Science.gov

Sample records for active cool stars

  1. Chromospheric Activity in Cool Stars: Open Questions

    NASA Astrophysics Data System (ADS)

    Schröder, K.-P.; Schmitt, J. H. M. M.

    2013-04-01

    Despite a wealth of observational insight into chromospheric physics obtained in the past decades, a number of fundamental questions remain to be answered. On some of them we seem to make progress, others are motivation for ongoing research: is there a well-defined “zero-point” of magnetic stellar activity, and by which heating processes is the basal chromospheric flux created? Or: how did the Sun look like during the Maunder Minimum, and when is the next one due? And are activity cycles of cool giants caused by a solar-type dynamo, despite a very different internal structure? What makes magnetic stellar activity be still (or again?) at work in such very evolved stars — should not all angular momentum have been consumed? To find some answers, the Hamburg Robotic Telescope, equipped with a high-resolution (20,000) spectrograph, will start regular operation at its final site in Guanajuato, central Mexico, this year (2012), in part to resume the legendary Mt. Wilson stellar activity monitoring project.

  2. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  3. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  4. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.

  5. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Duprec, Andrea K.

    2003-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. Highlights of these are summarized including publications during this reporting period and presentations.

  6. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    occurs. This line is particularly useful as a diagnostic of coronal radiation since it is formed by recombination following photoionization of neutral helium by coronal X-rays. Because the lower level of the transition is metastable, infrared radiation from the stellar photosphere is absorbed which provides a diagnostic of atmospheric dynamics. This transition is useful both in young stars in the T Tauri phase and in active cool star binaries. We will investigate the influence of coronal x-rays on the strength of this transition.

  7. Polarigenic Mechanisms in Cool Stars

    NASA Astrophysics Data System (ADS)

    Schwarz, H. E.; Aspin, C.

    The authors present spectropolarimetric observations of α Orionis and use these data to model the polarigenic mechanism operating in cool giants and supergiants. They also present high resolution CCD spectropolarimetry of VY Canis Majoris, a cool, massive object embedded in a complex nebulosity. Finally, the authors discuss the diagnostic power of measurements of this type and the similarities and differences between the wavelength dependence of the polarization of normal cool stars and that of VY CMa.

  8. NSCool: Neutron star cooling code

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  9. Cool dust and baby stars

    NASA Astrophysics Data System (ADS)

    Eales, Steve

    2013-01-01

    The helium that is cooling its camera is about to run out, but the data from the Herschel Space Observatory, which is designed to study how stars and galaxies form, are likely to keep sub-millimetre-wavelength astronomers busy for years to come. Steve Eales explains.

  10. Coronal Structures In Cool Stars

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.; Oliversen, Ronald (Technical Monitor)

    2002-01-01

    Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. Highlights of these are summarized in several pages folk wing that were presented at, the AAS Meeting in Albuquerque in June 2002 during the Topical Session.

  11. Heavy Elements and Cool Stars

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.

    2008-01-01

    We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.

  12. The Magnetic Field Geometry of Cool Stars

    NASA Astrophysics Data System (ADS)

    See, Victor; Jardine, Moira; Vidotto, Aline; Donati, Jean-Francois; Folsom, Colin; Boro Saikia, Sudeshna; Bouvier, Jerome; Fares, Rim; Gregory, Scott; Hussain, Gaitee; Jeffers, Sandra; Marsden, Stephen; Morin, Julien; Moutou, Claire; do Nascimento, Jose-Dias, Jr.; Petit, Pascal; Rosen, Lisa; Waite, Ian

    2016-06-01

    Zeeman-Doppler imaging has been used to map the large-scale surface magnetic fields of cool stars across a wide range of stellar masses and rotation periods. The derived field geometries are surprising, with many stars showing strong azimuthal fields that are not observed on the Sun. In this poster, using 100 magnetic maps of over 50 stars, we present results showing how the magnetic field geometry of cool stars varies as a function of fundamental parameters. The stellar mass, and hence internal structure, critically influences the field geometry, although this is modified by the stellar rotation rate. We discuss the implications of these results for dynamo theory and the nature of stellar magnetic activity.

  13. Chemical Soups Around Cool Stars

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth.

    Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth.

    Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  14. Differential rotation of cool active stars: the case of intermediate rotators

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Collier Cameron, A.

    2002-08-01

    In this paper, we present a new method for measuring the surface differential rotation of cool stars with rotation periods of a few days, for which the sparse phase coverage achievable from single-site observations generally prevents the use of more conventional techniques. The basic idea underlying this new analysis is to obtain the surface differential rotation pattern that minimizes the information content of the reconstructed Doppler image through a simultaneous fit of all available data. Simulations demonstrate that the performance of this new method in the case of cool stars is satisfactory for a variety of observing strategies. Differential rotation parameters can be recovered reliably as long as the total data set spans at least 4 per cent of the time for the equator to lap the pole by approximately one complete cycle. We find in particular that these results hold for potentially complex spot distributions (as long as they include a mixture of low- and high-latitude features), and for various stellar inclination angles and rotation velocities. Such measurements can be obtained from either unpolarized or polarized data sets, provided their signal-to-noise ratio is larger than approximately 500 and 5000 per 2kms-1 spectral bin, respectively. This method should therefore be very useful for investigating differential rotation in a much larger sample of objects than what has been possible up to now, and should hence give us the opportunity of studying how differential rotation reacts to various phenomena operating in stellar convective zones, such as tidal effects or dynamo magnetic field generation.

  15. Weighing Ultra-Cool Stars

    NASA Astrophysics Data System (ADS)

    2004-05-01

    Large Ground-Based Telescopes and Hubble Team-Up to Perform First Direct Brown Dwarf Mass Measurement [1] Summary Using ESO's Very Large Telescope at Paranal and a suite of ground- and space-based telescopes in a four-year long study, an international team of astronomers has measured for the first time the mass of an ultra-cool star and its companion brown dwarf. The two stars form a binary system and orbit each other in about 10 years. The team obtained high-resolution near-infrared images; on the ground, they defeated the blurring effect of the terrestrial atmosphere by means of adaptive optics techniques. By precisely determining the orbit projected on the sky, the astronomers were able to measure the total mass of the stars. Additional data and comparison with stellar models then yield the mass of each of the components. The heavier of the two stars has a mass around 8.5% of the mass of the Sun and its brown dwarf companion is even lighter, only 6% of the solar mass. Both objects are relatively young with an age of about 500-1,000 million years. These observations represent a decisive step towards the still missing calibration of stellar evolution models for very-low mass stars. PR Photo 19a/04: Orbit of the ultra-cool stars in 2MASSW J0746425+2000321. PR Photo 19b/04: Animated Gif of the orbital motion. Telephone number star Even though astronomers have found several hundreds of very low mass stars and brown dwarfs, the fundamental properties of these extreme objects, such as masses and surface temperatures, are still not well known. Within the cosmic zoo, these ultra-cool stars represent a class of "intermediate" objects between giant planets - like Jupiter - and "normal" stars less massive than our Sun, and to understand them well is therefore crucial to the field of stellar astrophysics. The problem with these ultra-cool stars is that contrary to normal stars that burn hydrogen in their central core, no unique relation exists between the luminosity of the

  16. Cool Star Binaries with ALEXIS

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).

  17. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  18. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  19. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  20. Chromospheres of Luminous Cool Stars

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Avrett, Eugene

    2015-08-01

    Ultraviolet imaging of Alpha Orionis (Betelgeuse) reveals a complex variable chromospheric structure. Such atmospheres in luminous cool stars can affect features in the optical spectrum. Constructing semi-empiricalmodel atmospheres of luminous stars including the temperature rise due to a chromosphere allows us to predict potential effects on optical transitions. The radiative transfer code, PANDORA, calculates line strengths in a LTE or non-LTE formulation, spherical symmetry, and includes velocity fields when present. Various aspects of the line calculations and their impact on equivalent widths will be discussed including developing appropriate chromospheric models, comparison to a pure radiative equilibrium model, transitions sensitive to non-LTE and the effects of a realistic spherical non-LTE approximation as compared to a plane-parallel approximation. We discuss the extent to which a chromosphere can impact the determination of stellar abundances.

  1. Observation of winds in cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1983-01-01

    Sufficient observational material - ultraviolet spectroscopic measures, quantitative optical spectroscopy, and X-ray photometry exists to enable discernment of the presence and character of mass loss in cool stars and to establish meaningful constraints on theoretical models. Two determinants of atmospheric wind structure - temperature and gravity - may suffice in a most superficial way to define the wind and atmospheric structure in a star; however more extensive observations demonstrate the importance of magnetic surface activity and its particular geometrical configuration. Successive observations of an active binary system and a supergiant star reveal that magnetic activity and perhaps mass loss occur on restricted regions of a stellar surface and that long lived structures are present in a wind.

  2. FUSE Observations of Luminous Cool Stars

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Young, P. R.; Ake, T. B.

    2000-12-01

    Luminous cool stars can address the evolution of magnetic activity and the dynamics of stellar winds and mass loss. The region of yellow supergiants in the HR diagram contains stars of intermediate mass both with coronas and those possessing a hot outer atmosphere in the presence of a strong wind (the ``hybrid'' stars). These hybrid objects hold particular significance for evolution studies because they represent the physically important connection between solar-like stars (with coronas and fast winds of low-mass loss rate) and the cool supergiant stars (Alpha Ori-like) with cool outer atmospheres and massive winds. The Far Ultraviolet Spectroscopic Explorer (FUSE) measured the chromospheric and transition region emissions of the bright G2 Ib supergiant Beta Draconis (HD 159181) on 9 May 2000. Two exposures through the large aperture totaled 7695 s and were obtained in all channels covering the region λ λ 912-1180. Emission from chromospheric and transition region ions (C III, O VI, Si III, S IV, S VI) is detected along with a number of low ion stages. Profiles of strong lines are asymmetric suggesting the presence of a wind. A short exposure (3260 s) of Alpha Aquarii (HD 209750), a hybrid supergiant also of spectral type G2 Ib was obtained June 29, 2000. Dynamics of the atmospheres can be inferred from line profiles. The atmospheric temperature distribution, densities, and scale sizes can be evaluated from line fluxes to characterize the differences between a coronal star and a hybrid supergiant. FUSE is a NASA Origins mission operated by The Johns Hopkins University. Funding for this research is provided through NASA Contract NAS-532985.

  3. Cool Stars, Stellar Systems and the Sun.

    NASA Astrophysics Data System (ADS)

    Stempels, Eric

    2009-02-01

    The series of 'Cool Star' meetings concentrates on the astrophysics of low-mass stars (with masses similar to that of the Sun and lower), including the Sun. The meeting in St. Andrews, Scotland, was the 15th in this series, and focused in particular on the origin of low-mass stars and their planets, as well as the properties of their atmospheres. This volume provides a comprehensive overview of the science presented by the 350 participants of this meeting. The book is suitable for researchers and graduate students interested in the astrophysics of cool stars and the Sun.

  4. Radio emission from rapidly-rotating cool giant stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Walter, Frederick M.; Florkowski, David R.

    1990-01-01

    The results of a VLA program are reported to examine the radio continuum emission from 11 rapidly-rotating cool giant stars, all of which were originally believed to be single stars. Six of the 11 stars were detected as radio sources, including FK Com and HR 9024, for which there exist multifrequency observations. HD 199178, UZ Lib (now known to be a binary system), and HD 82558, for which there is only 6-cm data. The radio properties of these stars are compared with those of the active, rapidly rotating evolved stars found in the RS CVn binary systems.

  5. Physics of Cool Stars: Densities, Sizes, and Energetics

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.

    2001-01-01

    The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.

  6. The structure, energy balance, and winds of cool stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    Solar magnetic field phenomena which occur in cool stars are summarized. Factors which can produce magnetic fields in stars are listed. Information on cool star atmospheres, provided by high dispersion spectra, is discussed. These spectra show that in Beta Dra (G2 Ib) the transition lines are red shifted (an antiwind), perhaps indicating downflows in closed magnetic flux tubes, as seen in the solar flux tubes above sunspots. The G and K giants and supergiants are classed as active, quiet, or hybrid, depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominantly open geometry with a few closed flux tubes embedded.

  7. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-12-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105-106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  8. An Investigation of the Largest Flares in Active Cool Star Binaries with ALEXIS

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent.

  9. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  10. Activity and cool spots on the surfaces of G-type stars with superflares from observations with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2015-09-01

    The properties of active regions (cool spots) on the surfaces of 279 G-type stars in which more than 1500 superflares with energies of 1033-1036 erg were detected are analyzed. Diagrams plotting the superflare energy against activity parameters of the stars (the area of their magnetic spots) are considered, and a more extensive study of the activity of two stars with the highest numbers of flares is presented. The range of variation of the superflare energies (up to two orders of magnitude) is realized over the entire interval of rotation periods. It is proposed that the plot of superflare energy vs. rotational period is bimodal. There are probably no appreciable differences in the maximum flare energies for the two groups of objects, which have rotational periods of more than and less than 10 days. Three groups of stars with different surface spottednesses can be distinguished in a plot of superflare energy vs. cool-spot area. The range of variation of the flare energy within a group is roughly the same for these three groups. Most of the points on this diagram lie to the right of the dependence corresponding to B = 3000Gand an inclination i = 90° (the first two groups of objects). It is confirmed that the flare activity is not related directly to circumpolar active regions, since the majority of the points on the diagram lie to the right of the dependence for B = 1000 G and i = 3°. Analysis of stars from the sample, including objects with more than 20 superflares, shows that large variations of the energy (by up to two orders of magnitude) can be reached with small variations of the spottedness parameter S for a single star. Appreciable variability of the spottedness (by factors of five to six) was detected for only two objects from the sample (KIC 10422252 and KIC 11764567). These stars displayed an increase in the flare energy by orders of magnitude for any spottedness level. The activity of KIC 11551430 and KIC 11764567 is analyzed in detail using all

  11. Hot Jupiters and cool stars

    SciTech Connect

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  12. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Z. G.; Pilachowski, C. A.; Hinkle, K.

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H35Cl at 3.69851 μm. The high-resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [35Cl/Fe] abundance in stars with -0.72 < [Fe/H] < 0.20 is [35Cl/Fe] = (-0.10 ± 0.15) dex. The mean difference between the [35Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [35Cl/Ca] ratio has an offset of ˜0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H35Cl and H37Cl could be measured, a 35Cl/37Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  13. Bursty star formation feedback and cooling outflows

    NASA Astrophysics Data System (ADS)

    Suarez, Teresita; Pontzen, Andrew; Peiris, Hiranya V.; Slyz, Adrianne; Devriendt, Julien

    2016-10-01

    We study how outflows of gas launched from a central galaxy undergoing repeated starbursts propagate through the circum-galactic medium (CGM), using the simulation code RAMSES. We assume that the outflow from the disc can be modelled as a rapidly moving bubble of hot gas at ˜1 kpc above disc, then ask what happens as it moves out further into the halo around the galaxy on ˜100 kpc scales. To do this, we run 60 two-dimensional simulations scanning over parameters of the outflow. Each of these is repeated with and without radiative cooling, assuming a primordial gas composition to give a lower bound on the importance of cooling. In a large fraction of radiative-cooling cases we are able to form rapidly outflowing cool gas from in situ cooling of the flow. We show that the amount of cool gas formed depends strongly on the `burstiness' of energy injection; sharper, stronger bursts typically lead to a larger fraction of cool gas forming in the outflow. The abundance ratio of ions in the CGM may therefore change in response to the detailed historical pattern of star formation. For instance, outflows generated by star formation with short, intense bursts contain up to 60 per cent of their gas mass at temperatures <5 × 104 K; for near-continuous star formation, the figure is ≲5 per cent. Further study of cosmological simulations, and of idealized simulations with e.g. metal-cooling, magnetic fields and/or thermal conduction, will help to understand the precise signature of bursty outflows on observed ion abundances.

  14. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  15. Cooling of Compact Stars with Color Superconducting Quark Matter

    NASA Astrophysics Data System (ADS)

    Noda, T.; Yasutake, N.; Hashimoto, M.; Maruyama, T.; Tatsumi, T.; Fujimoto, M. Y.

    2015-11-01

    We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A).The Cas A observation shows that the central source is a compact star with a high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of M ≥ 1.5 M_⊙.It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars.We assume the gap energy of CSC quark phase is large (Δ ≳ 10 MeV),and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

  16. Model atmospheres for cool supergiant stars.

    NASA Technical Reports Server (NTRS)

    Alexander, D. R.; Johnson, H. R.

    1972-01-01

    The results of an exploratory grid of model atmospheres for cool giant stars are used to illustrate the effect of varying the chemical composition of the atmosphere. The effects of composition changes (depletion of C and O, enrichment of N, and increase in the ratio C/O), which might be expected from processing of the original material of a star through the CNO cycle of nuclear burning, are studied. The models also include the important CN opacity. They are illustrated by giving several representative T-P and T-tau diagrams, spectral energy curves, and column density tables of molecules.

  17. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  18. The structure, energy balance, and winds of cool stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    The phenomena associated with magnetic fields in the Sun are summarized and it is shown that similar phenomena occur in cool stars. High dispersion spectra are providing unique information concerning densities, atmospheric extension, and emission line widths. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in beta Dra (G2 Ib) and perhaps other stars. This is interpreted as indicating downflows in closed magnetic flux tubes as are seen in the solar flux tubes above sunspots. The G and K giants and supergiants are classified as active stars, quiet stars, or hybrid stars depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.

  19. CO fundamental lines - Indicators for inhomogeneous atmospheres in cool stars

    NASA Technical Reports Server (NTRS)

    Wiedemann, Guenter; Ayres, Thomas R.

    1990-01-01

    Carbon monoxide fundamental lines near 4.7 microns are employed to probe the thermal structure of the atmospheres of cool stars. A new non-LTE radiation transfer code is used to analyze high-resolution infrared CO line spectra and derive observation-based stellar atmosphere models. The main results are: (1) the CO-based models developed here deviate strongly from previously published models based on UV/visible observations; (2) varying degrees of agreement between the CO empirical models and predictions based on theoretical radiative-equilibrium atmosphere models are found; and (3) the parameter used to quantify this agreement is anticorrelated with the magnitude of chromospheric activity in the observed stars. These results suggest thermally bifurcated upper atmospheres as the standard case for cool stars.

  20. Physical Theories of Winds From Cool Stars

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Cool stars in the late stages of their evolution generally lose mass at a prodigious rate. This includes low mass stars on the red giant branch, on the asymptotic giant branch, and those transiting from the asymptotic giant branch to the planetary nebula phase, as well as massive supergiants. All of these objects are surrounded by dense circumstellar gas and often dust envelopes. This mass loss is an important source of gas and dust for the interstellar medium. For some of these objects, the mass loss rate exceeds the nuclear burning rate and, hence, mass loss determines the subsequent evolution of the star. A variety processes have been invoked to explain the mass loss of these objects. A consensus has developed over the last decade: photospheric processes create an extended atmosphere which extends to several stellar radii. At this height above the photosphere, dust grains can form and radiation pressure drives the dust out. The gas is dragged along by friction. While the detailed processes involved, in particular those lifting the atmosphere, may differ from object to object, this paradigm seems applicable to all of these objects. The process of mass loss breaks up into three parts: 1) The formation of the extended atmosphere; 2) the nucleation and condensation of dust; and 3) The radiation pressure driven wind. Each of these processes will be discussed with an emphasis on those processes that play a role in the mass loss from asymptotic giant branch stars for which the most detailed theories have been developed.

  1. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour.

  2. Star formation in X-ray cluster cooling flows

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III; Sarazin, Craig L.

    1987-01-01

    The basic equations for X-ray cluster cooling flows, including the effects of star formation, are derived. It is confirmed that cooling flows are thermally unstable, and it is found that the fastest-growing linear perturbations in the flow are radial, comoving, and isobaric. A local approximation for the star formation rate is developed which allows analytic solutions to be found for both isobaric and gravity-dominated cooling flows. These solutions are used to show how star formation reduces the gas density, thereby lowering the cooling rate, which raises the gas temperature relative to the non-star-forming case. The analytic solutions are also used to estimate the spatial distribution of newly formed stars. It is found that star formation must proceed at a nearly maximal rate if isothermal mass profiles are to result.

  3. Elastocaloric cooling: Stretch to actively cool

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  4. Activity Cycles in Stars

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.

  5. The Radio-X-ray Relation in Cool Stars: Are We Headed Toward a Divorce?

    NASA Astrophysics Data System (ADS)

    Forbrich, J.; Wolk, S. J.; Güdel, M.; Benz, A.; Osten, R.; Linsky, J. L.; McLean, M.; Loinard, L.; Berger, E.

    2011-12-01

    This splinter session was devoted to reviewing our current knowledge of correlated X-ray and radio emission from cool stars in order to prepare for new large radio observatories such as the EVLA. A key interest was to discuss why the X-ray and radio luminosities of some cool stars are in clear breach of a correlation that holds for other active stars, the so-called Güdel-Benz relation. This article summarizes the contributions whereas the actual presentations can be accessed on the splinter website.

  6. Infrared Opacities in Dense Atmospheres of Cool White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kowalski, P. M.; Blouin, S.; Dufour, P.

    2017-03-01

    Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the ideal-gas-based description of absorption is no longer adequate, which makes the opacities of these atmospheres difficult to model. This is illustrated with severe problems in fitting the spectra of cool, He-rich stars. Good description of the infrared (IR) opacity is essential for proper assignment of the atmospheric parameters of these stars. Using methods of computational quantum chemistry we simulate the IR absorption of dense He/H media. We found a significant IR absorption from He atoms (He-He-He CIA opacity) and a strong pressure distortion of the H2-He collision-induced absorption (CIA). We discuss the implication of these results for the interpretation of the spectra of cool stars.

  7. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  8. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  9. An IUE's eye view of cool-star outer atmospheres

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1981-01-01

    Three topics are discussed which together demonstrate the power of the IUE to probe the occurrences of chromospheres and coronas in the cool half of the HR diagram. These are: (1) the complementary low dispersion and echelle observing modes; (2) Mg II h and k: chromospheric cooling and width luminosity correlation; and (3) empirical correlations among chromospheric, transition region, and coronal emission. The spectra of alpha Centauri (G2 V + K1 V) and Capella (G6 III + F9 III) are compared with that of the Sun and recent low dispersion surveys of cool star emission in the 1150 A to 2000 A short wavelength region are summarized.

  10. Star formation in cooling flow galaxies

    NASA Technical Reports Server (NTRS)

    Cardiel, Nicolas; Gorgas, Javier

    1993-01-01

    Spectroscopic observations of central dominant galaxies are reviewed. Through the analysis of absorption spectral features (mainly the strength of the Mg triplet at 5175 A and the break in 4000 A), both in the galaxy centers and along the radii, we will be able to impose limits on the ongoing star formation as the ultimate fate for the large amounts of accreted gas. With the same aim we will carry out a dynamical study based on velocity dispersion measurements.

  11. Infrared spectrum of an extremely cool white-dwarf star

    PubMed

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  12. Isotopes of titanium in cool stars

    NASA Technical Reports Server (NTRS)

    Clegg, R. E. S.; Lambert, D. L.; Bell, R. A.

    1979-01-01

    A program of stellar Ti isotopic-abundance determinations is described and related to changes that may have occurred in the Ti isotopic abundance ratios during the chemical evolution of the Galaxy, and to whether the abundance ratios are perturbed in the S and MS stars having atmospheres with enhanced abundances of s-process nuclei resulting from convective mixing after internal exposure to neutrons. High-resolution (0.07 A) Reticon spectra of portions of the TiO gamma (0,0), gamma (0,1), and delta (0,0) bands were the source material, and particular emphasis was placed on the definition of the continuum level. The isotopic abundance ratios are terrestrial in all of the sample, and errors in the (Ti-i)/(Ti-48) ratio are typically plus or minus 25% for the dwarfs and plus or minus 50% for the giants. The observations show that the magic nucleus Ti-50 is not enhanced in S and MS stars.

  13. HUBBLE SPIES A REALLY COOL STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope picture of one of the least massive and coolest stars even seen (upper right). It is a diminutive companion to the K dwarf star called GL 105A (also known as HD 16160) seen at lower left. The binary pair is located 27 light-years away in the constellation Cetus. Based on the Hubble observation, astronomers calculate that the companion, called GL 105C, is 25,000 times fainter than GL 105A in visible light. If the dim companion were at the distance of our Sun, it would be only four times brighter than the full moon. The Hubble observations confirm the detection of GL 105C last year by David Golimowski and his collaborators at Palomar Observatory in California. Although GL 105C was identified before, the Hubble view allows a more precise measurement of the separation between the binary components. Future Hubble observations of the binary orbit will allow the masses of both stars to be determined accurately. The Palomar group estimates that the companion's mass is 8-9 percent of the Sun's mass, which places it near the theoretical lower limit for stable hydrogen burning. Objects below this limit, called brown dwarfs, still 'shine' -- not by thermonuclear energy, but by the energy released through gravitational contraction. Two pictures, taken with Hubble's Wide Field Planetary Camera 2 (in PC mode) through different filters (in visible and near-infrared light) show that GL 105C is redder, hence cooler than GL 105A. The surface temperature of GL 105C is not precisely known, but may be as low as 2,600 degrees Kelvin (4,200 degrees Fahrenheit). This image was taken in near-infrared light, on January 5, 1995. GL 105C is located 3.4 arc seconds to the west-northwest of the larger GL 105A. (One arc second equals 1/3600 of a degree.) The bright spikes are caused by diffraction of light within the telescope's optical system, and the brighter white bar is an artifact of the CCD camera, which bleeds along a CCD column when a relatively bright

  14. BOREAS: Mass Loss Rate of a Cool, Late-type Star

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Saar, Steven H.

    2011-08-01

    The basic mechanisms responsible for producing winds from cool, late-type stars are still largely unknown. We take inspiration from recent progress in understanding solar wind acceleration to develop a physically motivated model of the time-steady mass loss rates of cool main-sequence stars and evolved giants. This model follows the energy flux of magnetohydrodynamic turbulence from a subsurface convection zone to its eventual dissipation and escape through open magnetic flux tubes. We show how Alfven waves and turbulence can produce winds in either a hot corona or a cool extended chromosphere, and we specify the conditions that determine whether or not coronal heating occurs. These models do not utilize arbitrary normalization factors, but instead predict the mass loss rate directly from a star's fundamental properties. We take account of stellar magnetic activity by extending standard age-activity-rotation indicators to include the evolution of the filling factor of strong photospheric magnetic fields. We compared the predicted mass loss rates with observed values for 47 stars and found significantly better agreement than was obtained from the popular scaling laws of Reimers, Schroeder, and Cuntz. The algorithm used to compute cool-star mass loss rates is provided as a self-contained and efficient IDL computer code. We anticipate that the results from this kind of model can be incorporated straightforwardly into stellar evolution calculations and population synthesis techniques.

  15. Testing a Predictive Theoretical Model for the Mass Loss Rates of Cool Stars

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Saar, Steven H.

    2011-11-01

    The basic mechanisms responsible for producing winds from cool, late-type stars are still largely unknown. We take inspiration from recent progress in understanding solar wind acceleration to develop a physically motivated model of the time-steady mass loss rates of cool main-sequence stars and evolved giants. This model follows the energy flux of magnetohydrodynamic turbulence from a subsurface convection zone to its eventual dissipation and escape through open magnetic flux tubes. We show how Alfvén waves and turbulence can produce winds in either a hot corona or a cool extended chromosphere, and we specify the conditions that determine whether or not coronal heating occurs. These models do not utilize arbitrary normalization factors, but instead predict the mass loss rate directly from a star's fundamental properties. We take account of stellar magnetic activity by extending standard age-activity-rotation indicators to include the evolution of the filling factor of strong photospheric magnetic fields. We compared the predicted mass loss rates with observed values for 47 stars and found significantly better agreement than was obtained from the popular scaling laws of Reimers, Schröder, and Cuntz. The algorithm used to compute cool-star mass loss rates is provided as a self-contained and efficient computer code. We anticipate that the results from this kind of model can be incorporated straightforwardly into stellar evolution calculations and population synthesis techniques.

  16. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  17. FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS

    SciTech Connect

    Rosén, L.; Kochukhov, O.; Wade, G. A.

    2015-06-01

    Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters of the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.

  18. The Texas Deep Sky Survey: Spectroscopy of Cool Degenerate Stars

    NASA Astrophysics Data System (ADS)

    Claver, C. F.; Winget, D. E.; Nather, R. E.; MacQueen, P. J.

    1998-12-01

    The Texas Deep Sky Survey (TDSS) is a deep multi-color photometric survey in the direction of the North Galactic Pole. The purpose of the TDSS is to study large scale structure in the Universe and the stellar content of the Galaxy, specifically the cool end of the white dwarf luminosity function (WDLF). The TDSS will ultimately cover 100 square degrees in broadband U, B, V, R_C, and I_C plus two intermediate width filters centered on MgH and CaH to a depth of V=22. At present we have covered 100 square degrees in B and R_C and a 2.12x2.12 degree area in all seven bandpasses. Our aim of the white dwarf survey within the TDSS project is to increase, by an order of magnitude over present estimates, the number of objects used to define the WDLF below log(L/L_sun) ~ -3.0. The WDLF contains important information about the Galaxy, namely its age and star formation history, and the physics of condensed matter. However, because of their intrinsic faintness the number of cool white dwarfs presently used to define the low luminosity end of the WDLF is small, hence does not provide a meaningful constraint on theoretical models. Here we report on our initial WIYN multi-object spectroscopy of cool white dwarf candidates from a single TDSS field using a new photometric selection technique developed for finding cool degenerate stars. We describe the process of using MgH and CaH filters for selecting cool white dwarfs in the field and show its success with the discovery of 5 new spectroscopically confirmed cool white dwarfs stars.

  19. Cool Stars May Have Different Prebiotic Chemical Mix

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Spitzer Space Telescope detected a prebiotic, or potentially life-forming, molecule called hydrogen cyanide (HCN) in the planet-forming disks around yellow stars like our sun, but not in the disks around cooler, reddish stars.

    The observations are plotted in this graph, called a spectrum, in which light from the gas in the disks around the stars has been split up into its basic components, or wavelengths. Data from stars like our sun are yellow, and data from cool stars are orange. Light wavelengths are shown on the X-axis, and the relative brightness of disk emission is shown on the Y-axis. The signature of a baseline molecule, called acetylene (C2H2), was seen for both types of stars, but hydrogen cyanide was seen only around stars like our sun.

    Hydrogen cyanide is an organic, nitrogen-containing molecule. Five hydrogen cyanide molecules can link up to form adenine, one of the four chemical bases of DNA.

  20. The Wing-Nib Anomaly of Cool CP2 Stars

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Hubrig, S.; Kamp, I.

    2005-12-01

    We present spectra of number of cool, magnetic Ap (or CP2) stars showing sharp, deep, ``nibs'' at the cores of the Ca II K-lines. At high resolution, the contrast with normal stars is pronounced. Similar nibs are found for Ca II H-lines, but the profiles are strongly perturbed by H-ɛ . The Ca K profile of the Am star HR 1353 resembles that of normal stars. All spectra are from the ESO UVES spectrograph. They are of generally higher quality than those used in previous investigations because of resolution, S/N, and the intrinsically narrow lines of the spectra studied. Babel (A&A, 258, 449, 1992), working with specially-defined equivalent widths, found that the absorption within 0.3Å of Ca II K-line cores of magnetic CP stars is characteristically less than that of normal stars. His sample, though more numerous than ours, had relatively few objects with truly sharp-lined spectra. In spite of the nibs, our stars still show the absorption within a few tenths of an Angstrom of the line cores is lower than in normal stars. This agrees with Babel's result. The nibs are not apparent in hotter CP2 stars; weaker total Ca K-line absorption reduces the contrast between the line center and near wings. Ryabchikova et al. (A&A, 423, 705, 2004) synthesized a nib-like core in LTE for a Gamma Equ model with a stratified calcium abundance. We find that NLTE calculations modify the K-line cores, though not substantially. We show that other possibilities in addition to chemical stratification may yield nib-like cores.

  1. APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC

    2017-01-01

    The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.

  2. Spectroscopic Observations of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Eiroa, C.; Martínez-Arnáiz, R. M.; Montes, D.

    2010-10-01

    The detection of faint dusty exo-zodies and exo-EKBs around mature stars is a direct proof of planetesimal systems. Relating the properties of such structures with the hosting stars is fundamental to get clear clues concerning how common planetary systems are, and how the form and evolve. DUNES (DUst around NEarby Stars (see http://www.mpia-hd.mpg.de/DUNES/) is a Herschel Open Time Key Project with the aim of detecting cool faint exo-solar analogues to the Edgeworth-Kuiper Belt (EKB). Since the success of DUNES depends on very accurate determination of the stellar properties and age, we have started a high resolution observing program of the DUNES targets, with the first results are presented here.

  3. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    SciTech Connect

    Rayner, John T.; Cushing, Michael C.; Vacca, William D. E-mail: michael.cushing@gmail.com

    2009-12-01

    We present a 0.8-5 {mu}m spectral library of 210 cool stars observed at a resolving power of R {identical_to} {lambda}/{delta}{lambda} {approx} 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  4. The structure and energy balance of cool star atmospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    The atmospheric structure and energy balance phenomena associated with magnetic fields in the Sun are reviewed and it is shown that similar phenomena occur in cool stars. The evidence for the weakening or disappearance of transition regions and coronae is discussed together with the appearance of extended cool chromospheres with large mass loss, near V-R = 0.80 in the H-R diagram. Like the solar atmosphere, these atmospheres are not homogeneous and there is considerable evidence for plage regions with bright TR emission lines that overlie dark (presumably magnetic) star spots. The IUE observations are providing important information on the energy balance in these atmospheres that should guide theoretical calculations of the nonradiative heating rate. Recent high dispersion spectra are providing unique information concerning which components of close binary systems are the dominant contributors to the observed emission. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in DRa (G2 Ib) and perhaps other stars. Finally, the G and K giants and supergiants are classified into three groups depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.

  5. An Exo-Venus Around a Cool, Nearby Star

    NASA Astrophysics Data System (ADS)

    Angelo, Isabel; Rowe, Jason F.; Howell, Steve B.

    2015-11-01

    We present the discovery and planetary confirmation of KOI-3138, a likely Earth-sized (1.08 Earth radii ) planet in a 9-day orbit around a nearby M Dwarf star. A planet transit was detected around KOI-3138 with the Kepler spacecraft and confirmed via false positive analysis using data from the UK Infrared telescope, Digital Sky Survey, and DSSI Speckle imaging. The planet’s short orbital period places it close to its host star, making it an interesting Venus analog around a cool star.It remains possible, although unlikely, that KOI-3138.01 instead orbits a bound, undetected binary companion to KOI-3138. Under these conditions, the planet becomes a mini-Neptune-sized planet orbiting a brown dwarf with a mass of ~0.05 solar mass. Follow-up radial velocity measurements on the host star are required in order to accurately assess the likelihood of this possibility. Specifically, detection of a significant radial velocity ( ~725 m/s) upon observation of KOI-3138 will indicate the presence of a bound companion that was not detected by our false positive analysis procedures. Such a companion, if detected, cannot be ruled out as the host star around which KOI-3138.01 orbits.KOI-3138.01 is too small to induce a detectable “wobble" in its host star. We therefore make no conclusions about mass or composition. However, there is reasonable incentive to determine these properties in the hopes of understanding the nature of habitable zones around M-type stars. Kepler-186f, a previously discovered Earth-like exoplanet, is similar in size to KOI-3138.01 and orbits the outer reaches of its star’s conservative habitable zone. KOI-3138.01, also Earth-sized, orbits a similar star but resides much closer in. The two planets together span the range of distances within the habitable zones of M Dwarfs. Determining the composition and atmosphere of KOI-3138.01 is therefore useful in understanding the nature of habitable zone boundaries of such star types. This task may in fact be

  6. The infrared excess of cool giant stars - A chromospheric contribution

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.; Snell, R. L.

    1975-01-01

    The idea that the infrared excesses of evolved M stars may contain a contribution from a chromosphere is explored using alpha Ori and W Hya as test cases. The spectrum of alpha Ori between 8 and 30 millimicrons can be interpreted satisfactorily in terms of three components: a photosphere, a silicate dust cloud, and a cool chromosphere (temperature about 5000 K), which is optically thick at 14 millimicrons. A similar modelling for W Hya suggests a hotter chromosphere (temperature about 8000 K), with unit optical depth at 30 millimicrons. Some consequences of these chromospheres are briefly discussed.

  7. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    SciTech Connect

    Dong, J. M.; Zuo, W.; Lombardo, U.; Zhang, H. F.

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  8. The radius distribution of planets around cool stars

    SciTech Connect

    Morton, Timothy D.; Swift, Jonathan

    2014-08-10

    We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (T{sub eff} < 4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R{sub ⊕}, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ∼3 R{sub ⊕} implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.

  9. Cooling of Compact Stars with Color Superconducting Phase in Quark-hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki

    2013-03-01

    We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star that has high effective temperature, and it is consistent with the cooling without exotic phases. The observation also gives the mass range of M >= 1.5 M ⊙, which may conflict with the current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which can barely be explained by the minimal cooling scenario, which includes the neutrino emission by nucleon superfluidity (PBF). Therefore, we invoke the exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we present a new cooling scenario to explain the observation of Cas A by constructing models that include a quark color superconducting (CSC) phase with a large energy gap; this phase appears at ultrahigh density regions and reduces neutrino emissivity. In our model, a compact star has a CSC quark core with a low neutrino emissivity surrounded by high emissivity region made by normal quarks. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency without considering nucleon superfluidity. Furthermore, we show that our scenario is consistent with the recent observations of the effective temperature of Cas A during the last 10 years, including nucleon superfluidity.

  10. Cool stars, stellar systems, and the sun; Proceedings of the 6th Cambridge Workshop, Seattle, WA, Sept. 18-21, 1989

    NASA Technical Reports Server (NTRS)

    Wallerstein, George (Editor)

    1990-01-01

    The present conference on cool stars, stellar systems, and the sun encompasses stellar chromospheres and coronae, binary stars, the stellar evolution of contracting stars and red giants, stellar evolution abundances of the elements, mass loss and envelopes, and stellar pulsation. Specific issues addressed include theories regarding the acoustic and magnetic heating of stellar chromospheres and coronae, stellar granulation, wave heating in magnetic flux tubes, observations of the solar Ca-II lines, longitudinal-transverse magnetic tube waves in the solar atmosphere, radio emission from rapidly rotating cool giant stars, and spot temperatures and area coverages on active dwarf stars. Also addressed are the optical and UV spectra of RS-CVn stars, emission lines from T-Tauri stars, the spectroscopy of HR1614 group stars, red giants in external galaxies, the rotation of evolved stars, the transition from red giant to planetary nebula, and radiative transfer in the dynamic atmospheres of variable stars.

  11. Atomic collision processes for modelling cool star spectra

    NASA Astrophysics Data System (ADS)

    Barklem, Paul

    2015-05-01

    The abundances of chemical elements in cool stars are very important in many problems in modern astrophysics. They provide unique insight into the chemical and dynamical evolution of the Galaxy, stellar processes such as mixing and gravitational settling, the Sun and its place in the Galaxy, and planet formation, to name a just few examples. Modern telescopes and spectrographs measure stellar spectral lines with precision of order 1 per cent, and planned surveys will provide such spectra for millions of stars. However, systematic errors in the interpretation of observed spectral lines leads to abundances with uncertainties greater than 20 per cent. Greater precision in the interpreted abundances should reasonably be expected to lead to significant discoveries, and improvements in atomic data used in stellar atmosphere models play a key role in achieving such advances in precision. In particular, departures from the classical assumption of local thermodynamic equilibrium (LTE) represent a significant uncertainty in the modelling of stellar spectra and thus derived chemical abundances. Non-LTE modelling requires large amounts of radiative and collisional data for the atomic species of interest. I will focus on inelastic collision processes due to electron and hydrogen atom impacts, the important perturbers in cool stars, and the progress that has been made. I will discuss the impact on non-LTE modelling, and what the modelling tells us about the types of collision processes that are important and the accuracy required. More specifically, processes of fundamentally quantum mechanical nature such as spin-changing collisions and charge transfer have been found to be very important in the non-LTE modelling of spectral lines of lithium, oxygen, sodium and magnesium.

  12. Modelling cool star spectra with inadequate input physics

    NASA Astrophysics Data System (ADS)

    Lind, Karin

    2015-08-01

    The analysis of cool star spectra has a century-long successful history, but the recent explosion in the quality and quantity of spectra has made it clear to us that the state-of-the-art analysis do not do justice to the information content of the data and cannot extract stellar parameters and element abundances to the accuracy that the broader context requires. To progress, the long-standing assumption of local thermodynamic equilibrium in the line formation must be lifted, a development that is hindered by gaps in our knowledge of radiative and collisional transition rates. I will exemplify how stellar abundances are affected by missing input physics and discuss various calibration techniques that have been used to circumvent the problem.

  13. Rapid cooling of neutron stars by hyperons and Delta isobars

    NASA Technical Reports Server (NTRS)

    Prakash, Madappa; Prakash, Manju; Lattimer, James M.; Pethick, C. J.

    1992-01-01

    Direct Urca processes with hyperons and/or nucleon isobars can occur in dense matter as long as the concentration of Lambda hyperons exceeds a critical value that is less than 3 percent and is typically about 0.1 percent. The neutrino luminosities from the hyperon Urca processes are about 5-100 times less than the typical luminosity from the nucleon direct Urca process, if the latter process is not forbidden, but they are larger than those expected from other sources. These direct Urca processes provide avenues for rapid cooling of neutron stars which invoke neither exotic states nor the large proton fraction (of order 0.11-0.15) required for the nucleon direct Urca process.

