Science.gov

Sample records for active control systems

  1. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  2. Active Shimmy Control System

    DTIC Science & Technology

    1975-12-01

    reviewed by thoe nformation Offite (01) end Is reslesuabe to the National Technical Wnrdstleftiv Oervico (WI2B). At N13..S it iuil be, avail-able th the...Figure 2, - are used only for the passive system. BH and BL are hydraulic (velocity squared) and linear shimmy damper constants, and KALP in the...NOTES KPH i.63E6 1.403E6 x KrI 11.20 5000 .. X &T, ~ ipl, , x KOC 77270 - X KALP 18000 -X IPH 69.7 83.9 X ITH .68 x "ITI, .03 - x ITII2 3.h9 - xIA .o

  3. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  4. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  5. Closed-loop active optical system control

    NASA Astrophysics Data System (ADS)

    Sparks, T. E.

    1980-01-01

    A control system, based on a real-time lateral shear interferometer has been developed for use in control during thermal tests and static error compensation experiments. The minicomputer which controls the interferometer and provides its service functions also controls the active system, thereby giving flexibility to the algorithm. The minicomputer system contains 288 K bytes of memory and 15 M bytes of disk storage. The interferometer system employed is composed of the measuring head and its support electronics, a video display on which wavefront contour maps are generated, and a DECwriter operator console. The versatility provided by the use of a general purpose interferometer system allows for interactive control of the closed-loop process. Various arithmetic capabilities such as the addition of wavefronts, division by a constant, and fitting of wavefront data with Zernike polynomials, allow for measurements to be averaged and for removal of alignment errors before correction is performed.

  6. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  7. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  8. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  9. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  10. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  11. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  12. Tools for active control system design

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.; Newsom, J. R.

    1984-01-01

    Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed.

  13. Space Station Active Thermal Control System modeling

    NASA Technical Reports Server (NTRS)

    Hye, Abdul; Lin, Chin H.

    1988-01-01

    The Space Station Active Thermal Control System (ATCS) has been modeled using modified SINDA/SINFLO programs to solve two-phase Thermo-fluid problems. The modifications include changes in several subroutines to incorporate implicit solution which allows larger time step as compared to that for explicit solutions. Larger time step saves computer time but involves larger computational error. Several runs were made using various time steps for the ATCS model. It has been found that for a reasonable approach, three times larger time step as compared to that used in explicit method is a good value which will reduce the computer time by approximately 50 percent and still maintain the accuracy of the output data to within 90 percent of the explicit values.

  14. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  15. Active Control of Complex Physical Systems: An Overview

    DTIC Science & Technology

    1992-09-01

    release; distribution is unlimited. 13. ABSTRACT (Maxtmum 200 words) Active control of complex systems imposes unique requirements for physical models and...months after the meeting, SPrinte In USA. Acceslon For NTIS CRA&W DTIC TAB Unlannounced ] Active Control of Complex Physical Systems Justificatton An...control strategies. Physical models This work on the active control of which are adequate to predict the influence of specific physical systems has been

  16. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  17. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  18. Limited Investigation of Active Feel Control Stick System (Active Stick)

    DTIC Science & Technology

    2009-06-01

    at VCORNER .............. 15 Figure 12: Pitch Rate Response to 1.5 g Commanded Force PTI at VHI ......................... 16 Figure 13: Pitch Angle...Response to 1.5 g Commanded Force PTI at VHI ...................... 17 Figure 14: Flight Control System Stick Attributes at VLO...23 Figure 19: Cooper-Harper Ratings for Head Down Display Task ( VHI ) ......................... 24 Figure 20: Fine

  19. Synchronization of two different systems by using generalized active control

    NASA Astrophysics Data System (ADS)

    Ho, Ming-Chung; Hung, Yao-Chen

    2002-09-01

    We have already generalized the techniques from active control theory, and applied them to synchronize two different systems. In this Letter, we demonstrate these techniques by period-system, Lorenz and Rossler systems. Moreover, the effect of external noise is also included in our discussion.

  20. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, J. J.

    1989-01-01

    All flutter suppression systems require sensors to detect the movement of the lifting surface and to activate a control surface according to a synthesized control law. Most of the work performed to date relates to the development of control laws based on predetermined locations of sensors and control surfaces. These locations of sensors and control surfaces are determined either arbitrarily, or by means of a trial and error procedure. The aerodynamic energy concept indicates that the sensors should be located within the activated strip. Furthermore, the best chordwise location of a sensor activating a T.E. control surface is around the 65 percent chord location. The best chordwise location for a sensor activating a L.E. surface is shown to lie upstream of the wing (around 20 percent upstream of the leading edge), or alternatively, two sensors located along the same chord should be used.

  1. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  2. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  3. Active disturbance rejection control for fractional-order system.

    PubMed

    Li, Mingda; Li, Donghai; Wang, Jing; Zhao, Chunzhe

    2013-05-01

    Fractional-order proportional-integral (PI) and proportional-integral-derivative (PID) controllers are the most commonly used controllers in fractional-order systems. However, this paper proposes a simple integer-order control scheme for fractional-order system based on active disturbance rejection method. By treating the fractional-order dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. External disturbance, sensor noise, and parameter disturbance are also estimated using extended state observer. The ADRC stability of rational-order model is analyzed. Simulation results on three typical fractional-order systems are provided to demonstrate the effectiveness of the proposed method.

  4. Control of active reflector system for radio telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao

    2016-10-01

    According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.

  5. Active Control of Linear Periodic System with Two Unstable Modes.

    DTIC Science & Technology

    1982-12-01

    tV;;;.~II.~9 - B ~ZV ~- p1 . ,,~ >. ~ ACTIVE CONTROL OF LINEAR PERIODIC SYSTEM WITH TWO UNSTABLE MODES THESIS by Gregory E. Myers, B.S.E. 2nd Lt...PERIODIC SYSTEM WITH TWO UNSTABLE MODES THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University...December 1982 Approved for public release; distribution unlimited -ow PREFACE This thesis is a continuation of the work done by Yeakel in the control of

  6. Disorder-mediated crowd control in an active matter system

    PubMed Central

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-01-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium. PMID:26956085

  7. Disorder-mediated crowd control in an active matter system

    NASA Astrophysics Data System (ADS)

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  8. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).

  9. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).

  10. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  11. Actively controlled multiple-sensor system for feature extraction

    NASA Astrophysics Data System (ADS)

    Daily, Michael J.; Silberberg, Teresa M.

    1991-08-01

    Typical vision systems which attempt to extract features from a visual image of the world for the purposes of object recognition and navigation are limited by the use of a single sensor and no active sensor control capability. To overcome limitations and deficiencies of rigid single sensor systems, more and more researchers are investigating actively controlled, multisensor systems. To address these problems, we have developed a self-calibrating system which uses active multiple sensor control to extract features of moving objects. A key problem in such systems is registering the images, that is, finding correspondences between images from cameras of differing focal lengths, lens characteristics, and positions and orientations. The authors first propose a technique which uses correlation of edge magnitudes for continuously calibrating pan and tilt angles of several different cameras relative to a single camera with a wide angle field of view, which encompasses the views of every other sensor. A simulation of a world of planar surfaces, visual sensors, and a robot platform used to test active control for feature extraction is then described. Motion in the field of view of at least one sensor is used to center the moving object for several sensors, which then extract object features such as color, boundary, and velocity from the appropriate sensors. Results are presented from real cameras and from the simulated world.

  12. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  13. Microfluidic on-chip fluorescence-activated interface control system.

    PubMed

    Haiwang, Li; Nguyen, N T; Wong, T N; Ng, S L

    2010-11-22

    A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically.

  14. Vector disparity sensor with vergence control for active vision systems.

    PubMed

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  15. Modeling and Control for an Asymmetric Hydraulic Active Suspension System

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Won, Sangchul

    In this paper we present a model for an automotive active suspension system which includes the dynamics of an asymmetric hydraulic actuator. In this model the force exerted by a single-rod cylinder is regarded as an internal state, and the sum of the oil flow rates through the orifice of a servo valve as the control input. We obtain a linear time-invariant (LTI) state state equation and propose a force-tracking-free one-step control method which can accept various linear control techniques. An optimal state-feedback control is applied as an example. Quarter car test rig experiment results show the effectiveness of the proposed approach in modeling and control.

  16. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  17. Seal Investigations of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.

    2006-01-01

    In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.

  18. One active debris removal control system design and error analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Chen, Lei; Li, Kebo; Lei, Yongjun

    2016-11-01

    The increasing expansion of debris presents a significant challenge to space safety and sustainability. To address it, active debris removal, usually involving a chaser performing autonomous rendezvous with targeted debris to be removed is a feasible solution. In this paper, we explore a mid-range autonomous rendezvous control system based on augmented proportional navigation (APN), establishing a three-dimensional kinematic equation set constructed in a rotating coordinate system. In APN, feedback control is applied in the direction of line of sight (LOS), thus analytical solutions of LOS rate and relative motion are expectedly obtained. To evaluate the effectiveness of the control system, we adopt Zero-Effort-Miss (ZEM) in this research as the index, the uncertainty of which is directly determined by that of LOS rate. Accordingly, we apply covariance analysis (CA) method to analyze the propagation of LOS rate uncertainty. Consequently, we find that the accuracy of the control system can be verified even with uncertainty and the CA method is drastically more computationally efficient compared with nonlinear Monte-Carlo method. Additionally, to justify the superiority of the system, we further discuss more simulation cases to show the robustness and feasibility of APN proposed in the paper.

  19. Modified active disturbance rejection control for time-delay systems.

    PubMed

    Zhao, Shen; Gao, Zhiqiang

    2014-07-01

    Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well.

  20. Active chatter control system for long-overhang boring bars

    NASA Astrophysics Data System (ADS)

    Browning, Douglas R.; Golioto, Igor; Thompson, Norman B.

    1997-05-01

    Some machining processes, such as boring, have been historically limited by excessive bar vibration, often resulting in poor surface finish and reduced tool life. A unique boring bar system has been developed to suppress bar vibration, or chatter, during machining using active control technology. Metal cutting test programs have shown proven, repeatable performance on hard-to-cut, aircraft industry high-temperature nickel alloys as well as more easily cut carbon steels. Critical bar length-to-diameter (L/D) ratios, depths-of-cuts, feed rates and cutting speeds far exceed those attainable from the best available passively-damped boring bars. This industry-ready system consists of three principle subsystems: active clamp, instrumented bar, and control electronics. The active clamp is a lathe-mountable body capable of supporting bars of varying sizes and articulating them in orthogonal directions from the base of the bar shank. The instrumented bar consists of a steel shank, standard insert head and imbedded accelerometers. Wire harnesses from both the bar and clamp connect to control electronics comprised of highly-efficient switched- capacitor amplifiers that drive the piezoelectric actuators, sensor signal conditioning, a PC-based program manager and two 32-bit floating-point DSPs. The program manager code runs on the host PC and distributes system identification and control functions to the two DSPs. All real-time signal processing is based on the principles of adaptive filter minimization. For the described system, cutting performance has extended existing chatter thresholds (cutting parameter combinations) for nickel alloys by as much as 400% while maintaining precision surface finish on the machined part. Bar L/D ratios as high as 11 have enabled deep boring operations on nickel workpieces that otherwise could not be performed free of chatter.

  1. Development of an Active Plasma Control System for Pegasus

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.

    2005-10-01

    The Phase II Pegasus ST experiment includes fully programmable power supplies for all magnet coils. These will be integrated with a digital feedback plasma control system (PCS), based on the PCS in use on DIII-D, to provide active feedback control of the plasma evolution. The initial goal is to control Ip(t), R(t), and Z(t). The feedback cycle consists of: 1) sampling magnetic diagnostics, 2) applying a response matrix derived from equilibrium reconstructions, 3) accounting for induced vessel currents and power supply frequency responses, and 4) adjusting the current demand, all on a timescale that is fast compared to the shot duration of ˜25 ms. Data is sampled via a 500 kHz, 96-channel CPCI digitizer from DTACQ Solutions, Ltd. The power supply control signals are generated by 16 analog waveform generators, with the option to utilize 32 digital I/O lines in the future. The PCS digitizer is controlled via a system of Linux-based computers that perform requisite computation-intensive tasks and interface to the existing LabVIEW control codes via a TCP/IP network link.

  2. System identification and control of the JPL active structure

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.; Chu, C.-C.; Smith, R. S.

    1991-01-01

    This paper describes recent advances in structural quieting technology as applied to active truss structures intended for high precision space based optics applications. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Noncollocated control loops are also studied in relation to controlling lightly damped structures.

  3. Active control of multi-input hydraulic journal bearing system

    NASA Astrophysics Data System (ADS)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  4. Development of a Practical Broadband Active Vibration Control System

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Perey, Daniel F.; Cabell, Randolph H.

    2011-01-01

    The goal of this work is to develop robust, lightweight, and low-power control units that can be used to suppress structural vibration in flexible aerospace structures. In particular, this paper focuses on active damping, which is implemented using compact decentralized control units distributed over the structure. Each control unit consists of a diamond-shaped piezoelectric patch actuator, three miniature accelerometers, and analog electronics. The responses from the accelerometers are added together and then integrated to give a signal proportional to velocity. The signal is then inverted, amplified, and applied to the actuator, which generates a control force that is out of phase with the measured velocity. This paper describes the development of the control system, including a detailed description of the control and power electronics. The paper also presents experimental results acquired on a Plexiglas window blank. Five identical control units installed around the perimeter of the window achieved 10 dB peak reductions and a 2.4 dB integrated reduction of the spatially averaged velocity of the window between 500 and 3000 Hz.

  5. Experimental study on active vibration control of a gearbox system

    NASA Astrophysics Data System (ADS)

    Guan, Yuan H.; Lim, Teik C.; Steve Shepard, W.

    2005-04-01

    An active internal gearbox structure is developed and evaluated experimentally to suppress gear pair vibration due to transmission error excitation. The approach is based on an active shaft transverse vibration control concept that was theoretically analyzed in an earlier study and determined to be one of the most feasible methods. The system comprises of a piezoelectric stack actuator for applying control forces to the shaft via a rolling element-bearing, and a highly efficient, enhanced delayed-x LMS control algorithm to generate the appropriate control signals. To avoid the aliasing effects of higher frequency signals and reduce the phase delay of conventional filters, a multi-rate minimum-phase low-pass digital filter is also integrated into the controller. The experimental results yield 8-13 dB attenuation in the gearbox housing vibration levels and correspondingly 5-8 dB reduction in measured gear whine noise levels at the first and second operating gear mesh frequencies.

  6. Digital active control law synthesis for aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivekananda

    1988-01-01

    This paper presents a formulation for synthesis of digital active control laws for aeroservoelastic systems, which are typically modeled by large order equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics, and gust spectra. The control law is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented by an onboard digital microprocessor. The synthesis procedure minimizes a linear quadratic Gaussian type cost function, by updating selected free parameters of the control law, while satisfying a set of inequality constraints on the design loads, responses and stability margins. A stable classical control law or an estimator based full or reduced order control law can be used as an initial design starting point. The gradients of the cost function and the constraints, with respect to the digital control law design variables are derived analytically, to facilitate rapid convergence. Selected design responses can be treated as constraints instead of lumping them into the cost function, in order to satisfy individual root-mean-square load and response limitations. Constraints are also imposed on the minimum singular value requirements for stability robustness improvement.

  7. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  8. Pivoting output unit control systems activated by jacks. [for controlling aircraft flaps

    NASA Technical Reports Server (NTRS)

    Belliere, P.

    1978-01-01

    An invention to be used for controlling aircraft flaps is described. It is applicable to control systems with two coaxial output units which pivot simultaneously with respect to two fixed units and which are activated by two opposed, straight coaxial jacks.

  9. Photo-active collagen systems with controlled triple helix architecture.

    PubMed

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-08-14

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, (1)H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  10. Modified independent modal space control method for active control of flexible systems

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.

  11. Vehicle active suspension system using skyhook adaptive neuro active force control

    NASA Astrophysics Data System (ADS)

    Priyandoko, G.; Mailah, M.; Jamaluddin, H.

    2009-04-01

    This paper aims to highlight the practical viability of a new and novel hybrid control technique applied to a vehicle active suspension system of a quarter car model using skyhook and adaptive neuro active force control (SANAFC). The overall control system essentially comprises four feedback control loops, namely the innermost proportional-integral (PI) control loop for the force tracking of the pneumatic actuator, the intermediate skyhook and active force control (AFC) control loops for the compensation of the disturbances and the outermost proportional-integral-derivative (PID) control loop for the computation of the optimum target/commanded force. A neural network (NN) with a modified adaptive Levenberg-Marquardt learning algorithm was used to approximate the estimated mass and inverse dynamics of the pneumatic actuator in the AFC loop. A number of experiments were carried out on a physical test rig using a hardware-in-the-loop configuration that fully incorporates the theoretical elements. The performance of the proposed control method was evaluated and compared to examine the effectiveness of the system in suppressing the vibration effect on the suspension system. It was found that the simulation and experimental results were in good agreement, particularly for the sprung mass displacement and acceleration behaviours in which the proposed SANAFC scheme is found to outperform the PID and passive counterparts.

  12. An active attitude control system for a drag sail satellite

    NASA Astrophysics Data System (ADS)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  13. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  14. Developing active noise control systems for noise attenuation in ducts

    NASA Astrophysics Data System (ADS)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  15. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  16. Disturbance observer based sliding mode control of active suspension systems

    NASA Astrophysics Data System (ADS)

    Deshpande, Vaijayanti S.; Mohan, B.; Shendge, P. D.; Phadke, S. B.

    2014-05-01

    In this paper, a novel scheme to reduce the acceleration of the sprung mass, used in combination with sliding mode control, is proposed. The proposed scheme estimates the effects of the uncertain, nonlinear spring and damper, load variation and the unknown road disturbance. The controller needs the states of sprung mass only, obviating the need to measure the states of the unsprung mass. The ultimate boundedness of the overall suspension system is proved. The efficacy of the method is verified through simulations for three different types of road profiles and load variation and the scheme is validated on an experimental setup. The results are compared with passive suspension system.

  17. Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems

    NASA Astrophysics Data System (ADS)

    Gomes, S. N.; Pradas, M.; Kalliadasis, S.; Papageorgiou, D. T.; Pavliotis, G. A.

    2015-08-01

    We present an alternative methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. We show that with an appropriate choice of time-dependent controls we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, traveling waves (single and multipulse ones or bound states), and spatiotemporal chaos. We exemplify our methodology with the generalized Kuramoto-Sivashinsky equation, a paradigmatic model of spatiotemporal chaos, which is known to exhibit a rich spectrum of wave forms and wave transitions and a rich variety of spatiotemporal structures.

  18. Control of flexible rotor systems with active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Lei, Shuliang; Palazzolo, Alan

    2008-07-01

    An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.

  19. Vibration control of an active mirror pointing system

    NASA Astrophysics Data System (ADS)

    Su, Joseph C.; Huang, Chien Y.; Austin, Fred; Knowles, Gareth J.

    1993-09-01

    An active vibration control experiment for precision mirror pointing using smart structure is described. The setup consists of a flexible plate clamped to the shaft of an electric motor. Part of the plate is polished to reflect a laser beam whose direction accuracy is the performance criterion. Electroceramic actuators and sensors are incorporated into the plate to control vibration. The analytical model is generated using the ANSYS program. Six flexible modes are kept to investigate the interaction between the rigid and the flexible modes. Three different control strategies were examined. The goal is to suppress the first and the second mode with very little spillover effects from other modes. Simulation results show that the performance objectives can be met. These analytical studies are verified in actual experiments in the near future.

  20. Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios

    2015-11-01

    We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.

  1. Active disturbance rejection control in steering by wire haptic systems.

    PubMed

    Rodriguez-Angeles, A; Garcia-Antonio, J A

    2014-07-01

    This paper introduces a steering by wired haptic system based on disturbance rejection control techniques. High gain Generalized Proportional Integral (GPI) observers are considered for the estimation of tire and steering wheel dynamic disturbances. These disturbances are on line canceled to ensure tracking between the commanded steering wheel angle and the tire orientation angle. The estimated disturbances at the steering rack are feedback to the steering wheel to provide a haptic interface with the driver. The overall system behaves as a bilateral master-slave system. Very few sensors and minimum knowledge of the dynamic model are required. Experimental results are presented on a prototype platform that consists on: (1) half of the steering rack of a beetle VW vehicle, (2) a steering wheel.

  2. High Temperature Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  3. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  4. Active optical control system design of the SONG-China Telescope

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Kou, Songfeng; Niu, Dongsheng; Li, Cheng; Wang, Guomin

    2012-09-01

    The standard SONG node structure of control system is presented. The active optical control system of the project is a distributed system, and a host computer and a slave intelligent controller are included. The host control computer collects the information from wave front sensor and sends commands to the slave computer to realize a closed loop model. For intelligent controller, a programmable logic controller (PLC) system is used. This system combines with industrial personal computer (IPC) and PLC to make up a control system with powerful and reliable.

  5. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    DTIC Science & Technology

    1990-12-01

    relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.

  6. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  7. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  8. Shuttle active thermal control system development testing. Volume 5: Integrated radiator/expendable cooling system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1974-01-01

    Tests were conducted to gather data on a space shuttle active control system (ATCS) incorporating both radiators and an expendable cooling device to provide vehicle heat removal. Two systems were tested and design information was provided for both nominal and limit conditions. The tests verified the concept that an integrated radiator/expendable cooling system can adequately maintain desired water quantities while responding to variations in heat loads and environments. In addition, the need for duct heating was demonstrated, while exhaust nozzle heating was also shown to be unnecessary.

  9. Control system of a dispersed fringe type sensing system of active optics

    NASA Astrophysics Data System (ADS)

    Zhang, Yajun; Zhang, Zhenchao; Zhang, Yong

    2010-07-01

    Active optics plays an important part in segmented mirrors of astronomy telescopes. A dispersed fringe sensor(DFS) using a broadband point source is an efficient method for cophasing and is also highly automated and robust. DFS can estimate the piston between segments only through the spectrum formed by the transmissive grating's dispersion and therefore can replace the edge sensors. So we build an system in our lab to experiment the DFS method. The whole control system of DFS is put forward, including control of displacement actuators and control of shifting the optical fiber. Control of displacement actuators consists in industry computer, HY-6120 I/O card, six stepper motor and other parts. Some theoretical analysis and experiment tests reveal that the actuator could be controlled to 5nm and without backlash by this control strategy. The optical fiber could be shifted out of optical path or shifted in part or whole of optical path so that the spectrum formed by the transmissive grating's dispersion could alter. When six actuators are moving, the piston is changing, and the spectrum is also moving and altering. And the whole control of DFS system is constructed now and seems well. Further test and experiment will be carry out.

  10. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  11. Active Dihedral Control System for a Torisionally Flexible Wing

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  12. Hybrid sliding mode control of semi-active suspension systems

    NASA Astrophysics Data System (ADS)

    Assadsangabi, Babak; Eghtesad, Mohammad; Daneshmand, Farhang; Vahdati, Nader

    2009-12-01

    In order to design a controller which can take both ride comfort and road holding into consideration, a hybrid model reference sliding mode controller (HMRSMC) is proposed. The controller includes two separate model reference sliding mode controllers (MRSMC). One of the controllers is designed so as to force the plant to follow the ideal Sky-hook model and the other is to force the plant to follow the ideal Ground-hook model; then the outputs of these two controllers are linearly combined and applied to the plant as the input. Also, since the designed controller requires a knowledge of the terrain input, this input is approximated by the unsprung mass displacement. Finally, in the simulation section of this study, the effect of the relative ratio between the two MRSMCs and the knowledge of the terrain on the performance of the controller is numerically investigated for both steady-state and transient cases.

