-17

    Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase-binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation. PMID:24535826

  14. PINCH proteins regulate cardiac contractility by modulating integrin-linked kinase-protein kinase B signaling.

    PubMed

    Meder, Benjamin; Huttner, Inken G; Sedaghat-Hamedani, Farbod; Just, Steffen; Dahme, Tillman; Frese, Karen S; Vogel, Britta; Köhler, Doreen; Kloos, Wanda; Rudloff, Jessica; Marquart, Sabine; Katus, Hugo A; Rottbauer, Wolfgang

    2011-08-01

    Integrin-linked kinase (ILK) is an essential component of the cardiac mecha