  14. Neutrinos from SN 1987A and cooling of the nascent neutron star

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Loredo, Thomas J.; Melia, Fulvio

    1988-01-01

    The implications of the detection of neutrinos from SN 1987A for the cooling of the nascent neutron star are considered. The nu-bar(e) number N, the apparent temperature, the cooling time scale measured by the Kamioka and IMB detectors, and the inferred neutron star apparent radius and binding energy are all found to provide striking verification of current supernova theory.

  15. Regulation of Star Formation amidst Heating and Cooling in Galaxies and Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani

    Galaxy clusters are the largest gravitationally bound systems in the Universe and often host the largest galaxies (known as the brightest cluster galaxies (BCG)) at its centers. These BCG's are embedded in hot 1-10 keV X-ray gas. A subset of galaxy clusters known as cool-core clusters show sharply peaked X-ray emission and high central densities, demonstrating cooling of the surrounding halo gas in timescales much shorter than a Hubble time. These observations led to the development of a simple cooling flow model. In the absence of an external heating process, a cooling flow model predicts that the hot intracluster medium gas in these dense cores would hydrostatically cool, generating cooling flows in the center of the cluster. This cooled gas will eventually collapse to form stars and contribute to the bulk of galaxy mass. The rates of star formation actually observed in the clusters however are far less than predicted by the cooling flow model, suggesting a non-gravitational heating source. Active galactic nuclei (AGN), galaxies hosting a supermassive black hole that ejects outflows via accretion, is currently the leading heating mechanism (referred to as AGN feedback) explaining the observed deficit in the star formation rates. AGN feedback also offers an elegant explanation to the observed black hole and galaxy co-evolution. Much of the evidence for AGN feedback has been obtained from studies focussed on galaxy clusters and luminous massive systems with little evidence that it occurs in more typical systems in the local universe. Our research investigates this less explored area to address the importance of AGN heating in the regulation of star formation in typical early type galaxies in the local universe. We selected a sample of 200+ early type, low redshift galaxies and carried out a multiple wavelength study using archival observed in the UV, IR and radio. Our results suggest that early type galaxies in the current epoch are rarely powerful AGN and AGN

  16. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  17. Coronal Structures in Cool Stars: XMM-NEWTON Hybrid Stars and Coronal Evolution

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.

  18. WHITE-LIGHT FLARES ON COOL STARS IN THE KEPLER QUARTER 1 DATA

    SciTech Connect

    Walkowicz, Lucianne M.; Basri, Gibor; Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug; Bryson, Steve; Gilliland, Ronald L.; Dupree, Andrea K.; Latham, David W.; Meibom, Soeren; Howell, Steve; Brown, Timothy M.

    2011-02-15

    We present the results of a search for white-light flares on {approx}23,000 cool dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373 flaring stars, some of which flare multiple times during the observation period. We calculate relative flare energies, flare rates, and durations and compare these with the quiescent photometric variability of our sample. We find that M dwarfs tend to flare more frequently but for shorter durations than K dwarfs and that they emit more energy relative to their quiescent luminosity in a given flare than K dwarfs. Stars that are more photometrically variable in quiescence tend to emit relatively more energy during flares, but variability is only weakly correlated with flare frequency. We estimate distances for our sample of flare stars and find that the flaring fraction agrees well with other observations of flare statistics for stars within 300 pc above the Galactic plane. These observations provide a more rounded view of stellar flares by sampling stars that have not been pre-selected by their activity, and are informative for understanding the influence of these flares on planetary habitability.

  19. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  20. Cool and luminous transients from mass-losing binary stars

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo

    2016-02-01

    We study transients produced by equatorial disc-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity vesc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0.06 ≲ q ≲ 0.8. For synchronous binaries with non-degenerate components, the spiral-stream arms merge at a radius of ˜10a, where a is the binary semi-major axis, and the accompanying shock thermalizes about 10 per cent of the kinetic power of the outflow. The mass-losing binary outflows produce luminosities reaching up to ˜106 L⊙ and effective temperatures spanning 500 ≲ Teff ≲ 6000 K, which is compatible with many of the class of recently discovered red transients such as V838 Mon and V1309 Sco. Dust readily forms in the outflow, potentially in a catastrophic global cooling transition. The appearance of the transient is viewing angle-dependent due to vastly different optical depths parallel and perpendicular to the binary plane. We predict a correlation between the peak luminosity and the outflow velocity, which is roughly obeyed by the known red transients. Outflows from mass-losing binaries can produce luminous (105 L⊙) and cool (Teff ≲ 1500 K) transients lasting a year or longer, as has potentially been detected by Spitzer surveys of nearby galaxies.

  1. Platelet actively cooled thermal management devices

    NASA Astrophysics Data System (ADS)

    Mueggenburg, H. H.; Hidahl, J. W.; Kessler, E. L.; Rousar, D. C.

    1992-07-01

    An overview of 28 years of actively-cooled platelet thermal management devices design and development history is presented. Platelet devices are created by bonding together thin metal sheets (platelets) which contain chemically-etched coolant pasages. The bonding process produces an intricate and precise matrix of coolant passages and structural walls contained within a monolithic structure. Thirteen specific applications for platelet thermal management devices are described. These devices are cooled using convective, film, and transpiration cooling techniques. Platelet thermal management devices have been fabricated from a variety of metals, cooled with a variety of fluids, and operated at heat fluxes up to 200 Btu/sq in.-sec.

  2. A CHANDRA X-RAY ANALYSIS OF ABELL 1664: COOLING, FEEDBACK, AND STAR FORMATION IN THE CENTRAL CLUSTER GALAXY

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Kazemzadeh, F.; Cavagnolo, K. W.; Rafferty, D. A.; BIrzan, L.; Nulsen, P. E. J.; Wise, M. W.; Gitti, M.

    2009-05-20

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of {approx} 23 M {sub sun} yr{sup -1}. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 x 10{sup 8} yr and entropy of 10.4 keV cm{sup 2} are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, 'barlike' X-ray structure whose mass is comparable to the mass of molecular hydrogen, {approx}10{sup 10} M {sub sun} in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of BIrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  3. Determining star formation rates in X-ray cluster cooling flows

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III; Sarazin, Craig L.

    1987-01-01

    Many X-ray clusters of galaxies are observed to have cooling flows at their centers. Each of these cooling flows is depositing mass onto a central dominant galaxy at a rate of 10-400 solar masses/yr. With such large accretion rates it seems possible that these accreting galaxies are still being formed through ongoing star formation in their associated cooling flows. In this paper techniques are developed to determine directly the distributions of local star formation rate, mass, gas density, temperature, and velocity from cooling flow X-ray surface brightness data. These techniques take account of the potentially important X-ray emission from star-forming cooling condensations dropping out of the background flow. Surface brightness data with either good or poor energy resolution are considered separately.

  4. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  5. The magnetic activity sunlike stars.

    PubMed

    Vaughan, A H

    1984-08-24

    Sunspots, flares, and the myriad time-varying "events" observable in the Sun-the only star whose surface we can examine in detail-are testimony that the Sun is a magnetically variable or active star. Its magnetic field, carried into interplanetary space by the solar wind, produces observable changes in Earth's magnetosphere and variations in the flux of galactic cosmic-ray particles incident upon Earth's upper atmosphere. Centuries of observation have enabled solar scientists to recognize that the Sun's magnetism exists and varies in a globally organized pattern that is somehow coupled to the Sun's rotation. Within the past decade O. C. Wilson demonstrated that analogs of solar activity exist and can be studied in many other dwarf stars. From the continuing study, knowledge of the precise rates of rotation of the stars under investigation is being gained for the first time. The results are expected to increase our understanding of the origin of solar activity and stellar activity in general.

  6. Hot Companions and Warm Disks Around Cool Stars

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    Almost all stars in the Universe end their lives quietly, evolving through the Red Giant Branch (RGB), Asymptotic Giant Branch (AGB), and planetary nebula (PN) evolutionary phases. Single-star evolutionary models tell us that most stars that leave the main sequence in less than a Hubble time will end their lives in this way, but will induce profound effects on their environment. The heavy mass loss which they experience at the end of their lives fundamentally affect their evolution, and makes them the main suppliers of dust and gas enriched by nucleosynthesis to the general interstellar medium (ISM). But our overall understanding of the late evolution of these stars are based on single-star models, when it is well-known that most stars begin their lives in binary systems, and binarity can drastically affect both mass-loss and late stellar evolution. The study of binarity in systems with low and intermediate-mass evolved stars can yield crucial information regarding the initial mass function near the bottom of the main-sequence and below, and the long-term stability and suvivability of low-mass objects in orbit around post-AGB stars.We propose a 3-year study which investigates binarity in two important classes of stars: AGB stars and dwarf carbon (dC) stars (and CH star: the immediate post-main sequence counterparts of dC stars), primarily using the GALEX and WISE databases. Direct observational evidence for binarity in AGB stars is of fundamental importance, but a huge challenge because of their high luminosities compared to their companions; only in the UV bands (observed with GALEX) there is a strong potential for finding the companions. The existence of dC stars has long been a mystery as carbon can only be produced in AGB stars -- it is believed that dC stars are normal dwarfs stars that became C-rich due to mass-transfer from a companion when it was a C-rich AGB star (but is now a white dwarf). The detection of a statistical sample of such objects in the UV

  7. Observations of Lyα and O vi: Signatures of Cooling and Star Formation in a Massive Central Cluster Galaxy

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Connor, Thomas; Voit, G. Mark; Postman, Marc

    2017-02-01

    We report new Hubble Space Telescope COS and Space Telescope Imaging Spectrograph spectroscopy of a star-forming region (∼ 100 {M}ȯ yr‑1) in the center of the X-ray cluster RX J1532.9+3021 (z = 0.362), to follow-up the CLASH team discovery of luminous UV filaments and knots in the central massive galaxy. We detect broad (∼500 km s‑1) Lyα emission lines with extraordinarily high equivalent widths (EQW ∼ 200 Å) and somewhat less broadened Hα (∼220 km s‑1). Ultraviolet emission lines of N v and O vi are not detected, which constrains the rate at which gas cools through temperatures of 106 K to be ≲10 M⊙ yr‑1. The COS spectra also show a flat rest-frame UV continuum with weak stellar photospheric features, consistent with the presence of recently formed hot stars forming at a rate of ∼10 M⊙ yr‑1, uncorrected for dust extinction. The slope and absorption lines in these UV spectra are similar to those of Lyman Break Galaxies at z≈ 3, albeit those with the highest Lyα equivalent widths and star formation rates. This high-EQW Lyα source is a high-metallicity galaxy rapidly forming stars in structures that look nothing like disks. This mode of star formation could significantly contribute to the spheroidal population of galaxies. The constraint on the luminosity of any O vi line emission is stringent enough to rule out steady and simultaneous gas cooling and star formation, unlike similar systems in the Phoenix Cluster and Abell 1795. The fact that the current star formation rate differs from the local mass cooling rate is consistent with recent simulations of episodic active galactic nucleus feedback and star formation in a cluster atmosphere.

  8. The influence of H2O line blanketing on the spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Allard, F.; Hauschildt, P. H.; Miller, S.; Tennyson, J.

    1994-01-01

    We present our initial results of model atmosphere calculations for cool M dwarfs using an opacity sampling method and a new list of H2O lines. We obtain significantly improved fits to the infrared spectrum of the M dwarf VB10 when compared to earlier models. H2O is by far the dominant opacity source in cool stars. To illustrate this, we show the Rosseland mean of the total extinction under various assumptions. Our calculations demonstrate the importance of a good treatment of the water opacities in cool stars and the improvements possible by using up-to-date data for the water line absorption.

  9. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    NASA Technical Reports Server (NTRS)

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  10. Neutrino cooling and spin-down of rapidly rotating compact stars

    SciTech Connect

    Jaikumar, Prashanth; Sandalski, Stou

    2010-11-15

    The gravitational-wave instability of r modes in rapidly rotating compact stars is believed to spin them down to angular frequencies {Omega}{approx}0.1{Omega}{sub Kepler} soon after their birth in a supernova. We point out that the r-mode perturbation also impacts the neutrino cooling and viscosity in hot compact stars via processes that restore weak equilibrium. We illustrate this fact with a simple model of spin-down due to gravitational-wave emission in compact stars composed entirely of three-flavor degenerate quark matter (a strange quark star). Nonequilibrium neutrino cooling of this oscillating fluid matter is quantified. Our results imply that a consistent treatment of the thermal and spin-frequency evolution of a young and hot compact star is a requisite in estimating the persistence of gravitational waves from such a source.

  11. Search for white dwarf companions of cool stars with peculiar element abundances

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1984-01-01

    A search for a white dwarf companions of cool stars with peculiar element abundances was undertaken. One additional star the xi Cet, was found with a white dwarf companion. It was found that HR 1016, 56Uma, 16 Ser, have high excitation emission lines which indicate a high temperature object in the system. It is suggested that since these indications for high temperature companions were seen for all nearby Ba stars, it is highly probable that all Ba stars have white dwarf companions, and that the peculiar element abundances seen in the Ba stars are due to mass transfer. Observations, arguments and conclusions are presented. White dwarf companions were not found. Together with the Li and Be abundances and the chromospheric emission line spectra in these stars were studied. No white dwarf companions were seen for subgiant CH stars.

  12. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: {beta} PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    SciTech Connect

    Schlieder, Joshua E.; Simon, Michal; Lepine, Sebastien E-mail: schlieder@mpia-hd.mpg.de

    2012-04-15

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the {beta} Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the {beta} Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  13. From the atmosphere to the circumstellar environment in cool evolved stars

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Paladini, C.

    2014-09-01

    We discuss and illustrate contributions that optical interferometry has made on our current understanding of cool evolved stars. We include red giant branch (RGB) stars, asymptotic giant branch (AGB) stars, and red supergiants (RSGs). Studies using optical interferometry from visual to mid-infrared wavelengths have greatly increased our knowledge of their atmospheres, extended molecular shells, dust formation, and winds. These processes and the morphology of the circumstellar environment are important for the further evolution of these stars toward planetary nebulae (PNe) and core-collapse supernovae (SNe), and for the return of material to the interstellar medium.

  14. Dust Production and Mass Loss in Cool Evolved Stars

    NASA Technical Reports Server (NTRS)

    Boyer, M. L.

    2013-01-01

    Following the red giant branch phase and the subsequent core He-burning phase, the low- to intermediate-mass stars (0.8star. I will briefly review the current status of models that include AGB mass loss and relate them to recent observations of AGB stars from the Surveying the Agents of Galaxy Evolution (SAGE) Spitzer surveys of the Small and Large Magellanic Clouds, including measures of the total dust input to the interstellar medium from AGB stars.

  15. A Survey of Long-Term X-Ray Variability In Cool Stars

    NASA Astrophysics Data System (ADS)

    Pye, John; Rosen, Simon; Read, Andrew; Law-Green, Duncan; Watson, Michael; O'Brien, Paul; EXTraS Team

    2016-07-01

    X-ray variability in cool stars can be indicative of coronal magnetic field changes and reconfiguration from a variety of phenomena, including flare events (typical timescales of minutes - hours), active-region evolution (hours - days - weeks), rotational modulation (hours - days - weeks), and activity cycles (years - decades). As part of the EXTraS project (Exploring the X-ray transient and variable sky - http://www.extras-fp7.eu/ ), we are performing a survey of 'long-term' X-ray variability using the decade-long public database of XMM-Newton observations. We are thus focussing here on timescales from a day to a decade, using average flux values from individual XMM-Newton observations. Though the resulting sampling is often highly non-uniform in time, the light-curves can provide valuable insights into the magnetic activity outside of shorter-term flaring episodes. We have taken a number of stellar samples (Hipparcos-Tycho, Simbad …) and are evaluating the statistical properties of the flux distributions, and comparing these across, for example spectral type, and with previously-published estimates. We are also examining the potential effects of flare events on the apparent long-term variability estimates. We give a preliminary report both on the overall variability distributions and extreme cases, distinguishing between serendipitously-observed stars (yielding, in some sense an unbiased sample) and XMM-Newton target objects (a number of them already reported by other authors).

  16. Time resolved spectroscopy of the cool Ap star HD 213637*

    NASA Astrophysics Data System (ADS)

    Elkin, V. G.; Kurtz, D. W.; Mathys, G.

    2015-02-01

    We present an analysis of high time resolution spectra of the chemically peculiar Ap star HD 213637. The star shows rapid radial velocity variations with a period close to the photometric pulsation period. Radial velocity pulsation amplitudes vary significantly for different rare earth elements. The highest pulsation amplitudes belong to lines of Tb III (˜360 m s-1), Pr II (˜250 m s-1) and Pr III (˜230 m s-1). We did not detect any pulsations from spectral lines of Eu II and in Hα, in contrast to many other roAp stars. We also did not find radial velocity pulsations using spectral lines of other chemical elements, including Mg, Si, Ca, Sc, Cr, Fe, Ni, Y and Ba. There are phase shifts between the maxima of pulsation amplitudes of different rare earth elements and ions, which is evidence of an outwardly running magneto-acoustic wave propagating through the upper stellar atmosphere.

  17. The Chemical Composition of the Active Stars

    NASA Astrophysics Data System (ADS)

    Glazunova, L. V.

    The comparison of the results of the studies of the active stars' chemical composition obtained by different authors has been performed. It was concluded that the difference between the abundances of some elements in active and inactive stars becomes significant (> 3σ) only for the active stars with high chromospheric activity (lgR'HK > -4). This is the case primarily for the light elements, namely Li, Na and Al, as well as heavy elements with Z > 30.

  18. GT1_cdedes_1: Heating and cooling mechanics in massive star formation

    NASA Astrophysics Data System (ADS)

    Dedes, C.

    2010-03-01

    Massive stars are important constituents of the interstellar medium (ISM) in our Galaxy and beyond. Their strong feedback processes influence the dynamics, energetics and chemistry of the surrounding interstellar medium both locally and on large scales. An important question to be answered is the one of cooling and heating mechanisms in regions of massive star formation. In the vicinity of massive stars, heating is provided mostly by far-UV (FUV) and infra-red radiation. Cooling is mostly provided by emission in the fine structure lines of CII. There are however other atomic and molecular lines such as OI, CO, OH and H_2O which can become significant coolants in the dense, embedded regions of massive star formation. This early phase when the forming massive star is still deeply embedded in its natal envelope, yet already interacting with, and potentially destroying, its environment through copious amounts of UV radiation, massive outflows and ultra compact HII (UCHII) regions, is an important phase in the star formation process. To understand the heating and cooling balance in this phase, one has to consider the contributions of various radiative and dynamical processes such as the FUV radiation from the young star itself, shocks created by strong stellar winds and the photon dominated regions (PDRs) where the radiation impinges on the molecular material. The tracers of these processes can be observed in the far-infrared, a wavelength range that is now accessible at unprecedented high spectral and spatial resolution with the Herschel Space Observatory. We propose to observe the aformentioned tracers of cooling and heating in the massive star forming region IRAS 12326-6245 to obtain a complete picture of the different processes, the regions they originate from and how they interact. This proposal is for time granted to the HIFI hardware team (PI: Frank Helmich) and to be accounted as part of the Swiss guaranteed time (Lead-Co-I: Arnold O. Benz).

  19. 40 Eridani: The Vulcan Sun as a Benchmark for the Evolutionary Properties of White Dwarfs and Cool Stars

    NASA Astrophysics Data System (ADS)

    Ballouz, Ronald-Louis; Guinan, E. F.; Wasatonic, R.; Engle, S. G.

    2010-01-01

    40 Eridani (omicron-2 Eri) is a bright nearby (d=5.04+/-0.02 pc) triple star system. 40 Eri A is a 4.4-mag K1 V star and its two more distant ( 400 AU) companion stars, 40 Eri B and 40 Eri C (which form an astrometric binary system), are a 9th mag DA4 white dwarf & an 11th mag M4.5 star. 40 Eri A is well known (in science fiction circles) as the probable host star to the planet Vulcan; however, 40 Eri is also well known in astronomy as containing the first identified white dwarf , only a handful of which have well-determine dynamical masses. Utilizing archival X-ray, ultraviolet (IUE) data, and Ca II HK emission measures, we determined (or improved) the properties of the system members. Using calibrated age-rotation-activity relations developed by us and others, we determine an age of 5.2+/-1.2 Gyr for 40 Eri A (and thus the system). It appears that 40 Eri A has similar activity levels (and thus age) to Alpha Centauri B - a middle-age ( 5.5+/-0.5 Gyr) K1 V star. This age is in good agreement with the age estimated from white dwarf component of 5.0+/-1 Gyr [main-sequence + cooling time (0.1Gyr)]. The accurate age, evolution, and mass of the hot white dwarf star provide a firm benchmark for calibrating ages/cooling times of lower mass white dwarfs. The implications of this new age determination on the evolution & cooling times of low mass white dwarfs (like 40 Eri B) and cosmochronology are discussed. Furthermore, we are carrying out high precision photometry of 40 Eri A with the aim of determining its rotation period (from star spot modulations) and thus its age using rotation-age relations for dK stars. This work is partially supported with grants from NSF/RUI & NASA/FUSE programs.

  20. PCM Passive Cooling System Containing Active Subsystems

    NASA Technical Reports Server (NTRS)

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  1. Activation of a new cooling tower facility

    SciTech Connect

    Lansford, W.D.

    1986-01-01

    The activation of a completely new facility presents problems not found in modifications or additions to existing systems. Known baselines of previous operations provide some guidelines as to what is causing a particular problem. However, when a totally new, complex facility initially becomes operational, unfamiliar instrumentation, mechanical equipment, and unknown system idiosyncrasies, require careful analysis of each event to determine whether one is observing a symptom of pending disaster or a minor isolated occurrence of some subsystem. Careful planning and progressive introduction of related systems must be initiated, introducing operating personnel into the chain of events as early as possible. Personnel responsible for operation and maintenance should participate in the review of initial concepts and designs, to provide input based on systems experience. The cooling tower system described in this paper has gained recognition for dependability and consistency of operations since initially becoming operational. Instead of a once weekly activity, as originally anticipated, test units are now requesting cooling tower support for all test operations. During one five-month period, a total of 660 cooling tower operating hours were logged with one test support period of 78 non-stop hours recorded. The use of the cooling tower beyond original expectations is a compliment without comparison.

  2. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  3. Collision--induced absorption in dense atmospheres of cool stars

    SciTech Connect

    Borysow, Aleksandra; Joergensen, Uffe Graae

    1999-04-01

    In the atmosphere of the Sun the major interaction between the matter and the radiation is through light absorption by ions (predominantly the negative ion of hydrogen atoms), neutral atoms and a small amount of polar molecules. The majority of stars in the universe are, however, cooler and denser than our Sun, and for a large fraction of these, the above absorption processes are very weak. Here, collision-induced absorption (CIA) becomes the dominant opacity source. The radiation is absorbed during very short mutual passages ('collisions') of two non-polar molecules (and/or atoms), while their electric charge distributions are temporarily distorted which gives rise to a transient dipole moment. We present here a review of the present-day knowledge about the impact of collision-induced absorption processes on the structure and the spectrum of such stars.

  4. Hydrogen-deficient atmospheres for cool carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Bower, C. D.; Lemke, D. A.; Luttermoser, D. G.; Petrakis, J. P.; Reinhart, M. D.; Welch, K. A.; Alexander, D. R.; Goebel, J. H.

    1985-01-01

    Motivated by recent work which hints at a possible deficiency of hydrogen in non-Mira N-type carbon stars and to further explore the parameter space of chemical composition, computations have been made of a series of hydrogen-deficient models for carbon stars. For these models Teff = 3000 K, and log g = 0.0. Solar abundances are used for all elements except for carbon (which is enhanced to give C/O = 1.05), hydrogen, and helium. As the fractional abundance of hydrogen is decreased, being replaced by helium, the temperature-optical depth relation is affected only slightly, but the temperature-pressure relation is changed. The most striking change in the emergent flux is the decrease of the H(-) peak at 1.65 micron compared with the blackbody peak at 1.00 micron.

  5. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martínez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    2009-02-01

    At the Universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25 pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results of the kinematics of the DUNES sample.

  6. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Martinez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    At the universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (d<25pc), late-type stellar population with the aim of contributing to the knowledge of the stellar formation history in the solar neighbourhood. Part of our sample will be observed by DUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results on the kinematics of the DUNES sample.

  7. A new population of cool stars and brown dwarfs in the Lupus clouds

    NASA Astrophysics Data System (ADS)

    Comerón, F.; Spezzi, L.; López Martí, B.

    2009-06-01

    Context: Most studies of the stellar and substellar populations of star-forming regions rely on using the signatures of accretion, outflows, disks, or activity characterizing the early stages of stellar evolution. However, these signatures rapidly decay with time. Aims: We present the results of a wide-area study of the stellar population of clouds in the Lupus star-forming region. When combined with 2MASS photometry, our data allow us to fit the spectral energy distributions of over 150 000 sources and identify possible new members based on their photospheric fluxes, independent of any display of the signposts of youth. Methods: We used the Wide Field Imager (WFI) at the La Silla 2.2 m telescope to image an area of more than 6 square degrees in the Lupus 1, 3 and 4 clouds in the R_C, I_C, and z_WFI bands, selected so as to overlap with the areas observed in the Spitzer Legacy Program “From molecular cores to planet-forming disks”. We complement our data with 2MASS photometry to sample the spectral energy distribution from 0.6 μm to 2.2 μm. We validate our method on the census of known members of the Lupus clouds, for which spectroscopic classification is available. The temperatures derived for cool objects are generally accurate, with most of the exceptions attributed to veiling, strong emission lines at short wavelengths, near-infrared excess, variability, or the presence of close companions. Results: Considering that the dereddened fluxes of most cool (T_eff < 3500 K) young stellar objects at the distance of Lupus occupy a gap between those typical both of field cool dwarfs and of background giants, we identify a new population of cool members of Lupus 1 and 3. The approximately 130 new members are only moderately concentrated toward the densest clouds, they appear to have ages in the same range as the known members, and very few show the infrared excess caused by warm disks. This population is absent in Lupus 4. Conclusions: This new population of Lupus

  8. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  9. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    SciTech Connect

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-10-20

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  10. Cool and luminous transients from mass-losing binary stars

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo

    2016-07-01

    Motivated by the recently established link between luminous red novae (LRN) and catastrophic phases of binary star evolution, we perform smoothed particle hydrodynamic calculations of outflows from binary stars with realistic equation of state and opacities. We focus on the case of mass loss from the outer Lagrangian point (L2), where the resulting spiral stream experiences tidal torques from the binary and becomes unbound. As the individual spiral arms merge and collide near the binary, the outflow thermalizes about 5% of its kinetic energy. For reasonable binary parameters, the outflow can produce luminosities up to 106 L ⨀ with effective temperatures between 500 and 6000 K, depending on the optical depth through the outflow. This is compatible with many examples of the LRN such as V838 Mon and V1309 Sco. The luminosity and the expansion velocity are correlated, as is roughly observed in the known LRN. The outflow readily forms dust, leading to great variations of the appearance of the transient as a function of the viewing angle. Our results are relevant for a more general class of equatorial outflows with asymptotic velocity and heating rate near the binary proportional to its orbital speed.

  11. Suppression of cooling by strong magnetic fields in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Valyavin, G.; Shulyak, D.; Wade, G. A.; Antonyuk, K.; Zharikov, S. V.; Galazutdinov, G. A.; Plachinda, S.; Bagnulo, S.; Fox Machado, L.; Alvarez, M.; Clark, D. M.; Lopez, J. M.; Hiriart, D.; Han, Inwoo; Jeon, Young-Beom; Zurita, C.; Mujica, R.; Burlakova, T.; Szeifert, T.; Burenkov, A.

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  12. Suppression of cooling by strong magnetic fields in white dwarf stars.

    PubMed

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  13. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster.

    PubMed

    Meibom, Søren; Barnes, Sydney A; Platais, Imants; Gilliland, Ronald L; Latham, David W; Mathieu, Robert D

    2015-01-29

    The ages of the most common stars--low-mass (cool) stars like the Sun, and smaller--are difficult to derive because traditional dating methods use stellar properties that either change little as the stars age or are hard to measure. The rotation rates of all cool stars decrease substantially with time as the stars steadily lose their angular momenta. If properly calibrated, rotation therefore can act as a reliable determinant of their ages based on the method of gyrochronology. To calibrate gyrochronology, the relationship between rotation period and age must be determined for cool stars of different masses, which is best accomplished with rotation period measurements for stars in clusters with well-known ages. Hitherto, such measurements have been possible only in clusters with ages of less than about one billion years, and gyrochronology ages for older stars have been inferred from model predictions. Here we report rotation period measurements for 30 cool stars in the 2.5-billion-year-old cluster NGC 6819. The periods reveal a well-defined relationship between rotation period and stellar mass at the cluster age, suggesting that ages with a precision of order 10 per cent can be derived for large numbers of cool Galactic field stars.

  14. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  15. Using infrared spectral features to probe circumstellar dust shells around cool stars

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1989-01-01

    IRAS observations of cool stars provide low resolution spectra in the mid-infrared and also give fluxes at four wavelength bands from which color-color diagrams are constructed. The later have been used to study the evolution of these stars: as an O-rich star evolves to become a C-rich star and its detached dust shell moves further away, its evolution can be tracked on a color-color diagram. A major factor in determining the position of either C-rich or O-rich stars on the 12-25-60 micron color-color diagram is the presence of spectral features in the mid-IR. O-rich stars show a 9.8 micron silicate feature, while C-rich stars have a SiC feature at 11.2 microns. IRAS observations indicate that the SiC feature is quite narrow and uniform in shape showing little variation from star to star. The full width at half maximum (FWHM) is 1.6 + or - 0.15 microns. On the other hand, the shape of the silicate feature varies widely among the O-rich stars, with a FWHM ranging from 2 to 3 microns. The characteristics of circumstellar dust shells should manifest themselves both in the flux spectrum and in the details of the spectral features. To provide a coherent interpretation for these IRAS observations, models were constructed (using a radiative transfer code) of dust shells around O-rich and C-rich stars. Realistic grain opacities were used which include spectral features of varying intrinsic widths (e.g., Gaussian features at 10 microns with half width at half maximum of 0.5 and 1.0 microns).

  16. Urca Cooling Pairs in the Neutron Star Ocean and Their Effect on Superbursts

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Meisel, Zach; Schatz, Hendrik; Brown, Edward F.; Cumming, Andrew

    2016-11-01

    An accretion outburst onto a neutron star deposits hydrogen-rich and/or helium-rich material into the neutron star’s envelope. Thermonuclear burning of accreted material robustly produces Urca pairs—pairs of nuclei that undergo cycles of {e}--capture and {β }--decay. The strong T 5 dependence of the Urca cooling neutrino luminosity means that Urca pairs in the neutron star interior potentially remove heat from accretion-driven nuclear reactions. In this study, we identify Urca pairs in the neutron star’s ocean—a plasma of ions and electrons overlaying the neutron star crust—and demonstrate that Urca cooling occurs at all depths in the ocean. We find that Urca pairs in the ocean and crust lower the ocean’s steady-state temperature during an accretion outburst and that unstable carbon ignition, which is thought to trigger superbursts, occurs deeper than it would otherwise. Cooling superburst light curves, however, are only marginally impacted by cooling from Urca pairs because the superburst peak radiative luminosity {L}{peak} is always much greater than the Urca pair neutrino luminosity {L}ν in the hot post-superburst ocean.

  17. Temperature Regulator for Actively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max (Inventor); Kelly, H. Neale (Inventor)

    1995-01-01

    In active cooling of a structure it is beneficial to use a plurality of passages for conducting coolant to various portions of the structure. Since most structures do not undergo isotropic thermal loads it is desirable to allow for variation in coolant flow to each area of the structure. The present invention allows for variable flow by a variation of the area of a portion of each of the coolant passages. Shape memory alloys and bi-material springs are used to produce passages that change flow area as a function of temperature.

  18. The regulation of star formation in cool-core clusters: imprints on the stellar populations of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Loubser, S. I.; Babul, A.; Hoekstra, H.; Mahdavi, A.; Donahue, M.; Bildfell, C.; Voit, G. M.

    2016-02-01

    A fraction of brightest cluster galaxies (BCGs) show bright emission in the ultraviolet and the blue part of the optical spectrum, which has been interpreted as evidence of recent star formation. Most of these results are based on the analysis of broad-band photometric data. Here, we study the optical spectra of a sample of 19 BCGs hosted by X-ray luminous galaxy clusters at 0.15 star formation histories of the galaxies by fitting simple stellar populations as well as composite populations, consisting of a young stellar component superimposed on an intermediate/old stellar component, to accurately constrain their star formation histories. We detect prominent young (˜200 Myr) stellar populations in four of the 19 galaxies. Of the four, the BCG in Abell 1835 shows remarkable A-type stellar features indicating a relatively large population of young stars, which is extremely unusual even amongst star-forming BCGs. We constrain the mass contribution of these young components to the total stellar mass to be typically between 1 and 3 per cent, but rising to 7 per cent in Abell 1835. We find that the four of the BCGs with strong evidence for recent star formation (and only these four galaxies) are found within a projected distance of 5 kpc of their host cluster's X-ray peak, and the diffuse, X-ray gas surrounding the BCGs exhibits a ratio of the radiative cooling-to-free-fall time (tc/tff) of ≤10. These are also some of the clusters with the lowest central entropy. Our results are consistent with the predictions of the precipitation-driven star formation and active galactic nucleus feedback model, in which the radiatively cooling diffuse gas is subject to local thermal instabilities once the instability parameter tc/tff falls below ˜10, leading to the condensation and precipitation of cold gas. The number of galaxies in our sample where the host cluster satisfies all the

  19. Definition and empirical structure of the range of stellar chromospheres-coronae across the H-R diagram: Cool stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Major advances in our understanding of non-radiative heating and other activity in stars cooler than T sub eff = 10,000K has occured in the last few years. This observational evidence is reviewed and the trends that are now becoming apparent are discussed. The evidence for non-radiatively heated outer atmospheric layers (chromospheres, transition regions, and coronae) in dwarf stars cooler than spectral type A7, in F and G giants, pre-main sequence stars, and close bindary systems is unambiguous, as is the evidence for chromospheres in the K and M giants and supergiants. The existence of non-radiative heating in the outer layers of the A stars remains undetermined despite repeated searches at all wavelengths. Two important trends in the data are the decrease in plasma emission measure with age on the main sequence and decreasing rotational velocity. Variability and atmospheric inhomogeneity are commonly seen, and there is considerable evidence that magnetic fields define the geometry and control the energy balance in the outer atmospheric layers. In addition, the microwave observations imply that non-thermal electrons are confined in coronal magnetic flux tubes in at least the cool dwarfs and RS CVn systems. The chromospheres in the K and M giants and supergiants are geometrically extended, as are the coronae in the RS CVn systems and probably also in other stars.

  20. Three Dimensional Structures in the Atmospheres of Cool Stars

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.

    1997-01-01

    This grant has supported my GHRS-related activities since 1990. This included both instrumental calibration activities and independent scientific research using the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The activities under this grant are essentially complete. Publications to date which have resulted in whole or in part from this grant are included.

  1. SWP Echelle Spectra of Chromospherically Active Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    High resolution spectra of the 1150-2000 A region are enormously valuable for probing outer- atmosphere structure in cool stars. For example, such data can be used to separate blends, identify individual emission components in short-period binary systems, determine intensity ratios in close multiplets, estimate reliable emission strengths of lines superimposed on bright stellar continua, and test for the presence or absence of stellar winds at 105 K temperatures. These possibilities are not practical with IUE low-dispersion spectra. However, one must pay a steep-price to obtain useable high-dispersion IUE spectra and the additional dimension of diagnostic information, namely only a handful of the brightest UV sources are accessible even with shift-long exposures. We propose below an observing program to obtain echelle spectra of chromospherically active dwarf stars in the 1150-2000 A shortwavelength region. This program is intended to explore a particular class of objects that heretofore have not been observed at high dispersion with the SWP camera. Futhermore, this program complements previous SWP echelle studies by our group at the University of Colorado of quiet-chromosphere dwarf stars (alpha Cen A, alpha Cen B), active giants (alpha Aur A, lambda And, beta Dra), and the extreme case of the very active RS CVn-type system HR 1099. As described below, highdispersion spectra of these targets have provided a critical interpretive dimension that was lacking in previous low-dispersion studies. However, several fundamental questions have been raised in the course of our exploratory SWP work on what, in practice, are two distinct classes of chromospheric stars: the quiet dwarfs and the active giants. We feel that many of these questions can be answered by bridging the interpretive gap with a careful study of the active dwarfs. Our recent experience with shift-long SWP echelle exposures of chromospheric emission stars has suggested that our previous estimates of

  2. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  3. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-01-01

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  4. Ninth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun

    NASA Technical Reports Server (NTRS)

    Dupree, Andrea K.

    1998-01-01

    This Grant was used to publish the Proceedings from the Ninth Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun held in Florence, Italy from 3 to 6 October 1995. The Proceedings were published by the Astronomical Society of the Pacific in their Conference Series, Volume 109 in 1996. This volume was edited by Roberto Pallavicini and Andrea K. Dupree. A copy of the title page and the Table of Contents of the volume is appended.

  5. TRAPPIST-UCDTS: A prototype search for habitable planets transiting ultra-cool stars

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Jehin, E.; Fumel, A.; Magain, P.; Queloz, D.

    2013-04-01

    The ˜1000 nearest ultra-cool stars (spectral type M6 and latter) represent a unique opportunity for the search for life outside solar system. Due to their small luminosity, their habitable zone is 30-100 times closer than for the Sun, the corresponding orbital periods ranging from one to a few days. Thanks to this proximity, the transits of a habitable planet are much more probable and frequent than for an Earth-Sun analog, while their tiny size (˜1 Jupiter radius) leads to transits deep enough for a ground-based detection, even for sub-Earth size planets. Furthermore, a habitable planet transiting one of these nearby ultra-cool star would be amenable for a thorough atmospheric characterization, including the detection of possible biosignatures, notably with the near-to-come JWST. Motivated by these reasons, we have set up the concept of a ground-based survey optimized for detecting planets of Earth-size and below transiting the nearest Southern ultra-cool stars. To assess thoroughly the actual potential of this future survey, we are currently conducting a prototype mini-survey using the TRAPPIST robotic 60cm telescope located at La Silla ESO Observatory (Chile). We summarize here the preliminary results of this mini-survey that fully validate our concept.

  6. A search for coronal soft X-ray emission from cool stars with HEAO 1

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Garmire, G.; Cordova, F.; Linsky, J. L.

    1979-01-01

    A search of the HEAO 1 A-2 experiment all-sky survey for coronal soft X-ray emission from a sample of active chromosphere G-M stars including six dwarfs, eight giants, four supergiants, and 10 dMe flare stars is summarized. Point sources were detected near the positions of several of the stars considered. However, of these, only the flare stars BY Draconis (dM0e) and AD Leonis (dM3.5e) appear to be likely candidates for the detected X-rays.

  7. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  8. Strong neutrino cooling by cycles of electron capture and decay in neutron star crusts

    SciTech Connect

    Schatz, Hendrik; Gupta, Sanjib; Moeller, Peter; Beard, Mary; Brown, Edward; Deibel, A. T.; Gasques, Leandro; Hix, William Raphael; Keek, Laurens; Lau, Rita; Steiner, Andrew M; Wiescher, Michael

    2013-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs13 and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models1, 2 computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  9. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements

    NASA Technical Reports Server (NTRS)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James

    1995-01-01

    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  10. Spectral Properties of Cool Stars: Extended Abundance Analysis of 1,617 Planet-search Stars

    NASA Astrophysics Data System (ADS)

    Brewer, John M.; Fischer, Debra A.; Valenti, Jeff A.; Piskunov, Nikolai

    2016-08-01

    We present a catalog of uniformly determined stellar properties and abundances for 1,617 F, G, and K stars using an automated spectral synthesis modeling procedure. All stars were observed using the HIRES spectrograph at Keck Observatory. Our procedure used a single line list to fit model spectra to observations of all stars to determine effective temperature, surface gravity, metallicity, projected rotational velocity, and the abundances of 15 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y). Sixty percent of the sample had Hipparcos parallaxes and V-band photometry, which we combined with the spectroscopic results to obtain mass, radius, and luminosity. Additionally, we used the luminosity, effective temperature, metallicity and α-element enhancement to interpolate in the Yonsei-Yale isochrones to derive mass, radius, gravity, and age ranges for those stars. Finally, we determined new relations between effective temperature and macroturbulence for dwarfs and subgiants. Our analysis achieved precisions of 25 K in {T}{eff}, 0.01 dex in [M/H], 0.028 dex for {log}g, and 0.5 km s-1 in v\\sin i based on multiple observations of the same stars. The abundance results were similarly precise, between ˜0.01 and ˜0.04 dex, though trends with respect to {T}{eff} remained for which we derived empirical corrections. The trends, though small, were much larger than our uncertainties and are shared with published abundances. We show that changing our model atmosphere grid accounts for most of the trend in [M/H] between 5000 and 5500 K, indicating a possible problem with the atmosphere models or opacities.

  11. Annual DOE Active Solar Heating and Cooling Contractors Review meeting

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Ninety three project summaries dicussing the following aspects of active solar heating and cooling are presented: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology.

  12. Elemental abundances in atmospheres of cool dwarfs with solar-like activity

    NASA Astrophysics Data System (ADS)

    Antipova, L. I.; Boyarchuk, A. A.

    2016-01-01

    The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).

  13. An activity catalogue of southern stars

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Jones, H. R. A.; Tinney, C. G.; Butler, R. P.; McCarthy, C.; Marcy, G. W.; Pinfield, D. J.; Carter, B. D.; Penny, A. J.