  13. Electromechanical simulation and testing of actively controlled rotordynamic systems with piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G. T.

    1991-01-01

    A method is presented for simulating the coupled 'electromechanical' system to predict rotordynamic stability and unbalance response along with control system stability. The piezoelectric actuators and their amplifiers are represented as equivalent linear electrical circuits. The electromechanical system modeling approach is utilized to correlate test results from a double overhung rotor rig. The test results also show the effectiveness of the control system for suppressing the unbalance response of two modes using active stiffness and active damping.

  14. Synchronization of Rossler and Chen chaotic dynamical systems using active control

    NASA Astrophysics Data System (ADS)

    Agiza, H. N.; Yassen, M. T.

    2001-01-01

    This Letter presents chaos synchronization of two identical Rossler and Chen systems by using active control. The proposed technique is applied to achieve chaos synchronization for the Rossler and Chen dynamical systems. We demonstrate that a coupled Rossler and Chen systems can be synchronized. Numerical simulations are used to show the effectiveness of the proposed control method.

  15. The W. M. Keck Telescope segmented primary mirror active control system

    SciTech Connect

    Jared, R.C.; Arthur, A.A.; Andreae, S.; Biocca, A.; Cohen, R.W.; Fuertes, J.M.; Franck, J.; Gabor, G.; Llacer, J.; Mast, T.; Meng, J.; Merrick, T.; Minor, R.; Nelson, J.; Orayani, M.; Salz, P.; Schaefer, B.; Witebsky, C.

    1989-07-01

    The ten meter diameter primary mirror of the W. M. Keck Telescope is a mosaic of thirty-six hexagonal mirrors. An active control system stabilizes the primary mirror. The active control system uses 168 measurements of the relative positions of adjacent mirror segments and 3 measurements of the primary mirror position in the telescope structure to control the 108 degrees of freedom needed to stabilize the figure and position of the primary mirror. The components of the active control system are relative position sensors, electronics, computers, actuators that position the mirrors, and software. The software algorithms control the primary mirror, perform star image stacking, emulate the segments, store and fit calibration data, and locate hardware defects. We give an overview of the active control system, its functional requirements and test measurements. 12 refs.

  16. NIRS-based neurofeedback learning systems for controlling activity of the prefrontal cortex.

    PubMed

    Sakatani, Kaoru; Takemoto, N; Tsujii, T; Yanagisawa, K; Tsunashima, H

    2013-01-01

    The aim of this study was to develop a NIRS-based neurofeedback system to modulate activity in the prefrontal cortex (PFC). We evaluated the effectiveness of the system in terms of separability of changes in oxy-Hb and its derivative. Training with neurofeedback resulted in higher separability than training without neurofeedback or no training, suggesting that the neurofeedback system could enhance self-control of PFC activity. Interestingly, the dorsolateral PFC exhibited enhanced activity and high separability after neurofeedback training. These observations suggest that the neurofeedback system might be useful for training subjects to regulate emotions by self-control of dorsolateral PFC activity.

  17. Intelligent Fuzzy Optimal Active and Combinatorial Control System of Building Structures

    NASA Astrophysics Data System (ADS)

    Tani, Akinori; Tanaka, Kenji; Yamabe, Yuichiro; Kawamura, Hiroshi

    The authors have already proposed an intelligent fuzzy optimal and active control system (IFOACS) and the effectiveness of IFOACS was proved using digital simulations and shaking table tests. However, the results show that the control effect of IFOACS becomes small in case of near-source region earthquakes. To improve control effects in case of near-source region earthquakes, a combinatorial control system (CCS), in which IFOACS is combined with a fuzzy active control system (FACS), is also proposed. In this paper, control rules in CCS are optimized using parameter-free genetic algorithms (PfGAs) considering limitations of an actuator such as maximal strokes and control forces. Effectiveness of proposed combinatorial control system (CCS) is verified and discussed based on results of digital simulations.

  18. Feedback Control of Combustion Instabilities: A Case Study in Active Adaptive Control of Complex Physical Systems

    DTIC Science & Technology

    1989-09-30

    Research & Development Center The technical objectives of the program are: * Study active control of combustion instability in a laboratory scale ...Center The most significant accomplishments for this year are as follows: 1. Modified an existing laboratory scale premixed gas combustor to obtain...program are: " Study active control of combustion instability in a laboratory scale combustor based on fuel flow modulation or an alternative practical

  19. Compact Active Vibration Control System for a Flexible Panel

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  20. Application of active controls technology to aircraft bide smoothing systems

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Jacobson, I. D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade offs involving sensor types, choice of feedback loops, human comfort, and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL aircraft and an executive transport are considered. Theoretically predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  1. Application of Active Controls Technology to Aircraft Ride Smoothing Systems

    NASA Technical Reports Server (NTRS)

    Lapins, Maris; Jacobson, Ira D.

    1975-01-01

    A critical review of past efforts in the design and testing of ride smoothing and gust alleviation systems is presented. Design trade-offs involving sensor types, choice of feedback loops, human comfort and aircraft handling-qualities criteria are discussed. Synthesis of a system designed to employ direct-lift and side-force producing surfaces is reported. Two STOL-class aircraft and an executive transport are considered. Theoretically-predicted system performance is compared with hybrid simulation and flight test data. Pilot opinion rating, pilot workload, and passenger comfort rating data for the basic and augmented aircraft are included.

  2. The importance of behavior theory in control system modeling of physical activity sensor data.

    PubMed

    Riley, William T; Martin, Cesar A; Rivera, Daniel E

    2014-01-01

    Among health behaviors, physical activity has the most extensive record of research using passive sensors. Control systems and other system dynamic approaches have long been considered applicable for understanding human behavior, but only recently has the technology provided the precise and intensive longitudinal data required for these analytic approaches. Although sensors provide intensive data on the patterns and variations of physical activity over time, the influences of these variations are often unmeasured. Health behavior theories provide an explanatory framework of the putative mediators of physical activity changes. Incorporating the intensive longitudinal measurement of these theoretical constructs is critical to improving the fit of control system model of physical activity and for advancing behavioral theory. Theory-based control models also provide guidance on the nature of the controllers which serve as the basis for just-in-time adaptive interventions based on these control system models.

  3. Hybrid architecture active wavefront sensing and control system, and method

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D. (Inventor); Dean, Bruce H. (Inventor); Hyde, Tristram T. (Inventor)

    2011-01-01

    According to various embodiments, provided herein is an optical system and method that can be configured to perform image analysis. The optical system can comprise a telescope assembly and one or more hybrid instruments. The one or more hybrid instruments can be configured to receive image data from the telescope assembly and perform a fine guidance operation and a wavefront sensing operation, simultaneously, on the image data received from the telescope assembly.

  4. Advanced fault management for the Space Station External Active Thermal Control System

    NASA Astrophysics Data System (ADS)

    Morris, William S.; Hill, Timothy; Robertson, Charles

    1992-07-01

    The Thermal Control System Automation Project is developing three related software systems. The first is a high-fidelity simulator of the Space Station Freedom (SSF) External Active Thermal Control System (EATCS), which provides heating, cooling, and control necessary to maintain elements, systems, and components within their required temperature range. The second is an SSF run-time object data base. The third is a knowledge-based system (KBS) to monitor, control, and perform fault detection, isolation, and recovery on the SSF EATCS. The paper describes the EATCS hardware, the KBS design, the model-based sensor validation, the rule-based diagnosis, human interface issues, and future plans for the KBS.

  5. Active alignment and vibration control system for a large airborne optical system

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  6. Active thermal control systems for lunar and Martian exploration

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John

    1990-01-01

    Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.

  7. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  8. Two-level multivariable control system of dissolved oxygen tracking and aeration system for activated sludge processes.

    PubMed

    Piotrowski, Robert

    2015-01-01

    The problem of tracking dissolved oxygen is one of the most complex and fundamental issues related to biological processes. The dissolved oxygen level in aerobic tanks has a significant influence on the behavior and activity of microorganisms. Aerated tanks are supplied with air from an aeration system (blowers, pipes, throttling valves, and diffusers). It is a complex, dynamic system governed by nonlinear hybrid dynamics. Control of the aeration system is also difficult in terms of control of the dissolved oxygen. In this article, a two-level multivariable control system for tracking dissolved oxygen and controlling an aeration system is designed. A nonlinear model predictive control algorithm was applied to design controllers for each level. This overall hierarchical control system was validated by simulation based on real data records provided by a water resource recovery facility located in Kartuzy, Northern Poland. The effect of control system parameters and disturbances was also investigated.

  9. Design and analysis of an intelligent controller for active geometry suspension systems

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Oloomi, Ehsan; Esmailzadeh, Ebrahim

    2011-02-01

    An active geometry suspension (AGS) system is a device to optimise suspension-related factors such as toe angle and roll centre height by controlling vehicle's suspension geometry. The suspension geometry could be changed through control of suspension mounting point's position. In this paper, analysis and control of an AGS system is addressed. First, the effects of suspension geometry change on roll centre height and toe angle are studied. Then, based on an analytical approach, the improvement of the vehicle's stability and handling due to the control of suspension geometry is investigated. In the next section, an eight-degree-of-freedom handling model of a sport utility vehicle equipped with an AGS system is introduced. Finally, a self-tuning proportional-integral controller has been designed, using the fuzzy control theory, to control the actuator that changes the geometry of the suspension system. The simulation results show that an AGS system can improve the handling and stability of the vehicle.

  10. A robust vibration control for a multi-active mount system subjected to broadband excitation

    NASA Astrophysics Data System (ADS)

    Nguyen, Vien-Quoc; Choi, Seung-Bok

    2011-05-01

    In this study, a frequency-shaped sliding mode control design is presented for the robust vibration control of a multi-active mount system in the presence of parametric uncertainties whose upper bounds are assumed to be known. The proposed mount system consists of four active mounts supporting vibration-sensitive equipment. Each active mount—constituted of a rubber element, an inertial mass and two piezostack actuators connected in serial configuration—can be modeled as a two-stage vibration isolator. After formulating the governing equations of motions of the mount system, a desired dynamic is specified in the frequency domain, and control laws are then derived to drive the system dynamics to the desired one based on Lyapunov's theorem. Simulations are performed in the frequency range from 100 to 1000 Hz in order to evaluate the effectiveness of the active mount system associated with the frequency-shaped sliding mode controller. It is demonstrated that the dynamic of the active mount system can approach the desired dynamic as the controller is activated. It also shown that robust vibration control performance is achieved in the presence of the parametric uncertainties.

  11. Design of active disturbance rejection controller for the hydraulic APC system of the rolling mill

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Chen, Zhikun

    2011-10-01

    Considering uncertain external disturbance, the model of automatic position control system is established. Then, according to the information of input and output, using extended states observer (ESO), a newer observer is proposed to observe and compensate this integrated disturbance, and a controller is designed based on active disturbance rejection control (ADRC). This controller has very strong robustness not only to external disturbance, but also to unpredictable plant parameter variations.

  12. Development of a microcontrolled bioinstrumentation system for active control of leg prostheses.

    PubMed

    Delis, Alberto Lopez; da Rocha, Adson Ferreira; Dos Santos, Icaro; Sene, Iwens Gervasio; Salomoni, Sauro; Borges, Geovany Araujo

    2008-01-01

    This article describes the design of a microcontrolled bioinstrumentation system for active control of leg prostheses, using 4-channel electromyographic signal (EMG) detection and a single-channel electrogoniometer. The system is part of a control and instrumentation architecture in which a master processor controls the tasks of slave microcontrollers, through a RS-485 interface. Several signal processing methods are integrated in the system, for feature extraction (Recursive Least Squares), feature projection (Self Organizing Maps), and pattern classification (Levenberg-Marquardt Neural Network). The acquisition of EMG signals and additional mechanical information could help improving the precision in the control of leg prostheses.

  13. Comparison of a new rapid convergent adaptive control algorithm to least mean square on an active noise control system

    NASA Astrophysics Data System (ADS)

    Koshigoe, Shozo; Gordon, Alan; Teagle, Allen; Tsay, Ching-Hsu

    1995-04-01

    In this paper, an efficient rapid convergent control algorithm will be developed and will be compared with other adaptive control algorithms using an experimental active noise control system. Other control algorithms are Widrow's finite impulse response adaptive control algorithm, and a modified Godard's algorithm. Comparisons of the random noise attenuation capability, transient and convergence performance, and computational requirements of each algorithm will be made as the order of the controller and relevant convergence parameters are varied. The system used for these experiments is a test bed of noise suppression technology for expendable launch vehicles. It consists of a flexible plate backed by a rigid cavity. Piezoelectric actuators are mounted on the plate and polyvinylidene fluoride is used both for microphones and pressure sensors within the cavity. The plate is bombarded with an amplified random noise signal, and the control system is used to suppress the noise inside the cavity generated by the outside sound source.

  14. A water activity control system for enzymatic reactions in organic media.

    PubMed

    Petersson, Anna E V; Adlercreutz, Patrick; Mattiasson, Bo

    2007-06-01

    A water activity control system for enzymatic synthesis in organic media, for litre-scale reactors has been constructed. Water activity, a(w), is a key factor when using enzymes in non-conventional media and the optimum value varies for different enzymes. The control system consists of a water activity sensor in the headspace of a jacketed glass reactor (equipped with narrow steel tubes to introduce air), gas-washing bottles containing blue silica gel (a(w)=0) and water (a(w)=1), a PC to monitor water activity and a programmable logic controller (PLC) to control the water activity. The system was evaluated by adjusting water activity in the medium, with a deviation from the set point of less than +/-0.05. Synthesis of cetyl palmitate, under controlled water activity and catalysed by two different lipase preparations, namely, Novozym 435 (immobilised Candida antarctica lipase B) and immobilised Candida rugosa lipase, were also performed. Novozym 435 catalyses reactions very well at extremely low water activity while C. rugosa lipase shows low activity for a(w)<0.5.

  15. The active disturbance rejection control approach to stabilisation of coupled heat and ODE system subject to boundary control matched disturbance

    NASA Astrophysics Data System (ADS)

    Guo, Bao-Zhu; Liu, Jun-Jun; AL-Fhaid, A. S.; Younas, Arshad Mahmood M.; Asiri, Asim

    2015-08-01

    We consider stabilisation for a linear ordinary differential equation system with input dynamics governed by a heat equation, subject to boundary control matched disturbance. The active disturbance rejection control approach is applied to estimate, in real time, the disturbance with both constant high gain and time-varying high gain. The disturbance is cancelled in the feedback loop. The closed-loop systems with constant high gain and time-varying high gain are shown, respectively, to be practically stable and asymptotically stable.

  16. Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Hansong; Chen, Wuwei; Zhou, HuiHui; Zu, Jean W.

    2011-02-01

    Integrated vehicle dynamics control has been an important research topic in the area of vehicle dynamics and control over the past two decades. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability, and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of the active suspension system (ASS) and the electronic stability programme (ESP). The upper-layer controller is designed to coordinate the interactions between the ASS and the ESP. While in the lower layer, the two controllers including the ASS and the ESP are developed independently to achieve their local control objectives. Both a simulation investigation and a hardware-in-the-loop experimental study are performed. Simulation results demonstrate that the proposed hierarchical control system is able to improve the multiple vehicle performance indices including both the ride comfort and the lateral stability, compared with the non-integrated control system. Moreover, the experimental results verify the effectiveness of the design of the hierarchical control system.

  17. Non-probabilistic stability reliability measure for active vibration control system with interval parameters

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Wang, Lei; Fan, Weichao; Qiu, Zhiping

    2017-01-01

    A systematic non-probabilistic reliability analysis procedure for structural vibration active control system with unknown-but-bounded parameters is proposed. The state-space representation of active vibration control system with uncertain parameters is presented. Compared with the robust control theory, which is always over-conservative, the reliability-based analysis method is more suitable to deal with uncertain problem. Stability is the core of the closed-loop feedback control system design, so stability criterion is adopted to act as the limited state function for reliability analysis. The uncertain parameters without enough samples are modeled as interval variables. Interval perturbation method is employed to estimate the interval bounds of eigenvalues, which can be used to characterize the stability of the closed-loop active control system. Formulation of defining the reliability of active control system based on stability is discussed. A novel non-probabilistic reliability measurement index is discussed and used to determine the probability of the stability based on the area ratio. The feasibility and efficiency of the proposed method are demonstrated by two numerical examples.

  18. Influence analysis of time delay to active mass damper control system using pole assignment method

    NASA Astrophysics Data System (ADS)

    Teng, J.; Xing, H. B.; Lu, W.; Li, Z. H.; Chen, C. J.

    2016-12-01

    To reduce the influence of time delay on the Active Mass Damper (AMD) control systems, influence analysis of time delay on system poles and stability is applied in the paper. A formula of the maximum time delay for ensuring system stability is established, by which the influence analysis of control gains on system stability is further arisen. In addition, the compensation controller is designed based on the given analysis results and pole assignment. A numerical example and an experiment are illustrated to verify that the performance of time-delay system. The result is consistent to that of the long-time delay control system, as well as to proof the better effectiveness of the new method proposed in this article.

  19. Low-frequency absorption using a two-layer system with active control of input impedance.

    PubMed

    Cobo, Pedro; Fernández, Alejandro; Doutres, Olivier

    2003-12-01

    Broadband noise absorption, including low frequencies, may be obtained by a hybrid passive-active two-layer system. A porous layer in front of an air layer provides passive absorption, at medium and high frequencies. Active control of the input impedance of the two-layer system yields absorption at low frequencies. The active control system can implement either pressure-release or impedance-matching conditions. A simple analytical model based upon plane waves propagating in a tube permits the comparison of both control strategies. The results of this simple model show that the pressure-release condition affords higher absorption than the impedance-matching condition for some combinations of geometrical and material parameters. Experimental results corroborate the good performance of the pressure-release condition under the prescribed geometrical setup.

  20. Simultaneous active and passive control for eigenstructure assignment in lightly damped systems

    NASA Astrophysics Data System (ADS)

    Richiedei, Dario; Trevisani, Alberto

    2017-02-01

    The assignment of the eigenstructure (i.e. eigenvalues and eigenvectors) in vibrating systems is an effective way to improve their dynamic performances. System controllability ensures that the poles of the controlled system are exactly assigned but it does not allow to assign arbitrary desired eigenvectors. To this purpose, this paper proposes a novel method for vibration control in lightly damped systems through the concurrent synthesis of passive structural modifications and active state (or state derivative) feedback control gains. Indeed, the suitable modification of the inertial and elastic parameters allows to enlarge the range of assignable eigenvectors. The problem is formulated as an optimization problem, where constraints are introduced to assure the feasibility of the physical system modifications while avoiding spillover phenomena. The experimental application to the eigenstructure assignment on a manipulator proves the method effectiveness.

  1. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems.

    PubMed

    Xue, Wenchao; Huang, Yi

    2015-09-01

    The paper considers the tracking problem for a class of uncertain linear time invariant (LTI) systems with both uncertain parameters and external disturbances. The active disturbance rejection tracking controller is designed and the resulting closed-loop system's characteristics are comprehensively studied. In the time-domain, it is proven that the output of closed-loop system can approach its ideal trajectory in the transient process against different kinds of uncertainties by tuning the bandwidth of extended state observer (ESO). In the frequency-domain, different kinds of parameters' influences on the phase margin and the crossover frequency of the resulting control system are illuminated. Finally, the effectiveness and robustness of the controller are verified through the actuator position control system with uncertain parameters and load disturbances in the simulations.

  2. Vibration control of a nonlinear quarter-car active suspension system by reinforcement learning

    NASA Astrophysics Data System (ADS)

    Bucak, İ. Ö.; Öz, H. R.

    2012-06-01

    This article presents the investigation of performance of a nonlinear quarter-car active suspension system with a stochastic real-valued reinforcement learning control strategy. As an example, a model of a quarter car with a nonlinear suspension spring subjected to excitation from a road profile is considered. The excitation is realised by the roughness of the road. The quarter-car model to be considered here can be approximately described as a nonlinear two degrees of freedom system. The experimental results indicate that the proposed active suspension system suppresses the vibrations greatly. A simulation of a nonlinear quarter-car active suspension system is presented to demonstrate the effectiveness and examine the performance of the learning control algorithm.

  3. Redesign of the Stabilized Pitch Control System of a Semi-Active Terminal Homing Missile System.

    DTIC Science & Technology

    1979-04-20

    34 AIEE Trans. Application and Industry , pp. 65-77, May 1961. [3] L. S. Shieh, "An Algebraic Approach to System Identification and Compensator Design...34A Quick Method for Estimating Closed-Loop Poles of Control Systems," Trans. AIEE, Applications and Industry , Vol. 76, pp. 80-87, May 1957. [101 C...Mathe- matical and Statistical Library). [16] C. J. Huang and L. S. Shieh, "Modeling Large Dynamical Systems with industrial Specifications," Int. J

  4. Effect of control surface mass unbalance on the stability of a closed-loop active control system

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1989-01-01

    The effects on stability of inertial forces arising from closed-loop activation of mass-unbalanced control surfaces are studied analytically using inertial energy approach, similar to the aerodynamic energy approach used for flutter suppression. The limitations of a single control surface like a leading-edge (LE) control or a trailing-edge (TE) control are demonstrated and compared to the superior combined LE-TE mass unbalanced system. It is shown that a spanwise section for sensor location can be determined which ensures minimum sensitivity to the mode shapes of the aircraft. It is shown that an LE control exhibits compatibility between inertial stabilization and aerodynamic stabilization, and that a TE control lacks such compatibility. The results of the present work should prove valuable, both for the purpose of flutter suppression using mass unbalanced control surfaces, or for the stabilization of structural modes of large space structures by means of inertial forces.

  5. Effect of bonding on the performance of a piezoactuator-based active control system

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.

  6. Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Huang, Congzhi; Sira-Ramírez, Hebertt

    2015-12-01

    A flatness-based active disturbance rejection control approach is proposed to deal with the linear systems with unknown time-varying coefficients and external disturbances. By selecting appropriate nominal values for the parameters of the system, all the deviation between the nominal and actual dynamics of the controlled process, as well as all the external disturbances can be viewed as a total disturbance. Based on the accurately estimated total disturbance with the aid of the proposed extended state observer, a linear proportional derivative feedback control law taking into account the derivatives of the desired output is designed to eliminate the effect of the total disturbance on the system performance. Finally, the load frequency control problem of a single-area power system with non-reheated unit is employed as an illustrative example to demonstrate the effectiveness of the proposed approach.

  7. A semi-active control suspension system for railway vehicles with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Wei, Xiukun; Zhu, Ming; Jia, Limin

    2016-07-01

    The high-speed train has achieved great progress in the last decades. It is one of the most important modes of transportation between cities. With the rapid development of the high-speed train, its safety issue is paid much more attention than ever before. To improve the stability of the vehicle with high speed, extra dampers (i.e. anti-hunting damper) are used in the traditional bogies with passive suspension system. However, the curving performance of the vehicle is undermined due to the extra lateral force generated by the dampers. The active suspension systems proposed in the last decades attempt to solve the vehicle steering issue. However, the active suspension systems need extra actuators driven by electrical power or hydraulic power. There are some implementation and even safety issues which are not easy to be overcome. In this paper, an innovative semi-active controlled lateral suspension system for railway vehicles is proposed. Four magnetorheological fluid dampers are fixed to the primary suspension system of each bogie. They are controlled by online controllers for enhancing the running stability on the straight track line on the one hand and further improving the curving performance by controlling the damper force on the other hand. Two control strategies are proposed in the light of the pure rolling concept. The effectiveness of the proposed strategies is demonstrated by SIMPACK and Matlab co-simulation for a full railway vehicle with two conventional bogies.

  8. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Edward, J. B.; Beeley, P. A.; Bennett, L. G. I.; Anderson, A.; Burbidge, G. A.

    1990-12-01

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed.