    2006-10-01

    We have acquired high-resolution echelle spectra of 225 F6-M5 type stars in the Southern hemisphere. The stars are targets or candidates to be targets for the Anglo-Australian Planet Search. CaII H& K line cores were used to derive activity indices for all of these objects. The indices were converted to the Mt. Wilson system of measurements and logR'HK values determined. A number of these stars had no previously derived activity indices. In addition, we have also included the stars from Tinney et al. using our Mt. Wilson calibration. The radial-velocity instability (also known as jitter) level was determined for all 21 planet-host stars in our data set. We find the jitter to be at a level considerably below the radial-velocity signatures in all but one of these systems. 19 stars from our sample were found to be active (logR'HK > -4.5) and thus have high levels of jitter. Radial-velocity analysis for planetary companions to these stars should proceed with caution.

  14. Magnetism and activity of planet hosting stars

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.; Miller, Brendan P.

    The magnetic activity levels of planet host stars may differ from that of stars not known to host planets in several ways. Hot Jupiters may induce activity in their hosts through magnetic interactions, or through tidal interactions by affecting their host's rotation or convection. Measurements of photospheric, chromospheric, or coronal activity might then be abnormally high or low compared to control stars that do not host hot Jupiters, or might be modulated at the planet's orbital period. Such detections are complicated by the small amplitude of the expected signal, by the fact that the signals may be transient, and by the difficulty of constructing control samples due to exoplanet detection biases and the uncertainty of field star ages. We review these issues, and discuss avenues for future progress in the field.

  15. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  16. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  17. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  18. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  19. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  20. Photometric Amplitude Distribution of Stellar Rotation of KOIs—Indication for Spin-Orbit Alignment of Cool Stars and High Obliquity for Hot Stars

    NASA Astrophysics Data System (ADS)

    Mazeh, Tsevi; Perets, Hagai B.; McQuillan, Amy; Goldstein, Eyal S.

    2015-03-01

    The observed amplitude of the rotational photometric modulation of a star with spots should depend on the inclination of its rotational axis relative to our line of sight. Therefore, the distribution of observed rotational amplitudes of a large sample of stars depends on the distribution of their projected axes of rotation. Thus, comparison of the stellar rotational amplitudes of the Kepler objects of interest (KOIs) with those of Kepler single stars can provide a measure to indirectly infer the properties of the spin-orbit obliquity of Kepler planets. We apply this technique to the large samples of 993 KOIs and 33,614 single Kepler stars in temperature range of 3500-6500 K. We find with high significance that the amplitudes of cool KOIs are larger, on the order of 10%, than those of the single stars. In contrast, the amplitudes of hot KOIs are systematically lower. After correcting for an observational bias, we estimate that the amplitudes of the hot KOIs are smaller than the single stars by about the same factor of 10%. The border line between the relatively larger and smaller amplitudes, relative to the amplitudes of the single stars, occurs at about 6000 K. Our results suggest that the cool stars have their planets aligned with their stellar rotation, while the planets around hot stars have large obliquities, consistent with the findings of Winn et al. and Albrecht et al. We show that the low obliquity of the planets around cool stars extends up to at least 50 days, a feature that is not expected in the framework of a model that assumes the low obliquity is due to planet-star tidal realignment.

  1. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  2. Get Ready for Gaia: Cool White Dwarfs in Common Proper Motion with Tycho Stars

    NASA Astrophysics Data System (ADS)

    Hambly, N.; Rowell, N.; Lam, M.

    2017-03-01

    We discuss the Gaia Data Release 1 (September 2016) and preliminary work on maximising the benefit for cool white dwarf (WD) science in advance of the full parallax catalogue which will appear around one year later in DR2. The Tycho catalogue is used in conjunction with the all–sky ground based astrometric/ photometric SuperCOSMOS Sky Survey in order to identify candidate faint common proper motion objects to the Tycho stars. Gaia DR1 is supplemented by the Tycho–Gaia Astrometric Solution catalogue containing some 2 million parallaxes with Hipparcos–like precision for Tycho stars. While hotter, brighter WDs are present in Tycho, cooler examples are much rarer (if present at all) and CPM offers one method to infer precision distances for a statistically useful sample of these very faint WDs.

  3. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    NASA Astrophysics Data System (ADS)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  4. Deriving precise parameters for cool solar-type stars. Optimizing the iron line list

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Adibekyan, V. Zh.; Santos, N. C.; Mortier, A.; Israelian, G.

    2013-07-01

    Context. Temperature, surface gravity, and metallicitity are basic stellar atmospheric parameters necessary to characterize a star. There are several methods to derive these parameters and a comparison of their results often shows considerable discrepancies, even in the restricted group of solar-type FGK dwarfs. Aims: We want to check the differences in temperature between the standard spectroscopic technique based on iron lines and the infrared flux method (IRFM). We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences between the two methods are higher, as presented in a previous work. Methods: Our spectroscopic analysis was based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis was determined using the code MOOG. We optimized the line list using a cool star (HD 21749) with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. Results: We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM for the stars in common shows that the differences for the cooler stars are significantly smaller and more homogeneously distributed than in previous studies for stars with temperatures below 5000 K. Moreover, a comparison is presented between interferometric temperatures with our results that shows good agreement, even though the sample is small and the errors of the mean differences are large. We use the new line list to re-derive parameters for some of the cooler stars that host planets. Finally, we present the impact of the new temperatures on the [Cr i/Cr ii] and [Ti i/Ti ii] abundance ratios that previously showed systematic trends with temperature. We show that the slopes

  5. Active feedback cooling of massive electromechanical quartz resonators

    SciTech Connect

    Jahng, Junghoon; Lee, Manhee; Stambaugh, Corey; Bak, Wan; Jhe, Wonho

    2011-08-15

    We present a general active feedback cooling scheme for massive electromechanical quartz resonators. We cool down two kinds of macrosized quartz tuning forks and find several characteristic constants for this massive quartz-resonator feedback cooling, in good agreement with theoretical calculations. When combined with conventional cryogenic techniques and low-noise devices, one may reach the quantum sensitivity for macroscopic sensors. This may be useful for high sensitivity measurements and for quantum information studies.

  6. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  7. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1994-01-01

    Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.

  8. Active cooling from the sixties to NASP

    NASA Technical Reports Server (NTRS)

    Kelly, H. Neale; Blosser, Max L.

    1992-01-01

    Vehicles, such as the X-15 or National Aero-Space Plane, traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of this paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years--from early engine structures, which were intended to be tested on the X-15, to structural--are described. Many of the lessons learned from these research efforts are presented.

  9. CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731-260

    SciTech Connect

    Cackett, Edward M.; Miller, Jon M.; Brown, Edward F.; Cumming, Andrew; Degenaar, Nathalie; Wijnands, Rudy

    2010-10-20

    Some neutron star low-mass X-ray binaries have very long outbursts (lasting several years) which can generate a significant amount of heat in the neutron star crust. After the system has returned to quiescence, the crust then thermally relaxes. This provides a rare opportunity to study the thermal properties of neutron star crusts, putting constraints on the thermal conductivity and hence the structure and composition of the crust. KS 1731-260 is one of only four systems where this crustal cooling has been observed. Here, we present a new Chandra observation of this source approximately eight years after the end of the last outburst and four years since the last observation. We find that the source has continued to cool, with the cooling curve displaying a simple power-law decay. This suggests that the crust has not fully thermally relaxed yet and may continue to cool further. A simple power-law decay is in contrast to theoretical cooling models of the crust, which predict that the crust should now have cooled to the same temperature as the neutron star core.

  10. Active skin cooling in conjunction with laser dermatologic surgery.

    PubMed

    Nelson, J S; Majaron, B; Kelly, K M

    2000-12-01

    The clinical objective in the laser treatment of patients with specific dermatoses is to maximize thermal damage to the target chromophore while minimizing injury to the normal skin. Unfortunately, for some lesions, the threshold incident light dosage for epidermal injury can be very close to the threshold for permanent removal of the target chromophore, thus precluding the use of higher light dosages. An important method of overcoming the aforementioned problem is to selectively cool the most superficial layers of the skin. Although melanin absorption will result in heat production during laser exposure, cooling the epidermis can prevent its temperature elevation from exceeding the threshold for thermal injury. Spatially selective cooling can be achieved by active cooling using a cryogen spray or cold sapphire contact handpieces. These devices promote rapid and spatially selective epidermal cooling to low temperatures without affecting the target chromophore temperature before the laser pulse is delivered. Cooling has become an Integral part in the emerging discipline of laser dermatologic surgery. Attend almost any academic dermatology conference and you are likely to find many lectures that relate to cooling during dermatologic laser surgery. Although cooling in conjunction with laser therapy has become the clinical standard for many laser procedures, considerable controversy surrounds this methodology. We present herewith an overview of currently used techniques for active cooling of human skin and explore their advantages and disadvantages in relationship to specific dermatoses amenable to laser therapy.

  11. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  12. Hubble Space Telescope High-Resolution Imaging of Kepler Small and Cool Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Adams, Elisabeth R.; Ciardi, David R.; Kalas, Paul; Wright, Jason T.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, operated by AURA, Inc., under NASA contract NAS 5-26555.

  13. Hubble space telescope high-resolution imaging of Kepler small and cool exoplanet host stars

    SciTech Connect

    Gilliland, Ronald L.; Cartier, Kimberly M. S.; Wright, Jason T.; Adams, Elisabeth R.; Ciardi, David R.

    2015-01-01

    High-resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler mission. We discuss here Hubble Space Telescope imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six Kepler objects of interest, we find that there is ambiguity regarding which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess in M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.

  14. DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR

    SciTech Connect

    Heinke, Craig O.; Ho, Wynn C. G. E-mail: wynnho@slac.stanford.ed

    2010-08-20

    The cooling rate of young neutron stars (NSs) gives direct insight into their internal makeup. Although the temperatures of several young NSs have been measured, until now a young NS has never been observed to decrease in temperature over time. We fit nine years of archival Chandra ACIS spectra of the likely NS in the {approx}330 yr old Cassiopeia A supernova remnant with our non-magnetic carbon atmosphere model. Our fits show a relative decline in the surface temperature by 4% (5.4{sigma}, from (2.12 {+-} 0.01) x 10{sup 6} K in 2000 to (2.04 {+-} 0.01) x 10{sup 6} K in 2009) and the observed flux by 21%. Using a simple model for NS cooling, we show that this temperature decline could indicate that the NS became isothermal sometime between 1965 and 1980, and constrains some combinations of neutrino emission mechanisms and envelope compositions. However, the NS is likely to have become isothermal soon after formation, in which case the temperature history suggests episodes of additional heating or more rapid cooling. Observations over the next few years will allow us to test possible explanations for the temperature evolution.

  15. Activity and Kinematics of Cool and Ultracool Dwarfs

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah Jane

    The ages of cool and ultracool dwarfs are particularly important. For cool M dwarfs, accurate ages combined with their ubiquity in the stellar disk could lead to a new level of precision in age dating the Galaxy. A better understanding of the chromospheres of M dwarfs could provide important clues about the relationship between activity and age in these low mass stars. Ultracool (late-M and L) dwarfs have the distinction of including both warm, young brown dwarfs and stars with mean ages more representative of the stellar disk. Kinematics are a source of mean ages and could provide or confirm discriminating features between stars and brown dwarfs. This thesis is composed of several different projects, each investigating the activity or kinematics of cool or ultracool dwarfs. First, a sample of nearly 500 L dwarfs selected from SDSS DR7 photometry and spectroscopy is examined; we discovered 200 new L dwarfs and found evidence of a bias towards red J - KS colors in the entire population of previously known L dwarfs. Using the three-dimensional kinematics of 300 SDSS DR7 L dwarfs, we find that their kinematics are consistent with those of the stellar disk and include a previously undetected thick disk component. We also confirmed a relationship between age and J - KS color (due to our large sample of UVW motions and unbiased J - KS colors), with blue L dwarfs having hotter kinematics (consistent with older ages) and redder L dwarfs having colder, younger kinematics. The DR7 L dwarf sample showed no distinct kinematic difference between young brown dwarfs and disk-age stars, perhaps due to a bias towards early spectral types. In order to probe the kinematic distribution of L dwarfs in a volume-limited sample, we began a survey of radial velocities of nearby (d<20pc) L dwarfs using the TripleSpec instrument on the ARC 3.5-m telescope at APO. While several reduction packages were tested on the TripleSpec data, none were found to provide reductions of sufficient quality

  16. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    SciTech Connect

    Guo, Fulai

    2014-12-20

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M{sub ∗}/R{sub eff}{sup 1.5} is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be M{sub bh}{sup 1.6}M{sub ∗}/R{sub eff}{sup 1.5}, which may be tested in future observational studies.

  17. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2005-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 solar mass per year. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar mass per year for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  18. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2006-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  19. THE COOLING OF THE CASSIOPEIA A NEUTRON STAR AS A PROBE OF THE NUCLEAR SYMMETRY ENERGY AND NUCLEAR PASTA

    SciTech Connect

    Newton, William G.; Hooker, Joshua; Li, Bao-An; Murphy, Kyleah

    2013-12-10

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal ''nuclear pasta''. Modeling cooling over a conservative range of NS masses and envelope compositions, we find L ≲ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M ≳ 1.65 M {sub ☉}, the constraint becomes more restrictive 35 ≲ L ≲ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L ≲ 45 MeV, taking all masses into consideration, corresponding to NS radii ≲ 11 km.

  20. The Cooling of the Cassiopeia A Neutron Star as a Probe of the Nuclear Symmetry Energy and Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Newton, William G.; Murphy, Kyleah; Hooker, Joshua; Li, Bao-An

    2013-12-01

    X-ray observations of the neutron star (NS) in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of ≈2%-5.5%. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent NS crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy L of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal "nuclear pasta." Modeling cooling over a conservative range of NS masses and envelope compositions, we find L <~ 70 MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of M >~ 1.65 M ⊙, the constraint becomes more restrictive 35 <~ L <~ 55 MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when L <~ 45 MeV, taking all masses into consideration, corresponding to NS radii <~ 11 km.

  1. Chromospherically Active Stars in the RAVE Survey. II. Young Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Grebel, E. K.; Kordopatis, G.; Munari, U.; Seabroke, G.; Steinmetz, M.; Wojno, J.; Bienaymé, O.; Bland-Hawthorn, J.; Conrad, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Kunder, A.; Navarro, J.; Parker, Q. A.; Reid, W.; Siviero, A.; Watson, F. G.; Wyse, R. F. G.

    2017-01-01

    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age–activity relation for main-sequence dwarfs in a range from a few 10 {Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 {Gyr} and ∼2000 younger than 100 {Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J ‑ K versus {N}{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J ‑ K versus {W}1-{W}2 diagram, and very cool temperatures (J-K> 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE’s radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database.

  2. Search for CO absorption bands in IUE far-ultraviolet spectra of cool stars

    NASA Technical Reports Server (NTRS)

    Gessner, Susan E.; Carpenter, Kenneth G.; Robinson, Richard D.

    1994-01-01

    Observations of the red supergiant (M2 Iab) alpha Ori with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope (HST) have provided an unambiguous detection of a far-ultraviolet (far-UV) chromospheric continuum on which are superposed strong molecular absorption bands. The absorption bands have been identified by Carpenter et al. (1994) with the fourth-positive A-X system of CO and are likely formed in the circumstellar shell. Comparison of these GHRS data with archival International Ultraviolet Explorer (IUE) spectra of alpha Ori indicates that both the continuum and the CO absorption features can be seen with IUE, especially if multiple IUE spectra, reduced with the post-1981 IUESIPS extraction procedure (i.e., with an oversampling slit), are carefully coadded to increase the signal to noise over that obtainable with a single spectrum. We therefore initiated a program, utilizing both new and archival IUE Short Wavelength Prime (SWP) spectra, to survey 15 cool, low-gravity stars, including alpha Ori, for the presence of these two new chromospheric and circumstellar shell diagnostics. We establish positive detections of far-UV stellar continua, well above estimated IUE in-order scattered light levels, in spectra of all of the program stars. However, well-defined CO absorption features are seen only in the alpha Ori spectra, even though spectra of most of the program stars have sufficient signal to noise to allow the dectection of features of comparable magnitude to the absorptions seen in alpha Ori. Clearly if CO is present in the circumstellar environments of any of these stars, it is at much lower column densities.

  3. Line profile asymmetries in chromospherically active stars

    NASA Technical Reports Server (NTRS)

    Dempsey, Robert C.; Bopp, Bernard W.; Strassmeier, Klaus G.; Granados, Arno F.; Henry, Gregory W.; Hall, Douglas S.

    1992-01-01

    A powerful, new probe of chromospheric activity, cross-correlation, has been developed and applied to a variety of stars. In this particular application, an entire CCD spectrum of an active star is correlated with the spectrum of a narrow-line, inactive star of similar spectral type and luminosity class. Using a number of strong lines in this manner enables the detection of absorption profile asymmetries at moderate resolution (lambda/Delta lambda about 40,000) and S/N 150:1. This technique has been applied to 14 systems mostly RS CVn's, with 10 not greater than nu sin i not greater than 50 km/s and P not less than 7 d. Distortions were detected for the first time in five systems: Sigma Gem, IM Peg, GX Lib, UV Crb, and Zeta And. Detailed modeling, incorporating both spectral line profiles and broad-band photometry, is applied to Sigma Gem. Profile asymmetries for this star are fitted by two high-latitude spots covering 5 percent of the stellar surface. The derived spot temperature of 3400 K is lower than found in previous studies. In addition, two well-known systems have been studied: HD 199178 and V711 Tau. Polar spots are found on both.

  4. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  5. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    SciTech Connect

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  6. Chromospheric activity and rotation of FGK stars in the solar neighbourhood: characterizing possible exoplanetary system host stars

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, Raquel M.

    2011-06-01

    This dissertation has investigated the chromospheric activity and rotation of nearby cool stars, which can potentially host exoplanetary systems. 1. High-resolution echelle spectra have been obtained for 565 nearby (d ≤ 25 pc) cool (spectral types F to M) stars. The observations were taken using high resolution echelle optical spectrographs. The observations were designed to ensure a spectral coverage including all the optical magnetic activity indicator lines: from the Ca II H & K lines to the Ca II IRT, including all the Balmer lines Hα, Hβ, Hγ, Hδ, and H?. This fact has ensured a simultaneous analysis of the magnetic activity using different diagnostics. The spectral coverage of the spectra has also permitted a precise analysis of the stellar properties as well as rotational and radial velocities. 2. The suitability of the stars as targets in exoplanetary search surveys has been analysed using the results obtained in the spectroscopic survey. Using the measured chromospheric activity in the optical spectrum, activity-induced RV jitter has been calculated for the active stars in the sample. Although the intrinsic variability of stellar activity makes it impossible to directly subtract the computed values from the RV signal, it provides an estimation of the activity-related noise. Therefore, this values can be used to set the minimum detectable mass for a planet orbiting the star or to determine the minimal amplitude variation that could indicate the existence of a planet. The compilation of the activity, rotation and predicted activity-induced RV jitter build up into a catalogue that determines the suitability of the stars as targets in exoplanet search surveys. 3. The relationship between pairs of excess surface flux in different activity diagnostics has been analysed using the results from the spectroscopic survey. The results show a clear correlation between the activity measured in different optical indicators. This fact confirms previous findings and

  7. UV Chromospheric Activity in Cool, Short-Period Contact Binaries

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    We have completed our analysis of the IUE spectra of the short-period contact binary OO Aql. OO Aql is a rare W UMa-type eclipsing binary in which the two solar-type stars may have only recently evolved into contact. The binary has an unusually high mass ratio (0.84), and a relatively long orbital period (0.506 d) for its spectral type (mid-G). Twelve ultraviolet spectra of OO Aql were obtained in 1988 with the IUE satellite, including a series of consecutive observations that cover nearly a complete orbital cycle. Chromospheric activity is studied by means of the Mg II h+k emission at 2800 A. The Mg II emission is found to vary, even when the emission is normalized to the adjacent continuum flux. This variation may be correlated with orbital phase in the 1988 observations. It also appears that the normalized Mg H emission varies with time, as seen in spectra obtained at two different epochs in 1988 and when compared with two spectra obtained several years earlier. The level of chromospheric activity in OO Aql is less than that of other W UMa-type binaries of similar colors, but this is attributed to its early stage of contact binary evolution. Ultraviolet light curves were composed from measurements of the ultraviolet continuum in the spectra. These were analyzed along with visible light curves of OO Aql to determine the system parameters. The large wavelength range in the light curves enabled a well-constrained fit to a cool spot in the system. A paper on these results is scheduled for publication in the February 2001 issue of the Astronomical Journal.

  8. ROSAT all-sky survey observations of X-ray variability in cool giant stars

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Schmitt, J. H. M. M.

    1994-01-01

    We have identified 24 active late-type giant stars, including 11 RS CVn systems, with soft X-ray count rates high enough to allow the detection of statistically significant variability on a Roentgen Satellite (ROSAT) orbital timescale (96 minutes) as observed by the Position Sensitive Proportional Counter (PSPC) during the all-sky survey. Our sensitivity typically lies in the range of 10% - 25%, depending on the source count rate. Comparison is made to the daily, nonflare solar soft X-ray variability as observed by the Solrad satellites during solar minimum in 1969 and solar maximum in 1975. Seven of the 24 stars show significant variability; in two of these cases (HR 3922 and HR 8448) major flares were observed in which the peak count rate is enhanced by at least a factor of 3 above quiescent. While HR 3922 (G5 III) is not (yet) classified as an RS CVn star, its flare is more energetic (3 x 10(exp 31) ergs/s) than previously observed RS CVn flares. The apparently single giant HR 8167 (G8 III) also shows two flares. While one might expect to find an anticorrelation between saturated coronae and variability, we find no evidence of this: the two stars in our sample with the highest ratio of f(sub x)/f(sub v) both show variability. We also point out that Capella (G6 III + F9 III) is one of the stars manifesting variability.

  9. Acoustic heating of the chromosphere and cool corona in the F star alpha Canis Minoris (Procyon)

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We report on a hydrodynamical model of acoustic wave energy deposition in the atmosphere of the F star Procyon. The model treats radiative losses in the photosphere by solving the continuum radiative transfer (RT) problem; it treats radiative losses in the chromosphere by solving the RT equation in two representative strong lines (Mg II k and Lyman alpha); and it includes optically thin emission from the corona. We find a temperature minimum of 4440 K and a transition region at a height of 3500-4000 km above the photosphere. Our acoustic model accounts for the reported fluxes of Mg II and Lyman alpha emission lines, as well as for the X-ray flux from the cool (T less than 1 MK) coronal component reported by Lemen et al. (1989). The differential emission measure distribution in our model agrees quite well with empirical results of Jordan et al. (1986).

  10. Three very cool degenerate stars in Luyten common proper motion binaries - Implications for the age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.

    1989-01-01

    During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.

  11. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  12. Measuring diffuse interstellar bands with cool stars. Improved line lists to model background stellar spectra

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Lallement, R.

    2017-03-01

    Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra

  13. HST-COS SPECTROSCOPY OF THE COOLING FLOW IN A1795—EVIDENCE FOR INEFFICIENT STAR FORMATION IN CONDENSING INTRACLUSTER GAS

    SciTech Connect

    McDonald, Michael; Ehlert, Steven; Roediger, Joel; Veilleux, Sylvain

    2014-08-20

    We present far-UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope of a cool, star-forming filament in the core of A1795. These data, which span 1025 Å < λ{sub rest} < 1700 Å, allow for the simultaneous modeling of the young stellar populations and the intermediate-temperature (10{sup 5.5} K) gas in this filament, which is far removed (∼30 kpc) from the direct influence of the central active galactic nucleus. Using a combination of UV absorption line indices and stellar population synthesis modeling, we find evidence for ongoing star formation, with the youngest stars having ages of 7.5{sub −2.0}{sup +2.5} Myr and metallicities of 0.4{sub −0.1}{sup +0.2} Z {sub ☉}. The latter is consistent with the local metallicity of the intracluster medium. We detect the O VI λ1038 line, measuring a flux of f {sub O} {sub VI,} {sub 1038} = 4.0 ± 0.9 × 10{sup –17} erg s{sup –1} cm{sup –2}. The O VI λ1032 line is redshifted such that it is coincident with a strong Galactic H{sub 2} absorption feature, and is not detected. The measured O VI λ1038 flux corresponds to a cooling rate of 0.85 ± 0.2 (stat) ± 0.15 (sys) M {sub ☉} yr{sup –1} at ∼10{sup 5.5} K, assuming that the cooling proceeds isochorically, which is consistent with the classical X-ray luminosity-derived cooling rate in the same region. We measure a star formation rate of 0.11 ± 0.02 M {sub ☉} yr{sup –1} from the UV continuum, suggesting that star formation is proceeding at 13{sub −2}{sup +3}% efficiency in this filament. We propose that this inefficient star formation represents a significant contribution to the larger-scale cooling flow problem.

  14. A Radial Velocity Study of Hot Subdwarf B Stars with Cool Main Sequence Companions

    NASA Astrophysics Data System (ADS)

    Barlow, Brad; Wade, R. A.; Liss, S. E.; Stark, M. A.

    2012-01-01

    Many hot subdwarf B (sdB) stars show composite spectra and energy distributions indicative of G- or K-type main sequence companions. Binary population synthesis (BPS) models demonstrate such systems can be formed by Roche lobe overflow but disagree on whether the resulting orbital periods will be long (years) or short (days). Few studies have been carried out to assess the orbital parameters of these composite binaries; what little observations there are suggest the periods are long. To help address this problem, we selected fifteen moderately-bright (V 13) sdB stars with composite spectra for synoptic radial velocity (RV) monitoring. From January 2005 to July 2008, we acquired between 4 and 14 observations of each target using the bench-mounted Medium Resolution Spectrograph on the Hobby-Eberly Telescope. Cross-correlation techniques were used to measure RVs from the cool companion lines with 700 m/s precision. Here we present RV measurements and orbital parameter estimates (when appropriate) for all systems in our sample and discuss the constraints they place on BPS models. Preliminary measurements of PG 1701+359, the most well-studied object in our sample, indicate the orbit has neither a short period nor a high velocity amplitude. This material is based upon work supported by the National Science Foundation under Grant No. AST-0908642.

  15. Active cooling requirements for propellant storage

    NASA Technical Reports Server (NTRS)

    Klein, G. A.

    1984-01-01

    Recent NASA and DOD mission models have indicated future needs for orbital cryogenic storage and supply systems. Two thermal control systems which show the greatest promise for improving propellant storage life were evaluated. One system was an open cycle thermodynamic vent type with a refrigeration system for partial hydrogen reliquefaction located at the LH2 tank and a vapor cooled shield for integrated and non-integrated tank designs to reduce boiloff. The other was a closed system with direct refrigeration at the LH2 tank. A reversed Brayton cycle unit was baselined for the propellant processor. It is concluded that: (1) reliquefaction systems are not attractive for minimizing propellant boiloff; (2) open cycle systems may not be economically attractive for long term storage; (3) a number of refrigeration systems are available to assist in the long term storage of cryogenic propellants; and (4) shields can significantly improve the performance of mechanical coolers.

  16. Molecular Cooling as a Probe of Star Formation: Spitzer Looking Forward to Herschel

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Maret, Sebastien; Yuan, Yuan; Sonnentrucker, Paule; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We explore here the question of how cloud physics can be more directly probed when one observes the majority of cooling emissions from molecular gas. For this purpose we use results from a recent Spitzer Space Telescope study of the young cluster of embedded objects in NGC1333. For this study we mapped the emission from eight pure H2 rotational lines, from S(0) to S(7). The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and can be used to more directly ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for cores disruption. Given the recent launch of Herschel and the upcoming operational lifetime of SOFIA we discuss how studies of molecular cooling can take a step beyond understanding thermal balance to exploring the origin, receipt, and transfer of energy in atomic and molecular gas in a wide range of physical situations.

  17. Fluctuations and Flares in the Ultraviolet Line Emission of Cool Stars: Implications for Exoplanet Transit Observations

    NASA Astrophysics Data System (ADS)

    Loyd, R. O. Parke; France, Kevin

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206 one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ x . Maximum likelihood values of σ x range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is gsim1 RJ . However, for some M dwarfs this limit can be as low as several R ⊕.

  18. FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS

    SciTech Connect

    Loyd, R. O. Parke; France, Kevin

    2014-03-01

    Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C II λλ1334, 1335 and Si III λ1206; one enclosing Si IV λλ1393, 1402; and 36.5 Å of interspersed continuum. For each star/band combination, we generated 60 s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5 hr, over 50% last 4 minutes or less, and most produce the strongest response in Si IV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation σ {sub x}. Maximum likelihood values of σ {sub x} range from 1% to 41% for 60 s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is ≳1 R{sub J} . However, for some M dwarfs this limit can be as low as several R {sub ⊕}.

  19. Modeling active galactic nucleus feedback in cool-core clusters: The balance between heating and cooling

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven active galactic nucleus (AGN) feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement simulations. The feedback is modeled with a pair of precessing jets whose power is calculated based on the accretion rate of the cold gas surrounding the supermassive black hole (SMBH). The intracluster medium first cools into clumps along the propagation direction of the jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended structures that resemble the observed Hα filaments in Perseus and many other cool-core clusters. Jet heating elevates the gas entropy, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of ∼10{sup 11} M {sub ☉}. The hot gas cools directly onto the disk while the SMBH accretes from its innermost region, powering the AGN that maintains a thermally balanced state for a few Gyr. The mass cooling rate averaged over 7 Gyr is ∼30 M {sub ☉} yr{sup –1}, an order of magnitude lower than the classic cooling flow value. Medium resolution simulations produce similar results, while in low resolution runs, the cluster experiences cycles of gas condensation and AGN outbursts. Owing to its self-regulating mechanism, AGN feedback can successfully balance cooling with a wide range of model parameters. Our model also produces cold structures in early stages that are in good agreement with the observations. However, the long-lived massive cold disk is unrealistic, suggesting that additional physical processes are still needed.

  20. Chromospherically active stars. I - HD 136905

    NASA Technical Reports Server (NTRS)

    Fekel, F. C.; Hall, D. S.; Africano, J. L.; Gillies, K.; Quigley, R.

    1985-01-01

    The variable star HD 136905, recently designated GX Librae, is a chromospherically active K1 III single-lined spectroscopic binary with a period of 11.1345 days. It has moderate strength Ca II H and K and ultraviolet emission features, while H-alpha is strongly in absorption. The inclination of the system is 58 + or - 17 deg and the unseen secondary is most likely a G or K dwarf. The v sin i of the primary, 32 + or - 2 km/s, results in a minimum radius of 7.0 + or - 0.4 solar radii. Since the star fills a substantial fracture of its Roche lab, the double-peaked limit curve seen by photometric observers is predominantly ellipsoidal in nature. Both the photometry and the spectroscopy yield values for the period and the time of conjunction that are identical within their uncertainties.

  1. Physical properties of simulated galaxy populations at z = 2 - I. Effect of metal-line cooling and feedback from star formation and AGN

    NASA Astrophysics Data System (ADS)

    Haas, Marcel R.; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Springel, Volker; Theuns, Tom; Wiersma, Robert P. C.

    2013-11-01

    We use hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. This suggests that radiative losses quench the winds if their initial velocity is too low. If the feedback is efficient, then the star formation rate is inversely proportional to the amount of energy injected per unit stellar mass formed (which is proportional to the initial mass loading for a fixed wind velocity). This can be understood if the star formation is self-regulating, i.e. if the star formation rate (and thus the gas fraction) increases until the outflow rate balances the inflow rate. Feedback from AGN is efficient at high masses, while increasing the initial wind velocity with gas pressure or halo mass allows one to generate galaxy-wide outflows at all masses. Matching the observed galaxy mass function requires efficient feedback. In particular, the predicted faint-end slope is too steep unless we resort to highly mass loaded winds for low-mass objects. Such efficient feedback from low-mass galaxies (M* ≪ 1010 M⊙) also reduces the discrepancy with the observed specific star formation rates, which are higher than predicted unless the feedback transitions from highly efficient to inefficient just below M* ˜ 5 × 109 M⊙.

  2. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    , for HD 81032 these properties suggest that it being an evolved RS! CVn binary of the long-period type Correlations between various physical quantities (Lx, Lrad, P and B-V) of active stars have been re-examined using a sample containing 248 active stars (101 dwarfs, 65 subgiants and 82 giants). It is a largest sample investigated so far. We did not find any appreciable changes in the correlations reported in previous studies. In addition to above, an Imaging Polarimeter has been fabricated for use with liquid-N2 cooled CCD camera and is designed to suit 104-cm Sampurnanand telescope with an f/13 focus at ARIES, Naini Tal. The instrument measures the linear polarization in broad B, V and R band, and has a field of view 2' x 2'.

  3. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    PubMed Central

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  4. Bolometric correction and spectral energy distribution of cool stars in Galactic clusters

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Patelli, L.; Bellazzini, M.; Pecci, F. Fusi; Oliva, E.

    2010-04-01

    We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic observations, along the 3500 Å ==> 2.5μm wavelength range, for a grid of 92 red giant stars in five (three globular + two open) Galactic clusters, along the full metallicity range covered by the bulk of the stars, -2.2 <= [Fe/H] <= +0.4. Synthetic BVRCIC JHK photometry from the derived spectral energy distributions allowed us to obtain robust temperature (Teff) estimates for each star, within +/-100K or less. According to the appropriate temperature estimate, blackbody extrapolation of the observed spectral energy distribution allowed us to assess the unsampled flux beyond the wavelength limits of our survey. For the bulk of our red giants, this fraction amounted to 15 per cent of the total bolometric luminosity, a figure that raises up to 30 per cent for the coolest targets (Teff <~ 3500K). Overall, we obtain stellar Mbol values with an internal accuracy of a few percentages. Even neglecting any correction for lost luminosity etc., we would be overestimating Mbol by <~0.3mag, in the worst cases. Making use of our new data base, we provide a set of fitting functions for the V and K BC versus Teff and versus (B - V) and (V - K) broad-band colours, valid over the interval 3300 <= Teff <= 5000K, especially suited for red giants. The analysis of the BCV and BCK estimates along the wide range of metallicity spanned by our stellar sample shows no evident drift with [Fe/H]. Things may be different for the B-band correction, where the blanketing effects are more and more severe. A drift of Δ(B - V) versus [Fe/H] is in fact clearly evident from our data, with metal-poor stars displaying a `bluer' (B - V) with respect to the metal-rich sample, for fixed Teff. Our empirical bolometric corrections are in good overall agreement with

  5. BI Vulpeculae: A Siamese Twin with Two Very Similar Cool Stars in Shallow Contact

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, N.-P.; Li, K.; He, J.-J.; Zhu, L.-Y.; Zhao, E. G.; Wang, J.-J.; Li, L.-J.; Jiang, L.-Q.

    2013-11-01

    BI Vul is a cool eclipsing binary star (Sp. = K3 V) with a short period of 0.2518 days. The first charge-coupled device (CCD) light curves of the binary in the BVRI obtained on 2012 August 21 are presented and are analyzed using the Wilson-Devinney code. It is discovered that BI Vul is a marginal contact binary system (f = 8.7%) that contains two very similar cool components (q = 1.037). Both the marginal contact configuration and the extremely high mass ratio suggest that it is presently evolving into contact with little mass transfer between the components and it is at the beginning stage of contact evolution. By using all available times of minimum light, the variations in the orbital period are investigated for the first time. We find that the observed - calculated (O - C) curve of BI Vul shows a cyclic change with a period of 10.8 yr and an amplitude of 0.0057 days, while it undergoes a downward parabolic variation. The cyclic oscillation is analyzed for the light-travel time effect that arises from the gravitational influence of a possible third stellar object. The mass and orbital separation of the third body are estimated as M 3 ~ 0.30 M ⊙ and ~4.9 AU, respectively. The downward parabolic change reveals a long-term period decrease at a rate of \\dot{P}=-9.5\\times {10^{-8}} days yr-1. The period decrease may be caused by angular momentum loss via magnetic stellar wind and/or it is only a part of a long-period (longer than 32 yr) cyclic variation, which may reveal the presence of another stellar companion in a wider orbit. These observational properties indicate that the formation of the Siamese twin is driven by magnetic braking and the third stellar companion should play an important role by removing angular momentum from the central binary.

  6. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  7. The ACS LCID project. X. the star formation history of IC 1613: Revisiting the over-cooling problem

    SciTech Connect

    Skillman, Evan D.; Hidalgo, Sebastian L.; Monelli, Matteo; Gallart, Carme; Aparicio, Antonio E-mail: shidalgo@iac.es E-mail: carme@iac.es [Instituto de Astrofísica de Canarias, Vía Láctea s and others

    2014-05-01

    We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ∼1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the 'over-cooling problem'). The depth of the present photometry of IC 1613 shows that, at a resolution of ∼1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.

  8. RAPID COOLING OF THE NEUTRON STAR IN THE QUIESCENT SUPER-EDDINGTON TRANSIENT XTE J1701-462

    SciTech Connect

    Fridriksson, Joel K.; Lewin, Walter H. G.; Homan, Jeroen; Wijnands, Rudy; Altamirano, Diego; Degenaar, Nathalie; Mendez, Mariano; Cackett, Edward M.; Brown, Edward F.; Belloni, Tomaso M.

    2010-05-01

    We present Rossi X-Ray Timing Explorer and Swift observations made during the final three weeks of the 2006-2007 outburst of the super-Eddington neutron star (NS) transient XTE J1701-462, as well as Chandra and XMM-Newton observations covering the first {approx_equal}800 days of the subsequent quiescent phase. The source transitioned quickly from active accretion to quiescence, with the luminosity dropping by over 3 orders of magnitude in {approx_equal}13 days. The spectra obtained during quiescence exhibit both a thermal component, presumed to originate in emission from the NS surface, and a non-thermal component of uncertain origin, which has shown large and irregular variability. We interpret the observed decay of the inferred effective surface temperature of the NS in quiescence as the cooling of the NS crust after having been heated and brought out of thermal equilibrium with the core during the outburst. The interpretation of the data is complicated by an apparent temporary increase in temperature {approx_equal}220 days into quiescence, possibly due to an additional spurt of accretion. We derive an exponential decay timescale of {approx_equal}120{sup +30}{sub -20} days for the inferred temperature (excluding observations affected by the temporary increase). This short timescale indicates a highly conductive NS crust. Further observations are needed to confirm whether the crust is still slowly cooling or has already reached thermal equilibrium with the core at a surface temperature of {approx_equal}125 eV. The latter would imply a high equilibrium bolometric thermal luminosity of {approx_equal}5 x 10{sup 33}ergs{sup -1} for an assumed distance of 8.8 kpc.

  9. Physical Properties of Cooling Plasma in Quiescent Active Region Loops

    NASA Astrophysics Data System (ADS)

    Landi, E.; Miralles, M. P.; Curdt, W.; Hara, H.

    2009-04-01

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 <= log T <= 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 <= log T <= 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242°and 253fdg EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  10. Extension of Empirical Color Calibration and Test using Cool and Metal-Rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-woo

    2015-08-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins (BVIC) and the Two Micron All Sky Survey (JHKs) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature (Teff) relations down to Teff ~ 3600 K, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool (Teff ~ 5500 K) and metal-rich ([Fe/H]=+0.37) MS stars in NGC 6791, and find that color-excess and distance estimates from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars (Teff < 4800 K), however, we find that BV colors of our models are systematically redder than the cluster photometry by ~0.02 mag. We use color-Teff transformations from the infrared flux method (IRFM) and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding BV photometry of these cool MS stars, we derive E(B-V)=0.105±0.014, [M/H]=+0.42±0.07, (m-M)0 = 13.04±0.09, and the age of 9.5±0.3 Gyr for NGC 6791.

  11. Chromospheric Activity in Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Simon, Theodore

    IUE observations of solar-type stars show a decline of chromospheric and TR emission with age. For main-sequence stars older than 100 million yr, this decay is exponential from a plateau defined by the youngest stars. At an age of ~1 million yr, the pre-main-sequence T Tauri stars have UV emission line fluxes some 2 orders of magnitude above the plateau for mainsequence stars. This suggests that chromospheric activity in the T Tauri stars falls to the levels of the older stars by a separate decay scheme. The decline in pre-mainsequence activity may be caused by the evolutionary shallowing of the convection zone, while on the main-sequence it is due to the star's spindown. This hypothesis needs confirmation, but relatively few T Tauri stars have been observed by IUE. Since the majority of the T Tauri stars thus far observed are probably more massive than the Sun, it may be inappropriate to compare their UV emission with that of the older I Mo dwarf stars. We propose here to observe the ultraviolet chromospheric and TR lines of pre-main-sequence stars we believe to be of ~1 M(sun). We have chosen a sample of low-luminosity M-type T Tauri stars from the T-associations in Lupus; if evolutionary tracks have any validity, a large fraction of those stars should be close to 1 M(sun)in mass. In order to place the stars more accurately on the H-R diagram and to determine their rotation rates (for comparison with the mainsequence stars), we plan concurrent visual spectroscopy and visual-infrared photometry.

  12. Actively Cooled SLMS(TM) Technology for HEL Applications

    NASA Technical Reports Server (NTRS)

    Jacoby, Marc T.; Goodman, William A.; Reily, Jack C.; Kegley, Jeffrey R.; Haight, Harlan J.; Tucker, John; Wright, Ernest R.; Hogue, William D.

    2005-01-01

    Mr. Jacoby is the Chief Scientist for Schafer's Lightweight Optical Systems business area with twenty four years experience in laser and optical systems for space and military applications. He and colleague Dr. Goodman conceived and developed Silicon Lightweight Mirrors (SLMS(TM)) technologies for space applications from the extreme UV to FAR IR wavelengths. Schafer has demonstrated two different methods for actively cooling our Silicon Lightweight Mirrors (SLMS(TM)) technology. Direct internal cooling was accomplished by flowing liquid nitrogen through the continuous open cell core of the SLMS(TM) mirror. Indirect external cooling was accomplished by flowing liquid nitrogen through a CTE matched Cesic square-tube manifold that was bonded to the back of the mirror in the center. Testing was done in the small 4-foot thermal/vacuum chamber located at the NASA/MSFC X-Ray Calibration Facility. Seven thermal diodes were located over the front side of the 5 inch diameter mirror and one was placed on the outlet side of the Cesic manifold. Results indicate that the mirror reaches steady state at 82K in less than four minutes for both cooling methods. The maximum temperature difference of the eight diodes was less than 200 mK when the mirror was internally cooled and covered with MLI to insulate it from the large 300 K aluminum plate that was used to mount it.

  13. (C-12)O emission from the envelopes of cool stars in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Margulis, M.; Van Blerkom, D. J.; Snell, R. L.; Kleinmann, S. G.

    1990-01-01

    Results are presented on observations of the CO J = 1-0 line emission from all M giants, S stars, and C stars listed in the Two-Micron Sky Survey having strong FIR emission and lying north of delta = -10 deg. The data from this survey and other data for C and S stars show that the line profiles of these stars look like flattened parabolas and have roughly the same shape for different stars. In contrast, the shapes of the spectral lines from giant M stars are diverse, ranging from triangular to spiked and asymmetric, suggesting that the envelopes of M stars have complex kinematics and structure. The outflow velocities inferred from the line profiles of the stars surveyed span a range of more than an order of magnitude, with the velocities of C stars correlating with IR color.

  14. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus

    2017-04-01

    Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.

  15. VizieR Online Data Catalog: Bolometric flux estimation for cool evolved stars (van Belle+, 2016)

    NASA Astrophysics Data System (ADS)

    van Belle, G. T.; Creech-Eakman, M. J.; Ruiz-Velasco, A. E.

    2016-09-01

    The target data come from 84 observations of 60 objects found in Dyck et al. (1974ApJ...189...89D), all of which are cool evolved stars at spectral types M4.0III and later. Two objects have measurements at four separate epochs, three objects have three epochs, and 11 have two epochs. These 60 objects include contemporaneous flux measurements in logFlambda (in W/cm/μm) across up to 12 bands from 0.55 to 10.2μm, along with epoch-specific spectral-type determinations for 70 of the 84 observations, and 34FBOL determinations. Broadband filters representing the V, J, H, K, L, M, and N passbands were used, along with narrowband filters at 0.78, 0.87, 0.88, 1.04, and 1.05μm. The data from Dyck et al. (1974ApJ...189...89D) were "obtained with the Kitt Peak National Observatory 0.9- and 1.3-meter telescopes during 1971 using three different photometric systems. Infrared observations at 1.25, 1.65, 2.2, and 3.4μ were made with a lead sulfide detector, while observations at 2.2, 3.4, 5.0, and 10.2μ employed a gallium-doped germanium bolometer. The broad-band filters used duplicated as far as possible the standard J, H, K, L, M, and N passbands. In the visible and near-infrared regions, data were obtained with an S-1 photomultiplier and various photometers using a broad-band filter combination at 0.55μ approximating the V passband, and narrow-band filters at 0.78, 0.87, 0.88, 1.04, and 1.05μ. The latter were chosen to isolate TiO and VO molecular bands and nearby relatively uncontaminated continuum regions in M stars so that photometric spectral types can be determined from the band strengths". For the purposes of this study, we have taken the data in Dyck et al. (1974ApJ...189...89D) and converted it into Janskys (Jy), which can be found in Table2. (2 data files).

  16. BI VULPECULAE: A SIAMESE TWIN WITH TWO VERY SIMILAR COOL STARS IN SHALLOW CONTACT

    SciTech Connect

    Qian, S.-B.; Liu, N.-P.; He, J.-J.; Zhu, L.-Y.; Zhao, E. G.; Wang, J.-J.; Li, L.-J.; Jiang, L.-Q.; Li, K.

    2013-11-01

    BI Vul is a cool eclipsing binary star (Sp. = K3 V) with a short period of 0.2518 days. The first charge-coupled device (CCD) light curves of the binary in the BVRI obtained on 2012 August 21 are presented and are analyzed using the Wilson-Devinney code. It is discovered that BI Vul is a marginal contact binary system (f = 8.7%) that contains two very similar cool components (q = 1.037). Both the marginal contact configuration and the extremely high mass ratio suggest that it is presently evolving into contact with little mass transfer between the components and it is at the beginning stage of contact evolution. By using all available times of minimum light, the variations in the orbital period are investigated for the first time. We find that the observed – calculated (O – C) curve of BI Vul shows a cyclic change with a period of 10.8 yr and an amplitude of 0.0057 days, while it undergoes a downward parabolic variation. The cyclic oscillation is analyzed for the light-travel time effect that arises from the gravitational influence of a possible third stellar object. The mass and orbital separation of the third body are estimated as M {sub 3} ∼ 0.30 M {sub ☉} and ∼4.9 AU, respectively. The downward parabolic change reveals a long-term period decrease at a rate of P-dot = -9.5 x 10{sup -8} days yr{sup –1}. The period decrease may be caused by angular momentum loss via magnetic stellar wind and/or it is only a part of a long-period (longer than 32 yr) cyclic variation, which may reveal the presence of another stellar companion in a wider orbit. These observational properties indicate that the formation of the Siamese twin is driven by magnetic braking and the third stellar companion should play an important role by removing angular momentum from the central binary.

  17. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  18. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  19. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  20. Observational evidence for enhanced magnetic activity of superflare stars.

    PubMed

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  1. Observational evidence for enhanced magnetic activity of superflare stars

    PubMed Central

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-01-01

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381

  2. HUBBLE SPACE TELESCOPE FAR-ULTRAVIOLET OBSERVATIONS OF BRIGHTEST CLUSTER GALAXIES: THE ROLE OF STAR FORMATION IN COOLING FLOWS AND BCG EVOLUTION

    SciTech Connect

    O'Dea, Kieran P.; Quillen, Alice C.; O'Dea, Christopher P.; Tremblay, Grant R.; Snios, Bradford T.; Baum, Stefi A.; Christiansen, Kevin; Noel-Storr, Jacob; Edge, Alastair C.; Donahue, Megan; Voit, G. Mark

    2010-08-20

    Quillen et al. and O'Dea et al. carried out a Spitzer study of a sample of 62 brightest cluster galaxies (BCGs) from the ROSAT brightest cluster sample, which were chosen based on their elevated H{alpha} flux. We present Hubble Space Telescope Advanced Camera for Surveys far-ultraviolet (FUV) images of the Ly{alpha} and continuum emission of the luminous emission-line nebulae in seven BCGs found to have an infrared (IR) excess. We confirm that the BCGs are actively forming stars which suggests that the IR excess seen in these BCGs is indeed associated with star formation. Our observations are consistent with a scenario in which gas that cools from the intracluster medium fuels the star formation. The FUV continuum emission extends over a region {approx}7-28 kpc (largest linear size) and even larger in Ly{alpha}. The young stellar population required by the FUV observations would produce a significant fraction of the ionizing photons required to power the emission-line nebulae. Star formation rates estimated from the FUV continuum range from {approx}3 to {approx}14 times lower than those estimated from the IR, however, both the Balmer decrements in the central few arcseconds and detection of CO in most of these galaxies imply that there are regions of high extinction that could have absorbed much of the FUV continuum. Analysis of archival Very Large Array observations reveals compact radio sources in all seven BCGs and kpc scale jets in A-1835 and RXJ 2129+00. The four galaxies with archival deep Chandra observations exhibit asymmetric X-ray emission, the peaks of which are offset from the center of the BCG by {approx}10 kpc on average. A low feedback state for the active galactic nucleus could allow increased condensation of the hot gas into the center of the galaxy and the feeding of star formation.

  3. Influence of the stiffness of the equation of state and in-medium effects on the cooling of compact stars

    NASA Astrophysics Data System (ADS)

    Grigorian, H.; Voskresensky, D. N.; Blaschke, D.

    2016-03-01

    Measurements of the low masses for the pulsar PSR J0737-3039B, for the companion of PSR J1756-2251 and for the companion of PSR J0453+1559, on the one hand, and of the high masses for the pulsars PSR J1614-2230 and PSR J0348-0432, on the other, demonstrate the existence of compact stars with masses in a broad range from 1.2 to 2M_{odot}. The most massive ones of these objects might be hybrid stars. To fulfill the constraint M_{max} > 2M_{odot} with a reserve, we exploit the stiff DD2 hadronic equation of state (EoS) without and with excluded volume (DD2vex) correction, which produce maximum neutron star masses of M_{max} = 2.43 M_{odot} and 2.70 M_{odot}, respectively. We show that the stiffness of the EoS does not preclude an explanation of the whole set of cooling data within "nuclear medium cooling" scenario for compact stars by a variation of the star masses. We select appropriate proton gap profiles from those exploited in the literature and allow for a variation of the effective pion gap controlling the efficiency of the medium modified Urca process. However, we suppress the possibility of pion condensation. In general, the stiffer the EoS the steeper a decrease with density of the effective pion gap is required. Results are compared with previously obtained ones for the HDD EoS for which M_{max} = 2.06 M_{odot}. The cooling of the compact star in the supernova remnant Cassiopeia A (Cas A) is explained mainly by an efficient medium modified Urca process. To explain a gtrsim 2.5% decline of the cooling curve for Cas A, as motivated by an analysis of the ACIS-S instrument data, together with other cooling data exploiting the DD2 EoS a large proton gap at densities n lesssim 2n0 is required vanishing for ngtrsim 2.5 n0, where n0 is the saturation nuclear density. A smaller decline, as it follows from an analysis of the HRC-S instrument data, is explained with many choices of parameters. With the DD2vex EoS and using an effective pion gap steeper decreasing with

  4. On the spectroscopic nature of the cool evolved Am star HD151878

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.

    2008-10-01

    Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com

  5. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  6. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  7. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  8. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  9. The Design of Actively Cooled Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Bolt, H.; Gervash, A.; Linke, J.; Smid, I.

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Jülich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m2 or a surface temperature of 1400°C at 10 MW/m2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions.

  10. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  11. General Model for Light Curves of Chromospherically Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Henry, G. W.; Lehtinen, J.

    2017-04-01

    The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ({P}{act}) and the orbital period ({P}{orb}). We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars. The CPS results are available electronically at the Vizier database.

  12. Signatures of cool gas fueling a star-forming galaxy at redshift 2.3.

    PubMed

    Bouché, N; Murphy, M T; Kacprzak, G G; Péroux, C; Contini, T; Martin, C L; Dessauges-Zavadsky, M

    2013-07-05

    Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxy's halo, delivering not just fuel for star formation but also angular momentum to the galaxy, leading to distinct kinematic signatures. We report observations showing these distinct signatures near a typical distant star-forming galaxy, where the gas is detected using a background quasar passing 26 kiloparsecs from the host. Our observations indicate that gas accretion plays a major role in galaxy growth because the estimated accretion rate is comparable to the star-formation rate.

  13. Conditions for HD cooling in the first galaxies revisited: interplay between far-ultraviolet and cosmic ray feedback in Population III star formation

    NASA Astrophysics Data System (ADS)

    Nakauchi, Daisuke; Inayoshi, Kohei; Omukai, Kazuyuki

    2014-08-01

    HD dominates the cooing of primordial clouds with enhanced ionization, e.g. shock-heated clouds in structure formation or supernova remnants, relic H II regions of Pop III stars and clouds with cosmic ray (CR) irradiation. There, the temperature decreases to several 10 K and the characteristic stellar mass decreases to ˜10 M⊙, in contrast with first stars formed from undisturbed pristine clouds (˜100 M⊙). However, without CR irradiation, even weak far-ultraviolet (FUV) irradiation suppresses HD formation/cooling. Here, we examine conditions for HD cooling in primordial clouds including both FUV and CR feedback. At the beginning of collapse, the shock-compressed gas cools with its density increasing, while the relic H II region gas cools at a constant density. Moreover, shocks tend to occur in denser environments than H II regions. Owing to the higher column density and the more effective shielding, the critical FUV intensity for HD cooling in a shock-compressed gas becomes ˜10 times higher than that in relic H II regions. Consequently, in the shock-compressed gas, the critical FUV intensity exceeds the background level for most of the redshift we consider (6 ≲ z ≲ 15), while in relic H II regions, HD cooling becomes effective after the CR intensity increases enough at z ≲ 10. Our result suggests that less massive (˜10 M⊙) Pop III stars may be more common than previously considered and could be the dominant population of Pop III stars.

  14. Outer atmospheres of cool stars. IX - A survey of ultraviolet emission from F-K dwarfs and giants with IUE

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Marstad, N. C.; Linsky, J. L.

    1981-01-01

    Low-dispersion ultraviolet spectra (1150-2000 A) of a representative sample of cool stars, including dwarfs and giants of spectral types F-K, obtained with the IUE, are examined. The observation and the absolute calibration procedures are described. Correlation diagrams are constructed that compare chromospheric and transition-region emission line strengths and broadband coronal soft X-ray fluxes. The transition-region and coronal emission in the G-K dwarfs and G giants is well correlated with the Mg II (wavelength 2800) doublet emission strength, which is symptomatic of chromospheric energy losses. The power-law slopes are steeper than unity, particularly for soft X-rays. The implications of the correlations are discussed with respect to the weakening or disappearance of transition regions and hot coronae in the cool half of the red-giant branch and possible chromospheric and coronal heating mechanisms. It is proposed that the weakness of outer atmospheres in the red giants compared with the yellow giants can be understood as a consequence of stellar evolution, since it is possible that stars of slightly different spectral type in the giant branch have very different main-sequence progenitors.

  15. Wide cool and ultracool companions to nearby stars from Pan-STARRS 1

    SciTech Connect

    Deacon, Niall R.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Best, William M. J.; Bowler, Brendan P.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, H.; Kaiser, Nick; Kudritzki, Rolf-Peter; Morgan, Jeff S.; Tonry, John L.; Dupuy, Trent; Mann, Andrew W.; Redstone, Joshua A.; Draper, Peter W.; Metcalfe, Nigel; Hodapp, Klaus W.; Price, Paul A.; and others

    2014-09-10

    We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ∼10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.''13, 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.

  16. Protoneutron star cooling with convection: the effect of the symmetry energy.

    PubMed

    Roberts, L F; Shen, G; Cirigliano, V; Pons, J A; Reddy, S; Woosley, S E

    2012-02-10

    We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the protoneutron star, there is a break in the predicted neutrino emission that may be clearly observable.

  17. A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: HIPPARCOS-Tycho cool stars

    NASA Astrophysics Data System (ADS)

    Pye, J. P.; Rosen, S.; Fyfe, D.; Schröder, A. C.

    2015-09-01

    Context. The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. Aims: We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. Methods: The 2XMM Catalogue and the associated time-series ("light-curve") data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos-Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Results: Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~103 to ~104 s, have peak X-ray fluxes from ~10-13 to ~10-11erg cm-2 s-1, peak X-ray luminosities from ~1029 to ~1032erg s-1, and X-ray energy output from ~1032 to ~1035 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates, especially when normalising the number of flares to a total

  18. Understanding Activity Cycles of Solar Type Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Tovar, Guadalupe; Montet, Benjamin; Johnson, John A.

    2017-01-01

    As the era of exploring new worlds and systems advances we seek to answer the question: How common is our Sun? There is considerable evidence about the recurring activity cycles of our Sun but very little is known about the activity cycles of other stars. By calibrating the full frame images from the original Kepler mission that were taken once a month over the course of four years, we are able to do relative photometry on roughly 5 million stars. By building a model of the pixel response function we were able to achieve 0.8% precision photometry. We identify 50,000 solar type stars based on magnitude, surface gravity, and temperature cuts. We observe the relative increase and decrease in brightness of the stars indicating signs of activity cycles similar to our Sun. We continue to explore how a data driven pixel response function model could improve our precision to 0.1% photometry measurements.

  19. Magnetism and Activity of Planet-Hosting Stars

    NASA Astrophysics Data System (ADS)

    Wright, Jason Thomas; Miller, Brendan

    2015-08-01

    The magnetic activity levels of planet host stars may differ from that of stars not known to host planets in several ways. Hot jupiters may induce activity in their hosts through magnetic interactions, or through tidal interactions by affecting their host's rotation or convection. Measurements of photospheric, chromospheric, or coronal activity might then be abnormally abnormally high or low compared to control stars that do not host hot Jupiters, or might be modulated at the planet's orbital period. Such detections are complicated by the small amplitude of the expected signal, by the fact that the signals may be transient, and by the difficulty of constructing control samples due to exoplanet deteciton biases and the uncertainty of field star ages. I will review these issues, and discuss avenues for future progress in the field.

  20. Zeeman-Doppler imaging of active young solar-type stars

    NASA Astrophysics Data System (ADS)

    Hackman, T.; Lehtinen, J.; Rosén, L.; Kochukhov, O.; Käpylä, M. J.

    2016-03-01

    Context. By studying young magnetically active late-type stars, i.e. analogues to the young Sun, we can draw conclusions on the evolution of the solar dynamo. Aims: We determine the topology of the surface magnetic field and study the relation between the magnetic field and cool photospheric spots in three young late-type stars. Methods: High-resolution spectropolarimetry of the targets was obtained with the HARPSpol instrument mounted at the ESO 3.6 m telescope. The signal-to-noise ratios of the Stokes IV measurements were boosted by combining the signal from a large number of spectroscopic absorption lines through the least squares deconvolution technique. Surface brightness and magnetic field maps were calculated using the Zeeman-Doppler imaging technique. Results: All three targets show clear signs of magnetic fields and cool spots. Only one of the targets, V1358 Ori, shows evidence of the dominance of non-axisymmetric modes. In two of the targets, the poloidal field is significantly stronger than the toroidal one, indicative of an α2-type dynamo, in which convective turbulence effects dominate over the weak differential rotation. In two of the cases there is a slight anti-correlation between the cool spots and the strength of the radial magnetic field. However, even in these cases the correlation is much weaker than in the case of sunspots. Conclusions: The weak correlation between the measured radial magnetic field and cool spots may indicate a more complex magnetic field structure in the spots or spot groups involving mixed magnetic polarities. Comparison with a previously published magnetic field map shows that on one of the stars, HD 29615, the underlying magnetic field changed its polarity between 2009 and 2013. Based on observations made with the HARPSpol instrument on the ESO 3.6 m telescope at La Silla (Chile), under the program ID 091.D-0836.

  1. A NEW APPROACH TO DETERMINE OPTICALLY THICK H{sub 2} COOLING AND ITS EFFECT ON PRIMORDIAL STAR FORMATION

    SciTech Connect

    Hartwig, Tilman; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.; Sasaki, Mei E-mail: p.clark@uni-heidelberg.de E-mail: klessen@uni-heidelberg.de

    2015-02-01

    We present a new method for estimating the H{sub 2} cooling rate in the optically thick regime in simulations of primordial star formation. Our new approach is based on the TreeCol algorithm, which projects matter distributions onto a spherical grid to create maps of column densities for each fluid element in the computational domain. We have improved this algorithm by using the relative gas velocities to weight the individual matter contributions with the relative spectral line overlaps, in order to properly account for the Doppler effect. We compare our new method to the widely used Sobolev approximation, which yields an estimate for the column density based on the local velocity gradient and the thermal velocity. This approach generally underestimates the photon escape probability because it neglects the density gradient and the actual shape of the cloud. We present a correction factor for the true line overlap in the Sobolev approximation and a new method based on local quantities, which fits the exact results reasonably well during the collapse of the cloud, with the error in the cooling rates always being less than 10%. Analytical fitting formulae fail at determining the photon escape probability after formation of the first protostar (error of ∼40%) because they are based on the assumption of spherical symmetry and therefore break down once a protostellar accretion disk has formed. Our method yields lower temperatures and hence promotes fragmentation for densities above ∼10{sup 10} cm{sup –3} at a distance of ∼200 AU from the first protostar. Since the overall accretion rates are hardly affected by the cooling implementation, we expect Pop III stars to have lower masses in our simulations, compared to the results of previous simulations that used the Sobolev approximation.

  2. Testing the presence of lithium on the surfaces of cool Ap stars

    NASA Astrophysics Data System (ADS)

    Nesvacil, N.; Hubrig, S.; Mathys, G.

    2004-12-01

    The possibility of a quite high Li abundance in the Ap stars was first raised by Wallerstein & Merchant (1965). Since then many studies investigated the problem of Li. The more recent observations in the lithium region indicate that in some Ap stars the λ 6708 feature is variable and this variability can be explained by the existence of Li rich spots on the stellar surface. Atomic data for the Ce II λ 6708.099 were released by the D.R.E.A.M. database in 2002. The line was used to identify the prominent suspected Li-feature in post AGB stars and might as well be responsible for the absorption feature in Ap stars. Recent studies have mentioned this possibility, but it has yet to be investigated in more detail. Other physical phenomena, such as the occurrence of a partial Paschen-Back effect in the presence of magnetic fields, as well as possible hyperfine structure splitting of some Rare Earth transitions, must be taken into account to provide correct line identifications in the wavelength region around the Li-doublet at λ 6708. We discuss a possible strategy to clarify the presence of Li in Ap stars.

  3. Fluid flow and heat convection studies for actively cooled airframes

    NASA Astrophysics Data System (ADS)

    Mills, A. F.

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  4. Fluid flow and heat convection studies for actively cooled airframes

    NASA Technical Reports Server (NTRS)

    Mills, A. F.

    1993-01-01

    This report details progress made on the jet impingement - liquid crystal - digital imaging experiment. With the design phase complete, the experiment is currently in the construction phase. In order to reach this phase two design related issues were resolved. The first issue was to determine NASP leading edge active cooling design parameters. Meetings were arranged with personnel at SAIC International, Torrance, CA in order to obtain recent publications that characterized expected leading edge heat fluxes as well as other details of NASP operating conditions. The information in these publications was used to estimate minimum and maximum jet Reynolds numbers needed to accomplish the required leading edge cooling, and to determine the parameters of the experiment. The details of this analysis are shown in Appendix A. One of the concerns for the NASP design is that of thermal stress due to large surface temperature gradients. Using a series of circular jets to cool the leading edge will cause a non-uniform temperature distribution and potentially large thermal stresses. Therefore it was decided to explore the feasibility of using a slot jet to cool the leading edge. The literature contains many investigations into circular jet heat transfer but few investigations of slot jet heat transfer. The first experiments will be done on circular jets impinging on a fiat plate and results compared to previously published data to establish the accuracy of the method. Subsequent experiments will be slot jets impinging on full scale models of the NASP leading edge. Table 1 shows the range of parameters to be explored. Next a preliminary design of the experiment was done. Previous papers which used a similar experimental technique were studied and elements of those experiments adapted to the jet impingement study. Trade-off studies were conducted to determine which design was the least expensive, easy to construct, and easy to use. Once the final design was settled, vendors were

  5. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  6. The Chromospheric Activity-Age Relation for M Dwarf Stars in Wide Binary Systems

    NASA Astrophysics Data System (ADS)

    Silvestri, N. M.

    2002-12-01

    We present new chromospheric activity-age relations for M dwarf stars in wide binary systems with white dwarf companions. This study is unique in that we use the cooling age of the white dwarf to determine the age of the M dwarf star in the binary system. Assuming that the members of the gravitationally bound system are coeval, the age of the white dwarf is therefore the age of the M dwarf companion. The colors and magnitudes at which chromospheric activity becomes pervasive (at the ``Hα limit") in M stars have been shown to correlate linearly with log(age) in young (<= 4 Gyr) cluster M dwarfs. We find that M dwarfs in wide binaries older than 4 Gyr depart from this linear relation and are found to have activity at colors and magnitudes both bluer and brighter than predicted by M dwarf cluster relations. Also, activity is present in nearly all cluster M dwarfs above the ``Hα limit", whereas not all binary M dwarfs are found to be active above this limit. These relations differ considerably from the rotationally driven dynamo relation for F, G, and K stars that suggests a different magnetic heating mechanism for M dwarf stars. The new relations extend to ages beyond the oldest ages provided by cluster M dwarf activity-age estimates. However, more work is necessary to decrease the uncertainties in these new relations and extend them to later (>= M5.5) spectral types. This work was supported by the NASA Graduate Researchers Program Grant NGT 200415; A Grant-in-Aid of Research from the National Academy of Sciences administered by Sigma Xi, The Scientific Research Society; NASA Grant Y701296; and NSF Grant AST 0206115.

  7. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    NASA Technical Reports Server (NTRS)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  8. The Formation of Secondary Stellar Generations in Massive Young Star Clusters from Rapidly Cooling Shocked Stellar Winds

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Palouš, J.; Tenorio-Tagle, G.; Ehlerová, S.

    2017-01-01

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 107 M⊙ and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, ηhe, and the mass loading, ηml. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if ηhe ≲ 10%, which is suggested by the observations. Furthermore, for low ηhe, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  9. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    SciTech Connect

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  10. Active solar heating and cooling information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  11. Spectroscopic observations of active solar-analog stars with high X-ray luminosity, as a proxy of superflare stars

    NASA Astrophysics Data System (ADS)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2017-02-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high-dispersion spectroscopy of 49 nearby solar-analog stars (G-type main-sequence stars with Teff ≈ 5600-6000 K) identified as ROSAT soft X-ray sources, which are not binary stars from previous studies. We expected that these stars could be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters (temperature, surface gravity, and metallicity) are within the range of ordinary solar-analog stars. We measured the intensity of Ca II 8542 and Hα lines, which are good indicators of the stellar chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured v sin i (projected rotational velocity) and lithium abundance for the target stars. Li abundance is a key to understanding the evolution of the stellar convection zone, which reflects the stellar age, mass and rotational history. We confirmed that many of the target stars rapidly rotate and have high Li abundance, compared with the Sun, as suggested by many previous studies. There are, however, also some target stars that rotate slowly (v sin i = 2-3 km s-1) and have low Li abundance like the Sun. These results support that old and slowly rotating stars similar to the Sun could have high activity levels and large starspots. This is consistent with the results of our previous studies of solar-type superflare stars. In the future, it is important to conduct long-term monitoring observations of these active solar-analog stars in order to investigate detailed properties of large starspots from the viewpoint of stellar dynamo theory.

  12. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  13. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  14. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    PubMed

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  15. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    NASA Astrophysics Data System (ADS)

    Roettenbacher, R. M.; Monnier, J. D.; Korhonen, H.; Aarnio, A. N.; Baron, F.; Che, X.; Harmon, R. O.; Kővári, Zs.; Kraus, S.; Schaefer, G. H.; Torres, G.; Zhao, M.; Ten Brummelaar, T. A.; Sturmann, J.; Sturmann, L.

    2016-05-01

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  16. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    SciTech Connect

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  17. Monitoring the activity of the Be star OT Geminorum

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Sareyan, J. P.; Avila, J. J.; Gonzalez, F.; Dumont, M.; Geos

    1998-02-01

    Observations obtained in 1995-1996 of the Be star OT Geminorum are reported and show that in october 1995 the star reached a very active phase with large variations around a bright plateau, a phase of activity we have also distinguished in previous observations dating from 1960. The time scales involved are discussed and suggest that the violent variations of the activity propagate very quickly on the whole surface of the star or on a huge portion of it. No likely pulsation periods were found. The assumption that the detected activity is due to the effects of an hypothetical companion leads to conclude that such companion could not be detected by the present interferometric techniques. Partly based on observations obtained at the La Luz Observatory of the University of Guanajuato, Mexico.

  18. Stellar model chromospheres. IX - Chromospheric activity in dwarf stars

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.; Worden, S. P.; Linsky, J. L.

    1979-01-01

    High-resolution Ca II K line profiles are used to model the upper photospheres and lower chromospheres of eight main-sequence stars ranging in spectral type from F0 to M0 and exhibiting different degrees of chromospheric activity. The model chromospheres are studied as a function of spectral type and activity for stars of similar spectral type in order to obtain evidence of enhanced nonradiative heating in the upper-photospheric models and in the ratio of minimum temperature at the base of the chromosphere to effective temperature, a correlation between activity and temperature in the lower chromospheres, and a correlation of the width at the base of the K-line emission core and at the K2 features with activity. Chromospheric radiative losses are estimated for the modelled stars and other previously analyzed main-sequence stars. The results obtained strengthen the argument that dMe flare stars exhibit fundamentally solar-type activity but on an increased scale.

  19. Activity-rotation relations for lower main sequence stars

    NASA Astrophysics Data System (ADS)

    Dobson-Hockey, Andrea Kay

    It was known for some time that stellar rotation and activity are related, both for chromospheric activity and control activity. Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun acitivity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity that is expected. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. It is the purpose to examine the relationship between activity and rotation in order to better define and express such a relation (or relations). To meet this goal, a comprehensive sample of stars was collected from the published literature having two or more of the following: chromospheric Ca II, H, and K emission indices; coronal soft X-ray illumination; rotation rates; and where possible, ages. It is seen that the use of normalized activity units and Rossby number generally improves the correlation between activity and rotation. The use of the convective turnover time further permits a possible explanation for the distribution of stars in an activity-color diagram. A large and homogeneous data set permits better definition of previously examined functional dependencies such as the time decay of activity and the relationship between chromospheric and coronal activity indicators.

  20. A relationship between halo mass, cooling, active galactic nuclei heating and the co-evolution of massive black holes

    NASA Astrophysics Data System (ADS)

    Main, R. A.; McNamara, B. R.; Nulsen, P. E. J.; Russell, H. R.; Vantyghem, A. N.

    2017-02-01

    We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, active galactic nuclei (AGN) feedback, and central cooling time. We find that radio-mechanical feedback power (referred to here as `AGN power') in central cluster galaxies correlates with halo mass as Pmech ∝ M1.55 ± 0.26, but only in haloes with central atmospheric cooling times shorter than 1 Gyr. The trend of AGN power with halo mass is consistent with the scaling expected from a self-regulating AGN feedback loop, as well as with galaxy and central black hole co-evolution along the MBH-σ relation. AGN power in clusters with central atmospheric cooling times longer than ˜1 Gyr typically lies two orders of magnitude below those with shorter central cooling times. Galaxies centred in clusters with long central cooling times nevertheless experience ongoing and occasionally powerful AGN outbursts. We further investigate the impact of feedback on cluster scaling relations. We find L-T and M-T relations in clusters with direct evidence of feedback which are steeper than self-similar, but not atypical compared to previous studies of the full cluster population. While the gas mass rises, the stellar mass remains nearly constant with rising total mass, consistent with earlier studies. This trend is found regardless of central cooling time, implying tight regulation of star formation in central galaxies as their haloes grew, and long-term balance between AGN heating and atmospheric cooling. Our scaling relations are presented in forms that can be incorporated easily into galaxy evolution models.

  1. Rapid rotation and mixing in active OB stars - Physical processes

    NASA Astrophysics Data System (ADS)

    Zahn, Jean-Paul

    2011-07-01

    In the standard description of stellar interiors, O and B stars possess a thoroughly mixed convective core surrounded by a stable radiative envelope in which no mixing occurs. But as is well known, this model disagrees strongly with the spectroscopic diagnostic of these stars, which reveals the presence at their surface of chemical elements that have been synthesized in the core. Hence the radiation zone must be the seat of some mild mixing mechanisms. The most likely to operate there are linked with the rotation: these are the shear instabilites triggered by the differential rotation, and the meridional circulation caused by the changes in the rotation profile accompanying the non-homologous evolution of the star. In addition to these hydrodynamical processes, magnetic stresses may play an important role in active stars, which host a magnetic field. These physical processes will be critically examined, together with some others that have been suggested.

  2. Detecting planets around active stars: impact of magnetic fields on radial velocities and line bisectors

    NASA Astrophysics Data System (ADS)

    Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Boisse, I.; Moutou, C.; Hébrard, G.

    2014-09-01

    Although technically challenging, detecting Earth-like planets around very low mass stars is in principle accessible to the existing velocimeters of highest radial-velocity (RV) precision. However, low-mass stars being active, they often feature dark spots and magnetic regions at their surfaces generating a noise level in RV curves (called activity jitter) that can severely limit our practical ability at detecting Earth-like planets. Whereas the impact of dark spots on RV data has been extensively studied in the literature, that of magnetic features only received little attention up to now. In this paper, we aim at quantifying the impact of magnetic fields (and the Zeeman broadening they induce) on line profiles, line bisectors and RV data. With a simple model, we quantitatively study the RV signals and bisector distortions that small magnetic regions or global magnetic dipoles can generate, especially at infrared wavelengths where the Zeeman broadening is much larger than that in the visible. We report in particular that the impact of magnetic features on line bisectors can be different from that of cool spots when the rotational broadening is comparable to or larger than the Zeeman broadening; more specifically, we find in this case that the top and bottom sections of the bisectors are anticorrelated, i.e. the opposite behaviour of what is observed for cool spots. We finally suggest new options to show and ultimately filter the impact of the magnetic activity on RV curves.

  3. Photon-dominated regions around cool stars: The effects of the color temperature of the radiation field

    NASA Technical Reports Server (NTRS)

    Spaans, Marco; Tielens, A. G. G. M.; Dishoeck, Ewine F. Van; Bakes, E. L. O.

    1994-01-01

    We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.

  4. Micro-Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems

    DTIC Science & Technology

    2012-03-01

    Micro- Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems Douglas S. Beck Beck Engineering , Inc. 1490 Lumsden Road, Port Orchard...refrigerator. We are developing for DARPA a cm-scale Micro- Stirling Active Cooling Module (MS/ACM) micro- refrigerator to benefit the DoD systems. Under...a DARPA contract, we are designing, building, and demonstrating a breadboard MS/ACM. Keywords: Stirling ; cooler; active cooling module; micro

  5. The C-12/C-13 ratio in stellar atmospheres. VI - Five luminous cool stars

    NASA Technical Reports Server (NTRS)

    Hinkle, K. H.; Lambert, D. L.; Snell, R. L.

    1976-01-01

    A simple curve-of-growth technique is described for extracting the C-12/C-13 ratio for M stars from high-resolution spectra of CO infrared vibration-rotation lines. The technique is applied to the CO lines at 1.6 and 2.3 microns in spectra of two M supergiants (Alpha Ori and Alpha Sco), two M giants (Alpha Her and Beta Peg), and a Mira-type variable (Chi Cyg). As a check on the CO analysis, the C-12/C-13 ratio is derived from the red CN system at 8000 A for Alpha Sco, Alpha Ori, and Beta Peg. The CO analysis is also applied to the K giant Alpha Boo as a check. The CN and CO results are found to be in general agreement, and the C-12/C-13 ratio in all the examined stars is shown to be considerably lower than the solar-system value. It is suggested that these stars were formed from clouds with a C-12/C-13 ratio of 40 to 89 and that their atmospheres now exhibit an enhancement of C-13 abundance due to internal production and mixing to the surface.

  6. Fearsome Flashes: A Study Of The Evolution Of Flaring Rates In Cool Stars Using Kepler Cluster Data

    NASA Astrophysics Data System (ADS)

    Saar, Steven

    Strong solar flares can damage power grids, satellites, interrupt communications and GPS information, and threaten astronauts and high latitude air travelers. Despite the potential cost, their frequency is poorly determined. Beyond purely current terrestrial concerns, how the rate of large flares (and associated coronal mass ejections [CMEs], high-energy particle fluxes and far UV emission) varies over the stellar lifetime holds considerable astrophysical interest. These include: the contributions of flares to coronal energy budgets; the importance of flares and CMEs to terrestrial and exoplanet atmospheric and biological evolution; and importance of CME mass loss for angular momentum evolution. We will explore the rate of strong flares and its variation with stellar age, mass and rotation by studying Kepler data of cool stars in two open clusters NGC 6811 (age ~ 1 Gyr) and NGC 6819 (~2.5 Gyr). We will use two flare analysis methods to build white-light flare distributions for cluster stars. One subtracts a low-pass filtered version of the data and analyzes the residue for positive flux deviations, the other does a statistical analysis of the flux deviations vs. time lags compared with a model. For near- solar stars, a known solar relation can then be used to estimate X-ray production by the white-light flares. For stars much hotter or cooler or with significantly different chromospheric density, we will use particle code flare models including bombardment effects to estimate how the X-ray to white light scaling changes. With the X-ray values, we can estimate far UV fluxes and CME rates, building a picture of the flare effects; with the two cluster ages, we can make a first estimate of the solar rate (by projecting to the Sun's age) and begin to build up an understanding of flare rate evolution with mass and age. Our proposal falls squarely in the "Stellar Astrophysics and Exoplanets" research area, and is relevant to NASA astrophysics goals in promoting better

  7. AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS

    SciTech Connect

    Shkolnik, Evgenya L.

    2013-03-20

    Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, M{sub p} , or M{sub p} /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8{sigma}) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3{sigma} when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result.

  8. Estimation of Mass-Loss Rates from Emission Line Profiles in the UV Spectra of Cool Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Robinson, R. D.; Harper, G. M.

    1999-01-01

    The photon-scattering winds of cool, low-gravity stars (K-M giants and supergiants) produce absorption features in the strong chromospheric emission lines. This provides us with an opportunity to assess important parameters of the wind, including flow and turbulent velocities, the optical depth of the wind above the region of photon creation, and the star's mass-loss rate. We have used the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code along with simple models of the outer atmospheric structure to compute synthetic line profiles for comparison with the observed line profiles. The SEI code has the advantage of being computationally fast and allows a great number of possible wind models to be examined. We therefore use it here to obtain initial first-order estimates of the wind parameters. More sophisticated, but more time-consuming and resource intensive calculations will be performed at a later date, using the SEI-deduced wind parameters as a starting point. A comparison of the profiles over a range of wind velocity laws, turbulence values, and line opacities allows us to constrain the wind parameters, and to estimate the mass-loss rates. We have applied this analysis technique (using lines of Mg II, 0 I, and Fe II) so far to four stars: the normal K5-giant alpha Tau, the hybrid K-giant gamma Dra, the K5 supergiant lambda Vel, and the M-giant gamma Cru. We present in this paper a description of the technique, including the assumptions which go into its use, an assessment of its robustness, and the results of our analysis.

  9. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.

  10. Design and evaluation of active cooling systems for Mach 6 cruise vehicle wings

    NASA Technical Reports Server (NTRS)

    Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Active cooling systems, which included transpiration, film, and convective cooling concepts, are examined. Coolants included hydrogen, helium, air, and water. Heat shields, radiation barriers, and thermal insulation are considered to reduce heat flow to the cooling systems. Wing sweep angles are varied from 0 deg to 75 deg and wing leading edge radii of 0.05 inch and 2.0 inches are examined. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy structural materials. Cooled wing concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  11. SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS

    SciTech Connect

    Boyer, Martha L.; Meixner, Margaret; Gordon, Karl D.; Shiao, Bernie; Srinivasan, Sundar; Van Loon, Jacco Th.; McDonald, Iain; Kemper, F.; Zaritsky, Dennis; Block, Miwa; Engelbracht, Charles W.; Misselt, Karl; Babler, Brian; Bracker, Steve; Meade, Marilyn; Whitney, Barbara; Hora, Joe; Robitaille, Thomas; Indebetouw, Remy; Sewilo, Marta

    2011-10-15

    We investigate the infrared (IR) properties of cool, evolved stars in the Small Magellanic Cloud (SMC), including the red giant branch (RGB) stars and the dust-producing red supergiant (RSG) and asymptotic giant branch (AGB) stars using observations from the Spitzer Space Telescope Legacy program entitled 'Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity SMC', or SAGE-SMC. The survey includes, for the first time, full spatial coverage of the SMC bar, wing, and tail regions at IR wavelengths (3.6-160 {mu}m). We identify evolved stars using a combination of near-IR and mid-IR photometry and point out a new feature in the mid-IR color-magnitude diagram that may be due to particularly dusty O-rich AGB stars. We find that the RSG and AGB stars each contribute {approx}20% of the global SMC flux (extended + point-source) at 3.6 {mu}m, which emphasizes the importance of both stellar types to the integrated flux of distant metal-poor galaxies. The equivalent SAGE survey of the higher-metallicity Large Magellanic Cloud (SAGE-LMC) allows us to explore the influence of metallicity on dust production. We find that the SMC RSG stars are less likely to produce a large amount of dust (as indicated by the [3.6] - [8] color). There is a higher fraction of carbon-rich stars in the SMC, and these stars appear to reach colors as red as their LMC counterparts, indicating that C-rich dust forms efficiently in both galaxies. A preliminary estimate of the dust production in AGB and RSG stars reveals that the extreme C-rich AGB stars dominate the dust input in both galaxies, and that the O-rich stars may play a larger role in the LMC than in the SMC.

  12. STRONG VARIABLE ULTRAVIOLET EMISSION FROM Y GEM: ACCRETION ACTIVITY IN AN ASYMPTOTIC GIANT BRANCH STAR WITH A BINARY COMPANION?

    SciTech Connect

    Sahai, Raghvendra; Neill, James D.; Gil de Paz, Armando; Sanchez Contreras, Carmen

    2011-10-20

    Binarity is believed to dramatically affect the history and geometry of mass loss in asymptotic giant branch (AGB) and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to look for hot binary companions to cool AGB stars using the Galaxy Evolution Explorer archive, we have discovered a late-M star, Y Gem, to be a source of strong and variable UV emission. Y Gem is a prime example of the success of our technique of UV imaging of AGB stars in order to search for binary companions. Y Gem's large and variable UV flux makes it one of the most prominent examples of a late-AGB star with a mass accreting binary companion. The UV emission is most likely due to emission associated with accretion activity and a disk around a main-sequence companion star. The physical mechanism generating the UV emission is extremely energetic, with an integrated luminosity of a few x L{sub sun} at its peak. We also find weak CO J = 2-1 emission from Y Gem with a very narrow line profile (FWHM of 3.4 km s{sup -1}). Such a narrow line is unlikely to arise in an outflow and is consistent with emission from an orbiting, molecular reservoir of radius 300 AU. Y Gem may be the progenitor of the class of post-AGB stars which are binaries and possess disks but no outflows.