  9. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  10. Active spacecraft potential control system selection for the Jupiter orbiter with probe mission

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Goldstein, R.

    1977-01-01

    It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.

  11. Active control of an innovative seat suspension system with acceleration measurement based friction estimation

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Li, Hongyi; Du, Haiping; Li, Weihua

    2016-12-01

    In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with two low cost actuators each of which has one rotary motor and one gear reducer. A H∞ controller with friction compensation is designed for the seat suspension control system where the friction is estimated and compensated based on the measurement of seat acceleration. This principal aim of this research was to control the low frequency vibration transferred or amplified by the vehicle (chassis) suspension, and to maintain the passivity of the seat suspension at high frequency (isolation vibration) while taking into consideration the trade-off between the active seat suspension cost and its high frequency performance. Sinusoidal excitations of 1-4.5 Hz were applied to test the active seat suspension both when controlled and when uncontrolled and this is compared with a well-tuned passive heavy duty vehicle seat suspension. The results indicate the effectiveness of the proposed control algorithm within the tested frequencies. Further tests were conducted using the excitations generated from a quarter-car model under bump and random road profiles. The bump road tests indicate the controlled active seat suspension has good transient response performance. The Power Spectral Density (PSD) method and ISO 2631-1 standards were applied to analyse the seat suspension's acceleration under random road conditions. Although some low magnitude and high frequency noise will inevitably be introduced by the active system, the weighted-frequency Root Mean Square (RMS) acceleration shows that this may not have a large effect on ride comfort. In fact, the ride comfort is improved from being an 'a little uncomfortable' to a 'not uncomfortable' level when compared with the well-tuned passive seat suspension. This low cost active seat suspension design and the proposed controller with the easily measured feedback signals are very practical for real

  12. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  13. Flutter suppression for the Active Flexible Wing - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  14. Use of particle filters in an active control algorithm for noisy nonlinear structural dynamical systems

    NASA Astrophysics Data System (ADS)

    Sajeeb, R.; Manohar, C. S.; Roy, D.

    2007-09-01

    The problem of active control of nonlinear structural dynamical systems, in the presence of both process and measurement noises, is considered. The focus of the study is on the use of particle filters for state estimation in feedback control algorithms for nonlinear structures, when a limited number of noisy output measurements are available. The control design is done using the state-dependent Riccati equation (SDRE) method. The stochastic differential equations (SDEs) governing the dynamical systems are discretized using explicit forms of Ito-Taylor expansions. The Bayesian bootstrap filter and that based on sequential important sampling (SIS) are employed for state estimation. The simulation results show the feasibility of using particle filters and SDRE techniques in control of nonlinear structural dynamical systems.

  15. Induction Motor Drive System Based on Linear Active Disturbance Rejection Controller

    NASA Astrophysics Data System (ADS)

    Liu, Liying; Zhang, Yongli; Yao, Qingmei

    It is difficult to establish an exact mathematical model for the induction motor and the robustness is poor of the vector control system using PI regulator. This paper adopts the linear active disturbance rejection controller (LADRC) to control inductor motor. LADRC doesn't need the exact mathematical model of motor and it can not only estimate but also compensate the general disturbance that includes the coupling items in model of motor and parameters perturbations by linear extended state observer (LESO), so the rotor flux and torque fully decouple. As a result, the performance is improved. To prove the above control scheme, the proposed control system has been simulated in MATLAB/SIMULINK, and the comparison was made with PID. Simulation results show that LADRC' has better performance and robustness than PID.

  16. A Study on the Requirements for Fast Active Turbine Tip Clearance Control Systems

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.

    2004-01-01

    This paper addresses the requirements of a control system for active turbine tip clearance control in a generic commercial turbofan engine through design and analysis. The control objective is to articulate the shroud in the high pressure turbine section in order to maintain a certain clearance set point given several possible engine transient events. The system must also exhibit reasonable robustness to modeling uncertainties and reasonable noise rejection properties. Two actuators were chosen to fulfill such a requirement, both of which possess different levels of technological readiness: electrohydraulic servovalves and piezoelectric stacks. Identification of design constraints, desired actuator parameters, and actuator limitations are addressed in depth; all of which are intimately tied with the hardware and controller design process. Analytical demonstrations of the performance and robustness characteristics of the two axisymmetric LQG clearance control systems are presented. Takeoff simulation results show that both actuators are capable of maintaining the clearance within acceptable bounds and demonstrate robustness to parameter uncertainty. The present model-based control strategy was employed to demonstrate the tradeoff between performance, control effort, and robustness and to implement optimal state estimation in a noisy engine environment with intent to eliminate ad hoc methods for designing reliable control systems.

  17. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  18. Methodology of selecting the reference source for an active noise control system in a car.

    PubMed

    Dąbrowski, Zbigniew; Stankiewicz, Bartosz

    2013-01-01

    At the end of the 20th century, a significant development in digital technologies of signal processing made it possible to apply active noise control methods in new domains. A proper selection of the reference signal source is a main problem in implementing such systems. This paper presents an estimation method based on an indicator of the coherent power level. It also presents a simple system of active noise control in a car, operating according to the proposed method of optimising the positioning of reference sources. This system makes it possible to considerably increase the comfort of work of drivers in various kinds of road transport without a great increase in cost. This is especially significant in the case of trucks and vans. Passive barriers are considerably more expensive in them, which results in a higher level of noise than in passenger cars.

  19. Shuttle active thermal control system development testing. Volume 2: Modular radiator system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.; Howell, H. R.; Voss, F. E.

    1973-01-01

    Tests were designed to investigate the validity of the "modular" approach to space radiator system design for space shuttle and future applications by gathering performance data on various systems comprised of different numbers of identical panels, subject to nominal and extreme heat loads and environments. Both one-sided and two-sided radiation was tested, and engineering data was gathered on simulated low a/e coatings and system response to changes in outlet temperature control point. The results of the testing showed system stability throughout nominal orbital transients, unrealistically skewed environments, freeze-thaw transients, and rapid changes in outlet temperature control point. Various alternative panel plumbing arrangements were tested with no significant changes in performance being observed. With the MRS panels arranged to represent the shuttle baseline system, a maximum heat rejection of 76,600 Btu/hr was obtained in segmented tests under the expected worst case design environments. Testing of an alternate smaller two-sided radiation configuration yielded a maximum heat rejection of 52,931 Btu/hr under the maximum design environments.

  20. Performance of an Active Noise Control System for Fan Tones Using Vane Actuators

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Curtis, Alan R. D.; Heidelberg, Laurence J.; Remington, Paul J.

    2000-01-01

    An Active Noise Control (ANC) system for ducted fan noise was built that uses actuators located in stator vanes. The custom designed actuators A,ere piezoelectric benders manufactured using THUNDER technology. The ANC system was tested in the NASA Active Noise Control Fan rig. A total of 168 actuators in 28 stator vanes were used (six per vane). Simultaneous inlet and exhaust acoustic power level reductions were demonstrated for a fan modal structure that contained two radial modes in each direction. Total circumferential mode power levels were reduced by up to 9 dB in the inlet and 3 dB in the exhaust. The corresponding total 2BPF tone level reductions were by 6 dB in the inlet and 2 dB in the exhaust. Farfield sound pressure level reductions of up to 17 dB were achieved at the peak mode lobe angle. The performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. Simpler control/actuator systems using carefully selected subsets of the full system and random simulated failures of up to 7% of the actuators were investigated. (The actuators were robust and none failed during the test). Useful reductions still occurred under these conditions.

  1. Limit cycle analysis of active disturbance rejection control system with two nonlinearities.

    PubMed

    Wu, Dan; Chen, Ken

    2014-07-01

    Introduction of nonlinearities to active disturbance rejection control algorithm might have high control efficiency in some situations, but makes the systems with complex nonlinearity. Limit cycle is a typical phenomenon that can be observed in the nonlinear systems, usually causing failure or danger of the systems. This paper approaches the problem of the existence of limit cycles of a second-order fast tool servo system using active disturbance rejection control algorithm with two fal nonlinearities. A frequency domain approach is presented by using describing function technique and transfer function representation to characterize the nonlinear system. The derivations of the describing functions for fal nonlinearities and treatment of two nonlinearities connected in series are given to facilitate the limit cycles analysis. The effects of the parameters of both the nonlinearity and the controller on the limit cycles are presented, indicating that the limit cycles caused by the nonlinearities can be easily suppressed if the parameters are chosen carefully. Simulations in the time domain are performed to assess the prediction accuracy based on the describing function.

  2. Method and system to perform energy-extraction based active noise control

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  3. The architecture of the active surface control system of the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Souccar, Kamal; Wallace, Gary; Grosslein, Ron; Schloerb, F. Peter

    2014-07-01

    One of the fundamental design principles of the LMT is that its segmented primary surface must be active: the position and orientation of each of the segments must be moved in order to maintain the precise parabolic surface that is required by the specifications. Consequently, a system of actuators, one at the corner of each segment, is used to move the segments to counteract surface deformations attributed to gravity or thermal effects. A new control system was designed and built within the project to implement an active surface at the LMT. The technical concept for the active surface control system is to provide a set of bus boxes with built-in control and I/O capabilities to run four actuators each. Bus boxes read the LVDT sensor position and limit switch status for each actuator and use this information to drive the actuator's DC motor, closing the position loop. Each bus box contains a DC power supply for the electronics, a second DC power supply for the motors, an embedded controller with I/O to close the position loop, and a custom printed circuit board to condition the LVDT signals and drive the motors. An interface printed circuit board resides in each actuator providing a single connector access to the LVDT, the motor, and the limit switches. During the fall of 2013, 84 bus boxes were commissioned to control the 336 actuators of the inner three rings of the telescope. The surface correction model was determined using holography measurements and the active surface system has been in regular use during the scientific observation at the LMT.

  4. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations.

  5. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  6. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  7. Weak-light solitons and their active control in a parity-time-symmetric atomic system

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2015-04-01

    We propose a realistic physical scheme to produce one-dimensional and two-dimensional weak-light solitons in an atomic system with PT symmetry. The system we suggest is a cold three-level atomic gas with two species and is driven by control and probe laser fields. We show that by the interference of two Raman resonances a highly adjustable probe-field refractive index with PT symmetry in one and two dimensions can be realized. We further show that it is possible to produce various light solitons when the weak nonlinearity of the probe field is taken into account. Due to the resonant character of the system, the light solitons obtained in one and two dimensions have extremely low light power (at the level of nanowatts). In addition, we demonstrate that the stability of these light solitons can be actively controlled via PT phase transition of the system.

  8. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  9. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  10. Nonlinear parametrically excited vibration and active control of gear pair system with time-varying characteristic

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wang, Jin-Jin; Liu, Jin-Jie; Li, Ya-Qian

    2015-10-01

    In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).

  11. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  12. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  13. Shuttle active thermal control system development testing. Volume 1: Overall summary

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1974-01-01

    A summary is given of a series of thermal vacuum tests designed to support the development of the orbiter active thermal control system (ATCS) and included testing of a wide heat load range modular radiator system (MRS) configured to the March 1973 orbiter baseline system, a candidate weight reducing radiator/water cooling system, and a smaller radiator system with a high performance radiator coating. The tests verified the performance of the baseline system and obtained detailed design information for application of a wide heat load range modular radiator system to the orbiter. The two candidate ATCS weight reducing designs have undergone extensive concept verification testing and their system operating characteristics have been determined in sufficient detail for application to the orbiter. Design information has been obtained for an integrated radiator/water cooling system that provides for vehicle heat rejection as well as water management of the excess fuel cell water. Processing techniques have been developed and verified for the application of a high performance thermal control coating to large radiator areas subjected to a temperature range of -280 F to +160 F.

  14. Design of active disturbance rejection controller for space optical communication coarse tracking system

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  15. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  16. Systematic plan of building Web geographic information system based on ActiveX control

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Li, Deren; Zhu, Xinyan; Chen, Nengcheng

    2003-03-01

    A systematic plan of building Web Geographic Information System (WebGIS) using ActiveX technology is proposed in this paper. In the proposed plan, ActiveX control technology is adopted in building client-side application, and two different schemas are introduced to implement communication between controls in users¡ browser and middle application server. One is based on Distribute Component Object Model (DCOM), the other is based on socket. In the former schema, middle service application is developed as a DCOM object that communicates with ActiveX control through Object Remote Procedure Call (ORPC) and accesses data in GIS Data Server through Open Database Connectivity (ODBC). In the latter, middle service application is developed using Java language. It communicates with ActiveX control through socket based on TCP/IP and accesses data in GIS Data Server through Java Database Connectivity (JDBC). The first one is usually developed using C/C++, and it is difficult to develop and deploy. The second one is relatively easy to develop, but its performance of data transfer relies on Web bandwidth. A sample application is developed using the latter schema. It is proved that the performance of the sample application is better than that of some other WebGIS applications in some degree.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The active control technology (ACT) control/guidance system task of the integrated application of active controls (IAAC) technology project within the NASA energy efficient transport program was documented. The air traffic environment of navigation and air traffic control systems and procedures were extrapolated. An approach to listing flight functions which will be performed by systems and crew of an ACT configured airplane of the 1990s, and a determination of function criticalities to safety of flight, are the basis of candidate integrated ACT/Control/Guidance System architecture. The system mechanizes five active control functions: pitch augmented stability, angle of attack limiting, lateral/directional augmented stability, gust load alleviation, and maneuver load control. The scope and requirements of a program for simulating the integrated ACT avionics and flight deck system, with pilot in the loop, are defined, system and crew interface elements are simulated, and mechanization is recommended. Relationships between system design and crew roles and procedures are evaluated.

  18. Classification of Physical Activity: Information to Artificial Pancreas Control Systems in Real Time.

    PubMed

    Turksoy, Kamuran; Paulino, Thiago Marques Luz; Zaharieva, Dessi P; Yavelberg, Loren; Jamnik, Veronica; Riddell, Michael C; Cinar, Ali

    2015-10-06

    Physical activity has a wide range of effects on glucose concentrations in type 1 diabetes (T1D) depending on the type (ie, aerobic, anaerobic, mixed) and duration of activity performed. This variability in glucose responses to physical activity makes the development of artificial pancreas (AP) systems challenging. Automatic detection of exercise type and intensity, and its classification as aerobic or anaerobic would provide valuable information to AP control algorithms. This can be achieved by using a multivariable AP approach where biometric variables are measured and reported to the AP at high frequency. We developed a classification system that identifies, in real time, the exercise intensity and its reliance on aerobic or anaerobic metabolism and tested this approach using clinical data collected from 5 persons with T1D and 3 individuals without T1D in a controlled laboratory setting using a variety of common types of physical activity. The classifier had an average sensitivity of 98.7% for physiological data collected over a range of exercise modalities and intensities in these subjects. The classifier will be added as a new module to the integrated multivariable adaptive AP system to enable the detection of aerobic and anaerobic exercise for enhancing the accuracy of insulin infusion strategies during and after exercise.

  19. High-density EMG E-textile systems for the control of active prostheses.

    PubMed

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing.

  20. A flexible active and reactive power control strategy for a variable speed constant frequency generating system

    SciTech Connect

    Tang, Y.; Xu, L.

    1995-07-01

    Variable-speed constant-frequency generating systems are used in wind power, hydro power, aerospace, and naval power generations to enhance efficiency and reduce friction. In these applications, an attractive candidate is the slip power recovery system comprising of doubly excited induction machine or doubly excited brushless reluctance machine and PWM converters with a dc link. In this paper, a flexible active and reactive power control strategy is developed, such that the optimal torque-speed profile of the turbine can be followed and overall reactive power can be controlled, while the machine copper losses have been minimized. At the same time, harmonics injected into the power network has also been minimized. In this manner, the system can function as both a high-efficient power generator and a flexible reactive power compensator.

  1. Active noise control system incorporating psychoacoustic and spectrum-tuning features

    NASA Astrophysics Data System (ADS)

    Bao, Hua

    Acoustic noise problem is gaining more and more attention in modern society. Traditionally, passive noise control devices are used to block the undesired sound. However, they are inconvenient and costly in some situations. Instead, active noise control (ANC) technique can attenuate the noise in a more flexible and more effective way. ANC technique works on the principal of acoustic superposition with electrically controlled loudspeaker(s) sending out anti-noise signal to cancel out the undesired noise in a target zone. The core component of ANC system is the adaptive filter, which updates the filter coefficients to control the anti-noise sent out by loudspeaker(s). It should be noted that the ultimate goal of ANC is to minimize the annoyance brought by environmental noise to human being. Therefore human hearing characteristics are important factors to improve ANC performance in term of human perception. Psychoacoustics focuses on the study of human perception of sound by objective models. In this dissertation, psychoacoustic considerations are incorporated in ANC systems in two ways. Noise weightings are included in ANC system considering the non-uniform sensitivity of human hearing system. A new ANC architecture is proposed to give listeners flexibility to adjust the spectrum of residual noise considering individual discrepant preferences. In the first scheme, two typical noise weightings, A-weighting and ITU-R 468 noise weighting, are incorporated in the ANC system based on filtered-error least mean square (FELMS) structure. Instead of sound pressure level (SPL), psychoacoustic metrics are utilized to evaluate the noise attenuation performance. In the second approach, we propose a spectrum-tuning active noise control (STANC) structure which could tune the noise spectrum with a tuning filter. In the mean time, the change of tuning filter has no influence on system adaptation, which enssures the system stability and makes online tuning possible. Conventional ANC

  2. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  3. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  4. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  5. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Rector, Tony; Steele, John; Varsik, Jerry

    2010-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  6. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  7. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  8. Active vibration control of rotating machinery with a hybrid piezohydraulic actuator system

    SciTech Connect

    Tang, P.; Palazzolo, A.B.; Kascak, A.F.; Montague, G.T.

    1995-10-01

    An integrated, compact piezohydraulic actuator system for active vibration control was designed and developed with a primary application for gas turbine aircraft engines. Copper tube was chosen as the transmission line material for ease of assembly. Liquid plastic, which meets incompressibility and low-viscosity requirements, was adjusted to provide optimal actuator performance. Variants of the liquid plastic have been prepared with desired properties between {minus}40 F and 400 F. The effectiveness of this hybrid actuator for active vibration control (AVC) was demonstrated for suppressing critical speed vibration through two critical speeds for various levels of intentionally placed imbalance. A high-accuracy closed-loop simulation, which combines both finite element and state space methods, was applied for the closed-loop unbalance response simulation with/without AVC. Good correlation between the simulation and test results was achieved.

  9. An Active Noise Control (ACN) system for a commercially available HVAC using feedback architecture

    NASA Astrophysics Data System (ADS)

    Kasbekar, Prashanth

    This thesis report discusses design of an Active Noise Control (ANC) system for a commercially available HVAC using Feedback architecture. Reducing noise in living environments is an important problem to create quieter residential and work places. The main contributions of this thesis include development of a real time, stable and fast single channel Feedback ANC prototype ANC using a FPGA to cancel the compressor noise. Based on observations from the real time implementation a multichannel Feedback ANC with novel delayless subband architecture has been developed to reduce computational complexity and to improve performance. This work represents an important step in developing an ANC system for the HVAC due to application of novel delayless subband multichannel Feedback ANC algorithm on real data collected from the HVAC system. It also discusses the practical issues involved in developing an ANC system prototype using a FPGA.

  10. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.

    1999-01-01

    Previous work has demonstrated the large potential for hybrid active-passive systems for attenuating interior noise in aircraft fuselages. The main advantage of an active-passive system is, by utilizing the natural dynamics of the actuator system, the control actuator power and weight is markedly reduced and stability/robustness is enhanced. Three different active-passive approaches were studied in the past year. The first technique utilizes multiple tunable vibration absorbers (ATVA) for reducing narrow band sound radiated from panels and transmitted through fuselage structures. The focus is on reducing interior noise due to propeller or turbo fan harmonic excitation. Two types of tunable vibration absorbers were investigated; a solid state system based upon a piezoelectric mechanical exciter and an electromechanical system based upon a Motran shaker. Both of these systems utilize a mass-spring dynamic effect to maximize tile output force near resonance of the shaker system and so can also be used as vibration absorbers. The dynamic properties of the absorbers (i.e. resonance frequency) were modified using a feedback signal from an accelerometer mounted on the active mass, passed through a compensator and fed into the drive component of the shaker system (piezoelectric element or voice coil respectively). The feedback loop consisted of a two coefficient FIR filter, implemented on a DSP, where the input is acceleration of tile ATVA mass and the output is a force acting in parallel with the stiffness of the absorber. By separating the feedback signal into real and imaginary components, the effective natural frequency and damping of the ATVA can be altered independently. This approach gave control of the resonance frequencies while also allowing the simultaneous removal of damping from the ATVA, thus increasing the ease of controllability and effectiveness. In order to obtain a "tuned" vibration absorber the chosen resonant frequency was set to the excitation

  11. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  12. Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum.

    PubMed

    Ramírez-Neria, M; Sira-Ramírez, H; Garrido-Moctezuma, R; Luviano-Juárez, A

    2014-07-01

    An Active Disturbance Rejection Control (ADRC) scheme is proposed for a trajectory tracking problem defined on a nonfeedback linearizable Furuta Pendulum example. A desired rest to rest angular position reference trajectory is to be tracked by the horizontal arm while the unactuated vertical pendulum arm stays around its unstable vertical position without falling down during the entire maneuver and long after it concludes. A linear observer-based linear controller of the ADRC type is designed on the basis of the flat tangent linearization of the system around an arbitrary equilibrium. The advantageous combination of flatness and the ADRC method makes it possible to on-line estimate and cancels the undesirable effects of the higher order nonlinearities disregarded by the linearization. These effects are triggered by fast horizontal arm tracking maneuvers driving the pendulum substantially away from the initial equilibrium point. Convincing experimental results, including a comparative test with a sliding mode controller, are presented.

  13. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  14. Electromechanical simulation and testing of actively controlled rotordynamic systems with piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng R.; Palazzolo, A. B.; Kascak, A. F.; Montague, G. T.

    1991-01-01

    Theoretical developments for the simulation of an actively controlled rotorbearing system with piezoelectric type actuators are summarized. Two simulation models were derived; the first assumes that the actuators and other electrical components in the feedback system operate at all frequencies without phase lag or rolloff, while the second model includes the nonideal behavior of these components which are modeled with linear electric circuits. The two models predict identical unbalance response at low frequencies, and the nonideal model also predicts instability-onset feedback gains. The agreement between the measured and predicted results for unbalance response and instability onset gain is very good. The predicted instability-onset feedback gain for active damping was found to be very sensitive to the tare (uncontrolled) damping in the unstable mode.

  15. Real-time optimal sensing strategies for active control of optical systems

    NASA Astrophysics Data System (ADS)

    Moon, Suk-Min; Fowler, Leslie P.; Clark, Robert L.; Anderson, Eric H.

    2007-04-01

    The pointing and imaging performance of precision optical systems is degraded by disturbances on the system that create optical jitter. These disturbances can be caused by structural motion of optical components due to vibration sources that (1) originate within the optical system, (2) originate external to the system and are transmitted through the structural path in the environment, and (3) are air-induced vibrations from acoustic noise. Beam control systems can suppress optical jitter, and active control techniques can be used to extend performance by incorporating information from accelerometers, microphones, and other auxiliary sensors. In some applications, offline fixed gain controllers can be used to minimize jitter. However there are many applications in which a real-time adaptive control approach would yield improved optical performance. Often we would like the capability to adapt in real-time to a system which is time-varying or whose disturbances are non-stationary and hard to predict. In the presence of these harsh, ever-changing environments we would like to use every available tool to optimize performance. Improvements in control algorithms are important, but another potentially useful tool is a real-time adaptive control method employing optimal sensing strategies. In this approach, real-time updating of reference sensors is provided to minimize optical jitter. The technique selects an optimal subset of sensors to use as references from an array of possible sensor locations. The optimal, weighted reference sensor set is well correlated with the disturbance and when used with an adaptive control algorithm, results in improved line-of-sight jitter performance with less computational burden compared to a controller which uses multiple reference sensors. The proposed technique is applied to an experimental test bed in which multiple proof-mass actuators generate structural vibrations on a flexible plate. These vibrations are transmitted to an optical

  16. An Active Smart Material Control System for F/A-18 Buffet Alleviation

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.; Harrand, Vincent J.