  13. Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Kesterson, Matthew; Bue, Grant; Trevino, Luis

    2006-01-01

    In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series off tubes through which cooling water is circulated. To better predict the effectiveness of the LCG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained. Currently, increasing the fabric s thermal conductivity along with also examining an increase in the cooling tube conductivity to more efficiently remove the excess heat generated during EVA is being simulated. Initial trials varied cooling water temperature, water flow rate, garment conductivity, tube conductivity, and total number of cooling tubes in the LCVG. Results indicate that the total number of cooling tubes could be reduced to 22 and still achieve the desired heat removal rate of 361 W. Further improvements are being made to the garment network used in the model to account for temperature gradients associated with the spacing of the cooling tubes over the surface of the garment

  14. The Physical Parameters of Red Supergiants: When Massive Stars Are as Cool as They Get

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Levesque, Emily; Olsen, Knut; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges

    2005-08-01

    Red supergiants (RSGs) are an important but poorly characterized stage in the evolution of massive stars. In the past, evolutionary models did not reproduce the ``observed" location of RSGs in the H-R diagram. However, our recent study using the new MARCS atmospheric models to fit spectrophotometry of Galactic RSGs has now led to good agreement between theory and observations (Levesque et al. 2005). With time generously granted by the TAC last year, we attempted to extend this study to the lower metallicity RSGs in the Magellanic Clouds, where the distribution of spectral types is quite different than that of the Milky Way (Elias et al. 1985; Massey & Olsen 2003). Unfortunately, our run was haunted by a ``grating ghost", rendering the observations in the near-UV and blue useless for our purposes, although good data were obtained in the red. We are now requesting time to complete these observations, using the last semester for which the RC Spectrograph is likely to be available. (The observations cannot be done with SOAR since the Goodman HTS lacks both a suitable grating and a blue-sensitive chip.) Reliable spectrophotometry in the blue is critical for deriving the effective temperatures, comparing the atomic lines Ca I(lambda) 4226 and Ca II H and K to the models, and in investigating the presence of peculiar reddening around these stars, presumably due to circumstellar dust.

  15. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  16. Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models.

    PubMed

    Motamedi, Gholam K; Salazar, Patricia; Smith, Eric L; Lesser, Ronald P; Webber, William R S; Ortinski, Pavel I; Vicini, Stefano; Rogawski, Michael A

    2006-08-01

    Cooling has been shown to terminate experimentally induced epileptiform activity in models of epilepsy without causing injury to the cooled brain, suggesting that cooling could represent an approach to seizure control in intractable focal epilepsies. Here we sought to determine the most effective way to apply cooling to abort spontaneous epileptiform discharges in in vitro brain slice models. We induced spontaneous epileptiform activity in rat brain slices by exposure to 4-aminopyridine (4-AP), 4-AP plus bicuculline, and Mg(2+)-free artificial CSF (aCSF) at 28-34 degrees C. Extracellular field recordings were made at hippocampal or neocortical sites. Slice temperature was reduced by perfusion with cold aCSF. Rapid cooling at rates of 2-5 degrees C/s was compared to cooling at slower rates of 0.1-1 degrees C/s. Cooling at both rates reversibly aborted epileptiform discharges in all three models and at all recording sites. With rapid cooling, small temperature drops were highly effective in terminating discharges, an effect that was sustained for as long as the reduced temperature level was maintained. In contrast, slow cooling required much larger temperature drops to inhibit discharges. With slow cooling, absolute temperature drops to 21-22 degrees C caused a 90% reduction in event frequency, but cooling to 14-15 degrees C was required to terminate discharges. We conclude that rapid cooling as effectively aborts discharges in in vitro epilepsy models as does slow cooling, but the magnitude of the temperature change required is less. Practical devices to inhibit seizure activity may only need to induce small temperature drops, if the cooling can be applied sufficiently rapidly.

  17. UV Observations of Prominence Activation and Cool Loop Dynamics

    NASA Technical Reports Server (NTRS)

    Kucera, Therese A.; Landi, Enrico

    2006-01-01

    In this paper we investigate the thermal and dynamic properties of dynamic structures in and around a prominence channel observed on the limb on 17 April 2003. Observations were taken with the Solar and Heliospheric Observatory's Solar Ultraviolet Measurements of Emitted Radiation (SOHO/SUMER) in lines formed at temperatures from 80,000 to 1.6 MK. The instrument was pointed to a single location and took a series of 90 s exposures. Two-dimensional context was provided by the Transition Region and Coronal Explorer (TRACE) in the UV and EUV and the Kanzelhohe Solar Observatory in H-alpha. Two dynamic features were studied in depth: an activated prominence and repeated motions in a loop near the prominence. We calculated three-dimensional geometries and trajectories, differential emission measure, and limits on the mass, pressure, average density, and kinetic and thermal energies. These observations provide important tests for models of dynamics in prominences and cool (approx. 10(exp 5) K)loops, which will ultimately lead to a better understanding the mechanism(s) leading to energy and mass flow in these solar features.

  18. GHRS observations of cool, low-gravity stars. 1: The far-ultraviolet spectrum of alpha Orionis (M2 Iab)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander

    1994-01-01

    We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A

  19. Activity-rotation relations for lower main-sequence stars

    SciTech Connect

    Dobson-Hockey, A.K.

    1987-01-01

    It has been known for some time that stellar rotation and activity are related, both for chromospheric activity (e.g., Noyes et al. 1984) and coronal activity (e.g., Pallavicini et al. 1981; Maggio et al. 1987). Younger, more rapidly rotating stars of a given spectral type generally show higher levels of activity than do older, more slowly rotating stars. On the Sun, activity is distinctly related to magnetic fields. This leads to the suggestion that activity, at least in solar-type stars, is traceable to a magnetic dynamo which results from the interaction of rotation and differential rotation with convection. The more efficient the coriolis forces are at introducing helicity into convective motions, the more the magnetic field will be amplified and the more activity we may expect to see. The precise nature of the relationship between magnetic fields, rotation, and activity remains to be well-defined. This thesis examines the relationship between activity (both chromospheric and coronal) and rotation in order to better define and express such a relation (or relations).

  20. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2015-08-01

    Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.

  1. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  2. Rotation and differential rotation of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Reiners, Ansgar; Basri, Gibor

    2013-12-01

    Context. The Kepler space telescope monitors more than 160 000 stars with an unprecedented precision providing the opportunity to study the rotation of thousands of stars. Aims: We present rotation periods for thousands of active stars in the Kepler field derived from Q3 data. In most cases a second period close to the rotation period was detected that we interpreted as surface differential rotation (DR). We show how the absolute and relative shear (ΔΩ and α = ΔΩ/Ω, respectively) correlate with rotation period and effective temperature. Methods: Active stars were selected from the whole sample using the range of the variability amplitude. To detect different periods in the light curves we used the Lomb-Scargle periodogram in a pre-whitening approach to achieve parameters for a global sine fit. The most dominant periods from the fit were associated to different surface rotation periods. Our purely mathematical approach is capable of detecting different periods but cannot distinguish between the physical origins of periodicity. We ascribe the existence of different periods to DR, but spot evolution could also play a role. Because of the large number of stars the period errors are estimated statistically. We thus cannot exclude the existence of false positives among our periods. Results: In our sample of 40 661 active stars we found 24 124 rotation periods P1 between 0.5 and 45 days, with a mean of ⟨P1⟩ = 16.3 days. The distribution of stars with 0.5 < B - V < 1.0 and ages derived from angular momentum evolution that are younger than 300 Myr is consistent with a constant star-formation rate; the detection among older stars is incomplete probably because of our active sample selection. A second period P2 within ±30% of the rotation period P1 was found in 18 616 stars (77.2%). Attributing these two periods to DR we found that for active stars other than the Sun the relative shear α increases with rotation period, and slightly decreases with effective

  3. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure contraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  4. Active cooling design for scramjet engines using optimization methods

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Martin, Carl J.; Lucas, Stephen H.

    1988-01-01

    A methodology for using optimization in designing metallic cooling jackets for scramjet engines is presented. The optimal design minimizes the required coolant flow rate subject to temperature, mechanical-stress, and thermal-fatigue-life constraints on the cooling-jacket panels, and Mach-number and pressure constraints on the coolant exiting the panel. The analytical basis for the methodology is presented, and results for the optimal design of panels are shown to demonstrate its utility.

  5. The young active star SAO 51891 (V383 Lacertae)

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Frasca, A.; Marilli, E.; Covino, E.; Alcalã, J. M.; Ćakirli, Ö.; Klutsch, A.; Meyer, M. R.

    2009-05-01

    Aims: The aim of this work is to investigate the surface inhomogeneities of a young, late-type star, SAO 51891, at different atmospheric levels, from the photosphere to the upper chromosphere, analyzing contemporaneous optical high-resolution spectra and broad-band photometry. Methods: The full spectral range of FOCES@CAHA (R ≃ 40 000) is used to perform the spectral classification and to determine the rotational and radial velocities. The lithium abundance is measured to obtain an age estimate. The {BVRIJHK}s photometric bands are used to construct the spectral energy distribution (SED). The variations in the observed BV fluxes and effective temperature are used to infer the presence of photospheric spots and observe their behavior over time. The chromospheric activity is studied applying the spectral subtraction technique to Hα, Ca ii H & K, Hɛ, and Ca ii IRT lines. Results: We find SAO 51891 to be a young K0-1V star with a lithium abundance close to the Pleiades upper envelope, confirming its youth ( 100 Myr), which is also inferred from its kinematical membership of the Local Association. No infrared excess is detected from analysis of its SED, limiting the amount of remaining circumstellar dust. We detect a rotational modulation of the luminosity, effective temperature, Ca ii H & K, Hɛ, and Ca ii IRT total fluxes. A simple spot model with two main active regions, about 240 K cooler than the surrounding photosphere, fits the observed light and temperature curves very well. The small-amplitude radial velocity variations are also well reproduced by our spot model. The anti-correlation of light curves and chromospheric diagnostics indicates chromospheric plages spatially associated with the spots. The largest modulation amplitude is observed for the Hɛ flux suggesting that this line is very sensitive to the presence of chromospheric plages. Conclusions: SAO 51891 is a young active star, lacking significant amounts of circumstellar dust or any evidence of low

  6. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  7. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  8. Dependence of coronal X-ray emission on spot-induced brightness variations in cool main sequence stars

    NASA Astrophysics Data System (ADS)

    Messina, S.; Pizzolato, N.; Guinan, E. F.; Rodonò, M.

    2003-11-01

    The maximum amplitude (Amax) of spot-induced brightness variations from long-term V-band photometry and the ratio LX/Lbol between X-ray and bolometric luminosities are suitable indicators of the level of magnetic activity in the photosphere and in the corona of late-type stars, respectively. By using these activity indicators we investigate the dependence of coronal X-ray emission on the level of photospheric starspot activity in a homogeneous sample of low mass main sequence field and cluster stars of different ages (IC 2602, IC 4665, IC 2391, alpha Persei, Pleiades and Hyades). First, the activity-rotation connection at the photospheric level is re-analysed, as well as its dependence on spectral type and age. The upper envelope of Amax increases monotonically with decreasing rotational period (P) and Rossby number (R0) showing a break around 1.1 d that separates two rotation regimes where the starspot activity shows different behaviours. The Amax-P and Amax-R0 relations are fitted with linear, exponential and power laws to look for the function which best represents the trend of the data. The highest values of Amax are found among K-type stars and at the ages of alpha Persei and Pleiades. We also analyse the activity-rotation connection at the coronal level as well as its dependence on spectral type. The level of X-ray emission increases with increasing rotation rate up to a saturation level. The rotational period at which saturation occurs is colour-dependent and increases with advancing spectral type. Also the LX/Lbol-P and LX/Lbol-R0 relations are fitted with linear, exponential and power laws to look for the best fitting function. Among the fastest rotating stars (P<=0.3 d) there is evidence of super-saturation. Also the highest values of LXLbol are found among K-type stars. Finally, the photospheric-coronal activity connection is investigated by using for the first time the largest ever sample of light curve amplitudes as indicators of the magnetic filling

  9. Coronal Diagnostics of Intermediate Activity Star XI Boo A

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2005-01-01

    The analysis of Xi Boo A proved difficult to adapt to our line-by-line approach because of the strong wings of the RGS instrumental profile, as has been detailed in earlier reports. While progress was also delayed because of problems in using SAS v4, we succeeded in the past year or so to bring the analysis to conclusion. Abundances have been derived using both EPIC and RGS data, confirming earlier EUVE findings of a mild solar-like FIP effect, though with some evidence of a turn-up in abundances of elements with higher FIP. Plasma densities appear normal for a moderately active stellar corona. Xi Boo A nicely bridges the gap between the very active stars and stars like the Sun, and it indeed does appear that these are the stars in which the solar-like FIP effects begins to change to the "inverse FIP" type of effect seen in the very active stars. Probing this divide was the main goal of the proposal. These results are in the process of being prepared for publication, though we have not decided the target journal as yet.

  10. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    SciTech Connect

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S. E-mail: lutz@mpe.mpg.de E-mail: popesso@mpe.mpg.de E-mail: amelie@mpe.mpg.de E-mail: swuyts@mpe.mpg.de; and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  11. Solar activity: The Sun as an X-ray star

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1981-01-01

    The existence and constant activity of the Sun's outer atmosphere are thought to be due to the continual emergence of magnetic fields from the Solar interior and the stressing of these fields at or near the surface layers of the Sun. The structure and activity of the corona are thus symptomatic of the underlying magnetic dynamo and the existence of an outer turbulent convective zone on the Sun. A sufficient condition for the existence of coronal activity on other stars would be the existence of a magnetic dynamo and an outer convective zone. The theoretical relationship between magnetic fields and coronal activity can be tested by Solar observations, for which the individual loop structures can be resolved. A number of parameters however, which enter into the alternative theoretical formulations remain fixed in all Solar observations. To determine whether these are truly parameters of the theory observations need to be extended to nearby stars on which suitable conditions may occur.

  12. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits.

  13. Quenching of the star formation activity in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% < QF ≤ 80% and QA ≲ 500 Myr for QF > 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir < 0.5), where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions (R/Rvir > 4). The efficient quenching of the

  14. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  15. Active Control of Jets in Cross-Flow for Film Cooling Applications

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, Dimitris E.

    2003-01-01

    Jets in cross-flow have applications in film cooling of gas turbine vanes, blades and combustor liners. Their cooling effectiveness depends on the extent to which the cool jet-fluid adheres to the cooled component surface. Lift-off of the cooling jet flow or other mechanisms promoting mixing, cause loss of cooling effectiveness as they allow the hot "free-stream" fluid to come in contact with the component surface. The premise of this project is that cooling effectiveness can be improved by actively controlling (e.9. forcing, pulsing) the jet flow. Active control can be applied to prevent/delay lift-off and suppress mixing. Furthermore, an actively controlled film-cooling system coupled with appropriate sensory input (e.g. temperature or heat flux) can adapt to spatial and temporal variations of the hot-gas path. Thus, it is conceivable that the efficiency of film-cooling systems can be improved, resulting in coolant fluid economy. It is envisioned that Micro Electro-Mechanical Systems (MEMS) will play a role in the realization of such systems. As a first step, a feasibility study will be conducted to evaluate the concept, identify actuation and sensory elements and develop a control strategy. Part of this study will be the design of a proof-of-concept experiment and collection of necessary data.

  16. Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures.

    PubMed

    Chao, Ying-Chi; Chen, Chih-Cheng; Lin, Yuh-Charn; Breer, Heinz; Fleischer, Joerg; Yang, Ruey-Bing

    2015-02-03

    Transmembrane guanylyl cyclases (GCs), with activity regulated by peptide ligands and/or calcium-binding proteins, are essential for various physiological and sensory processes. The mode of activation of the GC subtype GC-G, which is expressed in neurons of the Grueneberg ganglion that respond to cool temperatures, has been elusive. In searching for appropriate stimuli to activate GC-G, we found that its enzymatic activity is directly stimulated by cool temperatures. In this context, it was observed that dimerization/oligomerization of GC-G, a process generally considered as critical for enzymatic activity of GCs, is strongly enhanced by coolness. Moreover, heterologous expression of GC-G in cultured cells rendered these cells responsive to coolness; thus, the protein might be a sensor for cool temperatures. This concept is supported by the observation of substantially reduced coolness-induced response of Grueneberg ganglion neurons and coolness-evoked ultrasonic vocalization in GC-G-deficient mouse pups. GC-G may be a novel thermosensory protein with functional implications for the Grueneberg ganglion, a sensory organ responding to cool temperatures.

  17. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  18. Subcontracted activities related to TES for building heating and cooling

    NASA Astrophysics Data System (ADS)

    Martin, J.

    1980-03-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  19. Analysis of Chandra X-ray Spectra of the Young, Active Star AB Dor

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Gagne, M.

    2001-05-01

    The early-K dwarf AB Dor is a nearby (15 pc), young (20--30 Myr), rapidly rotating (Prot = 0.514 day) star with saturated X-ray emission (Lx/Lbol ~ 10-3) and cool prominence-like gas extending several stellar radii into its corona. We observed this extensively studied star on 1999 Oct 9 for 60 ks with the high energy transmission grating (HETG/ACIS-S) on Chandra. The rich X-ray spectra contain emission lines of N, O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni. As is seen in other active stars, the Ne abundance is high and the Fe abundance low compared to solar photospheric abundances, indicating the reverse of the enhanced first ionization potential (FIP) effect seen in the solar corona. The emission measure distribution shows peaks near log T = 6.8 and 7.3, and the helium-like triplets of O VII, Ne IX, and Mg XI indicate electron densities log ne ~ 11.0. We will use these data to infer the size and properties of coronal loops in the stellar corona. We find no noticeable line shifts indicative of a wind or downflows. This GTO Chandra program is supported by NASA through a grant to NIST and the University of Colorado.

  20. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  1. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    ERIC Educational Resources Information Center

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  2. Active noise canceling system for mechanically cooled germanium radiation detectors

    SciTech Connect

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  3. ACTIVITY ON THE M STAR OF QS Vir

    SciTech Connect

    Ribeiro, T.; Baptista, R.; Kafka, S.; Tappert, C.

    2010-03-15

    We report analysis of VRIJH photometry and phase-resolved optical spectroscopy of the eclipsing DA white dwarf (WD) plus dMe dwarf binary QS Vir. Modeling of the photometric data yields an inclination of i = 74.9 {+-} 0.6 and a mass ratio of q = M {sub 2}/M {sub 1} = 0.50 {+-} 0.05. Our Doppler maps indicate the presence of material in the Roche lobe of the WD, at a location near the M star, likely due to accretion from the stellar wind of the M star (as opposed to Roche-lobe overflow accretion). We also constructed images of the brightness distribution of the M star at different epochs which reveal the location of two stable active regions. Doppler tomography shows that the majority of the hydrogen and Ca II H and K emission originates on the active M dwarf, likely distributed in two preferred activity longitudes, similar to active regions on BY Dra and FK Comae systems.

  4. Feedback in the local Universe: Relation between star formation and AGN activity in early type galaxies

    NASA Astrophysics Data System (ADS)

    Vaddi, Sravani; O'Dea, Christopher; Baum, Stefi; Jones, Christine; Forman, William; Whitmore, Samantha; Ahmed, Rabeea; Pierce, Katherine; Leary, Sara

    2015-08-01

    several orders of magnitude between radio power and SFR. These results indicate that, galaxies in the current epoch are rarely powerful AGNs and they do not have profound impact on the star formation in the galaxy. There may be a threshold radio power (P ~ 1023 WHz-1) that is needed for AGN to affect the star formation in the galaxies. We notice that our galaxy sample and the BCGs follow similar trend in radio power versus SFR. One possible explanation is that there is a common source of gas supply through cooling flows. However, the spread in the relation suggests alternate gas supply mechanisms such as galaxy mergers, tidal interactions or secular evolution. In this case, the correlation could result if, both star formation and radio AGN activity scale roughly with the amount of gas in the galaxy, regardless of it's origin.

  5. The Distances to Open Clusters from Main-sequence Fitting. V. Extension of Color Calibration and Test Using Cool and Metal-rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-Woo

    2015-09-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ({{BVI}}C) and the 2MASS ({{JHK}}s) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ({T}{eff}) relations down to {T}{eff}˜ 3600 {{K}}, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ({T}{eff}≲ 5500 {{K}}) and metal-rich ([{Fe}/{{H}}]= +0.37) MS stars in NGC 6791. The current methodology relies on an assumption that color-{T}{eff} corrections are independent of metallicity, but we find that estimates of color excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars ({T}{eff}≲ 4800 {{K}}), however, we find that B - V colors of our models are systematically redder than the cluster photometry by ˜0.02 mag. We use color-{T}{eff} transformations from the infrared flux method and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding B - V photometry of these cool MS stars, we derive E(B\\-\\V)=0.105+/- 0.014, [M/H]\\=\\+0.42+/- 0.07, {(m\\-\\M)}0=13.04+/- 0.08, and the age of 9.5 ± 0.3 Gyr for NGC 6791.

  6. Cool dust heating and temperature mixing in nearby star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Draine, B. T.; Bianchi, S.; Gordon, K. D.; Aniano, G.; Calzetti, D.; Dale, D. A.; Helou, G.; Hinz, J. L.; Kennicutt, R. C.; Roussel, H.; Wilson, C. D.; Bolatto, A.; Boquien, M.; Croxall, K. V.; Galametz, M.; Gil de Paz, A.; Koda, J.; Muñoz-Mateos, J. C.; Sandstrom, K. M.; Sauvage, M.; Vigroux, L.; Zibetti, S.

    2015-04-01

    Physical conditions of the interstellar medium in galaxies are closely linked to the ambient radiation field and the heating of dust grains. In order to characterize dust properties in galaxies over a wide range of physical conditions, we present here the radial surface brightness profiles of the entire sample of 61 galaxies from Key Insights into Nearby Galaxies: Far-Infrared Survey with Herschel (KINGFISH). The main goal of our work is the characterization of the grain emissivities, dust temperatures, and interstellar radiation fields (ISRFs) responsible for heating the dust. We first fit the radial profiles with exponential functions in order to compare stellar and cool-dust disk scalelengths, as measured by 3.6 μm and 250 μm surface brightnesses. Our results show thatthe stellar and dust scalelengths are comparable, with a mean ratio of 1.04, although several galaxies show dust-to-stellar scalelength ratios of 1.5 or more. We then fit the far-infrared spectral energy distribution (SED) in each annular region with single-temperature modified blackbodies using both variable (MBBV) and fixed (MBBF) emissivity indices β, as well as with physically motivated dust models. The KINGFISH profiles are well suited to examining trends of dust temperature Tdust and β because they span a factor of ~200 in the ISRF intensity heating the bulk of the dust mass, Umin. Results from fitting the profile SEDs suggest that, on average, Tdust, dust optical depth τdust, and Umin decrease with radius. The emissivity index β also decreases with radius in some galaxies, but in others is increasing, or rising in the inner regions and falling in the outer ones. Despite the fixed grain emissivity (average β ~ 2.1) of the physically-motivated models, they are well able to accommodate flat spectral slopes with β ≲ 1. An analysis of the wavelength variations of dust emissivities in both the data and the models shows that flatter slopes (β ≲ 1.5) are associated with cooler

  7. The optical flares of active star II Pegasi in 2005

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Kim, Kang Min; Lee, Byeong-Cheol

    2015-08-01

    We observed the active star II Peg using high-resolution spectrographs of 2.16m telescope at Xinglong station of NAOC and 1.8m telescope at BOAO of KASI from November to December, 2005. By means of spectral subtraction technique, the chromospheric activities of II Peg are analyzed at several activity indicators, including CaII IRT, Hα, NaI D1D2 and HeI D3 lines. The results demonstrate that the magnetic activity of II Peg is very strong, and its chromospheric activities show rotational modulations which imply there are active regions in its chromosphere. Two flare events were hunted during the observations, which were identified by HeI D3 line emission above the continuum. The first flare was happened in November 2005, the second one in December 2005, and they were located in different hemisphere of the star. This may indicate the evolution of active regions. Considering the photospheric spot activities, the possible origin of the detected flares is discussed.

  8. Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter

    NASA Astrophysics Data System (ADS)

    Martínez-Arnáiz, R.; Maldonado, J.; Montes, D.; Eiroa, C.; Montesinos, B.

    2010-09-01

    Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims: We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca ii H & K lines, to others that hold noteworthy advantages. Methods: We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF echelle package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R'_HK index. Results: We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity

  9. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    SciTech Connect

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.; Rich, J. A.; Xu, C. K.; Lisenfeld, U.; Bitsakis, T.; Guillard, P.; Charmandaris, V.; Cluver, M.; Jarrett, T.; Dopita, M. A.; Kewley, L. J.; Freeland, E.; Rasmussen, J.; Verdes-Montenegro, L.

    2014-11-10

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L {sub FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H{sub 2} emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  10. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR Program in the... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial...

  11. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  12. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  13. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  14. Potential cooling of an accretion-heated neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L. S.; Page, D.; Altamirano, D.; Cackett, E. M.; Deller, A. T.; Gusinskaia, N.; Hessels, J. W. T.; Homan, J.; Linares, M.; Miller, J. M.; Miller-Jones, J. C. A.

    2017-01-01

    We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ˜4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual X-ray luminosity decay from ˜18 × 1032 to ˜4 × 1032 (D/5.8 kpc)2 erg s-1 between ˜8 to ˜379 days in quiescence and the inferred neutron star surface temperature (for an observer at infinity; using a neutron star atmosphere model) decreased from ˜100 to ˜71 eV. This can be interpreted as cooling of an accretion heated neutron star crust. Modeling the observed temperature curve (using NSCOOL) indicated that the source required ˜1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crustal heating to explain its thermal evolution. Alternatively, the decay could also be modelled without the presence of deep crustal heating, only having a shallow heat source (again ˜1.9 MeV per accreted nucleon was required). However, the XMM-Newton data statistically required an additional power-law component. This component contributed ˜30 per cent of the total unabsorbed flux in 0.5 - 10 keV energy range. The physical origin of this component is unknown. One possibility is that it arises from low-level accretion. The presence of this component in the spectrum complicates our cooling crust interpretation because it might indicate that the smooth luminosity and temperature decay curves we observed may not be due to crust cooling but due to some other process.

  15. Flightweight radiantly and actively cooled panel: thermal and structural performance

    SciTech Connect

    Shore, C.P.; Nowak, R.J.; Kelly, H.N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft/sup 2/-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  16. Active cooling solutions for high power laser diodes stacks

    NASA Astrophysics Data System (ADS)

    Karni, Yoram; Klumel, Genady; Levy, Moshe; Berk, Yuri; Openhaim, Yaki; Gridish, Yaakov; Elgali, Asher; Avisar, Meir; Blonder, Moshe; Sagy, Hila; Gertsenshtein, Alex

    2008-02-01

    High power water cooled diode lasers find increasing demand in biomedical, cosmetic and industrial applications, where very high brightness and power are required. The high brightness is achieved either by increasing the power of each bar or by reducing the emitting area of the stacks. Two new products will be presented: Horizontal CW stacks with output power as high as 1kW using 80 W bars with emitting area width as low as 50 μm Vertical QCW stacks with output power as high as 1.2kW using 120 W bars. Heat removal from high power laser stacks often requires microchannel coolers operated with finely filtered deionized (DI) water. However, for certain industrial applications the reliability of this cooling method is widely considered insufficient due to leakage failures caused the highly corrosive DI water. Two solutions to the above problem will be discussed. A microchannel cooler-based package, which vastly reduces the corrosion problem, and a novel high-power laser diode stack that completely eliminates it. The latter solution is especially effective for pulsed applications in high duty cycle range.

  17. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  18. The Activity of Weak-Lined T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Welty, Alan D.; Ramsey, Lawrence W.

    1995-03-01

    We have conducted intensive spectroscopic observing campaigns on several weak-lined and classical T Tauri stars (WTTS, CTTS). The data were obtained with the Penn State Fiber Optic Echelle spectrograph in three observing runs at the KPNO 2.1m telescope. We wish to understand the phenomenology of stellar and circumstellar activity of our targets, and to quantify the activity where possible. Here we present results for our WTTS targets, V410 Tau in particular. The first step in our analysis is to determine the spectral type of each target by fitting a grid of standard star spectra to the target star spectra. Byproducts of this process are values for radial and projected rotational velocities and veiling for each observation. We find no veiling (from Hβ to Hα ) in any of our targets. Results for V410 Tau are dramatic. The photospheric temperature distribution (recently Doppler imaged by Strassmeier, Welty, & Rice 1994 and Hatzes 1995) causes line profile variations which cause apparent radial velocity changes. The amplitude of this variability is 500 times the Sun's orbital motion due to Jupiter. Although this is an extreme case, it serves to illustrate the point that radial velocity searches for low mass companions, especially planets, must take stellar activity into account. Three of our other WTTS targets show similar radial velocity variation. We also feature flare observations of V410 Tau. One event was observed rising and declining during one observing night. Its total duration was about 15 hours. It released ~ 10(35) erg in optical line emission. He D_3 radial velocities enable us to locate the flare with respect to features in the Doppler images. Our results suggest that V410 Tau has entered a state of relatively high activity after a decline indicated by various observations made during the 1980s. We will also be pleased to discuss results on our CTTS targets with interested parties.

  19. Activity and Brightness Variations of Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2015-08-01

    Long-term observations of variations in Sun-like stars now span a half century. The Mount Wilson Observatory (MWO) HK Project operated from 1966 to 2003, and the Lowell Observatory Solar-Stellar Spectrograph (SSS) project has operated since 1994; together these programs provide a record of chromospheric activity over multiple stellar cycles for more than 100 stars of V < ~7.5. Long-term photometric monitoring of Sun-like stars, including many of the MWO and SSS targets, began in the early 1980s and continues today at the Fairborn Observatory south of Tucson. I will review progress to date in combining and interpreting the spectrosopic and photometric data sets, including some new results from the most recent years of SSS and Fairborn data. I will also review where deficiencies remain in reconciling and combining the major data sets, and will discuss efforts presently underway to remedy this and provide a long-term record for the benefit of the community.

  20. Chromospherically active stars. X - Spectroscopy and photometry of HD 212280

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.

    1993-01-01

    The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.

  1. Brazing of the Tore Supra actively cooled Phase III Limiter

    SciTech Connect

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-12-31

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary.

  2. Synthetic activity indicators for M-type dwarf stars

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Ludwig, Hans-Günter; Hauschildt, Peter; De Gennaro Aquino, Ivan

    2015-08-01

    Our understanding of the Sun has been substantially progressed owing to the advances in high-resolution observations during the last decades. These observations guided the development of numerical simulation codes for stellar atmospheres towards unprecedented levels of realism and complexity. Such 3D radiation magnetohydrodynamic (RMHD) codes can be applied and adapted to cooler stars. Here, we present a set of time-dependent 3D RMHD simulations for dwarf stars of spectral type M (representative of AD Leo). "M-dwarfs" are the most abundant stars in our galaxy and known to exhibit mega-flares. Comparisons of M-dwarf models with the Sun as fundamental reference case reveal differences and similarities, which lead to important insights into the structure and dynamics of quiescent "background" atmospheres. The models, which extend from the upper convection zone into the chromosphere, have different initial magnetic field strengths (up to 500G) and topologies, representing regions with different activity levels. The 3D model atmospheres are characterized by a very dynamic and intermittent structure on small spatial and temporal scales, final field strengths reaching a few kG and a wealth of physical processes, which by nature cannot be described by means of 1D static model atmospheres.Synthetic observables, i.e. spectra and intensity images, are calculated by using these models as input for detailed radiative transfer calculations and can be combined into synthetic full stellar disks, thus simulating spatially unresolved observations of M-dwarfs. The considered diagnostics, like, e.g., Halpha, Ca II lines, or the continuum intensity from UV to millimeter wavelengths, sample various properties of the dynamics, thermal and magnetic structure of the photosphere and the chromosphere and thus provide measures of stellar activity, which can be compared to observations. The complicated magnetic field structure and its imprint in synthetic diagnostics may have important

  3. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  4. ASTROPHYSICS AND COSMOLOGY RELATED TO PARTICLES AND NUCLEI Cooling of Akmal-Pandharipande-Ravenhall neutron stars with a rotochemical heating source

    NASA Astrophysics Data System (ADS)

    Pi, Chun-Mei; Yang, Shu-Hua; Zhou, Xia; Zhou, Ai-Zhi

    2010-12-01

    Employing phenomenological density-dependent critical temperatures of strong singlet-state proton pairing and of moderate triplet-state neutron pairing, we investigate the effects of rotochemical heating on the thermal evolution of superfluid neutron stars whose cores consist of npe matter with the Akmal-Pandharipande-Ravenhall equation of state. Since the star is not quite in the weak interaction equilibrium state during spin-down, the departure from the chemical equilibrium leads to the rotochemical heating in a rotating NS which will increase the stellar's temperature. Our calculations show that the rotochemical heating delays the cooling of superfluid neutron stars considerably and makes the previous classification of NS cooling ambiguous. What's more, our model is currently consistent with all the observational data, and in particular some middle-aged and cold NSs (PRS J0205+6449 in 3C 58, PRS J1357-6429, RX J007.0+7303 in CTA 1, Vela) can be better explained when taking into account rotochemical heating.

  5. CHARACTERIZING THE COOL KEPLER OBJECTS OF INTERESTS. NEW EFFECTIVE TEMPERATURES, METALLICITIES, MASSES, AND RADII OF LOW-MASS KEPLER PLANET-CANDIDATE HOST STARS

    SciTech Connect

    Muirhead, Philip S.; Hamren, Katherine; Schlawin, Everett; Lloyd, James P.; Rojas-Ayala, Barbara; Covey, Kevin R.

    2012-05-10

    We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (T{sub eff} {approx}< 4400 K) Kepler Objects of Interest (KOIs) from Borucki et al. We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (T{sub eff}) and metallicities [M/H] using the K-band spectral indices of Rojas-Ayala et al. We determine the masses (M{sub *}) and radii (R{sub *}) of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalog and, by construction, correlate better with T{sub eff}. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that three of the planet-candidates are terrestrial sized with orbital semimajor axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03, and KOI 854.01). The stellar parameters presented in this Letter serve as a resource for prioritization of future follow-up efforts to validate and characterize the cool KOI planet candidates.

  6. Influence of FFA Activities on Critical Thinking Skills in Texas Three-Star FFA Chapters

    ERIC Educational Resources Information Center

    Latham, Lindsey; Rayfield, John; Moore, Lori L.

    2015-01-01

    The purpose of this study was to determine the relationship of FFA activities on critical thinking skills of Texas FFA members in three-star FFA chapters. This descriptive study was conducted in eight purposively selected three-star FFA chapters throughout Texas. Three-star chapters are those chapters who have emerged as outstanding programs…

  7. Comparison of active cooling devices to passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: A report from the Fireground Rehab Evaluation (FIRE) trial

    PubMed Central

    Hostler, David; Reis, Steven E; Bednez, James C; Kerin, Sarah; Suyama, Joe

    2010-01-01

    Background Thermal protective clothing (TPC) worn by firefighters provides considerable protection from the external environment during structural fire suppression. However, TPC is associated with physiological derangements that may have adverse cardiovascular consequences. These derangements should be treated during on-scene rehabilitation periods. Objective The present study examined heart rate and core temperature responses during the application of four active cooling devices, currently being marketed to the fire service for on-scene rehab, and compared them to passive cooling in a moderate temperature (approximately 24°C) and to an infusion of cold (4°C) saline. Methods Subjects exercised in TPC in a heated room. Following an initial exercise period (BOUT 1) the subjects exited the room, removed TPC, and for 20 minutes cooled passively at room temperature, received an infusion of cold normal saline, or were cooled by one of four devices (fan, forearm immersion in water, hand cooling, water perfused cooling vest). After cooling, subjects donned TPC and entered the heated room for another 50-minute exercise period (BOUT 2). Results Subjects were not able to fully recover core temperature during a 20-minute rehab period when provided rehydration and the opportunity to completely remove TPC. Exercise duration was shorter during BOUT 2 when compared to BOUT 1 but did not differ by cooling intervention. The overall magnitude and rate of cooling and heart rate recovery did not differ by intervention. Conclusions No clear advantage was identified when active cooling devices and cold intravenous saline were compared to passive cooling in a moderate temperature after treadmill exercise in TPC. PMID:20397868

  8. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia.

    PubMed

    Mokrushin, Anatoly A; Pavlinova, Larisa I; Borovikov, Sergey E

    2014-08-01

    Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.

  9. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  10. Effects of Droplet-Vitrification Cryopreservation Based on Physiological and Antioxidant Enzyme Activities of Brassidium Shooting Star Orchid

    PubMed Central

    Rahmah, Safrina; Ahmad Mubbarakh, Safiah; Soo Ping, Khor

    2015-01-01

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages. PMID:25861687

  11. Long-Term Starspot Activity of Some Chromospherically Active Rs CVn and BY Dra Stars

    NASA Astrophysics Data System (ADS)

    Kozhevnikova, Alla; Ilya, Alekseev

    2016-10-01

    We present results of our long-term photometric observations of a sample of 15 chromospherically active BY Dra and RS CVn-type stars. Observations were carried out at a 70-cm telescope and multichannel photometer of Kourovka Astronomical Observatory of Ural Federal University and at a 1.25-m telescope of Crimean Astrophysical Observatory from 2003 to 2015 in Johnson B, V, R, I bands. We also use the previously published photometric data for all these stars to find the meaning of historical star's brightness, that we assume as a brightness of unspotted photosphere. Using a renewed zonal spot model for spotted stellar photospheres we determined spot parameters for all observational seasons, as our as published ones, that were spanning almost over 45 years for some stars (e.g. CG Cyg, WY Cnc, EV Lac, V 1396 Cyg). It is shown that the spots were located at low and middle latitudes up to 58 deg., are cooler than the surrounding photosphere by 200 - 2000 K according to the spectral class. The spotted area varied from season to season, comprising 13%-47% of the surface area of the star. Almost half of the stars display drifts of their spots towards the equator and poles during certain time intervals; however, the speeds of the spots' latitude drifts are lower than the analogous speeds for sunspots, by factors of 1.5-4, on average. Activity cycles lasting from 5 to 40 years have been determined or confirmed for majority of the studied stars. As a rule, cycles are expressed in synchronous variations of spot areas, spot latitudes and average photometric star's brightness.

  12. EXPLORING THE CONNECTION BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN THE LOCAL UNIVERSE

    SciTech Connect

    LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.; Schiminovich, D.; Bertincourt, B.; O'Dowd, M.

    2012-10-10

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from the Sloan Digital Sky Survey (SDSS) and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic contributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [Ne II] 12.8 {mu}m emission line is well correlated with the star formation rate measured from the SDSS spectra, and this holds for the star-forming, composite, and AGN-dominated systems. AGNs show a clear excess of [Ne III] 15.6 {mu}m emission relative to star-forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including the mid-IR spectral slope, the ratio of the [Ne V] 14.3 {mu}m to [Ne II] {mu}m 12.8 fluxes, the equivalent widths of the 7.7 {mu}m, 11.3 {mu}m, and 17 {mu}m polycyclic aromatic hydrocarbon (PAH) features, and the optical 'D' parameter which measures the distance at which a source lies from the locus of star-forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN dominance. We find that the PAH 11.3 {mu}m feature is significantly suppressed in the most AGN-dominated systems.

  13. ACTIVITY ANALYSES FOR SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. PROXIES OF MAGNETIC ACTIVITY

    SciTech Connect

    He, Han; Wang, Huaning; Yun, Duo

    2015-11-15

    Light curves of solar-type stars often show gradual fluctuations due to rotational modulation by magnetic features (starspots and faculae) on stellar surfaces. Two quantitative measures of modulated light curves are employed as the proxies of magnetic activity for solar-type stars observed with Kepler telescope. The first is named autocorrelation index i{sub AC}, which describes the degree of periodicity of the light curve; the second is the effective fluctuation range of the light curve R{sub eff}, which reflects the depth of rotational modulation. The two measures are complementary and depict different aspects of magnetic activities on solar-type stars. By using the two proxies i{sub AC} and R{sub eff}, we analyzed activity properties of two carefully selected solar-type stars observed with Kepler (Kepler ID: 9766237 and 10864581), which have distinct rotational periods (14.7 versus 6.0 days). We also applied the two measures to the Sun for a comparative study. The result shows that both the measures can reveal cyclic activity variations (referred to as i{sub AC}-cycle and R{sub eff}-cycle) on the two Kepler stars and the Sun. For the Kepler star with the faster rotation rate, i{sub AC}-cycle and R{sub eff}-cycle are in the same phase, while for the Sun (slower rotator), they are in the opposite phase. By comparing the solar light curve with simultaneous photospheric magnetograms, it is identified that the magnetic feature that causes the periodic light curve during solar minima is the faculae of the enhanced network region, which can also be a candidate of magnetic features that dominate the periodic light curves on the two Kepler stars.

  14. Experimental study on active cooling systems used for thermal management of high-power multichip light-emitting diodes.

    PubMed

    Kaya, Mehmet

    2014-01-01

    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs.

  15. VizieR Online Data Catalog: Library of Spectra (0.5 to 2.5um) of Cool Stars (Lancon+ 2000)

    NASA Astrophysics Data System (ADS)

    Lancon, A.; Wood, P. R.

    2000-07-01

    The present catalogue contains 182 low resolution optical spectra, 145 medium resolution (R~1100) near-IR spectra, and 112 merged optical+near-IR spectra that range from about 510 to 2450 nm. The observed stars are luminous cool objects: the sample includes red giants, red supergiants, oxygen rich and carbon rich long period variables (asymptotic giant branch stars), as well as a few Galactic Bulge and LMC/SMC stars. The optical data were acquired on the so-called 74 inch Telescope at Mount Stromlo Observatory. The near-IR data were acquired with the Cryogenic Array Spectrometer and Imager CASPIR on the 2.3 meter Australian National University Telescope at Siding Spring Observatory. Optical and near-IR data for variable objects have been merged only when both were taken less than 15 days apart; but both spectral ranges are also provided separately. The spectra are corrected for telluric absorption. However, in regions where the transmission of the Earth atmosphere is close to zero the fluxes recovered remain highly uncertain. The flux calibration is based on a series of reference stars, for which a theoretical intrinsic energy distribution was assumed. An absolute flux calibration (to about 10% accuracy) was only achieved in exceptional cases; in the other cases, the absolute fluxes can be off their real values by an order of magnitude due to slit losses (for the programme star and/or the reference star) and to non-photometric wheather. Uncertainties in the relative values of fluxes along each spectrum are described in the paper. (8 data files).

  16. Chromospheric activity and lithium line variations in the spectra of the spotted star LQ Hydrae

    NASA Astrophysics Data System (ADS)

    Flores Soriano, M.; Strassmeier, K. G.; Weber, M.

    2015-03-01

    Context. Although the relationship between lithium abundance in stars and their magnetic activity is commonly accepted, it is still unclear how the different phenomena related to it can increase the amount of Li, reduce its depletion, or be a source of bias for the measurements. Aims: We study the rotational modulation of chromospheric and photospheric parameters of the young, active, single K2 dwarf LQ Hya and their connection with the variability of the Li i 6708 Å line. Methods: A total of 199 high-resolution STELLA spectra and quasi-simultaneous photometry were used to compute effective temperature, gravity, and chromospheric activity indicators such as Hα and Hβ emission, Balmer decrement, and chromospheric electron density, as a function of the rotational phase. The variation of the Li i 6708 Å line was characterized in terms of equivalent width, abundance, and of 6Li/7Li isotopic ratio in the form of line shifts. Results: Photospheric and chromospheric parameters show clear rotational modulation. Effective temperatures and continuum variations reveal a higher concentration of cool spots on the side of the star on which we also detect stronger chromospheric activity. Increased electron densities and the modulation of the He i D3 line suggest that the source of this activity can be a combination of plages and repeated low-intensity flares. The Li line and other temperature-sensitive lines are clearly enhanced by the spots located on the most active side of the star. Li abundances calculated taking into account the temperature variations simultaneously show, although with high dispersion, a small overabundance of this element that correlates well with the surface magnetic activity. In addition, the Li line center is more intensely redshifted than in the other hemisphere, which might be interpreted as a weak enrichment of 6Li. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Vienna

  17. Measurements in large pool fires with an actively cooled calorimeter

    SciTech Connect

    Koski, J.A.; Wix, S.D.

    1995-12-31

    The pool fire thermal test described in Safety Series 6 published by the International Atomic Energy Agency (IAEA) or Title 10, Code of Federal Regulations, Part 71 (10CFR71) in the United States is one of the most difficult tests that a container for larger ``Type B`` quantities of nuclear materials must pass. If retests of a container are required, costly redesign and project delays can result. Accurate measurements and modeling of the pool fire environment will ultimately lower container costs by assuring that containers past the pool fire test on the first attempt. Experiments indicate that the object size or surface temperature of the container can play a role in determining local heat fluxes that are beyond the effects predicted from the simple radiative heat transfer laws. An analytical model described by Nicolette and Larson 1990 can be used to understand many of these effects. In this model a gray gas represents soot particles present in the flame structure. Close to the container surface, these soot particles are convectively and radiatively cooled and interact with incident energy from the surrounding fire. This cooler soot cloud effectively prevents some thermal radiation from reaching the container surface, reducing the surface heat flux below the value predicted by a transparent medium model. With some empirical constants, the model suggested by Nicolette and Larson can be used to more accurately simulate the pool fire environment. Properly formulated, the gray gas approaches also fast enough to be used with standard commercial computer codes to analyze shipping containers. To calibrate this type of model, accurate experimental measurements of radiative absorption coefficients, flame temperatures, and other parameters are necessary. A goal of the calorimeter measurements described here is to obtain such parameters so that a fast, useful design tool for large pool fires can be constructed.

  18. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  19. Activity on the classical T Tauri star BP Tauri.

    NASA Astrophysics Data System (ADS)

    Gullbring, E.; Barwig, H.; Chen, P. S.; Gahm, G. F.; Bao, M. X.

    1996-03-01

    We have made a detailed investigation of the short-term variability in optical light (UBVRI) of the classical T Tauri star BP Tauri. Photometric data (in UBVRI) were collected from Wendelstein Observatory, Germany in 1991, 1992 and 1993 with time-resolutions down to 1sec and, from binning, fluctuations with total amplitudes down to a few milli-magnitudes could be resolved. Additional observations (in UBV) were collected in China. The total time of monitoring amounts to 135 hours. The normal state of BP Tau is that it stays completely constant in brightness in all bands, or shows only very slow and smooth changes during a night, to the limit of detection. Brightenings, events, occurred on time-scales from 0.6hours to a few hours but none of these reached a total amplitude >0.3mag in U. As a rule these events do not have the characteristic flare profile as in the lightcurves of stellar surface flares. The total optical energies of the events are a few times 10^35^erg, with a relatively small spread. The energy distributions at peak flux can be represented by black-body radiation. However, the inferred temperature is very low, 7000-8000K, and not significantly different from that derived for the background veiling. Hence, the events on BP Tau are very different from normal stellar flares. From power analysis of the time series, we conclude that there is no power indicating frequent and short lasting phenomena, like surface flares. In particular there is no signal in the U band. Such flares would have been expected to be numerous in this high-sensitivity survey, however, if BP Tau had a magnetic surface activity comparable to that of ordinary flare stars. Also, there is no tail in the distribution of events towards smaller amplitudes and shorter durations. We show that the events of BP Tau are consistent with inhomogeneous mass infall from magnetically controlled accretion between a circumstellar disk and a hot spot at the star. To account for the constancy in

  20. Dynamo action and magnetic activity of the giant star Pollux

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha; Palacios, Ana

    2015-08-01

    Recent spectropolarimetric observations of the giant star Pollux have revealed that it possesses a weak global magnetic field of the order of a Gauss. Using 3-D nonlinear MHD simulations performed with the ASH code we study the source of this global magnetic field in this slowly rotating giant star (Omega*=Omega_sun/20). We find that the extended convective envelope is able to generate a multi-scales magnetic field reaching of the order of 10% of the kinetic energy contained in the envelope. This global field acts such as to suppress the strong differential rotation present in the purely hydrodynamical progenitor simulation. When filtering the large scale magnetic field components (dipole, quadrupole) we find magnetic field of the order of a few Gauss, hence in qualitative agreeement with observations. Our study confirms that such slowly rotating convective giants are likely to possess global magnetic field maintained through contemporaneous dynamo action and not as the vestige of their past main sequence activity.

  1. Further X-Ray Observations of EXO 0748-676 in Quiescence: Evidence for a Cooling Neutron Star Crust

    DTIC Science & Technology

    2010-07-01

    Files (ODF) using the tasks emproc and epproc. To identify possible periods of high particle background, we extracted high-energy lightcurves (> 10 keV...crust and show that that the quiescent lightcurve of EXO 0748–676 is markedly shallower than that observed for three other neutron star X-ray binaries...neutron star crust and show that that the quiescent lightcurve of EXO 0748?676 is markedly shallower than that observed for three other neutron star X-ray

  2. Thermal design for areas of interference heating on actively cooled hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Herring, R. L.; Stone, J. E.

    1978-01-01

    Numerous actively cooled panel design alternatives for application in regions on high speed aircraft that are subject to interference heating effects were studied. Candidate design concepts were evaluated using mass, producibility, reliability and inspectability/maintainability as figures of merit. Three design approaches were identified as superior within certain regimes of the matrix of design heating conditions considered. Only minor modifications to basic actively cooled panel design are required to withstand minor interference heating effects. Designs incorporating internally finned coolant tubes to augment heat transfer are recommended for moderate design heating conditions. At severe heating conditions, an insulated panel concept is required.

  3. Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  4. High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. IV. Extending the cool MK stars sample

    NASA Astrophysics Data System (ADS)

    Marrese, P. M.; Boschi, F.; Munari, U.

    2003-08-01

    A library of high resolution spectra of MK standard and reference stars, observed in support to the GAIA mission, is presented. The aim of this paper is to integrate the MK mapping of Paper I of this series as well as to consider stars over a wider range of metallicities. Radial velocities are measured for all the target stars. The spectra are available in electronic form (ASCII format) at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/995 and from the web page http://ulisse.pd.astro.it/MoreMK/, where further bibliographical information for the target stars is given.

  5. Active Spacecraft Potential Control: Results From the Double Star Project

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Fazakerley, A.; Steiger, W.

    2006-10-01

    The ion emitter instrument "active spacecraft potential control" (ASPOC) has been used successfully in several magnetospheric missions including the European Space Agency Cluster Project. An improved version has been developed for the equatorial spacecraft of the Chinese-European Double Star mission (TC-1) launched in December 2003. The modifications include a new design of the ion emitter modules. As a result, higher currents than in previous missions can be achieved. The main objective of the investigation is the reduction of positive spacecraft potential in order to minimize perturbations to the plasma measurements onboard, in particular to the plasma electron instrument PEACE. These data show an almost complete suppression of photoelectrons when ASPOC is emitting at 30- to 50-muA beam current. The angular distribution of the electrons in the presence of the ion beam is investigated in detail. The measurement of ambient electron distributions is highly improved.

  6. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A.; Siemiginowska, A.

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle_dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much_gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such ``star tails`` with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  7. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A. ); Siemiginowska, A. )

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such star tails'' with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  8. Design and fabrication of a skin stringer discrete tube actively cooled structural panel

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.

    1978-01-01

    The design optimization and practical implementation of actively cooled structural panel concepts was investigated. The desired actively cooled structural panel consisted of the cooled skin and a substructure. The primary load carrying components were fabricated from 2024-T3 aliminum alloy. The 3003-H14 coolant passage tubing was chosen because of its excellent corrosion resistance, workability needed to obtain the desired cross sectional shape, and strength. The Epon 951 adhesive was selected for its excellent structural properties and is the thinnest of available films, 0.064 mm. The Eccobond 58C silver filled epoxy was chosen because of its high thermal conductivity, and the alumina filled Epon 828 was chosen for structural and expansion characteristics.

  9. Thermal design and development of actively cooled brushes for compact homopolar generators

    NASA Astrophysics Data System (ADS)

    Makel, D. B.

    1986-11-01

    The thermal and hydraulic design of actively cooled current transfer brushes for compact homopolar generators (HPG) is described. The development of high-energy-density HPG's at the Center for Electromechanics at the University of Texas at Austin requires brushgear capable of handling high current densities and large thermal loads. Platelet technology has been applied in the design of actively cooled brushes with coolant injection directly from the brush contact face into the brush-rotor interface. Coolant channels a few thousandths of an inch in diameter have been designed in brushes constructed of photoetched platelets of copper (0.020 to 0.005 in. thick) and then bonded to form the cooled brush. Platelet construction of brushes also permits the incorporation of internal instrumentation for temperature measurement. The brushes have been designed to provide data on the effects of rotor speed, current level, coolant flow rate, and coolant injection pattern.

  10. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  11. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  12. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  13. VizieR Online Data Catalog: Cool carbon stars in the halo and Fornax dSph (Mauron+, 2014)

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-03-01

    Spectroscopy of halo candidate C stars was achieved at ESO (La Silla) on 17-18 October 2009 at the NTT telescope equipped with the EFOSC2 instrument in the spectral range 5200-9300Å. We were able to secure the spectra of 25 candidates with exposure times of generally a few minutes, and eventually, eight were found to be C-rich. We also observed three carbon stars in the Carina dwarf galaxy because they were erroneously believed to be in the halo, and for comparison APM 2225-1401, a C star from the list of Totten and Irwin (1998MNRAS.294....1T). We found spectra that covered the Hα region for four halo stars in the Byurakan Astrophysical Observatory archive. They were obtained with the BAO 2.6m telescope and the ByuFOSC2 spectrograph. These spectra were taken on 28 March 1999, 12 June 2002, 11 May 2000, and 11 June 2000 with a resolution ~8Å. Concerning Fornax, spectra of C stars were found in the ESO Archive (program 70.D-0203, P.I. Marc Azzopardi). They were obtained on 5 November 2002 with the ESO 3.6m telescope and the EFOSC instrument with a resolution ~23Å and a spectral coverage from 4000Å to 7950Å. Sixteen C stars were monitored with the ground-based 25cm diameter TAROT telescopes. This monitoring took place irregularly at ESO La Silla and Observatoire de la Cote d'Azur (France) beginning in 2010. Thanks to the recently released Catalina and LINEAR databases, we were able to examine the light curves of 143 halo C stars and found 66 new periodic (Mira or SRa-type) variables among them. (5 data files).

  14. Spitzer SAGE-Spec: Near Infrared Spectroscopy, Dust Shells, and Cool Envelopes in Extreme Large Magellanic Cloud Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  15. Photometry and Spectroscopy of ES Aql, SV Sge, and Z UMi, Cool Stars with Variability of the R Coronae Borealis Type

    NASA Astrophysics Data System (ADS)

    Rosenbush, A. E.

    2013-12-01

    UBVR c I c photometric measurements are made of three cool stars with R Coronae Borealis type variability, ES Aql, SV Sge, and Z UMi. During their visual light minima ES Aql and Z UMi manifested brightness and color behavior typical of this type of variability: a decrease or increase in the color indices as the brightness decreases and an increase as the normal state is recovered. The molecular spectrum of Z UMi during the second half of the minimum with an weakness by about 4m was already normal, but the Na I D doublet lines were still filled with emission. High resolution profiles of the Na I D lines for SV Sge reveal a systematic shift to -10 km/s and an extended blue wing, which can be regarded as a consequence of a constant outflow of matter from the star's atmosphere that has not led to minima in the visual brightness even over a time of 9 years. Identification of the interstellar Na I D lines in the high resolution spectra has made it possible to verify the known color excess E(B-V) for Z UMi at a level 0m.02 ± 0m.11 and substantially reduce its value to 0m.03 for SV Sge. For the latter star this also opens up the possibility of a substantially lower absolute magnitude, M V ≤ 2m, than assumed previously.

  16. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    SciTech Connect

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  17. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without

  18. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers

    PubMed Central

    Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo

    2016-01-01

    Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of

  19. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  20. The SEEDS High-Contrast Imaging Survey: Exoplanet and Brown Dwarf Survey for Nearby Young Stars Dated with Gyrochronology and Activity Age Indicators

    NASA Astrophysics Data System (ADS)

    Kuzuhara, Masayuki; Tamura, Motohide; Helminiak, Kris; Mede, Kyle; Brandt, Timothy; Janson, Markus; Kandori, Ryo; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun

    2015-12-01

    The SEEDS campaign has successfully discovered and characterized exoplanets, brown dwarfs, and circumstellar disks since it began in 2009, via the direct imaging technique. The survey has targeted nearby young stars, as well as stars associated to star-forming regions, the Pleiades open cluster, moving groups, and debris disks. We selected the nearby young stars that have been dated with age indicators based on stellar rotation periods (i.e., gyrochronology) and chromoshperic/coronal activities. Of these, nearly 40 were observed, with ages mainly between 100 and 1000 Myr and distances less than 40 pc. Our observations typically attain the contrast of ~6 x 10-6 at 1'' and better than ~1 x 10-6 beyond 2'', enabling us to detect a planetary-mass companion even around such old stars. Indeed, the SEEDS team reported the discovery that the nearby Sun-like star GJ 504 hosts a Jovian companion GJ 504b, which has a mass of 3-8.5 Jupiter masses that is inferred according to the hot-start cooling models and our estimated system age of 100-510 Myr. The remaining observations out of the selected ~40 stars have resulted in no detection of additional planets or brown dwarf companions. Meanwhile, we have newly imaged a low-mass stellar companion orbiting the G-type star HIP 10321, for which the presence of companion was previously announced via radial velocity technique. The astrometry and radial velocity measurements are simultaneously analyzed to determine the orbit, providing constraints on the dynamical mass of both objects and stellar evolution models. Here we summarize our direct imaging observations for the nearby young stars dated with gyrochrolorogy and activity age indicators. Furthermore, we report the analysis for the HIP 10321 system with the imaged low-mass companion.

  1. Shuttle active thermal control system development testing. Volume 5: Integrated radiator/expendable cooling system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1974-01-01

    Tests were conducted to gather data on a space shuttle active control system (ATCS) incorporating both radiators and an expendable cooling device to provide vehicle heat removal. Two systems were tested and design information was provided for both nominal and limit conditions. The tests verified the concept that an integrated radiator/expendable cooling system can adequately maintain desired water quantities while responding to variations in heat loads and environments. In addition, the need for duct heating was demonstrated, while exhaust nozzle heating was also shown to be unnecessary.

  2. Current Status of Joint AFRL/NASA Microgravity Spray Cooling Research Activities

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes,Kirk; McQuillen, John; Golliher, Eric

    2004-01-01

    The Air Force Research Lab and the NASA Glenn Research Center are cooperatively examining spray cooling in a low and a variable gravity environment by conducting experiments principally aboard the NASA Reduced Gravity Aircraft. The objective of these research activities is to examine an effective high-heat flux, high-power thermal management technology using spray cooling for both aircraft and space-based platforms. Previous studies have demonstrated that two phase heat transfer and fluid management are issues that need to be examined. This effort has obtained preliminary results which confirm these concerns. More research is planned.

  3. Stellar activity of planetary host star HD 189 733

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Moutou, C.; Vidal-Madjar, A.; Bouchy, F.; Pont, F.; Hébrard, G.; Bonfils, X.; Croll, B.; Delfosse, X.; Desort, M.; Forveille, T.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Matthews, J. M.; Mayor, M.; Pepe, F.; Perrier, C.; Queloz, D.; Rowe, J. F.; Santos, N. C.; Ségransan, D.; Udry, S.

    2009-03-01

    Aims: Extra-solar planet search programs require high-precision velocity measurements. They need to determine how to differentiate between radial-velocity variations due to Doppler motion and the noise induced by stellar activity. Methods: We monitored the active K2V star HD 189 733 and its transiting planetary companion, which has a 2.2-day orbital period. We used the high-resolution spectograph SOPHIE mounted on the 1.93-m telescope at the Observatoire de Haute-Provence to obtain 55 spectra of HD 189 733 over nearly two months. We refined the HD 189 733b orbit parameters and placed limits on both the eccentricity and long-term velocity gradient. After subtracting the orbital motion of the planet, we compared the variability in spectroscopic activity indices with the evolution in the radial-velocity residuals and the shape of spectral lines. Results: The radial velocity, the spectral-line profile, and the activity indices measured in He I (5875.62 Å), Hα (6562.81 Å), and both of the Ca II H&K lines (3968.47 Å and 3933.66 Å, respectively) exhibit a periodicity close to the stellar-rotation period and the correlations between them are consistent with a spotted stellar surface in rotation. We used these correlations to correct for the radial-velocity jitter due to stellar activity. This results in achieving high precision in measuring the orbital parameters, with a semi-amplitude K = 200.56 ± 0.88 m s-1 and a derived planet mass of MP = 1.13 ± 0.03 M_Jup. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 07A.PNP.CONS).

  4. Human paranasal sinuses and selective brain cooling: a ventilation system activated by yawning?

    PubMed

    Gallup, Andrew C; Hack, Gary D

    2011-12-01

    The function of the paranasal sinuses has been a controversial subject since the time of Galen, with many different theories advanced about their biological significance. For one, the paranasal sinuses have been regarded as warmers of respiratory air, when in actuality these structures appear to function in cooling the blood. In fact, human paranasal sinuses have been shown to have higher volumes in individuals living in warmer climates, and thus may be considered radiators of the brain. The literature suggests that the transfer of cool venous blood from the paranasal sinuses to the dura mater may provide a mechanism for the convection process of cooling produced by the evaporation of mucus within human sinuses. In turn, the dura mater may transmit these temperature changes, initiated by the cool venous blood from the heat-dissipating surfaces of the sinuses, to the cerebrospinal fluid compartments. Furthermore, it has recently been demonstrated in cadaveric dissections that the thin bony posterior wall of the maxillary sinus serves as an origin for both medial and lateral pterygoid muscle segments, an anatomic finding that had been previously underappreciated in the literature. The present authors hypothesize that the thin posterior wall of the maxillary sinus may flex during yawning, operating like a bellows pump, actively ventilating the sinus system, and thus facilitating brain cooling. Such a powered ventilation system has not previously been described in humans, although an analogous system has been reported in birds.

  5. Continuous sorption cooling in activated carbon-nitrogen system using metal foam as regenerator

    NASA Astrophysics Data System (ADS)

    Ghosh, Indranil

    2017-02-01

    In compressor driven solid sorption process, cooling obtained from a desorbing bed (equivalent to an evaporator), is intermittent in nature. Intermittency can be avoided using multiple adsorbent columns. However, connecting a desorbing bed to heat source and adsorbing beds to heat sink in alternate cycles enhances operational complexity and constructional disadvantages. In a recent development, it has been seen that rapid and successive pressurization and depressurization of an adsorbent (solid) bed with adsorbate (gas) creates temperature differential across the column length. The presence of an orifice at the end opposite to gas entrance enhances the temperature gradient. By connecting the hot end to heat sink and the cold end to heat source permanently, one can substantially reduce the operational hazards associated with the intermittent sorption cooling processes. More recently, it has seen that the introduction of a regenerator in the process makes the cooling process more effective. Though the proposed sorption cooling process apparently looks similar to orifice type ‘pulse tube’ cooler, the former is intrinsically different than the other. In the present manuscript, experimental sorption cooling studies using of metal foam as regenerator has been discussed. Tests have been conducted near room temperature in activated carbon-nitrogen system.

  6. HST Studies of the Chromospheres, Wind, and Mass-Loss Rates of Cool Giant and Supergiant Stars

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.

    2000-01-01

    UV spectra of K-M giant and supergiant stars and of carbon stars have been acquired with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). These spectra have been used to measure chromospheric flow and turbulent velocities, study the acceleration of their stellar winds, acquire constraints on their outer atmospheric structure, and enable estimates of their mass-loss rates. Results from our observations of the giant stars Gamma Dra (K5 III hybrid), Alpha Tau (K5 III), Gamma Cru (M3.4 III), Mu Gem (M3 IIIab), and 30 Her (MG III), the supergiants Alpha Ori (M2 Iab) and Lambda Vel (K5 Ib), and the carbon stars TX Psc (NO; C6,2) and TW Hor (NO; C7,2) will be summarized and compared. The high resolution and wavelength accuracy of these data have allowed the direct measurement of the acceleration of the stellar winds in the chromospheres of several of these stars (from initial velocities of 3-9 km/s to upper velocities of 15-25 km/s) and of the chromospheric macroturbulence (-25-35 km/s). The high signal-to-noise and large dynamic range of these spectra have allowed the detection and identification of numerous new emission features, including weak C IV emission indicative of hot transition-region plasma in the non-coronal giant Alpha Tau, many new fluorescent lines of Fe II, and the first detection of fluorescent molecular hydrogen emission and of Ca II recombination lines in the UV spectrum of a giant star. The UV spectrum of two carbon stars have been studied with unprecedented resolution and reveal extraordinarily complicated Mg II lines nearly smothered by circumstellar absorptions. Finally, comparison of synthetic UV emission line profiles computed with the Lamers et al. (1987) Sobolev with Exact Integration (SEI) code with observations of chromospheric emission lines overlain with wind absorption features provides estimates of the mass-loss rates for four of these stars.

  7. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  8. Active cooling in traumatic brain-injured patients: a questionable therapy?

    PubMed

    Grände, P-O; Reinstrup, P; Romner, B

    2009-11-01

    Hypothermia is shown to be beneficial for the outcome after a transient global brain ischaemia through its neuroprotective effect. Whether this is also the case after focal ischaemia, such as following a severe traumatic brain injury (TBI), has been investigated in numerous studies, some of which have shown a tendency towards an improved outcome, whereas others have not been able to demonstrate any beneficial effect. A Cochrane report concluded that the majority of the trials that have already been published have been of low quality, with unclear allocation concealment. If only high-quality trials are considered, TBI patients treated with active cooling were more likely to die, a conclusion supported by a recent high-quality Canadian trial on children. Still, there is a belief that a modified protocol with a shorter time from the accident to the start of active cooling, longer cooling and rewarming time and better control of blood pressure and intracranial pressure would be beneficial for TBI patients. This belief has led to the instigation of new trials in adults and in children, including these types of protocol adjustments. The present review provides a short summary of our present knowledge of the use of active cooling in TBI patients, and presents some tentative explanations as to why active cooling has not been shown to be effective for outcome after TBI. We focus particularly on the compromised circulation of the penumbra zone, which may be further reduced by the stress caused by the difference in thermostat and body temperature and by the hypothermia-induced more frequent use of vasoconstrictors, and by the increased risk of contusional bleedings under hypothermia. We suggest that high fever should be reduced pharmacologically.

  9. Magnetic activity and differential rotation in the very young star KIC 8429280

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Fröhlich, H.-E.; Bonanno, A.; Catanzaro, G.; Biazzo, K.; Molenda-Żakowicz, J.

    2011-08-01

    Aims: We present a spectroscopic and photometric analysis of the rapid rotator KIC 8429280, discovered by ourselves as a very young star and observed by the NASA Kepler mission, designed to determine its activity level, spot distribution, and differential rotation. Methods: We use ground-based data, such as high-resolution spectroscopy and multicolor broad-band photometry, to derive stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]), and we adopt a spectral subtraction technique to highlight the strong chromospheric emission in the cores of hydrogen Hα and Ca ii H&K and infrared triplet (IRT) lines. We then fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. Results: We find that KIC 8429280 is a cool (K2 V) star with an age of about 50 Myr, based on its lithium content, that has passed its T Tau phase and is spinning up approaching the ZAMS on its radiative track. Its high level of chromospheric activity is clearly indicated by the strong radiative losses in Ca ii H&K and IRT, Hα, and Hβ lines. Furthermore, its Balmer decrement and the flux ratio of Ca ii IRT lines imply that these lines are mainly formed in optically-thick regions similar to solar plages. The analysis of the Kepler data uncovers evidence of at least seven enduring spots. Since the star's inclination is rather high - nearly 70° - the assignment of the spots to either the northern or southern hemisphere is not unambiguous. We find at least three solutions with nearly the same level of residuals. Even in the case of seven spots, the fit is far from being perfect. Owing to the exceptional precision of the Kepler photometry, it is not possible to reach the noise floor without strongly enhancing the degrees of freedom and, consequently, the non-uniqueness of the solution. The distribution of the active regions is such that the spots are

  10. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  11. Flare And Starspot-Induced Variabilities Of Red Dwarf Stars In The Open Cluster M37: Photometric Study On Stellar Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Chang, Seo-Won; Byun, Yong-Ik; Hartman, Joel D.

    2016-07-01

    We investigate the statistical properties of flare and starspot-induced variabilities of red dwarf stars in the open cluster M37, particularly (1) understanding magnetic activity phenomena that are seen in groups of stars (with the same age and mass) and (2) the correlations among activity indicators. The use of both tracers is particularly useful for statistical studies since it can provide more homogeneous information about their activity behaviors. We recalibrate the archival imaging data of the M37 obtained by one-month observing run with MMT/Megacam camera, i.e., Deep, High-cadence and Long-term monitoring survey. To detect any significant variability from cool objects, forced photometry with our multi-aperture indexing technique is applied to the entire time-series images. In this contributed talk, we present an update on flare and rotational statistics of this cluster and further strong evidences that support the classical age-rotation-activity paradigm.

  12. Active versus passive cooling during work in warm environments while wearing firefighting protective clothing.

    PubMed

    Selkirk, G A; McLellan, T M; Wong, J

    2004-08-01

    This study examined whether active or passive cooling during intermittent work reduced the heat strain associated with wearing firefighting protective clothing (FPC) and self-contained breathing apparatus (SCBA) in the heat (35 degrees Celsius, 50% relative humidity). Fifteen male Toronto firefighters participated in the heat-stress trials. Subjects walked at 4.5 km.h(-1) with 0% elevation on an intermittent work (50 min) and rest (30 min) schedule. Work continued until rectal temperature (T(re)) reached 39.5 degrees Celsius, or heart rate (HR) reached 95% of maximum or exhaustion. One of three cooling strategies, forearm submersion (FS), mister (M), and passive cooling (PC) were employed during the rest phases. Tolerance time (TT) and total work time (WT) (min) were significantly increased during FS (178.7 +/- 13.0 and 124.7 +/- 7.94, respectively) and M (139.1 +/- 8.28 and 95.1 +/- 4.96, respectively), compared with PC (108.0 +/- 3.59 and 78.0 +/- 3.59). Furthermore, TT and WT were significantly greater in FS compared with M. Rates of T(re) increase, HR and T-(sk) were significantly lower during active compared with passive cooling. In addition, HR and T(re) values in FS were significantly lower compared with M after the first rest phase. During the first rest phase, T(re) dropped significantly during FS (approximately 0.4 degree Celsius) compared with M (approximately 0.08 degree Celsius) while PC increased (approximately 0.2 degree Celsius). By the end of the second rest period T(re) was 0.9 degree Celsius lower in FS compared with M. The current findings suggest that there is a definite advantage when utilizing forearm submersion compared with other methods of active or passive cooling while wearing FPC and SCBA in the heat.

  13. Stochastic shock waves as a candidate mechanism for the formation of the He I 10830-A line in cool giant stars

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Luttermoser, Donald G.

    1990-01-01

    The question of whether strong shocks produced in time-dependent stochastic wave models can explain the formation of the He I 10830-A line in cool giant stars is examined. The research is based on the ab initio chromosphere model for Arcturus by Cuntz (1987), showing that a stochastic distribution of wave periods leads to overtaking and merging of shocks, which occasionally produce very strong shocks with temperatures larger than 40,000 K in the postshock regions. These temperatures can easily produce a significant population in the 2s 3S state by electron collisional excitation. The 10830-A line occurs in absorption when the densities in the shocks exceed 10 million/cu cm.

  14. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  15. The effect of heating and cooling on the velocity fluctuations in the ISM induced by the system of stars

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Kegel, W. H.

    1986-06-01

    Dissipative thermal effects are taken into account in the expressions for interstellar gas velocity fluctuations (due to the gravitational interaction with stars) derived by Kegel and Volk (1983), with application to the interpretation of interstellar lines, the large scale flow of the interstellar matter, and the collapse of interstellar clouds. Results indicate a decrease in the critical wavelength for gravitational instability, which value is prevented by thermal effects from becoming zero when the relative velocity approaches the velocity of sound, in contradiction with the results of Kegel and Volk, and of Niimi (1970). The velocity fluctuations in the gas derived by Kegel and Volk are shown to be reduced considerably, though velocity fluctuations many times the velocity of sound, which increase with increasing relative motion between gas and stars, are found, principally in molecular clouds.

  16. A SINFONI view of the nuclear activity and circumnuclear star formation in NGC 4303

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Colina, L.; Storchi-Bergmann, T.; Piqueras López, J.; Arribas, S.; Riffel, R.; Pastoriza, M.; Sales, Dinalva A.; Dametto, N. Z.; Labiano, A.; Davies, R. I.

    2016-10-01

    We present new maps of emission-line flux distributions and kinematics in both ionized (traced by H I and [Fe II] lines) and molecular (H2) gas of the inner 0.7 × 0.7 kpc2 of the galaxy NGC 4303, with a spatial resolution 40-80 pc and velocity resolution 90-150 km s- 1 obtained from near-IR integral field spectroscopy using the Very Large Telescope instrument SINFONI. The most prominent feature is a 200-250 pc ring of circumnuclear star-forming regions. The emission from ionized and molecular gas shows distinct flux distributions: while the strongest H I and [Fe II] emission comes from regions in the west side of the ring (ages ˜ 4 Myr), the H2 emission is strongest at the nucleus and in the east side of the ring (ages > 10 Myr). We find that regions of enhanced hot H2 emission are anti-correlated with those of enhanced [Fe II] and H I emission, which can be attributed to post-starburst regions that do not have ionizing photons anymore but still are hot enough (≈2000 K) to excite the H2 molecule. The line ratios are consistent with the presence of an active galactic nucleus at the nucleus. The youngest regions have stellar masses in the range 0.3-1.5 × 105 M⊙ and ionized and hot molecular gas masses of ˜0.25-1.2 × 104 M⊙ and ˜2.5-5 M⊙, respectively. The stellar and gas velocity fields show a rotation pattern, with the gas presenting larger velocity amplitudes than the stars, with a deviation observed for the H2 along the nuclear bar, where increased velocity dispersion is also observed, possibly associated with non-circular motions along the bar. The stars in the ring show smaller velocity dispersion than the surroundings, which can be attributed to a cooler dynamics due to their recent formation from cool gas.

  17. CHARACTERIZING THE COOL KOIs. III. KOI 961: A SMALL STAR WITH LARGE PROPER MOTION AND THREE SMALL PLANETS

    SciTech Connect

    Muirhead, Philip S.; Johnson, John Asher; Morton, Timothy D.; Pineda, John Sebastian; Bottom, Michael; Crepp, Justin R.; Kirby, Evan N.; Apps, Kevin; Carter, Joshua A.; Fabrycky, Daniel C.; Hamren, Katherine; Schlawin, Everett; Covey, Kevin R.; Stassun, Keivan G.; Pepper, Joshua; Hebb, Leslie; Howard, Andrew W.; Isaacson, Howard T.; Marcy, Geoffrey W.; and others

    2012-03-10

    We characterize the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets discovered by the Kepler mission. We proceed by comparing KOI 961 to Barnard's Star, a nearby, well-characterized mid-M dwarf. We compare colors, optical and near-infrared spectra, and find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion, and no quiescent H{alpha} emission-all of which are consistent with being old M dwarfs. We combine empirical measurements of Barnard's Star and expectations from evolutionary isochrones to estimate KOI 961's mass (0.13 {+-} 0.05 M{sub Sun }), radius (0.17 {+-} 0.04 R{sub Sun }), and luminosity (2.40 Multiplication-Sign 10{sup -3.0{+-}0.3} L{sub Sun }). We calculate KOI 961's distance (38.7 {+-} 6.3 pc) and space motions, which, like Barnard's Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 R{sub Circled-Plus }, with KOI 961.03 being Mars-sized (R{sub P} = 0.57 {+-} 0.18 R{sub Circled-Plus }), and they represent some of the smallest exoplanets detected to date.

  18. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2012-12-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H leftrightarrow X(n'l') + H and charge transfer processes X(nl) + H leftrightarrow X+ + H- have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  19. Stellar activity and the rotation of Hyades stars

    SciTech Connect

    Radick, R.R.; Baliunas, S.L.

    1987-12-01

    New measurements of rotation periods for Hyades stars, which were obtained from re-analysis of Mount Wilson Observatory Ca II H-K emission flux measurements, are reported. The existence of systematic, color-dependent discrepancies between the measured rotation periods for Hyades stars and those predicted by the Rossby relation as originally calibrated by Noyes et al. 1984 has led to a re-examination of the form of the relationship between chromospheric emission, rotation, and color.

  20. CKI isoforms α and ε regulate Star-PAP target messages by controlling Star-PAP poly(A) polymerase activity and phosphoinositide stimulation.

    PubMed

    Laishram, Rakesh S; Barlow, Christy A; Anderson, Richard A

    2011-10-01

    Star-PAP is a non-canonical, nuclear poly(A) polymerase (PAP) that is regulated by the lipid signaling molecule phosphatidylinositol 4,5 bisphosphate (PI4,5P(2)), and is required for the expression of a select set of mRNAs. It was previously reported that a PI4,5P(2) sensitive CKI isoform, CKIα associates with and phosphorylates Star-PAP in its catalytic domain. Here, we show that the oxidative stress-induced by tBHQ treatment stimulates the CKI mediated phosphorylation of Star-PAP, which is critical for both its polyadenylation activity and stimulation by PI4,5P(2). CKI activity was required for the expression and efficient 3'-end processing of its target mRNAs in vivo as well as the polyadenylation activity of Star-PAP in vitro. Specific CKI activity inhibitors (IC261 and CKI7) block in vivo Star-PAP activity, but the knockdown of CKIα did not equivalently inhibit the expression of Star-PAP targets. We show that in addition to CKIα, Star-PAP associates with another CKI isoform, CKIε in the Star-PAP complex that phosphorylates Star-PAP and complements the loss of CKIα. Knockdown of both CKI isoforms (α and ε) resulted in the loss of expression and the 3'-end processing of Star-PAP targets similar to the CKI activity inhibitors. Our results demonstrate that CKI isoforms α and ε modulate Star-PAP activity and regulates Star-PAP target messages.

  1. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  2. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  3. National commercial solar heating and cooling demonstration: purposes, program activities, and implications for future programs

    SciTech Connect

    Koontz, R.; Genest, M.; Bryant, B.

    1980-05-01

    The Solar Heating and Cooling Demonstration Act of 1974 created a set of activities to demonstrate the potential use of solar heating within a three-year period and of combined solar heating and cooling within a five-year period. This study assesses the Commercial Demonstration Program portion of the activity in terms of its stated goals and objectives. The primary data base was DOE contractor reports on commercial demonstration projects. It was concluded that the program did not provide data to support a positive decision for the immediate construction or purchase of commercial solar systems. However, the program may have contributed to other goals in the subsequent legislation; i.e., research and development information, stimulation of the solar industry, and more informed policy decisions.

  4. An Orbital Radial Velocity Study of PG 1701+359, a Hot Subdwarf B Star with a Cool Main Sequence Companion

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Wade, R. A.; Barlow, B. N.; Stark, M. A.

    2012-01-01

    Many hot subdwarf B (sdB) stars show composite spectra in which the companion is typically a G or K star. Binary population synthesis (BPS) models show that these systems can be formed by Roche lobe overflow but disagree on the resulting orbital parameters; some predict long periods (years) while others predict much shorter periods (days). Little evidence currently exists to support either theory, but the few observations made to date suggest the periods are not short. At Pennsylvania State University, we conducted observations to measure the orbital parameters of such systems using the Medium Resolution Spectrograph at the Hobby-Eberly Telescope with 700 m/s precision. Here we present radial velocity (RV) measurements of PG 1701+359, the most well-studied target in our sample. We observed 14 epochs from April 2005 to July 2008 and measured the velocity of the cool companion using cross-correlation techniques. Preliminary RV variations have been detected and indicate the binary has neither a short period nor a large velocity amplitude. This material is based upon work supported by the National Science Foundation under Grant No. AST-0908642.

  5. Active cooling for downhole instrumentation: design criteria and conceptual design summary

    SciTech Connect

    Bennett, G.A.

    1986-05-01

    This report summarizes the results of a literature survey that describes successful tests of geophysical instruments and their thermal protection systems. The conditions to which an instrument is subjected are formulated into relevant thermal and mechanical design criteria that have proved useful for improving passive thermal protection systems and selecting the preliminary feasibility of active refrigeration systems. A brief summary of the results of a series of conceptual designs on seven different active refrigeration systems is given. The systems are ranked according to feasibility for use in downhole active cooling applications.

  6. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    SciTech Connect

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  7. Grueneberg Glomeruli in the Olfactory Bulb are Activated by Odorants and Cool Temperature.

    PubMed

    Bumbalo, Rosolino; Lieber, Marilena; Schroeder, Lisa; Polat, Yasemin; Breer, Heinz; Fleischer, Joerg

    2016-08-03

    Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored. It was found that all of these glomeruli were activated, irrespective of their localization in the bulb. To verify that the activation of juxtaglomerular cells in Grueneberg glomeruli was indeed based on stimulation of Grueneberg ganglion neurons, the 2,3-DMP-induced responses in these glomeruli were investigated in mice lacking the cyclic nucleotide-gated channel CNGA3 which is critical for chemo- and thermosensory signal transduction in Grueneberg ganglion neurons. This approach revealed that elimination of CNGA3 led to a reduction of the odorant-induced activity in Grueneberg glomeruli, indicating that the activation of these glomeruli is based on a preceding stimulation of the Grueneberg ganglion. Analyzing whether Grueneberg glomeruli in the bulb might also process thermosensory information, it was found that upon exposure to coolness, Grueneberg glomeruli were activated. Investigating mice lacking CNGA3, the activation of these glomeruli by cool temperatures was attenuated.

  8. Bar Effects on Central Star Formation and Active Galactic Nucleus Activity

    NASA Astrophysics Data System (ADS)

    Oh, Seulhee; Oh, Kyuseok; Yi, Sukyoung K.