    2003-01-01

    The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fatigue failure of the tails, and consequently limits the performance and super maneuverability of twin-tail fighter aircraft. An active smart material control system using distributed piezoelectric actuators has been developed for buffet alleviation and is presented. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the piezoelectric actuators are expressed with a three-dimensional finite-element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, control law, fluid structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. At 30 degree angle of attack, RMS values of tip acceleration are reduced by as much as 12%. The peak values of the power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The actively controlled piezoelectric actuators were also effective in adding damping at wide range of angles of attack.

  17. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  18. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.

    PubMed

    Sun, Li; Li, Donghai; Gao, Zhiqiang; Yang, Zhao; Zhao, Shen

    2016-09-01

    Control of the non-minimum phase (NMP) system is challenging, especially in the presence of modelling uncertainties and external disturbances. To this end, this paper presents a combined feedforward and model-assisted Active Disturbance Rejection Control (MADRC) strategy. Based on the nominal model, the feedforward controller is used to produce a tracking performance that has minimum settling time subject to a prescribed undershoot constraint. On the other hand, the unknown disturbances and uncertain dynamics beyond the nominal model are compensated by MADRC. Since the conventional Extended State Observer (ESO) is not suitable for the NMP system, a model-assisted ESO (MESO) is proposed based on the nominal observable canonical form. The convergence of MESO is proved in time domain. The stability, steady-state characteristics and robustness of the closed-loop system are analyzed in frequency domain. The proposed strategy has only one tuning parameter, i.e., the bandwidth of MESO, which can be readily determined with a prescribed robustness level. Some comparative examples are given to show the efficacy of the proposed method. This paper depicts a promising prospect of the model-assisted ADRC in dealing with complex systems.

  19. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive

  20. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  1. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  2. Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Schiller, Noah H.; Simon, Frank

    2013-01-01

    This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor pair that was collocated over a broad frequency range. This allowed robust control to be implemented using simple, low power analog electronics. Initial testing on a thick acrylic window demonstrated the capability of the controller, but actuator performance was less satisfactory when mounted on a composite sandwich trim panel. This may have been due to the orthotropic nature of the trim panel, or due to its much higher stiffness relative to the acrylic window. Insights gained from a finite element study of the actuator-sensor-structural system are discussed.

  3. Development and demonstration of a flutter-suppression system using active controls. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Abel, I.; Gray, D. L.

    1975-01-01

    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.

  4. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  5. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  6. Air Traffic Control/Active Beacon Collision Avoidance System Knoxville Simulation.

    DTIC Science & Technology

    1980-05-01

    Traffic Conditions 3 Error and Response Models 5 Desensitization Methods 5 Data Collection Plan 6 Controller Questionnaires 6 RESULTS AND ANALYSIS 10 ...Operations Rates 10 Effect of Active BCAS on Controllers and Control Procedures 10 Conflict Analysis 10 Active BCAS Protection 13 Active BCAS Alert Rates...Altitude Desensitization 23 10 Encounter on Parallel Approach (Horizontal View) 27 (See Appendix H For Legend) 11 Encounter on Parallel Approach

  7. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  8. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  9. Studies on the control of mitotic activity in excised roots. I. The experimental system.

    PubMed

    WILSON, G B; MORRISON, J H; KNOBLOCH, N

    1959-05-25

    The mitotic characteristics of excised roots of the garden pea, Pisum sativum, have been studied under conditions of controlled nutrition. The excised root system was tested with regard to its ability to respond, mitotically, to various carbon sources. Sucrose, glucose, fructose, and DL-glyceraldehyde were found to support mitotic activity in excised roots, galactose and 2-deoxy-D-glucose were toxic, and mannose ineffective. Initiation of mitotic activity in the presence of glucose was inhibited by the respiratory poisons, KCN and malonic acid, the uncoupling agent, 2,4-dinitrophenol, but was not notably affected by the protein synthesis inhibitor, chloramphenicol. The glucose-induced response in mitotic activity was not affected by the carcinogen, urethan, and indeed, there is some evidence that the response was actually enhanced. The fact that KCN, malonic acid, and probably 2,4-dinitrophenol, in suitable concentrations inhibit the onset of cell division suggests that some level of operation of the Krebs' cycle is essential for commission of cells into mitosis. Likewise, failure to inhibit cells in the process of active mitosis by KCN and malonic acid is not inconsistent with the idea that there is a shift from reliance on aerobic to anaerobic respiration between antephase and active mitosis.

  10. A robust active control system for shimmy damping in the presence of free play and uncertainties

    NASA Astrophysics Data System (ADS)

    Orlando, Calogero; Alaimo, Andrea

    2017-02-01

    Shimmy vibration is the oscillatory motion of the fork-wheel assembly about the steering axis. It represents one of the major problem of aircraft landing gear because it can lead to excessive wear, discomfort as well as safety concerns. Based on the nonlinear model of the mechanics of a single wheel nose landing gear (NLG), electromechanical actuator and tire elasticity, a robust active controller capable of damping shimmy vibration is designed and investigated in this study. A novel Decline Population Swarm Optimization (PDSO) procedure is introduced and used to select the optimal parameters for the controller. The PDSO procedure is based on a decline demographic model and shows high global search capability with reduced computational costs. The open and closed loop system behavior is analyzed under different case studies of aeronautical interest and the effects of torsional free play on the nose landing gear response are also studied. Plant parameters probabilistic uncertainties are then taken into account to assess the active controller robustness using a stochastic approach.

  11. Comparing Adaptive Control of Thought-Rational (ACT-R) Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS)

    DTIC Science & Technology

    2014-04-01

    Comparing Adaptive Control of Thought–Rational (ACT-R) Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic ...Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS) Craig T. Lennon...Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  12. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  13. Gaze control for an active camera system by modeling human pursuit eye movements

    NASA Astrophysics Data System (ADS)

    Toelg, Sebastian

    1992-11-01

    The ability to stabilize the image of one moving object in the presence of others by active movements of the visual sensor is an essential task for biological systems, as well as for autonomous mobile robots. An algorithm is presented that evaluates the necessary movements from acquired visual data and controls an active camera system (ACS) in a feedback loop. No a priori assumptions about the visual scene and objects are needed. The algorithm is based on functional models of human pursuit eye movements and is to a large extent influenced by structural principles of neural information processing. An intrinsic object definition based on the homogeneity of the optical flow field of relevant objects, i.e., moving mainly fronto- parallel, is used. Velocity and spatial information are processed in separate pathways, resulting in either smooth or saccadic sensor movements. The program generates a dynamic shape model of the moving object and focuses its attention to regions where the object is expected. The system proved to behave in a stable manner under real-time conditions in complex natural environments and manages general object motion. In addition it exhibits several interesting abilities well-known from psychophysics like: catch-up saccades, grouping due to coherent motion, and optokinetic nystagmus.

  14. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  15. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.

  16. Perspectives on the use of Active Structural Control Systems for Seismic Early Warning

    NASA Astrophysics Data System (ADS)

    Manfredi, G.; Iervolino, I.

    2007-12-01

    In thinking about feasibility of earthquake early warning systems (EEWS), the actual question to ask is if they have a potential as tools for real-time seismic risk mitigation, which implies seismology to converge alongside earthquake engineering to real-time loss reduction. In fact, although the evacuation of buildings requires warning time not available in many urbanized areas threatened by seismic hazard, if they may still be used for the real- time protection of critical facilities using automatic systems is the focus of a great deal of research. To this aim, possible interaction between EEWS and semi-active structural control is to be investigated. As a matter of fact, real-time seismology, via the rapid estimation of earthquake's features based on measurements made on the first seconds of the P-waves, allows to predict peak ground motion features of earthquake engineering interest, as the response spectrum at a site, before the quake strikes. This opens new prospects for the adoption of feed-forward control algorithms able to adapt the dynamic features of the structure to better withstand the ensuing ground motion. Nonetheless, feasibility analysis of such EEWS requires the assessment of the risk reduction and cost efficiency due to the security action. An important point, in respect to classical risk assessment, is related to the uncertainties in the estimation of the event and ground motion features, as well as their evolution in time and space. In fact, the performance target of this kind of systems is no longer only related to the maximization of the warning time. The key issue is the calibration, in a full probabilistic approach, of the alarm thresholds and of the decisional rules in order to maximize the loss reduction following the decision, which should account for costs due to false alarms. In this paper these issues, in respect of structural control for seismic early warning in the performance-based earthquake engineering framework, are discussed.

  17. Independent Orbiter Assessment (IOA): Assessment of the active thermal control system

    NASA Technical Reports Server (NTRS)

    Sinclair, S. K.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Active Thermal Control System (ATCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the available NASA FMEA/CIL data. Discrepancies from the comparison were documented, and where enough information was available, recommendations for resolution of the discrepancies were made. This report documents the results of that comparison for the Orbiter ATCS hardware. The IOA product for the ATCS independent analysis consisted of 310 failure mode worksheets that resulted in 101 potential critical items (PCI) being identified. A comparison was made to the available NASA data which consisted of 252 FMEAs and 109 CIL items.

  18. Frequency domain stability analysis of nonlinear active disturbance rejection control system.

    PubMed

    Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai

    2015-05-01

    This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement.

  19. Extended flight evaluation of a near-term pitch active control system

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Willey, Craig S.; Chong, Michael G.

    1983-01-01

    Fuel savings can be achieved by moving the center of gravity of an aircraft aft which reduces the static stability margin and consequently the trim drag. However, flying qualities of an aircraft with relaxed static stability can be significantly degraded. The flying qualities can be restored by using a pitch active control system (PACS). This report documents the work accomplished during a follow-on program (see NASA CR-165951 for initial program report) to perform extended flight tests of a near-term PACS. The program included flying qualities analyses, piloted flight simulation tests, aircraft preparation and flight tests to demonstrate that the near-term PACS provided good flying qualities within the linear static stability envelope to a negative 3% static stability margin.

  20. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism

    NASA Astrophysics Data System (ADS)

    Emdadul Hoque, Md.; Mizuno, Takeshi; Ishino, Yuji; Takasaki, Masaya

    2010-08-01

    This paper presents a six-degree-of-freedom hybrid vibration isolation system integrated with an active negative suspension, an active-passive positive suspension and a passive weight support mechanism. The aim of the research consists in maximizing the system and control performances, and minimizing the system development and maintenance costs. The vibration isolation system is, fundamentally, developed by connecting an active negative suspension realized by zero-power control in series with an active-passive positive suspension. The system could effectively isolate ground vibrations in addition to suppress the effect of on-board generated direct disturbances of the six-axis motions, associated with vertical and horizontal directions. The system is further reinforced by introducing a passive weight support mechanism in parallel with the basic system. The modified system with zero-power control allows simplified design of the isolation table without power consumption. It also offers enhanced performance on direct disturbance suppression and large payload supporting capabilities, without degrading transmissibility characteristics. A mathematical model of the system is presented and, therefore, analyzed to demonstrate that zero-compliance to direct disturbance could be generated by the developed system. Experimental demonstrations validate the proposed concept that exhibits high stiffness of the isolation table to static and dynamic direct disturbances, and good transmissibility characteristics against ground vibration. Further improvements of the vibration isolation system and the control system are discussed as well.

  1. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  2. Three-axis active control system for gravity gradient stabilised microsatellite

    NASA Astrophysics Data System (ADS)

    Si Mohammed, A. M.; Benyettou, M.; Bentoutou, Y.; Boudjemai, A.; Hashida, Y.; Sweeting, M. N.

    2009-04-01

    In this paper, the control system of the first Algerian microsatellite in orbit Alsat-1 is presented. Alsat-1 is a 3-axis stabilised microsatellite, using a pitch momentum wheel and yaw reaction wheel, with dual redundant 3-axis magnetorquers. A gravity gradient boom is employed to provide a high degree of platform stability. Two vector magnetometers and four dual sun sensors are carried in order to determine the attitude. This paper examines the low Earth orbit (LEO) control system requirements and design in the context of a real system, the Surrey Satellite Technology Limited (SSTL) advanced microsatellite platform and puts forward designs for the control system to match the advanced capability of the enhanced microsatellite platform. Numerical results show the effectiveness of the implementation. Comparison with in orbit results is presented to evaluate the performance of the control system during accurate Nadir pointing control.

  3. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  4. Strategies of design, development and activation of the Nova control system

    SciTech Connect

    Holloway, F.W.

    1983-06-30

    Nova and Novette are large complex experimental laser facilities which require extensive and sophisticated control systems for their successful operation. Often, in major controls projects, certain invisible aspects of the project, such as overall strategy, management, resources and historical constraints, have a more profound effect upon success than any specific hardware/software design. The design and performance of the Nova/Novette laser control system will be presented with special emphasis upon these often controversial aspects.

  5. Control of semi-active anti-roll systems on heavy vehicles

    NASA Astrophysics Data System (ADS)

    Stone, E. J.; Cebon, D.

    2010-10-01

    Semi-active anti-roll systems, with a high and low roll stiffness, or, since cornering is typically a transient event, damping setting have the capacity to improve heavy vehicle stability while having very low power consumption. If a vehicle is travelling around a right-hand bend and a low roll damping setting is selected, the vehicle will roll outwards. If a high damping setting is then selected, the outward roll will be locked-in. When the vehicle enters a left-hand bend, the inward roll becomes locked-in. This has the potential to increase critical lateral acceleration by up to 12.5% if the vehicle's future course can be predicted accurately (e.g. with a Global Positioning System). However, if the vehicle does not follow the expected path, the critical lateral acceleration may be degraded. Exploiting the delay between a steer angle being applied and the lateral acceleration developing could avoid this problem. However, the benefits from such a system are considerably lower, up to a 2.4% improvement in critical lateral acceleration. Hence, a 'modal control strategy' is developed aimed at providing high levels of benefit while being robust to deviations from the expected path. The modal strategy is able to provide benefits of up to 11%, while being robust to most deviations.

  6. Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.

    1994-01-01

    A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.

  7. Roll plus maneuver load alleviation control system designs for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Moore, Douglas B.; Miller, Gerald D.; Klepl, Martin J.

    1991-01-01

    Three designs for controlling loads while rolling for the Active Flexible Wing (AFW) are discussed. The goal is to provide good roll control while simultaneously limiting the torsion and bending loads experienced by the wing. The first design uses Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) modern control methods to control roll rate and torsional loads at four different wing locations. The second design uses a nonlinear surface command function to produce surface position commands as a function of current roll rate and commanded roll rate. The final design is a flutter suppression control system. This system stabilizes both symmetric and axisymmetric flutter modes of the AFW.

  8. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  9. Active control of acoustic field-of-view in a biosonar system.

    PubMed

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2011-09-01

    Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc.) is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks) is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.

  10. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  11. Active control of convection

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Bau, Haim H.

    1991-12-01

    It is demonstrated theoretically that active (feedback) control can be used to alter the characteristics of thermal convection in a toroidal, vertical loop heated from below and cooled from above. As the temperature difference between the heated and cooled sections of the loop increases, the flow in the uncontrolled loop changes from no motion to steady, time-independent motion to temporally oscillatory, chaotic motion. With the use of a feedback controller effecting small perturbations in the boundary conditions, one can maintain the no-motion state at significantly higher temperature differences than the critical one corresponding to the onset of convection in the uncontrolled system. Alternatively, one can maintain steady, time-independent flow under conditions in which the flow would otherwise be chaotic. That is, the controller can be used to suppress chaos. Likewise, it is possible to stabilize periodic nonstable orbits that exist in the chaotic regime of the uncontrolled system. Finally, the controller also can be used to induce chaos in otherwise laminar (fully predictable), nonchaotic flow.

  12. Microbiological Characterization and Concerns of the International Space Station Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Wieland, Paul O.

    2005-01-01

    Since January 1999, the chemical the International Space Station Thermal Control System (IATCS) and microbial state of (ISS) Internal Active fluid has been monitored by analysis of samples returned to Earth. Key chemical parameters have changed over time, including a drop in pH from the specified 9.5 +/- 0.5 ta = 58.4, an increase in the level of total inorganic carbon (TIC), total organic carbon (TOC) and dissolved nickel (Ni) in the fluid, and a decrease in the phosphate (PO,) level. In addition, silver (AS) ion levels in the fluid decreased rapidly as Ag deposited on internal metallic surfaces of the system. The lack of available Ag ions coupled with changes in the fluid chemistry has resulted in a favorable environment for microbial growth. Counts of heterotrophic bacteria have increased from less than 10 colony-forming units (CFUs)/l00 mL to l0(exp 6) to l0(exp 7) CFUs/100 mL. The increase of the microbial population is of concern because uncontrolled microbiological growth in the IATCS can contribute to deterioration in the performance of critical components within the system and potentially impact human health if opportunistic pathogens become established and escape into the cabin atmosphere. Micro-organisms can potentially degrade the coolant chemistry; attach to surfaces and form biofilms; lead to biofouling of filters, tubing, and pumps; decrease flow rates; reduce heat transfer; initiate and accelerate corrosion; and enhance mineral scale formation. The micro- biological data from the ISS IATCS fluid, and approaches to addressing the concerns, are summarized in this paper.

  13. A control performance analysis for MacPherson active suspension system under bounce sine sweep road profile

    NASA Astrophysics Data System (ADS)

    Ismail, M. Fahezal; Sam, Yahaya Md.; Sudin, Shahdan; Aripin, M. Khairi

    2016-10-01

    This paper studies a control performance analysis for MacPherson active suspension system. The ride comfort quality is a very important specification for modern automotive suspension system. The Proportional Integral Sliding Mode Control-Evolutionary Strategy-Composite Nonlinear Feedback (PISMC-ES-CNF) controller is designed to solve the transient problem occurred in vertical acceleration of sprung mass. The control performance is tested by using PISMC-ES-CNF and compared with Sliding Mode Controller (SMC) and Composite Nonlinear Feedback (CNF) under Bounce Sine Sweep road profile. The ISO 2631-1, 1997 is a standard for vertical acceleration of sprung mass level and degree of comfort. The one way Analysis of Variance (ANOVA) and standard deviation have showed that the PISMC- ES-CNF controller compared with others controllers achieved the best control performance.

  14. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  15. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The integrated application of active controls (IAAC) technology to an advanced subsonic transport is reported. Supplementary technical data on the following topics are included: (1) 1990's avionics technology assessment; (2) function criticality assessment; (3) flight deck system for total control and functional features list; (4) criticality and reliability assessment of units; (5) crew procedural function task analysis; and (6) recommendations for simulation mechanization.

  16. An Analysis of an Automatic Coolant Bypass in the International Space Station Node 2 Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.

  17. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  18. Cooperative Control of Active Power Filters in Power Systems without Mutual Communication

    DOE PAGES

    Tlustý, Josef; Škramlík, Jiří; Švec, Jan; ...

    2010-01-01

    The procedure for calculating controller parameters of the APFs implemented into a multibus industrial power system for harmonic voltage mitigation is presented. The node-voltage-detection control strategy is applied and the basic controller parameters are found under the condition that the demanded THD factors at the buses where the APFs are placed will be obtained. A cooperative control of several APFs without mutual communication is proposed, simulated, and experimentally verified. By tuning the controller gains without considering the power circuit parameters, all APFs used tend to share harmonic load currents approximately equally regardless of the operation modes of the nonlinear loadsmore » in different parts of the power system.« less

  19. Activation of a controlled ecological life support system (CELSS) breadboard facility - Wheat growth studies

    NASA Technical Reports Server (NTRS)

    Knott, William M.

    1987-01-01

    NASA's Controlled Ecological Life Support System (CELSS) will include subsystems for biomass production, food processing, and waste management in space. This paper discusses the CELSS Breadboard program, which is a research project for integration and evaluation of concepts and techniques of the CELSS facility, with special attention given to the Biomass Production Chamber (BPC). The design of the BPC and of its subsystems for nutrient delivery, atmospheric control, and computer control are discussed together with the subsystem control and monitoring parameter requirements. Results from preliminary wheat-growth tests in the BPC are included.

  20. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  1. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  2. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control.

    PubMed

    Kim, Yejin; Jeong, Jo-Eun; Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20-49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors.

  3. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control

    PubMed Central

    Cho, Hyun; Jung, Dong-Jin; Kwak, Minjung; Rho, Mi Jung; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2016-01-01

    The purpose of this study was to identify personality factor-associated predictors of smartphone addiction predisposition (SAP). Participants were 2,573 men and 2,281 women (n = 4,854) aged 20–49 years (Mean ± SD: 33.47 ± 7.52); participants completed the following questionnaires: the Korean Smartphone Addiction Proneness Scale (K-SAPS) for adults, the Behavioral Inhibition System/Behavioral Activation System questionnaire (BIS/BAS), the Dickman Dysfunctional Impulsivity Instrument (DDII), and the Brief Self-Control Scale (BSCS). In addition, participants reported their demographic information and smartphone usage pattern (weekday or weekend average usage hours and main use). We analyzed the data in three steps: (1) identifying predictors with logistic regression, (2) deriving causal relationships between SAP and its predictors using a Bayesian belief network (BN), and (3) computing optimal cut-off points for the identified predictors using the Youden index. Identified predictors of SAP were as follows: gender (female), weekend average usage hours, and scores on BAS-Drive, BAS-Reward Responsiveness, DDII, and BSCS. Female gender and scores on BAS-Drive and BSCS directly increased SAP. BAS-Reward Responsiveness and DDII indirectly increased SAP. We found that SAP was defined with maximal sensitivity as follows: weekend average usage hours > 4.45, BAS-Drive > 10.0, BAS-Reward Responsiveness > 13.8, DDII > 4.5, and BSCS > 37.4. This study raises the possibility that personality factors contribute to SAP. And, we calculated cut-off points for key predictors. These findings may assist clinicians screening for SAP using cut-off points, and further the understanding of SA risk factors. PMID:27533112

  4. Shuttle active thermal control system development testing. Volume 6: Water ejector plume tests

    NASA Technical Reports Server (NTRS)

    Mcginnis, F. K.; Summerhays, R. M.

    1973-01-01

    Results are given of vacuum testing of nozzles designed to eject water vapor away from the space shuttle to prevent contamination of the spacecraft surfaces and payload. The water vapor is generated by an active cooling system which evaporates excess fuel cell water to supplement a modular radiator system (MRS). The complete heat rejection system including the MRS, flash evaporator or sublimator and nozzle were first tested to demonstrate the system operational characteristics. The plume tests were performed in two phases and the objectives of this test series were: (1) to determine the effectiveness of a supersonic nozzle and a plugged nozzle in minimizing impingement upon the spacecraft of water vapor exhausted by an active device (flash evaporator or sublimator); and (2) to obtain basic data on the flow fields of exhaust plumes generated by these active devices, both with and without nozzles installed.

  5. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    NASA Astrophysics Data System (ADS)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  6. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Beltrán-Carbajal, F.; Silva-Navarro, G.

    2014-07-01

    This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass-spring-damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.

  7. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  8. The Real-Time system for MHD activity control in the FTU tokamak

    NASA Astrophysics Data System (ADS)

    Sozzi, C.; Alessi, E.; Boncagni, L.; Galperti, C.; Marchetto, C.; Nowak, S.; Bin, W.; Botrugno, A.; Bruschi, A.; Cirant, S.; D'Antona, G.; D'Arcangelo, O.; Davoudi, M.; Farina, D.; Ferrero, R.; Figini, L.; Garavaglia, S.; Granucci, G.; Grosso, A.; Iannone, F.; Lazzaro, E.; Moro, A.; Nardone, A.; Mellera, V.; Minelli, D.; Panella, M.; Piergotti, V.; Platania, P.; Ramponi, G.; Simonetto, A.; Tilia, B.; Vitale, E.; Tudisco, O.

    2012-09-01

    The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  9. Controls of maglev suspension systems

    SciTech Connect

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  10. Active-Vision Control Systems for Complex Adversarial 3-D Environments

    DTIC Science & Technology

    2009-03-01

    Control Systems MURI Final Report 36 51. D. Nain, S. Haker , A. Bobick, A. Tannenbaum, "Multiscale 3D shape representation and segmentation using...Conference, August 2008. 99. L. Zhu, Y. Yang, S. Haker , and A. Tannenbaum, "An image morphing technique based on optimal mass preserving mapping," IEEE

  11. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  12. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    PubMed

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  13. [Characteristics of pilot motor activity when different control systems are used during landing approaches].

    PubMed

    Brusnichkina, R I

    1980-01-01

    Complex motor acts of pilots during their professional work were investigated with control information presented in a different manner. Two experimental series were run: in a real flight and in a simulator. Parameters of muscle bioelectric activity, control movements and performance efficiency were used. Differences in the formation of motor acts were shown to depend on the scope and quality of the information presented. During required transfer from one mode to another the structure of working movements and performance efficiency obeyed at large changes in the information necessary for piloting. This was accompanied by an alteration in the developed stereotype of actions, including motor acts.

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  16. High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

    2007-01-01

    Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

  17. Heave control of amphibious hovercraft by means of an active-fan system

    NASA Astrophysics Data System (ADS)

    Christopher, P. A. T.; Man, K. F.; Osbourn, E. W.; Cheng, Y. N.

    This paper describes the development of a heave control system for amphibious hovercraft, the central element in the system being an axial flow, lift-fan whose blade angles are continuously varied by means of feedback signals from a pressure transducer located in the front end of the hovercraft cushion and from an accelerometer measuring the heave acceleration. Transfer functions associated with the cushion dynamics were obtained by means of parameter identification using coefficient-plane models in which the coefficients were estimated by means of a nonlinear optimization algorithm. Results from experiments, conducted on the Cranfield, Whirling-Arm facility, have shown that the system provides a rapid and effective means of controlling the heave acceleration and, in addition, produces a valuable reduction in craft drag whilst traversing waves.

  18. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  19. On the stability of adaptation process in active noise control systems.

    PubMed

    Ardekani, Iman Tabatabaei; Abdulla, Waleed H

    2011-01-01

    The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.

  20. JT9D-70/59 Improved High Pressure Turbine Active Clearance Control System. [for specific fuel consumption improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.

  1. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    PubMed

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method.

  2. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  3. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  4. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  5. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  6. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  7. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  8. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  9. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  10. Optical controlled keyboard system

    NASA Astrophysics Data System (ADS)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  11. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    NASA Technical Reports Server (NTRS)

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  12. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    NASA Astrophysics Data System (ADS)

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of ~0.4 pH units compared to the surrounding ocean for a period of ~1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  13. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Palumbo, Dan (Technical Monitor)

    2002-01-01

    It was proposed to continue with development and application in the two active-passive areas of Active Tuned Vibration Absorbers (ATVA) and smart foam applied to the reduction of interior noise in aircraft. In general the work was focused on making both techniques more efficient, practical and robust thus increasing their application potential. The work was also concerned with demonstrating the potential of these two technologies under realistic implementations as well as understanding the fundamental physics of the systems. The proposed work consisted of a three-year program and was tightly coordinated with related work being carried out in the Structural Acoustics Branch at NASA LaRC. The work was supervised and coordinated through all phases by Prof Chris Fuller of Va Tech.

  14. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  15. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  16. Active Control of Stationary Vortices

    NASA Astrophysics Data System (ADS)

    Nino, Giovanni; Breidenthal, Robert; Bhide, Aditi; Sridhar, Aditya

    2016-11-01

    A system for active stationary vortex control is presented. The system uses a combination of plasma actuators, pressure sensors and electrical circuits deposited on aerodynamic surfaces using printing electronics methods. Once the pressure sensors sense a change on the intensity or on the position of the stationary vortices, its associated controller activates a set of plasma actuator to return the vortices to their original or intended positions. The forces produced by the actuators act on the secondary flow in the transverse plane, where velocities are much less than in the streamwise direction. As a demonstration case, the active vortex control system is mounted on a flat plate under low speed wind tunnel testing. Here, a set of vortex generators are used to generate the stationary vortices and the plasma actuators are used to move them. Preliminary results from the experiments are presented and compared with theoretical values. Thanks to the USAF AFOSR STTR support under contract # FA9550-15-C-0007.

  17. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  18. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

  19. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  20. Interconnection between flowering time control and activation of systemic acquired resistance.

    PubMed

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  1. System-Level Design of a Shape Memory Alloy Actuator for Active Clearance Control in the High-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.

    2005-01-01

    This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  2. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  3. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.

  4. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  5. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  6. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  8. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  9. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  10. Multivariable Control Systems

    DTIC Science & Technology

    1968-01-01

    one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).

  11. APE: the Active Phasing Experiment to test new control system and phasing technology for a European Extremely Large Optical Telescope

    NASA Astrophysics Data System (ADS)

    Gonte, F.; Yaitskova, N.; Derie, F.; Constanza, A.; Brast, R.; Buzzoni, B.; Delabre, B.; Dierickx, P.; Dupuy, C.; Esteves, R.; Frank, C.; Guisard, S.; Karban, R.; Koenig, E.; Kolb, J.; Nylund, M.; Noethe, L.; Surdej, I.; Courteville, A.; Wilhelm, R.; Montoya, L.; Reyes, M.; Esposito, S.; Pinna, E.; Dohlen, K.; Ferrari, M.; Langlois, M.

    2005-08-01

    The future European Extremely Large Telescope will be composed of one or two giant segmented mirrors (up to 100 m of diameter) and of several large monolithic mirrors (up to 8 m in diameter). To limit the aberrations due to misalignments and defective surface quality it is necessary to have a proper active optics system. This active optics system must include a phasing system to limit the degradation of the PSF due to misphasing of the segmented mirrors. We will present the lastest design and development of the Active Phasing Experiment that will be tested in laboratory and on-sky connected to a VLT at Paranal in Chile. It includes an active segmented mirror, a static piston plate to simulate a secondary segmented mirror and of four phasing wavefront sensors to measure the piston, tip and tilt of the segments and the aberrations of the VLT. The four phasing sensors are the Diffraction Image Phase Sensing Instrument developed by Instituto de Astrofisica de Canarias, the Pyramid Phasing Sensor developed by Arcetri Astrophysical Observatory, the Shack-Hartmann Phasing Sensor developed by the European Southern Observatory and the Zernike Unit for Segment phasing developed by Laboratoire d'Astrophysique de Marseille. A reference measurement of the segmented mirror is made by an internal metrology developed by Fogale Nanotech. The control system of Active Phasing Experiment will perform the phasing of the segments, the guiding of the VLT and the active optics of the VLT. These activities are included in the Framework Programme 6 of the European Union.

  12. New active control nano-system to use in composites structure

    NASA Astrophysics Data System (ADS)

    Arche, M. R.

    2012-09-01

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  13. Development and experimental verification of a robust active noise control system for a diesel engine in submarines

    NASA Astrophysics Data System (ADS)

    Sachau, D.; Jukkert, S.; Hövelmann, N.

    2016-08-01

    This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.

  14. Elimination of Harmonic Force and Torque in Active Magnetic Bearing Systems with Repetitive Control and Notch Filters.

    PubMed

    Xu, Xiangbo; Chen, Shao; Liu, Jinhao

    2017-04-04

    Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can be described in terms of the translational and rotational motions, respectively. Next, a closed-loop generalized notch filter is utilized to identify the synchronous displacement resulting from the rotor imbalance, and a feed-forward compensation of the synchronous force and torque related to the AMB displacement stiffness is formulated by using the identified synchronous displacement. Then, a plug-in repetitive controller is designed to track the synchronous feed-forward compensation adaptively and to suppress the harmonic vibrations due to the sensor runout. Finally, the proposed control method is verified by simulations and experiments. The control algorithm is insensitive to the parameter variations of the power amplifiers and can precisely suppress the harmonic force and torque. Its practicality stems from its low computational load.

  15. Active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Al-Masoud, Nidal A.

    A theoretical analysis of active control of combustion thermo-acoustic instabilities is developed in this dissertation. The theoretical combustion model is based on the dynamics of a two-phase flow in a liquid-fueled propulsion system. The formulation is based on a generalized wave equation with pressure as the dependent variable, and accommodates all influences of combustion, mean flow, unsteady motions and control inputs. The governing partial differential equations are converted to an equivalent set of ordinary differential equations using Galerkin's method by expressing the unsteady pressure and velocity fields as functions of normal mode shapes of the chamber. This procedure yields a representation of the unsteady flow field as a system of coupled nonlinear oscillators that is used as a basis for controllers design. Major research attention is focused on the control of longitudinal oscillations with both linear and nonlinear processes being considered. Starting with a linear model using point actuators, the optimal locations of actuators and sensors are developed. The approach relies on the quantitative measures of the degree of controllability and component cost. These criterion are arrived at by considering the energies of the system's inputs and outputs. The optimality criteria for sensor and actuator locations provide a balance between the importance of the lower order (controlled) and the higher (residual) order modes. To address the issue of uncertainties in system's parameter, the minimax principles based controller is used. The minimax corresponds to finding the best controller for the worst parameter deviation. In other words, choosing controller parameters to minimize, and parameter deviation to maximize some quadratic performance metric. Using the minimax-based controller, a remarkable improvement in the control system's ability to handle parameter uncertainties is achieved when compared to the robustness of the regular control schemes such as LQR

  16. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    SciTech Connect

    Guo, Jiquan

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  17. Ride Quality Design Criteria for Aircraft with Active Mode Control Systems

    DTIC Science & Technology

    1972-10-01

    comfort or effectiveness level. Nearly all modern aircraft have a stability augmentation system . These systems are designed primarily for rigid body... Augmentation System Design for Low Altitude, High Speed Flexible Aircraft, AFFDL-rR-67-49, February 1968. 4. C. B. Notess, A Triangle-Flexible Airplanes...Structural Design Criteria by Statistical Methods, AFFDL-TR-67-107, June 1968. 3. J. H. Wykes, et al, A Gust Alleviatlon and Structural Dynamic Stability

  18. Input Shaping enhanced Active Disturbance Rejection Control for a twin rotor multi-input multi-output system (TRMS).

    PubMed

    Yang, Xiaoyan; Cui, Jianwei; Lao, Dazhong; Li, Donghai; Chen, Junhui

    2016-05-01

    In this paper, a composite control based on Active Disturbance Rejection Control (ADRC) and Input Shaping is presented for TRMS with two degrees of freedom (DOF). The control tasks consist of accurately tracking desired trajectories and obtaining disturbance rejection in both horizontal and vertical planes. Due to un-measurable states as well as uncertainties stemming from modeling uncertainty and unknown disturbance torques, ADRC is employed, and feed-forward Input Shaping is used to improve the dynamical response. In the proposed approach, because the coupling effects are maintained in controller derivation, there is no requirement to decouple the TRMS into horizontal and vertical subsystems, which is usually performed in the literature. Finally, the proposed method is implemented on the TRMS platform, and the results are compared with those of PID and ADRC in a similar structure. The experimental results demonstrate the effectiveness of the proposed method. The operation of the controller allows for an excellent set-point tracking behavior and disturbance rejection with system nonlinearity and complex coupling conditions.

  19. Use of active control systems to improve bending and rotor flapping response of a tilt rotor VTOL airplane

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Cheng, Y.

    1975-01-01

    The results are summarized of an analytical study of the use of active control systems for the purpose of reducing the root mean square response of wing vertical bending and rotor flapping to atmospheric turbulence for a tilt-rotor VTOL airplane. Only the wing/rotor assembly was considered so that results of a wind tunnel test program would be applicable in a subsequent phase of the research. The capabilities and limitations of simple single feedback configurations were identified, and the most promising multiloop feedback configurations were then investigated. Design parameters were selected so as to minimize either wing bending or rotor flapping response. Within the constraints imposed by practical levels of feedback gains and complexity and by considerations of safety, reduction in response due to turbulence of the order of 30 to 50 percent is predicted using the rotor longitudinal cyclic and a trailing edge wing flap as control effectors.

  20. Active optical zoom system.

    PubMed

    Wang, Di; Wang, Qiong-Hua; Shen, Chuan; Zhou, Xin; Liu, Chun-Mei

    2014-11-01

    In this work, we propose an active optical zoom system. The zoom module of the system is formed by a liquid lens and a spatial light modulator (SLM). By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM panel, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. The magnification can change from 1/3 to 3/2 as the focal length of the encoded lens on the SLM changes from infinity to 24 cm. The proposed active zoom system is simple and flexible, and has widespread application in optical communications, imaging systems, and displays.

  1. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  2. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  3. Infrared active polarimetric imaging system controlled by image segmentation algorithms: application to decamouflage

    NASA Astrophysics Data System (ADS)

    Vannier, Nicolas; Goudail, François; Plassart, Corentin; Boffety, Matthieu; Feneyrou, Patrick; Leviandier, Luc; Galland, Frédéric; Bertaux, Nicolas

    2016-05-01

    We describe an active polarimetric imager with laser illumination at 1.5 µm that can generate any illumination and analysis polarization state on the Poincar sphere. Thanks to its full polarization agility and to image analysis of the scene with an ultrafast active-contour based segmentation algorithm, it can perform adaptive polarimetric contrast optimization. We demonstrate the capacity of this imager to detect manufactured objects in different types of environments for such applications as decamouflage and hazardous object detection. We compare two imaging modes having different number of polarimetric degrees of freedom and underline the characteristics that a polarimetric imager aimed at this type of applications should possess.

  4. Exploratory Study of Basement Moisture During Operation of Active Soil Depressurization Radon Control Systems

    EPA Pesticide Factsheets

    As part of an exploratory study, three houses were monitored for moisture indicators, radon levels, building operations, and other environmental parameters while ASD systems were cycled on and off. December 6, 2007, Revised 3/10/08.

  5. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  6. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity.

    PubMed

    Keymer, Philip C; Pratt, Steven; Lant, Paul A

    2013-09-01

    The development of an Electrochemical System for Oxygen Control (ESOC) for examining algal photosynthetic activity as a function of dissolved oxygen (DO) is outlined. The main innovation of the tool is coulombic titration in order to balance the electrochemical reduction of oxygen with the oxygen input to achieve a steady DO set-point. ESOC allows quantification of algal oxygen production whilst simultaneously maintaining a desired DO concentration. The tool was validated abiotically by comparison with a mass transfer approach for quantifying oxygenation. It was then applied to quantify oxygen inhibition of algal activity. Five experiments, using an enriched culture of Scenedesmus sp. as the inoculum, are presented. For each experiment, ESOC was used to quantify algal activity at a series of DO set-points. In all experiments substantial oxygen inhibition was observed at DO >30 mgO2 L-1. Inhibition was shown to fit a Hill inhibition model, with a common Hill coefficient of 0.22±0.07 L mg-1 and common log10  CI50 of 27.2±0.7 mg L-1. This is the first time that the oxygen inhibition kinetic parameters have been quantified under controlled DO conditions.

  7. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  8. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    NASA Technical Reports Server (NTRS)

    Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  9. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  10. Development of an advanced pitch active control system for a wide body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.

    1984-01-01

    An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.

  11. Real-Time GPS Monitoring of Atomic Frequency Standards in the Canadian Active Control System (CACS)

    DTIC Science & Technology

    1998-12-01

    orbit predictions and RTACP coordinates in a least-squares adjustment to determine satellite and station clock offsets with respect to a virtual ... reference clock (VRC). The VRC is maintained us a weighted mean of RTACP long-term clock models. The VRC is related to the mean GPS system time using a long

  12. Boiler control systems engineering

    SciTech Connect

    Gilman, J.

    2005-07-01

    The book provides in-depth coverage on how to safely and reliably control the firing of a boiler. Regardless of the capacity or fuel, certain fundamental control systems are required for boiler control. Large utility systems are more complex due to the number of burners and the overall capacity and equipment. This book covers engineering details on control systems and provides specific examples of boiler control including configuration and tuning. References to requirements are based on the 2004 NFPA 85 along with other ISA standards. Detailed chapters cover: Boiler fundamentals including piping and instrument diagrams (P&IDs) and a design basis checklist; Control of boilers, from strategies and bumpless transfer to interlock circuitry and final control elements; Furnace draft; Feedwater; Coal-fired boilers; Fuel and air control; Steam temperature; Burner management systems; Environment; and Control valve sizing. 2 apps.

  13. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  14. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  15. Reduction of structural weight, costs and complexity of a control system in the active vibration reduction of flexible structures

    NASA Astrophysics Data System (ADS)

    Daraji, A. H.; Hale, J. M.

    2014-09-01

    This paper concerns the active vibration reduction of a flexible structure with discrete piezoelectric sensors and actuators in collocated pairs bonded to its surface. In this study, a new fitness and objective function is proposed to determine the optimal number of actuators, based on variations in the average closed loop dB gain margin reduction for all of the optimal piezoelectric pairs and on the modes that are required to be attenuated using the optimal linear quadratic control scheme. The aim of this study is to find the minimum number of optimally located sensor/actuator pairs, which can achieve the same vibration reduction as a greater number, in order to reduce the cost, complexity and power requirement of the control system. This optimization was done using a genetic algorithm. The technique may be applied to any lightly damped structure, and is demonstrated here by attenuating the first six vibration modes of a flat cantilever plate. It is shown that two sensor/actuator pairs, located and controlled optimally, give almost the same vibration reduction as ten pairs. These results are validated by comparing the open and closed loop time responses and actuator feedback voltages for various numbers of piezoelectric pairs using the ANSYS finite element package and a proportional differential control scheme.

  16. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    NASA Technical Reports Server (NTRS)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  17. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  18. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control.

    PubMed

    Kim, Ernest S; Gustenhoven, Erich; Mescher, Mark J; Pararas, Erin E Leary; Smith, Kim A; Spencer, Abigail J; Tandon, Vishal; Borenstein, Jeffrey T; Fiering, Jason

    2014-02-21

    Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, that periodically infuses and then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dosing protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir that maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans.

  19. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  20. Tethered satellite system dynamics and control review panel and related activities, phase 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two major tests of the Tethered Satellite System (TSS) engineering and flight units were conducted to demonstrate the functionality of the hardware and software. Deficiencies in the hardware/software integration tests (HSIT) led to a recommendation for more testing to be performed. Selected problem areas of tether dynamics were analyzed, including verification of the severity of skip rope oscillations, verification or comparison runs to explore dynamic phenomena observed in other simulations, and data generation runs to explore the performance of the time domain and frequency domain skip rope observers.

  1. Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.; Wobick, Craig A.

    2007-01-01

    During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.

  2. Weld analysis and control system

    NASA Technical Reports Server (NTRS)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  3. Integrated blending control system

    SciTech Connect

    Cogbill, R.B.; Dodd, T.J.; Heilman, P.W.; Heronemus, D.L.; Sears, L.R.; Berryman, L.N.; Baker, R.L.; Guffee, L.E.; Prucha, D.A.; Roberts, D.M.

    1989-07-25

    This patent describes a proppant control system. It comprises: storage bin means for storing particulate material; surge bin means for receiving a flow of the particulate material from the storage bin means; first conveyor means for providing a flow of particulate material to the surge bin means from the storage bin means; second conveyor means for transferring a controllable quantity of the particulate material from the surge bin means; and proppant control means. The control means include: first speed control means for remotely controlling the speed of the first conveyor means; and second speed control means for remotely controlling the speed of the second conveyor means.

  4. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  5. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  6. Dynamic Sensing Performance of a Point-Wise Fiber Bragg Grating Displacement Measurement System Integrated in an Active Structural Control System

    PubMed Central

    Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching

    2011-01-01

    In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683

  7. A local active noise control system based on a virtual-microphone technique for railway sleeping vehicle applications

    NASA Astrophysics Data System (ADS)

    Diaz, J.; Egaña, J. M.; Viñolas, J.

    2006-11-01

    Low-frequency broadband noise generated on a railway vehicle by the wheel-rail interaction could be a big annoyance for passengers in sleeping cars. Low-frequency acoustic radiation is extremely difficult to attenuate by using passive devices. In this article, an active noise control (ANC) technique has been proposed for this purpose. A three-dimensional cabin was built in the laboratory to carry out the experiments. The proposed scheme is based on a Filtered-X Least Mean Square (FXLMS) control algorithm, particularised for a virtual-microphone technique. Control algorithms were designed with the Matlab-Simulink tool, and the Real Time Windows Target toolbox of Matlab was used to run in real time the ANC system. Referring to the results, different simulations and experimental performances were analysed to enlarge the silence zone around the passenger's ear zone and along the bed headboard. Attenuations of up to 20 and 15 dB(A) (re:20 μPa) were achieved at the passenger's ear in simulations and in experimental results, respectively.

  8. System for controlling apnea

    DOEpatents

    Holzrichter, John F

    2015-05-05

    An implanted stimulation device or air control device are activated by an external radar-like sensor for controlling apnea. The radar-like sensor senses the closure of the air flow cavity, and associated control circuitry signals (1) a stimulator to cause muscles to open the air passage way that is closing or closed or (2) an air control device to open the air passage way that is closing or closed.

  9. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  10. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  11. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  12. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  13. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  14. Shuttle active thermal control system development testing. Volume 3: Modular radiator system test data correlation with thermal model

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1973-01-01

    Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.

  15. Control system testing

    NASA Astrophysics Data System (ADS)

    Whittler, W. H.; Collart, R. E.

    1984-08-01

    A three stage process of ground testing of the Space Telescope Pointing Control System is used for verification prior to on-orbit operation. First, development tests are conducted in a laboratory environment using flight/engineering model control sensor and actuators configured with an engineering model of the flight computer and data management system breadboards. These development tests validate the results of computer simulations predicting control system performance. Integration tests bring together flight system elements and software interfaced to a software simulation of vehicle dynamics to confirm closed loop performance. The final ground test phase, flight systems testing, is conducted on the fully assembled Space Telescope, verifies interfaces with the Fine Guidance Sensors and includes a thermal vacuum testing period. During the final test phase, the Point Control System is exercised with the dynamics simulator running in real time.

  16. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  17. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  18. Technical Consultation of the International Space Station (ISS) Internal Active Thermal Control System (IATCS) Cooling Water Chemistry

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Rotter, Hank A.; Easton, Myriam; Lince, Jeffrey; Park, Woonsup; Stewart, Thomas; Speckman, Donna; Dexter, Stephen; Kelly, Robert

    2005-01-01

    The Internal Active Thermal Control System (IATCS) coolant exhibited unexpected chemical changes during the first year of on-orbit operation following the launch and activation in February 2001. The coolant pH dropped from 9.3 to below the minimum specification limit of 9.0, and re-equilibrated between 8.3 and 8.5. This drop in coolant pH was shown to be the result of permeation of CO2 from the cabin into the coolant via Teflon flexible hoses which created carbonic acid in the fluid. This unexpected diffusion was the result of having a cabin CO2 partial pressure higher than the ground partial pressure (average 4.0 mmHg vs. less than 0.2 mmHg). This drop in pH was followed by a concurrent increasing coolant nickel concentration. No other metal ions were observed in the coolant and based on previous tests, the source of nickel ion was thought to be the boron nickel (BNi) braze intermetallics used in the construction of HXs and cold plates. Specifically, BNi2 braze alloy was used for the IATCS IFHX and BNi3 braze alloy was used for the IATCS Airlock Servicing and Performance Checkout Unit (SPCU) HX and cold plates. Given the failure criticality of the HXs, a Corrosion Team was established by the IATCS CWG to determine the impact of the nickel corrosion on hardware performance life.