    2012-01-01

    Galactic bars are often suspected to be channels of gas inflow to the galactic center and to trigger central star formation and active galactic nucleus (AGN) activity. However, the current status on this issue based on empirical studies is unsettling, especially regarding AGNs. We investigate this question based on the Sloan Digital Sky Survey Data Release 7. From the nearby (0.01 < z < 0.05) bright (M r < -19) database, we have constructed a sample of 6658 relatively face-on late-type galaxies through visual inspection. We found 36% of them to have a bar. Bars are found to be more common in galaxies with earlier morphology. This makes sample selection critical. Parameter-based selections would miss a large fraction of barred galaxies of early morphology. Bar effects on star formation or AGNs are difficult to understand properly because multiple factors (bar frequency, stellar mass, black hole mass, gas contents, etc.) seem to contribute to them in intricate manners. In the hope of breaking these degeneracies, we inspect bar effects for fixed galaxy properties. Bar effects on central star formation seem higher in redder galaxies. Bar effects on AGNs on the other hand are higher in bluer and less massive galaxies. These effects seem more pronounced with increasing bar length. We discuss possible implications in terms of gas contents, bar strength, bar evolution, fueling timescale, and the dynamical role of supermassive black hole.

  9. SiO rotation-vibration bands in cool giants II. The behaviour of SiO bands in AGB stars

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Höfner, S.; Wiedemann, G.; Hron, J.; Jørgensen, U. G.; Käufl, H. U.; Windsteig, W.

    1999-02-01

    The first overtone rotation-vibration transitions of SiO give rise to prominent bandheads in the wavelength range between 4.0 and 4.5 mu m. In order to study the behaviour of these features in AGB stars we observed the 3.94 to 4.12 mu m spectra for a sample of 23 oxygen-rich late-type variables. In contrast to the SRb objects, the Miras show a very large scatter of the equivalent widths of the SiO bands. Despite their cool temperatures some of them have only weak or no SiO absorption, which seems to be related to their strong pulsations producing a large variability of the features. When comparing the band intensities with photometric data, we found a general decrease with bluer IRAS (12-25) colors. However, this trend may only reflect the different behaviour of the Miras and SRb stars in our sample. We did not discover any correlation of the equivalent widths with the effective temperatures derived from (J-K), or with the (K-12) color and the IRAS-LRS class, both of which can be regarded as a rough measure for the thickness of the circumstellar shell. In Paper I of this series (Aringer et al. \\cite{siop}) we have shown that synthetic spectra calculated from hydrostatic MARCS atmospheres are successful in reproducing the observed band intensities of giants with spectral types earlier than about M5 III and M2 II\\@. However, they generally predict too strong features for very cool and extended objects, as they are discussed in this work. And they fail completely when it comes to Miras with weak or no SiO absorption. These stars are dominated by dynamical phenomena and, not surprisingly, they can therefore not be described by hydrostatic structures. Thus, we have also computed synthetic spectra based on experimental dynamical models. Although they still have some shortcomings, we demonstrate that, in principle, they are able to explain the whole range of equivalent widths of the observed SiO bandheads and their variations. Based on observations made at the European

  10. Search for cool giant exoplanets around young and nearby stars. VLT/NaCo near-infrared phase-coronagraphic and differential imaging

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Boccaletti, A.; Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Bonnefoy, M.; Desidera, S.; Sylvestre, M.; Baudoz, P.; Galicher, R.; Mouillet, D.

    2014-06-01

    Context. Spectral differential imaging (SDI) is part of the observing strategy of current and future high-contrast imaging instruments. It aims to reduce the stellar speckles that prevent the detection of cool planets by using in/out methane-band images. It attenuates the signature of off-axis companions to the star, such as angular differential imaging (ADI). However, this attenuation depends on the spectral properties of the low-mass companions we are searching for. The implications of this particularity on estimating the detection limits have been poorly explored so far. Aims: We perform an imaging survey to search for cool (Teff< 1000-1300 K) giant planets at separations as close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data taking the photometric bias into account. This will lead to a better view of the SDI performance. Methods: We observed a selected sample of 16 stars (age <200 Myr, distance <25 pc) with the phase-mask coronagraph, SDI, and ADI modes of VLT/NaCo. Results: We do not detect any companions. As for the estimation of the sensitivity limits, we argue that the SDI residual noise cannot be converted into mass limits because it represents a differential flux, unlike what is done for single-band images, in which fluxes are measured. This results in degeneracies for the mass limits, which may be removed with the use of single-band constraints. We instead employ a method of directly determining the mass limits and compare the results from a combined processing SDI-ADI (ASDI) and ADI. The SDI flux ratio of a planet is the critical parameter for the ASDI performance at close-in separations (≲1''). The survey is sensitive to cool giant planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions: For close-in separations, the optimal regime for SDI corresponds to SDI flux ratios higher than ~2. According to the BT-Settl model, this translates into Teff ≲ 800 K, which is significantly lower than the methane

  11. Tracing cool molecular gas and star formation on ˜100 pc scales within a z ˜ 2.3 galaxy

    NASA Astrophysics Data System (ADS)

    Thomson, A. P.; Ivison, R. J.; Owen, Frazer N.; Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian

    2015-04-01

    We present new, high-angular resolution interferometric observations with the Karl G. Jansky Very Large Array of 12CO J = 1-0 line emission and 4-8 GHz continuum emission in the strongly lensed, z = 2.3 submillimetre galaxy, SMM J21352-0102. Using these data, we identify and probe the conditions in ˜100 pc clumps within this galaxy, which we consider to be potential giant molecular cloud complexes, containing up to half of the total molecular gas in this system. In combination with far-infrared and submillimetre data, we investigate the far-infrared/radio correlation, measuring qIR = 2.39 ± 0.17 across SMM J21352. We search for variations in the properties of the interstellar medium (ISM) throughout the galaxy by measuring the spatially resolved qIR and radio spectral index, αradio, finding ranges qIR =[2.1, 2.6] and αradio = [-1.5, -0.7]. We argue that these ranges in αradio and qIR may reflect variations in the age of the ISM material. Using multi-J 12CO data, we quantitatively test a recent theoretical model relating the star formation rate surface density to the excitation of 12CO, finding good agreement between the model and the data. Lastly, we study the Schmidt-Kennicutt relation, both integrated across the system and within the individual clumps. We find small offsets between SMM J21352 and its clumps relative to other star-forming galaxy populations on the Schmidt-Kennicutt plot - such offsets have previously been interpreted as evidence for a bi-modal star formation law, but we argue that they can be equally well explained as arising due to a combination of observational uncertainties and systematic biases in the choice of model used to interpret the data.

  12. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Breuck, C. de; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Rotermund, K. M.; Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A.; Fassnacht, C. D.; Gonzalez, A. H.; Ma, J.; González-López, J.; Hezaveh, Y.; Malkan, M.; and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  13. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    USGS Publications Warehouse

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  14. High dispersion spectroscopy of solar-type superflare stars. II. Stellar rotation, starspots, and chromospheric activities

    NASA Astrophysics Data System (ADS)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2015-06-01

    We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS. These 50 stars were selected from the solar-type superflare stars that we had discovered from the Kepler data. More than half (34 stars) of these 50 target superflare stars show no evidence of binarity, and we estimated stellar parameters of these 34 stars in our previous study (Notsu et al. 2015, PASJ, 67, 32). According to our previous studies using Kepler data, superflare stars show quasi-periodic brightness variations whose amplitude (0.1%-10%) is much larger than that of the solar brightness variations (0.01%-0.1%) caused by the existence of sunspots on the rotating solar surface. In this study, we investigated whether these quasi-periodic brightness variations of superflare stars are explained by the rotation of a star with fairly large starspots, by using stellar parameters derived in Paper I. First, we confirmed that the value of the projected rotational velocity, v sin i, is consistent with the rotational velocity estimated from the period of the brightness variation. Next, we measured the intensity of Ca II infrared triplet lines and Hα line, good indicators of the stellar chromospheric activity, and compared them with other stellar properties. The intensity of Ca II infrared triplet lines indicates that the mean magnetic field strength () of the target superflare stars can be higher than that of the Sun. A correlation between the amplitude of the brightness variation and the intensity of Ca II triplet line was found. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared to the Sun. These results support the idea that the brightness variation of superflare stars is due to the rotation with large starspots.

  15. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  16. Chromospheric activity and ages of solar-type stars

    SciTech Connect

    Barry, D.C.; Cromwell, R.H.; Hege, E.K.

    1987-04-01

    Observations of 15 solar-type stars in the intermediate-age open cluster NGC 752 are reported. A lower resolution analog of the Mount Wilson S index is shown to yield absolute chromospheric surface flux values for these stars with about 60 percent of the sensitivity of the Mount Wilson system. Absolute chromospheric surface fluxes of solar-type stars in eight clusters ranging from 10 million yrs to six billion or more years in age are presented. Two heuristic forms are shown to fit the data about equally well, with no indication of a discontinuity at intermediate ages. These relations can yield chromospheric ages for any G-type dwarf or subgiant with a Mount Wilson S index. The usefulness of this lower resolution approach for studies of chemical and dynamical evolution of the Galaxy as well as of the stellar birth rate is pointed out. 24 references.

  17. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  18. Mitigation of Autoignition Due to Premixing in a Hypervelocity Flow Using Active Wall Cooling

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2013-01-01

    Preinjection of fuel on the forebody of an airbreathing vehicle is a proposed method to gain access to hypervelocity flight Mach numbers. However, this creates the possibility of autoignition either near the wall or in the core of the flow, thereby consuming fuel prematurely as well as increasing the amount of pressure drag on the vehicle. The computational fluid dynamics code VULCAN was used to conduct three dimensional simulations of the reacting flow in the vicinity of hydrogen injectors on a flat plate at conditions relevant to a Mach 12 notional flight vehicle forebody to determine the location where autoignition occurs. Active wall cooling strategies were formulated and simulated in response to regions of autoignition. It was found that tangential film cooling using hydrogen or helium were both able to nearly or completely eliminate wall autoignition in the flow domain of interest.

  19. Micro free-flow IEF enhanced by active cooling and functionalized gels.

    PubMed

    Albrecht, Jacob W; Jensen, Klavs F

    2006-12-01

    Rapid free-flow IEF is achieved in a microfluidic device by separating the electrodes from the focusing region with porous buffer regions. Moving the electrodes outside enables the use of large electric fields without the detrimental effects of bubble formation in the active region. The anode and cathode porous buffer regions, which are formed by acrylamide functionalized with immobilized pH groups, allow ion transport while providing buffering capacity. Thermoelectric cooling mitigates the effects of Joule heating on sample focusing at high field strengths (approximately 500 V/cm). This localized cooling was observed to increase device performance. Rapid focusing of low-molecular-weight p/ markers and Protein G-mouse IgG complexes demonstrate the versatility of the technique. Simulations provide insight into and predict device performance based on a well-defined sample composition.

  20. Transport and deposition of activation products in a helium cooled fusion power plant

    SciTech Connect

    Bickford, W.E.

    1980-09-01

    The transport and deposition of neutron activation products in a helium cooled tokamak fusion power plant are investigated. Stainless steel is used as coolant channel material for a helium/steam system. The important gamma emitting nuclides /sup 56/Mn, /sup 54/Mn, /sup 57/Co, /sup 58/Co, /sup 60/Co, /sup 51/Cr, and /sup 99/Mo are considered. The dominant release mechanism identified is direct daughter recoil emission from (n,x) type reactions. Corrosion and evaporation are discussed. The radionuclide inventory released by these mechanisms is predicted to exceed 1 x 10/sup 4/ Ci for a reference reactor design after only several days of operation, and approach 3.5 x 10/sup 4/ Ci in equilibrium. A mass transport model is then used to predict the deposition pattern of this inventory in the reactor cooling system.

  1. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  2. Observations of the effect of wind on the cooling of active lava flows

    USGS Publications Warehouse

    Keszthelyi, L.; Harris, A.J.L.; Dehn, J.

    2003-01-01

    We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.

  3. A NEUTRON STAR STIFF EQUATION OF STATE DERIVED FROM COOLING PHASES OF THE X-RAY BURSTER 4U 1724-307

    SciTech Connect

    Suleimanov, Valery; Werner, Klaus; Poutanen, Juri; Revnivtsev, Mikhail E-mail: werner@astro.uni-tuebingen.de

    2011-12-01

    Thermal emission during X-ray bursts is a powerful tool for determining neutron star (NS) masses and radii if the Eddington flux and the apparent radius in the cooling tail can be measured accurately and distances to the sources are known. We propose here an improved method of determining the basic stellar parameters using the data from the cooling phase of photospheric radius expansion (PRE) bursts covering a large range of luminosities. Because at that phase the blackbody apparent radius depends only on the spectral hardening factor (color correction), we suggest fitting the theoretical dependences of the color correction versus flux in Eddington units to the observed variations of the inverse square root of the apparent blackbody radius with the flux. For that we use a large set of atmosphere models for burst luminosities varying by three orders of magnitude and for various chemical compositions and surface gravities. We show that spectral variations observed during a long PRE burst from 4U 1724-307 are entirely consistent with the theoretical expectations for the passively cooling NS atmospheres. Our method allows us to more reliably determine both the Eddington flux (which is found to be smaller than the touchdown flux by 15%) and the ratio of the stellar apparent radius to the distance. We then find a lower limit on the NS radius of 14 km for masses below 2.3 M{sub Sun }, independently of the chemical composition. These results suggest that the matter inside NSs is characterized by a stiff equation of state. We also find evidence in favor of hydrogen-rich accreting matter and obtain an upper limit to the distance of 7 kpc. We finally show that the apparent blackbody emitting area in the cooling tails of the short bursts from 4U 1724-307 is two times smaller than that for the long burst and their evolution does not follow the theory. This makes their usage for determining the NS parameters questionable and casts serious doubt on the results of previous works

  4. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity.

    PubMed

    Poderoso, Cecilia; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podesta, Ernesto J

    2009-03-05

    It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.

  5. Coronal activity in F-, G-, and K-type stars. IV - Evidence for expanding loop geometries in stellar coronae

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Lemen, J. R.; Mewe, R.

    1989-01-01

    A detailed analysis is presented of X-ray spectra of Capella and of Sigma2 CrB. The spectra of both stars are compatible with coronae consisting of two different ensembles of static loops with different maximum temperatures and ratios of the cross sectional areas at the loop top and at the footpoint. The cool (5 MK) loop components in both stars show evidence of relatively strong expansion with height. The hot (30 MK) components appear to expand much less.

  6. A New Active Stage of the Symbiotic Star CH Cygni

    NASA Astrophysics Data System (ADS)

    Iijima, Takashi

    2017-03-01

    The spectral variation of the symbiotic star CH Cygni has been monitored at Asiago Astrophysical Observatory using the 1.22m Galileo telescope. Recently, P Cygni type high velocity absorption components appeared on the H I Balmer lines, which were not seen in early December 2016.

  7. Warm dust around cool stars: field M dwarfs with Wise 12 or 22 μm excess emission

    SciTech Connect

    Theissen, Christopher A.; West, Andrew A.

    2014-10-20

    Using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic catalog, we searched the WISE AllWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs (dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux greater than the typical dM photosphere levels at 12 and/or 22 μm, including seven new stars within the Orion OB1 footprint. We characterize the dust populations inferred from each IR excess and investigate the possibility that these excesses could arise from ultracool binary companions by modeling combined spectral energy distributions. Our observed IR fluxes are greater than levels expected from ultracool companions (>3σ). We also estimate that the probability the observed IR excesses are due to chance alignments with extragalactic sources is <0.1%. Using SDSS spectra we measure surface gravity-dependent features (K, Na, and CaH 3) and find <15% of our sample indicates low surface gravities. Examining tracers of youth (Hα, UV fluxes, and Li absorption), we find <3% of our sample appear young, indicating we are observing a population of field stars ≳1 Gyr, likely harboring circumstellar material. We investigate age-dependent properties probed by this sample, studying the disk fraction as a function of Galactic height. The fraction remains small and constant to |Z| ∼ 700 pc and then drops, indicating little to no trend with age. Possible explanations for disks around field dMs include (1) collisions of planetary bodies, (2) tidal disruption of planetary bodies, or (3) failed planet formation.

  8. Warm Dust around Cool Stars: Field M Dwarfs with WISE 12 or 22 μm Excess Emission

    NASA Astrophysics Data System (ADS)

    Theissen, Christopher A.; West, Andrew A.

    2014-10-01

    Using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic catalog, we searched the WISE AllWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs (dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux greater than the typical dM photosphere levels at 12 and/or 22 μm, including seven new stars within the Orion OB1 footprint. We characterize the dust populations inferred from each IR excess and investigate the possibility that these excesses could arise from ultracool binary companions by modeling combined spectral energy distributions. Our observed IR fluxes are greater than levels expected from ultracool companions (>3σ). We also estimate that the probability the observed IR excesses are due to chance alignments with extragalactic sources is <0.1%. Using SDSS spectra we measure surface gravity-dependent features (K, Na, and CaH 3) and find <15% of our sample indicates low surface gravities. Examining tracers of youth (Hα, UV fluxes, and Li absorption), we find <3% of our sample appear young, indicating we are observing a population of field stars gsim1 Gyr, likely harboring circumstellar material. We investigate age-dependent properties probed by this sample, studying the disk fraction as a function of Galactic height. The fraction remains small and constant to |Z| ~ 700 pc and then drops, indicating little to no trend with age. Possible explanations for disks around field dMs include (1) collisions of planetary bodies, (2) tidal disruption of planetary bodies, or (3) failed planet formation.

  9. Exploring wind-driving dust species in cool luminous giants. III. Wind models for M-type AGB stars: dynamic and photometric properties

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.; Eriksson, K.

    2015-03-01

    Context. Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions which creates favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg2SiO4 and MgSiO3). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. Aims: The purpose of this study is to investigate if photon scattering on Mg2SiO4 grains can produce realistic outflows for a wide range of stellar parameters in M-type AGB stars. Methods: We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg2SiO4 grains to calculate the first extensive set of time-dependent wind models for M-type AGB stars. This set includes 139 solar-mass models, with three different luminosities (5000 L⊙, 7000 L⊙, and 10 000 L⊙) and effective temperatures ranging from 2600 K to 3200 K. The resulting wind properties, visual and near-IR photometry and mid-IR spectra are compared with observations. Results: We show that the models can produce outflows for a wide range of stellar parameters. We also demonstrate that they reproduce observed mass-loss rates and wind velocities, as well as visual and near-IR photometry. However, the current models do not show the characteristic silicate features at 10 and 18 μm as a result of the cool temperature of Mg2SiO4 grains in the wind. Including a small amount of Fe in the grains further out in the circumstellar envelope will

  10. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  11. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  12. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  13. EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-07-01

    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than {approx}0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  14. Comparative Analysis of the Activity Cycles of the Atmospheres of the Sun and of Stars of the Solar-Type

    NASA Astrophysics Data System (ADS)

    Bruevich, E. A.; Bruevich, V. V.; Shimanovskaya, E. V.

    2016-03-01

    The atmospheric activity of the sun and of stars of the solar-type is analyzed using observations from the HK-project at the Mount Wilson Observatory, California, and the Carnegie Planet Search Program at the Keck and Lick Observatories, as well as from the Magellan Planet Search Program at the Las Campanas Observatory. It is shown that a cyclical activity of the stars that is analogous to the 11-year solar activity cycle occurs in stars of spectral classes F, G, and K and is more pronounced in stars of class K. A comparative analysis of the solar-type stars with different levels of chromospheric and coronal activity confirms that the sun is one of the stars with a comparatively low level of atmospheric activity and that these stars have a minimal level of coronal emission and minimal variations in the fluxes of photospheric radiation.

  15. CHROMOSPHERICALLY ACTIVE STARS IN THE RADIAL VELOCITY EXPERIMENT (RAVE) SURVEY. I. THE CATALOG

    SciTech Connect

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.; Siviero, A.; Steinmetz, M.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Grebel, E. K.; Freeman, K. C.; Kordopatis, G.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Wyse, R. F. G.

    2013-10-20

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EW{sub IRT} for ∼44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ∼14,000 show a detectable chromospheric flux with at least a 2σ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases.

  16. SPECTRA OF TYPE II CEPHEID CANDIDATES AND RELATED STARS

    SciTech Connect

    Schmidt, E. G.; Rogalla, Danielle; Thacker-Lynn, Lauren E-mail: drogall1@bigred.unl.edu

    2011-02-15

    We present low-resolution spectra for variable stars in the Cepheid period range from the ROTSE-I Demonstration Project and the All Sky Automated Survey, some of which were previously identified as type II Cepheid candidates. We have derived effective temperatures, gravities, and metallicities from the spectra. Based on this, three types of variables were identified: Cepheid strip stars, cool stars that lie along the red subgiant and giant branch, and cool main-sequence stars. Many fewer type II Cepheids were found than expected and most have amplitudes less than 0.4 mag. The cool variables include many likely binaries as well as intrinsic variables. Variation among the main-sequence stars is likely to be mostly due to binarity or stellar activity.

  17. Magnetic activity and hot Jupiters of young Suns: the weak-line T Tauri stars V819 Tau and V830 Tau

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Hébrard, E.; Hussain, G. A. J.; Moutou, C.; Malo, L.; Grankin, K.; Vidotto, A. A.; Alencar, S. H. P.; Gregory, S. G.; Jardine, M. M.; Herczeg, G.; Morin, J.; Fares, R.; Ménard, F.; Bouvier, J.; Delfosse, X.; Doyon, R.; Takami, M.; Figueira, P.; Petit, P.; Boisse, I.; MaTYSSE Collaboration

    2015-11-01

    We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri stars (wTTSs) V819 Tau and V830 Tau within the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) programme, involving the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. At ≃3 Myr, both stars dissipated their discs recently and are interesting objects for probing star and planet formation. Profile distortions and Zeeman signatures are detected in the unpolarized and circularly polarized lines, whose rotational modulation we modelled using tomographic imaging, yielding brightness and magnetic maps for both stars. We find that the large-scale magnetic fields of V819 Tau and V830 Tau are mostly poloidal and can be approximated at large radii by 350-400 G dipoles tilted at ≃30° to the rotation axis. They are significantly weaker than the field of GQ Lup, an accreting classical T Tauri star (cTTS) with similar mass and age which can be used to compare the magnetic properties of wTTSs and cTTSs. The reconstructed brightness maps of both stars include cool spots and warm plages. Surface differential rotation is small, typically ≃4.4 times smaller than on the Sun, in agreement with previous results on wTTSs. Using our Doppler images to model the activity jitter and filter it out from the radial velocity (RV) curves, we obtain RV residuals with dispersions of 0.033 and 0.104 km s-1 for V819 Tau and V830 Tau, respectively. RV residuals suggest that a hot Jupiter may be orbiting V830 Tau, though additional data are needed to confirm this preliminary result. We find no evidence for close-in giant planet around V819 Tau.

  18. Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in a young Sun-like star

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Pagano, I.; Leto, G.; Messina, S.; Aigrain, S.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Boumier, P.; Collier Cameron, A.; Comparato, M.; Cutispoto, G.; de Medeiros, J. R.; Foing, B.; Kaiser, A.; Moutou, C.; Parihar, P. S.; Silva-Valio, A.; Weiss, W. W.

    2009-01-01

    Context: The space experiment CoRoT has recently detected transits by a hot Jupiter across the disc of an active G7V star (CoRoT-Exo-2a) that can be considered as a good proxy for the Sun at an age of approximately 0.5 Gyr. Aims: We present a spot modelling of the optical variability of the star during 142 days of uninterrupted observations performed by CoRoT with unprecedented photometric precision. Methods: We apply spot modelling approaches previously tested in the case of the Sun by modelling total solar irradiance variations, a good proxy for the optical flux variations of the Sun as a star. The best results in terms of mapping of the surface brightness inhomogeneities are obtained by means of maximum entropy regularized models. To model the light curve of CoRoT-Exo-2a, we take into account the photometric effects of both cool spots and solar-like faculae, adopting solar analogy. Results: Two active longitudes initially on opposite hemispheres are found on the photosphere of CoRoT-Exo-2a with a rotation period of 4.522 ± 0.024 days. Their separation changes by ≈80° during the time span of the observations. From this variation, a relative amplitude of the surface differential rotation lower than ~1 percent is estimated. Individual spots form within the active longitudes and show an angular velocity ~1 percent lower than that of the longitude pattern. The total spotted area shows a cyclic oscillation with a period of 28.9 ± 4.3 days, which is close to 10 times the synodic period of the planet as seen by the rotating active longitudes. We discuss the effects of solar-like faculae on our models, finding indications of a facular contribution to the optical flux variations of CoRoT-Exo-2a being significantly smaller than in the present Sun. Conclusions: The implications of such results for the internal rotation of CoRoT-Exo-2a are discussed, based on solar analogy. A possible magnetic star-planet interaction is suggested by the cyclic variation of the spotted

  19. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Structural analysis

    NASA Technical Reports Server (NTRS)

    Baker, A. H.

    1975-01-01

    The effects of fuselage cross-section (circular and elliptical) and structural arrangement (integral and nonintegral tanks) on the performance of actively cooled hypersonic cruise vehicles was evaluated. It was found that integrally machined stiffening of the tank walls, while providing the most weight-efficient use of materials, results in higher production costs. Fatigue and fracture mechanics appeared to have little effect on the weight of the three study aircraft. The need for thermal strain relief through insulation is discussed. Aircraft size and magnitude of the internal pressure are seen to be significant factors in tank design.

  20. Inquiry-based Science Activities Using The Infrared Zoo and Infrared Yellowstone Resources at Cool Cosmos

    NASA Astrophysics Data System (ADS)

    Daou, D.; Gauthier, A.

    2003-12-01

    Inquiry-based activities that utilize the Cool Cosmos image galleries have been designed and developed by K12 teachers enrolled in The Invisible Universe Online for Teachers course. The exploration activities integrate the Our Infrared World Gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/our_ir_world_gallery.html) with either the Infrared Zoo gallery (http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/index.html) or the Infrared Yellowstone image http://coolcosmos.ipac.caltech.edu/image_galleries/ir_yellowstone/index.html) and video (http://coolcosmos.ipac.caltech.edu/videos/ir_yellowstone/index.html) galleries. Complete instructor guides have been developed for the activities and will be presented by the authors in poster and CD form. Although the activities are written for middle and highschool learners, they can easily be adapted for college audiences. The Our Infrared World Gallery exploration helps learners think critically about visible light and infrared light as they compare sets of images (IR and visible light) of known objects. For example: by taking a regular photograph of a running faucet, can you tell if it is running hot or cold water? What new information does the IR image give you? The Infrared Zoo activities encourage learners to investigate the differences between warm and cold blooded animals by comparing sets of IR and visible images. In one activity, learners take on the role of a pit viper seeking prey in various desert and woodland settings. The main activities are extended into the real world by discussing and researching industrial, medical, and societal applications of infrared technologies. The Infrared Yellowstone lessons give learners a unique perspective on Yellowstone National Park and it's spectacular geologic and geothermal features. Infrared video technology is highlighted as learners make detailed observations about the visible and infrared views of the natural phenomena. The "Cool Cosmos" EPO activities are

  1. Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 . I. Spectropolarimetric observations in all four Stokes parameters

    NASA Astrophysics Data System (ADS)

    Rusomarov, N.; Kochukhov, O.; Piskunov, N.; Jeffers, S. V.; Johns-Krull, C. M.; Keller, C. U.; Makaganiuk, V.; Rodenhuis, M.; Snik, F.; Stempels, H. C.; Valenti, J. A.

    2013-10-01

    Context. High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. High-quality spectra in the Stokes IQUV parameters are currently available for very few early-type magnetic chemically peculiar stars. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712 with a recently commissioned spectropolarimeter. Aims: The goal of our work is to examine the circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. Methods: HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. We achieved full rotational phase coverage with 43 individual Stokes parameter observations. The resulting spectra have a signal-to-noise ratio of 300-600 and resolving power exceeding 105. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare earth elements. Results: We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, ⟨Bz⟩, with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. Combining previous ⟨Bz⟩ measurements with our data allowed us to determine an improved rotational period of the star, Prot = 12.45812 ± 0.00019 d. We also measured the longitudinal magnetic field from the cores of Hα and Hβ lines. The analysis of ⟨Bz⟩ measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our ⟨Bz⟩ and

  2. Stellar Activity and the Rotation of Hyades Stars

    DTIC Science & Technology

    1987-12-01

    emnission (RH~t ) Is plotted ag.,rr-t Ros-sb% numiber -- the rotation period scaled by the convective turnover time scale The solid curve is the riresir...also be relieved by a moudification to the shape ot thre scaling funiction r,) as shown in Fig Ic The solid curve is the meant irlation obitained by...pre’dicted period, scaled by observed period) for -22 Hyvades stars (b,) Normalized Call H-K emision ass a f nction or Rossby number The solid curve is. the

  3. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  4. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    SciTech Connect

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  5. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling.

    PubMed

    Chaudhary, V; Ramanujan, R V

    2016-10-11

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100-xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg(-1). Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  6. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    NASA Astrophysics Data System (ADS)

    Chaudhary, V.; Ramanujan, R. V.

    2016-10-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100‑xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg‑1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  7. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    PubMed Central

    Chaudhary, V.; Ramanujan, R.V.

    2016-01-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100−xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg−1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications. PMID:27725754

  8. Radial velocity measurements of the chromospherically-active stars (2): HD 28591 = V492 Per

    NASA Technical Reports Server (NTRS)

    Dadonas, V.; Sperauskas, J.; Fekel, F. C.; Morton, M. D.

    1994-01-01

    From two sets of the spectroscopic observations covering a ten year period we have obtained 59 radial velocities of the chromospherically-active star HD 28591 = V492 Per. It is a G9III single-lined spectroscopic binary with a period of 21.2910 days and a circular orbit. The upsilon sin i of 24.6 km/sec, results in a minimum radius 10.3 solar radii. We estimate a distance of 165 +/- 40 pc and an orbital inclination of 65 +/- 25 degrees. The secondary is probably a mid to late-type K dwarf. The star is brighter than the limiting magnitude of the Bright Star Catalogue. The mean photometric and the orbital periods are identical within their uncertainties. Since the star fills a significant fraction of its Roche lobe, about 62%, the photometric light curve may be the result of starspots and a modest ellipticity effect.

  9. Activity and cold spots on the surface of G-type superflare stars

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    2015-07-01

    Based on the high precision photometric observations of the Kepler space telescope, we have investigated the properties of the active regions (cold spots) on the surface of 279 stars of the spectral class G, for which 1547 superflares with energies in the range of 1033-1036 erg have been revealed. The main conclusion of our study is the quantitative estimation of the increased surface spottedness of superflare stars, which indicates enhancedmagnetic activity of these objects. The increased spottedness on the surfaces of the studied stars was confirmed based on two independent estimations of stellar brightness variations. In addition, it was concluded that superflare stars do not stand out in the common dataset of differential rotation parameters. Based on the data considered, no correlation was found of the spottedness parameters or the differential rotation parameters with the characteristics of these objects—their Rossby numbers and superflare energy. Additionally, the correlation between the superflare energy and the inverse Rossby number was considered. None of these comparisons gave an indication for the presence of any obvious correlation. The results of the analysis of five stars with a few dozen flares registered indicate that for the same star whereas spottedness S variations are small, significant changes in the superflare energy can be achieved. On the example of KIC 10422252, we show that at sixfold S variations, the flare energy varies by orders of magnitude at any given S value.

  10. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  11. X-ray spectral diagnostics of activity in massive stars

    NASA Astrophysics Data System (ADS)

    Cohen, David H.; Wollman, Emma E.; Leutenegger, Maurice A.

    2011-07-01

    X-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).

  12. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  13. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    NASA Technical Reports Server (NTRS)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  14. Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications

    NASA Astrophysics Data System (ADS)

    Vermaak, N.; Valdevit, L.; Evans, A. G.

    2009-04-01

    A scheme for identifying and visualizing the material properties that limit the performance of candidate materials for actively cooled aerospace propulsion components is presented and illustrated for combustor panels for Mach 7 hypersonic vehicles. The method provides a framework for exploring the nonlinear interactions between design and materials optimization. By probing the active constraints along the border of feasible design space, the limiting properties have been elucidated for a representative group of candidate materials. Property vectors that enhance design options have also been determined. For one of the promising candidate alloys (the Ni-based superalloy, INCONEL X-750), the possibilities of reclaiming design space and lowering optimal combustor panel weight by tailoring its strength properties are assessed.

  15. Nondestructive test of brazed cooling tubes of prototype bolometer camera housing using active infrared thermography.

    PubMed

    Tahiliani, Kumudni; Pandya, Santosh P; Pandya, Shwetang; Jha, Ratneshwar; Govindarajan, J

    2011-01-01

    The active infrared thermography technique is used for assessing the brazing quality of an actively cooled bolometer camera housing developed for steady state superconducting tokamak. The housing is a circular pipe, which has circular tubes vacuum brazed on the periphery. A unique method was adopted to monitor the temperature distribution on the internal surface of the pipe. A stainless steel mirror was placed inside the pipe and the reflected IR radiations were viewed using an IR camera. The heat stimulus was given by passing hot water through the tubes and the temperature distribution was monitored during the transient phase. The thermographs showed a significant nonuniformity in the brazing with a contact area of around 51%. The thermography results were compared with the x-ray radiographs and a good match between the two was observed. Benefits of thermography over x-ray radiography testing are emphasized.

  16. Examining the Flicker-Jitter Relation of K2 stars: the Dependence on Chromospheric Activity

    NASA Astrophysics Data System (ADS)

    Luhn, Jacob K.; Bastien, Fabienne A.; Wright, Jason

    2017-01-01

    Recently, Bastien et al. (2014) have shown that short timescale photometric variations from high-precision Kepler light curves, coined "flicker", can be linked to radial velocity (RV) noise, or "jitter", in chromospherically inactive stars. Observations of the sun show invariance in flicker over its 11-year activity cycle. Therefore, we seek to examine how well the relation holds for more active stars. Here we explore the relation between photometric flicker and RV jitter by extending the sample to stars observed by the recent K2 mission for which data have been released (Campaigns 0-8). The initial Kepler sample included 12 stars with surface gravities 3 < log(g) < 4.5, effective temperatures 4900 < Teff < 5900, and chromospheric activity -5.3 < log(R'HK) < -5.0. Our sample includes over 50 stars across a slightly wider range of surface gravities (2.5 < log(g) < 5), effective temperatures (4700 < Teff < 6100), and much larger range of chromospheric activity (-5.4 < log(R'HK) < -4.1). Additionally, we provide an empirical estimate for RV jitter based on the photometric flicker. Finally, we discuss the implications of this result on future RV follow-up for TESS and other future telescopes which will produce high-precision light curves.

  17. The onset of chromospheric activity among the A- and F- type stars

    NASA Technical Reports Server (NTRS)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  18. CHROMOSPHERIC ACTIVITY AND JITTER MEASUREMENTS FOR 2630 STARS ON THE CALIFORNIA PLANET SEARCH

    SciTech Connect

    Isaacson, Howard; Fischer, Debra E-mail: debra.fischer@yale.ed

    2010-12-10

    We present time series measurements of chromospheric activity for more than 2600 main-sequence and subgiant stars on the California Planet Search (CPS) program with spectral types ranging from about F5V to M4V for main-sequence stars and from G0IV to about K5IV for subgiants. The large data set of more than 44,000 spectra allows us to identify an empirical baseline floor for chromospheric activity as a function of color and height above the main sequence. We define {Delta}S as an excess in emission in the Ca II H and K lines above the baseline activity floor and define radial velocity jitter as a function of {Delta}S and B - V for main-sequence and subgiant stars. Although the jitter for any individual star can always exceed the baseline level, we find that K dwarfs have the lowest level of jitter. The lack of correlation between observed jitter and chromospheric activity in K dwarfs suggests that the observed jitter is dominated by instrumental or analysis errors and not astrophysical noise sources. Thus, given the long-term precision for the CPS program, radial velocities are not correlated with astrophysical noise for chromospherically quiet K dwarf stars, making these stars particularly well suited for the highest precision Doppler surveys. Chromospherically quiet F and G dwarfs and subgiants exhibit higher baseline levels of astrophysical jitter than K dwarfs. Despite the fact that the rms in Doppler velocities is correlated with the mean chromospheric activity, it is rare to see one-to-one correlations between the individual time series activity and Doppler measurements, diminishing the prospects for correcting activity-induced velocity variations in F and G dwarfs.

  19. Dynamic atmospheres and winds of cool luminous giants. I. Al2O3 and silicate dust in the close vicinity of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Bladh, S.; Aringer, B.; Ahuja, R.

    2016-10-01

    Context. In recent years, high spatial resolution techniques have given valuable insights into the complex atmospheres of AGB stars and their wind-forming regions. They make it possible to trace the dynamics of molecular layers and shock waves, to estimate dust condensation distances, and to obtain information on the chemical composition and size of dust grains close to the star. These are essential constraints for understanding the mass loss mechanism, which presumably involves a combination of atmospheric levitation by pulsation-induced shock waves and radiation pressure on dust, forming in the cool upper layers of the atmospheres. Aims: Spectro-interferometric observations indicate that Al2O3 condenses at distances of about 2 stellar radii or less, prior to the formation of silicates. Al2O3 grains are therefore prime candidates for producing the scattered light observed in the close vicinity of several M-type AGB stars, and they may be seed particles for the condensation of silicates at lower temperatures. The purpose of this paper is to study the necessary conditions for the formation of Al2O3 and the potential effects on mass loss, using detailed atmosphere and wind models. Methods: We have constructed a new generation of Dynamic Atmosphere and Radiation-driven Wind models based on Implicit Numerics (DARWIN), including a time-dependent treatment of grain growth and evaporation for both Al2O3 and Fe-free silicates (Mg2SiO4). The equations describing these dust species are solved in the framework of a frequency-dependent radiation-hydrodynamical model for the atmosphere and wind structure, taking pulsation-induced shock waves and periodic luminosity variations into account. Results: Condensation of Al2O3 at the close distances and in the high concentrations implied by observations requires high transparency of the grains in the visual and near-IR region to avoid destruction by radiative heating. We derive an upper limit for the imaginary part of the refractive

  20. Change in the activity character of the coronae of low-mass stars of various spectral types

    NASA Astrophysics Data System (ADS)

    Nizamov, B. A.; Katsova, M. M.; Livshits, M. A.

    2017-03-01

    We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the "amplitude of rotational brightness modulation (ARM)—rotation period" diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.

  1. Results from the Nearby Stars (NStars) Program: Chromospheric Activity in a Sample of Nearby Solar Analogs

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher J.; J., S.; Gray, R. O.

    2010-01-01

    Since the year 2000, our institutions have been engaged in a study of the nearby dwarf and giant stars earlier than spectral type M0 in the Hipparcos catalog and within 40 parsecs of the Sun (3600 stars). This study has used classification-resolution spectra to provide new, precise spectral types and basic physical parameters (effective temperature, surface gravity and metallicity). In addition, we are providing measures of the chromospheric activity for these stars. Results so far have been published in Gray et al. (2003, 2006). Here we outline the continuation of this study to which recent improvements have been made. These are both to the estimation of chromospheric activity, now closer to the Mount Wilson system, and to the derivation of stellar parameters through use of Kurucz's newer, Atlas12 atmospheric models. For a limited, improved sample, activity and evolutionary age are compared.

  2. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  3. Optimisation of concentrating solar cell systems with passive and active cooling

    NASA Astrophysics Data System (ADS)

    Blumenberg, J.

    1983-10-01

    Design considerations for concentrator solar cell arrays for space applications are reviewed, noting the restrictions on total mass that govern system selections. Consideration is given to systems with parabolic mirrors and Si and GaAs solar cells. Passive and active cooling systems for the arrays are discussed, as is the addition of a heat engine with a turbogenerator to utilize part of the waste heat of the cooling cycle. Attention is given to systems orbiting at 0.5, 1, and 3.5 AU from the sun. Flat panels are found to be more suitable for missions near the sun for Si solar cells, while GaAs cells with concentration are preferred to flat panel systems at all distances from the sun. Nuclear turboelectric systems are better than concentrator Si arrays at large distances from the sun, in terms of specific masses of the systems. The addition of a system to use waste heat is judged unfavorable from specific mass factors.

  4. Experiments on FTU with an actively water cooled liquid lithium limiter

    NASA Astrophysics Data System (ADS)

    Mazzitelli, G.; Apicella, M. L.; Apruzzese, G.; Crescenzi, F.; Iannone, F.; Maddaluno, G.; Pericoli-Ridolfini, V.; Roccella, S.; Reale, M.; Viola, B.; Lyublinski, I.; Vertkov, A.

    2015-08-01

    In order to prevent the overheating of the liquid Li surface and the consequent Li evaporation for T > 500 °C, an advanced version of the liquid lithium limiter has been realized and installed on FTU. This new system, named Cooled Lithium Limiter (CLL), has been optimized to demonstrate the lithium limiter capability to sustain thermal loads as high as 10 MW/m2 with up to 5 s of plasma pulse duration. The CLL operates with an actively cooled system with water circulation at the temperature of about 200 °C, for heating lithium up to the melting point and for the heat removal during the plasma discharges. To characterize CLL during discharges, a fast infrared camera and the spectroscopic signals from Li and D atom emission have been used. The experiments analyzed so far and simulated by ANSYS code, point out that heat loads as high as 2 MW/m2 for 1.5 s have been withstood without problems.

  5. Study of structural active cooling and heat sink systems for space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.

  6. Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Groves, Brent; Kewley, Lisa J.; Dopita, Michael A.; Hampton, Elise J.; Shastri, Prajval; Scharwächter, Julia; Sutherland, Ralph; Kharb, Preeti; Bhatt, Harish; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-10-01

    The optical spectra of Seyfert galaxies are often dominated by emission lines excited by both star formation and active galactic nucleus (AGN) activity. Standard calibrations (such as for the star formation rate) are not applicable to such composite (mixed) spectra. In this paper, we describe how integral field data can be used to spectrally and spatially separate emission associated with star formation from emission associated with accretion on to an AGN. We demonstrate our method using integral field data for two AGN host galaxies (NGC 5728 and NGC 7679) from the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). The spectra of NGC 5728 and NGC 7679 form clear sequences of AGN fraction on standard emission line ratio diagnostic diagrams. We show that the emission line luminosities of the majority (>85 per cent) of spectra along each AGN fraction sequence can be reproduced by linear superpositions of the emission line luminosities of one AGN dominated spectrum and one star formation dominated spectrum. We separate the Hα, Hβ, [N II]λ6583, [S II]λλ6716, 6731, [O III]λ5007 and [O II]λλ3726, 3729 luminosities of every spaxel into contributions from star formation and AGN activity. The decomposed emission line images are used to derive the star formation rates and AGN bolometric luminosities for NGC 5728 and NGC 7679. Our calculated values are mostly consistent with independent estimates from data at other wavelengths. The recovered star-forming and AGN components also have distinct spatial distributions which trace structures seen in high-resolution imaging of the galaxies, providing independent confirmation that our decomposition has been successful.

  7. Chromospherically active stars. II - HD 82558, a young single BY Draconis variable

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Bopp, Bernard W.; Africano, John L.; Goodrich, Bret D.; Palmer, Leigh Hunter

    1986-01-01

    It is presently noted that the HD 82558 chromospherically active star is a young and rapidly rotating K2 V single BY Draconis variable with very strong far-UV emission features and an H-alpha line filled to the continuum level by emission. HD 82558 has constant velocity and is not a member of the Hyades Supercluster. Its light curve behavior, which appears to have been stable for several hundred rotation cycles, is reminiscent of that of the young, rapidly rotating, single K V variable H II 1883 in the Pleiades; this stability may be characteristic of young, single, chromospherically active stars.

  8. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    NASA Astrophysics Data System (ADS)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  9. The Life Cycles of Stars: An Information and Activity Booklet, Grades 9-12, 1997-1998. Imagine the Universe! Probing the Structure & Evaluation of the Cosmos.

    ERIC Educational Resources Information Center

    Whitlock, Laura A.; Granger, Kara C.

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for grade 9 through grade 12 classrooms. Background information about star birth and life, black dwarfs, supernovae, white dwarfs, neutron stars, black holes, and the electromagnetic spectrum is included. The seven activities focus on star mass,…

  10. CHROMOSPHERIC ACTIVITY OF SOUTHERN STARS FROM THE MAGELLAN PLANET SEARCH PROGRAM

    SciTech Connect

    Arriagada, Pamela

    2011-06-10

    I present chromospheric-activity measurements of {approx}670 F, G, K, and M main-sequence stars in the Southern Hemisphere, from {approx}8000 archival high-resolution echelle spectra taken at Las Campanas Observatory since 2004. These stars were targets from the Old Magellan Planet Search, and are now potential targets for the New Magellan Planet Search that will look for rocky and habitable planets. Activity indices (S values) are derived from Ca II H and K line cores and then converted to the Mount Wilson system. From these measurements, chromospheric (log R'{sub HK}) indices are derived, which are then used as indicators of the level of radial-velocity jitter, age, and rotation periods these stars present.

  11. Chromospheric Activity of Southern Stars from the Magellan Planet Search Program

    NASA Astrophysics Data System (ADS)

    Arriagada, Pamela

    2011-06-01

    I present chromospheric-activity measurements of ~670 F, G, K, and M main-sequence stars in the Southern Hemisphere, from ~8000 archival high-resolution echelle spectra taken at Las Campanas Observatory since 2004. These stars were targets from the Old Magellan Planet Search, and are now potential targets for the New Magellan Planet Search that will look for rocky and habitable planets. Activity indices (S values) are derived from Ca II H and K line cores and then converted to the Mount Wilson system. From these measurements, chromospheric (log R'HK) indices are derived, which are then used as indicators of the level of radial-velocity jitter, age, and rotation periods these stars present. Based on observations obtained with the Magellan Telescopes, operated by the Carnegie Institution, Harvard University, University of Michigan, University of Arizona, and the Massachusetts Institute of Technology.

  12. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay Between Radiative Cooling, Star Formation, and Feedback Processes

    NASA Astrophysics Data System (ADS)

    Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.

    2017-03-01

    We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}ȯ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ∼ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104–107 amu cm‑3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump–BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ∼ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ∼ 10 to ∼ 300 {Myr}.

  13. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    PubMed

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  14. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  15. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, Ruslan

    2013-12-01

    The Electron-Muon Ranger (EMR) is a totally active scintillator detector to be installed in the muon beam of the Muon Ionization Cooling Experiment (MICE) [1] - the main R&D project for the future neutrino factory. It is aimed at measuring the properties of the low energy beam composed of muons, electrons and pions, performing the identification particle by particle. The EMR is made of 48 stacked layers alternately measuring the X- and the Y-coordinate. Each layer consists of 59 triangular scintillator bars. It is shown that the granularity of the detector permits to identify tracks and to measure particle ranges and shower shapes. The read-out is based on FPGA custom made electronics and commercially available modules. Currently it is being built at the University of Geneva.

  16. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  17. Firefighter feedback during active cooling: a useful tool for heat stress management?

    PubMed

    Savage, Robbie J; Lord, Cara; Larsen, Brianna L; Knight, Teagan L; Langridge, Peter D; Aisbett, Brad

    2014-12-01

    Monitoring an individual's thermic state in the workplace requires reliable feedback of their core temperature. However, core temperature measurement technology is expensive, invasive and often impractical in operational environments, warranting investigation of surrogate measures which could be used to predict core temperature. This study examines an alternative measure of an individual's thermic state, thermal sensation, which presents a more manageable and practical solution for Australian firefighters operating on the fireground. Across three environmental conditions (cold, warm, hot & humid), 49 Australian volunteer firefighters performed a 20-min fire suppression activity, immediately followed by 20 min of active cooling using hand and forearm immersion techniques. Core temperature (Tc) and thermal sensation (TS) were measured across the rehabilitation period at five minute intervals. Despite the decline in Tc and TS throughout the rehabilitation period, there was little similarity in the magnitude or rate of decline between each measure in any of the ambient conditions. Moderate to strong correlations existed between Tc and TS in the cool (0.41, p<0.05) and hot & humid (0.57, p<0.05) conditions, however this was resultant in strong correlation during the earlier stages of rehabilitation (first five minutes), which were not evident in the latter stages. Linear regression revealed TS to be a poor predictor of Tc in all conditions (SEE=0.45-0.54°C) with a strong trend for TS to over-predict Tc (77-80% of the time). There is minimal evidence to suggest that ratings of thermal sensation, which represent a psychophysical assessment of an individual's thermal comfort, are an accurate reflection of the response of an individual's core temperature. Ratings of thermal sensation can be highly variable amongst individuals, likely moderated by local skin temperature. In account of these findings, fire managers require a more reliable source of information to guide

  18. Simultaneous Broadband Observations of jet-dominated active galaxies with NuSTAR

    NASA Astrophysics Data System (ADS)

    Furniss, Amy

    2014-08-01

    The exceptionally energetic particle populations at work within powerful relativistic jets associated with active galaxies make these sources natural targets for the NuSTAR hard X-ray instrument. This space-based satellite can observe their emission between 3 and 70 keV with unprecedented sensitivity. This emission is likely due to the synchrotron process, and particles responsible for the hard X-ray emission are also expected to produce gamma-rays via inverse Compton process observed by instruments such as Fermi Large Area Telescope, VERITAS, MAGIC and HESS. Since the launch of NuSTAR, the instrument has led simultaneous broadband campaigns on multiple gamma-ray emitting jetted active galaxies. NuSTAR was able to observe Mrk 421 during unprecedented low and high states, as well as variability in Mrk 501 consistent with a magnetic reconnection event. Additionally, the extreme blazar 1ES 0229+200 was observed with NuSTAR, together with ground based gamma-ray instruments, providing the first complete picture of the broadband emission. These invaluable observations of BL Lac-type objects were supplemented with NuSTAR observations of the exceptionally variable flat spectrum radio quasar 3C 279, observed during the highest gamma-ray state yet observed by the Fermi LAT instrument. We will share the results from these multiwavelength campaigns, with particular emphasis on the implications for the study of the most relativistic particle populations at work within the Universe.

  19. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  20. LITHIUM ABUNDANCE IN SOLAR-TYPE STARS WITH LOW CHROMOSPHERIC ACTIVITY: APPLICATION TO THE SEARCH FOR MAUNDER MINIMUM ANALOGS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-10

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'{sub HK} {<=} -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  1. Study of a fail-safe abort system for an actively cooled hypersonic aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Pirello, C. J.; Herring, R. L.

    1976-01-01

    Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.

  2. Methodology to determine cost and performance goals for active solar cooling systems

    NASA Astrophysics Data System (ADS)

    Warren, M. L.; Wahlig, M.

    1981-11-01

    Systems analysis is used to calculate the 20 yr. present value of energy savings of solar cooling systems located in Texas, Arizona, Florida, and Washington, DC, and methods of solar system development to meet the cost goals of economic operation are outlined. Solar cooling systems are projected to begin commercial entry in 1986 and reach 20% of the total cooling market by the year 2000, producing 0.14 quads of displaced energy. A numerical simulation was carried out for both residential and commercial solar cooling units with consideration for system cost goals, cost goals per unit collector area, and the cost goals per ton of cooling. System size was targeted as a 3 ton residential chiller and a 25 ton commercial absorption cooling unit. The costs for volume production are provided, along with trends for an incrementally decreasing need for tax incentives, ending in about 1994

  3. Ca II activity and rotation in F-K evolved stars

    NASA Astrophysics Data System (ADS)

    Pasquini, L.; de Medeiros, J. R.; Girardi, L.

    2000-09-01

    Ca II H and K high resolution observations for 60 evolved stars in the field and in 5 open clusters are presented. From these spectra chromospheric fluxes are derived, and a homogeneous sample of more than 100 giants is built adding data from the literature. In addition, for most stars, rotational velocities were derived from CORAVEL observations. By comparing chromospheric emission in the cluster stars we confirm the results of Pasquini & Brocato (1992): chromospheric activity depends on the stellar effective temperature, and mass, when intermediate mass stars (M ~ 4 Msun) are considered. The Hyades and the Praesepe clump giants show the same level of activity, as expected from stars with similar masses and effective temperatures. A difference of up to 0.4 dex in the chromospheric fluxes among the Hyades giants is recorded and this sets a clear limit to the intrinsic spread of stellar activity in evolved giants. These differences in otherwise very similar stars are likely due to stellar cycles and/or differences in the stellar initial angular momentum. Among the field stars none of the giants with (V-R)o < 0.4 and Ia supergiants observed shows a signature of Ca II activity; this can be due either to the real absence of a chromosphere, but also to other causes which preclude the appearance of Ca II reversal. By analyzing the whole sample we find that chromospheric activity scales linearly with stellar rotational velocity and a high power of stellar effective temperature: F'k ~ Teff7.7 (Vsini)0.9. This result can be interpreted as the effect of two chromospheric components of different nature: one mechanical and one magnetic. Alternatively, by using the Hipparcos parallaxes and evolutionary tracks, we divide the sample according to the stellar masses, and we follow the objects along an evolutionary track. For each range of masses activity can simply be expressed as a function of only one parameter: either the Teff or the angular rotation Omega , with laws F

  4. The evolution of chromospheric activity in middle-aged Sun-like stars

    NASA Astrophysics Data System (ADS)

    Curtis, Jason L.

    2016-01-01

    Ages of stars are difficult to infer because stars change very little during the majority of their lifetimes. However, stars are observed to spin down over time due to magnetic braking, which weakens the magnetic dynamo as well. This spin down has led to a new age dating method called gyrochronology, which has been successfully calibrated for Sun-like stars up to 2.5 Gyr, but is still undetermined at older ages and lower masses. The decay of magnetic activity has also been utilized to empirically calibrate an age relationship at ages less than 600 Myr with nearby young star clusters (e.g. Hyades), and pinned down at 4 Gyr with M67, but the relationship is basically unconstrained at intermediate ages and sub-Solar masses. Advances in observational facilities have brought distant clusters into view, while the discovery of Ruprecht 147 has provided a new benchmark that is the oldest nearby cluster (3 Gyr, 300 pc, Curtis et al. 2013), and which provides a bridge across this historic age gap. I will present new, high quality chromospheric activity data for NGC 752 at 1.5 Gyr and Ruprecht 147 at 3 Gyr. The stars of Ruprecht 147 will demonstrate the typical activity level and variability experienced by the Sun at a time when multicellular life first evolved on Earth. I will also re-evaluate the M67 data by considering contamination by the interstellar medium, with implications for the frequency of Maunder Minima. Finally, I will discuss a new opportunity to investigate stellar spin down and variability in low mass KM dwarfs with the K2 Survey of Ruprecht 147, which will have just concluded in late December 2015.

  5. Star Power: Providing for the Gifted & Talented. Module 5. Enrichment Activities for the Gifted/Talented.

    ERIC Educational Resources Information Center

    Mallis, Jackie; Gilman, Sharlene

    The document presents Module 5, enrichment activities for the gifted/talented, of the Star Power modules developed for school personnel who have an interest in or a need to explore the area of gifted and talented education. It is explained in an introductory section that the modules can be used for independent study, for small group interaction,…

  6. HerMES: disentangling active galactic nuclei and star formation in the radio source population

    NASA Astrophysics Data System (ADS)

    Rawlings, J. I.; Page, M. J.; Symeonidis, M.; Bock, J.; Cooray, A.; Farrah, D.; Guo, K.; Hatziminaoglou, E.; Ibar, E.; Oliver, S. J.; Roseboom, I. G.; Scott, Douglas; Seymour, N.; Vaccari, M.; Wardlow, J. L.

    2015-10-01

    We separate the extragalactic radio source population above ˜50 μJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/IRAC (Infrared Array Camera) and Multiband Imaging Photometer for Spitzer (MIPS) and Herschel/SPIRE photometry, of 380 radio sources in the Extended Chandra Deep Field-South. From the fitted SEDs, we determine the relative AGN and star-forming contributions to their infrared emission. With the inclusion of other AGN diagnostics such as X-ray luminosity, Spitzer/IRAC colours, radio spectral index and the ratio of star-forming total infrared flux to k-corrected 1.4 GHz flux density, qIR, we determine whether the radio emission in these sources is powered by star formation or by an AGN. The majority of these radio sources (60 per cent) show the signature of an AGN at some wavelength. Of the sources with AGN signatures, 58 per cent are hybrid systems for which the radio emission is being powered by star formation. This implies that radio sources which have likely been selected on their star formation have a high AGN fraction. Below a 1.4 GHz flux density of 1 mJy, along with finding a strong contribution to the source counts from pure star-forming sources, we find that hybrid sources constitute 20-65 per cent of the sources. This result suggests that hybrid sources have a significant contribution, along with sources that do not host a detectable AGN, to the observed flattening of the source counts at ˜1 mJy for the extragalactic radio source population.

  7. Thermal Manikin Evaluation of Passive and Active Cooling Garments to Improve Comfort of Military Body Armor

    DTIC Science & Technology

    2007-08-01

    increased TM evaporative cooling potential approximately 18%. Military use of these garments could allow for increases in sweat evaporation and overall thermal comfort during operational heat exposure.

  8. IUE observations of the chromospheric activity-age relation in young solar-type stars

    NASA Technical Reports Server (NTRS)

    Simon, T.; Boesgaard, A. M.

    1982-01-01

    Ultraviolet data obtained with the IUE spacecraft are presented for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The evolution of transition regions and chromospheric emission with stellar age is studied along with the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes.

  9. A multiwavelength photometric census of AGN and star formation activity in the brightest cluster galaxies of X-ray selected clusters

    NASA Astrophysics Data System (ADS)

    Green, T. S.; Edge, A. C.; Stott, J. P.; Ebeling, H.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Metcalfe, N.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2016-09-01

    Despite their reputation as being `red and dead', the unique environment inhabited by brightest cluster galaxies (BCGs) can often lead to a self-regulated feedback cycle between radiatively cooling intracluster gas and star formation and active galactic nucleus (AGN) activity in the BCG. However the prevalence of `active' BCGs, and details of the feedback involved, are still uncertain. We have performed an optical, UV and mid-IR photometric analysis of the BCGs in 981 clusters at 0.03 < z < 0.5, selected from the ROSAT All Sky Survey. Using Pan-STARRS PS1 3π, GALEX and WISE survey data we look for BCGs with photometric colours which deviate from that of the bulk population of passive BCGs - indicative of AGN and/or star formation activity within the BCG. We find that whilst the majority of BCGs are consistent with being passive, at least 14 per cent of our BCGs show a significant colour offset from passivity in at least one colour index. And, where available, supplementary spectroscopy reveals the majority of these particular BCGs show strong optical emission lines. On comparing BCG `activity' with the X-ray luminosity of the host cluster, we find that BCGs showing a colour offset are preferentially found in the more X-ray luminous clusters, indicative of the connection between BCG `activity' and the intracluster medium.

  10. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  11. The host stars of Kepler's habitable exoplanets: superflares, rotation and activity

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Pugh, C. E.; Broomhall, A.-M.; Brown, D. J. A.; Lund, M. N.; Osborn, H. P.; Pollacco, D. L.

    2016-01-01

    We embark on a detailed study of the light curves of Kepler's most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass-loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the light curve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166 au to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  12. Differential rotation as a model for starspots in magnetically active stars

    NASA Astrophysics Data System (ADS)

    Agostino, Christopher James; Basri, Gibor S.

    2017-01-01

    The Kepler mission has provided an opportunity to significantly expand our understanding of starspots. We have implemented a MCMC method to determine spot parameters of input light curves using a differential rotation spot model. We generated model light curves and explored parameter space in order to test the reliability of our method in retrieving input parameters and to investigate what constraints on spot parameters can be determined from photometric data. We also applied our method to light curves of magnetically active Kepler stars, using only a few spots. One interesting initial conclusion is that it is often possible to replicate complicated light curves over many rotation periods without the need for any spot evolution on stars with rotation periods less than 20 days. We have also begun investigating to what extent spot evolution is preferred as the alternative model for stellar variability. Of course, it is very likely that real stars exhibit both phenomena.

  13. Recovering planet radial velocity signals in the presence of starspot activity in fully convective stars

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Jeffers, S. V.; Anglada-Escudé, G.; Haswell, C. A.; Jones, H. R. A.; Tuomi, M.; Feng, F.; Jenkins, J. S.; Petit, P.

    2017-04-01

    Accounting for stellar activity is a crucial component of the search for ever-smaller planets orbiting stars of all spectral types. We use Doppler imaging methods to demonstrate that starspot-induced radial velocity variability can be effectively reduced for moderately rotating, fully convective stars. Using starspot distributions extrapolated from sunspot observations, we adopt typical M dwarf starspot distributions with low contrast spots to synthesize line profile distortions. The distortions are recovered using maximum entropy regularized fitting and the corresponding stellar radial velocities are measured. The procedure is demonstrated that for a late-M star harbouring an orbiting planet in the habitable zone. The technique is effective for stars with v sin i = 1-10km s-1, reducing the stellar noise contribution by factors of nearly an order of magnitude. With a carefully chosen observing strategy, the technique can be used to determine the stellar rotation period and is robust to uncertainties such as unknown stellar inclination. While demonstrated for late-type M stars, the procedure is applicable to all spectral types.

  14. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats.

    PubMed

    Vasant, Rupal A; Narasimhacharya, A V R L

    2014-06-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress.

  15. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats

    PubMed Central

    Vasant, Rupal A.

    2014-01-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress. PMID:26109886

  16. Hyper X-ray Flares on Active Stars Detected with MAXI

    NASA Astrophysics Data System (ADS)

    Higa, Masaya; Tsuboi, Yohko; Negoro, Hitoshi; Nakahira, Satoshi; Tomida, Hiroshi; Matsuoka, Masaru; aff002

    2014-08-01

    MAXI started its operation in 2009 August. Owing to its unprecedentedly high sensitivity as an all-sky X-ray monitor and to its capability of real-time data transfer, we have detected 56 strong flares from twenty-one active stars (eleven RS CVn systems, one Algol system, seven dMe stars, one dKe star and one Young Stellar Object). These flares have large X-ray luminosity of 6 × 1030 -5 × 1033 ergs s-1 in the 2-20 keV band. The flares can be thought to be high ends among their own categories. During the flare from AT Mic on 2012 April 18th, one of the largest X-ray luminosities was recorded as a dMe star, 6 × 1032 ergs s-1 in the 2-20 keV band. It is larger than its bolometric luminosity by 4 times. The total energy emitted during the flare is 1036 ergs in the same band. Such total energy can be obtained on large flares from RS CVn system, but not on any other flares from dMe stars. In this proceeding, we report on the present situation in characteristics of hyper X-ray flares on each stellar categories.

  17. Multiwavelength study of the magnetically active T Tauri star HD 283447

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Welty, Alan D.; Imhoff, Catherine; Hall, Jeffrey C.; Etzel, Paul B.; Phillips, Robert B.; Lonsdale, Colin J.

    1994-01-01

    We observed the luminous T Tauri star HD 283447 = V773 Tauri simultaneously at X-ray, ultraviolet, optical photometric and spectroscopic, and radio wavelengths for several hours on UT 1992 September 11. ROSAT, IUE, Very Large Array (VLA) and an intercontinental Very Long Baseline Interferometry (VLBI) network, and three optical observatories participated in the campaign. The star is known for its unusually high and variable nonthermal radio continuum emission. High levels of soft X-ray and Mg II line emission are discovered, with luminosity L(sub x) = 5.5 x 10(exp 30) ergs/s (0.2 - 2 keV) and L(sub Mg II) = 1 x 10(exp 29) ergs/s, respectively. Optically, the spectrum exhibits rather weak characteristics of `classical' T Tauri stars. A faint, broad emission line component, probably due to a collimated wind or infall, is present. During the campaign, the radio luminosity decreased by a factor of 4, while optical/UV lines and X-ray emission remained strong but constant. The large gyrosynchrotron-emitting regions are therefore decoupled from the chromospheric and coronal emission. Five models for the magnetic geometry around the star are discussed; solar-type activity, dipole magnetosphere, star-disk magnetic coupling, disk magnetic fields, and close binary interaction. The data suggest that two magnetic geometries are simultaneously present: complex multipolar fields like those on the Sun, and a large-scale field possibly associated with the circumstellar disk.

  18. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    NASA Astrophysics Data System (ADS)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  19. Cosmic web and star formation activity in galaxies at z ∼ 1

    SciTech Connect

    Darvish, B.; Mobasher, B.; Sales, L. V.; Sobral, D.; Scoville, N. Z.; Best, P.; Smail, I.

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  20. Spectral characterization and differential rotation study of active CoRoT stars

    NASA Astrophysics Data System (ADS)

    Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.

    2016-05-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.

  1. A maximum entropy approach to detect close-in giant planets around active stars

    NASA Astrophysics Data System (ADS)

    Petit, P.; Donati, J.-F.; Hébrard, E.; Morin, J.; Folsom, C. P.; Böhm, T.; Boisse, I.; Borgniet, S.; Bouvier, J.; Delfosse, X.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Barnes, J. R.

    2015-12-01

    Context. The high spot coverage of young active stars is responsible for distortions of spectral lines that hamper the detection of close-in planets through radial velocity methods. Aims: We aim to progress towards more efficient exoplanet detection around active stars by optimizing the use of Doppler imaging in radial velocity measurements. Methods: We propose a simple method to simultaneously extract a brightness map and a set of orbital parameters through a tomographic inversion technique derived from classical Doppler mapping. Based on the maximum entropy principle, the underlying idea is to determine the set of orbital parameters that minimizes the information content of the resulting Doppler map. We carry out a set of numerical simulations to perform a preliminary assessment of the robustness of our method, using an actual Doppler map of the very active star HR 1099 to produce a realistic synthetic data set for various sets of orbital parameters of a single planet in a circular orbit. Results: Using a simulated time series of 50 line profiles affected by a peak-to-peak activity jitter of 2.5 km s-1, in most cases we are able to recover the radial velocity amplitude, orbital phase, and orbital period of an artificial planet down to a radial velocity semi-amplitude of the order of the radial velocity scatter due to the photon noise alone (about 50 m s-1 in our case). One noticeable exception occurs when the planetary orbit is close to co-rotation, in which case significant biases are observed in the reconstructed radial velocity amplitude, while the orbital period and phase remain robustly recovered. Conclusions: The present method constitutes a very simple way to extract orbital parameters from heavily distorted line profiles of active stars, when more classical radial velocity detection methods generally fail. It is easily adaptable to most existing Doppler imaging codes, paving the way towards a systematic search for close-in planets orbiting young, rapidly

  2. Tractor Mechanics. Maintaining and Servicing the Cooling System, Learning Activity Packages 34-40; Maintaining and Servicing Hydraulic Systems, Learning Activity Packages 41-48.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    This series of learning activity packages focuses on two areas of tractor mechanics: (1) maintaining and servicing the cooling system and (2) maintaining and servicing hydraulic systems. Each of the fifteen illustrated learning activity packages follows a typical format: introduction, directions, objectives, learning activities, tools and…

  3. Spatio-temporal activity in real time (STAR): Optimization of regional fMRI feedback

    PubMed Central

    Magland, Jeremy F.; Tjoa, Christopher W.; Childress, Anna Rose

    2011-01-01

    The use of real-time feedback has expanded fMRI from a brain probe to include potential brain interventions with significant therapeutic promise. However, whereas time-averaged blood oxygenation level-dependent (BOLD) signal measurement is usually sufficient for probing a brain state, the real-time (frame-to-frame) BOLD signal is noisy, compromising feedback accuracy. We have developed a new real-time processing technique (STAR) that combines noise-reduction properties of multi-voxel (e.g., whole-brain) techniques with the regional specificity critical for therapeutics. Nineteen subjects were given real-time feedback in a cognitive control task (imagining repetitive motor activity vs. spatial navigation), and were all able to control a visual feedback cursor based on whole-brain neural activity. The STAR technique was evaluated, retrospectively, for five a priori regions of interest in these data, and was shown to provide significantly better (frame-by-frame) classification accuracy than a regional BOLD technique. In addition to regional feedback signals, the output of the STAR technique includes spatio-temporal activity maps (movies) providing insight into brain dynamics. The STAR approach offers an appealing optimization for real-time fMRI applications requiring an anatomically-localized feedback signal. PMID:21232612

  4. Long-term Optical Activity of the Hard X-ray Flaring Star DG CVn

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-04-01

    DG CVn is a young late-type star which displayed an X-ray and optical superflare in 2014. This paper presents an analysis of the long-term activity of this object in the optical band. I used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). These measurements from the years 1895-1989 cover the blue spectral region. CCD V-band ASAS data were used for several UV Cet-type stars to place the activity of DG CVn in the context of flaring stars. I show that three large brightenings (flares) of DG CVn by more than 1 mag were detected on the DASCH plates. The character of the long-term activity (regarding the histogram of brightness) of DG CVn is compatible with those of flaring stars UV Cet and V371 Ori. The flares brighter than ˜ 0.4 mag represent less than 1 percent of the observed data in all three objects

  5. Activity and age from Kepler and K2 observations of field and cluster stars

    NASA Astrophysics Data System (ADS)

    Soderblom, David R.

    2017-01-01

    Kepler and K2 are providing key insights into activity-related phenomena on late-type stars. Kepler observations showed that highly energetic flares can be seen on many more types of stars than the M dwarfs that have been the traditional focus of flare studies. Some stars similar to the Sun have been seen to exhibit flares with $\\sim10^4$ times the energy of the largest solar flares ever seen, for example. The K2 extension of Kepler has been especially valuable by providing data for several open clusters, including the Pleiades, Praesepe, Hyades, and M67.In this review I will summarize the flaring behavior seen with Kepler and K2, from A stars through Ms and from the pre-main sequence to solar age. The Pleiades and M67 provide useful examples to illustrate what is seen and not seen.Other aspects of Kepler and K2 light curves have been studied as indicators of activity, and some results from that will be presented. Finally, these indicators of activity will be placed into an age context using indicators and measurements of age from Kepler/K2.

  6. A Study of EUV Emission in Active Be Stars in the Canis Major Interstellar Tunnel

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    Spectroscopic observations are proposed of three active Be stars and one comparison object that are located in the Canis Major tunnel of low interstellar gas density to search for the presence of a 10^5-10^7 K plasma that contemporary theories of disk formation or flare/episodic/ pulsational activity predict. The program stars include kappa CMa (B2IVe, in which flare-type activity has been observed), omega CMa (B2.5Ve, an apparent nonradial pulsator), alpha Col (B7IVe, which has an unusually large C IV absorption for its spectral type), and zeta CMa (B2.5V, a non-emission line B star to be used for comparison). The Be stars are all viewed at low-moderate inclinations to our line-of-sight so that EUV absorption in the wind should be minimized. The strengths of the emission lines He II 304 and 256 and numerous Fe lines in the SW region will be compared with those already observed in epsilon CMa (B2II) and beta CMa (B1II, a beta Cephei radial pulsator) with EUVE. The temperature of the plasma will be determined from the ionization state of the emission lines and the size/location of the emitting region estimated from the widths of these features and any observed modulation with phase in the optical light curve.

  7. NuSTAR X-ray observations of small flares and non-flaring active regions

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Grefenstette, B.; Smith, D. M.; Marsh, A.; Glesener, L.; Krucker, S.; Hudson, H. S.; White, S.; Madsen, K.; Caspi, A.; Vogel, J.; Shih, A.

    2015-12-01

    We present imaging spectroscopy of the Sun with the NuSTAR hard X-ray (HXR) telescope, an astrophysics mission that uses focusing optics to directly image X-rays between ~2-80 keV. Although not optimized for solar observations, NuSTAR's high sensitivity can probe previously inaccessible X-ray emission from the Sun - crucial for searching for high temperature and non-thermal emission from "non-flaring" active regions. We present analysis of the first NuSTAR solar observations, that began in late 2014 and continued through 2015. These include using its imaging spectroscopy capabilities to derive the thermal characteristics of several "non-flaring" active regions, providing limits to the high temperature emission. We also show NuSTAR observations of several small microflares that were also observed by Hinode/XRT (in multiple thicker filters sensitive to higher temperatures) and RHESSI. This combination of three separate X-ray telescopes provides a broad observational characterization of active region heating by these very small microflares.

  8. Photometric activity of the Herbig Be star MWC 297 over 25 years

    NASA Astrophysics Data System (ADS)

    Barsunova, O. Yu.; Mel'nikov, S. Yu.; Grinin, V. P.; Katysheva, N. A.; Shugarov, S. Yu.

    2013-02-01

    The photometric behavior of the hot, young Herbig Be starMWC 297 on various time scales is studied using published data, as well as new observations. The series of photometric observations covers about 25 years. Over this time, the star showed low-amplitude (Δ V ≈ 0.3 m ) irregular variabilitymodulated by large-scale cyclic variabilitywith an amplitude close to 0.2 m and a period (or quasi-period) of 5.4±0.1 yr. A detailed seasonal analysis of the data shows that the light curve of MWC 297 displays two types of photometric features: low-amplitude Algol-like fading with an amplitude close to 0.2 m and low-amplitude flares resembling the flares of UV Ceti stars, but being more powerful and having longer durations. The variations of the stellar brightness are accompanied by variations of the B- V and V - R colors: when the brightness decreases, B- V decreases, while V - R increases (the star reddens). The reddening law is close to the standard interstellar reddening law. Although the character of the brightness variability ofMWC 297 resembles the photometric activity of UX Ori type stars, which is due to variations of their circumstellar extinction, its scale is very far from the scales observed for UX Ori stars. It is difficult to reconcile the level of photometric activity with the idea that MWC 297 is observed through its own gas-dust disk viewed almost edge-on, as has been suggested in several studies.

  9. Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas

    NASA Astrophysics Data System (ADS)

    Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.

    2003-04-01

    We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).

  10. Desensitization of menthol-activated cold receptors in lower extremities during local cooling in young women with a cold constitution.

    PubMed

    Yamazaki, Fumio; Sone, Ryoko

    2017-03-01

    To test the hypothesis that topical menthol-induced reactivity of cold sensation and cutaneous vasoconstriction to local cooling is augmented in individuals with a cold constitution, we examined thermal sensation and cutaneous vasoconstrictor responses at menthol-treated and untreated sites in the legs during local skin cooling in young women complaining of chilliness (C group) and young women with no complaint as a normal control group (N group). During local skin cooling, the sensitivity to cold sensation was greater in the C group than in the N group. The application of menthol enhanced the cold sensation at a low temperature in the N group, but not in the C group. Cutaneous vasoconstrictor responses to local skin cooling were not altered by menthol treatment in either of the two groups. These findings suggest the desensitization of menthol-activated cold receptors in the legs of C group subjects, and a minor role of cold receptor activity in cutaneous vasoconstrictor response to local cooling.

  11. New insight into the relation between star formation activity and dust content in galaxies

    NASA Astrophysics Data System (ADS)

    da Cunha, Elisabete; Eminian, Celine; Charlot, Stéphane; Blaizot, Jérémy

    2010-04-01

    We assemble a sample of 3258 low-redshift galaxies from the Sloan Digital Sky Survey Data Release 6 with complementary photometric observations by the Galaxy Evolution Explorer, the Two Micron All Sky Survey and the Infrared Astronomical Satellite at far-ultraviolet and infrared wavelengths. We use a recent, simple but physically motivated model to interpret the observed spectral energy distributions of the galaxies in this sample in terms of statistical constraints on physical parameters describing the star formation history and dust content. The focus on a subsample of 1658 galaxies with highest signal-to-noise ratio observations enables us to investigate most clearly several strong correlations between various derived physical properties of galaxies. In particular, we find that the typical dust mass Md of a galaxy forming stars at a rate ψ can be estimated remarkably well using the formula over at least three orders of magnitude in both quantities. We also find that the dust-to-stellar mass ratio, the ratio of dust mass to star formation rate and the fraction of dust luminosity contributed by the diffuse interstellar medium (ISM) all correlate strongly with specific star formation rate. A comparison with recent models of chemical and dust evolution of galaxies suggests that these correlations could arise, at least in part, from an evolutionary sequence. As galaxies form stars, their ISM becomes enriched in dust, while the drop in gas supply makes the specific star formation rate decrease. Interestingly, as a result, a young, actively star-forming galaxy with low dust-to-gas ratio may still be highly dusty (in the sense of a high dust-to-stellar mass ratio) because it contains large amounts of interstellar gas. This may be important for the interpretation of the infrared emission from young, gas-rich star-forming galaxies at high redshift. The results presented in this paper should be especially useful to improve the treatment of the ISM properties of galaxies

  12. Hα-activity and ages for stars in the SARG survey

    NASA Astrophysics Data System (ADS)

    Sissa, E.; Gratton, R.; Desidera, S.; Martinez Fiorenzano, A. F.; Bonfanti, A.; Carolo, E.; Vassallo, D.; Claudi, R. U.; Endl, M.; Cosentino, R.

    2016-12-01

    Stellar activity influences radial velocity (RV) measurements and can also mimic the presence of orbiting planets. As part of the search for planets around the components of wide binaries performed with the SARG High Resolution Spectrograph at the TNG, it was discovered that HD 200466A shows strong variation in RV that is well correlated with the activity index based on Hα. We used SARG to study the Hα line variations in each component of the binaries and a few bright stars to test the capability of the Hα index of revealing the rotation period or activity cycle. We also analysed the relations between the average activity level and other physical properties of the stars. We finally tried to reveal signals in the RVs that are due to the activity. At least in some cases the variation in the observed RVs is due to the stellar activity. We confirm that Hα can be used as an activity indicator for solar-type stars and as an age indicator for stars younger than 1.5 Gyr. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.A table of the individual Hα measurements is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A76

  13. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    SciTech Connect

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao

    2009-10-10

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg{sup 2} of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 mum and 70 mum, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L {sub bol} approx 0.2 L {sub sun} and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only approx0.06%.

  14. Forecasting life: a study of activity cycles in low-mass stars: lessons from long-term stellar light curves.

    PubMed

    Kafka, Stella

    2012-06-01

    Magnetic activity cycles are indirect traces of magnetic fields and can provide an insight on the nature and action of stellar dynamos and stellar magnetic activity. This, in turn, can determine local space weather and activity effects on stellar habitable zones. Using photometric monitoring of low-mass stars, we study the presence and properties of their magnetic activity cycles. We introduce long-term light curves of our sample stars, and discuss the properties of the observed trends, especially at spectral types where stars are fully convective (later than M3).

  15. Monitoring the Stellar Activity of Transit-Hosting Stars II: supporting HST exoplanet atmosphere observations

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Evans, Tom; Sing, David K.; Aigrain, Suzanne

    2012-02-01

    We propose to use the CTIO 1.3m telescope with ANDICAM to monitor 5 bright stars that host transiting exoplanets in an effort to characterise their activity. These observations will provide critical ground-based support for our large HST program that has been granted 124 orbits to perform a survey of UV-optical atmospheric transmission spectra for 8 hot Jupiters using the STIS instrument (Cycle 19, Prog 12473, PI D Sing). They are required because active stellar regions inevitably contaminate measured planetary light curves by causing the apparent planet-to-star radius to vary in a wavelength dependent manner. Regular ground-based photometric monitoring performed using the CTIO 1.3m telescope will allow us to determine the spot activity at the time of the HST observations, so that the stellar baseline flux can be accurately normalised for every transit observed, enabling transmission spectra from multiple visits to be combined.

  16. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  17. Suppressing cluster cooling flows by self-regulated heating from a spatially distributed population of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Silk, Joseph; Babul, Arif

    2006-12-01

    Existing models invoking active galactic nucleus (AGN) activity to resolve the cooling flow conundrum in galaxy clusters focus exclusively on the role of the central galaxy. Such models require fine-tuning of highly uncertain microscopic transport properties to distribute the thermal over the entire cluster cooling core. We propose that the intracluster medium (ICM) is instead heated by multiple, spatially distributed AGN. The central regions of galaxy clusters are rich in spheroidal systems, all of which are thought to host black holes and could participate in the heating of the ICM via AGN activity of varying strengths, and they do. There is mounting observational evidence for multiple AGN in cluster environments. AGN drive bubbles into the ICM. We identify three distinct interactions between the bubble and the ICM: (1) upon injection, the bubbles expand rapidly in situ to reach pressure equilibrium with their surroundings, generating shocks and waves whose dissipation is the principal source of ICM heating; (2) once inflated, the bubbles rise buoyantly at a rate determined by a balance with the viscous drag force, which itself results in some additional heating; and (3) rising bubbles expand and compress their surroundings. This process is adiabatic and does not contribute to any additional heating; rather, the increased ICM density due to compression enhances cooling. Our model sidesteps the `transport' issue by relying on the spatially distributed galaxies to heat the cluster core. We include self-regulation in our model by linking AGN activity in a galaxy to cooling characteristics of the surrounding ICM. We use a spherically symmetric one-dimensional hydrodynamical code to carry out a preliminary study illustrating the efficacy of the model. Our self-regulating scenario predicts that there should be enhanced AGN activity of galaxies inside the cooling regions compared to galaxies in the outer parts of the cluster. This prediction remains to be confirmed or

  18. MID-INFRARED SPECTRAL INDICATORS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY IN NORMAL GALAXIES

    SciTech Connect

    Treyer, Marie; Martin, Christopher D.; Wyder, Ted; Schiminovich, David; O'Dowd, Matt; Johnson, Benjamin D.; Charlot, Stephane; Heckman, Timothy; Martins, Lucimara; Seibert, Mark; Van der Hulst, J. M.

    2010-08-20

    We investigate the use of mid-infrared (MIR) polycyclic aromatic hydrocarbon (PAH) bands, the continuum, and emission lines as probes of star formation (SF) and active galactic nucleus (AGN) activity in a sample of 100 'normal' and local (z {approx} 0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph as part of the Spitzer-SDSS-GALEX Spectroscopic Survey, which includes multi-wavelength photometry from the ultraviolet to the far-infrared and optical spectroscopy. The continuum and features were extracted using PAHFIT, a decomposition code which we find to yield PAH equivalent widths (EWs) up to {approx}30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low-metallicity galaxies, or ULIRGs), we find significant variations in PAH, continuum, and emission-line properties, and systematic trends between these MIR properties and optically derived physical properties, such as age, metallicity, and radiation field hardness. We revisit the diagnostic diagram relating PAH EWs and [Ne II]12.8 {mu}m/[O IV]25.9 {mu}m line ratios and find it to be in much better agreement with the standard optical SF/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and, with poorer statistics, of the neon emission lines and molecular hydrogen lines are found to be tightly correlated to the total infrared (TIR) luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the TIR luminosity, these individual components can be used to estimate dust attenuation in the UV and in H{alpha} lines based on energy balance arguments. We also propose average scaling relations between these components and dust-corrected, H{alpha}-derived SF rates.

  19. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  20. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity

  1. Recent unusual activity in the Be star FY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    1988-08-01

    Unusual activity observed in the circumstelar envelope of FY CMa during April-May, 1987 is reported. Nightly CCD observations from April 16-20 revealed an invariant H-alpha emission feature and a simple absorption profile for He I 6678 with very weak double emission components. Similar observations on May 2, however, showed that the V lobe of the H-alpha feature had increased in strength by 30 percent and that the He I line had developed into a structured inverse P Cygni profile.

  2. Particle exhaust of helium plasmas with actively cooled outboard pump limiter on Tore Supra

    SciTech Connect

    Uckan, T.; Mioduszewski, P.K.; Loarer, T.; Chatelier, M.; Guilhem, D.; Lutz, T.; Nygren, R.E.; Mahdavi, M.A.

    1995-