  19. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  20. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  1. Control Oriented System Identification

    DTIC Science & Technology

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  2. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  3. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  4. ADASY (Active Daylighting System)

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  5. SSRF Beamline Control System

    SciTech Connect

    Zheng, L. F.; Liu, P.; Zhang, Z. H.; Hu, C.; Mi, Q. R.; Wu, Y. F.; Gong, P. R.; Zhu, Z. X.; Li, Z.

    2010-06-23

    There are seven beamlines in the Phase-I of SSRF. Five of them are equipped with Insertion Devices, while two with Bending Magnets. The beamline control system is based on the standard hardware and software architecture. The VME(PowerPC) with VxWorks is used for motion control, while the personal computers with Scientific Linux are the front end controllers of equipment protection and personnel safety systems. The control software is developed under EPICS which makes various experimental programs of Blu-Ice, LabView, VC and SPEC conveniently access Monochromators, mirror chambers and other optical components.

  6. Supervisory control systems

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1974-01-01

    The various functions of a computer are considered that serve in connecting the man, with his displays and controls, to an external environment, manipulator activators and the interoceptors that are in the actuators, and to the interosensors and the motors or the actuators to drive the sensors. Projected is an improved exoskeleton mechanism with computer control and some supervisory control that may give a quadriplegic the ability to walk and run around.

  7. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  8. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    Digital techniques are discussed for application to the servo and control systems of large antennas. The tracking loop for an antenna at a STADAN tracking site is illustrated. The augmentation mode is also considered.

  9. Linear Hereditary Control Systems,

    DTIC Science & Technology

    Relationships between external and internal models for systems with time lags are discussed. The use of various canonical forms for the models in solving optimal control problems is considered. (Author)

  10. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  11. Control law parameterization for an aeroelastic wind-tunnel model equipped with an active roll control system and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Dunn, H. J.; Sandford, Maynard C.

    1988-01-01

    Nominal roll control laws were designed, implemented, and tested on an aeroelastically-scaled free-to-roll wind-tunnel model of an advanced fighter configuration. The tests were performed in the NASA Langley Transonic Dynamics Tunnel. A parametric study of the nominal roll control system was conducted. This parametric study determined possible control system gain variations which yielded identical closed-loop stability (roll mode pole location) and identical roll response but different maximum control-surface deflections. Comparison of analytical predictions with wind-tunnel results was generally very good.

  12. Rotor control system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Maciolek, Joseph R. (Inventor)

    1987-01-01

    A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.

  13. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  14. Control of Nonlinear Systems.

    DTIC Science & Technology

    1980-02-26

    above papers shows how the "finite horizon time" feedback stabilization technique discussed in Section Ill-A can be extended to derive stabilizing ... control laws for the linear differential system with delayed controls: x = Ax(t) - 0 u(t) + B 1u(t - h). The second of the above papers shows how the

  15. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  16. Active mass damper system for high-rise buildings using neural oscillator and position controller considering stroke limitation of the auxiliary mass

    NASA Astrophysics Data System (ADS)

    Hongu, J.; Iba, D.; Nakamura, M.; Moriwaki, I.

    2016-04-01

    This paper proposes a problem-solving method for the stroke limitation problem, which is related to auxiliary masses of active mass damper systems for high-rise buildings. The proposed method is used in a new simple control system for the active mass dampers mimicking the motion of bipedal mammals, which has a neural oscillator synchronizing with the acceleration response of structures and a position controller. In the system, the travel distance and direction of the auxiliary mass of the active mass damper is determined by reference to the output of the neural oscillator, and then, the auxiliary mass is transferred to the decided location by using a PID controller. The one of the purpose of the previouslyproposed system is stroke restriction problem avoidance of the auxiliary mass during large earthquakes by the determination of the desired value within the stroke limitation of the auxiliary mass. However, only applying the limited desired value could not rigorously restrict the auxiliary mass within the limitation, because the excessive inertia force except for the control force produced by the position controller affected on the motion of the auxiliary mass. In order to eliminate the effect on the auxiliary mass by the structural absolute acceleration, a cancellation method is introduced by adding a term to the control force of the position controller. We first develop the previously-proposed system for the active mass damper and the additional term for cancellation, and verity through numerical experiments that the new system is able to operate the auxiliary mass within the restriction during large earthquakes. Based on the comparison of the proposed system with the LQ system, a conclusion was drawn regarding which the proposed neuronal system with the additional term appears to be able to limit the stroke of the auxiliary mass of the AMD.

  17. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  18. Experimental Simulation of Active Control With On-line System Identification on Sound Transmission Through an Elastic Plate

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  19. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  20. Computer program system for dynamic simulation and stability analysis of passive and actively controlled spacecraft. Volume 1. Theory

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Devers, D. A.; Park, C. A.

    1975-01-01

    A theoretical development and associated digital computer program system is presented. The dynamic system (spacecraft) is modeled as an assembly of rigid and/or flexible bodies not necessarily in a topological tree configuration. The computer program system may be used to investigate total system dynamic characteristics including interaction effects between rigid and/or flexible bodies, control systems, and a wide range of environmental loadings. Additionally, the program system may be used for design of attitude control systems and for evaluation of total dynamic system performance including time domain response and frequency domain stability analyses. Volume 1 presents the theoretical developments including a description of the physical system, the equations of dynamic equilibrium, discussion of kinematics and system topology, a complete treatment of momentum wheel coupling, and a discussion of gravity gradient and environmental effects. Volume 2, is a program users' guide and includes a description of the overall digital program code, individual subroutines and a description of required program input and generated program output. Volume 3 presents the results of selected demonstration problems that illustrate all program system capabilities.

  1. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  2. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  3. Information Survivability Control Systems

    DTIC Science & Technology

    1999-01-01

    interfaces with higher-level (e.g., Federal Reserve ) and lower-level (e.g., branch) control systems. A hierarchical structure is natural to support...level hierarchical banking system with branch banks at the leaves, money-center banks in the middle, and the Federal Reserve system at the root...center in question, then the check deposit request is routed there. If not, then the check must be routed through the Federal Reserve . Checks for small

  4. SPS flexible system control assessment analysis

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1981-01-01

    Active control of the Satellite Power System (SPS0, a large mechanically flexible aerospace structure is addressed. The control algorithm is the principle component in the feedback link from sensors to actuators. An analysis of the interaction of the SPS structure and its active control system is presented.

  5. International Space Station Active Thermal Control Sub-System On-Orbit Pump Performance and Reliability Using Liquid Ammonia as a Coolant

    NASA Technical Reports Server (NTRS)

    Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.

    2011-01-01

    The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.

  6. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  7. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  8. LSST control system

    NASA Astrophysics Data System (ADS)

    Schumacher, Germán; Warner, Michael; Krabbendam, Victor

    2006-06-01

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based telescope designed to obtain sequential images of the entire visible sky every few nights. The LSST, in spite of its large field of view and short 15 second exposures, requires a very accurate pointing and tracking performance. The high efficiency specified for the whole system implies that observations will be acquired in blind pointing mode and tracking demands calculated from blind pointing as well. This paper will provide a high level overview of the LSST Control System (LCS) and details of the Telescope Control System (TCS), explaining the characteristics of the system components and the interactions among them. The LCS and TCS will be designed around a distributed architecture to maximize the control efficiency and to support the highly robotic nature of the LSST System. In addition to its control functions, the LCS will capture, organize and store system wide state information, to make it available for monitoring, evaluation and calibration processes. An evaluation of the potential communications middleware software to be utilized for data transport, is also included.

  9. SERVOMOTOR CONTROL SYSTEM

    DOEpatents

    MacNeille, S.M.

    1958-12-01

    Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.

  10. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system description

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering and fabrication of the test ACT system, produced in the third program element of the IAAC Project is documented. The system incorporates pitch-augmented stability and wing-load alleviation, plus full authority fly-by-wire control of the elevators. The pitch-augmented stability is designed to have reliability sufficient to allow flight with neutral or negative inherent longitudinal stability.

  11. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  12. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor)

    1987-01-01

    A remotely controllable mixing system (210) in which a plurality of mixing assemblies (10a-10e) are arranged in an annular configuration, and wherein each assembly (10) employs a central chamber (16) and two outer, upper and lower, chambers (12, 14). Valves (18, 20) are positioned between chambers, and these valves (18, 20) for a given mixing assembly (10) are operated by upper and lower control rotors (29), which in turn are driven by upper and lower drive rotors (270, 270b). Additionally, a hoop (278) is compressed around upper control rotors (29) and a hoop (278b) is compressed around lower control rotors (29) to thus insure constant frictional engagement between all control rotors (29) and drive rotors (270, 270b). The drive rollers (270, 270b) are driven by a motor (213).

  13. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  14. Celsius Control system.

    PubMed

    Badjatia, Neeraj

    2004-01-01

    The Celsius Control system (Innercool Therapies, Inc.) is an intravascular cooling catheter system consisting of the Celsius Control catheter,circulating set, and the Celsius Control console. Based on clinical studies, the system has recently received Food and Drug Administration approval for use as a device to induce, maintain, and reverse mild hypothermia in neurosurgical patients in surgery and recovery/intensive care, and is currently being marketed in the 10.7 Fr and 14 Fr catheter sizes. It works to regulate temperature by circulating sterile saline through the Celsius Control console, which contains an integrated assembly comprising a temperature and pressure sensing block,supply and return lines, and a 20-{m} filter with connective tubing and an independent heat exchanger and pump. The system relies on digital core temperature readings from either esophageal or bladder temperature probes. After the system is turned on, approximately 150 mL of sterile saline solution is pumped through the console and is cooled to achieve the preset temperature. This cooled saline subsequently circulates from the console through the catheter in a closed-loop manner. The distal portion of the catheter incorporates a flexible distal metallic heat transfer element that is designed to allow for direct exchange of thermal energy with blood circulating around the catheter.

  15. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  16. What can we learn about neural control of the cardiovascular system by studying rhythms in sympathetic nerve activity?

    PubMed

    Barman, Susan M

    2016-05-01

    Since the first recordings of sympathetic nerve activity in the 1930s, it was very clear that the activity was organized into bursts synchronized to the respiratory and cardiac cycles. Since the early studies, evidence has accumulated showing that sympathetic neural networks are quite complex and generate a variety of periodicities that range between ~0.04 and 10Hz, depending on the physiological state, type of nerve being analyzed, age of the subject, and the species. Despite the ubiquity of sympathetic rhythms, many investigators have failed to consider this oscillatory characteristic of sympathetic nerve activity and instead rely on simply quantifying changes in the level of activity to make decisions about the role of the sympathetic nervous system in mediating certain behaviors. This review highlights work that shows the importance of including an assessment of the frequency characteristics of sympathetic nerve activity.

  17. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  18. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  19. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  20. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  1. An extended active control for chaos synchronization

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Liu, Ya-Li; Xue, Ju-Kui

    2009-04-01

    By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

  2. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  3. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  4. Timing control system

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, Jr., George H. (Inventor)

    1989-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not overshoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  5. Timing Control System

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, George H., Jr. (Inventor)

    1987-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  6. Timing control system

    NASA Astrophysics Data System (ADS)

    Wiker, Gordon A.; Wells, George H., Jr.

    1987-09-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  7. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  8. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  9. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  10. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  11. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  12. Evolving Systems and Adaptive Key Component Control

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  13. Dynamitron control systems

    NASA Astrophysics Data System (ADS)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  14. Approximate active fault detection and control

    NASA Astrophysics Data System (ADS)

    Škach, Jan; Punčochář, Ivo; Šimandl, Miroslav

    2014-12-01

    This paper deals with approximate active fault detection and control for nonlinear discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used to represent fault-free and finitely many faulty models. An imperfect state information problem is reformulated using a hyper-state and dynamic programming is applied to solve the problem numerically. The proposed active fault detector and controller is illustrated in a numerical example of an air handling unit.

  15. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  16. The UMC control system

    SciTech Connect

    Dallard, K.E.; Adams, R.J.

    1983-05-01

    The control system for the Central Cormorant Underwater Manifold Centre (UMC) is an important step forward in developing the technology of subsea production. It provides reliable, fast operation of over 250 UMC valves and sensors at a distance of 7 kilometres. Included in the paper is an overview of the complete control system with selected components described in more detail. Principal guidelines which shaped the final design configuration are also discussed and problems encountered during design and manufacture are highlighted. The paper stresses the thorough testing that was an essential requirement prior to installation. Finally, general conclusions are drawn about the approach taken which would be of benefit to similar projects in the future.

  17. Reverse micelles as a water-property-control system to investigate the hydration/activity relationship of alpha-chymotrypsin.

    PubMed

    Dorovska-Taran, V; Veeger, C; Visser, A J

    1993-12-15

    alpha-Chymotrypsin, solubilized in hydrated reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in n-octane, was used as a model system for studying the involvement of different water structures (strongly bound water, disordered water, water clusters and bulk water) in the development of the catalytically active conformation of the enzyme. Results presented in this study indicate a characteristic dependence of the stability/activity profile on the water content of the reverse-micellar system for values of wo of approximately 5 (wo is defined as [H2O]/[AOT]). The results are consistent with heat-capacity measurements for proteins. At very low wo values, the conformation of alpha-chymotrypsin changes to a very rigid structure in comparison to the structure observed in water. This is demonstrated by the overall center of gravity of the tryptophan fluorescence spectrum of the enzyme at wo = 0.65, which is blue shifted in comparison to the spectrum in bulk water indicating that the enzyme is in an apolar environment. In the absence of a hydration shell, the protein is to a great extent frozen and inactive. A small increase in the level of enzyme hydration (up to wo = 2.3) causes an increase in the amount of strongly bound water associated with the enzyme and the enzyme displays a high catalytic activity. Upon further addition of water, a new unstable water structure with unfavourable enthalpy is developed and the enzyme activity declines, reaching a minimum at wo = 5.1. A new increase of water content within a relatively small range, wo = 5-8, causes a dramatic increase in enzymic activity, reminiscent of a cooperative hydration dependence. In the range wo = 10-29, the effect of hydration on the activity is complete which shows that the enzyme activity depends on the amount of water in contact with the enzyme and not on the total amount of bulk water in the system. The experimental results on enzyme incubation at different wo values followed by dilution to

  18. OAJ control system

    NASA Astrophysics Data System (ADS)

    Antón, J. L.; Yanes-Díaz, A.; Rueda-Teruel, S.; Luis-Simoes, R.; Chueca, S.; Lasso-Cabrera, N. M.; Bello, R.; Jiménez, D.; Suárez, O.; Guillén, L.; López-Alegre, G.; Rodríguez, M. A.; de Castro, S.; Nevot, C.; Sánchez-Artigot, J.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Varela, J.; Valdivielso, L.; Cristóbal-Hornillos, D.; López-Sainz, A.; Hernández-Fuertes, J.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Abril, J.; Lamadrid, J. L.; Maicas, N.; Rodríguez, S.; Tilve, V.; Civera, T.; Muniesa, D. J.

    2015-05-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys leveraging two unprecedented telescopes with unusually large fields of view: the JST/T250, a 2.55 m telescope with a 3 deg field of view, and the JAST/T80, an 83 cm telescope with a 2 deg field of view. The immediate objective of these telescopes for the next years is carrying out two unique photometric surveys covering several thousands square degrees: J-PAS and J-PLUS, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure and exoplanets. JST and JAST will be equipped with panoramic cameras being developed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (˜10{k}×10{k}) CCDs covering the entire focal plane. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and service the observatory systems, not only astronomical but also infrastructure and other facilities. We will give an overview of OAJ's control system from an engineering point of view.

  19. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  20. Smart actuators for active vibration control

    NASA Astrophysics Data System (ADS)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  1. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  2. MIRADAS control system

    NASA Astrophysics Data System (ADS)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  3. Crawling the Control System

    SciTech Connect

    Theodore Larrieu

    2009-10-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google "mini" search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  4. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  5. Quasi-modal vibration control by means of active control bearings

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Fleming, D. P.

    1986-01-01

    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.

  6. CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL ROOM WITH SPRINKLER SYSTEM CONTROLS, INCLUDING MANUAL CONTROL BOXES FOR THE VENTILATION SYSTEM AND A PLC SWITCH FOR AUTOMATIC CO (CARBON MONOXIDE) SYSTEM. THE AIR TESTING SYSTEM IS FREE STANDING AND THE FANS ARE COMPUTER-OPERATED. - Alaskan Way Viaduct and Battery Street Tunnel, Seattle, King County, WA

  7. Smog control system

    SciTech Connect

    Eichhorn, C.D.

    1992-01-01

    A smog control system is designed comprised of fans or blowers which are located to introduce air into a smog particle destruction chamber operated with laser energy. The smog particles are broken down and the air is passed into a filtering chamber which may adopt the form of a liquid charcoal chamber. The air may be bubbled through the liquid charcoal and the effluent may then be passed into a freshening agent chamber. The air may then pass as an effluent from the freshening agent chamber. A liquid charcoal supply may be connected to the liquid charcoal chamber and the recovered liquid charcoal which has been spent may be reused for other purposes.

  8. Vibration control through passive constrained layer damping and active control

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.

    1997-05-01

    To add damping to systems, viscoelastic materials (VEM) are added to structures. In order to enhance the damping effects of the VEM, a constraining layer is attached. When this constraining layer is an active element, the treatment is called active constrained layer damping (ACLD). Recently, the investigation of ACLD treatments has shown it to be an effective method of vibration suppression. In this paper, the treatment of a beam with a separate active element and passive constrained layer (PCLD) element is investigated. A Ritz- Galerkin approach is used to obtain discretized equations of motion. The damping is modeled using the GHM method and the system is analyzed in the time domain. By optimizing on the performance and control effort for both the active and passive case, it is shown that this treatment is capable of lower control effort with more inherent damping, and is therefore a better approach to damp vibration.

  9. Application of a self-tuning fuzzy PI-PD controller in an active anti-roll bar system for a passenger car

    NASA Astrophysics Data System (ADS)

    Muniandy, V.; Samin, P. M.; Jamaluddin, H.

    2015-11-01

    A fuzzy proportional-integral-derivative (PID) controller has not been widely investigated for active anti-roll bar (AARB) application due to its unspecific mathematical analysis and the derivative kick problem. This paper briefly explains how the derivative kick problem arises due to the nature of the PID controller as well as the conventional fuzzy PID controller in association with an AARB. There are two types of controllers proposed in this paper: self-tuning fuzzy proportional-integral-proportional-derivative (STF PI-PD) and PI-PD-type fuzzy controller. Literature reveals that the PI-PD configuration can avoid the derivative kick, unlike the standard PID configuration used in fuzzy PID controllers. STF PI-PD is a new controller proposed and presented in this paper, while the PI-PD-type fuzzy controller was developed by other researchers for robotics and automation applications. Some modifications were made on these controllers in order to make them work with an AARB system. The performances of these controllers were evaluated through a series of handling tests using a full car model simulated in MATLAB Simulink. The simulation results were compared with the performance of a passive anti-roll bar and the conventional fuzzy PID controller in order to show improvements and practicality of the proposed controllers. Roll angle signal was used as input for all the controllers. It is found that the STF PI-PD controller is able to suppress the derivative kick problem but could not reduce the roll motion as much as the conventional fuzzy PID would. However, the PI-PD-type fuzzy controller outperforms the rest by improving ride and handling of a simulated passenger car significantly.

  10. Airflow control system

    DOEpatents

    Motszko, Sean Ronald; McEnaney, Ryan Patrick; Brush, Jeffrey Alan; Zimmermann, Daniel E.

    2007-03-13

    A dual airflow control system for an environment having a first air zone and a second air zone. The system includes a first input device operable to generate a first input signal indicative of a desired airflow to the first zone and a second input device operable to generate a second input signal indicative of a desired airflow to the second zone. First and second flow regulators are configured to regulate airflow to the first and second zones, respectively, such that the first and second regulators selectively provide the airflow to each of the first and second zones based on the first and second input signals. A single actuator is associated with the first and second flow regulators. The actuator is operable to simultaneously actuate the first and second flow regulators based on an input from the first and second input devices to allow the desired airflows to the first and the second zones.

  11. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  12. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  13. Failsafe engine fuel control system

    SciTech Connect

    Martinsons, R.; Deutch, R.W.

    1987-11-03

    An engine fuel control system is described comprising: sensor means for providing separate more than two state electrical signals; fuel control means for receiving at least a primary control signal and providing a calculated engine fuel control signal as a function thereof; sensor signal conditioning circuit means coupled to the sensor means for receiving at least one of the electrical signals representative of sensed engine throttle position and sensed engine manifold pressure and providing; wherein the improvement comprises, failure detection means, for determining when the engine manifold pressure sensor signal is non-representative of actual engine manifold pressure and for providing a pressure sensor failure signal in response thereto. The sensor signal conditioning circuit means normally effectively provides a signal having magnitudes determined by at least the sensed manifold pressure signal to the fuel control means as the primary control signal in response to the absence of the pressure sensor failure signal. The system including an operator warning device which is activated in response to the pressure sensor failure signal indicating a failure of the pressure sensor.

  14. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip

    PubMed Central

    Murillo, I.; Martinez-Argudo, I.; Blocker, A. J.

    2016-01-01

    Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction. PMID:27277624

  15. Controlling the activation of the Bv8/prokineticin system reduces neuroinflammation and abolishes thermal and tactile hyperalgesia in neuropathic animals

    PubMed Central

    Maftei, D; Marconi, V; Florenzano, F; Giancotti, L A; Castelli, M; Moretti, S; Borsani, E; Rodella, L F; Balboni, G; Luongo, L; Maione, S; Sacerdote, P; Negri, L; Lattanzi, R

    2014-01-01

    Background and Purpose Chemokines are involved in neuroinflammation and contribute to chronic pain processing. The new chemokine prokineticin 2 (PROK2) and its receptors (PKR1 and PKR2) have a role in inflammatory pain and immunomodulation. In the present study, we investigated the involvement of PROK2 and its receptors in neuropathic pain. Experimental Approach Effects of single, intrathecal, perineural and s.c. injections of the PKR antagonist PC1, or of 1 week s.c. treatment, on thermal hyperalgesia and tactile allodynia was evaluated in mice with chronic constriction of the sciatic nerve (CCI). Expression and localization of PROK2 and of its receptors at peripheral and central level was evaluated 10 days after CCI, following treatment for 1 week with saline or PC1. IL-1β and IL-10 levels, along with glia activation, were evaluated. Key Results Subcutaneous, intrathecal and perineural PC1 acutely abolished the CCI-induced hyperalgesia and allodynia. At 10 days after CCI, PROK2 and its receptor PKR2 were up-regulated in nociceptors, in Schwann cells and in activated astrocytes of the spinal cord. Therapeutic treatment with PC1 (s.c., 1 week) alleviated established thermal hyperalgesia and allodynia, reduced the injury-induced overexpression of PROK2, significantly blunted nerve injury-induced microgliosis and astrocyte activation in the spinal cord and restored the physiological levels of proinflammatory and anti-inflammatory cytokines in periphery and in spinal cord. Conclusion and Implications The prokineticin system contributes to pain modulation via neuron–glia interaction. Sustained inhibition of the prokineticin system, at peripheral or central levels, blocked both pain symptoms and some events underlying disease progression. PMID:24902717

  16. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  17. Thrust-Vector-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.

  18. Imaging nervous system activity.

    PubMed

    Fields, Douglas R; Shneider, Neil; Mentis, George Z; O'Donovan, Michael J

    2009-10-01

    This unit describes methods for loading ion- and voltage-sensitive dyes into neurons, with a particular focus on the spinal cord as a model system. In addition, we describe the use of these dyes to visualize neural activity. Although the protocols described here concern spinal networks in culture or an intact in vitro preparation, they can be, and have been, widely used in other parts of the nervous system.

  19. Multi-Objective Sliding Mode Control on Vehicle Cornering Stability with Variable Gear Ratio Actuator-Based Active Front Steering Systems

    PubMed Central

    Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao

    2016-01-01

    Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver’s input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice. PMID:28036037

  20. Multi-Objective Sliding Mode Control on Vehicle Cornering Stability with Variable Gear Ratio Actuator-Based Active Front Steering Systems.

    PubMed

    Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao

    2016-12-28

    Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver's input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice.

  1. Pollution control system

    SciTech Connect

    Voliva, B.H.; Bernstein, I.B.

    1984-09-25

    A pollution control system is disclosed wherein condensable pollutants are removed from a high-temperature gas stream by counterflow contact in a vertical tower with downwardly flowing, relatively cool absorbent oil. The absorbent is at a sufficiently low temperature so as to rapidly condense a portion of the pollutants in order to form a fog of fine droplets of pollutant entrained by the gas stream, which fog is incapable of being absorbed by the absorbent. The remainder of the condensable pollutants is removed by downwardly flowing absorbent oil, and the gas and entrained fog are directed from the tower to gas/droplet separation means, such as an electrostatic precipitator. The fog is thereby separated from the gas and substantially pollutant-free gas is discharged to the atmosphere.

  2. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  3. A proposed methodology to control body temperature in patients at risk of hypothermia by means of active rewarming systems.

    PubMed

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5-1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  4. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  5. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  6. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. Thermal control system technology discipline

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  8. Cyber Incidents Involving Control Systems

    SciTech Connect

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this information available to

  9. Environment control system

    DOEpatents

    Sammarone, Dino G.

    1978-01-01

    A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.

  10. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent

    PubMed Central

    Kura, Aminu Umar; Ali, Samer Hasan Hussein Al; Hussein, Mohd Zobir; Fakurazi, Sharida; Arulselvan, Palanisamy

    2013-01-01

    A new layered organic–inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure. PMID:23524513

  11. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent.

    PubMed

    Kura, Aminu Umar; Hussein Al Ali, Samer Hasan; Hussein, Mohd Zobir; Fakurazi, Sharida; Arulselvan, Palanisamy

    2013-01-01

    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.

  12. Development of an advanced pitch active control system and a reduced area horizontal tail for a wide-body jet aircraft

    NASA Technical Reports Server (NTRS)

    Guinn, Wiley A.

    1984-01-01

    The development of an advanced pitch active control system (PACS) and a reduced area horizontal tail for a wide-body jet transport (L-1011) with a flying horizontal stabilizer is discussed. The advanced PACS control law design objectives were to provide satisfactory handling qualities for aft c.g. flight conditions to negative static stability margins of 10 percent and to provide good maneuver control column force gradients for nonlinear stability flight conditions. Validity of the control laws were demonstrated by piloted flight simulation tests on the NASA Langley Visual Motion Simulator. Satisfactory handling qualities were actually demonstrated to a negative 20 percent static stability margin. The PACS control laws were mechanized to provide the system architecture that would be suitable for an L-1011 flight test program to a negative stability margin of 3 percent which represents the aft c.g. limits of the aircraft. Reduced area horizontal tail designs of 30 and 38 percent with respect to the L-1011 standard tail were designed, fabricated and wind tunnel tested. Drag reductions and weight savings of the 30 percent smaller tail would provide an L/D benefit of about 2% and the 38% small tail L/D benefit would be about 3 percent. However, forward c.g. limitations would have to be imposed on the aircraft because the maximum horizontal tail lift goal was not achieved and sufficient aircraft nose-up control authority was not available. This limitation would not be required for a properly designed new aircraft.

  13. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  14. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  15. Intelligent Engine Systems: HPT Clearance Control

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Advanced Thermally Actuated Clearance Control System underwent several studies. Improved flow path isolation quantified what can be gained by making the HPT case nearly adiabatic. The best method of heat transfer was established, and finally two different borrowed air cooling circuits were evaluated to be used for the HPT Active Clearance Control System.

  16. Optogenetic control of epileptiform activity

    PubMed Central

    Tønnesen, Jan; Sørensen, Andreas T.; Deisseroth, Karl; Lundberg, Cecilia; Kokaia, Merab

    2009-01-01

    The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIα promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy. PMID:19581573

  17. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  18. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  19. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  20. Active Flow Control (AFC) and Insect Accretion and Mitigation (IAM) System Design and Integration on the Boeing 757 ecoDemonstrator

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.

    2016-01-01

    This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.

  1. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  2. Control of precision pointing system

    NASA Astrophysics Data System (ADS)

    Gu, Zheng

    Distributed-parameter modeling of tube with moving mass using Magnetic Compressional Damping Treatment (MCDT) is developed. Hamilton's principle is utilized to develop the model and boundary condition of a tube with moving mass using MCDT. Based on the electromagnetic theory, the relation between the generated magnet force of the actuator (MCDT) and the control current is determined. A stable control strategy is developed to damp out the vibration of the tube with moving mass using MCDT system. The fundamental characteristics of an active and a passive version of the Magnetic Compressional Damping Treatment (MCDT) are investigated by the finite element method. The damping characteristics of tube/MCDT system are modeled by Golla-Hughes-McTavish (GHM) method in order to predict the tube response in the time domain. The numerical results are verified through experimentation using a cantilevered tube treated with MCDT at the free end. The tube vibration due to an internally moving load is controlled by the MCDT using a deflection feedback controller. Close agreement is obtained between theory and experiments. The effectiveness of the MCDT in attenuating structural vibration of the tube has also been clearly demonstrated in the time and frequency domains. The developed theoretical and experimental techniques present invaluable tools for designing and predicting the performance of precision pointing tubes different damping treatments when subjected to moving loads.

  3. Topographic controlled forcing of salt flow: Three-dimensional models of an active salt system, Canyonlands, Utah

    NASA Astrophysics Data System (ADS)

    Kravitz, Katherine; Upton, Phaedra; Mueller, Karl; Roy, Samuel G.

    2017-01-01

    The grabens within Canyonlands, Utah, is an active salt system primarily driven by differential unloading due to incision of the Colorado River. However, many other conditions exist in the region that potentially influence regional deformation, including the gentle dip of the evaporite deposits, unconfined salt within the river canyon, weaknesses in the overburden, and topographic gradients on various scales. Three-dimensional numerical models were built to test the scale at which salt responds to these parameters individually and as a whole. Topography has a large influence on salt flow on both a regional and local scales and predicts the formation of existing structures in the region on consistent spatial scales without the influence of overburden weakening or salt geometry. Topography also has a large influence on the direction of salt flow, which acts to divert salt away from the canyon at the edge of the grabens and enhance salt flow within the grabens. Unconfined salt within the canyon regionally alters displacement rates and patterns, indicating a clear shift in strain before and after incision of the river into the Paradox Formation. On a local scale, there is a strong coupling between overburden weakening and salt flow patterns, where salt responds to individual structures and less to regional drivers. All these driving forces create an ensemble of feedback that alters the strain field and structural development through time.

  4. Jefferson Lab Data Acquisition Run Control System

    SciTech Connect

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  5. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Kendall, Greg T. (Inventor); Morgan, Walter R. (Inventor)

    2010-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  6. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  7. Networked control of microgrid system of systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  8. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum.

    PubMed

    Schimpf, Damian N; Limpert, Jens; Tünnermann, Andreas

    2007-12-10

    We report on the experimental demonstration of the control of the influence of nonlinearity in fiber-based chirped-pulse amplification (CPA) using active spectral amplitude shaping. By applying a liquid crystal spatial light modulator, the influence of the spectral profile on the recompressed pulse quality is experimentally revealed. The parabolic spectrum is experimentally determined to be very suitable for CPA-systems in which nonlinearity is present. The corresponding nonlinear phase contribution can be efficiently compensated by a conventional grating compressor. In a proof-of-principle experiment using an Yb-doped fiber- CPA-system, control at a B-integral as high as 16 rad is demonstrated. The method allows significant performance improvement of fiber-based chirpedpulse amplification.

  9. Environmental Restoration Program Control Management System

    SciTech Connect

    Duke, R.T.

    1992-08-13

    Environmental Restoration managers need to demonstrate that their programs are under control. Unlike most industrial programs, the public is heavily involved in Environmental Restoration activities. The public is demanding that the country prove that real progress is being made towards cleaning up the environment. A Program Control Management System can fill this need. It provides a structure for planning, work authorization, data accumulation, data analysis and change control. But it takes time to implement a control system and the public is losing its patience. This paper describes critical items essential to the quick development and implementation of a successful control system.

  10. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  11. The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Grose, D. L.

    1979-01-01

    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.

  12. Space Shuttle flight control system

    NASA Technical Reports Server (NTRS)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  13. Internal Active Thermal Control System (IATCS) Sodium Bicarbonate/Carbonate Buffer in an Open Aqueous Carbon Dioxide System and Corollary Electrochemical/Chemical Reactions Relative to System pH Changes

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.; Wilson, Mark E.; Glasscock, Brad; Holt, Mike

    2014-01-01

    The International Space Station (ISS) Internal Active Thermal Control System (IATCS) experienced a number of chemical changes driven by system absorption of CO2 which altered the coolant’s pH. The natural effects of the decrease in pH from approximately 9.2 to less than 8.4 had immediate consequences on system corrosion rates and corrosion product interactions with specified coolant constituents. The alkalinity of the system was increased through the development and implementation of a carbonate/bicarbonate buffer that would increase coolant pH to 9.0 – 10.0 and maintain pH above 9.0 in the presence of ISS cabin concentrations of CO2 up to twenty times higher than ground concentrations. This paper defines how a carbonate/bicarbonate buffer works in an open carbon dioxide system and summarizes the analyses performed on the buffer for safe and effective application in the on-orbit system. The importance of the relationship between the cabin environment and the IATCS is demonstrated as the dominant factor in understanding the system chemistry and pH trends before and after addition of the carbonate/bicarbonate buffer. The paper also documents the corollary electrochemical and chemical reactions the system has experienced and the rationale for remediation of these effects with the addition of the carbonate/bicarbonate buffer.

  14. Distributed systems status and control

    NASA Technical Reports Server (NTRS)

    Kreidler, David; Vickers, David

    1990-01-01

    Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.

  15. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  16. Refurbishment program of HANARO control computer system

    SciTech Connect

    Kim, H. K.; Choe, Y. S.; Lee, M. W.; Doo, S. K.; Jung, H. S.

    2012-07-01

    HANARO, an open-tank-in-pool type research reactor with 30 MW thermal power, achieved its first criticality in 1995. The programmable controller system MLC (Multi Loop Controller) manufactured by MOORE has been used to control and regulate HANARO since 1995. We made a plan to replace the control computer because the system supplier no longer provided technical support and thus no spare parts were available. Aged and obsolete equipment and the shortage of spare parts supply could have caused great problems. The first consideration for a replacement of the control computer dates back to 2007. The supplier did not produce the components of MLC so that this system would no longer be guaranteed. We established the upgrade and refurbishment program in 2009 so as to keep HANARO up to date in terms of safety. We designed the new control computer system that would replace MLC. The new computer system is HCCS (HANARO Control Computer System). The refurbishing activity is in progress and will finish in 2013. The goal of the refurbishment program is a functional replacement of the reactor control system in consideration of suitable interfaces, compliance with no special outage for installation and commissioning, and no change of the well-proved operation philosophy. HCCS is a DCS (Discrete Control System) using PLC manufactured by RTP. To enhance the reliability, we adapt a triple processor system, double I/O system and hot swapping function. This paper describes the refurbishment program of the HANARO control system including the design requirements of HCCS. (authors)

  17. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  18. Thermodynamics of feedback controlled systems

    NASA Astrophysics Data System (ADS)

    Cao, F. J.; Feito, M.

    2009-04-01

    We compute the entropy reduction in feedback controlled systems due to the repeated operation of the controller. This was the lacking ingredient to establish the thermodynamics of these systems, and in particular of Maxwell’s demons. We illustrate some of the consequences of our general results by deriving the maximum work that can be extracted from isothermal feedback controlled systems. As a case example, we finally study a simple system that performs an isothermal information-fueled particle pumping.

  19. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  20. Control-System Design Program

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1987-01-01

    Control-theory design package, Optimal Regulator Algorithms for Control of Linear Systems (ORACLS), developed to aid in design of controllers and optimal filters for systems modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, Linear-Quadratic-Gaussian (LQG) problem, most widely accepted method of determining optimal control policy. Provides for solution to time-in-variant continuous or discrete LQG problems. Attractive to control-system designer providing rigorous tool for dealing with multi-input and multi-output dynamic systems in continuous and discrete form. CDO version written in FORTRAN IV. VAX version written in FORTRAN 77.

  1. Analytical Assessment of a Gross Leakage Event Within the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS)

    NASA Technical Reports Server (NTRS)

    Holt, James M.; Clanton, Stephen E.

    2001-01-01

    Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.

  2. Analytical Assessment of a Gross Leakage Event Within the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS)

    NASA Technical Reports Server (NTRS)

    Holt, James M.; Clanton, Stephen E.

    1999-01-01

    Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flowrates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effects resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.

  3. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  4. Three axis attitude control system

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1988-01-01

    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

  5. The ATLAS Detector Control System

    NASA Astrophysics Data System (ADS)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  6. Fluid delivery control system

    SciTech Connect

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  7. Duct Flow Control System.

    DTIC Science & Technology

    is ejected under pressure tangentially of local duct surfaces through Coanda affected slots at the trailing edge of the duct from which only the...channel passages in order to modify the flow stream through the duct so as to perform certain functions such as thrust control and steerage control effects enhancing vehicle maneuverability.

  8. Controlled Stochastic Dynamical Systems

    DTIC Science & Technology

    2007-04-18

    the existence of value functions of two-player zero-sum stochastic differential games Indiana Univ. Math. Journal, 38 (1989), pp 293-314. [6] George ...control problems, Adv. Appl. Prob., 15, (1983) pp 225-254. [10] Karatzas, I. Ocone, D., Wang, H. and Zervos , M., Finite fuel singular control with

  9. Autorotation flight control system

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N. (Inventor); Lee, Dong-Chan (Inventor); Aponso, Bimal L. (Inventor)

    2011-01-01

    The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.

  10. Supervisory Control of Networked Control Systems

    DTIC Science & Technology

    2006-01-15

    consisting of 3 Koala robots [Lem06b]. The robots are controlled by MICA2 wireless processor modules. The robots communicate over the MICA2’s...preliminary documentation of a wireless autonomous robotic testbed. The system consists of 3 Koala (K-team Inc.) robots that are controlled by the MICA2...by this project. MICA-KoalaBot Hardware: The Koala robot is an autonomous wheeled vehicle that has 16 infrared (IR) proximity sensors around its

  11. Control Systems for Information Systems Development Projects (Part I)

    ERIC Educational Resources Information Center

    Dickson, Gary W.

    1970-01-01

    Discusses control of management information systems and finds a similarity in management of research and development activity. Part II will appear in AEDS Journal, Volume 4, number 2, December 1970. (JF)

  12. Bibliographic Access and Control System.

    ERIC Educational Resources Information Center

    Kelly, Betsy; And Others

    1982-01-01

    Presents a brief summary of the functions of the Bibliographic Access & Control System (BACS) implemented at the Washington University School of Medicine Library, and outlines the design, development, and uses of the system. Bibliographic control of books and serials and user access to the system are also discussed. (Author/JL)

  13. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    NASA Astrophysics Data System (ADS)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  14. Moving Object Control System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2001-01-01

    A method is provided for controlling two objects relatively moveable with respect to each other. A plurality of receivers are provided for detecting a distinctive microwave signal from each of the objects and measuring the phase thereof with respect to a reference signal. The measured phase signal is used to determine a distance between each of the objects and each of the plurality of receivers. Control signals produced in response to the relative distances are used to control the position of the two objects.

  15. A telerobotic digital controller system

    NASA Technical Reports Server (NTRS)

    Brown, Richard J.

    1992-01-01

    This system is a network of joint mounted dual axes digital servo-controllers (DDSC), providing control of various joints and end effectors of different robotic systems. This report provides description of and user required information for the Digital Controller System Network (DSCN) and, in particular, the DDSC, Model DDSC-2, developed to perform the controller functions. The DDSC can control 3 phase brushless or brush type DC motors, requiring up to 8 amps. Only four wires, two for power and 2 for serial communication, are required, except for local sensor and motor connections. This highly capable, very flexible, programmable servo-controller, contained on a single, compact printed circuit board measuring only 4.5 x 5.1 inches, is applicable to control systems of all types from sub-arc second precision pointing to control of robotic joints and end effectors. This document concentrates on the robotic applications for the DDSC.

  16. Imaging nervous system activity.

    PubMed

    Fields, R D; O'Donovan, M J

    2001-05-01

    Optical imaging methods rely upon visualization of three types of signals: (1) intrinsic optical signals, including light scattering and reflectance, birefringence, and spectroscopic changes of intrinsic molecules, such as NADH or oxyhemoglobin; (2) changes in fluorescence or absorbance of voltage-sensitive membrane dyes; and (3) changes in fluorescence or absorbance of calcium-sensitive indicator dyes. Of these, the most widely used approach is fluorescent microscopy of calcium-sensitive dyes. This unit describes protocols for the use of calcium-sensitive dyes and voltage-dependent dyes for studies of neuronal activity in culture, tissue slices, and en-bloc preparations of the central nervous system.

  17. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  18. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  19. Actively controlled shaft seals for aerospace applications

    NASA Astrophysics Data System (ADS)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  20. Lightweight active controlled primary mirror technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Gallieni, D.; Biasi, R.; Pereira, J.

    2007-10-01

    This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a space-borne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than λ/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror's optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

  1. Tests Of Helicopter Control System

    NASA Technical Reports Server (NTRS)

    Hilbert, Kathryn B.; Lebacqz, J. Victor; Hindson, William S.

    1988-01-01

    Advanced control systems being developed for rotorcraft. Report discusses aspects of development of multivariable, explicit-model-following control system for CH-47B fly-by-wire helicopter. Project part of recent trend toward use of highly-augmented, high-gain flight-control systems to assist pilots of military helicopters in performance of demanding tasks and to improve handling qualities of aircraft.

  2. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  3. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  4. Active control of probability amplitudes in a mesoscale system via feedback-induced suppression of dissipation and noise

    NASA Astrophysics Data System (ADS)

    Gupta, Chaitanya; Peña Perez, Aldo; Fischer, Sean R.; Weinreich, Stephen B.; Murmann, Boris; Howe, Roger T.

    2016-12-01

    We demonstrate that a three-terminal potentiostat circuit reduces the coupling between an electronic excitation transfer (EET) system and its environment, by applying a low-noise voltage to its electrical terminals. Inter-state interference is preserved in the EET system by attenuating the dissipation in the quantum system arising from coupling to the surrounding thermodynamic bath. A classical equivalent circuit is introduced to model the environment-coupled excitation transfer for a simplified, two-state system. This model provides a qualitative insight into how the electronic feedback affects the transition probabilities and selectively reduces dissipative coupling for one of the participant energy levels EET system. Furthermore, we show that the negative feedback also constrains r.m.s. fluctuations of the energy of environmental vibrational states, resulting in persistent spectral coherence between the decoupled state and vibronic levels of the complementary state. The decoupled vibronic channel therefore can serve as a probe for characterizing the vibronic structure of the complementary channel of the EET system.

  5. Ground Control System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  6. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  7. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  8. Communicating Networked Control Systems

    DTIC Science & Technology

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  9. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  10. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  11. The Remote Computer Control (RCC) system

    NASA Technical Reports Server (NTRS)

    Holmes, W.

    1980-01-01

    A system to remotely control job flow on a host computer from any touchtone telephone is briefly described. Using this system a computer programmer can submit jobs to a host computer from any touchtone telephone. In addition the system can be instructed by the user to call back when a job is finished. Because of this system every touchtone telephone becomes a conversant computer peripheral. This system known as the Remote Computer Control (RCC) system utilizes touchtone input, touchtone output, voice input, and voice output. The RCC system is microprocessor based and is currently using the INTEL 80/30microcomputer. Using the RCC system a user can submit, cancel, and check the status of jobs on a host computer. The RCC system peripherals consist of a CRT for operator control, a printer for logging all activity, mass storage for the storage of user parameters, and a PROM card for program storage.

  12. Design, Development and Implementation of an Active Control System for Load Alleviation for a Commercial Transport Airplane,

    DTIC Science & Technology

    1980-02-01

    moment ar. torsion at an outboard wing station obtained from roller coaster maneuvers at 37q (tAS. Also shown are the analytically predicted increments... vertical accelerometers in each wing tip and the fuselage and are input to the computers. The computers perform the control law compu- tations and other...and VERTICAL ACCELEROMETER (TRIPLE) COMPUTER (DUAL/DUAL) AILERON SERIES SERVO (DUAL) (M.E.S.C.) (LEFT AND RIGHT TIPS) 0 SENSOR (TRIPLE) 00 Figure 6

  13. The CARMA Control System

    NASA Astrophysics Data System (ADS)

    Gwon, C.; Beard, A. D.; Daniel, P.; Hobbs, R.; Scott, S. L.; Kraybill, J. C.; Leitch, E.; Mehringer, D. M.; Plante, R.; Amarnath, N. S.; Pound, M. W.; Rauch, K. P.; Teuben, P. J.

    2004-07-01

    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) will be the combination of the BIMA, OVRO, and SZA millimeter arrays. With first light scheduled for 2005, CARMA will be the first heterogeneous millimeter array, combining antennas varying from 3.5 m to 10.4 m in diameter. The controls for CARMA involve creating a uniform interface for all antennas. The antennas are grouped into five independently-controlled sub-arrays, which will be used for scientific observations, engineering, or maintenance. The sub-arrays are controlled by two components: the Sub-array Command Processor (SCP) and the Sub-array Tracker (SAT). While each sub-array has a dedicated SCP for handling command processing, a single SAT computes and distributes slowly varying parameters to the necessary sub-arrays. The sub-array interface uses CORBA distributed objects to physically separate the user interface from the array. This allows for stability in the core engine controlling the array while enabling flexibility in the user interface implementation.

  14. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    106 A. 13 XSU ......................................... 108 A.14 DDTCON...................................... 108 A.15 DKFTR...operation is preserved. Although some papers (Refs 6 and 13 ) deal with robustness only in regard to parameter variations within the basic controlled...since these can ofter be neglected in actual implementation, a constant-gain time 13 ........................................ invariant solution with

  15. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  16. INSTRUCTIONAL QUALITY CONTROL SYSTEMS.

    ERIC Educational Resources Information Center

    MONROE, BRUCE

    A REVIEW OF THE LITERATURE, A MAIL SURVEY, AND A TEXTUAL ANALYSIS OF JUNIOR COLLEGE DOCUMENTS INDICATE THAT, WHILE CALIFORNIA JUNIOR COLLEGES ARE CONCERNED ABOUT THE QUALITY AND EFFECTIVENESS OF INSTRUCTION, CONTROL OF THAT QUALITY IS RARELY A SYSTEMATIC ROUTINE ENTERPRISE BASED ON EXAMINATION OF BEHAVIOR CHANGES IN STUDENTS FOLLOWING INSTRUCTION.…

  17. Efficacy and Safety of Epratuzumab in Moderately to Severely Active Systemic Lupus Erythematosus: Results From Two Phase III Randomized, Double‐Blind, Placebo‐Controlled Trials

    PubMed Central

    Wallace, Daniel J.; Furie, Richard A.; Petri, Michelle A.; Pike, Marilyn C.; Leszczyński, Piotr; Neuwelt, C. Michael; Hobbs, Kathryn; Keiserman, Mauro; Duca, Liliana; Kalunian, Kenneth C.; Galateanu, Catrinel; Bongardt, Sabine; Stach, Christian; Beaudot, Carolyn; Kilgallen, Brian; Gordon, Caroline; Batalov, A.; Bojinca, M.; Djerassi, R.; Duca, L.; Horak, P.; Kolarov, Z.; Milasiene, R.; Monova, D.; Otsa, K.; Pileckyte, M.; Popova, T.; Radulescu, F.; Rashkov, R.; Rednic, S.; Repin, M.; Stoilov, R.; Tegzova, D.; Vezikova, N.; Vitek, P.; Zainea, C.; East, Far; Baek, H.; Chen, Y.; Chiu, Y.; Cho, C.; Chou, C.; Choe, J.; Huang, C.; Kang, Y.; Kang, S.; Lai, N.; Lee, S.; Park, W.; Shim, S.; Suh, C.; Yoo, W.; Armengol, H. Avila; Zapata, F. Avila; Santiago, M. Barreto; Cavalcanti, F.; Chahade, W.; Costallat, L.; Keiserman, M.; Alcala, J. Orozco; Remus, C. Ramos; Roimicher, L.; Abu‐Shakra, M.; Agarwal, V.; Agmon‐Levin, N.; Kadel, J.; Levy, Y.; Mevorach, D.; Paran, D.; Reitblat, T.; Rosner, I.; Shobha, V.; Sthoeger, Z.; Zisman, D.; Ayesu, K.; Berney, S.; Box, J.; Busch, H.; Buyon, J.; Carter, J.; Chi, J.; Clowse, M.; Collins, R.; Dao, K.; Diab, I.; Dikranian, A.; El‐Shahawy, M.; Gaylis, N.; Grossman, J.; Halpert, E.; Huff, J.; Jarjour, W.; Kao, A.; Katz, R.; Kennedy, A.; Khan, M.; Kivitz, A.; Kohen, M.; Lawrence‐Ford, T.; Lawson, J.; Levesque, M.; Lowenstein, M.; Majjhoo, A.; Mcarthur, R.; McLain, D.; Merrill, J.; Murillo, A.; Neucks, S.; Niemer, G.; Noaiseh, G.; Parker, C.; Pantojas, C.; Pattanaik, D.; Petri, M.; Pickrell, P.; Reveille, J.; Roman‐Miranda, A.; Rothfield, N.; Sankoorikal, A.; Sayers, M.; Singhal, A.; Snyder, A.; Striebich, C.; Vo, Q.; von Feldt, J.; Wallace, D.; Wasko, M.; Young, C.; Adelstein, S.; Hall, S.; Littlejohn, G.; Nicholls, D.; Suranyi, M.; Amoura, Z.; Bannert, B.; Behrens, F.; Perez, L.Carreno; Chakravarty, K.; Gonzales, F. Diaz; Davies, K.; Doria, A.; Emery, P.; Fernández‐Nebro, A.; Govoni, M.; Hachulla, E.; Hellmich, B.; Houssiau, F.; Malaise, M.; Margaux, J.; Maugars, Y.; Muñoz‐Fernández, S.; Navarro, F.; Ordi‐Ros, J.; Pellerito, R.; Pena‐Sagredo, J.; Roussou, E.; Schmidt, R. E.; Ucar‐Angulo, E.; Viallard, J‐F.; Westhovens, R.; Worm, M.; Yee, C. S.; Nayiager, S.; Reuter, H.; Spargo, C.; Bazela, B.; Brzosko, M.; Chudzik, D.; Gasztonyi, B.; Geher, P.; Ionescu, R.; Jeka, S.; Kemeny, L.; Kiss, E.; Kotyla, P.; Kovacs, L.; Kovalenko, V.; Kucharz, E.; Kwiatkowska, B.; Leszczynski, P.; Levchenko, E.; Lysenko, G.; Majdan, M.; Mihailov, C.; Nalotov, S.; Nedelciu, M.; Pavel, M.; Raskina, T.; Rebrov, B.; Rezus, E.; Semen, T.; Smakotina, S.; Stanislavchuk, M.; Stanislav, M.; Szombati, I.; Szucs, G.; Udrea, G.; Zajdel, J.; Zon‐Giebel, A.; Bonfiglioli, R.; Bustamante, R.; Klumb, E.; Ramirez, G. Medrano; Neiva, C.; Olguin, M.; Gonzaga, J.Reyes; Scotton, A.; Ayala, S. Sicsik; Ximenes, A.; Sharma, R.; Srikantiah, C.; Aelion, J.; Aranow, C.; Baker, M.; Chadha, A.; Chao, J.; Chatham, W.; Chow, A.; Clay, C.; Cohen‐Gadol, S.; Conaway, D.; Denburg, J.; Escalante, A.; Espinoza, L.; Fiechtner, J.; Fortin, I.; Fraser, A.; Furie, R.; Gladman, D.; Goddard, D.; Goldberg, M.; Gonzalez‐Rivera, R.; Gorman, J.; Griffin, R.; Haaland, D.; Halter, D.; Hemaiden, A.; Hobbs, K.; Joshi, V.; Lim, S.; Kalunian, K.; Karpouzas, G.; Khraishi, M.; Lafyatis, R.; Lee, S.; Lidman, R.; Lue, C.; Mohan, M.; Mease, P.; Mehta, C.; Mizutani, W.; Nami, A.; Nascimento, J.; Neuwelt, C.; Pappas, J.; Pope, J.; Porges, A.; Roane, G.; Rosenberg, D.; Ross, S.; Saadeh, C.; Scoville, C.; Sherrer, Y.; Solomon, M.; Surbeck, W.; Valenzuela, G.; Waller, P.; Alten, R.; Baerwald, C.; Bienvenu, B.; Bombardieri, S.; Braun, J.; Dival, L.; Espinosa, G.; Fernandez, I. Figueroa; Gomez‐Reino, J.; Gordon, C.; Hiepe, F.; Hopkinson, N.; Isenberg, D.; Jacobi, A.; Jorgensen, C.; Guern, V. Le; Paul, C.; Pego‐Reigosa, J. M.; Heredia, J. Rodriguez; Rubbert‐Roth, A.; Sabbadini, M.; Schroeder, J.; Schwarting, A.; Spieler, W.; Valesini, G.; Wollenhaupt, J.; Mendoza, A. Zea; Zouboulis, C.

    2017-01-01

    Objective Epratuzumab, a monoclonal antibody that targets CD22, modulates B cell signaling without substantial reductions in the number of B cells. The aim of this study was to report the results of 2 phase III multicenter randomized, double‐blind, placebo‐controlled trials, the EMBODY 1 and EMBODY 2 trials, assessing the efficacy and safety of epratuzumab in patients with moderately to severely active systemic lupus erythematosus (SLE). Methods Patients met ≥4 of the American College of Rheumatology revised classification criteria for SLE, were positive for antinuclear antibodies and/or anti–double‐stranded DNA antibodies, had an SLE Disease Activity Index 2000 (SLEDAI‐2K) score of ≥6 (increased disease activity), had British Isles Lupus Assessment Group 2004 index (BILAG‐2004) scores of grade A (severe disease activity) in ≥1 body system or grade B (moderate disease activity) in ≥2 body systems (in the mucocutaneous, musculoskeletal, or cardiorespiratory domains), and were receiving standard therapy, including mandatory treatment with corticosteroids (5–60 mg/day). BILAG‐2004 grade A scores in the renal and central nervous system domains were excluded. Patients were randomized 1:1:1 to receive either placebo, epratuzumab 600 mg every week, or epratuzumab 1,200 mg every other week, with infusions delivered for the first 4 weeks of each 12‐week dosing cycle, for 4 cycles. Patients across all 3 treatment groups also continued with their standard therapy. The primary end point was the response rate at week 48 according to the BILAG‐based Combined Lupus Assessment (BICLA) definition, requiring improvement in the BILAG‐2004 score, no worsening in the BILAG‐2004 score, SLEDAI‐2K score, or physician's global assessment of disease activity, and no disallowed changes in concomitant medications. Patients who discontinued the study medication were classified as nonresponders. Results In the EMBODY 1 and EMBODY 2 trials of epratuzumab, 793

  18. 33 CFR 154.808 - Vapor control system, general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transfer and vapor control systems are controlled. (e) Any alarm condition specified in this part must activate an audible and visible alarm where the cargo transfer and vapor control systems are controlled. (f... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Vapor control system,...

  19. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  20. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  1. The electrical activity of hippocampal pyramidal neuron is subjected to descending control by the brain orexin/hypocretin system.

    PubMed

    Riahi, Esmail; Arezoomandan, Reza; Fatahi, Zahra; Haghparast, Abbas

    2015-03-01

    The hippocampus receives sparse orexinergic innervation from the lateral hypothalamus and expresses a high level of orexin receptor. The function of orexin receptor in the regulation of hippocampal neural activity has never been investigated. In this study, in vivo single unit recording was performed in urethane-anesthetized rats. After 15 min of baseline recording from pyramidal neuron within the CA1 region of the dorsal hippocampus, i.c.v. injection of orexin-A 0.5 nmol, SB334867 400 nmol, a selective orexin receptor 1 antagonist, saline, or DMSO, or microinjection of carbachol 250 nmol or saline into the ipsilateral lateral hypothalamus were performed using a Hamilton microsyringe, and the spontaneous firing activity continued to be recorded for 25 min. Results showed that orexin administration into the lateral cerebral ventricle excited 6 out of 8 neurons and inhibited 1 neuron. Chemical stimulation of the lateral hypothalamus by carbachol excited 9 out of 13 hippocampal neurons and inhibited 3 neurons. On the other hand, i.c.v. injection of the SB334867, caused reductions in the firing activity of 6 out of 10 neurons and increases in 4 additional neurons. It seems that orexin neurotransmission in the hippocampus mostly elicits an excitatory response, whereas blockade of orexin receptor has an inhibitory effect. Further studies need to be done to elucidate the underlying mechanism of orexin action on hippocampal neurons.

  2. A Low Speed Model Analysis and Demonstration of Active Control Systems for Rigid-Body and Flexible Mode Stability

    DTIC Science & Technology

    1974-06-01

    might be to sum the signals directly using complex algebra . This approach may better be handled in a digital system. Servovalve Magnetic Coupling The...France, 1969. *’ 18. L- Coven and C. F. Durbin , A Cmprehensive Eigensolution Program for Structural Vibration Analysis TEV 142. Boeing Document D6

  3. Adaptive Control for Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2005-01-01

    Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.

  4. Decentralized System Control.

    DTIC Science & Technology

    1986-04-01

    structures which reduce or eliminate this effect. Until research is directly aimed at this problem, a greater -* understanding of the scientific truths and...ABSTRACT (Continue on reverse if necessay and idantify by block number) /- This report suinmarizes progress on research in decentralized control...Physically Decentralized Resource Management 12 2.2.3 Other Objectives 17 % 2.2.3.1 Research Per Sc Versus Facility Development 17 k.:- 2.2.3.2 Large Scale

  5. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  6. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  7. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  8. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  9. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures...

  10. Virtual Control Systems Environment (VCSE)

    SciTech Connect

    Atkins, Will

    2012-10-08

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  11. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2016-07-12

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  12. Control systems on Lie groups.

    NASA Technical Reports Server (NTRS)

    Jurdjevic, V.; Sussmann, H. J.

    1972-01-01

    The controllability properties of systems which are described by an evolution equation in a Lie group are studied. The revelant Lie algebras induced by a right invariant system are singled out, and the basic properties of attainable sets are derived. The homogeneous case and the general case are studied, and results are interpreted in terms of controllability. Five examples are given.

  13. SP-100 control system modeling

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.; Halfen, F. J.; Alley, A. D.

    1987-01-01

    SP-100 Control Systems modeling was done using a thermal hydraulic transient analysis model called ARIES-S. The ARIES-S Computer Simulation provides a basis for design, integration and analysis of the reactor including the control and protection systems. It is a modular digital computer simulation written in FORTRAN that operates interactively in real time on a VAX minicomputer.

  14. Evaluating Multi-Input/Multi-Output Digital Control Systems

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek

    1994-01-01

    Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.

  15. Knowledge implementation - structures of intelligent control systems

    SciTech Connect

    Saridis, G.N.

    1988-08-01

    Results of research concerning the definitions and structure of intelligent control systems are outlined. Intelligent control systems are founded on the principle of precision with decreasing intelligence. This principle establishes a hierarchy in the distribution of intelligence in an intelligent control system and simply says that where intelligence is high, precision is less required, and vice versa. The resulting multilevel structure and its implementation, based on ideas from knowledge systems, are presented. Probabilistic models to express the uncertainty of reasoning, planning decision making at the organization level, and the control activities at the execution level entropies are used as measures of the execution of various commands by the intelligent machine, and they serve for optimal decision making. This method provides an efficient approach to implement autonomous intelligent control systems suitable for the demanding needs of modern industry, space exploration, nuclear handling, and medicine. 19 references.

  16. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  17. Digital Fire Control Systems Support

    DTIC Science & Technology

    2012-09-27

    Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully integrated digital fire control system that has weapon platform application to the...Lightweight 155 mm (LW155) Towed Howitzer and the M119A2 Lightweight 105mm Towed Howitzer. 15. SUBJECT TERMS Digital Fire Control Systems ( DFCS ) 16...Joint Lightweight 155, has been tasked to develop and maintain the Digital Fire Control Systems ( DFCS ) for the M119A2 and M777A2. The DFCS is a fully

  18. Fuel control system for an engine

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    1999-01-01

    A fuel control system responsive to a power controller and controlling a fuel delivery system. The fuel control system includes a control arm connected to both the power controller and the fuel delivery system, a position sensor connected to the control arm, and a trim controller connected to the control arm at a pivot point and connected to the position sensor.

  19. Control principles of complex systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  20. Data Acquisition and Control Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Randy; Jensen, Scott; Burrel, Terrence; Spooner, Richard

    2002-01-01

    The Data Acquisition and Control Systems (DACS) Laboratory is a facility at Stennis Space Center that provides an off test-stand capability to develop data-acquisition and control systems for rocket-engine test stands. It is also used to train new employees in state-of-the-art systems, and provides a controlled environment for troubleshooting existing systems, as well as the ability to evaluate the application of new technologies and process improvements. With the SSC propulsion testing schedules, without the DACS Laboratory, it would have been necessary to perform most of the development work on actual test systems, thereby subjecting both the rocket-engine testing and development programs to substantial interference in the form of delays, restrictions on modifications of equipment, and potentially compromising software configuration control. The DACS Laboratory contains a versatile assortment of computer hardware and software, digital and analog electronic control and data-acquisition equipment, and standard electronic bench test equipment and tools. Recently completed Control System development and software verification projects include support to the joint NASA/Air Force Integrated Powerhead Demonstration (IPD) LOX & LH2 PreBurner and Turbopump ground testing programs. In other recent activities, the DACS Laboratory equipment and expertise have supported the off-stand operation of high-pressure control valves to correct valve leak problems prior to installation on the test stand. Future plans include expanding the Laboratory's capabilities to provide cryogenic control valve characterization prior to installation, thereby reducing test stand activation time.

  1. System and method for controlling microgrid

    DOEpatents

    Bose, Sumit; Achilles, Alfredo Sebastian; Liu, Yan; Ahmed, Emad Ezzat; Garces, Luis Jose

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  2. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  3. Uzaybimer Radio Telescope Control System

    NASA Astrophysics Data System (ADS)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  4. 12 CFR 917.6 - Internal control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Internal control system. 917.6 Section 917.6... internal control system that addresses: (i) The efficiency and effectiveness of Bank activities; (ii) The... activities necessary to maintain the internal control system required under paragraph (a)(1) of this...

  5. 12 CFR 917.6 - Internal control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Internal control system. 917.6 Section 917.6... internal control system that addresses: (i) The efficiency and effectiveness of Bank activities; (ii) The... activities necessary to maintain the internal control system required under paragraph (a)(1) of this...

  6. Aircraft control system

    NASA Technical Reports Server (NTRS)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  7. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  8. Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Weir, Natalee E.; Wilson, Mark E.; Pyle, Barry H.

    2006-01-01

    A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUS) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 +/- 0.5. Chemical changes occurred after on-orbit implementation including a decrease to pH 8.4 due to the diffusion of carbon dioxide through the Teflon hoses, an increase in nickel ions due to general corrosion of heat exchanger braze coatings, a decrease in phosphate concentration due to precipitation of nickel phosphate, and the rapid disappearance of silver ions due to deposition on hardware surfaces. Also associated with the coolant chemistry changes was an increase in planktonic microorganisms from less than 100 colony forming units (CFU) per 100 ml to approximately 1 million CFU per 100 ml. Attachment and growth of microorganisms to the system surfaces (biofilm) was suspected due to the levels of planktonic microorganisms in the coolant. Biofilms can reduce coolant flow, reduce heat transfer, amplify degradation of system materials initiated by chemical corrosion, and enhance mineral scale formation.

  9. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2008-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.

  10. Adaptable state based control system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Dvorak, Daniel L. (Inventor); Gostelow, Kim P. (Inventor); Starbird, Thomas W. (Inventor); Gat, Erann (Inventor); Chien, Steve Ankuo (Inventor); Keller, Robert M. (Inventor)

    2004-01-01

    An autonomous controller, comprised of a state knowledge manager, a control executor, hardware proxies and a statistical estimator collaborates with a goal elaborator, with which it shares common models of the behavior of the system and the controller. The elaborator uses the common models to generate from temporally indeterminate sets of goals, executable goals to be executed by the controller. The controller may be updated to operate in a different system or environment than that for which it was originally designed by the replacement of shared statistical models and by the instantiation of a new set of state variable objects derived from a state variable class. The adaptation of the controller does not require substantial modification of the goal elaborator for its application to the new system or environment.

  11. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  12. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  13. Manual control of unstable systems

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Hogue, J. R.; Parseghian, Z.

    1986-01-01

    Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.

  14. A Novel Sensor Kinase-Response Regulator Hybrid Controls Biofilm Formation and Type VI Secretion System Activity in Burkholderia cenocepacia▿

    PubMed Central

    Aubert, Daniel F.; Flannagan, Ronald S.; Valvano, Miguel A.

    2008-01-01

    Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS. PMID:18316384

  15. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field

    PubMed Central

    Alvizo-Baez, Cynthia A; Luna-Cruz, Itza E; Vilches-Cisneros, Natalia; Rodríguez-Padilla, Cristina; Alcocer-González, Juan M

    2016-01-01

    Recently, functional therapies targeting a specific organ without affecting normal tissues have been designed. The use of magnetic force to reach this goal is studied in this work. Previously, we demonstrated that nanocarriers based on magnetic nanoparticles could be directed and retained in the lungs, with their gene expression under the control of a promoter activated by a magnetic field. Magnetic nanoparticles containing the TRAIL gene and chitosan were constructed using the ionic gelation method as a nanosystem for magnetofection and were characterized by microscopy, ζ-potential, and retention analysis. Magnetofection in the mouse melanoma cell line B16F10 in vitro induced TRAIL-protein expression and was associated with morphological changes indicative of apoptosis. Systemic administration of the nanosystem in the tail vein of mice with melanoma B16F10 at the lungs produced a very significant increase in apoptosis in tumoral cells that correlated with the number of melanoma tumor foci observed in the lungs. The high levels of apoptosis detected in the lungs were partially related to mouse survival. The data presented demonstrate that the magnetofection nanosystem described here efficiently induces apoptosis and growth inhibition of melanoma B16F10 in the lungs. This new approach for systemic delivery and activation of a gene based in a nanocomplex offers a potential application in magnetic gene delivery for cancer. PMID:27980403

  16. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).

    PubMed

    Costa, Regina C C; Moura, Flávia C C; Oliveira, Patrícia E F; Magalhães, Fabiano; Ardisson, José D; Lago, Rochel M

    2010-02-01

    In this work, controlled reduction of red mud with H(2) was used to produce active systems for two different environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Mössbauer, powder X-ray diffraction, thermal analyses and scanning electron microscopy analyses showed that at different temperatures, i.e. 300, 400, 500 and 600 degrees C, H(2) reduces red mud to different phases, mainly Fe(3)O(4), Fe(0)/Fe(3)O(4) and Fe(0). These Fe phases are dispersed on Al, Si and Ti oxides present in the red mud and show high reactivity towards two environmental applications, i.e. the heterogeneous Fenton reaction and the reduction of Cr(VI). Reduction with H(2) at 400 degrees C showed the best results for the oxidation of the model dye methylene blue with H(2)O(2) at neutral pH due to the presence of the composite Fe(0)/Fe(3)O(4). The reduced red mud at 500-600 degrees C produced Fe(0) highly active for the reduction of Cr(VI) in aqueous medium. Another feature of these red mud based system is that after deactivation due to extensive use they can be completely regenerated by simple treatment with H(2).

  17. Structural interaction with control systems

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Zvara, J.

    1971-01-01

    A monograph which assesses the state of the art of space vehicle design and development is presented. The monograph presents criteria and recommended practices for determining the structural data and a mathematical structural model of the vehicle needed for accurate prediction of structure and control-system interaction; for design to minimize undesirable interactions between the structure and the control system; and for determining techniques to achieve the maximum desirable interactions and associated structural design benefits. All space vehicles are treated, including launch vehicles, spacecraft, and entry vehicles. Important structural characteristics which affect the structural model used for structural and control-system interaction analysis are given.

  18. The AMSC network control system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    The American Mobile Satellite Corporation (AMSC) is going to construct, launch, and operate a satellite system in order to provide mobile satellite services to the United States. AMSC is going to build, own, and operate a Network Control System (NCS) for managing the communications usage of the satellites, and to control circuit switched access between mobile earth terminals and feeder-link earth stations. An overview of the major NCS functional and performance requirements, the control system physical architecture, and the logical architecture is provided.

  19. Position feedback control system

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-01-01

    Disclosed is a system and method for independently evaluating the spatial positional performance of a machine having a movable member, comprising an articulated coordinate measuring machine comprising: a first revolute joint; a probe arm, having a proximal end rigidly attached to the first joint, and having a distal end with a probe tip attached thereto, wherein the probe tip is pivotally mounted to the movable machine member; a second revolute joint; a first support arm serially connecting the first joint to the second joint; and coordinate processing means, operatively connected to the first and second revolute joints, for calculating the spatial coordinates of the probe tip; means for kinematically constraining the articulated coordinate measuring machine to a working surface; and comparator means, in operative association with the coordinate processing means and with the movable machine, for comparing the true position of the movable machine member, as measured by the true position of the probe tip, with the desired position of the movable machine member.

  20. MULTIPLE ECH LAUNCHER CONTROL SYSTEM

    SciTech Connect

    GREEN,M.T; PONCE,D; GRUNLOH,H.J; ELLIS,R.A; GROSNICKLE,W.H; HUMPHREY,R.L

    2003-10-01

    OAK-B135 The addition of new, high power gyrotrons to the heating and current drive arsenal at DIII-D, required a system upgrade for control of fully steerable ECH Launchers. Each launcher contains two pointing mirrors with two degrees of mechanical freedom. The two flavors of motion are called facet and tilt. Therefore up to four channels of motion per launcher need to be controlled. The system utilizes absolute encoders to indicate mirror position and therefore direction of the microwave beam. The launcher movement is primarily controlled by PLC, but future iterations of design, may require this control to be accomplished by a CPU on fast bus such as Compact PCI. This will be necessary to accomplish real time position control. Safety of equipment and personnel is of primary importance when controlling a system of moving parts. Therefore multiple interlocks and fault status enunciators have been implemented. This paper addresses the design of a Multiple ECH Launcher Control System, and characterizes the flexibility needed to upgrade to a real time position control system in the future.